二次函数的左右平移

合集下载

二次函数的图象的平移问题

二次函数的图象的平移问题
二次函数的图象的平移问题
通过这个演示文稿,我们将深入探讨二次函数图象的平移问题,了解定义、 公式、图形表示、实际应用以及平移的影响等重要概念。
什么是二次函数图象的平移?
平移是指在坐标平面上沿水平或垂直方向移动二次函数的图象,而保持其形 状和曲线特征不变。
平移的定义和公式
平移可以通过更改二次函数的方程中的常数项来实现。对于二次函数f(x) = ax^2 + bx + c,平移后的函数为g(x) = a(x - h)^2 + k,其中(h, k) 是平移的目 标点。
平移的实际应用
平移是数学中的重要概念,在现实世界中有许多实际应用,如物体运动的轨迹描更好地理解平移对二次函数图象的影响,并学习如何在实际问题中应用 这一概念。
平移的图形表达
通过改变二次函数的方程中的平移量,我们可以在坐标平面上绘制出平移后的二次函数图象。这将使我 们更好地理解函数图象的变化。
如何平移二次函数象?
将二次函数的图象沿水平或垂直方向平移,可以通过调整方程中的水平平移量和垂直平移量来实现。
平移前后函数的关系
平移后的函数与原始函数之间存在一定的变化关系,通过比较两者的方程和图象,我们可以更好地理解 这种关系。

二次函数的平移与伸缩变换

二次函数的平移与伸缩变换

二次函数的平移与伸缩变换二次函数是高中数学中的一个重要内容,通过平移与伸缩变换,可以对二次函数的图像进行调整和改变。

本文将重点讨论二次函数的平移与伸缩变换,并通过具体的例子来说明。

平移变换是指将函数图像沿着坐标轴的方向进行移动,而不改变其形状。

对于二次函数来说,平移变换可以分为水平方向和垂直方向两种。

水平方向的平移变换称为横向平移,垂直方向的平移变换称为纵向平移。

横向平移变换的一般形式为:f(x) = a(x - h)^2 + k,其中h为横向平移量,表示将函数图像沿x轴方向平移的距离。

当h>0时,图像向右平移h个单位;当h<0时,图像向左平移|h|个单位。

纵向平移变换的一般形式为:f(x) = a(x - h)^2 + k,其中k为纵向平移量,表示将函数图像沿y轴方向平移的距离。

当k>0时,图像向上平移k个单位;当k<0时,图像向下平移|k|个单位。

举个例子来说明平移变换的具体过程。

考虑函数f(x) = x^2,如果要将函数图像向右平移2个单位,则可以将函数改写为f(x) = (x - 2)^2。

这样,原本的二次函数图像将在坐标轴上整体右移2个单位。

接下来是伸缩变换。

伸缩变换是指改变函数图像的形状,使得图像变得更瘦长或更宽扁。

对于二次函数来说,伸缩变换可以分为水平方向和垂直方向两种。

水平方向的伸缩变换称为横向伸缩,垂直方向的伸缩变换称为纵向伸缩。

横向伸缩变换的一般形式为:f(x) = a(x - h)^2 + k,其中a为伸缩因子,表示将函数图像在x轴方向上压缩或拉长的程度。

当|a| > 1时,图像在x轴方向上被压缩;当|a| < 1时,图像在x轴方向上被拉长。

纵向伸缩变换的一般形式为:f(x) = a(x - h)^2 + k,其中a为伸缩因子,表示将函数图像在y轴方向上压缩或拉长的程度。

当|a| > 1时,图像在y轴方向上被压缩;当|a| < 1时,图像在y轴方向上被拉长。

二次函数的平移问题

二次函数的平移问题

初中阶段关于二次函数的平移变换问题初中阶段二次函数的平移大致分为两类,即为上下平移和左右平移。

(1) 上下平移若原函数为c bx ax y ++=2⎩⎨⎧-++=+++=m c bx ax y m m c bx ax y m 22为个单位,则平移后函数向下平移为个单位,则平移后函数向上平移 注:①其中m 均为正数,若m 为负数则将对应的加(减)号改为(减)加号即可。

②通常上述变换称为上加下减,或者上正下负。

(2) 左右平移若原函数为c bx ax y ++=2,左右平移一般第一步先将函数的一般式化为顶点式k h x a y +-=2)(然后再进行相应的变形⎩⎨⎧+--=++-=k n h x a y n k n h x a y n 22)()(数为个单位,则平移后的函若向右平移了数为个单位,则平移后的函若向左平移了 注:①其中n 均为正数,若n 为负数则将对应的加(减)号改为(减)加号即可。

②通常上述变换称为左加右减,或者左正右负。

例:(2010年兰州)13. 抛物线c bx x y ++=2图像向右平移2个单位再向下平移3个单位,所得图像的解析式为322--=x x y ,则b 、c 的值为 ( )A . b=2,c=2 B. b=2,c=0 C . b= -2,c=-1 D. b= -3,c=2 分析,已知函数是从原函数经过向右和向下平移得来,所以原本函数可以从已知函数向左再向上平移求出,或者向上再向左平移求出,平移没有先后顺序的要求。

解:将函数 322--=x x y 先向上平移3个单位为:3322+--=x x y ,即x x y 22-=;再向左平移两个单位,向将函数化为顶点式1)1(2--=x y 然后x x y x y 2,1)21(22+=-+-=整理得,即b=2,c=0,选择B 选项。

专题05二次函数中的平移、旋转、对称(五大题型)解析版

专题05二次函数中的平移、旋转、对称(五大题型)解析版

专题05二次函数中的平移、旋转、对称(五大题型)通用的解题思路:1.二次函数的平移变换平移方式(n>0)一般式y=ax2+bx+c顶点式y=a(x–h)2+k平移口诀向左平移n个单位y=a(x+n)2+b(x+n)+c y=a(x-h+n)2+k左加向右平移n个单位y=a(x-n)2+b(x-n)+c y=a(x-h-n)2+k右减向上平移n个单位y=ax2+bx+c+n y=a(x-h)2+k+n上加向下平移n个单位y=ax2+bx+c-n y=a(x-h)2+k-n下减2.平移与增加性变化如果平移后对称轴不发生变化,则不影响增减性,但会改变函数最大(小)值.只对二次函数上下平移,不改变增减性,改变最值.只对二次函数左右平移,改变增减性,不改变最值.3.二次函数的翻转问题的解题思路:①根据二次函数上特殊点的坐标值求得二次函数的表达式;②根据翻转后抛物线与原抛物线的图像关系,确定新抛物线的表达式;③在直角坐标系中画出原抛物线及翻转后抛物线的简易图,根据图像来判断题目中需要求解的量的各种可能性;④根据图像及相关函数表达式进行计算,求得题目中需要求解的值。

4.二次函数图象的翻折与旋转y=a(x-h)²+k绕原点旋转180°y=-a(x+h)²-k a、h、k 均变号沿x 轴翻折y=-a(x-h)²-k a、k 变号,h 不变沿y 轴翻折y=a(x+h)²+ka、h 不变,h 变号题型一:二次函数中的平移问题1.(2024•牡丹区校级一模)如图,在平面直角坐标系xOy 中,抛物线21(0)y ax bx a a=+-<与y 轴交于点A ,将点A 向右平移2个单位长度,得到点B ,点B 在抛物线上.(1)求点B 的坐标(用含a 的式子表示).(2)当B 的纵坐标为3时,求a 的值;(3)已知点11(,2P a-,(2,2)Q ,若抛物线与线段PQ 恰有一个公共点,请结合函数图象求出a 的取值范围.【分析】(1)令0x =,求出点A 坐标根据平移得出结论;(2)将B 的纵坐标为3代入求出即可;(3)由对称轴为直线1x =得出212y ax ax a =--,当2y =时,解得1|1|a a x a ++=,2|1|a a x a-+=,结合图象得出结论;【解答】解:(1)在21(0)y ax bx a a =+-<中,令0x =,则1y a =-,∴1(0,)A a-,将点A 向右平移2个单位长度,得到点B ,则1(2,)B a-.(2)B 的纵坐标为3,∴13a-=,∴13a =-.(3)由题意得:抛物线的对称轴为直线1x =,2b a ∴=-,∴212y ax ax a=--,当2y =时,2122ax ax a=--,解得1|1|a a x a ++=,2|1|a a x a-+=,当|1|2a a a -+≤时,结合函数图象可得12a ≤-,抛物线与PQ 恰有一个公共点,综上所述,a 的取值范围为12a ≤-.【点评】本题考查二次函数的图象及性质;熟练掌握二次函数图象上点的特征,数形结合讨论交点是解题的关键.2.(2024•平原县模拟)已知抛物线212:23C y ax ax a =++-.(1)写出抛物线1C 的对称轴:.(2)将抛物线1C 平移,使其顶点是坐标原点O ,得到抛物线2C ,且抛物线2C 经过点(2,2)A --和点B (点B 在点A 的左侧),若ABO ∆的面积为4,求点B 的坐标.(3)在(2)的条件下,直线1:2l y kx =-与抛物线2C 交于点M ,N ,分别过点M ,N 的两条直线2l ,3l 交于点P ,且2l ,3l 与y 轴不平行,当直线2l ,3l 与抛物线2C 均只有一个公共点时,请说明点P 在一条定直线上.【分析】(1)根据抛物线的对称轴公式直接可得出答案.(2)根据抛物线2C 的顶点坐标在原点上可设其解析式为2y ax =,然后将点A 的坐标代入求得2C 的解析式,于是可设B 的坐标为21(,)2t t -且(2)t <-,过点A 、B 分别作x 轴的垂线,利用4ABO OBN OAM ABNM S S S S ∆∆∆=--=梯形可求得t 的值,于是可求得点B 的坐标.(3)设1(M x ,1)y ,2(N x ,2)y ,联立抛物线与直线1l 的方程可得出12x x k +=-,124x x =-.再利用直线2l 、直线3l 分别与抛物线相切可求得直线2l 、直线3l 的解析式,再联立组成方程组可求得交点P 的纵坐标为一定值,于是可说明点P 在一条定直线上.【解答】解:(1)抛物线1C 的对称轴为:212ax a=-=-.故答案为:1x =-.故答案为:1x =-.(2) 抛物线1C 平移到顶点是坐标原点O ,得到抛物线2C ,∴可设抛物线2C 的解析式为:2y ax = 点(2,2)A --有抛物线2C 上,22(2)a ∴-=⋅-,解得:12a =-.∴抛物线2C 的解析式为:212y x =-.点B 在抛物线2C 上,且在点A 的左侧,∴设点B 的坐标为21(,)2t t -且(2)t <-,如图,过点A 、B 分别作x 轴的垂线,垂足为点M 、N .ABO OBN OAM ABNMS S S S ∆∆∆=-- 梯形2211111()()22(2)(2)22222t t t t =⨯-⨯-⨯⨯-⨯+⨯--32311122424t t t t =--++++212t t =+,又4ABO S ∆=,∴2142t t +=,解得:13t +=±,4(2t t ∴=-=不合题意,舍去),则2211(4)822t -=-⨯-=-,(4,8)B ∴--.(3)设1(M x ,1)y ,2(N x ,2)y ,联立方程组:2122y xy kx ⎧=-⎪⎨⎪=-⎩,整理得:2240x kx +-=,122x x k ∴+=-,124x x =-.设过点M 的直线解析式为y mx n =+,联立得方程组212y xy mx n⎧=-⎪⎨⎪=+⎩,整理得2220x mx n ++=.①过点M 的直线与抛物线只有一个公共点,∴△2480m n =-=,∴212n m =.∴由①式可得:221112202x mx m ++⨯=,解得:1m x =-.∴2112n x =.∴过M 点的直线2l 的解析式为21112y x x x =-+.用以上同样的方法可以求得:过N 点的直线3l 的解析式为22212y x x x =-+,联立上两式可得方程组2112221212y x x x y x x x ⎧=-+⎪⎪⎨⎪=-+⎪⎩,解得1212212x x x y x x +⎧=⎪⎪⎨⎪=-⎪⎩,12x x k +=- ,124x x =-.∴(,2)2k P -∴点P 在定直线2y =上.(如图)【点评】本题考查了抛物线的对称轴、求二次函数的解析式、解一元二次方程、一元二次方程的根的情况、求直线交点坐标等知识点,解题的关键是利用所画图形帮助探索解法思路.3.(2024•和平区一模)已知抛物线21(y ax bx a =+-,b 为常数.0)a ≠经过(2,3),(1,0)两个点.(Ⅰ)求抛物线的解析式;(Ⅱ)抛物线的顶点为;(Ⅲ)将抛物线向右平移1个单位长度,向下平移2个单位长度,就得到抛物线.【分析】(Ⅰ)利用待定系数法即可求解;(Ⅱ)根据抛物线的顶点式即可求得;(Ⅲ)利用平移的规律即可求得.【解答】解:(1) 抛物线21y ax bx =+-经过(2,3),(1,0)两个点,∴421310a b a b +-=⎧⎨+-=⎩,解得10a b =⎧⎨=⎩,∴抛物线的解析式为21y x =-;(Ⅱ) 抛物线21y x =-,∴抛物线的顶点为(0,1)-,故答案为:(0,1)-;(Ⅲ)将抛物线向右平移1个单位长度,向下平移2个单位长度,就得到抛物线2(1)12y x =---,即2(1)3y x =--.故答案为:2(1)3y x =--.【点评】本题考查了待定系数法求二次函数的解析式,二次函数的性质,二次函数图象与几何变换,熟练掌握待定系数法是解题的关键.4.(2024•礼县模拟)如图,在平面直角坐标系中,抛物线23y ax bx =++交y 轴于点A ,且过点(1,2)B -,(3,0)C .(1)求抛物线的函数解析式;(2)求ABC ∆的面积;(3)将抛物线向左平移(0)m m >个单位,当抛物线经过点B 时,求m的值.【分析】(1)用待定系数法求函数解析式即可;(2)先求出点A 的坐标,然后切成直线BC 的解析式,求出点D 的坐标,再根据ABC ABD ACD S S S ∆∆∆=+求出ABC ∆的面积;(3)由(1)解析式求出对称轴,再求出点B 关于对称轴的对称点B ',求出BB '的长度即可;【解答】解:(1)把(1,2)B -,(3,0)C 代入23y ax bx =++,则933032a b a b ++=⎧⎨-+=⎩,解得1212a b ⎧=-⎪⎪⎨⎪=⎪⎩,∴抛物线的函数解析式为211322y x x =-++;(2) 抛物线23y ax bx =++交y 轴于点A ,(0,3)A ∴,设直线BC 的解析式为y kx n =+,把(1,2)B -,(3,0)C 代入y kx n =+得230k n k n -+=⎧⎨+=⎩,解得1232k n ⎧=-⎪⎪⎨⎪=⎪⎩,∴直线BC 的解析式为1322y x =-+,设BC 交y 于点D,如图:则点D 的坐标为3(0,)2,33322AD ∴=-=,113()(31)3222ABC ABD ACD C B S S S AD x x ∆∆∆∴=+=-=⨯⨯+=,(3)211322y x x =-++ ,∴对称轴为直线122b x a =-=,令B 点关于对称轴的对称点为B ',(2,2)B ∴',3BB ∴'=,抛物线向左平移(0)m m >个单位经过点B ,3m ∴=.【点评】本题主要考查待定系数法求二次函数的解析式,二次函数图象与几何变换、二次函数的性质、三角形面积等知识,关键是掌握二次函数的性质和平移的性质.5.(2024•珠海校级一模)已知抛物线223y x x =+-.(1)求抛物线的顶点坐标;(2)将该抛物线向右平移(0)m m >个单位长度,平移后所得新抛物线经过坐标原点,求m 的值.【分析】(1)化成顶点是即可求解;(2)根据平移的规律得到2(1)4y x m =-+-+,把原点代入即可求得m 的值.【解答】解:(1)2223(1)4y x x x =+-=+- ,∴抛物线的顶点坐标为(1,4)--.(2)该抛物线向右平移(0)m m >个单位长度,得到的新抛物线对应的函数表达式为2(1)4y x m =+--, 新抛物线经过原点,20(01)4m ∴=+--,解得3m =或1m =-(舍去),3m ∴=,故m 的值为3.【点评】本题考查了二次函数的性质,二次函数图象与几何变换,二次函数图象上点的坐标特征,求得平移后的抛物线的解析式是解题的关键.6.(2024•关岭县一模)如图,二次函数212y x bx c =++与x 轴有两个交点,其中一个交点为(1,0)A -,且图象过点(1,2)B ,过A ,B 两点作直线AB .(1)求该二次函数的表达式,并用顶点式来表示;(2)将二次函数212y x bx c =++向左平移1个单位,得函数2y =;函数2y 与坐标轴的交点坐标为;(3)在(2)的条件下,将直线AB 向下平移(0)n n >个单位后与函数2y 的图象有唯一交点,求n 的值.【分析】(1)将点(1,0)A -,点(1,2)B 坐标代入抛物线解析式即可求出b 、c 值,再转化为顶点式即可;(2)根据抛物线平移规则“左加右减”得到2y 解析式,令20y =求出与x 轴的交点坐标即可;(3)利用待定系数法求出直线AB 解析式,再根据直线平移法则“上加下减”得到直线平移后解析式,联立消去y ,根据判别式为0解出n 值即可.【解答】解:(1)将点(1,0)A -,点(1,2)B 坐标代入抛物线解析式得:2022b c b c -+=⎧⎨++=⎩,解得11b c =⎧⎨=-⎩,∴抛物线解析式为2219212()48y x x x =+-=+-.∴抛物线解析式为:21192()48y x =+-.(2)将二次函数1y 向左平移1个单位,得函数22592()48y x =+-,令20y =,则2592(048x +-=,解得112x =-,22x =-,∴平移后的抛物线与x 轴的交点坐标为1(2-,0)(2-,0).故答案为:22592()48y x =+-,1(2-,0)(2-,0).(3)设直线AB 的解析式为y kx b =+,将(1,0)A -,点(1,2)B 代入得:02k b k b -+=⎧⎨+=⎩,解得11k b =⎧⎨=⎩,∴直线AB 解析式为:1y x =+.将直线AB 向下平移(0)n n >个单位后的解析式为1y x n =+-,与函数2y 联立消去y 得:2592(148x x n +-=+-,整理得:22410x x n +++=,直线AB 与抛物线有唯一交点,△1642(1))0n =-⨯+=,解得1n =.【点评】本题考查了二次函数的图象与几何变换,熟练掌握函数的平移法则是解答本题的关键.7.(2024•温州模拟)如图,直线122y x =-+分别交x 轴、y 轴于点A ,B ,抛物线2y x mx =-+经过点A .(1)求点B 的坐标和抛物线的函数表达式.(2)若抛物线向左平移n 个单位后经过点B ,求n 的值.【分析】(1)由题意可得点A 、B 的坐标,利用待定系数法求解二次函数的表达式即可解答;(2)根据二次函数图象平移规律“左加右减,上加下减”得到平移后的抛物线的表达式,再代入B 的坐标求解即可.【解答】解:(1)令0x =,则1222y x =-+=,(0,2)B ∴,令0y =,则1202y x =-+=,解得4x =,(4,0)A ∴,抛物线2y x mx =-+经过点A ,1640m ∴-+=,解得4m =,∴二次函数的表达式为24y x x =-+;(2)224(2)4y x x x =-+=--+ ,∴抛物线向左平移n 个单位后得到2(2)4y x n =--++,经过点(0,2)B ,22(2)4n ∴=--++,解得2n =±,故n 的值为2-2+【点评】本题考查待定系数法求二次函数解析式、一次函数图象上点的坐标特征、二次函数的图象与几何变换,二次函数图象上点的坐标特征等知识,熟练掌握待定系数法求二次函数解析式是解答的关键.8.(2024•巴东县模拟)已知二次函数2y ax bx c =++图象经过(2,3)A ,(3,6)B 、(1,6)C -三点.(1)求该二次函数解析式;(2)将该二次函数2y ax bx c =++图象平移使其经过点(5,0)D ,且对称轴为直线4x =,求平移后的二次函数的解析式.【分析】(1)运用待定系数法即可求得抛物线解析式;(2)利用平移的规律求得平移后的二次函数的解析式.【解答】解:(1)把(2,3)A ,(3,6)B 、(1,6)C -代入2y ax bx c =++,得:4239366a b c a b c a b c ++=⎧⎪++=⎨⎪-+=⎩,解得:123a b c =⎧⎪=-⎨⎪=⎩,∴该二次函数的解析式为223y x x =-+;(2)若将该二次函数2y ax bx c =++图象平移后经过点(5,0)D ,且对称轴为直线4x =,设平移后的二次函数的解析式为2(4)y x k =-+,将点(5,0)D 代入2(4)y x k =-+,得2(54)0k -+=,解得,1k =-.∴将二次函数的图象平移后的二次函数的解析式为22(4)1815y x x x =--=-+.【点评】本题考查了待定系数法求解析式,抛物线的性质,熟知待定系数法和平移的规律是解题的关键.9.(2024•郑州模拟)在平面直角坐标系中,抛物线2y x bx c =-++经过点(1,2)A ,(2,1)B .(1)求抛物线的解析式;(2)直线y x m =+经过点A ,判断点B 是否在直线y x m =+上,并说明理由;(3)平移抛物线2y x bx c =-++使其顶点仍在直线y x m =+上,若平移后抛物线与y 轴交点的纵坐标为n ,求n 的取值范围.【分析】(1)利用待定系数法即可求解;(2)利用待定系数法求得直线y x m =+的解析式,然后代入点B 判断即可;(3)设平移后的抛物线为2()1y x p q =--++,其顶点坐标为(,1)p q +,根据题意得出2221511()24n p q p p p =-++=-++=-++,得出n 的最大值.【解答】解:(1) 抛物线2y x bx c =-++经过点(1,2)A ,(2,1)B ,∴12421b c b c -++=⎧⎨-++=⎩,解得21b c =⎧⎨=⎩,∴抛物线的解析式为:221y x x =-++;(2)点B 不在直线y x m =+上,理由:直线y x m =+经过点A ,12m ∴+=,1m ∴=,1y x ∴=+,把2x =代入1y x =+得,3y =,∴点(2,1)B 不在直线y x m =+上;(3)∴平移抛物线221y x x =-++,使其顶点仍在直线1y x =+上,设平移后的抛物线的解析式为2()1y x p q =--++,其顶点坐标为(,1)p q +, 顶点仍在直线1y x =+上,11p q ∴+=+,p q ∴=,抛物线2()1y x p q =--++与y 轴的交点的纵坐标为21n p q =-++,2221511(24n p q p p p ∴=-++=-++=-++,∴当12p =-时,n 有最大值为54.54n ∴ .【点评】本题考查了待定系数法求一次函数的解析式和二次函数的解析式,二次函数的图象与几何变换,二次函数的性质,题目有一定难度.10.(2024•鞍山模拟)已知抛物线2246y x x =+-.(1)求抛物线的顶点坐标;(2)将该抛物线向右平移(0)m m >个单位长度,平移后所得新抛物线经过坐标原点,求m 的值.【分析】(1)将二次函数的解析式改写成顶点式即可.(2)将抛物线与x 轴的交点平移到原点即可解决问题.【解答】解:(1)由题知,2222462(21)82(1)8y x x x x x =+-=++-=+-,所以抛物线的顶点坐标为(1,8)--.(2)令0y =得,22460x x +-=,解得11x =,23x =-.又因为将该抛物线向右平移(0)m m >个单位长度,平移后所得新抛物线经过坐标原点,所以30m -+=,解得3m =.故m 的值为3.【点评】本题考查二次函数的图象与性质,熟知利用配方法求二次函数解析式的顶点式及二次函数的图象与性质是解题的关键.11.(2023•原平市模拟)(1)计算:3211()(5)|2|3--+---⨯-;(2)观察表格,完成相应任务:x3-2-1-012221A x x =+-21-2-1-①72(1)2(1)1B x x =-+--721-2-②2任务一:补全表格;任务二:观察表格不难发现,当x m =时代数式A 的值与当1x m =+时代数式B 的值相等,我们称这种现象为代数式B 参照代数式A 取值延后,相应的延后值为1:换个角度来看,将代数式A ,B 变形,得到(A =③2)2-,22B x =-将A 与B 看成二次函数,则将A 的图象④(描述平移方式),可得到B 的图象.若代数式P 参照代数式A 取值延后,延后值为3,则代数式P =⑤.【分析】(1)先算乘方,负整数指数幂,绝对值,再算乘法,最后算加减法即可求解;(2)①把1x =分别代入代数式A ,B 即可求得;②根据代数式B 参照代数式A 取值延后,相应的延后值为1,即可得出二次函数A 、B 平移的规律是向右平移1个单位,据此即可得出代数式P 参照代数式A 取值延后,延后值为3的P 的代数式.【解答】解:(1)原式19(5)2=-+--⨯19(10)=-+--1910=-++18=;(2)任务一:将1x =代入2212A x x =+-=;代入2(1)2(1)11B x x =-+--=-,故答案为:①2,②1-;任务二:将代数式A ,B 变形,得到2(1)2A x =+-,22B x =-将A 与B 看成二次函数,则将A 的图象向右平移1个单位(描述平移方式),可得到B 的图象.若代数式P 参照代数式A 取值延后,延后值为3,则代数式22(13)2(2)2P x x =+--=--.故答案为:①2;②1-;③1x +;④向右平移1个单位;⑤2(2)2P x =--.【点评】本题考查二次函数图象与几何变换,二次函数图象上点的坐标特征,理解题意,能够准确地列出解析式,并进行求解即可.12.(2024•南山区校级模拟)数形结合是解决数学问题的重要方法.小明同学学习二次函数后,对函数2(||1)y x =--进行了探究.在经历列表、描点、连线步骤后,得到如图的函数图象.请根据函数图象,回答下列问题:【观察探究】:方程2(||1)1x --=-的解为:;【问题解决】:若方程2(||1)x a --=有四个实数根,分别为1x 、2x 、3x 、4x .①a 的取值范围是;②计算1234x x x x +++=;【拓展延伸】:①将函数2(||1)y x =--的图象经过怎样的平移可得到函数21(|2|1)3y x =---+的图象?画出平移后的图象并写出平移过程;②观察平移后的图象,当123y时,直接写出自变量x 的取值范围.【分析】(1)根据图象即可求得;(2)根据“上加下减”的平移规律,画出函数21(|21)3y x =---+的图象,根据图象即可得到结论.【解答】解:(1)观察探究:①由图象可知,当函数值为1-时,直线1y =-与图象交点的横坐标就是方程2(||1)1x --=-的解.故答案为:2x =-或0x =或2x =.(2)问题解决:①若方程2(|1)x a --=有四个实数根,由图象可知a 的取值范围是10a -<<.故答案为:10a -<<.②由图象可知:四个根是两对互为相反数.所以12340x x x x +++=.故答案为:0.(3)拓展延伸:①将函数2(||1)y x =--的图象向右平移2个单位,向上平移3个单位可得到函数21(|2|1)3y x =---+的图象,②当123y 时,自变量x 的取值范围是04x .故答案为:04x.【点评】本题主要考查了二次函数图象与几何变换,二次函数图象和性质,数形结合是解题的关键.13.(2023•花山区一模)已知抛物线2y x ax b =++的顶点坐标为(1,2).(1)求a ,b 的值;(2)将抛物线2y x ax b =++向下平移m 个单位得到抛物线1C ,存在点(,1)c 在1C 上,求m 的取值范围;(3)抛物线22:(3)C y x k =-+经过点(1,2),直线(2)y n n =>与抛物线2y x ax b =++相交于A 、B (点A 在点B 的左侧),与2C 相交于点C 、D (点C 在点D 的左侧),求AD BC -的值.【分析】(1)根据对称轴公式以及当1x =时2y =,用待定系数法求函数解析式;(2)根据(1)可知抛物线2223(1)2y x x x =-+=-+,再由平移性质得出抛物线1C 解析式,然后把点(,1)c 代入抛物线1C ,再根据方程有解得出m 的取值范围;(3)先求出抛物线2C 解析式,再求出A ,B ,C ,D 坐标,然后求值即可.【解答】解:(1)由题意得,1212aa b ⎧-=⎪⎨⎪++=⎩,解得23a b =-⎧⎨=⎩;(2)由(1)知,抛物线2223(1)2y x x x =-+=-+,将其向下平移m 个单位得到抛物线1C ,∴抛物线1C 的解析式为2(1)2y x m =-+-,存在点(,1)c 在1C 上,2(1)21c m ∴-+-=,即2(1)1c m -=-有实数根,10m ∴- ,解得1m,m ∴的取值范围为1m;(3) 抛物线22:(3)C y x k =-+经过点(1,2),2(13)2k ∴-+=,解得2k =-,∴抛物线2C 的解析式为2(3)2y x =--,把(2)y n n =>代入到2(1)2y x =-+中,得2(1)2n x =-+,解得1x =1x =(1A ∴-,)n ,(1B +)n ,把(2)y n n =>代入到2(3)2y x =--中,得2(3)2n x =--,解得3x =或3x =+(3C ∴)n ,(3D +,)n ,(3(12AD ∴=+--=+,(1(32BC =+--=-+,(2(24AD BC ∴-=+--+=.【点评】本题考查二次函数的几何变换,二次函数的性质以及待定系数法求函数解析式,直线和抛物线交点,关键对平移性质的应用.14.(2023•环翠区一模)已知抛物线2y x bx c =++经过点(1,0)和点(0,3).(1)求此抛物线的解析式;(2)当自变量x 满足13x -时,求函数值y 的取值范围;(3)将此抛物线沿x 轴平移m 个单位长度后,当自变量x 满足15x时,y 的最小值为5,求m 的值.【分析】(1)利用待定系数法求解;(2)先求出1x =-及3x =时的函数值,结合函数的性质得到答案;(3)设此抛物线沿x 轴向右平移m 个单位后抛物线解析式为(2)2y x m l =---,利用二次函数的性质,当25m +>,此时5x =时,5y =,即(52)215m ---=,设此抛物线沿x 轴向左平移m 个单位后抛物线解析式为(2)21y x m =-+-,利用二次函数的性质得到2m l -<,此时1x =时,5y =,即(12)215m ---=,然后分别解关于m 的方程即可.【解答】解:(1) 抛物线2y x bx c =++经过点(1,0)和点(0,3),∴103b c c ++=⎧⎨=⎩,解得43b c =-⎧⎨=⎩,∴此抛物线的解析式为243y x x =-+;(2)当1x =-时,1438y =++=,当3x =时,91230y =-+=,2243(2)1y x x x =-+=-- ,∴函数图象的顶点坐标为(2,1)-,∴当13x -时,y 的取值范围是18y - ;(3)设此抛物线x 轴向右平移m 个单位后抛物线解析式为(2)y x m =--21-,当自变量x 满足15x时,y 的最小值为5,25m ∴+>,即3m >,此时5x =时,5y =,即(52)m --215-=,解得13m =+,23m =-(舍去);设此抛物线沿x 轴向左平移m 个单位后抛物线解析式为(2)y x m =-+21-,当自变量x 满足15x时,y 的最小值为5,21m ∴-<,即1m >,此时1x =时,5y =,即2(12)15m ---=,解得11m =-+,21m =--(舍去),综上所述,m 的值为3+1+【点评】本题考查了二次函数图象与几何变换:由于抛物线平移后的形状不变,故a 不变,所以求平移后的抛物线解析式通常可利用两种方法:一是求出原抛物线上任意两点平移后的坐标,利用待定系数法求出解析式;二是只考虑平移后的顶点坐标,即可求出解析式,也考查了二次函数的性质.15.(2023•南宁一模)如图1,抛物线21y x c =-+的图象经过(1,3).(1)求c 的值及抛物线1y 的顶点坐标;(2)当132x - 时,求1y 的最大值与最小值的和;(3)如图2,将抛物线1y 向右平移m 个单位(0)m >,再向上平移2m 个单位得到新的抛物线2y ,点N 为抛物线1y 与2y 的交点.设点N 到x 轴的距离为n ,求n 关于m 的函数关系式,并直接写出当n 随m 的增大而减小时,m 的取值范围.【分析】(1)把(1,3)代入抛物线解析式求得c 的值;根据抛物线解析式可以直接得到顶点坐标;(2)根据抛物线的性质知:当0x =时,1y 有最大值为4,当3x =-时,1y 有最小值为5-.然后求1y 的最大值与最小值的和;(3)根据平移的性质“左加右减,上加下减”即可得出抛物线2y 的函数解析式;然后根据抛物线的性质分两种情况进行解答:当06m < 时,0y ,2211(2)4344n m m m =--+=-++.当6m >时,0y <,2211(2)4344n y m m m =-=--=--.【解答】解:(1)抛物线21y x c =-+的图象经过(1,3),∴当0x =时,2113y c =-+=,解得4c =.∴214y x =-+.顶点坐标为(0,4);(2)10-< ,∴抛物线开口向下.当0x =时,1y 有最大值为4.当3x =-时,21(3)45y =--+=-.当12x =时,21115()424y =-+=.∴当3x =-时,1y 有最小值为5-.∴最大值与最小值的和为4(5)1+-=-;(3)由题意知,新抛物线2y 的顶点为(,42)m m +,∴22()42y x m m =--++.当12y y =时,22()424x m m x --++=-+,化简得:2220mx m m -+=.又0m > ,∴112x m =-.∴2211(1)4(2)424y m m =--+=--+.当21(2)404m --+=时,解得12m =-;26m =, 104-<,∴抛物线开口向下.当06m < 时,0y ,2211(2)4344n m m m =--+=-++.当6m >时,0y <,2211(2)4344n y m m m =-=--=--.∴综上所述2213,06413,64m m m n m m m ⎧-++<⎪⎪=⎨⎪-->⎪⎩ (或21|(2)4|)4n m =--+.当26m <<时,n 随m 的增大而减小.【点评】本题属于二次函数综合题,主要考查了二次函数图象上点的坐标特征,二次函数图象与几何变换,二次函数的图象与性质以及二次函数最值的求法.难度偏大.16.(2023•奉贤区一模)如图,在平面直角坐标系xOy 中,抛物线23y ax bx =++的对称轴为直线2x =,顶点为A ,与x 轴分别交于点B 和点C (点B 在点C 的左边),与y 轴交于点D ,其中点C 的坐标为(3,0).(1)求抛物线的表达式;(2)将抛物线向左或向右平移,将平移后抛物线的顶点记为E ,联结DE .①如果//DE AC ,求四边形ACDE 的面积;②如果点E 在直线DC 上,点Q 在平移后抛物线的对称轴上,当DQE CDQ ∠=∠时,求点Q的坐标.【分析】(1)利用待定系数法解答即可;(2)①依据题意画出图形,利用A ,C ,D 的坐标,等腰直角三角形的判定与性质和平行线的性质求得点E ,F 坐标,再利用四边形ACDE 的面积DFC EFCA S S ∆=+平行四边形解答即可;②依据题意画出图形,利用A ,C ,D 的坐标,等腰直角三角形的判定与性质,勾股定理求得点E 坐标和线段DE ,再利用等腰三角形的判定与性质求得线段FQ ,则结论可求.【解答】解:(1) 抛物线23y ax bx =++的对称轴为直线2x =,经过点(3,0)C ,∴229330b a a b ⎧-=⎪⎨⎪++=⎩,解得:14a b =⎧⎨=-⎩,∴抛物线的表达式为243y x x =-+;(2)①2243(2)1y x x x =-+=-- ,(2,1)A ∴-.设抛物线的对称轴交x 轴于点G ,1AG ∴=.令0x =,则3y =,(0,3)D ∴,3OD ∴=.令0y =,则2430x x -+=,解得:1x =或3x =,(1,0)B ∴.如果//DE AC ,需将抛物线向左平移,设DE 交x 轴于点F ,平移后的抛物线对称轴交x 轴于点H ,如图, 点C 的坐标为(3,0),3OC ∴=.由题意:45ACB ∠=︒,//DE AC ,45DFC ACB ∴∠=∠=︒.3OF OD ∴==,(3,0)F ∴-,由题意:1EH =,1FH EH ∴==,(4,1)E ∴--.//AE x 轴,//DE AC ,∴四边形EFCA 为平行四边形,2(4)6AE =--= ,616EFCA S ∴=⨯=平行四边形.1163922DFC S FC OD ∆=⨯⋅=⨯⨯= ,∴四边形ACDE 的面积6915DFC EFCA S S ∆=+=+=平行四边形;②如果点E 在直线DC 上,点Q 在平移后抛物线的对称轴上,DQE CDQ ∠=∠,如图,当点Q 在x 轴的下方时,设平移后的抛物线的对称轴交x 轴于F ,由题意:1EF =.3OD OC == ,45ODC OCD ∴∠=∠=︒,45FCE OCD ∴∠=∠=︒,1CF EF ∴==,(4,1)E ∴-.CD ==,CE ==DE CD CE ∴=+=DQE CDQ ∠=∠ ,EQ DE ∴==1QF EF EQ ∴=+=,(4,1)Q ∴-;当点Q 在x 轴的上方时,此时为点Q ',DQ E CDQ ∠'=∠' ,EQ DE ∴'==,1Q F EQ EF ∴'='-=,(4Q ∴',1)-.综上,当DQE CDQ ∠=∠时,点Q 的坐标为(4,1)--或(4,1)-.【点评】本题是二次函数综合题,考查了二次函数图象和性质,待定系数法,三角形面积,直角三角形性质,勾股定理,相似三角形判定和性质等,解题的关键是熟练运用分类讨论思想和方程的思想解决问题.17.(2023•下城区校级模拟)如图已知二次函数2(y x bx c b =++,c 为常数)的图象经过点(3,1)A -,点(0,4)C -,顶点为点M ,过点A 作//AB x 轴,交y 轴于点D ,交二次函数2y x bx c =++的图象于点B ,连接BC .(1)求该二次函数的表达式及点M 的坐标:(2)若将该二次函数图象向上平移(0)m m >个单位,使平移后得到的二次函数图象的顶点落在ABC ∆的内部(不包括ABC ∆的边界),求m 的取值范围;(3)若E 为y 轴上且位于点C 下方的一点,P 为直线AC 上一点,在第四象限的抛物线上是否存在一点Q ,使以C 、E 、P 、Q 为顶点的四边形是菱形?若存在,请求出点Q的横坐标:若不存在,请说明理由.【分析】(1)将点(3,1)A -,点(0,4)C -代入2y x bx c =++,即可求解;(2)求出平移后的抛物线的顶点(1,5)m -,再求出直线AC 的解析式4y x =-,当顶点在直线AC 上时,2m =,当M 点在AB 上时,4m =,则24m <<;(3)设(0,)E t ,(,4)P p p -,2(,24)Q q q q --,分三种情况讨论:当CE 为菱形对角线时,CP CQ =,22222342(2)p q t q q q q q q =-⎧⎪=--⎨⎪=+-⎩,Q 点横坐标为1;②当CP 为对角线时,CE CQ =,22222824(4)(2)p q p t q q t q q q =⎧⎪-=+--⎨⎪+=+-⎩,Q 点横坐标为2;③当CQ 为菱形对角线时,CE CP =,222284(4)2p q q q t p t q =⎧⎪--=+-⎨⎪+=⎩,Q点横坐标为3【解答】解:(1)将点(3,1)A -,点(0,4)C -代入2y x bx c =++,∴4931c b c =-⎧⎨++=-⎩,解得24b c =-⎧⎨=-⎩,224y x x ∴=--,2224(1)5y x x x =--=-- ,∴顶点(1,5)M -;(2)由题可得平移后的函数解析式为2(1)5y x m =--+,∴抛物线的顶点为(1,5)m -,设直线AC 的解析式为y kx b =+,∴431b k b =-⎧⎨+=-⎩,解得14k b =⎧⎨=-⎩,4y x ∴=-,当顶点在直线AC 上时,53m -=-,2m ∴=,//AB x 轴,(1,1)B ∴--,当M 点在AB 上时,51m -=-,4m ∴=,24m ∴<<;(3)存在一点Q ,使以C 、E 、P 、Q 为顶点的四边形是菱形,理由如下:设(0,)E t ,(,4)P p p -,2(,24)Q q q q --,点E 在点C 下方,4t ∴<-,Q点在第四象限,01q ∴<<,①当CE 为菱形对角线时,CP CQ =,∴22222342(2)p q t q q q q q q =-⎧⎪=--⎨⎪=+-⎩,解得334q p t =⎧⎪=-⎨⎪=-⎩(舍)或116p q t =-⎧⎪=⎨⎪=-⎩,Q ∴点横坐标为1;②当CP 为对角线时,CE CQ =,∴22222824(4)(2)p q p t q q t q q q =⎧⎪-=+--⎨⎪+=+-⎩,解得222q p t =⎧⎪=⎨⎪=-⎩,Q ∴点横坐标为2,不符合题意;③当CQ 为菱形对角线时,CE CP =,∴222284(4)2p q q q t p t q =⎧⎪--=+-⎨⎪+=⎩,解得332p q t ⎧=⎪⎪=⎨⎪=-+⎪⎩(舍)或332p q t ⎧=-⎪⎪=-⎨⎪=--⎪⎩,Q ∴点横坐标为3-综上所述:Q 点横坐标为1或3-【点评】本题考查二次函数的图象及性质,熟练掌握二次函数的图象及性质,函数图象平移的性质,菱形的性质,分类讨论是解题的关键.18.(2023•即墨区一模)如图,题目中的黑色部分是被墨水污染了无法辨认的文字,导致题目缺少一个条件而无法解答,经查询结果发现,该二次函数的解析式为243y x x =-+.已知二次函数2y ax bx c =++的图象经过点(0,3)A ,(1,0)B ,.求该二次函数的解析式.(1)请根据已有信息添加一个适当的条件:(2,1)C -(答案不唯一);(2)当函数值6y <时,自变量x 的取值范围:;(3)如图1,将函数243(0)y x x x =-+<的图象向右平移4个单位长度,与243(4)y x x x =-+ 的图象组成一个新的函数图象,记为L .若点(3,)P m 在L 上,求m 的值;(4)如图2,在(3)的条件下,点A 的坐标为(2,0),在L 上是否存在点Q ,使得9OAQ S ∆=.若存在,求出所有满足条件的点Q 的坐标;若不存在,请说明理由.【分析】(1)只需填一个在抛物线图象上的点的坐标即可;(2)求出6y =时,对应的x 值,再结合图象写出x 的取值范围即可;(3)求出抛物线向右平移4个单位后的解析式为2(6)3y x =--,根据题意可知3x =时,P 点在抛物线2(6)3y x =--的部分上,再求m 的值即可;(4)分两种情况讨论:当Q 点在抛物线2(6)3y x =--的部分上时,设2(,1233)Q t t t -+,由212(1233)92OAQ S t t ∆=⨯⨯-+=,求出Q 点坐标即可;当Q 点在抛物线243y x x =-+的部分上时,设2(,41)Q m m m -+,由212(41)92OAQ S m m ∆=⨯⨯-+=,求出Q 点坐标即可.【解答】解:(1)(2,1)C -,故答案为:(2,1)C -(答案不唯一);(2)243y x x =-+ ,∴当2436x x -+=时,解得2x =2x =-∴当6y <时,22x <<+,故答案为:22x -<<+;(3)2243(2)1y x x x =-+=-- ,∴抛物线向右平移4个单位后的解析式为2(6)1y x =--,当3x =时,点P 在抛物线2(6)1y x =--的部分上,8m ∴=;(4)存在点Q ,使得9OAQ S ∆=,理由如下:当Q 点在抛物线2(6)1y x =--的部分上时,设2(,1235)Q t t t -+,212(1235)92OAQ S t t ∆∴=⨯⨯-+=,解得6t =+6t =,4t ∴<,6t ∴=-(6Q ∴-,9);当Q 点在抛物线243y x x =-+的部分上时,设2(,43)Q m m m -+,212(43)92OAQ S m m ∆∴=⨯⨯-+=,解得2m =+或2m =-4m ,2m ∴=+,2Q ∴,9);综上所述:Q 点坐标为(6,9)或2+,9).【点评】本题考查二次函数的图象及性质,熟练掌握二次函数的图象及性质,函数图象平移的性质,数形结合解题是关键.19.(2023•武侯区模拟)定义:将二次函数l 的图象沿x 轴向右平移t ,再沿x 轴翻折,得到新函数l '的图象,则称函数l '是函数l 的“t 值衍生抛物线”.已知2:23l y x x =--.(1)当2t =-时,①求衍生抛物线l '的函数解析式;②如图1,函数l 与l '的图象交于(M ,)n ,(,N m -两点,连接MN .点P 为抛物线l '上一点,且位于线段MN 上方,过点P 作//PQ y 轴,交MN 于点Q ,交抛物线l 于点G ,求QNG S ∆与PNG S ∆存在的数量关系.(2)当2t =时,如图2,函数l 与x 轴交于A ,B 两点,与y 轴交于点C ,连接AC .函数l '与x 轴交于D ,E 两点,与y 轴交于点F .点K 在抛物线l '上,且EFK OCA ∠=∠.请直接写出点K 的横坐标.【分析】(1)①利用抛物线的性质和衍生抛物线的定义解答即可;②利用待定系数法求得直线MN 的解析式,设2(,23)P m m m --+,则得到(,2)Q m m -,2(,23)G m m m --,利用m 的代数式分别表示出PQ ,QG 的长,再利用同高的三角形的面积比等于底的比即可得出结论;(2)利用函数解析式求得点A ,B ,C ,D ,E ,F 的坐标,进而得出线段OA ,OC ,OD ,OE ,AC ,OF 的长,设直线FK 的解析式为5y kx =-,设直线FK 交x 轴于点M ,过点M 作MN EF ⊥于点N ,用k 的代数式表示出线段OM .FM ,ME 的长,利用EFK OCA ∠=∠,得到sin sin EFK OCA ∠=∠,列出关于k 的方程,解方程求得k 值,将直线FK 的解析式与衍生抛物线l '的函数解析式联立即可得出结论.。

二次函数中的平移与缩放

二次函数中的平移与缩放

二次函数中的平移与缩放在数学中,二次函数是指形如y = ax^2 + bx + c的函数,其中a、b、c为常数,且a ≠ 0。

二次函数是一种非常重要的函数类型,它在几何图形的描述以及物理、经济等领域中都有广泛的应用。

本文将探讨二次函数中的平移与缩放,以帮助读者更好地理解和应用二次函数。

一、平移平移是指二次函数在坐标平面上沿着x轴或y轴方向上的移动。

平移可以使得二次函数在图像上上下左右地移动,而函数的形状保持不变。

我们将分别讨论二次函数在x轴和y轴方向上的平移。

1. x轴方向上的平移对于二次函数y = ax^2 + bx + c,我们可以通过改变c的值来实现在x轴方向上的平移。

当c的值增大时,二次函数的图像向上平移;当c的值减小时,二次函数的图像向下平移。

例如,考虑二次函数y = x^2。

当我们将c的值从0增至1时,二次函数的图像将在坐标平面上向上平移一个单位。

同样地,当我们将c的值从0减至-1时,二次函数的图像将向下平移一个单位。

2. y轴方向上的平移除了在x轴方向上的平移,我们还可以通过改变b的值来实现在y轴方向上的平移。

当b的值增大时,二次函数的图像向左平移;当b的值减小时,二次函数的图像向右平移。

以二次函数y = x^2为例,当我们将b的值从0增至1时,二次函数的图像将在坐标平面上向左平移一个单位。

反之,当我们将b的值从0减至-1时,二次函数的图像将向右平移一个单位。

二、缩放缩放是指二次函数图像的整体尺寸的改变。

通过改变a的值,我们可以实现二次函数图像在x轴和y轴方向上的缩放。

1. x轴方向上的缩放对于二次函数y = ax^2 + bx + c,当a > 1时,二次函数图像在x轴方向上被压缩;当0 < a < 1时,二次函数图像在x轴方向上被拉伸。

例如,考虑二次函数y = 2x^2。

与y = x^2相比,这个函数图像在x轴方向上被压缩了。

这意味着二次函数图像的峰值更尖锐,曲线更陡峭。

二次函数的平移与拉伸效果

二次函数的平移与拉伸效果

二次函数的平移与拉伸效果二次函数是一种常见的数学函数,它的一般形式为y = ax^2 + bx + c。

其中,a、b、c分别代表函数的系数,x、y分别代表自变量和因变量。

本文将重点探讨二次函数中平移和拉伸效果的相关概念和特点。

一、平移效果平移是指将函数图像在平面坐标系中沿横轴或纵轴方向移动。

对于二次函数而言,平移分为水平平移和垂直平移两种情况。

1. 水平平移水平平移是指移动二次函数图像的横坐标。

设初始的二次函数为y= ax^2 + bx + c,若将其水平平移h个单位,则新的二次函数可表示为y = a(x - h)^2 + bx + c。

以二次函数y = x^2为例,若要将其水平平移2个单位,则新的函数为y = (x - 2)^2。

通过比较原函数和新函数的图像可以发现,新函数的整体形状与原函数相同,但整体向右平移了2个单位。

2. 垂直平移垂直平移是指移动二次函数图像的纵坐标。

设初始的二次函数为y= ax^2 + bx + c,若将其垂直平移k个单位,则新的二次函数可表示为y = ax^2 + bx + (c + k)。

以二次函数y = x^2为例,若要将其垂直平移3个单位,则新的函数为y = x^2 + 3。

通过比较原函数和新函数的图像可以发现,新函数的整体形状与原函数相同,但整体向上平移了3个单位。

二、拉伸效果拉伸是指通过改变二次函数中的系数,改变函数图像在横轴和纵轴方向的形状。

对于二次函数而言,拉伸分为水平拉伸和垂直拉伸两种情况。

1. 水平拉伸水平拉伸是指改变二次函数图像的横坐标的比例关系。

设初始的二次函数为y = ax^2 + bx + c,若将其水平拉伸为原来的n倍,则新的二次函数可表示为y = a((x - h)/n)^2 + b((x - h)/n) + c。

以二次函数y = x^2为例,若要将其水平拉伸为原来的2倍,则新的函数为y = (1/4)x^2。

通过比较原函数和新函数的图像可以发现,新函数的整体形状相较于原函数更为扁平。

二次函数的平移问题

二次函数的平移问题

二次函数的平移问题关于二次函数的平移变换问题二次函数的平移变换可以分为上下平移和左右平移两种情况。

1.上下平移对于原函数y=ax²+bx+c,若要进行上下平移,可以进行以下变换:向上平移m个单位,得到平移后的函数y=ax²+bx+c+m;向下平移m个单位,得到平移后的函数y=ax²+bx+c-m。

需要注意的是,m为正数,若m为负数,则对应的加(减)号需要改为减(加)号。

一般称这种变换为上加下减或上正下负。

2.左右平移对于原函数y=ax²+bx+c,若要进行左右平移,可以进行以下变换:先将函数化为顶点式y=a(x-h)²+k;向左平移n个单位,得到平移后的函数y=a(x-h+n)²+k;向右平移n个单位,得到平移后的函数y=a(x-h-n)²+k。

需要注意的是,n为正数,若n为负数,则对应的加(减)号需要改为减(加)号。

一般称这种变换为左加右减或左正右负。

例题:1.将抛物线y=-x²向左平移一个单位,再向上平移三个单位,平移后的表达式为()A。

y=-(x-1)²+3B。

y=-(x+1)²+3C。

y=-(x-1)²-3D。

y=-(x+1)²-32.抛物线y=x²+bx+c向右平移两个单位,再向下平移三个单位,得到的抛物线表达式为y=x²-2x-3,则b、c的值分别为()A。

b=2,c=2B。

b=2,c=0C。

b=-2,c=-1D。

b=-3,c=23.将函数y=x²+x的图像向右平移a(a>0)个单位,得到函数y=x²-3x+2的图像,则a的值为()A。

1B。

2C。

3D。

44.已知二次函数y=x²-bx+1(-1≤b≤1),当b从-1逐渐变化到1的过程中,它所对应的抛物线位置也随之变动。

下列关于抛物线移动方向的描述中,正确的是()A。

知识卡片-二次函数图象的平移规律

知识卡片-二次函数图象的平移规律

二次函数图象的平移规律能量储备● 任意抛物线y =a (x -h )2+k 都可以由抛物线y =ax 2经过适当的平移得到. ● 通过探究两抛物线的顶点坐标的变化来确定抛物线的平移.抛物线y =ax 2的顶点坐标是(0,0),抛物线y =a (x -h )2+k 的顶点坐标是(h ,k ).对照抛物线平移前后两顶点的位置变化,可确定抛物线y =ax 2是如何平移得到抛物线y =a (x -h )2+k 的.(1)抛物线y =ax 2上下平移k (k >0)个单位时,遵循“上加下减”的原则,得到抛物线y =ax 2+k (向上平移)或抛物线y =ax 2-k (向下平移).(2)抛物线y =ax 2左右平移h (h >0)个单位时,遵循“左加右减”的原则,得到抛物线y =a (x -h )2(向右平移)或抛物线y =a (x +h )2(向左平移).通关宝典★ 基础方法点方法点1:逆向思维,利用平移规律求函数表达式采用逆向思维,利用平移规律,反向平移得到初始位置的抛物线,进而求得函数表达式. 例:在平面直角坐标系中,如果将抛物线y =x 2+bx +c 向左平移2个单位长度,再向上平移3个单位长度得到抛物线y =x 2-2x +1.你能确定b ,c 的值吗?试试看.解:配方,得y =x 2-2x +1=(x -1)2,先把图象向下平移3个单位长度,得y =(x -1)2-3的图象,再把图象向右平移2个单位长度,得y =(x -1-2)2-3的图象,即y =(x -3)2-3的图象.∵ y =(x -3)2-3=x 2-6x +9-3=x 2-6x +6,即x 2+bx +c =x 2-6x +6,∴ b =-6,c =6. ★★易混易误点易混易误点1: 二次函数图象左右平移时易混淆例:如何平移二次函数y =-13(x +1)2-3的图象得到二次函数y =-13x 2+2的图象? 解:将二次函数y =-13(x +1)2-3的图象向右平移1个单位长度,再向上平移5个单位长度,就得到二次函数y =-13x 2+2的图象. 常见错因:本题易错认为是把二次函数的图象向左平移.蓄势待发考前攻略二次函数图象的平移规律,考查这类问题主要是求平移前后二次函数的解析式,题型多为选择题,难度要求不高.完胜关卡。

二次函数平移左加右减原理

二次函数平移左加右减原理

二次函数平移左加右减原理1 什么是二次函数?二次函数是一种函数,它的形式通常是 $y = ax^2 + bx + c$。

其中,$a,b,c$ 是三个常数,$x,y$ 是变量。

二次函数的图像通常是一个开口向上或向下的平滑曲线。

如果$a>0$,则曲线开口向上,如果 $a<0$,则开口向下。

$a$ 控制曲线的斜率和开口的大小,$b$ 控制曲线的水平位置,$c$ 控制曲线的竖直位置。

2 什么是平移?平移是指将一个点或一条曲线在平面上向左、向右、向上或向下移动一定的距离。

平移可以用矩阵的乘法来表示,也可以用坐标公式来表示。

3 左加右减原理左加右减原理是指,如果要将一个函数沿着 $x$ 轴向左移动$a$ 个单位,则需要将函数中 $x$ 的值都加上 $a$;如果要将函数沿着 $x$ 轴向右移动 $a$ 个单位,则需要将函数中 $x$ 的值都减去$a$。

如果函数中有其他参数(如 $a,b,c$),则平移也会影响这些参数。

具体来说,如果要将函数沿着 $x$ 轴向左移动 $a$ 个单位,则需要将 $b$ 的值减去 $2a$,将 $c$ 的值加上 $a^2$;如果要将函数沿着 $x$ 轴向右移动 $a$ 个单位,则需要将 $b$ 的值加上 $2a$,将 $c$ 的值减去 $a^2$。

4 举例说明假设有一个二次函数 $y = 2x^2 + 4x - 1$,现在要将它沿着$x$ 轴向左移动 $3$ 个单位。

根据左加右减原理,将函数中 $x$ 的值都加上 $3$,得到 $y = 2(x+3)^2 + 4(x+3) - 1$。

将式子展开,得到 $y = 2x^2 + 22x + 29$,这就是将原函数沿着 $x$ 轴向左移动 $3$ 个单位后的函数。

同样地,如果要将原函数沿着 $x$ 轴向右移动 $3$ 个单位,根据左加右减原理,需要将函数中 $x$ 的值都减去 $3$,并将 $b$ 的值加上 $2\times3=6$,$c$ 的值减去 $3^2=9$。

二次函数的平移规律

二次函数的平移规律

.
• 分析:把把x轴,y轴分别向上、向右平移2个 单位,也可以看成把抛物线向下,向左平移2 个单位.
例3.如果要得到 y x2 6x 7 的图像,需
将 y x2 的 图像( )
A.先向左平移3个单位长度,再向上平移2个单 位长度
B.先向右平移3个单位长度,再向下平移2个单 位长度
C.先向右平移3个单位长度,再向上平移2个单 位长度
例1.在平面直角坐标系中,将抛物线 y 2x 2
向下平移3个单位长度,再向左平移2个单位
长度,所得抛物线的解析式是
.
y 2x2向下平移3个单位得 y 2x2 3
y 2x2 3
例2.在平面直角坐标系中,如果抛物线 y 2x2 不动, 而把x轴,y轴分别向上、向右平移2个单位,那么在
新坐标系下抛物线的解析式是
D.先向左平移3个单位长度,再向下平移2个单 位长度二次函数一般式直接平移
• 例4.已知抛物线 y x2 2x 1 向右平移
3个单位长度,向下平移2个单位长度得到
的函数解析式是
.
总结:二次函数的平移规律: 上下平移后变化,上加下减; 左右平移括号里面变化,左加右减. 也可以说成: 上下平移函数值y变化,上加下减; 左右平移自变量x变化,左加右减
九年级数学上册
二次函数的平移规律
二次函数的平移规律
• 二次函数的解析式一共有5种形式
1 y ax2 2y ax2 k
3y ax h2
4y ax h2 k
5y ax2 bx c
1 y ax2 2y ax2 k 3y ax h2 4y ax h2 k 5y ax2 bx c
由(1)经过上下平移得到(2), 即上下平移后变化,上加下减 由(1)经过左右平移得到(3) 即左右平移括号里面变化,左加右减. 由(1)经过上下平移和左右平移得到(4) (4)式和(5)式可以互相转化.

二次函数一般式平移规律总结

二次函数一般式平移规律总结

二次函数一般式平移规律总结二次函数是高中数学中常用的一种函数,它包含不同类型的函数,如二次多项式函数、指数函数、对数函数等,二次函数已经成为数学研究实际应用中不可或缺的重要内容。

学习过程中,我们一定会接触到二次函数的平移规律,因此,对此要有良好的了解和掌握,本文将结合实例对二次函数的一般式的平移规律进行总结,以更深层次的理解和掌握这一知识点。

二、二次函数的一般式二次函数的一般式为:y=ax+bx+c。

其中,a、b、c为实数,a≠0:(1)当a>0时,f(x)为凸函数,图象为上支或右支抛物线;(2)当a<0时,f(x)为凹函数,图象为下支或左支抛物线。

三、二次函数的平移规律1、平移y轴当y轴上的常数变化时,曲线的位置会发生变化。

由f(x)=ax+bx+c可得,当c变化时,曲线的位置也会发生变化,实际上就是曲线在y轴上向上或向下平移。

假设y轴上常数c变化d,则函数f(x)=ax+bx+c变化为f (x)=ax+bx+(c+d),图象就是向上或向下平移d个单位,可以写作:(1)当d>0时,f(x)=ax+bx+(c+d)=f(x)+d,曲线向上平移d个单位;(2)当d<0时,f(x)=ax+bx+(c+d)=f(x)-|d|,曲线向下平移|d|个单位。

2、平移x轴当x轴上的常数b变化d,则函数f(x)=ax+bx+c变化为f (x)=ax+(b+d)x+c,曲线就是向左或向右平移d个单位,即:(1)当d>0时,f(x)=ax+(b+d)x+c=f(x-d),曲线向左平移d个单位;(2)当d<0时,f(x)=ax+(b+d)x+c=f(x+|d|),曲线向右平移|d|个单位。

四、实例分析(1)实例一:已知y=2x+3x-2,求y=2x+3x+1的图象。

解:在原函数f(x)=2x+3x-2的基础上,x轴上的常数b增加1,即b+d=3+1=4,因此新函数f(x)=2x+(3+1)x-2=2x+4x-2,即所求函数f(x)=2x+3x+1,令d=1;由上可知,原函数向右平移1个单位,即y=2x+3x+1的图象。

二次函数的平移与缩放

二次函数的平移与缩放

二次函数的平移与缩放在数学中,二次函数是一种常见的函数形式,其一般形式为f(x) =ax^2 + bx + c,其中a、b、c是常数。

通过改变a、b、c的值,可以使二次函数图像在坐标平面上发生平移和缩放的变化。

本文将探讨二次函数的平移与缩放,并给出相关的示例。

一、二次函数的平移平移是指将函数图像沿着坐标轴的方向进行移动。

对于二次函数而言,平移主要涉及到x轴和y轴方向的变化。

1. 沿x轴平移在二次函数f(x) = ax^2 + bx + c中,当x加上一个常数h时,函数变为f(x-h) = a(x-h)^2 + b(x-h) + c。

这个变化使得函数图像沿着x轴的正方向平移了h个单位。

具体来说,如果h>0,则平移向右;若h<0,则平移向左。

举例来说,考虑函数f(x) = x^2,我们将其进行沿x轴平移2个单位。

根据上述公式,得到新的函数为f(x-2) = (x-2)^2。

在坐标平面上画出原函数和新函数的图像,可以发现新函数图像的顶点比原来的向右移动了2个单位。

2. 沿y轴平移在二次函数f(x) = ax^2 + bx + c中,当f(x)加上一个常数k时,函数变为f(x) + k = ax^2 + bx + c + k。

这个变化使得函数图像沿着y轴的正方向平移了k个单位。

具体来说,如果k>0,则平移向上;若k<0,则平移向下。

举例来说,考虑函数f(x) = x^2,我们将其进行沿y轴平移3个单位。

根据上述公式,得到新的函数为f(x) + 3 = x^2 + 3。

在坐标平面上画出原函数和新函数的图像,可以发现新函数图像的整体位置比原来的向上移动了3个单位。

二、二次函数的缩放缩放是指改变函数图像的形状和尺寸,可以通过改变a、b和c的值来实现。

1. 缩放的尺度在二次函数f(x) = ax^2 + bx + c中,当a乘以一个正常数k时,函数变为f(x) = kax^2 + kbx + kc。

函数图像向左右平移的公式

函数图像向左右平移的公式

①一次函数的平移
不需要对一般式变形,只是在y=kx+b的基础上,在括号内对“x”和“b”直接进行调整。

对b符号的增减,决定直线图像在y轴上的上下平移。

向上平移b+m,向下平移b-m。

对括号内x符号的增减,决定直线图像在x轴上的左右平移。

向左平移k(x+n),向右平移k(x-n) 。

②二次函数的平移
(1)将y=ax²的图象向上(c>0)或向下(c<0)平移|c|个单位,即可得到y=ax²+c的图象.其顶点是(0,c)。

形状、对称轴、开口方向与抛物线y=ax²相同。

(2)将y=ax²的图象向左(h<0)或向右(h>0)平移|h|个单位,即可得到y=a(x-h) ²的图象.其顶点是(h,0),对称轴是直线x=h,形状、开口方向与抛物线y=ax2相同。

(3)将y=ax²的图象向左(h<0)或向右(h>0)平移|h|个单位,再向上(k>0)或向下(k<0)平移|k|个单位,即可得到y=a(x-h) ²+k的图象,其顶点是(h,k),对称轴是直线x=h,形状、开口方向与抛物线y=ax²相同。

③反比例函数的平移
对于双曲线y= k/x,若在分母x上加、减任意一个实数y= k/x±m,就相当于将双曲线图象向左或右平移一个单位。

加一个数时向左平移,减一个数时向右平移。

二次函数平移规律总结

二次函数平移规律总结

二次函数平移规律总结二次函数是数学中一种常见的函数类型,它的一般形式为 y =ax^2 + bx + c,其中 a、b、c 是常数。

在二次函数的图像中,有一个重要的性质就是平移。

通过平移,我们可以改变函数图像的位置和形态,使其更符合我们的需求。

在本文中,我将对二次函数的平移规律进行总结,并带来一些有趣的实例。

平移是指将函数图像沿着横纵坐标轴进行移动,其目的是改变函数的位置。

对于二次函数,平移主要分为两种:平移横轴和平移纵轴。

接下来,我将分别介绍这两种平移,并给出相应的公式。

一、平移横轴平移横轴是指将函数图像在横轴方向上进行移动。

具体来说,对于二次函数 y = ax^2 + bx + c,我们可以通过改变 x 的值来实现平移横轴。

1. 向左平移:将函数图像向左平移 h 个单位距离。

在公式中,将 x 替换为 (x-h)。

例如,对于函数 y = x^2 + 2x + 1,如果我们想将其向左平移 3 个单位距离,那么新的函数表示为 y = (x-3)^2 + 2(x-3) + 1。

2. 向右平移:将函数图像向右平移 h 个单位距离。

在公式中,将 x 替换为 (x+h)。

例如,对于函数 y = x^2 + 2x + 1,如果我们想将其向右平移 3 个单位距离,那么新的函数表示为 y = (x+3)^2 + 2(x+3) + 1。

二、平移纵轴平移纵轴是指将函数图像在纵轴方向上进行移动。

具体来说,对于二次函数 y = ax^2 + bx + c,我们可以通过改变常数项 c 的值来实现平移纵轴。

1. 向上平移:将函数图像向上平移 k 个单位距离。

在公式中,将 c 替换为 (c+k)。

例如,对于函数 y = x^2 + 2x + 1,如果我们想将其向上平移 2 个单位距离,那么新的函数表示为 y = x^2 + 2x + (1+2)。

2. 向下平移:将函数图像向下平移 k 个单位距离。

在公式中,将 c 替换为 (c-k)。

二次函数中的平移、翻折、对称、旋转、折叠问题

二次函数中的平移、翻折、对称、旋转、折叠问题

二次函数中的平移、翻折、对称、旋转、折叠问题目录题型01二次函数平移问题题型02二次函数翻折问题题型03二次函数对称问题题型04二次函数旋转问题题型05二次函数折叠问题题型01二次函数平移问题1. 二次函数的平移变换平移方式(n>0)一般式y=ax2+bx+c顶点式y=a(x-h)2+k平移口诀向左平移n个单位y=a(x+n)2+b(x+n)+c y=a(x-h+n)2+k左加向右平移n个单位y=a(x-n)2+b(x-n)+c y=a(x-h-n)2+k右减向上平移n个单位y=ax2+bx+c+n y=a(x-h)2+k+n上加向下平移n个单位y=ax2+bx+c-n y=a(x-h)2+k-n下减2.平移与增加性变化如果平移后对称轴不发生变化,则不影响增减性,但会改变函数最大(小)值.只对二次函数上下平移,不改变增减性,改变最值.只对二次函数左右平移,改变增减性,不改变最值.1(2023·上海杨浦·统考一模)已知在平面直角坐标系xOy中,抛物线y=ax2-2ax-3a≠0与x轴交于点A、点B(点A在点B的左侧),与y轴交于点C,抛物线的顶点为D,且AB=4.(1)求抛物线的表达式;(2)点P 是线段BC 上一点,如果∠PAC =45°,求点P 的坐标;(3)在第(2)小题的条件下,将该抛物线向左平移,点D 平移至点E 处,过点E 作EF ⊥直线AP ,垂足为点F ,如果tan ∠PEF =12,求平移后抛物线的表达式.【答案】(1)y =x 2-2x -3(2)P 53,-43(3)y =x +1792-4【分析】(1)设点A 的横坐标为x A ,点B 的横坐标为x B ,根据对称轴,AB =4,列式x A +x B2=1,x B -x A =4,利用根与系数关系计算确定a 值即可.(2)过点C 作AC ⊥MN 于点C ,交AC 右侧的AP 的延长线于点M ,交AC 左侧的AP 的延长线于点N ,利用三角形全等,确定坐标,后根据解析式交点确定所求坐标即可.(3)设抛物线向左平移了t 个单位,则点E 1-t ,-4 ,过点F 作x 轴的平行线交过点P 和y 轴的平行线于点H ,交过点E 和y 轴的平行线于点G ,证明Rt △FGE ∽Rt △PHF ,根据相似三角形的性质得出GEHF=GF HP =EF FP =1tan ∠PEF =2即可求解.【详解】(1)解:∵抛物线y =ax 2-2ax -3a ≠0 与x 轴交于点A 、点B (点A 在点B 的左侧),与y 轴交于点C ,抛物线的顶点为D ,且AB =4,∴x A +x B 2=1,x B -x A =4,解得x B =3,x A =-1,∴-3a=3×-1 ,解得a=1,故抛物线的解析式为y =x 2-2x -3.(2)过点C 作AC ⊥MN 于点C ,交AC 右侧的AP 的延长线于点M ,∵∠PAC =45°,∴AC =CM ,过点M 作MT ⊥y 轴于点T ,∴∠ACO =90°-∠ECM =∠CMT ∵∠ACO =∠CMT ∠AOC =∠CTM AC =CM,∴△AOC ≌△CTM AAS ,∴AO =CT ,OC =EM ,∵抛物线的解析式为y =x 2-2x -3,x B =3,x A =-1,∴AO =CT =1,OC =TM =3,A -1,0 ,C 0,-3 ,B 3,0 ,∴OE =2,TM =3∴M 3,-2 ,设AM 的解析式为y =kx +b ,BC 的解析式为y =px +q ∴-k +b =03k +b =-2 ,3p +q =0q =-3 ,解得k =-12b =-12,p =1q =-3 ∴AM 的解析式为y =-12x -12,BC 的解析式为y =x -3,∴y =x -3y =-12x -12 ,解得x =53y =-43,故P 53,-43;(3)∵y =x 2-2x -3=x -1 2-4,点D 1,-4 ,设抛物线向左平移了t 个单位,则点E 1-t ,-4 ,过点F 作x 轴的平行线交过点P 和y 轴的平行线于点H ,交过点E 和y 轴的平行线于点G ,由(2)知,直线AP 的表达式为:y =-12x -12,P 53,-43设F m ,-12m -12 ∵∠EFP =90°,∴∠GFE +∠HFP =90°,∵∠GFE +∠GEF =90°,∴∠GEF =∠HFP ,∴Rt △FGE ∽Rt △PHF ,∴GE HF =GF HP =EF FP =1tan ∠PEF=2,∵GE =y F -y E =-12m -12+4,HF =x P -x F =53-m ,GF =x F -x G =m -1-t ,HP=y F -y P =-12m-12+43,∴-12m -12+453-m =m -1-t -12m -12+43=2,解得:t =269,∴y =x -1+269 2-4=x +179 2-4.【点睛】本题为考查了二次函数综合运用,三角形全等和相似、解直角三角形、图象平移等,正确作辅助线是解题的关键.2(2023·广东湛江·校考一模)如图1,抛物线y =36x 2+433x +23与x 轴交于点A ,B (A 在B 左边),与y 轴交于点C ,连AC ,点D 与点C 关于抛物线的对称轴对称,过点D 作DE ∥AC 交抛物线于点E ,交y 轴于点P.(1)点F 是直线AC 下方抛物线上点一动点,连DF 交AC 于点G ,连EG ,当△EFG 的面积的最大值时,直线DE 上有一动点M ,直线AC 上有一动点N ,满足MN ⊥AC ,连GM ,NO ,求GM +MN +NO 的最小值;(2)如图2,在(1)的条件下,过点F 作FH ⊥x 轴于点H 交AC 于点L ,将△AHL 沿着射线AC 平移到点A 与点C 重合,从而得到△A H L (点A ,H ,L 分别对应点A ,H ,L ),再将△A H L 绕点H 逆时针旋转α(0°<α<180°),旋转过程中,边A L 所在直线交直线DE 于Q ,交y 轴于点R ,求当△PQR 为等腰三角形时,直接写出PR 的长.【答案】(1)4+23975(2)1733-3或833【分析】(1)作FH ∥y 轴交DE 于H .设F m ,36m 2+433m +23 ,求出直线DE 的解析式,联立方程得到x =-3时,FH 的值最大,求出答案;作点G 关于DE 的对称点T ,TG 交DE 于R ,连接OR 交AC 于N ,作NM ⊥DE 于M ,连接TM ,GM ,此时GM +MN +NO 的值最小,求出答案即可;(2)当△PQR 是等腰三角形时,易知∠QPR =120°,易知直线RQ 与x 轴的夹角为60°,得到直线RQ 的解析式为y =3x +3-3,进而求出答案,当△QPR 是等腰三角形,同理求出答案.【详解】(1)如图1中,作FH ∥y 轴交DE 于H .设F m ,36m 2+433m +23 .由题意可知A (-6,0),B (-2,0),C (0,23),∵抛物线的对称轴x =-4,C ,D 关于直线x =-4对称,∴D (-8,23),∴直线AC 的解析式为y =33x +23,∵DE ∥AC ,∴直线DE 的解析式为y =33x +1433,由y =33x +23y =33x +1433,解得x =8y=23 或x =2y =1633,∴E 2,1633 ,H m ,33m +1433,∵S △DEF =S △DEG +S △EFG ,△DEG 的面积为定值,∴△DEG 的面积最大时,△EFG 的面积最大,∵FH 的值最大时,△DEF 的面积最大,∵FH 的值最大时,△EFG 的面积最大,∵FH =-36m 2-3m +833,∵a <0.开口向下,∴x =-3时,FH 的值最大,此时F -3,-32.如图2中,作点G 关于DE 的对称点T ,TG 交DE 于R ,连接OR 交AC 于N ,作NM ⊥DE 于M ,连接TM ,GM ,此时GM +MN +NO 的值最小.∵直线DF 的解析式为:y =-32x -23,由y =-32x -23y =33x +23,解得x =-245y =235,∴G -245,232 ,∵TG ⊥AC ,∴直线GR 的解析式为y =-3x -2235,由y =33x +1433y =-3x -2235 ,解得x =-345y =1235,∴R -345,1235,∴RG =4,OR =23975,∵GM =TM =RN ,∴GM +MN +ON =RN +ON +RG =RG +ON =4+23975.∴GM +MN +NO 的最小值为4+23975.(2)如图3中,如图当△PQR 是等腰三角形时,易知∠QPR =120°,PQ =PR易知直线RQ 与x 轴的夹角为60°,L 3-32,23+32,直线RQ 的解析式为y =3x +3-3,∴R (0,3-3),∴PR =1433-(3-3)=1733-3.如图4中,当△QPR 是等腰三角形,∵∠QPR =60°,∴△QPR 是等边三角形,同法可得R (0,23),∴PR =OP -OC =1433-23=833综上所述,满足条件的PR 的值为1733-3或833.【点睛】本题属于二次函数证明题,考查了二次函数的性质,一次函数的应用,解题的关键是学会构建二次函数解决最值问题,学会分类讨论的思想思考问题.3(2023·广东潮州·校考一模)如图,在平面直角坐标系中,抛物线y =-12x 2+bx +c 与x 轴交于A (-2,0),B (4,0)两点(点A 在点B 的左侧),与y 轴交于点C ,连接AC 、BC ,点P 为直线BC 上方抛物线上一动点,连接OP 交BC 于点Q .(1)求抛物线的函数表达式;(2)当PQ OQ 的值最大时,求点P 的坐标和PQ OQ的最大值;(3)把抛物线y =-12x 2+bx +c 沿射线AC 方向平移5个单位得新抛物线y ,M 是新抛物线上一点,N 是新抛物线对称轴上一点,当以M 、N 、B 、C 为顶点的四边形是平行四边形时,直接写出N 点的坐标,并把求其中一个N 点坐标的过程写出来.【答案】(1)抛物线的函数表达式为y =-12x 2+x +4(2)当m =2时,PQ OQ取得最大值12,此时,P (2,4)(3)N 点的坐标为N 12,52 ,N 22,-112 ,N 32,-52.其中一个N 点坐标的解答过程见解析【分析】(1)运用待定系数法即可求得答案;(2)运用待定系数法求得直线BC 的解析式为y =-x +4,如图1,过点P 作PD ∥y 轴交BC 于点D ,设P m ,-12m 2+m +4 ,则D (m ,-m +4),证明△PDQ ∽△OCQ ,得出:PQ OQ =PD OC=-12m 2+2m 4=-18(m -2)2+12,运用求二次函数最值方法即可得出答案;(3)设M t -12t 2+2t +92,N (2,s ),分三种情况:当BC 为▱BCN 1M 1的边时;当BC 为▱BCM 2N 2的边时;当BC 为▱BM 3CN 3的对角线时,运用平行四边形性质即可求得答案.【详解】(1)∵抛物线y =-12x 2+bx +c 与x 轴交于A (-2,0),B (4,0)两点(点A 在点B 的左侧),∴-12×(-2)2-2b +c =0-12×42+4b +c =0,解得:b =1c =4 ,∴抛物线的函数表达式为y =-12x 2+x +4;(2)∵抛物线y =-12x 2+x +4与y 轴交于点C ,∴C (0,4),∴OC =4,设直线BC 的解析式为y =kx +d ,把B (4,0),C (0,4)代入,得:4k +d =0,d =4 解得:k =-1d =4 ,∴直线BC 的解析式为y =-x +4,如图1,过点P 作PD ∥y 轴交BC 于点D ,设P m ,-12m 2+m +4 ,则D (m ,-m +4),∴PD =-12m 2+2m ,∵PD ∥OC ,∴△PDQ ∽△OCQ ,∴PQ OQ =PD OC=-12m 2+2m 4=-18(m -2)2+12,∴当m =2时,PQ OQ取得最大值12,此时,P (2,4).(3)如图2,沿射线AC 方向平移5个单位,即向右平移1个单位,向上平移2个单位,∴新的物线解析式为y =-12(x -2)2+132=-12x 2+2x +92,对称轴为直线x =2,设M t ,-12t 2+2t +92,N (2,s ),当BC 为▱BCN 1M 1的边时,则BC ∥MN ,BC =MN ,∴t -2=4s =-12t 2+2t +92+4解得:t =6s =52,∴N 12,52;当BC 为▱BCM 2N 2的边时,则BC ∥MN ,BC =MN ,∴t -2=-4s =-12t 2+2t +92-4 ,解得:t =-2s =-112,∴N 22,-112;当BC 为▱BM 3CN 3的对角线时,则t +2=4-12t 2+2t +92+s =4,解得:t =2s =-52,∴N 32,-52;综上所述,N 点的坐标为:N 12,52 ,N 22,-112 ,N 32,-52.【点睛】本题是二次函数综合题,考查了待定系数法,二次函数的图象和性质,抛物线的平移,平行四边形的性质,相似三角形的判定和性质,熟练掌握铅锤法、中点坐标公式,运用数形结合思想、分类讨论思想是解题关键.4(2023·湖北襄阳·校联考模拟预测)坐标综合:(1)平面直角坐标系中,抛物线C 1:y 1=x 2+bx +c 的对称轴为直线x =3,且经过点6,3 ,求抛物线C 1的解析式,并写出其顶点坐标;(2)将抛物线C 1在平面直角坐标系内作某种平移,得到一条新的抛物线C 2:y 2=x 2-2mx +m 2-1,①如图1,设自变量x 在1≤x ≤2的范围内取值时,函数y 2的最小值始终等于-1.此时,若y 2的最大值比最小值大12m ,求m 的值;②如图2,直线l :y =-12x +n n >0 与x 轴、y 轴分别交于A 、C 两点.过点A 、点C 分别作两坐标轴的平行线,两平行线在第一象限内交于点B .设抛物线C 2与x 轴交于E 、F 两点(点E 在左边).现将图中的△CBA 沿直线l 折叠,折叠后的BC 边与x 轴交于点M .当8≤n ≤12时,若要使点M 始终能够落在线段EF (包括两端点)上,请通过计算加以说明:抛物线C 1在向抛物线C 2平移时,沿x 轴的方向上需要向左还是向右平移?最少要平移几个单位?最多能平移几个单位?【答案】(1)抛物线C 1的解析式为y 1=x 2-6x +3,抛物线C 1的顶点坐标为3,-6(2)①m 的值为2或9-154;②抛物线C 1在向抛物线C 2平移时,沿x 轴的方向上需要向右平移,最少平移2个单位,最多平移7个单位【分析】(1)根据对称轴为直线x =3,可得b =-6,再把把6,3 代入,即可求解;(2)①根据配方可得当x =m 时,函数有最小值-1,再由自变量x 在1≤x ≤2的范围内取值时,函数y 2的最小值始终等于-1,可得1≤m ≤2,然后两种情况讨论,即可求解;②先求出点A ,C 的坐标,可得点B 的坐标,再根据图形折叠的性质可得CM =AM ,在Rt △COM 中,根据勾股定理可得CM =54n ,从而得到点M 的坐标,继而得到n 的取值范围,然后根据点M 始终能够落在线段EF (包括两端点)上,可得m 取值范围,即可求解.【详解】(1)解:∵y 1=x 2+bx +c 的对称轴为直线x =3,∴-b2=3,解得:b =-6,把6,3 代入y 1=x 2-6x +c ,得3=62-6×6+c ,解得:c =3,∴抛物线C 1的解析式为y 1=x 2-6x +3,当x =3时,y 1=32-6×3+3=-6,∴抛物线C 1的顶点坐标为3,-6 ;(2)解:①∵y 2=x 2-2mx +m 2-1=x -m 2-1,∴抛物线C 2的对称轴为直线x =m ,当x =m 时,函数有最小值-1,∵在1≤x ≤2的范围内取值时,函数y 2的最小值始终等于-1,∴1≤m ≤2,当1≤m ≤32时,x =2时y 2有最大值为m 2-4m +3,∴m 2-4m +3+1=12m ,解得m =9±154,∴m =9-154;当32≤m ≤2时,x =1时y 2有最大值为m 2-2m ,∴m 2-2m +1=12m ,解得m =2或m =12(舍),综上所述:m 的值为2或9-154;②直线l :y =-12x +n 与x 轴的交点A 2n ,0 ,与y 轴的交点C 0,n ,∴B 2n ,n ,∵△CBA 沿直线l 折叠,∴∠BCA =∠ACM ,∵∠BCA =∠CAM ,∴∠ACM =∠MAC ,∴CM =AM ,在Rt △COM 中,CM 2=CO 2+OM 2,即CM 2=n 2+2n -CM 2,解得CM =54n ,∴OM =34n ,∴M 34n ,0 ,∵8≤n ≤12,∴6≤34n ≤9,当x 2-2mx +m 2-1=0时,解得:x =m +1或x =m -1,∴E m -1,0 ,F m +1,0 ,∵点M 始终能够落在线段EF 上,∴m +1≥6,m -1≤9,∴5≤m ≤10,∵y 1=x 2-6x +3=x -3 2-6,y 2=x -m 2-1,当m =5时,抛物线C 1沿x 轴向右平移2个单位,向上平移5个单位,当m =10时,抛物线C 1沿x 轴向右平移7个单位,向上平移5个单位,∴抛物线C 1在向抛物线C 2平移时,沿x 轴的方向上需要向右平移,最少平移2个单位,最多平移7个单位.【点睛】本题考查二次函数的图象及性质,熟练掌握二次函数的图象及性质,函数图象平移的性质,轴对称图形的性质,勾股定理的应用是解题的关键.5(2023·浙江湖州·统考中考真题)如图1,在平面直角坐标系xOy 中,二次函数y =x 2-4x +c 的图象与y 轴的交点坐标为0,5 ,图象的顶点为M .矩形ABCD 的顶点D 与原点O 重合,顶点A ,C 分别在x 轴,y 轴上,顶点B 的坐标为1,5 .(1)求c 的值及顶点M 的坐标,(2)如图2,将矩形ABCD 沿x 轴正方向平移t 个单位0<t <3 得到对应的矩形A B C D .已知边C D ,A B 分别与函数y =x 2-4x +c 的图象交于点P ,Q ,连接PQ ,过点P 作PG ⊥A B 于点G .①当t =2时,求QG 的长;②当点G 与点Q 不重合时,是否存在这样的t ,使得△PGQ 的面积为1?若存在,求出此时t 的值;若不存在,请说明理由.【答案】(1)c =5,顶点M 的坐标是2,1(2)①1;②存在,t =12或52【分析】(1)把0,5 代入抛物线的解析式即可求出c ,把抛物线转化为顶点式即可求出顶点坐标;(2)①先判断当t =2时,D ,A 的坐标分别是2,0 ,3,0 ,再求出x =3,x =2时点Q 的纵坐标与点P 的纵坐标,进而求解;②先求出QG =2,易得P ,Q 的坐标分别是t ,t 2-4t +5 ,t +1,t 2-2t +2 ,然后分点G 在点Q 的上方与点G 在点Q 的下方两种情况,结合函数图象求解即可.【详解】(1)∵二次函数y =x 2-4x +c 的图象与y 轴的交点坐标为0,5 ,∴c =5, ∴y =x 2-4x +5=x -2 2+1,∴顶点M 的坐标是2,1 .(2)①∵A 在x 轴上,B 的坐标为1,5 ,∴点A 的坐标是1,0 .当t =2时,D ,A 的坐标分别是2,0 ,3,0 .当x =3时,y =3-2 2+1=2,即点Q 的纵坐标是2,当x =2时,y =2-2 2+1=1,即点P 的纵坐标是1.∵PG ⊥A B ,∴点G 的纵坐标是1, ∴QG =2-1=1. ②存在.理由如下:∵△PGQ 的面积为1,PG =1,∴QG =2.根据题意,得P ,Q 的坐标分别是t ,t 2-4t +5 ,t +1,t 2-2t +2 .如图1,当点G 在点Q 的上方时,QG =t 2-4t +5-t 2-2t +2 =3-2t =2,此时t =12(在0<t <3的范围内),如图2,当点G 在点Q 的下方时,QG =t 2-2t +2-t 2-4t +5 =2t -3=2,此时t =52(在0<t <3的范围内).∴t =12或52.【点睛】本题考查了二次函数图象上点的坐标特点、矩形的性质以及三角形的面积等知识,熟练掌握二次函数的图象与性质、灵活应用数形结合思想是解题的关键.6(2023·江苏·统考中考真题)如图,二次函数y =12x 2+bx -4的图像与x 轴相交于点A (-2,0)、B ,其顶点是C .(1)b =;(2)D 是第三象限抛物线上的一点,连接OD ,tan ∠AOD =52;将原抛物线向左平移,使得平移后的抛物线经过点D ,过点(k ,0)作x 轴的垂线l .已知在l 的左侧,平移前后的两条抛物线都下降,求k 的取值范围;(3)将原抛物线平移,平移后的抛物线与原抛物线的对称轴相交于点Q ,且其顶点P 落在原抛物线上,连接PC 、QC 、PQ .已知△PCQ 是直角三角形,求点P 的坐标.【答案】(1)-1;(2)k ≤-3;(3)3,-52 或-1,-52 .【分析】(1)把A (-2,0)代入y =12x 2+bx -4即可求解;(2)过点D 作DM ⊥OA 于点M ,设D m ,12m 2-m -4 ,由tan ∠AOD =DM OM=-12m 2+m +4-m =52,解得D -1,-52,进而求得平移后得抛物线,平移后得抛物线为y =12x +3 2-92,根据二次函数得性质即可得解;(3)先设出平移后顶点为P p ,12p 2-p -4 ,根据原抛物线y =12x -1 2-92,求得原抛物线的顶点C 1,-92 ,对称轴为x =1,进而得Q 1,p 2-2p -72,再根据勾股定理构造方程即可得解.【详解】(1)解:把A (-2,0)代入y =12x 2+bx -4得,0=12×-2 2+b ×-2 -4,解得b =-1,故答案为-1;(2)解:过点D 作DM ⊥OA 于点M ,∵b =-1,∴二次函数的解析式为y =12x 2-x -4设D m ,12m 2-m -4 ,∵D 是第三象限抛物线上的一点,连接OD ,tan ∠AOD =52,∴tan ∠AOD =DM OM=-12m 2+m +4-m =52,解得m =-1或m =8(舍去),当m =-1时,12m 2-m -4=12+1-4=-52,∴D -1,-52,∵y =12x 2-x -4=12x -1 2-92,∴设将原抛物线向左平移后的抛物线为y =12x +a 2-92,把D -1,-52 代入y =12x +a 2-92得-52=12-1+a 2-92,解得a =3或a =-1(舍去),∴平移后得抛物线为y =12x +3 2-92∵过点(k ,0)作x 轴的垂线l .已知在l 的左侧,平移前后的两条抛物线都下降,在y =12x +3 2-92的对称轴x =-3的左侧,y 随x 的增大而减小,此时原抛物线也是y 随x 的增大而减小,∴k ≤-3;(3)解:由y =12x -1 2-92,设平移后的抛物线为y =12x -p 2+q ,则顶点为P p ,q ,∵顶点为P p ,q 在y =12x -1 2-92上,∴q =12p -1 2-92=12p 2-p -4,∴平移后的抛物线为y =12x -p 2+12p 2-p -4,顶点为P p ,12p 2-p -4 ,∵原抛物线y =12x -1 2-92,∴原抛物线的顶点C 1,-92,对称轴为x =1,∵平移后的抛物线与原抛物线的对称轴相交于点Q ,∴Q 1,p 2-2p -72,∵点Q 、C 在直线x =1上,平移后的抛物线顶点P 在原抛物线顶点C 的上方,两抛物线的交点Q 在顶点P 的上方,∴∠PCQ 与∠CQP 都是锐角,∵△PCQ 是直角三角形,∴∠CPQ =90°,∴QC 2=PC 2+PQ 2,∴p 2-2p -72+92 2=p -1 2+12p 2-p -4+922+p -1 2+12p 2-p -4-p 2+2p +722化简得p -1 2p -3 p +1 =0,∴p =1(舍去),或p =3或p =-1,当p =3时,12p 2-p -4=12×32-3-4=-52,当p =-1时,12×-1 2+1-4=-52,∴点P 坐标为3,-52 或-1,-52.【点睛】本题考查了二次函数的图像及性质,勾股定理,解直角三角形以及待定系数法求二次函数的解析式,熟练掌握二次函数的图像及性质是解题的关键.7(2023·湖北宜昌·统考模拟预测)如图,过原点的抛物线y 1=ax (x -2n )(a ≠0,a ,n 为常数)与x 轴交于另一点A ,B 是线段OA 的中点,B -4,0 ,点M (-3,3)在抛物线y 1上.(1)点A 的坐标为;(2)C 为x 轴正半轴上一点,且CM =CB .①求线段BC 的长;②线段CM 与抛物线y 1相交于另一点D ,求点D 的坐标;(3)将抛物线y 1向右平移(4-t )个单位长度,再向下平移165个单位长度得到抛物线y 2,P ,Q 是抛物线y 2上两点,T 是抛物线y 2的顶点.对于每一个确定的t 值,求证:矩形TPNQ 的对角线PQ 必过一定点R ,并求出此时线段TR 的长.【答案】(1)-8,0(2)①BC =5;②D -54,2716 (3)证明见解析,RT =5【分析】(1)根据中点公式求C 点坐标即可;(2)①设C x ,0 ,根据CM =CB ,建立方程(x +3)2+9=x +4,求出C 点坐标即可求BC ;②求出直线CM 的解析式为y =-34x +34,将A -8,0 代入y 1=ax (x -2n ),求出n =-4,将M 点代入y 1=ax (x +8),求出a =-15,从而求出抛物线y 1=-15x (x +8),直线CM 与抛物线的交点即为点D -54,2716;(3)根据平移的性质可求y 2=-15(x +t )2,则T (-t ,0),设直线PQ 的解析式为y =kx +b ,P m ,-15(m +t )2 ,Q n ,15(n +t )2 当kx +b =-15(x +t )2时,整理得x 2+(2t +5k )x +5b +t 2=0,由根与系数的关系可得m +n =-2t -5k ,mn =5b +t 2,过点P 作PF ⊥x 轴交于F 点,过Q 点作QE ⊥x 轴交于E 点,证明△FPT ∽△ETQ ,则PF TE =FT EQ ,即15(m +t )2n +t =-t -m 15(n +t )2,整理得,(m +t )(n +t )=-25,求出b =kt -5,所以直线PQ 的解析式为y =kx +kt -5=k (x +t )-5,对于每一个确定的t 值,直线PQ 必经过定点R (-t ,-5),RT =5.【详解】(1)∵B 是线段OA 的中点,B -4,0 ,∴OA =8,∴A -8,0 ,故答案为:-8,0 ;(2)①设C x ,0 ,∵CM =CB ,∴(x +3)2+9=x +4,解得x =1,∴BC =5;②设直线CM 的解析式为y =k 'x +b ',∴k '+b '=0-3k '+b '=3 ,解得k '=-34b '=34,∴直线CM 的解析式为y =-34x +34,将A -8,0 代入y 1=ax (x -2n ),∴-8a (-8-2n )=0,∵a ≠0,∴-8-2n =0,解得n =-4,∴y 1=ax (x +8),将M 点代入y 1=ax (x +8),∴-3a (-3+8)=3,解得a =-15,∴抛物线y 1=-15x (x +8),当-34x +34=-15x (x +8)时,解得x =-3或x =-54,∴D -54,2716;(3)证明:∵y 1=-15x (x +8)=-15(x +4)2+165,∴y 2=-15(x +t )2,∴T (-t ,0),设直线PQ 的解析式为y =kx +b ,P m ,-15(m +t )2 ,Q n ,15(n +t )2 ,当kx +b =-15(x +t )2时,整理得x 2+(2t +5k )x +5b +t 2=0,∴m +n =-2t -5k ,mn =5b +t 2,过点P 作PF ⊥x 轴交于F 点,过Q 点作QE ⊥x 轴交于E 点,∵四边形TPNQ 是矩形,∴∠PTQ =90°,∴∠FTP +∠ETQ =90°,∵∠FTP +∠TPF =90°,∴∠ETQ =∠TPF ,∴△FPT ∽△ETQ ,∴PF TE =FTEQ,即15(m +t )2n +t=-t -m15(n +t )2,整理得,(m +t )(n +t )=-25,∴mn +t (m +n )+t 2=-25,∴b -kt =-5,即b =kt -5,∴直线PQ 的解析式为y =kx +kt -5=k (x +t )-5,∴对于每一个确定的t 值,直线PQ 必经过定点R (-t ,-5),∴RT =5.【点睛】本题考查二次函数的图象及性质,熟练掌握二次函数的图象及性质,三角形相似的判定及性质,一元二次方程根与系数的关系,题型02二次函数翻折问题二次函数的翻转问题的解题思路:①根据二次函数上特殊点的坐标值求得二次函数的表达式;②根据翻转后抛物线与原抛物线的图像关系,确定新抛物线的表达式;③在直角坐标系中画出原抛物线及翻转后抛物线的简易图,根据图像来判断题目中需要求解的量的各种可能性;④根据图像及相关函数表达式进行计算,求得题目中需要求解的值。

二次函数图像的平移

二次函数图像的平移

二次函数图像平移的示例
1
水平平移示例
对二次函数y=x²进行水平平移2个单位得到y=(x-2)²的图像。
2
垂直平移示例
对二次函数y=x²进行垂直平移3个单位得到y=(x+3)²的图像。
3
复合平移示例
对二次函数y=x²进行水平平移2个单位和垂直平移3个单位得到y=(x-2)²+3的图像。
二次函数图像平移的应用
二次函数图像的平移的概念
1 平移
平移是指图像在平面上的移动,保持图像的 形状和大小不变。
2 二次函数图像平移
平移二次函数图像的方式是改变二次函数的 位置,包括水平平移和垂直平移。
二次函数图像平移的规律
水平平移
当二次函数的自变量x在函数内部加上一个常数h时, 图像向左平移 h 个单位。
垂直平移
当二次函数的因变量y在函数外部加上一个常数k时, 图像向上平移 k 个单位。
二次函数图像的平移
回顾一次函数,了解其定义和图像。
二次函数的定义和图像
定义
二次函数是形式为y=ax²+bx+c 的函数,其中a、b二次函数的图像为抛物线, 开口方向由a的正负决定。
特点
对称轴为x=-b/2a,顶点坐标 为(h, k),其中h和k分别为对 称轴的横纵坐标。
要点
水平平移时改变自变量x,垂直平移时改变因变量y。
应用
二次函数图像平移可以应用于优化设计、调整图像位置和控制变量实验等领域。
调整图像位置
通过平移二次函数的图像,可 以调整其在平面上的位置,使 其更符合实际问题。
优化设计
在工程和建模中,通过平移二 次函数的图像来优化设计,使 其更加高效和准确。
控制变量

平移后的二次函数顶点题类型方法总结

平移后的二次函数顶点题类型方法总结

平移后的二次函数顶点题类型方法总结
一、概述
在解决顶点问题时,常常需要进行二次函数的平移操作。

本文总结了平移后的二次函数顶点题的不同类型和解题方法。

二、顶点向右平移
当二次函数的顶点向右平移时,可以采用以下方法求解:
1. 已知平移后的顶点坐标
若已知平移后的顶点坐标为 (h, k),则原来的顶点坐标为 (h - a, k),其中 a 为平移的水平距离。

然后可以根据顶点坐标求出二次函数的表达式。

2. 已知平移的水平距离
若已知平移的水平距离为 a,且顶点为坐标 (h, k),则平移后的顶点坐标为 (h + a, k)。

接下来可以根据顶点坐标求出二次函数的表达式。

三、顶点向左平移
当二次函数的顶点向左平移时,可以采用以下方法求解:
1. 已知平移后的顶点坐标
若已知平移后的顶点坐标为 (h, k),则原来的顶点坐标为 (h + a, k),其中 a 为平移的水平距离。

然后可以根据顶点坐标求出二次函
数的表达式。

2. 已知平移的水平距离
若已知平移的水平距离为 a,且顶点为坐标 (h, k),则平移后的顶点坐标为 (h - a, k)。

接下来可以根据顶点坐标求出二次函数的表
达式。

四、总结
在解决平移后的二次函数顶点题时,我们可以根据已知的顶点
信息或平移的水平距离来确定顶点的具体位置,并进而求出二次函
数的表达式。

通过掌握以上方法,我们能够更轻松地解决这类问题。

以上是对平移后的二次函数顶点题类型和方法的总结。

希望能
帮助您更好地理解和解决这类问题。

字数:212。

二次函数图像平移

二次函数图像平移

二次函数图像平移、旋转总归纳
一、二次函数的图象的平移,先作出二次函数y=2x2+1的图象
①向上平移3个单位,所得图象的函数表达式是:y=2x2+4;
②向下平移4个单位,所得图象的函数表达式是:y=2x2-3;
③向左平移5个单位,所得图象的函数表达式是:y=2(x+5)2+1;
④向右平移6个单位,所得图象的函数表达式是:y=2(x-6)2+1.
由此可以归纳二次函数y=ax2+c
向上平移m个单位,所得图象的函数表达式是:y=ax2+c+m;
向下平移m个单位,所得图象的函数表达式是:y=ax2+c-m;
向左平移n个单位,所得图象的函数表达式是:y=a(x+n)2+c;
向右平移n个单位,所得图象的函数表达式是:y=a(x-n)2+c,
二、二次函数的图象的翻折
在一张纸上作出二次函数y=x2-2x-3的图象,
⑤沿x轴把这张纸对折,所得图象的函数表达式是:y=x2+2x-3.
⑥沿y轴把这张纸对折,所得图象的函数表达式是:y=x2+2x-3
由此可以归纳二次函数y=ax2+bx+c
若沿x轴翻折,所得图象的函数表达式是:y=-ax2-bx-c,若沿y轴翻折,所得图象的函数表达式是:y=ax2-bx+c
三、二次函数的图象的旋转,
将二次函数y=-x2+x-1的图象,绕原点旋转180°,所得图象的函数表达式是y= x2-x+1;
由此可以归纳二次函数y=ax2+bx+c的图象绕原点旋转180°,所得图象的函数表达式是y=-ax2-bx-c.(备用图如下)。

二次函数的图像和性质1(左右平移)

二次函数的图像和性质1(左右平移)

么?
• (2)二次函数y=-3(x-2)2+4的图象与二次函数y=-3x2的图象有 什么关系? • 对于二次函数y=3(x+1)2,当x取哪些值时,y的值随x值的增大 而增大?当x取哪些值时,y的值随x值的增大而减小?二次函数 y=3(x+1)2+4呢?
习题
1.指出下列函数图象的开口方向,对称轴和顶点坐标.必要时作出 草图进行验证. 3 2 2 2 1. y 2x 3 5; 2. y 0.5x 1 ; 3. y 4 x 1; 3 2 2 4.y 2x 2 5; 5. y 0.5x 4 2; 6. y x 32 . 4
我们知道,作出二次函数y=3x2的图象,通过平移抛物线 y=3x2可以得到二次函数y=3x2-6x+5的图象. 怎样直接作出函数y=3x2-6x+5的图象?
y 3x 6 x 5 5 2 3 x 2 x 提取二次项系数 3 5 配方:加上再减去一次项 2 3 x 2 x 1 1 系数绝对值一半的平方 3 2 2 整理:前三项化为平方形 配方后的表达式 3x 1 式,后两项合并同类项 3 通常称为顶点式 2 化简:去掉中括号 3x 1 2.
y 2 x 2
X=1
想一想,二次函数y=-3(x-1)2+2和y=-3x² ,y=3(x-1)2的图象有什么关系?它们的开口方向,对 称轴和顶点坐标分别是什么?再作图看一看.
我思,我进步
在同一坐标系中作出二次函数y=-3(x-1)2+2,y=-3(x-1)2-2,y=3x² 和y=-3(x-1)2的图象 二次函数y=-3(x-1)2+2与y=-3(x-1)2-2和y=-3x² ,y=-3(x-1)2的 图象有什么关系?它们是轴对称图形吗?它的开口方向、对称轴 和顶点坐标分别是什么?当x取哪些值时,y的值随x值的增大而 增大?当x取哪些值时,y的值随x值的增大而减小?
  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

x=0时,y最大=0
抛物线y=ax2 +c (a≠0)的图象可由y=ax2的图象通过上 下平移得到.
画出二次函数 考虑它们的开口方向、对称轴和顶点.:
x
1 y ( x 1) 2 2 1 y ( x 1) 2 2
1 1 2 y ( x 1) 2 y ( x 1 ) 、 的图像,并 2 2
y= 2(x-3)2 y= −2(x+3)2 y= −2(x-2)2
y= 3(x+1)2
二次函数y=a(x-h)2的性质
y=a(x-h)2
a>0
a<0
图象
h>0
开口
h<0
h>0
h<0
对称性
顶点 增减性
开口向下 开口向上 a的绝对值越大,开口越小 直线x=h
(h,0)
顶点是最高点 在对称轴左侧递减 在对称轴左侧递增 在对称轴右侧递增 在对称轴右侧递减 顶点是最低点
3 时,y有最 小 值,其值为 0 。
点坐标 (0,36)。
抛物线 y = 2(x+3)2 y = -3(x-1)2 y = -4(x-3)2
开口方向
对称轴
顶点坐标
向上
向下 向下
直线x=-3
直线x=1 直线x=3
( -3 , 0 )
(1,0) ( 3, 0)
1.抛物线y=ax2+k、抛物线y=a(x-h)2和抛物线y=ax2 的形状完全相同,开口方向一致; 当a>0时, 开口向上; 当a<0时,开口向上. 2.抛物线y=ax2+k可以由抛物线y=ax2向上或向下平移 |k|得到. (k>0,向上平移;k<0向下平移.) 抛物线y=a(x-h)2可以由抛物线y=ax2向左或向右平 移|h|得到. (h>0,向右平移;h<0向左平移.) 3.抛物线y=ax2+k有如下特点: (1)当a>0时, 开口向上,当a<0时,开口向下; (2)对称轴是y轴; (3)顶点是(0,k). 抛物线y=a(x-h)2有如下特点: (1)当a>0时, 开口向上,当a<0时,开口向上; (2)对称轴是x=h; (3)顶点是(h,0).
二次函数y=a(x-h)2 的图象和性质
y=ax2 (a≠0) 图 象
O
a>0 y
O顶点坐标 (0 ,0) (0 ,0) 对称轴 y轴 y轴 当x<0时, 增 当x<0时, y随着x的增大而增大。 y 随着 x 的增大而减小。 减 当x>0时, 当x>0时, y随着x的增大而减小。 性 y随着x的增大而增大。 x=0时,y最小=0 x=0时,y最大=0 极值 抛物线y=ax2 (a≠0)的形状是由|a|来确定的,一般说来, |a|越大,抛物线的开口就越小.
2
2
在同一坐标系中作出下列二次函数:
1 2 y x 2
1 y ( x 2) 2 2
1 2 y x 2 2
1 y ( x 2) 2 2
6 5 4
观察三条抛物线的 相互关系,并分别指 出它们的开口方向, 对称轴及顶点.
-8
y
1 2 x 2
y
1 x 2 2 2
1、若将抛物线y=-2(x-2)2的图象的 顶点移到原点,则下列平移方法正确 的是( C ) A、向上平移2个单位 B、向下平移2个单位 C、向左平移2个单位 D、向右平移2个单位
2、抛物线y=4(x-3)2的开口方向 向上 ,
对称轴是 直线x=3,顶点坐标 是 (3,0) ,抛物线是最 低 点, 当x= 抛物线与x轴交点坐标 (3,0) ,与y轴交
即:
1 2 向左平移 1 y x y ( x 1) 2 2 1个单位 2 1 2 向右平移 1 y x y ( x 1) 2 2 1个单位 2
1 y
-5 -4 -3 -2 -1 o 1 2 3 4 5 x -1 -2 1 2 y ( x 1 ) -3 2 -4 -5 -6 -7 -8 -9 1 2 1 y x -10 y ( x 1) 2
一般地,抛物线y=a(x-h)2有如下特点:
(1)对称轴是x=h; (2)顶点是(h,0). (3)抛物线y=a(x-h)2可 以由抛物线y=ax2向左或向 右平移|h|得到.
h>0,向右平移; h<0,向左平移
y
x
画出下列函数图象,并说出抛物线的 开口方向、对称轴、顶点,最大值或 最小值各是什么及增减性如何?。
二次函数y=ax2+c的性质
y=ax2+c
图象
a>0
a<0
c>0
开口 对称性 顶点
c<0
c>0
c<0
开口向下 开口向上 a的绝对值越大,开口越小 关于y轴对称
(0,c)
顶点是最低点
顶点是最高点
增减性
当x<0时,y随着x的增大而 当x<0时,y随着x的增大而 减小。当x>0时,y随着x的 增大。当x>0时,y随着x的 增大而减小。 增大而增大。
y=ax2+c (a≠0) 开口方向 顶点坐标 对称轴 增 减 性 极值
a>0 向上 (0 ,c) y轴
当x<0时, y随着x的增大而减小。 当x>0时, y随着x的增大而增大。
a<0 向下 (0 ,c) y轴
当x<0时, y随着x的增大而增大。 当x>0时, y随着x的增大而减小。
x=0时,y最小=0
解:先列表 描点
1 2 3 4
… … …
-4 -4.5
-3 -2
-2
-1
0
-0.5 0 -0.5 -2 -4.5 -4.5 -2 -0.5 0 -0.5 -2 -4.5
1
y -5 -4 -3 -2 -1 o 1 2 3 4 5 x -1 -2 1 2 y ( x 1 ) -3 2 -4 -5 -6 -7 -8 -9 1 -10 2 y ( x 1 ) x=-1
2
1 (1)抛物线 y ( x 1) 2 2 1 与 y ( x 1) 2 的开口 2
方向、对称轴、顶点?
1 (2)抛物线 y ( x 1) 2 2 1 2 1 2 y x y ( x 1) 2 2
有什么关系?
有什么关系?
1 1 1 2 2 2 抛物线 y ( x 1) 、y ( x 1) 与抛物线y x 2 2 2
3
2
1
-6
-4
-2
B
2
4
6
1 y ( x 2) 2 向左平移 2 2个单位
1 2 y x 2
向右平移 y 1 ( x 2) 2 2 2个单位
-1 -2 -3 -4
向左平移 向右平移 顶点(2,0) 顶点(0,0) 顶点(-2,0) 2个单位 2个单位 向左平移对称轴:y轴 向右平移 直线x=2 直线x=-2 2个单位 即直线: x=0 2个单位
相关文档
最新文档