FLUENT传热模拟参考资料整理

合集下载

Fluent辐射传热模型理论以及相关设置[精品文档]

Fluent辐射传热模型理论以及相关设置[精品文档]

Fluent辐射传热模型理论以及相关设置目录1概述 (2)2基础理论 (2)2.1专业术语解释: (2)2.2FLUENT辐射模型介绍: (3)2.3辐射模型适用范围总结 (4)3Fluent实际案例操作 (5)3.1Case1-测试external emissivity 使用DO模型计算-2D模型 (5)3.2Case2-测试internal emissivity-使用DO模型计算-2D模型 (6)3.3仿真结论 (9)1概述在传热的仿真中,有时候会不可避免的涉及到辐射传热,而我们对Fluent中辐射模型的了解甚少,很难得到可靠的计算结果。

因此,一直以来,Fluent中的带辐射的传热仿真是我们的一个难点,本专题重点来学习辐射模型的理论,让我们对辐射计算模型有一个深入的了解,以帮助我们攻克这个仿真难点。

2基础理论2.1专业术语解释:在Fluent中开启辐射模型时,流体介质以及固体壁面会出现一些专业的参数需要用户来设置。

在Fluent help中介绍辐射模型时会经常提到一些专业术语。

对这些专业参数以及术语,我们来一一解释:1、Optical thickness(光学深度,无量纲量):介质层不透明性的量度。

即介质吸收辐射的能力的量度,等于入射辐射强度与出射辐射强度之比。

设入射到吸收物质层的入射辐射强度为I ,透射的辐射强度为e,则T = I/e,其中T为光学深度。

按照此定义,那介质完全透明,对辐射不吸收、也不散射,透射的辐射强度e=入射辐射强度I,即光学深度为T=1,介质不参与辐射。

—摘自百度百科而FLUENT中T=αL,其中L为介质的特征长度,α为辐射削弱系数(可理解为介质因吸收和散射引起的光强削弱系数)。

如果T=0,说明介质不参与辐射,和百度百科中的定义有出入。

但是所表达的意思是接近的,一个是前后辐射量的比值;一个是变化量和入射辐射量的比值(根据Fluent help里的解释,经过介质的辐射损失量=I*T,个人理解,按照此定义,T不可能大于1啊,矛盾。

fluent传热系数

fluent传热系数

fluent传热系数
FLUENT是一种流体力学仿真软件,用于模拟和分析流体和传热问题。

传热系数是其中一个重要的参数,用于描述热量传递的速率。

在FLUENT中,可以通过以下方式获取传热系数:
1.壁面热通量(Wall Heat Flux):可以通过FLUENT中的壁面
条件设置检查壁面的热通量。

传热系数可以从壁面热通量
中计算得到。

2.热通量梯度(Heat Flux Gradient):传热系数可以通过壁面
的热通量梯度在表面上的变化率来计算。

FLUENT提供了
在监控面板或者通过后处理工具进行结果分析时,查看壁
面上的热通量梯度。

3.对流传热模型(Convective Heat Transfer Model):FLUENT
提供了多种对流传热模型,如湍流模型和辐射传热模型等。

这些模型通常包含了与传热系数相关的物理参数,并提供
相关的计算值。

在FLUENT中,用户可以根据具体的模拟和分析需求选择适当的方式来获得传热系数。

这些方法可以用于计算不同壁面的传热系数,或者在不同条件下计算传热系数的变化。

需要注意的是,在设置和解决传热问题时,应该根据具体情况选择合适的模型和边界条件。

此外,在获取传热系数时,还需要对结果进行验证和合理性检查,以确保计算得到的传热系数是可靠和准确的。

fluent传热系数

fluent传热系数

fluent传热系数摘要:I.引言- 简要介绍fluent 传热系数II.传热系数的定义与意义- 传热系数的定义- 传热系数在工程领域的重要性III.fluent 软件与传热系数计算- fluent 软件简介- 使用fluent 软件计算传热系数的方法IV.传热系数的影响因素- 材料性质的影响- 流动状态的影响- 传热方式的影响V.提高传热系数的途径- 材料选择与设计- 流动控制与优化- 传热方式改进VI.结论- 总结传热系数的重要性与计算方法- 展望传热系数在未来的研究前景正文:fluent 传热系数是fluent 软件中一个重要的参数,它描述了流体中热量传递的能力。

传热系数越大,表示流体中的热量传递能力越强。

在工程领域,fluent 传热系数被广泛应用于热力学、流体力学、材料科学等领域,对于工业生产、能源转换与传输、材料加工等过程都有重要的影响。

传热系数是指在单位时间内,单位面积的物质传递的热量与物质的温度差之比。

通常用符号k 表示,单位为瓦特每平方米开尔(W/m^2K)。

传热系数的大小取决于物质的性质、流动状态以及传热方式等因素。

fluent 软件是一款强大的流体仿真软件,可以用于计算流体的运动、热传递、化学反应等多种物理现象。

在fluent 软件中,传热系数的计算是通过模拟流体流动与热传递过程,根据能量守恒定律来求解的。

传热系数的大小对流体的热传递性能有着重要的影响。

一般来说,材料的导热性能越好,传热系数就越大。

此外,流体的流动状态也会对传热系数产生影响。

当流体流动速度增大时,流体分子间的碰撞次数增加,热量传递的效率也会提高,因此传热系数会增大。

另外,传热方式也会对传热系数产生影响。

例如,在热传导过程中,固体材料之间的传热系数要远远大于流体材料之间的传热系数。

为了提高传热系数,可以采取以下几种途径:选择具有高导热性能的材料,通过优化流动状态,改进传热方式等方式。

例如,在工业生产中,可以采用高导热性能的材料来提高热交换器的效率;在材料科学领域,可以通过改进材料的微观结构,提高材料的导热性能;在航空航天领域,可以通过优化流体流动状态,提高传热效率,从而提高发动机的性能。

fluent流固耦合传热算例

fluent流固耦合传热算例

fluent流固耦合传热算例【原创实用版】目录1.Fluent 流固耦合传热简介2.Fluent 软件的应用范围3.流固耦合传热的算例分析4.Fluent 软件在流固耦合传热中的应用技巧5.总结正文一、Fluent 流固耦合传热简介流固耦合传热是一种复杂的热传递过程,涉及到流体和固体之间的相互作用。

在这种过程中,流体与固体之间的热传递机制和热流动特性都需要考虑。

Fluent 是一款强大的计算流体力学(CFD)软件,可以模拟流固耦合传热过程,为研究人员和工程师提供可靠的解决方案。

二、Fluent 软件的应用范围Fluent 软件广泛应用于各种流体动力学问题的仿真和分析中,包括流固耦合传热问题。

它可以模拟多种流体流动和传热模式,如强制对流、自然对流和湍流等。

同时,Fluent 也可以考虑固体的热传导和热膨胀等特性,为研究者提供全面的热传递分析手段。

三、流固耦合传热的算例分析在 Fluent 中,可以通过设置耦合界面和热流边界条件来模拟流固耦合传热问题。

例如,可以考虑一个流体与固体相接触的系统,通过调整流体和固体的热传导系数、对流换热系数等参数,观察不同条件下的热传递特性。

四、Fluent 软件在流固耦合传热中的应用技巧为了获得准确的仿真结果,需要注意以下几点:1.网格划分:在仿真中,需要对流体和固体部分进行适当的网格划分,以确保计算精度。

2.耦合设置:在设置耦合界面时,需要选择正确的耦合方式,如耦合热流或耦合应力等。

3.边界条件:在设置热流边界条件时,需要考虑流体与固体之间的热交换方式,如对流换热或传导换热等。

4.物质属性:需要正确设置流体和固体的物质属性,如比热容、密度和热传导系数等。

五、总结Fluent 软件在流固耦合传热方面的应用具有广泛的实用性,可以模拟各种复杂的热传递过程。

fluent 传热模拟

fluent 传热模拟

译文说明●本文依据FLUENT6.0的HELP文件翻译而成。

事先并未征得原文版权所有者FLUENT公司或其在中国代理人海基公司的同意。

●本文的写作目的仅在于为在教育与科研领域从事研究工作的人员提供参考与帮助,无意于将其用于商业目的。

●对本文在教育与科研领域的转移、存储、复制,本文作者不提供基于任何商业目的或有损于原文版权所有者的利益、形象等权益的帮助或便利。

●对出于研究与教学目的人员或机构,中文翻译者愿意并尽其可能的提供帮助、商议或回应其它形式的要求。

●一旦原文(英文)版权所有者对中文译文的发布提出异议并明确通知译文作者,同时援引有效、适用的法律、法规条款,译文作者愿意立刻终止其为本文的发布、传播而所做出的一切形式努力。

注:本文以ADOBE公司的PDF格式发布。

如需要相应中文WORD格式文档,请发邮件到******************.11. Modeling Heat Transfer传热模拟•11.1 Overview of Heat Transfer Models in FLUENT FLUENT中的传热模型概述•11.2 Convective and Conductive Heat Transfer导热与对流换热o11.2.1 Theory理论o11.2.2 User Inputs for Heat Transfer有关传热的用户输入项o11.2.3 Solution Process for Heat Transfer传热计算的求解过程o11.2.4 Reporting and Displaying Heat Transfer Quantities传热变量的输出与显示o11.2.5 Exporting Heat Flux Data热流数据的输出•11.3 Radiative Heat Transfer辐射传热o11.3.1 Introduction to Radiative Heat Transfer辐射传热简介o11.3.2 Choosing a Radiation Model选择辐射模型o11.3.3 The Discrete Transfer Radiation Model (DTRM)离散传播辐射模型o11.3.4 The P-1 Radiation Model P-1辐射模型o11.3.5 The Rosseland Radiation Model Rosseland辐射模型o11.3.6 The Discrete Ordinates (DO) Radiation Model离散坐标辐射模型o11.3.7 The Surface-to-Surface (S2S) Radiation Model多表面辐射传热模型o11.3.8 Radiation in Combusting Flows燃烧过程的辐射o11.3.9 Overview of Using the Radiation Models辐射模型使用概览o11.3.10 Selecting the Radiation Model辐射模型的选择o11.3.11 Defining the Ray Tracing for the DTRM离散传播模型的跟踪射线的定义o11.3.12 Computing or Reading the View Factors for the S2S Model表面辐射模型中角系数的计算与数据读取o11.3.13 Defining the Angular Discretization for the DO Model DO辐射模型离散角的定义o11.3.14 Defining Non-Gray Radiation for the DO Model离散坐标辐射模型中的非灰体辐射o11.3.15 Defining Material Properties for Radiation有关辐射性能的材料属性定义o11.3.16 Setting Radiation Boundary Conditions辐射边界条件设定o11.3.17 Setting Solution Parameters for Radiation辐射计算参数的设定o11.3.18 Solving the Problem问题求解过程o11.3.19 Reporting and Displaying Radiation Quantities辐射变量的和输出与显示o11.3.20 Displaying Rays and Clusters for the DTRM DTRM表面束和射线显示•11.4 Periodic Heat Transfer周期性传热问题o11.4.1 Overview and Limitations概述与适用范围o11.4.2 Theory理论o11.4.3 Modeling Periodic Heat Transfer周期性传热问题的模拟o11.4.4 Solution Strategies for Periodic Heat Transfer周期性传热问题求解策略o11.4.5 Monitoring Convergence监视收敛o11.4.6 Postprocessing for Periodic Heat Transfer周期性传热问题的后处理•11.5 Buoyancy-Driven Flows浮力驱动流动o11.5.1 Theory理论o11.5.2 Modeling Natural Convection in a Closed Domain封闭区域内自然对流的模拟o11.5.3 The Boussinesq Model Boussinesq模型o11.5.4 User Inputs for Buoyancy-Driven Flows浮力驱动流动的用户输入o11.5.5 Solution Strategies for Buoyancy-Driven Flows浮力驱动流动的求解策略o11.5.6 Postprocessing for Buoyancy-Driven Flows浮力驱动流动的后处理11.1FLUENT中的传热模型概述占据一定体积的物质所据有的热能从一处转移到另一处,这种现象称为传热。

FLUENT系列资料5之蒸汽喷射器内的传热模拟

FLUENT系列资料5之蒸汽喷射器内的传热模拟

蒸汽喷射器内的传热模拟问题描述:该问题为一个蒸汽喷射器的内部流动和热量交换问题。

左侧进入的工作蒸汽12245Pa,下侧进入的引射流体压力为1360.5Pa,右侧出口的压力为6802.5Pa。

该问题中所说的压力皆为相对压力,蒸汽皆为饱和水蒸汽。

喷射器的结构如图1所示。

图1 喷射器结构图在本例中将利用FLUENT-2D的非耦合、隐式求解器,针对在喷射器内的定常流动进行求解。

在求解过程忠,还会利用FLUENT的网格优化功能对网格进行优化,使所得到的解更加可信。

本例涉及到:一、利用GAMBIT建立喷射器计算模型(1)在CAD中画出喷射器的图形(2)将CAD图形输出为*.sat的文件格式(3)用GAMBIT读入上面输出的*.sat文件(4)对各条边定义网格节点的分布,在面上创建网格(5)定义边界内型(6)为FLUENT5/6输出网格文件二、利用FLUENT-2D求解器进行求解(1)读入网格文件(2)确定长度单位:MM(3)确定流体材料及其物理属性(4)确定边界类型(5)计算初始化并设置监视器(6)使用非耦合、隐式求解器求解(7)利用图形显示方法观察流场与温度场一、前处理——用CAD画出喷射器结构图并导入GAMBIT中在CAD中按所给的尺寸画出喷射器的结构图,画完后输出为pensheqi.sat的文件(如图2所示)。

CAD中的操作:文件→输出…. 点击保存到你想保存到的文件夹中图2 输出数据对话框启动GAMBIT ,建立一个新的GAMBIT文件。

操作:File→NEW…此时出现的窗口如图3所示。

在ID右侧的文本框内填入:f:\文件夹名\pensheqi点击Accept后,即建立了一个新的文件。

图3 新文件对话框图4 导入CAD图形对话框第1步:确定求解器选择用于进行CFD计算的求解器。

操作:Solver→FLUENT5/6第2步:导入喷射器的结构图操作:File→Import→ACIS…点击Browse找到刚才从CAD中输出的pensheqi.sat文件,选中后点击Accept即可导入所需的图形。

FLUENT传热模拟参考资料整理

FLUENT传热模拟参考资料整理

FLUENT传热模拟参考资料整理1、在GAMBIT中显示的“check”主要通过哪几种来判断其网格的质量?及其在做网格时大致注意到哪些细节?判断网格质量的方面有:Area单元面积,适用于2D单元,较为基本的单元质量特征。

Aspect Ratio长宽比,不同的网格单元有不同的计算方法,等于1是最好的单元,如正三角形,正四边形,正四面体,正六面体等;一般情况下不要超过5:1.Diagonal Ratio对角线之比,仅适用于四边形和六面体单元,默认是大于或等于1的,该值越高,说明单元越不规则,最好等于1,也就是正四边形或正六面体。

Edge Ratio长边与最短边长度之比,大于或等于1,最好等于1,解释同上。

EquiAngle Skew通过单元夹角计算的歪斜度,在0到1之间,0为质量最好,1为质量最差。

最好是要控制在0到0.4之间。

EquiSize Skew通过单元大小计算的歪斜度,在0到1之间,0为质量最好,1为质量最差。

2D 质量好的单元该值最好在0.1以内,3D单元在0.4以内。

MidAngle Skew通过单元边中点连线夹角计算的歪斜度,仅适用于四边形和六面体单元,在0到1之间,0为质量最好,1为质量最差。

Size Change相邻单元大小之比,仅适用于3D单元,最好控制在2以内。

Stretch伸展度。

通过单元的对角线长度与边长计算出来的,仅适用于四边形和六面体单元,在0到1之间,0为质量最好,1为质量最差。

Taper锥度。

仅适用于四边形和六面体单元,在0到1之间,0为质量最好,1为质量最差。

Volume单元体积,仅适用于3D单元,划分网格时应避免出现负体积。

Warpage翘曲。

仅适用于四边形和六面体单元,在0到1之间,0为质量最好,1为质量最差。

以上只是针对Gambit帮助文件的简单归纳,不同的软件有不同的评价单元质量的指标,使用时最好仔细阅读帮助文件。

另外,在Fluent中的窗口键入:grid quality 然后回车,Fluent能检查网格的质量,主要有以下三个指标:1.Maxium cell squish: 如果该值等于1,表示得到了很坏的单元;2.Maxium cell skewness: 该值在0到1之间,0表示最好,1表示最坏;3.Maxium 'aspect-ratio': 1表示最好。

fluent heat exchange热交换模型介绍

fluent heat exchange热交换模型介绍

fluent heat exchange热交换模型介绍
"Fluent" 是一种计算流体力学(CFD)软件,而"heat exchange" 则指的是热交换,即在流体中传递热量的过程。

在Fluent 中,可以使用不同的模型和方法来模拟和分析流体中的热交换过程。

热交换模型在Fluent 中涉及到流体流动、传热和传质等多个方面。

以下是一些常见的Fluent 中用于热交换模拟的模型和方法:
1.传热模型:Fluent 提供了多种传热模型,包括传导、对流和辐射传热。

用户可以选择
适当的传热模型,根据系统的特点来模拟热量的传递。

2.壁面热通量:可以在Fluent 中设置不同表面的壁面热通量,以模拟具体区域的热交
换情况。

这对于热交换器、散热器等设备的仿真很重要。

3.热源和热汇:用户可以设置热源和热汇,模拟系统中的加热或散热过程。

这对于热交
换系统的设计和优化非常有用。

4.多相流和相变:在一些热交换系统中,可能涉及到多相流动和相变过程,如蒸发、冷
凝等。

Fluent 支持多相流和相变模型,以更全面地模拟系统中的热交换。

5.换热器模块:Fluent 中有专门的换热器模块,用于更方便地建模和分析换热器的性能,
包括壁面传热系数、温度分布等。

使用Fluent 进行热交换模拟需要用户详细了解系统的几何形状、边界条件、材料属性等信息,并选择合适的模型和参数。

通过模拟,用户可以获得系统内部的流动、温度场等信息,帮助设计和优化热交换设备。

fluent传热模拟

fluent传热模拟

译文说明●本文依据FLUENT6.0的HELP文件翻译而成。

事先并未征得原文版权所有者FLUENT公司或其在中国代理人海基公司的同意。

●本文的写作目的仅在于为在教育与科研领域从事研究工作的人员提供参考与帮助,无意于将其用于商业目的。

●对本文在教育与科研领域的转移、存储、复制,本文作者不提供基于任何商业目的或有损于原文版权所有者的利益、形象等权益的帮助或便利。

●对出于研究与教学目的人员或机构,中文翻译者愿意并尽其可能的提供帮助、商议或回应其它形式的要求。

●一旦原文(英文)版权所有者对中文译文的发布提出异议并明确通知译文作者,同时援引有效、适用的法律、法规条款,译文作者愿意立刻终止其为本文的发布、传播而所做出的一切形式努力。

注:本文以ADOBE公司的PDF格式发布。

如需要相应中文WORD格式文档,请发邮件到west_wing@.11. Modeling Heat Transfer传热模拟∙11.1 Overview of Heat Transfer Models in FLUENT FLUENT中的传热模型概述∙11.2 Convective and Conductive Heat Transfer导热与对流换热o11.2.1 Theory理论o11.2.2 User Inputs for Heat Transfer有关传热的用户输入项o11.2.3 Solution Process for Heat Transfer传热计算的求解过程o11.2.4 Reporting and Displaying Heat Transfer Quantities传热变量的输出与显示o11.2.5 Exporting Heat Flux Data热流数据的输出∙11.3 Radiative Heat Transfer辐射传热o11.3.1 Introduction to Radiative Heat Transfer辐射传热简介o11.3.2 Choosing a Radiation Model选择辐射模型o11.3.3 The Discrete Transfer Radiation Model (DTRM)离散传播辐射模型o11.3.4 The P-1 Radiation Model P-1辐射模型o11.3.5 The Rosseland Radiation Model Rosseland辐射模型o11.3.6 The Discrete Ordinates (DO) Radiation Model离散坐标辐射模型o11.3.7 The Surface-to-Surface (S2S) Radiation Model多表面辐射传热模型o11.3.8 Radiation in Combusting Flows燃烧过程的辐射o11.3.9 Overview of Using the Radiation Models辐射模型使用概览o11.3.10 Selecting the Radiation Model辐射模型的选择o11.3.11 Defining the Ray Tracing for the DTRM离散传播模型的跟踪射线的定义o11.3.12 Computing or Reading the V iew Factors for the S2S Model表面辐射模型中角系数的计算与数据读取o11.3.13 Defining the Angular Discretization for the DO Model DO辐射模型离散角的定义o11.3.14 Defining Non-Gray Radiation for the DO Model离散坐标辐射模型中的非灰体辐射o11.3.15 Defining Material Properties for Radiation有关辐射性能的材料属性定义o11.3.16 Setting Radiation Boundary Conditions辐射边界条件设定o11.3.17 Setting Solution Parameters for Radiation辐射计算参数的设定o11.3.18 Solving the Problem问题求解过程o11.3.19 Reporting and Displaying Radiation Quantities辐射变量的和输出与显示o11.3.20 Displaying Rays and Clusters for the DTRM DTRM表面束和射线显示∙11.4 Periodic Heat Transfer周期性传热问题o11.4.1 Overview and Limitations概述与适用范围o11.4.2 Theory理论o11.4.3 Modeling Periodic Heat Transfer周期性传热问题的模拟o11.4.4 Solution Strategies for Periodic Heat Transfer周期性传热问题求解策略o11.4.5 Monitoring Convergence监视收敛o11.4.6 Postprocessing for Periodic Heat Transfer周期性传热问题的后处理11.5 Buoyancy-Driven Flows浮力驱动流动o11.5.1 Theory理论o11.5.2 Modeling Natural Convection in a Closed Domain封闭区域内自然对流的模拟o11.5.3 The Boussinesq Model Boussinesq模型o11.5.4 User Inputs for Buoyancy-Driven Flows浮力驱动流动的用户输入o11.5.5 Solution Strategies for Buoyancy-Driven Flows浮力驱动流动的求解策略o11.5.6 Postprocessing for Buoyancy-Driven Flows浮力驱动流动的后处理11.1FLUENT中的传热模型概述占据一定体积的物质所据有的热能从一处转移到另一处,这种现象称为传热。

fluent 参考值

fluent 参考值

fluent 参考值摘要:一、引言二、Fluent软件介绍三、Fluent参考值的作用四、Fluent参考值的设置与调整五、Fluent参考值在实际工程中的应用六、总结正文:一、引言Fluent是一款广泛应用于流体动力学仿真分析的软件,通过模拟流体流动、传热和化学反应等过程,为工程设计和优化提供有力支持。

在Fluent中,参考值是一个重要的参数设置,影响着仿真结果的准确性和可靠性。

本文将详细介绍Fluent参考值的概念、作用以及设置与调整方法,并通过实际工程案例分析,阐述Fluent参考值在工程应用中的关键作用。

二、Fluent软件介绍Fluent软件由美国ANSYS公司开发,是一款功能强大的流体动力学仿真分析软件。

它采用有限体积法求解Navier-Stokes方程和能量方程,可以模拟多种流体流动、传热和化学反应等过程,适用于航空航天、汽车制造、能源化工等众多领域。

三、Fluent参考值的作用Fluent参考值是用户在模拟过程中为某些变量设置的一个参考数值,它会影响到仿真结果的计算和收敛。

合理的参考值设置有助于提高仿真精度和可靠性,避免不必要的仿真迭代和时间浪费。

四、Fluent参考值的设置与调整1.选择合适的参考值类型:Fluent提供了多种参考值类型,如壁面参考值、流体属性参考值和边界条件参考值等。

用户需要根据实际问题选择合适的参考值类型。

2.设置参考值:在Fluent的参数设置对话框中,用户可以输入参考值的具体数值。

对于某些参数,如压力、温度等,还可以设置参考值类型,如恒定、周期等。

3.调整参考值:在仿真过程中,用户可以根据需要调整参考值。

通过观察仿真结果的变化,可以找到合适的参考值以达到最佳的仿真效果。

五、Fluent参考值在实际工程中的应用以某汽车散热器设计为例,通过调整流体进口温度和出口压力的参考值,可以有效地改善散热器的传热性能,提高汽车发动机的热效率。

同时,合理设置壁面参考值可以降低流体与壁面的摩擦阻力,降低能耗。

fluent-传热模拟

fluent-传热模拟

译文说明●本文依据FLUENT6.0的HELP文件翻译而成。

事先并未征得原文所有者FLUENT公司或其在中国代理人海基公司的同意。

●本文的写作目的仅在于为在教育与科研领域从事研究工作的人员提供参考与帮助,无意于将其用于商业目的。

●对本文在教育与科研领域的转移、存储、复制,本文作者不提供基于任何商业目的或有损于原文所有者的利益、形象等权益的帮助或便利。

●对出于研究与教学目的人员或机构,中文翻译者愿意并尽其可能的提供帮助、商议或回应其它形式的要求。

●一旦原文(英文)所有者对中文译文的发布提出异议并明确通知译文作者,同时援引有效、适用的法律、法规条款,译文作者愿意立刻终止其为本文的发布、传播而所做出的一切形式努力。

注:本文以ADOBE公司的PDF格式发布。

如需要相应中文WORD格式文档,请发到west_wingsohu..11. Modeling Heat Transfer传热模拟•11.1 Overview of Heat Transfer Models in FLUENT FLUENT中的传热模型概述•11.2 Convective and Conductive Heat Transfer导热与对流换热o11.2.1 Theory理论o11.2.2 User Inputs for Heat Transfer有关传热的用户输入项o11.2.3 Solution Process for Heat Transfer传热计算的求解过程o11.2.4 Reporting and Displaying Heat Transfer Quantities传热变量的输出与显示o11.2.5 Exporting Heat Flux Data热流数据的输出•11.3 Radiative Heat Transfer辐射传热o11.3.1 Introduction to Radiative Heat Transfer辐射传热简介o11.3.2 Choosing a Radiation Model选择辐射模型o11.3.3 The Discrete Transfer Radiation Model (DTRM)离散传播辐射模型o11.3.4 The P-1 Radiation Model P-1辐射模型o11.3.5 The Rosseland Radiation Model Rosseland辐射模型o11.3.6 The Discrete Ordinates (DO) Radiation Model离散坐标辐射模型o11.3.7 The Surface-to-Surface (S2S) Radiation Model多表面辐射传热模型o11.3.8 Radiation in Combusting Flows燃烧过程的辐射o11.3.9 Overview of Using the Radiation Models辐射模型使用概览o11.3.10 Selecting the Radiation Model辐射模型的选择o11.3.11 Defining the Ray Tracing for the DTRM离散传播模型的跟踪射线的定义o11.3.12 Computing or Reading the View Factors for the S2S Model表面辐射模型中角系数的计算与数据读取o11.3.13 Defining the Angular Discretization for the DO Model DO辐射模型离散角的定义o11.3.14 Defining Non-Gray Radiation for the DO Model离散坐标辐射模型中的非灰体辐射o11.3.15 Defining Material Properties for Radiation有关辐射性能的材料属性定义o11.3.16 Setting Radiation Boundary Conditions辐射边界条件设定o11.3.17 Setting Solution Parameters for Radiation辐射计算参数的设定o11.3.18 Solving the Problem问题求解过程o11.3.19 Reporting and Displaying Radiation Quantities辐射变量的和输出与显示o11.3.20 Displaying Rays and Clusters for the DTRM DTRM表面束和射线显示•11.4 Periodic Heat Transfer周期性传热问题o11.4.1 Overview and Limitations概述与适用围o11.4.2 Theory理论o11.4.3 Modeling Periodic Heat Transfer周期性传热问题的模拟o11.4.4 Solution Strategies for Periodic Heat Transfer周期性传热问题求解策略o11.4.5 Monitoring Convergence监视收敛o11.4.6 Postprocessing for Periodic Heat Transfer周期性传热问题的后处理•11.5 Buoyancy-Driven Flows浮力驱动流动o11.5.1 Theory理论o11.5.2 Modeling Natural Convection in a Closed Domain封闭区域自然对流的模拟o11.5.3 The Boussinesq Model Boussinesq模型o11.5.4 User Inputs for Buoyancy-Driven Flows浮力驱动流动的用户输入o11.5.5 Solution Strategies for Buoyancy-Driven Flows浮力驱动流动的求解策略o11.5.6 Postprocessing for Buoyancy-Driven Flows浮力驱动流动的后处理11.1FLUENT中的传热模型概述占据一定体积的物质所据有的热能从一处转移到另一处,这种现象称为传热。

【ANSYS Fluent培训】9-传热问题分析

【ANSYS Fluent培训】9-传热问题分析

4、共轭传热
• 在固体域加入热源模拟电子部件的生成热
5、自然对流
• 当流体加热后密度变化时,发生自然 • 对流 • 流动是由密度差引起的重力驱动的
• 有重力存在时,动量方程的压力梯度 • 和体积力项重写为::
• • 其中
5、自然对流
• Boussinesq 模型假设流体密度是不变的,只是改变动量方程沿着重力方向的体积 力
6、实例
Training Manual
Advanced Contact & Fasteners
2、能量方程
• 能量输运方程:
Unsteady
Conduction
• 单位质量的能量 E :
Conduction
Species Diffusion
Viscous Enthalpy Dissipation Source/Sink
• 对可压缩性流体,或者密度基求解器,总是考虑压力做功和动能。对压力基求解器 计算不可压流体,这些项被忽略,可以用下面的命令加入:
• 混合 – 对流和辐射边界的

结合.
• 壁面材料和厚度可以定义 • 为一维或壳导热计算
4、共轭传热
• CHT固体域的导热和流体域的对流换热耦合 • 在流体/固体交界面使用耦合边界条件
Gபைடு நூலகம்id
Velocity Vectors
Temperature Contours
Coolant Flow Past Heated Rods
• 适用于密度变化小的情况 (例如,温度在小范围内变化). • 对许多自然对流问题,Boussinesq 假设有更好的收敛性 • 常密度假设减少了非线性. • 密度变化较小时适合. • 不能和有化学反应的组分输运方程同时使用. • 封闭空间的自然对流问题 • 对稳态问题,必须使用 Boussinesq 模型. • 非稳态问题,可以使用 Boussinesq 模型或者理想气体模型

Fluent所有参考书

Fluent所有参考书
FLUENT14.0超级学习手册——唐家鹏
Fluent高级应用与实例分析——江帆
流体流动与传热过程的数值模拟基础与应用——张建文
精通CFD工程仿真与案例实战FLUENT+GAMBIT+ICEM+CFD+Tecplot——李鹏飞
Fluent所有参考书+光盘源文件:
Fluent技术基础与应用实例——王瑞金
程——于勇
fluent12流体分析及工程仿真——朱红均
FLUENT 6.3流场分析从入门到精通——周俊波
精通CFD动网格工程仿真与案例实战——隋洪涛
FLUENT工程技术与实例分析——周俊杰
FLUENT流体工程仿真计算实例与应用——韩占忠
Fluent流体工程仿真计算实例与应用(第2版)——韩占忠
FLUENT流体计算应用教程——温正
精通FLUENT6.3流场分析——李进良
FLUENT流体工程仿真计算实例与分析——韩占忠
计算流体动力学分析:CFD软件原理与应用——王福军

fluent传热系数 -回复

fluent传热系数 -回复

fluent传热系数-回复【Fluent传热系数】简介传热是热能从一个物体传递到另一个物体的过程。

在工程领域中,预测和分析热传递效果对于设计和优化工艺过程至关重要。

Fluent是一种流体动力学软件,可以用于模拟和分析各种传热过程。

在Fluent中,传热系数是一个重要的参数,它描述了热量传递的效率。

本文将详细介绍Fluent 传热系数的计算方法及其在工程领域中的应用。

第一部分:传热系数的基本概念和计算方法1.1 传热系数的定义传热系数是指单位时间内单位面积上的热能传递速率与传热温差之比。

它描述了热量传递的效率,单位通常为W/(m^2·K)。

1.2 传热系数的计算方法在Fluent中,有多种方法可以计算传热系数。

其中一种常用的方法是使用壁面函数模型。

壁面函数模型是一种不需要建立完整的计算区域的传热模型,而是通过定义壁面的传热系数来描述热量在壁面上的传递。

1.3 壁面函数模型的应用在Fluent中,用户可以选择不同的壁面函数模型来模拟不同的传热过程。

常见的壁面函数模型包括二维平均传热系数模型、湍流模型等。

这些模型根据不同的假设和近似,可以适用于不同的传热问题。

第二部分:Fluent传热系数的精度和验证2.1 传热系数的精度在使用Fluent计算传热系数时,需要确保计算结果的精度。

Fluent的计算精度受到多种因素的影响,包括网格划分的精度、物理模型的选择、边界条件的设定等。

用户需要根据具体的应用要求和实验数据对结果进行验证和调整,以确保计算结果的准确性。

2.2 传热系数的验证为了验证Fluent计算结果的准确性,可以采用实验数据进行对比。

通过在实验中测量传热系数,并将实验结果与Fluent计算结果进行比较,可以评估Fluent传热系数的准确性和可靠性。

如果实验数据与计算结果存在较大差异,用户需要检查模型设定和计算参数,以找出可能的错误或不确定性。

第三部分:Fluent传热系数的工程应用3.1 流体流动中的传热系数应用在流体流动中,传热系数的准确计算对于设计和优化流体系统至关重要。

fluent传热模拟

fluent传热模拟

译文说明●本文依据FLUENT6。

0的HELP文件翻译而成。

事先并未征得原文版权所有者FLUENT公司或其在中国代理人海基公司的同意。

●本文的写作目的仅在于为在教育与科研领域从事研究工作的人员提供参考与帮助,无意于将其用于商业目的。

●对本文在教育与科研领域的转移、存储、复制,本文作者不提供基于任何商业目的或有损于原文版权所有者的利益、形象等权益的帮助或便利。

●对出于研究与教学目的人员或机构,中文翻译者愿意并尽其可能的提供帮助、商议或回应其它形式的要求.●一旦原文(英文)版权所有者对中文译文的发布提出异议并明确通知译文作者,同时援引有效、适用的法律、法规条款,译文作者愿意立刻终止其为本文的发布、传播而所做出的一切形式努力。

注:本文以ADOBE公司的PDF格式发布。

如需要相应中文WORD格式文档,请发邮件到west_wing@sohu。

com。

11. Modeling Heat Transfer 传热模拟•11。

1 Overview of Heat Transfer Models in FLUENT FLUENT中的传热模型概述•11。

2 Convective and Conductive Heat Transfer 导热与对流换热o11.2。

1 Theory 理论o11。

2。

2 User Inputs for Heat Transfer 有关传热的用户输入项o11.2。

3 Solution Process for Heat Transfer 传热计算的求解过程o11.2.4 Reporting and Displaying Heat Transfer Quantities 传热变量的输出与显示o11.2.5 Exporting Heat Flux Data 热流数据的输出•11。

3 Radiative Heat Transfer 辐射传热o11.3。

1 Introduction to Radiative Heat Transfer 辐射传热简介o11。

fluent流固耦合传热算例

fluent流固耦合传热算例

fluent流固耦合传热算例一、fluent简介Fluent是一款专业的流体动力学模拟软件,由美国ANSYS公司开发。

它具有强大的计算能力和广泛的适用范围,可以模拟多种流体流动、传热等问题。

在工程领域、科研单位和高校等领域具有广泛的应用。

二、流固耦合传热概述流固耦合传热问题是指在流体流动过程中,固体壁面与流体之间的热量传递。

这种问题涉及到流体力学、传热学和固体力学等多个学科,具有一定的复杂性。

通过Fluent 软件进行模拟分析,可以得到流场、温度场和应力场等多场耦合的数值解。

三、算例介绍本文将介绍一个简单的流固耦合传热算例,以演示Fluent 的操作方法和注意事项。

算例模型为一个矩形通道,通道内部流动的是水,壁面材料为铜。

通道两侧分别为冷却水进口和出口,冷却水的温度分别为30℃和40℃。

模拟目标是求解通道内水的流速、温度分布以及壁面的热应力。

四、操作步骤及注意事项1.打开Fluent 软件,创建新项目。

2.导入几何模型,本文采用矩形通道模型。

3.定义物理模型,包括流体物性(如密度、比热容等)、壁面材料(如铜)以及冷却水边界条件。

4.划分网格,选择合适的网格类型和密度。

5.设置求解器参数,包括收敛标准、迭代次数等。

6.启动计算,观察结果收敛情况。

7.分析结果,包括流速分布、温度分布以及壁面热应力。

注意事项:1.在设置物理模型时,要确保与实际情况相符。

2.网格划分要合理,以保证计算精度和收敛速度。

3.根据问题特点,选择合适的求解器参数。

五、结果分析与讨论通过Fluent 模拟,得到以下结果:1.通道内水流速分布均匀,无明显涡流产生。

2.通道内温度分布呈现梯度变化,进口处温度较低,出口处温度较高。

3.壁面热应力分布均匀,符合热应力计算公式。

分析与讨论:1.流速分布对传热性能有一定影响,适当提高流速可以增强传热效果。

2.温度分布反映了热量在通道内的传递情况,与实际工程应用中的需求相符。

3.壁面热应力的计算结果可以为工程设计提供参考,以避免因热应力导致的材料损伤或设备故障。

fluent流固耦合传热算例

fluent流固耦合传热算例

fluent流固耦合传热算例fluent流固耦合传热算例是针对流体和固体之间热量传递的一种数值模拟方法。

在工程领域中,流固耦合传热问题广泛存在于换热器、散热器、核电站等领域,对于优化设计、提高传热效率以及解决实际工程问题具有重要意义。

一、流固耦合传热概念介绍流固耦合传热是指在流体与固体之间由于温度差引起的热量传递过程。

在这种传热方式中,流体和固体的温度场、速度场以及压力场之间存在相互影响的关系。

流固耦合传热问题可以分为内部耦合和外部耦合两种类型。

内部耦合是指流体和固体内部的热量传递过程,而外部耦合是指流体和固体之间的热量交换。

二、流固耦合传热算例背景及意义本文以某实际工程为背景,通过fluent软件对流固耦合传热问题进行数值模拟。

旨在揭示流体与固体之间热量传递的规律,为实际工程提供参考依据。

通过分析算例,可以优化传热装置设计,提高传热效率,降低能耗,从而降低生产成本。

三、算例具体内容与分析本算例采用fluent软件进行数值模拟,考虑流体在固体内部的流动与热量传递。

模拟过程中,流体与固体的温度、速度、压力等参数随时间和空间的变化关系。

通过计算得到流体与固体之间的热量交换,从而分析传热过程的性能。

四、结果讨论与启示通过对流固耦合传热算例的分析,得到以下结论:1.在流固耦合传热过程中,流体的温度分布和速度分布对固体表面的热量传递有显著影响。

2.固体内部的温度分布存在一定的规律,可通过优化固体材料、改变流体流动方式等方法提高传热效果。

3.流固耦合传热问题具有较强的非线性特点,需要采用数值模拟方法进行深入研究。

本算例为实际工程提供了有益的参考,启示我们在设计传热装置时,要充分考虑流体与固体之间的相互作用,从而实现高效、节能的目标。

综上所述,fluent流固耦合传热算例对于揭示流体与固体之间热量传递规律具有重要的实际意义。

fluent耦合传热案例

fluent耦合传热案例

fluent耦合传热案例1. 热交换器中的传热过程:热交换器是一种用于传递热量的装置,通过流体在其内部循环流动,实现热量的传递。

在这个过程中,流体在热交换器内部形成了一种流动状态,称为流动区域。

通过使用FLUENT软件模拟流体在热交换器中的流动过程,可以精确地计算热量的传递效率。

2. 汽车发动机冷却系统的优化:汽车发动机冷却系统是保证发动机正常运行的重要组成部分。

通过使用FLUENT软件模拟汽车发动机冷却系统中的流体流动和传热过程,可以优化冷却系统的设计,提高发动机的热效率和性能。

3. 太阳能热水器的热传递分析:太阳能热水器是利用太阳能将太阳辐射能转化为热能,从而加热水的装置。

通过使用FLUENT软件模拟太阳能热水器中的流体流动和传热过程,可以分析太阳能热水器的热传递效率,并优化太阳能热水器的设计。

4. 空调系统的传热分析:空调系统是将室内空气通过冷凝器和蒸发器与外部空气进行热交换,从而实现室内温度调节的装置。

通过使用FLUENT软件模拟空调系统中的流体流动和传热过程,可以分析空调系统的传热性能,并优化空调系统的设计。

5. 建筑物的热传递分析:建筑物的热传递是指建筑物内外热量的传递过程。

通过使用FLUENT软件模拟建筑物内外空气的流动和传热过程,可以分析建筑物的热传递性能,并优化建筑物的隔热设计,提高能源利用效率。

6. 风扇散热器的传热分析:风扇散热器是一种通过风扇将热量带走的散热装置。

通过使用FLUENT软件模拟风扇散热器中的空气流动和传热过程,可以分析风扇散热器的散热效果,优化散热器的设计,提高散热效率。

7. 微流控芯片中的传热分析:微流控芯片是一种微型化的流体传输装置,具有高效的传热性能。

通过使用FLUENT软件模拟微流控芯片中的流体流动和传热过程,可以分析微流控芯片的传热效率,优化芯片的设计,提高传热性能。

8. 电子器件的热传递分析:电子器件在工作过程中会产生大量的热量,如果不能及时散热,会导致电子器件的性能下降甚至损坏。

  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

FLUENT传热模拟参考资料整理1、在GAMBIT中显示的“check”主要通过哪几种来判断其网格的质量?及其在做网格时大致注意到哪些细节?判断网格质量的方面有:Area单元面积,适用于2D单元,较为基本的单元质量特征。

Aspect Ratio长宽比,不同的网格单元有不同的计算方法,等于1是最好的单元,如正三角形,正四边形,正四面体,正六面体等;一般情况下不要超过5:1.Diagonal Ratio对角线之比,仅适用于四边形和六面体单元,默认是大于或等于1的,该值越高,说明单元越不规则,最好等于1,也就是正四边形或正六面体。

Edge Ratio长边与最短边长度之比,大于或等于1,最好等于1,解释同上。

EquiAngle Skew通过单元夹角计算的歪斜度,在0到1之间,0为质量最好,1为质量最差。

最好是要控制在0到0.4之间。

EquiSize Skew通过单元大小计算的歪斜度,在0到1之间,0为质量最好,1为质量最差。

2D 质量好的单元该值最好在0.1以内,3D单元在0.4以内。

MidAngle Skew通过单元边中点连线夹角计算的歪斜度,仅适用于四边形和六面体单元,在0到1之间,0为质量最好,1为质量最差。

Size Change相邻单元大小之比,仅适用于3D单元,最好控制在2以内。

Stretch伸展度。

通过单元的对角线长度与边长计算出来的,仅适用于四边形和六面体单元,在0到1之间,0为质量最好,1为质量最差。

Taper锥度。

仅适用于四边形和六面体单元,在0到1之间,0为质量最好,1为质量最差。

Volume单元体积,仅适用于3D单元,划分网格时应避免出现负体积。

Warpage翘曲。

仅适用于四边形和六面体单元,在0到1之间,0为质量最好,1为质量最差。

以上只是针对Gambit帮助文件的简单归纳,不同的软件有不同的评价单元质量的指标,使用时最好仔细阅读帮助文件。

另外,在Fluent中的窗口键入:grid quality 然后回车,Fluent能检查网格的质量,主要有以下三个指标:1.Maxium cell squish: 如果该值等于1,表示得到了很坏的单元;2.Maxium cell skewness: 该值在0到1之间,0表示最好,1表示最坏;3.Maxium 'aspect-ratio': 1表示最好。

2、在FLUENT运行计算时,为什么有时候总是出现“reversed flow”?其具体意义是什么?有没有办法避免?如果一直这样显示,它对最终的计算结果有什么样的影响?这个问题的意思是出现了回流,这个问题相对于湍流粘性比的警告要宽松一些,有些case可能只在计算的开始阶段出现这个警告,随着迭代的计算,可能会消失,如果计算一段时间之后,警告消失了,那么对计算结果是没有什么影响的,如果这个警告一直存在,可能需要作以下处理:1.如果是模拟外部绕流,出现这个警告的原因可能是边界条件取得距离物体不够远,如果边界条件取的足够远,该处可能在计算的过程中的确存在回流现象;对于可压缩流动,边界最好取在10倍的物体特征长度之处;对于不可压缩流动,边界最好取在4倍的物体特征长度之处。

2.如果出现了这个警告,不论对于外部绕流还是内部流动,可以使用pressure-outlet边界条件代替outflow边界条件改善这个问题。

3、FLUENT轮廓(contour)显示过程中,有时候标准轮廓线显示通常不能精确地显示其细节,特别是对于封闭的3D物体(如柱体),其原因是什么?如何解决?FLUENT等高线(contour)显示过程中,可以通过调节显示的水平等级来调节其显示细节,Levels...最大值允许设置为100.对于封闭的3D物体,可以通过建立Surface,监视Surface上的量来显示计算结果。

或者计算之后将结果导入到Tecplot中,作切片图显示。

4、如果采用非稳态计算完毕后,如何才能更形象地显示出动态的效果图?对于非定常计算,可以通过创建动画来形象地显示出动态的效果图。

Solve->Animate->Define...,具体操作请参考Fluent用户手册。

5、在FLUENT结果的后处理过程中,如何将美观漂亮的定性分析的效果图和定量分析示意图插入到论文中来说明问题?三种方法来得到用于插入到论文的图片:1.在Fluent中显示你想得到的效果图的窗口,可以直接在任务栏中右键该窗口将其复制到剪贴板,保存;或者打印到文件,保存。

2.在Fluent中,在你想要保存相关窗口的效果图时,首先激活效果图监视窗口,就是用鼠标左键监视窗口,然后在Fluent中操作,Fluent->File->Hardcopy...,选择好你想要的图片格式,然后就可以保存了。

3.将计算结果或者相关数据导入到Tecplot中,然后作出你想要的效果图,这种方法得出的图片,个人感觉比Fluent得到的图片美观简洁大方6、在计算完成后,如何显示某一断面上的温度值?如何得到速度矢量图?如何得到流线?这些都可以用tecplot来处理将fluent计算的date和case文件导入到tecplot中断面可以做切片。

速度矢量图流线图直接就可以选择相应选项来查看7、如何选择单、双精度解算器的选择Fluent的单双精度求解器适合于所有的计算平台,在大多数情况下,单精度求解器就能很好地满足计算精度要求,且计算量小。

但在有些情况下推荐使用双精度求解器:1,如果几何体包含完全不同的尺度特征(如一个长而壁薄的管),用双精度的;2,如果模型中存在通过小直径管道相连的多个封闭区域,不同区域之间存在很大的压差,用双精度。

3,对于有较高的热传导率的问题或对于有较大的长宽比的网格,用双精度。

8、求解器为flunet5/6在设置边界条件时,specify boundary types下的types中有三项关于interior,interface,internal设置,在什么情况下设置相应的条件?它们之间的区别是什么?interior好像是把边界设置为内容默认的一部分;interface是两个不同区域的边界区,比如说离心泵的叶轮旋转区和叶轮出口的交界面;internal;请问以上三种每个的功能?最好能举一两个例子说明一下,因为这三个都是内部条件吧,好像用的很多。

interface,interior,internal boundary区别?在Fluent中,Interface意思为“交接面”,主要用途有三个:多重坐标系模型中静态区域与运动区域之间的交接面的定义;滑移网格交接处的交接面定义,例如:两车交会,转子与定子叶栅模型,等等,在Fluent中,interface的交接重合处默认为interior,非重合处默认为wall;非一致网格交接处,例如:上下网格网格间距不同等。

Interior意思为“内部的”,在Fluent中指计算区域。

Internal意思为“内部的”,比如说内能,内部放射率等,具体应用不太清楚。

8、在FLUENT的后处理中可以显示一个管道的。

某个标量的。

圆截面平均值沿管道轴线(中心线)的变化曲线吗?如何显示空间某一点的数值呀(比如某一点温度)?正确的方法应该是输入命令画曲线命令输入状态下直接按回车>plot>c-a-a (就是circum-average-axial)再空按回车显示可以选择的值(从温度到nusselt数应有尽有)比如输入>temp (温度)>100 (轴向数据点个数)>filename.txt (文件名,随便取)>no (不知道什么,order point)然后在plot-file里选择输出就可以了9、Gambit网格相连问题:如果物体是由两个相连的模型所结合,一个的网格划分比较密、另一个比较稀疏,用Gambit 有办法将两个网格密度不同的物体,相连在一起吗?请参考第16题答案。

将两种网格交界的地方设置成一对interface即可第二节计算传热过程中用户输入如果用FLUENT 计算有传热的问题时候,必须击活相关模型和提供热边界条件,并且给出材料物性。

这一系列过程如下:1,击活能量面板。

Define-Models-Energy2,(对于segregated solver)如果模拟粘性流动过程,而且要考虑粘性加热,击活V iscous Heating;Define-Models-Viscous Heating3,定义热边界条件(包括流体进口,出口和壁面)Define-Boundary Conditions。

在流动进口和出口要给定温度,但壁面可以有如下边界条件选择:(1)指定热流量(2)指定温度(3)对流换热(4)外部辐射(5)对流换热+辐射换热4,定义材料热物性。

Define-Materials. 比热和导热系数都要给出,并且可以用温度函数的形式给出。

2.2.1 温度限制为了计算的稳定性,FLUENT 对计算出来的温度给了范围限制。

给定温度限制,一方面是为了计算稳定的需要,同时,真实温度也有其相应的范围。

由于给定材料物性不好,或者其它原因,计算出的中间超过了物理应该达到的温度。

FLUENT 中,给定的最高温度5000K,最小温度1K,如果计算过程中的温度超过这个范围,那么就在这最高温度或最低温度值处锁定。

如果你觉得这个限制不合理,你可以自己调节。

Solve-control-limits2.2.2 传热问题求解过程对于一些简单的传热过程FLUENT 的默认设置可以成功进行模拟,但如果要加快你的问题的收敛速度或者提高计算过程的稳定性,下面的一些过程就比较重要了。

相关文档
最新文档