逻辑变量与基本运算(1)
逻辑代数的基本概念与基本运算
逻辑代数的基本概念与基本运算1. 引言逻辑代数是数学中的一个分支,它主要研究逻辑关系、逻辑运算和逻辑函数等内容。
逻辑代数作为数理逻辑的一个重要工具,不仅在数学、计算机科学等领域具有重要的应用,同时也在现实生活中扮演着重要的角色。
本文将介绍逻辑代数的基本概念与基本运算,帮助读者更好地理解逻辑代数的基本原理和运算规则。
2. 逻辑代数的基本概念逻辑代数是一种用于描述逻辑运算的代数体系,它主要包括逻辑变量、逻辑常量、逻辑运算和逻辑函数等基本概念。
2.1 逻辑变量逻辑变量是逻辑代数中的基本元素,通常用字母表示,表示逻辑命题的真假值。
在逻辑代数中,逻辑变量通常只能取两个值,即真和假,分别用1和0表示。
2.2 逻辑常量逻辑常量是逻辑代数中表示常量真假值的符号,通常用T表示真,用F 表示假。
逻辑常量在逻辑运算中扮演着重要的角色。
2.3 逻辑运算逻辑运算是逻辑代数中的基本运算,包括与、或、非、异或等运算。
逻辑运算主要用于描述不同命题之间的逻辑关系,帮助我们进行逻辑推理和逻辑计算。
2.4 逻辑函数逻辑函数是逻辑代数中的一种特殊函数,它描述了不同逻辑变量之间的逻辑关系。
逻辑函数在逻辑代数中具有重要的地位,它可以通过逻辑运算表达逻辑命题之间的关系,是描述逻辑代数系统的重要工具。
3. 逻辑代数的基本运算逻辑代数的基本运算包括与运算、或运算、非运算、异或运算等。
这些基本运算在逻辑代数中有着严格的规则和性质,对于理解逻辑代数的基本原理和进行逻辑推理具有重要的意义。
3.1 与运算与运算是逻辑代数中的基本运算之一,它描述了逻辑与的关系。
与运算的运算规则如下:- 真与真为真,真与假为假,假与假为假。
与运算通常用符号“∧”表示,A∧B表示命题A与命题B的逻辑与关系。
3.2 或运算或运算是逻辑代数中的基本运算之一,它描述了逻辑或的关系。
或运算的运算规则如下:- 真或真为真,真或假为真,假或假为假。
或运算通常用符号“∨”表示,A∨B表示命题A与命题B的逻辑或关系。
四种基本逻辑运算
四种基本逻辑运算一、与运算与运算是逻辑运算中的一种基本运算,也称为“与”操作。
与运算的结果只有在所有输入变量都为真(即为1)时才为真,否则为假(即为0)。
与运算的运算符通常用符号“∧”或“&”表示。
例如,对于两个输入变量A和B,A∧B表示A和B的与运算结果。
与运算在实际生活中的应用非常广泛。
例如,在某些情况下,我们需要判断多个条件是否同时满足,只有当所有条件都满足时,我们才能得出最终的结论。
这时,我们可以使用与运算来判断这些条件是否同时成立。
二、或运算或运算是逻辑运算中的另一种基本运算,也称为“或”操作。
或运算的结果只要有一个输入变量为真(即为1),就为真,否则为假(即为0)。
或运算的运算符通常用符号“∨”或“|”表示。
例如,对于两个输入变量A和B,A∨B表示A和B的或运算结果。
或运算在实际生活中也有广泛的应用。
例如,当我们需要判断多个条件中是否有一个满足时,只要有一个条件满足,我们就可以得出最终的结论。
这时,我们可以使用或运算来判断这些条件是否有满足的情况。
三、非运算非运算是逻辑运算中的另一种基本运算,也称为“非”操作。
非运算的结果是输入变量的反面,即如果输入变量为真(即为1),则非运算结果为假(即为0);如果输入变量为假(即为0),则非运算结果为真(即为1)。
非运算的运算符通常用符号“¬”或“!”表示。
例如,对于一个输入变量A,¬A表示A的非运算结果。
非运算在实际生活中也有一些应用。
例如,当我们需要判断一个条件是否不成立时,我们可以使用非运算来得出相反的结论。
四、异或运算异或运算是逻辑运算中的另一种基本运算,也称为“异或”操作。
异或运算的结果只有在输入变量不同时为真时才为真,否则为假。
异或运算的运算符通常用符号“⊕”或“xor”表示。
例如,对于两个输入变量A和B,A⊕B表示A和B的异或运算结果。
异或运算在实际生活中也有一些应用。
例如,在某些情况下,我们需要判断两个条件是否恰好有一个满足,即只有一个条件为真,而另一个条件为假。
逻辑代数中的三种基本运算
1 1 0 0
+ + B A+ B A + B A+ B A⋅ B ⋅ 1 1 1 0 1 1 0 1 0 0 1 0 1 1 0 0 0 0 1 0
相等
相等
五、若干常用公式
(1) AB+ AB = A( B + B) = A +
(2) A+ AB= A(1 + B) = A +
推广
A + A(
)= A
即 ⊙ A⊕ B = A⊙B ⊕ 同理可证 A⊙B = A⊕ B ⊙ ⊕
六、关于异或运算的一些公式 异或 A ⊕ B = A B + AB 同或 A⊙B = AB + A B ⊙ (1) 交换律 (2) 结合律 (3) 分配律 ⊙ A⊕ B = A⊙B ⊕ A⊙B = A⊕ B ⊙ ⊕
(5) 因果互换律
= AB + AC + ABC + ABC = AB+ A + C
推论
AB + A + BCD = AB + A C C
AB + AB = A B + AB
证明: 公式 (5) 证明:
左 = A B ⋅ AB = ( A + B ) ( A + B ) = A ⋅ A + A B + AB + B ⋅ B = A B + AB
曾用符号 A B Y
美国符号 A B A B Y
≥1
Y = A+ B A
B =1 Y = A⊕ B A B
Y
Y
⊕
Y
A B
Y
1.3
第1章 逻辑代数基础
①代入规则:任何一个含有变量 A 的等式,如果将所有出现 A 的位置都用
同一个逻辑函数代替,则等式仍然成立。这个规则称为代入规则。 例如,已知等式 AB A B ,用函数 Y=AC 代替等式中的 A,
根据代入规则,等式仍然成立,即有:
( AC) B AC B A B C
A
E
B Y
4
第1章 逻辑代数基础---三种基本运算
功能归纳:
真值表:
开关 A 开关 B 断开 断开 闭合 闭合 断开 闭合 断开 闭合
灯Y 灭 灭 灭 亮
A 0 0 1 1
B 0 1 0 1
Y 0 0 0 1
将开关接通记作1,断开记作0;灯亮记作1,灯灭记作0。可以作出如
上表格来描述与逻辑关系,这种把所有可能的条件组合及其对应结果一一列
的逻辑函数, 并记为:
F f ( A, B, C , )
3
第1章 逻辑代数基础---三种基本运算
②三种基本运算
a.与逻辑(与运算)
定义:仅当决定事件(Y)发生的所有条件(A,B,C,…)均满足 时,事件(Y)才能发生。表达式为:
Y=A· C· B· …=ABC…
描述:开关A,B串联控制灯泡Y
法进行描述。每种方法各具特点,可以相互转换。 ①真值表
将输入变量的各种可能取值和相应的函数值排列在一起而组成的表格。
真值表列写方法:每一个变量均有0、1两种取值,n个变量共有2n种不 同的取值,将这2n种不同的取值按顺序(一般按二进制递增规律)排列起
来,同时在相应位置上填入函数的值,便可得到逻辑函数的真值表。
原式左边
AB A C ( A A ) BC
逻辑变量与基本逻辑运算
开关A 断 断 合 合
开关B 灯F 断 灭 合 灭 断 灭 合 亮
或逻辑
只有决定某一事件的有一个或一个以上具 备,这一事件才能发生
或逻辑真值表
A 0 0 1 1 B 0 1 0 1 F 0 1 1 1
非逻辑
当决定某一事件的条件满足时,事件不发 生;反之事件发生,
非逻辑真值表 A F 0 1 1 0
异或运算
A 0 0 1 1
B 0 1 0 1
F 0 1 1 0
“”异或逻辑 运算符
Hale Waihona Puke 同或运算A 0 0 1 1
B 0 1 0 1
F 1 0 0 1
“⊙”同或逻辑 运算符
逻辑变量及基本逻辑运算
一、逻辑变量
取值:逻辑0、逻辑1。逻辑0和逻辑1不代 表数值大小,仅表示相互矛盾、相互对立 的两种逻辑状态
二、基本逻辑运算 与运算 或运算 非运算
与逻辑
只有决定某一事件的所有条件全部具备, 这一事件才能发生
与逻辑关系表
与逻辑真值表 A 0 0 1 1 B 0 1 0 1 F 0 0 0 1
逻辑运算的基本法则
逻辑运算的基本法则一、逻辑与运算逻辑与运算是一种复合运算,表示两个或多个逻辑变量同时为真时,结果才为真。
逻辑与运算的符号为“∧”,如果A和B两个逻辑变量为真,则A∧B为真;如果A和B中至少有一个为假,则A∧B 为假。
二、逻辑或运算逻辑或运算是一种复合运算,表示两个或多个逻辑变量中至少有一个为真时,结果就为真。
逻辑或运算的符号为“∨”,如果A、B中至少有一个为真,则A∨B为真;只有当A和B都为假时,A∨B才为假。
三、逻辑非运算逻辑非运算是一种一元运算,表示一个逻辑变量取反。
逻辑非运算的符号为“¬”,如果A为真,则¬A为假;如果A为假,则¬A为真。
四、逻辑等价运算逻辑等价运算表示两个逻辑变量相等或不相等的关系。
逻辑等价运算的符号为“↔”,如果A和B相等,则A↔B为真;如果A和B 不相等,则A↔B为假。
五、逻辑蕴含运算逻辑蕴含运算表示一个逻辑变量如果为真,则另一个逻辑变量也为真的关系。
逻辑蕴含运算的符号为“→”,如果A为真而B也为真,则A→B为真;否则,A→B为假。
六、逻辑析取三段论逻辑析取三段论是一种复合推理,表示如果两个前提中至少有一个为真,则结论一定为真的推理方式。
在形式化表示中,如果A和B 分别表示两个前提,C表示结论,则形式化表示为:(A∨B)→C。
七、逻辑合取三段论逻辑合取三段论是一种复合推理,表示如果两个前提都为真,则结论一定为真的推理方式。
在形式化表示中,如果A和B分别表示两个前提,C表示结论,则形式化表示为:A∧B→C。
八、逻辑重析取三段论逻辑重析取三段论是一种复合推理,表示一个前提析取另一前提的合取结果的推理方式。
在形式化表示中,如果A、B和C分别表示三个命题,D表示结论,则形式化表示为:(A→(B∧C))→D。
逻辑变量与基本运算 教案
课题:逻辑变量与基本运算授课教师:平利职教中心屈垚垚一、教学目标:1、知识与技能:(1)理解逻辑变量的概念,掌握三种逻辑基本运算;(2)通过逻辑运算的学习,使学生的逻辑思维能力得到锻炼和提高。
2、过程与方法:发现式教学。
通过创设情境,引出课题;观察动画,激发兴趣;再引导学生不断讨论、归纳、总结,在探索中不断提高。
3、情感态度与价值观:(1)学生通过观察电路的拟真动画演示,体会数学知识与专业课程以及现实世界的联系,提高对数学课程的重视;(2)学生动脑发现规律,总结知识,培养其主动参与、积极探究的主体意识。
二、重点与难点:1、重点:理解并掌握逻辑变量的含义,掌握逻辑变量的三种基本运算;2、难点:区分三种基本逻辑运算之间的区别与联系。
三、教学方法与教学手段:1、教学方法:借助多媒体教学,教师以引导为主,学生合作探索、积极思考的探究式教学方法,教学中主要采用观察发现法、与讲练结合法,注重启发式引导、反馈式评价,充分调动学生的学习积极性。
2、教学用具:黑板、教学课件、flash拟真动画、多媒体设备,以及提前按小组分发给学生的学案。
四、教学设计:创设情境、引出课题(3分钟)↓观察动画、总结规律(3分钟)↓师生合作、共探新知(20分钟)↓讨论探究、例题演练(7分钟)↓运用知识、强化练习(5分钟)↓课堂小结、布置作业(2分钟)本节课的总体设计思想是建构主义思想,强调数学知识的建构过程,让学生亲历基本逻辑运算的运算规则的发现之旅。
首先通过列举生活中的“只有两种对立状态的量”,创设情境,激发兴趣;然后观察两个开关并联控制灯泡工作的电路拟真动画,总结因果逻辑关系,为学习逻辑变量的概念做准备;再通过分别观察三个不同的电路拟真动画来总结学习逻辑变量及三种基本逻辑运算,突出本节课的重点;接着对比对比分析三个电路图和对应的逻辑运算,找到区别和联系,突破难点;最后通过分析例题、强化练习巩固所学知识;课堂小结、作业布置分享成长体会,达到教学目的。
逻辑运算法则
03
非门(NOT Gate)
• 非门是一种一元运算,表示为¬A
• 非门的功能是将输入的真变为假,将假变为真
逻辑门电路的设计与实现:晶体管与二极管电路
晶体管
• 晶体管是一种常用的半导体器件,可以用作开关和放大器
• 晶体管可以实现与门、或门和非门等逻辑门电路
二极管
• 二极管是一种半导体器件,具有单向导电性
• 逻辑门电路是数字电路的基础,广泛应用于电子设备中
逻辑运算在计算机科学中的应用
• 逻辑运算用于处理计算机中的逻辑操作
• 逻辑运算在计算机硬件和软件的设计中都起着重要作用
逻辑运算在编程语言中的应用
• 逻辑运算用于编写条件语句和循环语句
• 逻辑运算在算法和数据处理中有着广泛的应用
逻辑运算的历史发展:从布尔代数到现代逻辑电路
• 二极管可以实现或门和非门等逻辑门电路
逻辑电路的综合与优化:用逻辑代数表示电路设计
逻辑代数
电路综合
• 逻辑代数是一种用代数符号表示逻辑运算的方法
• 电路综合是一种将逻辑代数表达式转化为实际电路设计
• 逻辑代数可以用于分析和设计逻辑电路
的方法
• 电路综合可以用于优化逻辑电路的性能,提高电路的可
靠性
的便利
• 现代逻辑电路在计算机科学、通信技术等领域有着广泛的应用
02
逻辑运算的基本种类与性质
常见的逻辑运算:与、或、非、异或等
01
02
03
04
与运算(AND)
或运算(OR)
非运算(NOT)
异或运算(XOR)
• 与运算的逻辑表达式为:A
• 或运算的逻辑表达式为:A
• 非运算的逻辑表达式为:
逻辑变量与基本运算图文
3
卡诺图还可以用于检测逻辑错误和优化 逻辑电路设计。通过观察卡诺图,可以 快速发现输入与输出之间的不正确关系 ,从而及时纠正错误。
逻辑函数表达式与真值表的关系
逻辑函数表达式是描述输入与输出之间逻辑关系的数 学表达式。真值表则是一种表格形式,列出输入变量
逻辑变量与基本运算图文
目录
• 逻辑变量的概念与表示 • 基本逻辑运算 • 逻辑运算的复合与扩展 • 逻辑运算的应用 • 逻辑运算的图形表示
01
逻辑变量的概念与表示
逻辑变量的定义
逻辑变量是用于表示逻辑值的符号或 标记,通常用于逻辑运算和逻辑推理 中。
逻辑变量可以是任何符号,如字母、 数字或特定的符号,只要它们能够表 示逻辑值即可。
算法设计
算法设计是数字系统设计的核心,需要根据系统 需求设计合适的算法,以满足性能、精度和稳定 性等方面的要求。
硬件平台选择
数字系统设计需要考虑硬件平台的选择,包括处 理器、存储器、输入输出接口等硬件资源的配置 和优化。
05
逻辑运算的图形表示
卡诺图(Karnaugh Map)
1
卡诺图是一种用于表示逻辑函数输入与 输出之间关系的图形表示方法。它通过 将输入变量和输出变量的所有可能组合 表示为小方格,并使用特定的符号来表 示逻辑函数的值。
(land) 表示逻辑与运算。
3
在逻辑或-与复合运算中,首先进行括号内的逻辑与运算
(B land C),然后再与 (A) 进行逻辑或运算。
4
逻辑或-与复合运算的运算优先级高于单纯的逻辑或和
逻辑与运算。
多重逻辑运算的扩展
布尔代数的基本规则
布尔代数的基本规则布尔代数是一种逻辑计算的方法,它主要运用于电子电路和计算机领域。
在布尔代数中,只存在两种逻辑值,即真和假。
这两种逻辑值可以通过一系列运算得出相应的结果。
在布尔代数中,存在一些基本的规则和定律,这些规则和定律对于求解逻辑运算非常关键。
以下是布尔代数的基本规则:1. 与运算规则与运算也称为“乘法”,表示为“∩”。
对于任意两个逻辑变量A 和 B,有以下运算规则:真∩真=真真∩假=假假∩真=假假∩假=假2. 或运算规则或运算也称为“加法”,表示为“∪”。
对于任意两个逻辑变量A 和 B,有以下运算规则:真∪真=真真∪假=真假∪真=真假∪假=假3. 非运算规则非运算也称为“取反”,表示为“~”。
对于任何逻辑变量 A,有以下运算规则:~真=假~假=真4. 吸收律吸收律是指在与运算或或运算中,对于一个变量进行两次操作等于一次操作的规律。
吸收律有以下两个定律:A∩(A∪B)=AA∪(A∩B)=A5. 分配律分配律指在与运算或或运算中,一个变量与一组变量的运算结果与一个变量与这组变量中每个变量的运算结果的和之间等效的规律。
分配律有以下两个定律:A∩(B∪C)=(A∩B)∪(A∩C)A∪(B∩C)=(A∪B)∩(A∪C)6. 结合律结合律是指在同种运算规则下,先运算任意两个变量得到的结果与其中一个变量与剩余变量运算之后得到的结果是相等的规律。
结合律有以下两个定律:(A∩B)∩C=A∩(B∩C)(A∪B)∪C=A∪(B∪C)7. 常数运算布尔代数中出现的“1”表示真,“0”表示假。
对于任何逻辑变量 A,有以下常数规则:A∪1=1A∩0=0通过以上基本规则,我们可以对逻辑运算有着深入的认识并用于实际应用中。
当我们设计电子电路或者编写计算机程序时,十分需要严格遵守这些规则,以便确保逻辑的正确性。
同时,这些规则在逻辑思维和分析问题的能力的提升方面也具有重要的指导意义。
逻辑代数中的基本公式、常用公式与基本定理
(1)
(2) A+AB=A
(3)
(4)
1.代入定理:在含有变量A的等式中,将A用一个逻辑表达式代替,等式仍然成立。
2.对偶定理:将某逻辑表达式Y中的与和或对换,0和1对换(所有的“+”运算符都换成“·”,“·”换成“+”,0换成1,1换成0)且保持原来的运算优先顺序,那么就得到一定对偶式 。如果两个逻辑表达式相等,那么它们各自的对偶式也就必然相等。例:
若A·(B+C)=A·B+A·C
则A+BC=(A+B)(A+C
求对偶式时,要保证优先次序不变,否则就会出错。如A+AB=A,求对偶式时如不加括号,得到AA+B=A,从而得到错误的结论:A+B=A
3.反演定理:将某逻辑表达式Y中的与和或对换,0和1对换,原变量和反变量对换,这样得到的表达式就是 。
注意:对偶规则和反演规则的区别:对偶规则不需要将逻辑变量取反,而反演规则重要将逻辑变量取反。
逻辑代数中的基本公式、常用公式与基本定理
基本公式
常用公式
基本定理
(1)基本运算
A·0=0
A·1=A A·A=A
A+0=A A+A=A
A+1=1
(2)交换律
A·B=B·A
A+B=B+A
(3)结合律
A(B·C)=(A·B)·C
A+(B+C)=(A+B)+C
(4)分配律
A·(B+C)=A·B+A·C
(A+B)·(A+C)+A+BC
狄摩根定律在我们日常生活中也有应用,如以下两句话的含意一致的:
法布尔简介
法布尔简介法布尔(Boolean)是一种逻辑运算符,它是由英国数学家乔治·布尔(George Boole)在19世纪提出的,用来表示逻辑真值的一种数学符号系统。
法布尔的逻辑运算符主要包括与(AND)、或(OR)和非(NOT)三种基本运算。
与运算是指当且仅当两个逻辑变量都为真时,结果才为真。
在法布尔逻辑中,与运算使用符号“∧”表示,也可以用“&&”表示。
例如,如果有两个逻辑变量A和B,当A为真且B为真时,A∧B的结果才为真。
与运算的真值表如下:A B A∧B真真真真假假假真假假假假或运算是指当且仅当两个逻辑变量中有一个为真时,结果才为真。
在法布尔逻辑中,或运算使用符号“∨”表示,也可以用“||”表示。
例如,如果有两个逻辑变量A和B,当A为真或B为真时,A∨B 的结果才为真。
或运算的真值表如下:A B A∨B真真真真假真假真真假假假非运算是指将一个逻辑变量的真值取反。
在法布尔逻辑中,非运算使用符号“¬”表示,也可以用“!”表示。
例如,如果有一个逻辑变量A,当A为真时,¬A的结果为假;当A为假时,¬A的结果为真。
法布尔逻辑不仅仅在数学领域有应用,它在计算机科学中也扮演着重要的角色。
计算机中的逻辑运算通常使用法布尔逻辑来进行判断和控制。
例如,在编程中,我们可以使用if语句来根据条件的真假执行不同的代码块。
条件通常是通过逻辑运算符来组合多个表达式得到的。
除了与、或和非运算,法布尔逻辑还有其他一些衍生的运算符,如异或(XOR)运算和蕴含(IMPLY)运算。
异或运算是指当且仅当两个逻辑变量不相同时,结果为真。
蕴含运算是指当且仅当前提为真且结论为假时,结果为假。
法布尔逻辑的应用不仅限于计算机领域,还广泛应用于数学、哲学和工程等领域。
在数学中,法布尔逻辑可以用来证明和推理定理和命题。
在哲学中,法布尔逻辑可以用来分析推理和论证的合理性。
在工程中,法布尔逻辑可以用来设计和控制电路和系统。
1.1逻辑代数的基本运算
1.1逻辑代数的基本运算一、 基本概念 1.数字信号的特点数字信号在时间上和数值上均是离散的。
数字信号在电路中常表现为突变的电压或电流。
图1.1 典型的数字信号2、正逻辑与负逻辑数字信号是一种二值信号,用两个电平(高电平和低电平)分别来表示两个逻辑值(逻辑1和逻辑0) 有两种逻辑体制:正逻辑体制规定:高电平为逻辑1,低电平为逻辑0。
负逻辑体制规定:低电平为逻辑1,高电平为逻辑0。
如果采用正逻辑,图1.1所示的数字电压信号就成为下图所示逻辑信号。
3、在数字电路中,输入信号是“条件”,输出信号是“结果”,因此输入、输出之间存在一定的因果关系,称其为逻辑关系。
它可以用逻辑表达式、图形和真值表来描述。
二、基本逻辑运算1.与运算——只有当决定一件事情的条件全部具备之后,这件事情才会发生。
我们把这种因果关系称为与逻辑。
与逻辑举例:图1.2(a)所示, A、B是两个串联开关,L 是灯,用开关控制灯逻辑0逻辑1逻辑0逻辑1逻辑0V t (V)(ms)51020304050亮和灭的关系如图2(b)所示。
设1表示开关闭合或灯亮;0表示开关不闭合或灯不亮,则得真值表图2(c)所示V(c)图1.2与逻辑运算(a)电路图(b)真值表(c)逻辑真值表(d)逻辑符若用逻辑表达式来描述,则可写为与运算的规则为: “输入有0,输出为0;输入全1,输出为1”。
数字电路中能实现与运算的电路称为与门电路,其逻辑符号如图(d)所示。
与运算可以推广到多变量:⋅⋅⋅=C B A L ……2.或运算——当决定一件事情的几个条件中,只要有一个或一个以上条件具备,这件事情就发生。
我们把这种因果关系称为或逻辑。
或逻辑举例:如图1.3(a)所示,或运算的真值表如图1.3(b )所示,逻辑真值表如图1.3(c )所示。
若用逻辑表达式来描述,则可写为L =A+B或运算的规则为:“输入有1,输出为1;输入全0,输出为0”。
BA L ⋅=(c)图1.3或逻辑运算(a) 电路图(b)真值表(c)逻辑真值表(d)逻辑符号在数字电路中能实现或运算的电路称为或门电路,其逻辑符号如图(d)所示。
03逻辑变量与基本运算
二、讲授新课
7、常用复合逻辑运算
异或运算 在逻辑问题中,A、B 状态不同时,结果发生;A、 B 状态相同时,结果就不发生。则这种因果关系称为 “异或”逻辑。在逻辑代数中,“异或”逻辑用“异 或”运算描述。 “异或”运算的逻辑关系可表示为 F= A B A B 读作“F 等于 A 非与 B 或 A 与 B 非”。
三、例题与练习
例3 用真值表验证下列等式:
(1) A B A B; ( 2) A B AB ( A B )( A B ).
分析 真值表的行数取决于逻辑变量的个数,题目中有两 个逻辑变量,真值表有四行.
解 (1)列出真值表 A
0 0 1 1
B
0 1 0 1
AB
AB
A B
A B AB
二、讲授新课
3、逻辑运算
普通代数是普通的数学代数, 满足数学代数中的 加减乘除。而逻辑代数的逻辑变量、逻辑函数的取值 只有“0”和“1”(逻辑零、逻辑壹) ,因此在逻辑 代数中,有与、或、非三种基本逻辑运算。表示逻辑 运算的方法有多种,如语句描述、逻辑代数式、真值 表、卡诺图等。
二、讲授新课
4、“或”运算
AB BC CA ( A B )( B C )(C A ).
四、课堂小结
1、逻辑变量和逻辑关系的基本概念 2、与、或、非及与或非复合逻辑运 算的概念与运算
五、作业
P.15~16 练习与习题
一、引入新课
规定开关“合上”为“1”,“断开”为 “0”;“灯亮”为“1”,“灯灭”为“0”, 则上页表格可以写成下表.
A 0 B 0 S 0
0
1 1
1
0 1
1
1 1
第11章 逻辑代数的三种基本运算
开关B 断开 闭合 断开 闭合
灯Y 灭 亮 亮 亮
A、B有1, Y就为1。
6
逻辑表达式: Y=A+B = + 符号“+”读作“或”(或读作“逻辑加”)。 实现或逻辑的电路称作或门,或逻辑和或门 的逻辑符号如图1-2(b)所示,符号“≥1”表示或 逻辑运算。
图1-2(b) 或逻辑的逻辑符号
2011-6-15 7
11
(4)特殊的定理
De · morgen 定理
表1-16 反演律(摩根定理)真值表 反演律(摩根定理)
2011-6-15
12
表1-15 逻辑代数的基本公式
2011-6-15
13
11.4.2 常用公式
A:公因子
B:互补
A是AB的因子 AB的因子
2011-6-15 14
A的反函数 是因子 添加项
2011-6-15
26
1 函数表达式的常用形式
• 五种常用表达式 F(A、 F(A、B、C)= AB + AC
= (A + C)(A + B)
“与―或”式 与 “或―与”式 或 “与非―与非”式 与非―与非” 与非 基本形式
= AB • AC
或非― 或非 或非” = A + C + A + B “或非―或非”式 “与―或― 与 = A • 利用还原律 利用反演律 非”式 C+A•B • 表达式形式转换
Y = A+ B +C + D + E Y = A ⋅ (B + C + D + E) Y = A⋅ B ⋅C ⋅ D ⋅ E
运用反演规则时,要注意运算的优先顺序(先 括号、再相与,最后或) ,必要时可加或减扩号。
变量的逻辑关系
变量的逻辑关系在数学中,变量是一个非常重要的概念。
它代表着数学问题中的未知数,通过变量的运算和关系,我们可以解决各种问题,探索数学的奥秘。
本文将以举例、分析和说明的方式,介绍变量的逻辑关系,帮助中学生和他们的父母更好地理解和应用这一概念。
一、变量的定义和基本运算变量是数学中用字母或符号表示的未知数,它可以代表任何数值。
比如,我们可以用字母x表示一个变量,它可以是任意实数。
变量的基本运算包括加减乘除,以及指数、对数等高级运算。
通过这些运算,我们可以对变量进行各种操作,从而揭示出它们之间的逻辑关系。
举例来说,假设有一个变量x,我们可以进行如下运算:1. 加法:x + 5,表示将x加上5;2. 减法:x - 3,表示将x减去3;3. 乘法:3x,表示将x乘以3;4. 除法:x/2,表示将x除以2;5. 指数:x^2,表示将x自乘2次;6. 对数:log(x),表示以10为底的x的对数。
通过这些基本运算,我们可以对变量进行各种组合和变化,从而得到不同的结果。
例如,如果x = 2,那么x + 5 = 7,x - 3 = -1,3x = 6,x/2 = 1,x^2 = 4,log(x) = 0.301。
二、变量的逻辑关系变量之间的逻辑关系是数学中最基本的概念之一。
它描述了变量之间的相互影响和变化规律。
在实际问题中,通过分析变量之间的逻辑关系,我们可以解决各种问题,做出合理的推断和预测。
1. 线性关系线性关系是最简单的一种逻辑关系。
它表示变量之间的等比例关系,可以用一条直线来表示。
例如,如果y = 2x + 3,那么y和x之间存在着线性关系,斜率为2,截距为3。
通过这个关系,我们可以根据已知的x值计算出对应的y值,或者根据已知的y值反推出对应的x值。
2. 指数关系指数关系是一种非常常见的逻辑关系。
它表示变量之间的幂函数关系,可以用指数曲线来表示。
例如,如果y = 2^x,那么y和x之间存在着指数关系,底数为2。
3逻辑门电路
使用
A
≥1
L
A
B
B
L
二、与运算—— 用开关串联电路实现
开关A、B控制灯泡L,只有当A和B同时(闭2)合真时,值灯表泡:才能点亮
(1)定义A:某事B 件有若干个条件,只有当所有条件 全部满足时,这件事才发A 生。B L=A·B
E
L
0
0
0
0
1
0
1
0
0
(3)逻辑表达(a) 式
1
1
1
L= A*B
A
&
A
(4)逻辑符号 B
两输入变量 或非逻辑真值表
A
BL
0
0
1
0
1
0
1
0
0
1
1
0
或非逻辑符号
A
≥1
L
B
A L
B
或非逻辑表达式: P = A+B
或非门芯片 74LS27
3) 同或运算 若两个输入变量的值相同,输出为1,否则为0。
同或逻辑真值表
同或逻辑逻辑符号
AB
P
0
0
1
0
1
0
1
0
0
1
1
1
A
=
L B
A
B
L
同或逻辑表达式:
L A · B A B AB
A
A
≥1
(4)逻辑符号:
B
L=A+B
L
B
或门芯片 74LS32
四、非运算
(1)定义:某事件的产生取决于条件的否定, 这种关系称为非逻辑。
下图表示一个简单的非逻辑电路,当继电器通 电,灯泡熄灭;继电器断电,灯泡点亮。
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
学生了解逻辑关系、逻辑变量、逻辑常量、逻辑运算等基本概念。
0和1之间没有数的大小关系。
阅读课本了解什么是或运算
掌握逻辑或的运算规则
观看教师解题并学习思路
独立完成后回答
认真回顾记忆
课后认真完成
【板书设计】
第6课时逻辑变量与基本运算(1)
【新课讲解】
任务一:探究新知
观察如图所示的两个开关相并联的电路。
(1)完成开关A、B与灯S的状态表
开关A
开关B
电灯S
断开
断开
灭
断开
合上
亮
合上
断开
亮
合上
合上
亮
(2)如果规定“合上”为1,“断开”为0,灯“亮”为1,灯“灭”为0,那么请将上表改写为下表。
A
B
S
0
0
0
0
1
1
1
0
1
1
1
1
从改写可以看到,电灯S是否亮,取决于开关A、B的状态,它们之间具有因果逻辑关系.逻辑代数研究的就是这种逻辑关系.
逻辑代数中,有逻辑变量,有逻辑常量,也有运算的概念。或运算,与运算,非运算统称为逻辑运算。
任务二:形成新知
1.或运算
一个事件的发生依懒于两个条件,当这两个条件中至少一个成立时,这个事件发生,我们称这种逻辑关系为“或”逻辑关系。
在开关相并联的电路中,开关A与开关B至少有一个“合上”时,电灯S就“亮”.我们将这种逻辑关系叫做变量A与变量B的逻辑加(逻辑或),并把S叫做A、B的逻辑和,记作A+B=S.
(1)1+0(2)0+1
(3)0+1本课时主要学习了逻辑关系、逻辑变量、逻辑常量、逻辑运算等基本概念,重点要掌握或运算的概念和运算规则。
【作业布置】
课后习题T1
了解逻辑变量的背景
如开关的“断开”与“合上”,灯的“熄”与“亮”
借助0和1
观察两个开关相并联的电路
完成开关A、B与灯S的状态表
教学活动内容及时间
学生活动内容及时间
【组织教学】
清点人数
【导入新课】
在日常生活中,很多事物的变化只表现为两种状态,如开关的“断开”与“合上”,灯的“熄”与“亮”。我们可以用0和1两个符号分别表示这些不同的状态。习惯上,我们通常用0表示“错”“假”“关”“断开”“熄”等,用1表示“对”“真”“开”“合上”“亮”等。借助0和1,就可以建立两个开关并联和串联电路的数学模型。
其运算规则如表所示.
A
B
S =A+ B
0
0
0+0=0
0
1
0+1=1
1
0
1+0=1
1
1
1+1=1
总结:如果将A和B看成输入,将A+B看成输出,或运算的规则可总结为“有1出1,全0出0”
【例题分析】
例1:写出下列各式的运算结果
(1)1+1(2)1+1+0
(3)0+0(4)0+1+0
【练习巩固】
写出下列各式的运算结果
开关A、B与电灯S的状态都是逻辑变量,用大写字母A,B,C,…表示.
逻辑变量只能取值0和1.需要说明的是,这里的值“0”和“1”,不是数学中通常表示数学概念的0和1,而是表示两种对立的逻辑状态,它们之间没有数的大小关系。0和1称为逻辑常量.在具体问题中,可以一种状态为“0”,与它相反的状态为“1”.
课题
第6课时逻辑变量与基本运算(1)
课型
新授
学时
1
教学目标
1、通过具体的问题情境,了解逻辑常量、逻辑变量及其取值的问题。
2、培养学生的逻辑思维能力
3、理解或运算及相应的运算规则
教学重点
或运算及相应的运算规则
教学难点
逻辑常量、逻辑变量
教学方法
讲探练结合
学习方法
探究、讲授、练习
教学设备
触摸式一体机
教学过程
逻辑加(逻辑或):A+B=S.
或运算的规则:“有1出1,全0出0”
教学反思: