2.2平方根2
八年级上册第二章《实数》2.2.2平方根导学案
2.2.2平方根(2)【教学目标】:1.了解平方根的概念、开平方的概念.2.明确算术平方根与平方根的区别与联系.3.进一步明确平方与开方是互为逆运算.【教学重难点】:平方根与算术平方根的区别与联系.平方根:如果一个数x 的平方等于a ,即a x =2,那么这个数x 就叫做a 的平方根(也叫二次方根)。
注意:(1)一个正数a 必须有两个平方根,一个是a 的算术平方根“a ” ,另外一个是“-a ”,读作“负根号a ” ,它们互为相反数;(2)0只有一个平方根,是它本身;(3)负数没有平方根。
3、开平方:求一个数a 的平方根的运算。
其中a 叫做被开方数。
⎩⎨⎧<-≥==)0()0(2a a a a a a ()a a =2()0≥a探讨,总结:平方根与算术平方根的联系与区别联系:(1)具有包含关系:平方根包含算术平方根,算术平方根是平方根的一种.(2)存在条件相同:平方根和算术平方根都是只有非负数才有.(3)0的平方根,算术平方根都是0.区别:(1)定义不同:“如果一个数的平方等于a ,这个数就叫做a 的平方根”;“非负数a 的非负平方根叫a 的算术平方根”.(2)个数不同:一个正数有两个平方根,而一个正数的算术平方根只有一个.(3)表示法不同:正数a 的平方根表示为±a ,正数a 的算术平方根表示为a .(4)取值范围不同:正数的平方根一正一负,互为相反数;正数的算术平方根只有一个.一个正数有两个平方根,它们互为相反数。
0只有一个平方根,它是0本身。
负数没有平方根。
一个正数a 有两个平方根,它们互为相反数。
正数a 的正的平方根,记作“a ”,正数a 的负的平方根,记作“-a ”,这两个平方根合在一起记作“±a ”。
开平方与平方互为逆运算。
因此,我们可以通过平方运算来求一个数的平方根。
三、巩固练习:1、判断题(正确的打“∨”,错误的打“×”);(1)任意一个数都有两个平方根,它们互为相反数; ( )(2)数a( )(3)—4的算术平方根是2; ( )(4)负数不能开平方; ( )(5=8. ( )(6)-52的平方根为-5 ( )(7)正数的平方根有两个,它们是互为相反数 ( )(8)0和负数没有平方根 ( )(9)4是2的算术平方根 ( ) (10)9的平方根是±3 ( )(11)因为161的平方根是±41,所以161=±41 ( ) 2.判断下列各数是否有平方根?并说明理由.(1)(-3)2;(2)0;(3)-0.01;(4)-52;(5)-a 2;(6)a 2-2a +23.求下列各数的平方根.(1)121;(2)0.01;(3)297;(4)(-13)2;(5)-(-4)34.对于任意数a ,2a 一定等于a 吗?5.a 中的被开方数a 在什么情况下有意义,(a )2等于什么?6、121---x x 有意义,则x 的范围___________7、如果a (a >0)的平方根是±m ,那么( )A.a 2=±mB.a =±m 2C.a =±mD.±a =±m_a的负平方根 _a的正平方根 _ 被开方数_ 根号四、作业既 的平方根是 。
北师大版初中数学八年级上册第二章 实数2.2 平方根(第2课时) 课件
1.包含关系:平方根包含算术平方根,算术 平方根是平方根的一种.
2.只有非负数才有平方根和算术平方根.
区别:
3. 0的平方根是0,算术平方根也是0. 1.个数不同:一个正数有两个平方根, 但只有一个算术平方根.
2.表示法不同:平方根表示为: a,
而算术平方根表示为 a .
探究新知 素养考点 1 开平方的有关计算
2.2 平方根/
教材作业 从课后习题中选取 自主安排 配套练习册练习
0
? ?
0
没有? ?
-4
探究新知
2.2 平方根/
根据上述问题,即要找出一个数,使它的平方等于给定 的数.我们抽象出下述概念:
一般地,如果有一个数x的平方等于a,即x2=a,那么这个 数x叫做a的平方根(也叫作二次方根).
例如: (±1)2=1,1的平方根为±1.
探究新知
2.2 平方根/
1. 121的平方根是什么? ±11
2.2 平方根/
例 求下列各式的值:
(1) 36 ; (2) 0.81 ; (3) 解:(1) 36 6 ;
49 . 9
(2) 0.81 0.9 ;
(3) 49 7 .
93
巩固练习
变式训练 求下列各式的值.
2.2 平方根/
169 13 100 _1__0__
(3)2 ____3_;
(2)因为
(
7 )2 = 11
49 ,所以
121
49 121
的平方根是
7 11
即
49 121
=
171.
(3)因为(±0.02)2=0.0004 ,所以0.0004的平方根 是±0.02,即 0.0004= 0.02
2.2平方根(第二课时)教学设计-推荐下载
《平方根》是义务教育课程标准北师大版实验教科书八年级(上)第二章《实数》的第二节.本节 安排了两个课时完成.第一课时是了解数的算术平方根的概念,会用根号表示一个数的算术平方根. 在具体的例子中抽象出概念,发展学生的抽象概括能力.本节课是第二课时,继续学习平方根的概念 及其运用.并对“平方根”和“算术平方根”,“平方”和“开平方”的概念做辨析,使学生在“引导 ---探索---类比----发现”中发展学习数学的能力.
五.教学方法
对全部高中资料试卷电气设备,在安装过程中以及安装结束后进行高中资料试卷调整试验;通电检查所有设备高中资料电试力卷保相护互装作置用调与试相技互术关,系电通,力1根保过据护管生高线产中0不工资仅艺料可高试以中卷解资配决料置吊试技顶卷术层要是配求指置,机不对组规电在范气进高设行中备继资进电料行保试空护卷载高问与中题带资2负料2,荷试而下卷且高总可中体保资配障料置各试时类卷,管调需路控要习试在题验最到;大位对限。设度在备内管进来路行确敷调保设整机过使组程其高1在中正资,常料要工试加况卷强下安看与全22过,22度并22工且22作尽22下可护都能1关可地于以缩管正小路常故高工障中作高资;中料对资试于料卷继试连电卷接保破管护坏口进范处行围理整,高核或中对者资定对料值某试,些卷审异弯核常扁与高度校中固对资定图料盒纸试位,卷置编工.写况保复进护杂行层设自防备动腐与处跨装理接置,地高尤线中其弯资要曲料避半试免径卷错标调误高试高等方中,案资要,料求编试技5写、卷术重电保交要气护底设设装。备备置管4高调、动线中试电作敷资高气,设料中课并技3试资件且、术卷料中拒管试试调绝路包验卷试动敷含方技作设线案术,技槽以来术、及避管系免架统不等启必多动要项方高方案中式;资,对料为整试解套卷决启突高动然中过停语程机文中。电高因气中此课资,件料电中试力管卷高壁电中薄气资、设料接备试口进卷不行保严调护等试装问工置题作调,并试合且技理进术利行,用过要管关求线运电敷行力设高保技中护术资装。料置线试做缆卷到敷技准设术确原指灵则导活:。。在对对分于于线调差盒试动处过保,程护当中装不高置同中高电资中压料资回试料路卷试交技卷叉术调时问试,题技应,术采作是用为指金调发属试电隔人机板员一进,变行需压隔要器开在组处事在理前发;掌生同握内一图部线纸故槽资障内料时,、,强设需电备要回制进路造行须厂外同家部时出电切具源断高高习中中题资资电料料源试试,卷卷线试切缆验除敷报从设告而完与采毕相用,关高要技中进术资行资料检料试查,卷和并主检且要测了保处解护理现装。场置设。备高中资料试卷布置情况与有关高中资料试卷电气系统接线等情况,然后根据规范与规程规定,制定设备调试高中资料试卷方案。
北师大版八年级数学2.2平方根(2)教案
优秀教育教学资源
附件2:
微课教学设计模板
优秀教育教学资源
优秀教育教学资源 2)2(22-=-)( 〔 〕
2)2(32-=-)( 〔 〕
2)2(42-=--)( 〔 〕
设计:通过本环节的设置,加深学生对结论1、结论2的理解、记忆和稳固.
第六环节 课堂小结
平方根的概念与性质;
平方根与算术平方根的区别与联系
第七环节课堂练习
1. 4的平方根是〔 〕
A. ±2
B. 2
C. -2 D . 16
2.以下表达正确的是〔 〕
A.任何数都有两个平方根
B.只有正数才有平方根
C.一个正数的平方根的平方就是这个正数
D.不是正数的数都没有平方根
2
16 D. 的平方根 93 B. 4-2 C. 1的平方根是 1 A. )
是(3.±±的平方根是是的平方根是下列说法正确的.
4.一个数的算术平方根是它本身,则这个数是〔 〕
A . 0
B . 1
C . 0或1
D . 0或±1
5. 以下各式中,正确的是〔 〕
A.
33-2±=)( C.332-=- B. 332±=±)( D.
332±=
6.一个正数M 的平方根为 2a +1 和 3-a ,则M =________.
7. 实数a 在数轴上的位置如下图,则化简
22(1)a a -+-的结果是________.
8. ()363132=-x ,求x 的值.。
初中数学北师大版八年级上册第二章实数第2节平方根(二).2平方根(二)
区别:
1.个数不同:一个正数有两个平方根,但只有一个算术平方根.
2.表示法不同:平方根表示为 ,而算术平方根表示为
出示例1,探索求平方根的方法,教师示范(1),两名学生板演(2)(3),关注学困生的表现,适时进行点拨引导评价。
口算练习,指定学生抢答。引导学生发现并归纳不同类型的数平方根的特点。
板书课题
检查自学情况,展示相关问题的答案。板书平方根的概念、符号表示。引导学生对平方根的概念深度剖析。
分析开平方运算和平方运算的互逆关系
问题引发学生思考,产生探究学习的兴趣.
自学教科书相关内容,独立解决并口答问题1-3。列举事例理解概念,
配合教师检查,对照
完善答案。
复习平方运算的知识,提出问题,为本节课的学习做好知识的预备,并让学生体会知识之间的联系。
出示例2,求各式的值,指导学生先明确各式子的意义再计算,对学生的回答进行点拨评价。
引导学生展开讨论,从区别和联系两方面归纳总结。教师对学生的结论适时点评鼓励。
通过对例1的详解,学生能准确地书写表达,规范平方根的书写格式,掌握正确的符号化语言.
熟练口算,归纳平方根的性质
口答各式子的意义及计算结果,初步感受平方根与算术平方根的区别与联系。
形成“平方根”的概念.在列举一些具体数据的感性认识基础上,由平方运算反推出平方根的概念和定义,并让学生非常熟练地进行平方和平方根之间的互化并明白它们之间的互逆关系.
教学环节
教师活动
预设学生行为
设计意图
三、例题示范,应用新知
例1.求下列各数的平方根:
(1)81;(2) ;(3)0.49;
练习:口答下列各数的平方根:
教学环节
北师大版八年级数学上册:2.2《平方根》教案
北师大版八年级数学上册:2.2《平方根》教案一. 教材分析《平方根》是北师大版八年级数学上册第2章“实数与平方根”的第2节内容。
本节内容是在学生已经掌握了有理数、无理数的概念,以及算术平方根的基础上,进一步研究平方根的概念和性质。
通过本节内容的学习,学生能够理解平方根的定义,掌握求一个数的平方根的方法,以及了解平方根在实际生活中的应用。
二. 学情分析学生在学习本节内容之前,已经掌握了有理数、无理数的概念,以及算术平方根的知识。
但是,对于平方根的性质和求法,以及平方根在实际生活中的应用,可能还存在一定的困难。
因此,在教学过程中,需要结合学生的实际情况,逐步引导学生理解和掌握平方根的知识。
三. 教学目标1.理解平方根的概念,掌握求一个数的平方根的方法。
2.能够运用平方根的知识解决实际问题。
3.培养学生的逻辑思维能力和创新能力。
四. 教学重难点1.平方根的概念和性质。
2.求一个数的平方根的方法。
3.平方根在实际生活中的应用。
五. 教学方法1.情境教学法:通过生活实例,引导学生理解和掌握平方根的知识。
2.启发式教学法:通过提问和讨论,激发学生的思考,培养学生的创新能力。
3.实践操作法:通过实际操作,让学生掌握求一个数的平方根的方法。
六. 教学准备1.教学课件:制作平方根的概念、性质和求法的课件。
2.教学素材:准备一些实际问题,用于引导学生运用平方根的知识解决。
3.练习题:准备一些有关平方根的练习题,用于巩固所学知识。
七. 教学过程1.导入(5分钟)利用生活实例,如测量物体长度、计算土地面积等,引出平方根的概念。
提问:你们知道这些实例中涉及到的数学知识吗?2.呈现(10分钟)展示平方根的定义和性质,引导学生理解和掌握。
同时,介绍求一个数的平方根的方法,如:分解因式法、配方法等。
3.操练(10分钟)让学生分组讨论,互相练习求一个数的平方根。
教师巡回指导,解答学生的疑问。
4.巩固(10分钟)出示一些实际问题,让学生运用平方根的知识解决。
北师大版八年级数学上册:2.2《平方根》教学设计2
北师大版八年级数学上册:2.2《平方根》教学设计2一. 教材分析《平方根》是北师大版八年级数学上册第二章第二节的内容。
本节主要让学生掌握平方根的概念,了解平方根的性质,会求一个数的平方根。
教材通过引入问题情境,让学生感受数学与生活的联系,培养学生的数学应用意识。
同时,平方根的学习也为后续学习立方根、算术平方根等概念打下基础。
二. 学情分析八年级的学生已经学习了有理数的乘方,对乘方的概念和性质有一定的了解。
但平方根的概念与有理数的乘方有所不同,需要学生能够较好地理解和掌握。
此外,学生可能对实数的概念不是很清晰,需要在教学中引导学生正确理解实数与平方根的关系。
三. 教学目标1.理解平方根的概念,掌握平方根的性质。
2.能够求一个正数的平方根。
3.培养学生的数学思维能力,提高学生解决实际问题的能力。
四. 教学重难点1.重点:平方根的概念和性质。
2.难点:求一个数的平方根,特别是非正数的平方根。
五. 教学方法1.情境教学法:通过引入生活情境,让学生感受数学与生活的联系。
2.启发式教学法:引导学生思考,发现规律,培养学生的数学思维能力。
3.练习法:通过大量的练习,让学生巩固所学知识。
六. 教学准备1.教学课件:制作平方根的概念、性质和求平方根的课件。
2.练习题:准备一些有关平方根的练习题,包括正数、负数和零的平方根。
3.教学视频:准备一个有关平方根的数学故事视频,用于导入新课。
七. 教学过程1.导入(5分钟)播放教学视频,让学生了解平方根的由来。
然后提问:什么是平方根?引导学生思考并回答。
2.呈现(15分钟)讲解平方根的概念,用PPT展示平方根的性质。
让学生观察并总结平方根的性质。
3.操练(15分钟)让学生分组讨论,每组找一个数的平方根,并解释如何找到这个平方根。
然后让学生上台展示并讲解。
4.巩固(10分钟)让学生独立完成练习题,检验学生对平方根的理解。
教师巡回指导,解答学生的疑问。
5.拓展(10分钟)引导学生思考:平方根有哪些应用?让学生举例说明,培养学生的数学应用意识。
2.2第2课时平方根2-2021-2022学年八年级上册初二数学(教案)(北师大版)
在教学方法上,我觉得可以尝试更多元化的教学手段。例如,利用信息技术手段,通过动画、视频等展示平方根的求解过程,让同学们更直观地理解。同时,可以增加一些互动环节,如小组竞赛、抢答等,激发同学们的学习兴趣。
(二)新课讲授(用时10分钟)
1.理论介绍:首先,我们要了解平方根的基本概念。平方根是一个数乘以自身得到另一个数的运算结果。它是解决几何计算和物理问题中非常重要的一环。
2.案例分析:接下来,我们来看一个具体的案例。比如,计算一个边长为2米的正方形的面积,我们可以通过求2的平方根来得到答案。
3.重点难点解析:在讲授过程中,我会特别强调平方根的定义和求解方法这两个重点。对于难点部分,如平方根的双重性和非完全平方数的求解,我会通过举例和比较来帮助大家理解。
(五)总结回顾(用时5分钟)
今天的学习,我们了解了平方根的基本概念、重要性和应用。同时,我们也通过实践活动和小组讨论加深了对平方根的理解。我希望大家能够掌握这些知识点,并在日常生活中灵活运用。最后,如果有任何疑问或不明白的地方,请随时向我提问。
五、教学反思
在今天的教学过程中,我注意到同学们对平方根的概念和性质有了初步的理解,但在具体应用方面还存在一些困难。我尝试通过实例和实验操作来帮助大家更好地掌握平方根的知识,以下是我对今天教学的一些思考:
(四)学生小组讨论(用时10分钟)
1.讨论主题:学生将围绕“平方根在实际生活中的应用”这一主题展开讨论。他们将被鼓励提出自己的观点和想法,并与其他小组成员进行交流。
2.2平方根2分析
2016年北师大新版八年级数学上册同步练习:2.2 平方根一、选择题(共18小题)1.16的平方根是()A.4 B.±4 C.8 D.±82.25的算术平方根是()A.5 B.﹣5 C.±5 D.3.4的算术平方根是()A.﹣2 B.2 C.﹣D.4.4的算术平方根是()A.±2 B.2 C.﹣2 D.5.9的平方根是()A.±3 B.±C.3 D.﹣36.下列说法正确的是()A.|﹣2|=﹣2 B.0的倒数是0C.4的平方根是2 D.﹣3的相反数是37.±2是4的()A.平方根B.相反数C.绝对值D.算术平方根8.(﹣3)2的平方根是()A.3 B.﹣3 C.±3 D.99.a2的算术平方根一定是()A.a B.|a|C.D.﹣a10.数5的算术平方根为()A.B.25 C.±25 D.±11.已知边长为m的正方形面积为12,则下列关于m的说法中,错误的是()①m是无理数;②m是方程m2﹣12=0的解;③m满足不等式组;④m是12的算术平方根.A .①②B .①③C .③D .①②④12.的算术平方根是( )A .﹣2B .±2C .D .2 13.己知一个表面积为12dm 2的正方体,则这个正方体的棱长为( )A .1dmB . dmC . dmD .3dm14.9的算术平方根是( )A .﹣3B .±3C .3D .15.下列各式正确的是( )A .﹣22=4B .20=0C . =±2D .|﹣|=16.的算术平方根是( )A .2B .±2C .D .±17.8的平方根是( )A .4B .±4C .2D .18.)的平方根是( )A .±3B .3C .±9D .9二、填空题(共12小题)19.81的平方根为 .20.4是 的算术平方根.21.实数4的平方根是 .22.的算术平方根是 .23.4的平方根是 ;4的算术平方根是 .24.4的平方根是 .25.16的平方根是 .26.9的平方根是 .27.计算:25的平方根是 .28.求9的平方根的值为 .29.9的算术平方根是 .30.的平方根是 .2016年北师大新版八年级数学上册同步练习:2.2 平方根参考答案与试题解析一、选择题(共18小题)1.16的平方根是()A.4 B.±4 C.8 D.±8【考点】平方根.【分析】根据平方根的定义,求数a的平方根,也就是求一个数x,使得x2=a,则x就是a的平方根,由此即可解决问题.【解答】解:∵(±4)2=16,∴16的平方根是±4.故选:B.【点评】本题考查了平方根的定义.注意一个正数有两个平方根,它们互为相反数;0的平方根是0;负数没有平方根.2.25的算术平方根是()A.5 B.﹣5 C.±5 D.【考点】算术平方根.【专题】计算题.【分析】根据算术平方根的定义进行解答即可.【解答】解:∵(5)2=25,∴25的算术平方根是5.故选A.【点评】本题考查的是算术平方根的概念,即如果一个正数x的平方等于a,即x2=a,那么这个正数x叫做a的算术平方根.3.4的算术平方根是()A.﹣2 B.2 C.﹣D.【考点】算术平方根.【专题】计算题.【分析】根据算术平方根的定义进行解答即可.【解答】解:∵22=4,∴4的算术平方根是2.故选:B.【点评】本题考查了算术平方根的定义,熟记定义是解题的关键.4.4的算术平方根是()A.±2 B.2 C.﹣2 D.【考点】算术平方根.【分析】根据开方运算,可得一个数的算术平方根.【解答】解:4的算术平方根是2,故选:B.【点评】本题考查了算术平方根,注意一个正数只有一个算术平方根.5.9的平方根是()A.±3 B.±C.3 D.﹣3【考点】平方根.【分析】根据平方根的含义和求法,可得9的平方根是:±=±3,据此解答即可.【解答】解:9的平方根是:±=±3.故选:A.【点评】此题主要考查了平方根的性质和应用,要熟练掌握,解答此题的关键是要明确:一个正数有两个平方根,这两个平方根互为相反数,零的平方根是零,负数没有平方根.6.下列说法正确的是()A.|﹣2|=﹣2 B.0的倒数是0C.4的平方根是2 D.﹣3的相反数是3【考点】平方根;相反数;绝对值;倒数.【专题】计算题.【分析】利用绝对值的代数意义,倒数的定义,平方根及相反数的定义判断即可.【解答】解:A、|﹣2|=2,错误;B、0没有倒数,错误;C、4的平方根为±2,错误;D、﹣3的相反数为3,正确,故选D【点评】此题考查了平方根,相反数,绝对值以及倒数,熟练掌握各自的定义是解本题的关键.7.±2是4的()A.平方根B.相反数C.绝对值D.算术平方根【考点】平方根.【分析】根据平方根的定义解答即可.【解答】解:±2是4的平方根.故选:A.【点评】本题考查了平方根的定义,是基础题,熟记概念是解题的关键.8.(﹣3)2的平方根是()A.3 B.﹣3 C.±3 D.9【考点】平方根;有理数的乘方.【分析】首先根据平方的定义求出(﹣3)2,然后利用平方根的定义即可求出结果.【解答】解:∵(﹣3)2=9,而9的平方根是±3,∴(﹣3)2的平方根是±3.故选:C.【点评】本题考查了平方根的意义,有理数的乘方.注意一个正数有两个平方根,它们互为相反数;0的平方根是0;负数没有平方根.9.a2的算术平方根一定是()A.a B.|a|C.D.﹣a【考点】算术平方根.【分析】根据算术平方根定义,即可解答.【解答】解:=|a|.故选:B.【点评】本题考查了对算术平方根定义的应用,能理解定义并应用定义进行计算是解此题的关键,难度不是很大.10.数5的算术平方根为()A.B.25 C.±25 D.±【考点】算术平方根.【分析】根据算术平方根的含义和求法,可得:数5的算术平方根为,据此解答即可.【解答】解:数5的算术平方根为.故选:A.【点评】此题主要考查了算术平方根的性质和应用,要熟练掌握,解答此题的关键是要明确:如果一个正数x的平方等于a,即x2=a,那么这个正数x叫做a的算术平方根.11.已知边长为m的正方形面积为12,则下列关于m的说法中,错误的是()①m是无理数;②m是方程m2﹣12=0的解;③m满足不等式组;④m是12的算术平方根.A.①②B.①③C.③D.①②④【考点】算术平方根;平方根;无理数;不等式的解集.【分析】①根据边长为m的正方形面积为12,可得m2=12,所以m=2,然后根据是一个无理数,可得m是无理数,据此判断即可.②根据m2=12,可得m是方程m2﹣12=0的解,据此判断即可.③首先求出不等式组的解集是4<m<5,然后根据m=2<2×2=4,可得m不满足不等式组,据此判断即可.④根据m2=12,而且m>0,可得m是12的算术平方根,据此判断即可.【解答】解:∵边长为m的正方形面积为12,∴m2=12,∴m=2,∵是一个无理数,∴m是无理数,∴结论①正确;∵m2=12,∴m是方程m2﹣12=0的解,∴结论②正确;∵不等式组的解集是4<m<5,m=2<2×2=4,∴m不满足不等式组,∴结论③不正确;∵m2=12,而且m>0,∴m是12的算术平方根,∴结论④正确.综上,可得关于m的说法中,错误的是③.故选:C.【点评】(1)此题主要考查了算术平方根的性质和应用,要熟练掌握,解答此题的关键是要明确:①被开方数a是非负数;②算术平方根a本身是非负数.(3)求一个非负数的算术平方根与求一个数的平方互为逆运算,在求一个非负数的算术平方根时,可以借助乘方运算来寻找.(2)此题还考查了无理数和有理数的特征和区别,要熟练掌握,解答此题的关键是要明确:有理数能写成有限小数和无限循环小数,而无理数只能写成无限不循环小数.(3)此题还考查了不等式的解集的求法,以及正方形的面积的求法,要熟练掌握.12.的算术平方根是()A.﹣2 B.±2 C.D.2【考点】算术平方根.【分析】首先求出的值是2;然后根据算术平方根的求法,求出2的算术平方根,即可求出的算术平方根是多少.【解答】解:∵,2的算术平方根是,∴的算术平方根是.故选:C.【点评】此题主要考查了算术平方根的性质和应用,要熟练掌握,解答此题的关键是要明确:①被开方数a是非负数;②算术平方根a本身是非负数.(3)求一个非负数的算术平方根与求一个数的平方互为逆运算,在求一个非负数的算术平方根时,可以借助乘方运算来寻找.13.己知一个表面积为12dm2的正方体,则这个正方体的棱长为()A.1dm B.dm C.dm D.3dm【考点】算术平方根.【分析】根据正方体的表面积公式:s=6a2,解答即可.【解答】解:因为正方体的表面积公式:s=6a2,可得:6a2=12,解得:a=.故选B.【点评】此题主要考查正方体的表面积公式的灵活运用,关键是根据公式进行计算.14.9的算术平方根是()A.﹣3 B.±3 C.3 D.【考点】算术平方根.【分析】算术平方根的概念:一般地,如果一个正数x的平方等于a,即x2=a,那么这个正数x叫做a的算术平方根.依此即可求解.【解答】解:9的算术平方根是3.故选:C.【点评】此题主要考查了算术平方根的定义,算术平方根的概念易与平方根的概念混淆而导致错误.15.下列各式正确的是()A.﹣22=4 B.20=0 C.=±2 D.|﹣|=【考点】算术平方根;有理数的乘方;实数的性质;零指数幂.【分析】根据有理数的乘方,任何非零数的零次幂等于1,算术平方根的定义,绝对值的性质对各选项分析判断即可得解.【解答】解:A、﹣22=﹣4,故本选项错误;B、20=1,故本选项错误;C、=2,故本选项错误;D、|﹣|=,故本选项正确.故选D.【点评】本题考查了算术平方根的定义,有理数的乘方,实数的性质,零指数幂的定义,是基础题,熟记概念与性质是解题的关键.16.的算术平方根是()A.2 B.±2 C.D.±【考点】算术平方根.【专题】计算题.【分析】先求得的值,再继续求所求数的算术平方根即可.【解答】解:∵=2,而2的算术平方根是,∴的算术平方根是,故选:C.【点评】此题主要考查了算术平方根的定义,解题时应先明确是求哪个数的算术平方根,否则容易出现选A的错误.17.8的平方根是()A.4 B.±4 C.2D.【考点】平方根.【分析】直接根据平方根的定义进行解答即可解决问题.【解答】解:∵,∴8的平方根是.故选:D.【点评】本题考查了平方根的定义.注意一个正数有两个平方根,它们互为相反数;0的平方根是0;负数没有平方根.18.的平方根是()A.±3 B.3 C.±9 D.9【考点】平方根;算术平方根.【专题】计算题.【分析】根据平方运算,可得平方根、算术平方根.【解答】解:∵,9的平方根是±3,故选:A.【点评】本题考查了算术平方根,平方运算是求平方根的关键.二、填空题(共12小题)19.81的平方根为±9.【考点】平方根.【分析】根据平方根的定义即可得出答案.【解答】解:8l的平方根为±9.故答案为:±9.【点评】此题考查了平方根的知识,属于基础题,掌握定义是关键.20.4是16的算术平方根.【考点】算术平方根.【分析】如果一个非负数x的平方等于a,那么x是a的算术平方根,由此即可求出结果.【解答】解:∵42=16,∴4是16的算术平方根.故答案为:16.【点评】此题主要考查了算术平方根的概念,牢记概念是关键.21.实数4的平方根是±2.【考点】平方根.【分析】根据平方根的定义,求数a的平方根,也就是求一个数x,使得x2=a,则x就是a的平方根,由此即可解决问题.【解答】解:∵(±2)2=4,∴4的平方根是±2.故答案为±2.【点评】本题考查了平方根的定义.注意一个正数有两个平方根,它们互为相反数;0的平方根是0;负数没有平方根.22.的算术平方根是.【考点】算术平方根.【分析】直接根据算术平方根的定义求解即可.【解答】解:∵()2=,∴的算术平方根是,即=.故答案为.【点评】本题考查了算术平方根的定义:一般地,如果一个正数x的平方等于a,即x2=a,那么这个正数x叫做a的算术平方根.记为.23.4的平方根是±2;4的算术平方根是2.【考点】算术平方根;平方根.【分析】如果一个非负数x的平方等于a,那么x是a的算术平方根,由此即可求出结果.【解答】解:4的平方根是±2;4的算术平方根是2.故答案为:±2;2.【点评】此题主要考查了平方根和算术平方根的概念,算术平方根易与平方根的概念混淆而导致错误.24.4的平方根是±2.【考点】平方根.【专题】计算题.【分析】根据平方根的定义,求数a的平方根,也就是求一个数x,使得x2=a,则x就是a的平方根,由此即可解决问题.【解答】解:∵(±2)2=4,∴4的平方根是±2.故答案为:±2.【点评】本题考查了平方根的定义.注意一个正数有两个平方根,它们互为相反数;0的平方根是0;负数没有平方根.25.16的平方根是±4.【考点】平方根.【专题】计算题.【分析】根据平方根的定义,求数a的平方根,也就是求一个数x,使得x2=a,则x就是a的平方根,由此即可解决问题.【解答】解:∵(±4)2=16,∴16的平方根是±4.故答案为:±4.【点评】本题考查了平方根的定义.注意一个正数有两个平方根,它们互为相反数;0的平方根是0;负数没有平方根.26.9的平方根是±3.【考点】平方根.【专题】计算题.【分析】直接利用平方根的定义计算即可.【解答】解:∵±3的平方是9,∴9的平方根是±3.故答案为:±3.【点评】此题主要考查了平方根的定义,要注意:一个非负数的平方根有两个,互为相反数,正值为算术平方根.27.计算:25的平方根是±5.【考点】平方根.【专题】计算题.【分析】根据平方根的定义,结合(±5)2=25即可得出答案.【解答】解:∵(±5)2=25∴25的平方根±5.故答案为:±5.【点评】本题考查了平方根的知识,属于基础题,解答本题的关键是掌握平方根的定义,注意一个正数的平方根有两个且互为相反数.28.求9的平方根的值为±3.【考点】平方根.【分析】根据平方根的定义解答.【解答】解:∵(±3)2=9,∴9的平方根的值为±3.故答案为:±3.【点评】本题考查了平方根的定义,是基础题,熟记概念是解题的关键.29.9的算术平方根是3.【考点】算术平方根.【分析】9的平方根为±3,算术平方根为非负,从而得出结论.【解答】解:∵(±3)2=9,∴9的算术平方根是|±3|=3.故答案为:3.【点评】本题考查了数的算式平方根,解题的关键是牢记算术平方根为非负.30.的平方根是±2.【考点】平方根;算术平方根.【分析】根据平方根的定义,求数a的平方根,也就是求一个数x,使得x2=a,则x就是a的平方根,由此即可解决问题.【解答】解:的平方根是±2.故答案为:±2【点评】本题考查了平方根的定义.注意一个正数有两个平方根,它们互为相反数;0的平方根是0;负数没有平方根.。
2.2 第2课时 平方根2
2.2 平方根第2课时 平方根第一环节 复习旧知 引入新知内容:方法一 复习引入3的平方等于9,那么9的算术平方根就是 3 . 52的平方等于 254 ,那么254 的算术平方根就是_____52_________. 展厅的地面为正方形,其面积49平方米,则边长_ 7_米.已知折叠着的正方形ABCD 面积为1,则边长为__1___.将它扩展,若面积变为原来的2倍,那么它的边长为___2___;若面积变为原来的3倍,则边长为____3_____;若面积变为原来的n 倍,则边长为____n ____.方法二 复习引入目的: 这一环节主要是复习旧知识和提出问题,由上节课的“算术平方根”的求法使学生能明白“平方”和“算术平方根”的关系,让学生在几何图形中认识.熟悉它们的互化关系.并把上节课的思考题制作成Flash 情景引入,增加动画效果.效果 借助多媒体吸引学生的注意力,激发学生的学习兴趣.说明 数学知识源于生活,并服务于我们的生活.这两种方法通过生活中的具体问题激发学生的学习兴趣,并让他们产生解决问题的强烈愿望.第二环节 : 新课学习内容 (一)探究新知填空32=(9 )(-3)2=(9 ) ( )2=9 02=0(12)2=(14))214=(不存在)2=-4(12-)2=((二)形成概念(1)一般地,如果一个数的平方等于a,那么这个数叫做a的平方根或二次方根.而把正的平方根叫做a的算术平方根.表达式为:若x2=a,那么x叫做a的平方根.记作a±.例如:(±4)2=16,则+4和-4都是16的平方根;即16的平方根是±4;4是16的算术平方根.(三)探索平方与开平方的关系:给出几组具体的数据,由平方探知开平方与平方的互逆关系.(四)概念辨析平方根与算术平方根的联系与区别联系1.包含关系平方根包含算术平方根,算术平方根是平方根的一种.2.只有非负数才有平方根和算术平方根.3.0的平方根是0,算术平方根也是0.区别1.个数不同:一个正数有两个平方根,但只有一个算术平方根.2.表示法不同:平方根表示为a±,而算术平方根表示为a.目的形成“平方根”的概念.在列举一些具体数据的感性认识基础上,由平方运算反推出平方根的概念和定义,并让学生非常熟练地进行平方和平方根之间的互化并,明白它们之间的互逆关系,辨析概念“平方根”与“算术平方根”的区别与联系,使之与上一节课紧密联系.效果由于遵循了从具体到抽象的过程,注重学生原有认知基础的回顾,并和原有的概念进行了比较与辨析,因此,学生对这一抽象的概念掌握得比较牢靠.说明 平方根与算术平方根的区别是本节课的一大难点,也是学生经常容易出错的地方.对这两个概念加以比较与区别有利于学生的理解与掌握.第三环节 例题和新知巩固(一)例题示范求下列各数的平方根:(1)64;(2)49121;(3) 0.0004;(4)()225-;(5) 11 解 (1)()2648=±,648∴±的平方根是,8=±即;(2)()24949771211211111,=∴±±的平方根为,711±=±即;(3)()20.0004,0.00040.020.02=∴±±的平方根是,0.02=±即;(4)()()()22,25252525=∴±±--2的平方根是, 25=±即;(5)11的平方根是目的 这是书上的例题,要求学生能正确掌握平方根的文字说理及符号化的表达.能熟练地求出一个数的平方根,然后由题中的数据探索出正数、0、负数的平方根的个数.效果 通过对例题的详解,学生能准确地书写表达,规范平方根的书写格式,掌握正确的符号化语言.(二)思考提升1.()25-的平方根是 ,的算术平方根是_____,49的平方根是_____;2.2= ,= ,= ,;3= ,20a≥=当 .(三)巩固练习1 .下列说法正确的是①3-②25的平方根是5;③-36的平方根是-6;④平方根等于0的数是0;⑤64的平方根是8.2.下列说法不正确的是( ) .(A)0的平方根是0 (B)22-的平方根是2±(C)非负数的平方根是互为相反数 (D)一个正数的算术平方根一定大于这个数的相反数3.已知一个自然数的算术平方根是a ,则该自然数的下一个自然数的算术平方根是( ).(A) a +1(C) 2a +1答 因为02x -≥,所以0x ≤ 目的 围绕本节课的重点知识 (平方根)作适当的练习,在不同的变式练习中加深对平方根意义的理解.效果 学生基本能顺利解决这些问题,并利用探索的规律进行规范的表达.第四环节 课堂小结内容 引导学生总结本课时的知识、方法.目的 让学生对所学的知识进行梳理,使之思路清晰,既巩固了有关知识,又培养了学生良好的学习习惯.效果 在老师的引导下学生自己总结本节课的知识、方法,如平方根的概念 若2x a =,则x 叫a的平方根,x =平方根的个数 正数有2个平方根,0的平方根是0,负数没有平方根. 平方与开方之间的关系;求平方根的方法 求一个数的平方根就是转化寻找哪个数平方等于这个数.第五环节提高训练内容 1.5的小数部分为a,5-b,求a b+的值.2.已知实数a,b满足296=b b①若a,b为ABC∆的两边,求第三边c的取值范围;②若a,b为ABC∆的面积.∆的两边,第三边c等于5,求ABC目的安排了两道题,其中最后一题是用算术平方根的意义来解决三角形的问题,这一环节主要针对层次较好的学生提供的题.可供老师根据教学的实际情况灵活处理.第六环节作业布置习题2.4四、教学设计反思本节课是八年级上册第二章《平方根》的第二课时.主要知识是平方根的学习和运用.教材是教师提供最基本的教学素材,教师完全可以根据学生的实际情况进行适当调整.(二)鼓励学生进行探究和交流本节课为学生提供了有趣而富有数学含义的问题,让学生进行充分的探索和交流.如把正方形的面积不断的扩大为2倍、3倍、n倍,来引导学生充分进行交流、讨论与探索等数学活动,从中感受学习平方根的必要性.(三)设计之中多处运用类比的方法,使学生清楚新旧知识的区别和联系.类比概念“平方根”和“算术平方根”的区别和联系,“平方”和“开平方”运算.(四)根据学生实际,灵活使用教材教材上只安排了一道例题和几个想一想,为了让学生对新知巩固,我增加了部分练习题,围绕“平方根”这一知识点进行各种题型的变式练习.当然,选题要有层次,有梯度.老师们在进行教学时可以根据学生的实际情况作适当的取舍.(五)建议根据知识结构的逻辑关系与学生的认知规律,建议教材在内容安排上平方根置于算术平方根之前.。
2.2平方根(2)
3、通过学生在学习中互相帮助、相互合作,并能对不同概念进行区分,培养 大家的团队精神,以及认真仔细的学习态度,为学生将来走上社会而做准备,
教具
演示(教师)
多媒体课件
学生
无
主要教学过程
注解
、
引 入 新 课
I.创设问题情境,引入新课
上节课我们学习了算术平方根的概念,性质•知道若一个
正数x的平方等于a,即x =a.则x叫a的算术平方根,记作x= 4a,而且 诟 也是非负数,比如正数22=4,则2叫4的算术 平方根,4叫2的平方,但是(一2)2=4,则一2叫4的什么根呢? 下面我们就来讨论这个冋题.
[生]平方等于9的数有两个,平方等于—的数有两个,25
由此可知平方等于0.64的数也有两个.
[师]根据上一节课的内容,我们知道了是9的算术平方 根,2是4的算术平方根,那么一3,—2叫9、4的什么根
525525
呢?请大家认真看书后回答.
[生]—3,—2分别叫9、4的平方根.
525
[师]那是不是说3叫9的算术平方根,—3也叫9的算术平 方根,即9的算术平方根有一个是3,
[生]平方根的定义中是有一个数x的平方等于a,则x叫a的平方根,x没有肯定是正数还是负数或零;而算术平方 根的定义中是有一个正数x的平方等于a,则x叫a的算术平 方根,这里的x只能是正数.由此看来都有x2=a,这是它们的 相同之处,而x的要求不同,这是它们的不同之处.
[师]这位同学分析判断能力特棒,下面我再详细作一总结.
北师大版八年级数学上册:2.2《平方根》说课稿2
北师大版八年级数学上册:2.2《平方根》说课稿2一. 教材分析平方根是八年级数学上册第二章第二节的内容,本节课主要介绍了平方根的概念、性质以及求一个数的平方根的方法。
平方根是数学中的一个基本概念,它在解决实际问题中有着广泛的应用。
通过学习平方根,学生可以加深对有理数和实数的理解,提高解决问题的能力。
二. 学情分析学生在学习平方根之前,已经学习了有理数、实数等基础知识,具备了一定的逻辑思维和运算能力。
但平方根的概念和性质较为抽象,学生可能存在一定的理解困难。
因此,在教学过程中,需要关注学生的学习情况,针对学生的特点进行引导和讲解。
三. 说教学目标1.知识与技能:理解平方根的概念,掌握求一个数的平方根的方法,能熟练运用平方根解决实际问题。
2.过程与方法:通过观察、分析、归纳等方法,引导学生发现平方根的性质,培养学生的逻辑思维能力。
3.情感态度与价值观:激发学生学习数学的兴趣,培养学生的自主学习能力,使学生感受到数学在生活中的应用。
四. 说教学重难点1.重点:平方根的概念、性质以及求一个数的平方根的方法。
2.难点:平方根性质的推导和运用。
五. 说教学方法与手段1.引导发现法:通过观察、分析、归纳等方法,引导学生自主发现平方根的性质。
2.实例讲解法:结合具体例子,讲解平方根的应用,提高学生的解决问题的能力。
3.练习法:通过课堂练习和课后作业,巩固所学知识,提高学生的运算能力。
4.多媒体辅助教学:利用多媒体课件,形象直观地展示平方根的概念和性质,提高学生的学习兴趣。
六. 说教学过程1.导入新课:回顾实数的概念,引入平方根的概念。
2.讲解平方根:讲解平方根的定义,举例说明平方根的求法。
3.发现平方根性质:引导学生观察、分析、归纳平方根的性质。
4.应用平方根:结合实例,讲解平方根在实际问题中的应用。
5.课堂练习:布置练习题,巩固所学知识。
6.小结:总结本节课的主要内容,强调平方根的概念和性质。
7.布置作业:布置课后作业,提高学生的运算能力。
北师大版八年级数学上册:2.2《平方根》教学设计
北师大版八年级数学上册:2.2《平方根》教学设计一. 教材分析《平方根》是北师大版八年级数学上册第二章第二节的内容。
本节内容是在学生已经掌握了有理数的乘方、算术平方根的基础上,进一步引导学生探索平方根的概念,理解平方根与算术平方根的联系和区别,以及掌握平方根的运算方法。
二. 学情分析八年级的学生已经具备了一定的数学基础,对于有理数的乘方、算术平方根等概念有一定的了解。
但是,学生对于平方根的理解可能会存在一定的困难,因此需要通过实例来帮助学生直观地理解平方根的概念。
三. 教学目标1.理解平方根的概念,掌握平方根的运算方法。
2.能够运用平方根的概念解决实际问题。
3.培养学生的数学思维能力,提高学生的数学素养。
四. 教学重难点1.重点:平方根的概念,平方根的运算方法。
2.难点:平方根与算术平方根的联系和区别。
五. 教学方法采用讲授法、引导发现法、实践操作法、小组合作交流法等,结合多媒体教学手段,以学生为主体,教师为指导,引导学生自主探索、合作交流,从而达到理解平方根的概念,掌握平方根的运算方法。
六. 教学准备1.教学课件:制作平方根的教学课件,包括平方根的定义、例题、练习等。
2.教学素材:准备一些有关平方根的实际问题,以及一些关于平方根的图片素材。
3.教学工具:准备黑板、粉笔、投影仪等教学工具。
七. 教学过程1.导入(5分钟)利用多媒体展示一些实际问题,如:“一个正方形的边长是6厘米,求它的面积。
”让学生思考如何求解这个问题。
2.呈现(10分钟)引导学生回顾算术平方根的定义,然后给出平方根的定义:“一个非负数x的平方根是另一个非负数y,使得y²=x。
”接着,通过PPT展示一些平方根的例子,让学生观察、思考,加深对平方根的理解。
3.操练(10分钟)让学生自主完成一些关于平方根的练习题,如:求下列各数的平方根:(1)4;(2)-4;(3)9;(4)-9。
教师巡回指导,解答学生的疑问。
4.巩固(10分钟)让学生分组讨论,总结平方根的运算方法,以及平方根与算术平方根的联系和区别。
秋八年级数学上册 2.2 平方根 2.2.2 平方根说课稿 (新版)北师大版-(新版)北师大版初中八
2.2.2 平方根教材分析《平方根》是北师版初中数学八年级上第二章第二节。
在此之前,学生已经学习了有理数、有理数的乘方、用字母表示数等知识,这为过渡到本节起着铺垫作用。
本节主要学习平方根和算术平方根的概念和性质,在运算方面,引入了开方运算,使学生掌握的代数运算由原来的加、减、乘、除、乘方五种扩展到六种,建立起较完善的代数运算体系。
本节内容既是对前面所学知识的深化和发展,也是今后学习二次根式、实数的预备知识,还是用直接开平方法、公式法解一元二次方程的重要依据。
因此,本节处于非常重要的地位,起着承前启后的作用。
学生分析八年级的学生已经能从具体事例中归纳问题的本质,通过观察、类比等活动抽象出问题的规律,同时学生在前面的学习中已经熟练掌握算术平方根的知识,具备了用所学知识来分析平方根性质的基础。
教学目标【知识与技能】掌握平方根与算术平方根的概念,能及时通过开方运算求一个非负数的平方根及算术平方根,理解平方与开平方互为逆运算。
【过程与方法】通过对平方根概念及性质的探究,渗透分类讨论和数形结合的数学思想方法,提高数学探究能力和归纳表达能力。
【情感、态度与价值观】鼓励学生积极主动地参与教与学的整个过程,激发学生求知的欲望,增加学生学习数学的兴趣与信心。
教学重、难点本节课的重点是平方根与算术平方根的概念和性质。
因为平方根与算术平方根的概念和性质始终贯穿本章,正确理解这两个概念是学好本章的关键。
本节课的难点是平方根与算术平方根的区别与联系。
因为平方根与算术平方根这两个概念容易引起学生理解上的偏差和意义上的混淆,如处理不当将直接影响以后的学习。
说教法与学法【教法】学生在七年级学过乘方运算,但由于间隔时间长,他们会有不同程度的遗忘,为了实现新旧教学方式和学习方式的接轨,我利用情景教学激发学生的兴趣,利用对比教学让学生掌握概念的本质,完善学生的知识结构。
【学法】学生才是学习的主人,教师本节的学法我定为小组交流合作法和自主学习法。
北师大版初二数学上册2.2 平方根(第2课时)
第二章实数2. 平方根(第2课时)灞源初中:祝娟娟一、教学目标:①了解平方根、开平方的概念,明确算术平方根与平方根的区别和联系.②进一步明确平方与开平方是互逆的运算关系.③经历平方根概念的形成过程,让学生不仅掌握概念,而且提高和巩固所学知识的应用能力.二、教学重难点:教学重点:①了解平方根、开平方的概念.②了解开方与乘方是互逆的运算,会利用这个互逆运算关系求某些非负数的算术平方根和平方根.③了解平方根与算术平方根的区别与联系.教学难点:①平方根与算术平方根的区别和联系.②负数没有平方根,即负数不能进行开平方的运算.三、教学过程:第一环节复习旧知引入新知1)9的算术平方根是3,也就是说,3的平方是9还有其它的数,它的平方也是9吗?4的数有几个?平方等于0.64的数呢?(2)平方等于25第二环节: 新课学习(一)形成概念一般地,如果一个数的平方等于a,那么这个数叫做a的平方根或二次方根.而把正的平方根叫做a的算术平方根..表达式为:若x2=a,那么x叫做a的平方根.记作a例如:(±4)2=16,则+4和-4都是16的平方根;即16的平方根是±4;4是16的算术平方根.(三)探索平方与开平方的关系:给出几组具体的数据,由平方探知开平方与平方的互逆关系.(四)概念辨析平方根与算术平方根的联系与区别联系 1.包含关系 平方根包含算术平方根,算术平方根是平方根的一种.2.只有非负数才有平方根和算术平方根.3. 0的平方根是0,算术平方根也是0.区别 1.个数不同:一个正数有两个平方根,但只有一个算术平方根.2.表示法不同:平方根表示为 a ± ,而算术平方根表示为a . 第三环节 例题和新知巩固(一)例题示范求下列各数的平方根:(1)64;(2)49121;(3) 0.0004;(4)()225-;(5) 11 解 (1)()2648=±,648∴±的平方根是,8±=±即;(2)()24949771211211111,=∴±±的平方根为,711±=±即;(3)()20.0004,0.00040.020.02=∴±±的平方根是,0.02=±即;(4)()()()22,25252525=∴±±--2的平方根是, 25=±即;(5)11±的平方根是(二)思考提升()()?a a ,???等于多少对于正数等于多少等于多少等于多少2222)3(2.7)2(12149)64)(1(⎪⎪⎭⎫ ⎝⎛(三)巩固练习1、 求下列各数的平方根:(1)81 (2)0.49(3) 2 (4)16/25(5)8 (6)27(7)(-4)2 (8)10-22、你能求出下列各式中的未知数x吗?(1)x2=49(2)(x-1)2=25第四环节课堂小结引导学生总结本课时的知识、方法.第五环节作业布置习题2.4四、教学设计反思本节课是八年级上册第二章《平方根》的第二课时.主要知识是平方根的学习和运用.类比概念“平方根”和“算术平方根”的区别和联系,“平方”和“开平方”运算,深刻理解两个概念的区别。
2.2平方根(第2课时)教学设计新部编版
精选教课教课方案设计| Excellent teaching plan教师学科教课方案[ 20–20学年度第__学期]任教课科: _____________任教年级: _____________任教老师: _____________xx市实验学校第二章实数2.平方根(第2课时)成都市锦西中学赵天成西南交大附中田晓红一、学生起点剖析学生在七年级上册学习“棋盘上的故事”就认识了一种运算“乘方”,并能娴熟计算任何一个数的平方.知道正数的平方是正数,负数的平方是正数,0的平方是0.在八年级上册第二章《实数》的学习中又认识了算术平方根的观点和表示方法,已能求非负数的算术平方根.那么这一课时进一步学习平方根.本节也为后边学习“立方根”做基础.二、教课任务剖析《平方根》是义务教育课程标准北师大版实验教科书八年级(上)第二章《实数》的第二节.本节安排了两个课时达成.第一课时是认识数的算术平方根的观点,会用根号表示一个数的算术平方根.在详细的例子中抽象出观点,发展学生的抽象归纳能力.本节课是第二课时,持续学习平方根的观点及其运用.并对“平方根”和“算术平方根” ,“平方”和“开平方”的观点做辨析,使学生在“指引-研究-类比-发现”中发展学习数学的能力.为此,本节课的教课目的是①认识平方根、开平方的观点,明确算术平方根与平方根的差别和联系.②进一步明确平方与开平方是互逆的运算关系.③经历平方根观点的形成过程,让学生不单掌握观点,并且提高和稳固所学知识的应用能力.教课要点是①认识平方根、开平方的观点.②认识开方与乘方是互逆的运算,会利用这个互逆运算关系求某些非负数的算术平方根和平方根.③认识平方根与算术平方根的差别与联系.教课难点是①平方根与算术平方根的差别和联系.②负数没有平方根,即负数不可以进行开平方的运算.三、教课过程设计 :本节课采纳指引、 研究、类比相联合的教课方法, 设计了六个教课环节第一环节 复习旧知 引入新知;第二环节 形成观点, 辨析观点;第三环节 例题和稳固练习;第四环节 讲堂小结;第五环节 思想拓展;第六环节 部署作业.第一环节 复习旧知 引入新知内容 :方法一复习引入1.什么叫算术平方根 ?3 的平方等于9,那么 9 的算术平方根就是3 .22的平方等于4 ,那么4的算术平方根就是 _____ 5_________.52525展厅的地面为正方形,其面积49 平方米,则边长 _7_米.2.到当前为止,我们已学过哪些运算 ?这些运算之间的关系怎样?乘方有没有逆运算 ?平方与算术平方根之间的关系?已知折叠着的正方形 ABCD 面积为 1,则边长为 __1___.将它扩展, 若面积变成本来的 2 倍,那么它的边长为 ___2___;若面积变成本来的3 倍,则边长为 ____3_____;若面积变成本来的n 倍,则边长为 ____ n____.方法二 复习引入问题 平方等于 9, 4, 49 的数还有吗?25目的 : 这一环节主假如复习旧知识和提出问题,由上节课的“算术平方根”的求法使学生能理解“平方”和“算术平方根”的关系,让学生在几何图形中认识.熟习它们的互化关系.并把上节课的思虑题制作成Flash 情形引入,增添动画成效.成效 借助多媒体吸引学生的注意力,激发学生的学习兴趣.说明 数学知识源于生活,并服务于我们的生活.这两种方法经过生活中的详细问题激发学生的学习兴趣,并让他们产生解决问题的激烈梦想.第二环节 : 新课学习内容 (一)研究新知填空23 =(9)222(-3) =(9 )()=90 =0( 121212) (不存在 - 2=( 4)4) = 421214 )() =((二)形成观点 (1)一般地,假如一个数的平方等于a ,那么这个数叫做 a 的平方根或二次方根.而把正的平方根叫做 a 的算术平方根.表达式为 :若 x 2 =a ,那么 x 叫做 a 的平方根. 记作a .比如 :(±4)2,则 +4 和- 4 都是 16 的平方根;即 16 的平方根是± 4 ; 4=16 是 16 的算术平方根.(三)研究平方与开平方的关系 :给出几组详细的数据,由平方探知开平方与平方的互逆关系.(四)观点辨析平方根与算术平方根的联系与差别联系1.包括关系 平方根包括算术平方根, 算术平方根是平方根的一种. 2.只有非负数才有平方根和算术平方根. 3. 0 的平方根是 0,算术平方根也是 0.差别1.个数不一样:一个正数有两个平方根,但只有一个算术平方根.2.表示法不一样:平方根表示为a,而算术平方根表示为a.目的形成“平方根”的观点.在列举一些详细数据的感性认识基础上,由平方运算反推出平方根的观点和定义,并让学生特别娴熟地进行平方和平方根之间的互化并,理解它们之间的互逆关系,辨析观点“平方根”与“算术平方根”的差别与联系,使之与上一节课密切联系.成效因为按照了从详细到抽象的过程,着重学生原有认知基础的回首,并和原有的概念进行了比较与辨析,所以,学生对这一抽象的观点掌握得比较牢靠.说明平方根与算术平方根的差别是本节课的一大难点,也是学生常常简单犯错的地方.对这两个观点加以比较与差别有益于学生的理解与掌握.第三环节例题和新知稳固(一)例题示范求以下各数的平方根 :;(2)49; (3)0.0004;(4)252 ;(5) 11(1)64121解(1)Q264,64的平方根是8,即648 ;8(2)Q7249,49的平方根为7,即497;111211*********(3)Q20.0004, 0.0004的平方根是0.02 ,即0.00040.02 ;0.02(4)Q252252 ,25 2 的平方根是25,即25225 ;(5)Q 11的平方根是11目的这是书上的例题,要修业生能正确掌握平方根的文字说理及符号化的表达.能熟练地求出一个数的平方根,而后由题中的数据研究出正数、0、负数的平方根的个数.成效经过对例题的详解,学生能正确地书写表达,规范平方根的书写格式,掌握正确的符号化语言.(二)思虑提高. 2 的平方根是,81的算术平方根是_____,4的平方根是519_____;2.6422, 64, 0.04=_______;,53. a2 =,当a0时,a2.(三)稳固练习1.以下说法正确的选项是①3是81的平方根;②25的平方根是5;③-36的平方根是-6;④平方根等于 0 的数是 0;⑤ 64 的平方根是 8.2.以下说法不正确的选项是 () .(A)0 的平方根是 0(B) 22的平方根是2(C)非负数的平方根是互为相反数(D) 一个正数的算术平方根必定大于这个数的相反数3.已知一个自然数的算术平方根是a,则该自然数的下一个自然数的算术平方根是().(A) a+1(B) a 1(C) a2 +1(D) a2 14.x为什么值,x2存心义?答因为x0 ,所以x0 2目的环绕本节课的要点知识(平方根)作适合的练习,在不一样的变式练习中加深对平方根意义的理解.成效学生基本能顺利解决这些问题,并利用研究的规律进行规范的表达.第四环节讲堂小结内容指引学生总结本课时的知识、方法.目的让学生对所学的知识进行梳理,使之思路清楚,既稳固了相关知识,又培育了学生优秀的学习习惯.成效在老师的指引放学生自己总结本节课的知识、方法,如平方根的观点若x2 a ,则x叫a的平方根, x a平方根的个数正数有2个平方根,0的平方根是0,负数没有平方根.平方与开方之间的关系;求平方根的方法求一个数的平方根就是转变找寻哪个数平方等于这个数.第五环节提高训练内容 1. 511 的小数部分为a, 511 的小数部分为b,求a b 的值.2.已知实数 a, b 知足b2 a 4 9 6b①若 a,b 为ABC 的两边,求第三边 c 的取值范围;②若 a,b 为ABC 的两边,第三边 c 等于 5,求ABC 的面积.目的安排了两道题,此中最后一题是用算术平方根的意义来解决三角形的问题,这一环节主要针对层次较好的学生供给的题.可供老师依据教课的实质状况灵巧办理.第六环节作业部署习题 2.4四、教课方案反省本节课是八年级上册第二章《平方根》的第二课时.主要知识是平方根的学习和运用.教材是教师供给最基本的教课素材,教师完整能够依据学生的实质状况进行适合调整.(一)着重观点的形成过程,让学生在观点的形成的过程中,逐渐理解所学的观点.观点是由详细到抽象、由特别到一般,经过剖析、综合去掉非实质特点,保持实质属性而形成的.观点的形成过程也是思想过程,增强观点形成过程的教课,对提高学生的思想水平是很必需的.所以在学习平方根的观点时,对正数有两个平方根学生不太简单接受,常常扔掉负的平方根,因为这与他们从前的经验不符.对此,在平方根的引入时,可多提一些详细的问题.如“9 的算术平方根是 3,也就是说, 3 的平方是 9.还有其余的数,它的平方也是9 吗?”等等,旨在惹起学生的思虑,让学生从详细的例子中抽象出初步的平方根的观点.再让学生去议论一个正数有几个平方根?0 有几个平方根?负数呢?指引学生更深刻地理解平方根的观点,而后经过详细的求平方根的练习,稳固新学的观点.(二)鼓舞学生进行研究和沟通本节课为学生供给了风趣而富裕数学含义的问题,让学生进行充足的研究和沟通.如把正方形的面积不停的扩大为2倍、 3 倍、 n 倍,来指引学生充足进行沟通、议论与研究等数学活动,从中感觉学习平方根的必需性.(三)设计之中多处运用类比的方法,使学生清楚新旧知识的差别和联系.类比观点“平方根”和“算术平方根”的差别和联系,“平方”和“开平方”运算.(四)依据学生实质,灵巧使用教材教材上只安排了一道例题和几个想想,为了让学生对新知稳固,我增添了部分练习题,环绕“平方根”这一知识点进行各样题型的变式练习.自然,选题要有层次,有梯度.老师们在进行教课时能够依据学生的实质状况作适合的弃取.(五)建议依据知识构造的逻辑关系与学生的认知规律,建议教材在内容安排上平方根置于算术平方根从前.。
2.2 平方根(2)课件
小测:
求下列各数的算术平方根
361 14 1 11 0.000324 2250000 108
81
289
25
若一个数的算术平方根为m ,则比这个数大2的数的算术
平方根是
。
回顾 & 思考 ☞
1.什么叫算术平方根?
若一个正数的平方等于 a 则这个数叫做 a 的算术
平方根,表示为a (a 0) . 0的平方根是0,即 0 0 .
(1)一个正数有几个平方根? (2)0 有几个平方根? (3)负数呢?
议一议 (1)一个正数有几个平方根?
(2)0 有几个平方根? (3)负数呢? 1、一个正数有两个平方根,0只有一个平 方根,它是0本身;负数没有平方根.
一个正数有两个平方根,它们又有何关系?
2、一个正数有两个平方根,它们互为相 反数!
乘方有没有逆运算?
9的平方等于多少?
9的平方根等于多少?
求一个数a的平方根的运算,叫做开平方. ( a叫做被开方数)
探索平方与开平方的关系
平方
+1 -1
1
开平方
1
+1 -1
+2 -2
4
+3 -3
9
4
+2 -2
9
+3 -3
平方与开平方互逆运算.
辨析概念
平方根与算术平方根的联系与区别:
联系:1.包含关系:平方根包含算术平方根, 算术平方根是平方根的一种.
定义
求一个数a的平方根的运算, 叫做开平方(extraction of square root)其中a叫做被开方数.
巩固新知
1.求下列各数的平方根和算术平方根:
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
2016年北师大新版八年级数学上册同步练习:2.2平方根一、选择题(共18小题)1.16的平方根是( )A.4 B.±4 C.8 D.±82.25的算术平方根是( )A.5 B.﹣5 C.±5 D.3.4的算术平方根是( )A.﹣2 B.2 C.﹣D.4.4的算术平方根是( )A.±2 B.2 C.﹣2 D.5.9的平方根是( )A.±3 B.±C.3 D.﹣36.下列说法正确的是( )A.|﹣2|=﹣2 B.0的倒数是0C.4的平方根是2 D.﹣3的相反数是37.±2是4的( )A.平方根 B.相反数 C.绝对值 D.算术平方根8.(﹣3)2的平方根是( )A.3 B.﹣3 C.±3 D.99.a2的算术平方根一定是( )A.a B.|a| C.D.﹣a10.数5的算术平方根为( )A.B.25 C.±25 D.±11.已知边长为m的正方形面积为12,则下列关于m的说法中,错误的是( )①m是无理数;②m是方程m2﹣12=0的解;③m满足不等式组;④m是12的算术平方根.A.①② B.①③ C.③ D.①②④12.的算术平方根是( )A.﹣2 B.±2 C.D.213.己知一个表面积为12dm2的正方体,则这个正方体的棱长为( )A.1dm B.dm C.dm D.3dm14.9的算术平方根是( )A.﹣3 B.±3 C.3 D.15.下列各式正确的是( )A.﹣22=4 B.20=0 C.=±2 D.|﹣|=16.的算术平方根是( )A.2 B.±2 C.D.±17.8的平方根是( )A.4 B.±4 C.2D.18.)的平方根是( )A.±3 B.3 C.±9 D.9二、填空题(共12小题)19.81的平方根为 .20.4是 的算术平方根.21.实数4的平方根是 .22.的算术平方根是 .23.4的平方根是 ;4的算术平方根是 .24.4的平方根是 .25.16的平方根是 .26.9的平方根是 .27.计算:25的平方根是 .28.求9的平方根的值为 .29.9的算术平方根是 .30.的平方根是 .2016年北师大新版八年级数学上册同步练习:2.2平方根参考答案与试题解析一、选择题(共18小题)1.16的平方根是( )A.4 B.±4 C.8 D.±8【考点】平方根.【分析】根据平方根的定义,求数a的平方根,也就是求一个数x,使得x2=a,则x就是a的平方根,由此即可解决问题.【解答】解:∵(±4)2=16,∴16的平方根是±4.故选:B.【点评】本题考查了平方根的定义.注意一个正数有两个平方根,它们互为相反数;0的平方根是0;负数没有平方根.2.25的算术平方根是( )A.5 B.﹣5 C.±5 D.【考点】算术平方根.【专题】计算题.【分析】根据算术平方根的定义进行解答即可.【解答】解:∵(5)2=25,∴25的算术平方根是5.故选A.【点评】本题考查的是算术平方根的概念,即如果一个正数x的平方等于a,即x2=a,那么这个正数x叫做a的算术平方根.3. 4的算术平方根是( )A.﹣2 B.2 C.﹣D.【考点】算术平方根.【专题】计算题.【分析】根据算术平方根的定义进行解答即可.【解答】解:∵22=4,∴4的算术平方根是2.故选:B.【点评】本题考查了算术平方根的定义,熟记定义是解题的关键.4.4的算术平方根是( )A.±2 B.2 C.﹣2 D.【考点】算术平方根.【分析】根据开方运算,可得一个数的算术平方根.【解答】解:4的算术平方根是2,故选:B.【点评】本题考查了算术平方根,注意一个正数只有一个算术平方根. 5.9的平方根是( )A.±3 B.±C.3 D.﹣3【考点】平方根.【分析】根据平方根的含义和求法,可得9的平方根是:±=±3,据此解答即可.【解答】解:9的平方根是:±=±3.故选:A.【点评】此题主要考查了平方根的性质和应用,要熟练掌握,解答此题的关键是要明确:一个正数有两个平方根,这两个平方根互为相反数,零的平方根是零,负数没有平方根.6.下列说法正确的是( )A.|﹣2|=﹣2 B.0的倒数是0C.4的平方根是2 D.﹣3的相反数是3【考点】平方根;相反数;绝对值;倒数.【专题】计算题.【分析】利用绝对值的代数意义,倒数的定义,平方根及相反数的定义判断即可.【解答】解:A、|﹣2|=2,错误;B、0没有倒数,错误;C、4的平方根为±2,错误;D、﹣3的相反数为3,正确,故选D【点评】此题考查了平方根,相反数,绝对值以及倒数,熟练掌握各自的定义是解本题的关键.7.±2是4的( )A.平方根 B.相反数 C.绝对值 D.算术平方根【考点】平方根.【分析】根据平方根的定义解答即可.【解答】解:±2是4的平方根.故选:A.【点评】本题考查了平方根的定义,是基础题,熟记概念是解题的关键.8.(﹣3)2的平方根是( )A.3 B.﹣3 C.±3 D.9【考点】平方根;有理数的乘方.【分析】首先根据平方的定义求出(﹣3)2,然后利用平方根的定义即可求出结果.【解答】解:∵(﹣3)2=9,而9的平方根是±3,∴(﹣3)2的平方根是±3.故选:C.【点评】本题考查了平方根的意义,有理数的乘方.注意一个正数有两个平方根,它们互为相反数;0的平方根是0;负数没有平方根.9. a2的算术平方根一定是( )A.a B.|a| C.D.﹣a【考点】算术平方根.【分析】根据算术平方根定义,即可解答.【解答】解:=|a|.故选:B.【点评】本题考查了对算术平方根定义的应用,能理解定义并应用定义进行计算是解此题的关键,难度不是很大.10.数5的算术平方根为( )A.B.25 C.±25 D.±【考点】算术平方根.【分析】根据算术平方根的含义和求法,可得:数5的算术平方根为,据此解答即可.【解答】解:数5的算术平方根为.故选:A.【点评】此题主要考查了算术平方根的性质和应用,要熟练掌握,解答此题的关键是要明确:如果一个正数x的平方等于a,即x2=a,那么这个正数x叫做a的算术平方根.11.已知边长为m的正方形面积为12,则下列关于m的说法中,错误的是( )①m是无理数;②m是方程m2﹣12=0的解;③m满足不等式组;④m是12的算术平方根.A.①② B.①③ C.③ D.①②④【考点】算术平方根;平方根;无理数;不等式的解集.【分析】①根据边长为m的正方形面积为12,可得m2=12,所以m=2,然后根据是一个无理数,可得m是无理数,据此判断即可.②根据m2=12,可得m是方程m2﹣12=0的解,据此判断即可.③首先求出不等式组的解集是4<m<5,然后根据m=2<2×2=4,可得m不满足不等式组,据此判断即可.④根据m2=12,而且m>0,可得m是12的算术平方根,据此判断即可.【解答】解:∵边长为m的正方形面积为12,∴m2=12,∴m=2,∵是一个无理数,∴m是无理数,∴结论①正确;∵m2=12,∴m是方程m2﹣12=0的解,∴结论②正确;∵不等式组的解集是4<m<5,m=2<2×2=4,∴m不满足不等式组,∴结论③不正确;∵m2=12,而且m>0,∴m是12的算术平方根,∴结论④正确.综上,可得关于m的说法中,错误的是③.故选:C.【点评】(1)此题主要考查了算术平方根的性质和应用,要熟练掌握,解答此题的关键是要明确:①被开方数a是非负数;②算术平方根a 本身是非负数.(3)求一个非负数的算术平方根与求一个数的平方互为逆运算,在求一个非负数的算术平方根时,可以借助乘方运算来寻找.(2)此题还考查了无理数和有理数的特征和区别,要熟练掌握,解答此题的关键是要明确:有理数能写成有限小数和无限循环小数,而无理数只能写成无限不循环小数.(3)此题还考查了不等式的解集的求法,以及正方形的面积的求法,要熟练掌握.12.的算术平方根是( )A.﹣2 B.±2 C.D.2【考点】算术平方根.【分析】首先求出的值是2;然后根据算术平方根的求法,求出2的算术平方根,即可求出的算术平方根是多少.【解答】解:∵,2的算术平方根是,∴的算术平方根是.故选:C.【点评】此题主要考查了算术平方根的性质和应用,要熟练掌握,解答此题的关键是要明确:①被开方数a是非负数;②算术平方根a本身是非负数.(3)求一个非负数的算术平方根与求一个数的平方互为逆运算,在求一个非负数的算术平方根时,可以借助乘方运算来寻找.13.己知一个表面积为12dm2的正方体,则这个正方体的棱长为( )A.1dm B.dm C.dm D.3dm【考点】算术平方根.【分析】根据正方体的表面积公式:s=6a2,解答即可.【解答】解:因为正方体的表面积公式:s=6a2,可得:6a2=12,解得:a=.故选B.【点评】此题主要考查正方体的表面积公式的灵活运用,关键是根据公式进行计算.14.9的算术平方根是( )A.﹣3 B.±3 C.3 D.【考点】算术平方根.【分析】算术平方根的概念:一般地,如果一个正数x的平方等于a,即x2=a,那么这个正数x叫做a的算术平方根.依此即可求解.【解答】解:9的算术平方根是3.故选:C.【点评】此题主要考查了算术平方根的定义,算术平方根的概念易与平方根的概念混淆而导致错误.15.下列各式正确的是( )A.﹣22=4 B.20=0 C.=±2 D.|﹣|=【考点】算术平方根;有理数的乘方;实数的性质;零指数幂.【分析】根据有理数的乘方,任何非零数的零次幂等于1,算术平方根的定义,绝对值的性质对各选项分析判断即可得解.【解答】解:A、﹣22=﹣4,故本选项错误;B、20=1,故本选项错误;C、=2,故本选项错误;D、|﹣|=,故本选项正确.故选D.【点评】本题考查了算术平方根的定义,有理数的乘方,实数的性质,零指数幂的定义,是基础题,熟记概念与性质是解题的关键.16.的算术平方根是( )A.2 B.±2 C.D.±【考点】算术平方根.【专题】计算题.【分析】先求得的值,再继续求所求数的算术平方根即可.【解答】解:∵=2,而2的算术平方根是,∴的算术平方根是,故选:C.【点评】此题主要考查了算术平方根的定义,解题时应先明确是求哪个数的算术平方根,否则容易出现选A的错误.17. 8的平方根是( )A.4 B.±4 C.2D.【考点】平方根.【分析】直接根据平方根的定义进行解答即可解决问题.【解答】解:∵,∴8的平方根是.故选:D.【点评】本题考查了平方根的定义.注意一个正数有两个平方根,它们互为相反数;0的平方根是0;负数没有平方根.18.的平方根是( )A.±3 B.3 C.±9 D.9【考点】平方根;算术平方根.【专题】计算题.【分析】根据平方运算,可得平方根、算术平方根.【解答】解:∵,9的平方根是±3,故选:A.【点评】本题考查了算术平方根,平方运算是求平方根的关键.二、填空题(共12小题)19. 81的平方根为 ±9 .【考点】平方根.【分析】根据平方根的定义即可得出答案.【解答】解:8l的平方根为±9.故答案为:±9.【点评】此题考查了平方根的知识,属于基础题,掌握定义是关键. 20. 4是 16 的算术平方根.【考点】算术平方根.【分析】如果一个非负数x的平方等于a,那么x是a的算术平方根,由此即可求出结果.【解答】解:∵42=16,∴4是16的算术平方根.故答案为:16.【点评】此题主要考查了算术平方根的概念,牢记概念是关键.21.实数4的平方根是 ±2 .【考点】平方根.【分析】根据平方根的定义,求数a的平方根,也就是求一个数x,使得x2=a,则x就是a的平方根,由此即可解决问题.【解答】解:∵(±2)2=4,∴4的平方根是±2.故答案为±2.【点评】本题考查了平方根的定义.注意一个正数有两个平方根,它们互为相反数;0的平方根是0;负数没有平方根.22.的算术平方根是 .【考点】算术平方根.【分析】直接根据算术平方根的定义求解即可.【解答】解:∵()2=,∴的算术平方根是,即=.故答案为.【点评】本题考查了算术平方根的定义:一般地,如果一个正数x的平方等于a,即x2=a,那么这个正数x叫做a的算术平方根.记为.23. 4的平方根是 ±2 ;4的算术平方根是 2 .【考点】算术平方根;平方根.【分析】如果一个非负数x的平方等于a,那么x是a的算术平方根,由此即可求出结果.【解答】解:4的平方根是±2;4的算术平方根是2.故答案为:±2;2.【点评】此题主要考查了平方根和算术平方根的概念,算术平方根易与平方根的概念混淆而导致错误.24. 4的平方根是 ±2 .【考点】平方根.【专题】计算题.【分析】根据平方根的定义,求数a的平方根,也就是求一个数x,使得x2=a,则x就是a的平方根,由此即可解决问题.【解答】解:∵(±2)2=4,∴4的平方根是±2.故答案为:±2.【点评】本题考查了平方根的定义.注意一个正数有两个平方根,它们互为相反数;0的平方根是0;负数没有平方根.25.16的平方根是 ±4 .【考点】平方根.【专题】计算题.【分析】根据平方根的定义,求数a的平方根,也就是求一个数x,使得x2=a,则x就是a的平方根,由此即可解决问题.【解答】解:∵(±4)2=16,∴16的平方根是±4.故答案为:±4.【点评】本题考查了平方根的定义.注意一个正数有两个平方根,它们互为相反数;0的平方根是0;负数没有平方根.26.9的平方根是 ±3 .【考点】平方根.【专题】计算题.【分析】直接利用平方根的定义计算即可.【解答】解:∵±3的平方是9,∴9的平方根是±3.故答案为:±3.【点评】此题主要考查了平方根的定义,要注意:一个非负数的平方根有两个,互为相反数,正值为算术平方根.27.计算:25的平方根是 ±5 .【考点】平方根.【专题】计算题.【分析】根据平方根的定义,结合(±5)2=25即可得出答案.【解答】解:∵(±5)2=25∴25的平方根±5.故答案为:±5.【点评】本题考查了平方根的知识,属于基础题,解答本题的关键是掌握平方根的定义,注意一个正数的平方根有两个且互为相反数.28.求9的平方根的值为 ±3 .【考点】平方根.【分析】根据平方根的定义解答.【解答】解:∵(±3)2=9,∴9的平方根的值为±3.故答案为:±3.【点评】本题考查了平方根的定义,是基础题,熟记概念是解题的关键.29.9的算术平方根是 3 .【考点】算术平方根.【分析】9的平方根为±3,算术平方根为非负,从而得出结论.【解答】解:∵(±3)2=9,∴9的算术平方根是|±3|=3.故答案为:3.【点评】本题考查了数的算式平方根,解题的关键是牢记算术平方根为非负.30.的平方根是 ±2 .【考点】平方根;算术平方根.【分析】根据平方根的定义,求数a的平方根,也就是求一个数x,使得x2=a,则x就是a的平方根,由此即可解决问题.【解答】解:的平方根是±2.故答案为:±2【点评】本题考查了平方根的定义.注意一个正数有两个平方根,它们互为相反数;0的平方根是0;负数没有平方根.。