西华大学 大物习题集 答案
大学物理习题册标准答案
大学物理习题册标准答案大学物理习题册答案————————————————————————————————作者:————————————————————————————————日期:2练习十三知识点:理想气体状态方程、温度、压强公式、能量均分原理、理想气体内能一、选择题1.容器中储有一定量的处于平衡状态的理想气体,温度为T ,分子质量为m ,则分子速度在x 方向的分量平均值为(根据理想气体分子模型和统计假设讨论) ( )(A )183πx kTmυ=;(B )83πx kT mυ=;(C )m kTx 23=υ;(D )0=x υ。
解:(D)平衡状态下,气体分子在空间的密度分布均匀,沿各个方向运动的平均分子数相等,分子速度在各个方向的分量的各种平均值相等,分子数目愈多,这种假设的准确度愈高.2.若理想气体的体积为V ,压强为p ,温度为T ,一个分子的质量为m ,k 为玻耳兹曼常量,R 为摩尔气体常量,则该理想气体的分子数为()(A )pV /m ;(B )pV /(kT );(C )pV /(RT );(D )pV /(mT )。
解: (B)理想气体状态方程NkT T N R N RT m N Nm RT M M pV AA mol ====3.根据气体动理论,单原子理想气体的温度正比于()(A )气体的体积;(B )气体的压强;(C )气体分子的平均动量;(D )气体分子的平均平动动能。
解: (D)kT v m k 23212==ε (分子的质量为m )4.有两个容器,一个盛氢气,另一个盛氧气,如果两种气体分子的方均根速率相等,那么由此可以得出下列结论,正确的是()(A )氧气的温度比氢气的高;(B )氢气的温度比氧气的高;(C )两种气体的温度相同;(D )两种气体的压强相同。
解:(A) kT v m k 23212==ε,2222H O H O T T m m =(分子的质量为m ) 5.如果在一固定容器内,理想气体分子速率都提高为原来的2倍,那么()(A )温度和压强都升高为原来的2倍;(B )温度升高为原来的2倍,压强升高为原来的4倍;(C )温度升高为原来的4倍,压强升高为原来的2倍;(D )温度与压强都升高为原来的4倍。
大物作业题1-6及答案
作业题一(静止电荷的电场)班级:_____________ 姓名:_____________ 学号:_____________一、选择题1. 一均匀带电球面,电荷面密度为σ,球面内电场强度处处为零,球面上面元d S 带有σ d S 的电荷,该电荷在球面内各点产生的电场强度(A) 处处为零. (B) 不一定都为零. (C) 处处不为零. (D) 无法判定 .[ ] 2. 电荷面密度均为+σ的两块“无限大”均匀带电的平行平板如图放置,其周围空间各点电场强度E随位置坐标x 变化的关系曲线为:(设场强方向向右为正、向左为负) [ ]3. 将一个试验电荷q 0 (正电荷)放在带有负电荷的大导体附近P 点处(如图),测得它所受的力为F .若考虑到电荷q 0不是足够小,则 (A) F / q 0比P 点处原先的场强数值大.(B) F / q 0比P 点处原先的场强数值小. (C) F / q 0等于P 点处原先场强的数值.(D) F / q 0与P 点处原先场强的数值哪个大无法确定. [ ]4. 如图所示,一个电荷为q 的点电荷位于立方体的A 角上,则通过侧面abcd 的电场强度通量等于:(A)06εq . (B) 012εq. (C) 024εq . (D) 048εq . [ ]5. 高斯定理 ⎰⎰⋅=VSV S E 0/d d ερ(A) 适用于任何静电场. (B) 只适用于真空中的静电场. (C) 只适用于具有球对称性、轴对称性和平面对称性的静电场.(D) 只适用于虽然不具有(C)中所述的对称性、但可以找到合适的高斯面的静电场. [ ]02εP6. 如图所示,两个“无限长”的、半径分别为R 1和R 2的共轴圆柱面均匀带电,沿轴线方向单位长度上所带电荷分别为λ1和λ2,则在内圆柱面里面、距离轴线为r 处的P 点的电场强度大小E 为: (A)r 0212ελλπ+. (B) 20210122R R ελελπ+π(C) 1012R ελπ. (D) 0. [ ]7. 点电荷Q 被曲面S 所包围 , 从无穷远处引入另一点电荷q 至曲面外一点,如图所示,则引入前后: (A) 曲面S 的电场强度通量不变,曲面上各点场强不变. (B) 曲面S 的电场强度通量变化,曲面上各点场强不变. (C) 曲面S 的电场强度通量变化,曲面上各点场强变化. (D) 曲面S 的电场强度通量不变,曲面上各点场强变化. [ ] 8. 根据高斯定理的数学表达式⎰∑⋅=Sq S E 0/d ε可知下述各种说法中,正确的是:(A) 闭合面内的电荷代数和为零时,闭合面上各点场强一定为零.(B) 闭合面内的电荷代数和不为零时,闭合面上各点场强一定处处不为零. (C) 闭合面内的电荷代数和为零时,闭合面上各点场强不一定处处为零.(D) 闭合面上各点场强均为零时,闭合面内一定处处无电 [ ]二、填空题9. A 、B 为真空中两个平行的“无限大”均匀带电平面,已知两平面间的电场强度大小为E 0,两平面外侧电场强度大小都为E 0/3,方向如图.则A 、B 两平面上的电荷面密度分别为σA =_______________, σB =____________________.10. 三个平行的“无限大”均匀带电平面,其电荷面密度都是+σ,如图所示,则A 、B 、C 、D 三个区域的电场强 度分别为:E A =_________________,E B =_____________, E C =_________,E D =___________ (设方向向右为正).qA BE 0E 0/3E 0/3 +σ+σ+σABCD11. 一半径为R 的带有一缺口的细圆环,缺口长度为d (d<<R)环上均匀带有正电,电荷为q ,如图所示.则圆心O 处的场强大小E =__________________ __________,场强方向为______________________.12. 如图所示,真空中两个正点电荷Q ,相距2R .若以其中一点电荷所在处O 点为中心,以R 为半径作高斯球面S ,则通过该球面的电场强 度通量=______________;若以 0r 表示高斯面外法线方向的单位矢量,则高斯面上a 、b 两点的电场强度分别为________________________. 三、计算题13. 带电细线弯成半径为R 的半圆形,电荷线密度为λ=λ0sin φ,式中λ0为一常数,φ为半径R 与x 轴所成的夹角,如图所示.试求环心O 处的电场强度.14. “无限长”均匀带电的半圆柱面,半径为R ,设半圆柱面沿轴线OO'单位长度上的电荷为λ,试求轴线上一点的电场强度.15. 一半径为R 的带电球体,其电荷体密度分布为 ρ =Ar (r ≤R ) , ρ =0 (r >R ) A 为一常量.试求球体内外的场强分布.16. 图中虚线所示为一立方形的高斯面,已知空间的场强分布为:E x=bx,E y=0,E z=0.高斯面边长a=0.1 m,常量b=1000 N/(C·m).试求该闭合面中包含的净电荷.(真空介电常数 0=8.85×10-12C2·N-1·m-2 ) x作业题二(电势)班级:_____________ 姓名:_____________ 学号:_____________一、选择题1. 在点电荷+q 的电场中,若取图中P 点处为电势零点 ,则M 点的电势为 (A)a q 04επ. (B) a q 08επ.(C) a q 04επ-. (D) aq08επ-. [ ]2. 如图所示,两个同心球壳.内球壳半径为R 1,均匀带有电荷Q ;外球壳半径为R 2,壳的厚度忽略,原先不带电,但与地相连接.设地为电势零点,则在内球壳里面,距离球心为r 处的P 点的场强大小及电势分别为: (A) E =0,U =104R Q επ. (B) E =0,U =⎪⎪⎭⎫ ⎝⎛-π21114R R Q ε.(C) E =204r Q επ,U =r Q04επ (D) E=204r Q επ,U =104R Q επ.[ ]3. 关于静电场中某点电势值的正负,下列说法中正确的是: (A) 电势值的正负取决于置于该点的试验电荷的正负. (B) 电势值的正负取决于电场力对试验电荷作功的正负. (C) 电势值的正负取决于电势零点的选取.(D) 电势值的正负取决于产生电场的电荷的正负. [ ] 4. 点电荷-q 位于圆心O 处,A 、B 、C 、D 为同一圆周上的四点,如图所示.现将一试验电荷从A 点分别移动到B 、C 、D 各点,则 (A) 从A 到B ,电场力作功最大.(B) 从A 到C ,电场力作功最大. (C) 从A 到D ,电场力作功最大.(D) 从A 到各点,电场力作功相等. [ ]5. 如图所示,直线MN 长为2l ,弧OCD 是以N 点为中心,l 为半径的半圆弧,N 点有正电荷+q ,M 点有负电荷-q .今将一试验电荷+q 0从O 点出发沿路径OCDP 移到无穷远处,设无穷远处电势为零,则电场力作功A 7. -(A) A <0 , 且为有限常量. (B) A >0 ,且为有限常量.(C) A =∞. (D) A =0. [ ] 6. 半径为r 的均匀带电球面1,带有电荷q ,其外有一同心的半径为R 的均匀带电球面2,带有电荷Q ,则此两球面之间的电势差U 1-U 2为: (A)⎪⎭⎫ ⎝⎛-πR r q 1140ε . (B) ⎪⎭⎫ ⎝⎛-πr R Q 1140ε .(C) ⎪⎭⎫⎝⎛-πR Q r q 041ε . (D)r q 04επ . [ ] 7. 两块面积均为S 的金属平板A 和B 彼此平行放置,板间距离为d (d 远小于板的线度),设A 板带有电荷q 1,B 板带有电荷q 2,则AB两板间的电势差U AB 为(A) d S q q 0212ε+. (B) d Sq q 0214ε+. (C) d S q q 0212ε-. (D) d Sq q 0214ε-. [ ]8. 面积为S 的空气平行板电容器,极板上分别带电量±q ,若不考虑边缘效应,则两极板间的相互作用力为(A)S q 02ε. (B) S q 022ε.(C) 2022S q ε. (D) 202Sq ε. [ ] 二、填空题9. 如图所示,两同心带电球面,内球面半径为r 1=5 cm ,带电荷q 1=3×10-8C ;外球面半径为r 2=20 cm , 带电荷q 2=-6×108C ,设无穷远处电势为零,则空间另一电势为零的球面半径r = __________________.10. 真空中一半径为R 的均匀带电球面,总电荷为Q .今在球面上挖去很小一块面积△S (连同其上电荷),若电荷分布不改变,则挖去小块后球心处电势(设无穷远处电势为零)为________________.11. 把一个均匀带有电荷+Q 的球形肥皂泡由半径r 1吹胀到r 2,则半径为R (r 1<R <r 2)的球面上任一点的场强大小E 由______________变为______________;电势U 由 __________________________变为________________(选无穷远处为电势零点).12. 静电场的环路定理的数学表示式为:______________________.该式的物理意义是:____________________________________________________________.该定理表明,静电场是______ _________场.三、计算题AS q 1q 213. 一“无限大”平面,中部有一半径为R 的圆孔,设平面上均匀带电,电荷面密度为σ.如图所示,试求通过小孔中心O 并与平面垂直的直线上各点的场强和电势(选O 点的电势为零).14. 图示为一个均匀带电的球层,其电荷体密度为ρ,球层内表面半径为R 1,外表面半径为R 2.设无穷远处为电势零点,求空腔内任一点的电势.15.两个带等量异号电荷的均匀带电同心球面,半径分别为R1=0.03 m和R2=0.10 m.已知两者的电势差为450 V,求内球面上所带的电荷.16. 有两根半径都是R的“无限长”直导线,彼此平行放置,两者轴线的距离是d (d≥2R),沿轴线方向单位长度上分别带有+λ和-λ的电荷,如图所示.设两带电导线之间的相互作用不影响它们的电荷分布,试求两导线间的电势差.作业题三(导体和电介质)班级:_____________ 姓名:_____________ 学号:_____________一、选择题 1. A 、B 为两导体大平板,面积均为S ,平行放置,如图所示.A 板带电荷+Q 1,B 板带电荷+Q 2,如果使B 板接地,则AB 间电场强度的大小E 为 [ ](A) S Q 012ε .(B) SQ Q 0212ε-.(C) S Q 01ε. (D) SQ Q 0212ε+.2. 一带正电荷的物体M ,靠近一原不带电的金属导体N ,N 的左端感生出负电荷,右端感生出正电荷.若将N 的左端接地,如图所示,则(A) N 上有负电荷入地. (B) N 上有正电荷入地. (C ) N 上的电荷不动.(D) N 上所有电荷都入地. [ ] 3. 一导体球外充满相对介电常量为εr 的均匀电介质,若测得导体表面附近场强为E ,则导体球面上的自由电荷面密度σ为 [ ] (A) ε 0 E . (B) ε 0 ε r E . (C) ε r E . (D) (ε 0 ε r - ε 0)E .4. 一平行板电容器始终与端电压一定的电源相联.当电容器两极板间为真空时,电场强度为0E ,电位移为0D,而当两极板间充满相对介电常量为εr 的各向同性均匀电介质时,电场强度为E ,电位移为D,则 [ ](A) r E E ε/0 =,0D D =. (B) 0E E =,0D D rε=.(C) r E E ε/0 =,r D D ε/0 =. (D) 0E E =,0D D =. 5. 在静电场中,作闭合曲面S ,若有0d =⎰⋅SS D (式中D为电位移矢量),则S 面1+Q 2B内必定 [ ](A) 既无自由电荷,也无束缚电荷. (B) 没有自由电荷. (C) 自由电荷和束缚电荷的代数和为零.(D) 自由电荷的代数和为零.6. 一个大平行板电容器水平放置,两极板间的一半空间充有各向同性均匀电介质,另一半为空气,如图.当两极板带上恒定的等量异号电荷时,有一个质量为m 、带电荷为+q 的质点,在极板间的空气区域中处于平衡.此后,若把电介质抽去 ,则该质点 [ ] (A) 保持不动. (B) 向上运动. (C) 向下运动. (D) 是否运动不能确定.7.一个平行板电容器,充电后与电源断开,当用绝缘手柄将电容器两极板间距离拉大,则两极板间的电势差U 12、电场强度的大小E 、电场能量W 将发生如下变化: [ ](A) U 12减小,E 减小,W 减小.(B) U 12增大,E 增大,W 增大. (C) U 12增大,E 不变,W 增大.(D) U 12减小,E 不变,W 不变. 8. 如图所示, 一球形导体,带有电荷q ,置于一任意形状的空腔导体中.当用导线将两者连接后,则与未连接前相比系统静电场能量将 (A) 增大. (B) 减小.(C) 不变. (D) 如何变化无法确定.[ ] 二、填空题9. 半径为R 1和R 2的两个同轴金属圆筒,其间充满着相对介电常量为εr 的均匀介质.设两筒上单位长度带有的电荷分别为+λ和-λ,则介质中离轴线的距离为r 处的电位移矢量的大小D =____________,电场强度的大小 E =____________.+Q10. 一平行板电容器,充电后与电源保持联接,然后使两极板间充满相对介电常量为εr的各向同性均匀电介质,这时两极板上的电荷是原来的______倍;电场强度是原来的_________倍;电场能量是原来的_________倍.11. 一平行板电容器,充电后切断电源,然后使两极板间充满相对介电常量为εr 的各向同性均匀电介质.此时两极板间的电场强度是原来的____________倍;电场能量是原来的___________ 倍.12. 分子的正负电荷中心重合的电介质叫做_______________ 电介质.在外电场作用下,分子的正负电荷中心发生相对位移,形成________________________.三、计算题13. 如图所示,一内半径为a、外半径为b的金属球壳,带有电势零点,试求:(1) 球壳内外表面上的电荷.(2) 球心O点处,由球壳内表面上电荷产生的电势.(3) 球心O点处的总电势.14. 半径分别为R1和R2 (R2 > R1 )的两个同心导体薄球壳,分别带有电荷Q1和Q2,今将内球壳用细导线与远处半径为r的导体球相联,如图所示, 导体球原来不带电,试求相联后导体球所带电荷q.15. 假想从无限远处陆续移来微量电荷使一半径为R的导体球带电.(1) 当球上已带有电荷q时,再将一个电荷元d q从无限远处移到球上的过程中,外力作多少功?(2) 使球上电荷从零开始增加到Q的过程中,外力共作多少功?16. 一电容器由两个很长的同轴薄圆筒组成,内、外圆筒半径分别为R1 = 2 cm,R2 = 5 cm,其间充满相对介电常量为εr的各向同性、均匀电介质.电容器接在电压U = 32 V的电源上,(如图所示),试求距离轴线R = 3.5 cm处的A点的电场强度和A点与外筒间的电势差.作业题四(电流的磁场)班级:_____________ 姓名:_____________ 学号:_____________一、选择题1. 如图,边长为a 的正方形的四个角上固定有四个电荷均为q 的点电荷.此正方形以角速度ω 绕AC 轴旋转时,在中心O 点产生的磁感强度大小为B 1;此正方形同样以角速度ω 绕过O 点垂直于正方形平面的轴旋转时,在O 点产生的磁感强度的大小为B 2,则B 1与B 2间的关系为 [ ](A) B 1 = B 2. (B) B 1 = 2B 2. (C) B 1 = 21B 2. (D) B 1 = B 2/4.2. 电流I 由长直导线1沿平行bc 边方向经a 点流入由电阻均匀的导线构成的正三角形线框,再由b 点沿垂直ac 边方向流出,经长直导线2返回电源(如图).若载流直导线1、2和三角形框中的电流在框中心O 点产生的磁感强度分别用1B 、2B和3B 表示,则O 点的磁感强度大小(A) B = 0,因为B 1 = B 2 = B 3 = 0.(B) B = 0,因为虽然B 1≠ 0、B 2≠ 0,但021=+B B,B 3 = 0.(C) B ≠ 0,因为虽然B 2 = 0、B 3= 0,但B 1≠ 0.(D) B ≠ 0,因为虽然021≠+B B,但B 3≠ 0. [ ]3. 通有电流I 的无限长直导线有如图三种形状,则P ,Q ,O 各点磁感强度的大小B P ,B Q ,B O 间的关系为:[ ](A) B P > B Q > B O . (B) B Q > B P > B O .(C) B Q > B O > B P . (D) B O > B Q > B P .4. 边长为l 的正方形线圈,分别用图示两种方式通以电流I (其中ab 、cd 与正方形共面),在这两种情况下,线圈在其中心产生的磁感强度的大小分别为: (A) 01=B ,02=B . (B) 01=B ,l I B π=0222μ.(C) lIB π=0122μ,02=B . (D)Cq3.al I B π=0122μ,lIB π=0222μ. [ ] 5. 如图,在一圆形电流I 所在的平面内,选取一个同心圆形闭合回路L ,则由安培环路定理可知(A) 0d =⎰⋅Ll B,且环路上任意一点B = 0.(B) 0d =⎰⋅Ll B,且环路上任意一点B ≠0.(C) 0d ≠⎰⋅Ll B,且环路上任意一点B ≠0.(D)0d ≠⎰⋅Ll B ,且环路上任意一点B =常量. [ ]6. 如图,流出纸面的电流为2I ,流进纸面的电流为I ,则下述各式中哪一个是正确的?(A)I l H L 2d 1=⎰⋅ . (B)I l H L =⎰⋅2d(C) I l H L -=⎰⋅3d. (D)I l H L -=⎰⋅4d. [ ]7. 图中,六根无限长导线互相绝缘,通过电流均为I ,区域Ⅰ、Ⅱ、Ⅲ、Ⅳ均为相等的正方形,哪一个区域指向纸内的磁通量最大? (A) Ⅰ区域. (B) Ⅱ区域. (C) Ⅲ区域. (D) Ⅳ区域. (E) 最大不止一个. [ ]8. 如图两个半径为R 的相同的金属环在a 、b 两点接触(ab 连线为环直径),并相互垂直放置.电流I 沿ab 连线方向由a 端流入,b 端流出,则环中心O 点的磁感强度的大小为 (A) 0. (B) RI40μ.(C) R I 420μ. (D) R I0μ. (E)RI820μ. [ ] 4ⅠⅡⅢⅣIIba二、填空题9. 如图,在无限长直载流导线的右侧有面积为S 1和S 2的两个矩形回路.两个回路与长直载流导线在同一平面,且矩形回路的一边与长直载流导线平行.则通过面积为S 1的矩形回路的磁通量与通过面积为S 2的矩形回路的磁通量之比为____________. 10. 如图,平行的无限长直载流导线A 和B ,电流强度均为I ,垂直纸面向外,两根载流导线之间相距为a ,则(1) AB 中点(P 点)的磁感强度=p B_____________.(2) 磁感强度B沿图中环路L 的线积分 =⎰⋅Ll Bd __________________________________.11. 图中所示的一无限长直圆筒,沿圆周方向上的面电流密度(单位垂直长度上流过的电流)为i ,则圆筒内部的磁感强度的大 小为B =________,方向_______________.12. 将半径为R 的无限长导体薄壁管(厚度忽略)沿轴向割去一宽度为h ( h << R )的无限长狭缝后,再沿轴向流有在管壁上均匀分布的电流,其面电流密度(垂直于电流的单位长度截线上的电流)为i (如上图),则管轴线磁感强度的大小是__________________.三、计算题13. 半径为R 的无限长圆柱形导体和内半径为R 0,外半径也为R 的无限长圆筒形导体,都通有沿轴向的,在横截面上均匀分布的电流I ,导体的磁导率都为μ0.今取长为l 、宽为2 R的矩10.l ′ ′l形平面ABCD 和A ′B ′C ′D ′,AD 及A ′D ′正好在导体的轴线上,如图所示.(1) 通过ABCD 的磁通量大小为多少?(2) 通过A ′B ′C ′D ′的磁通量为多少? (3) 若电流I 不变,外半径R 不变,圆筒壁变薄,直至壁厚趋于零,再求(2) .14. 一根无限长导线弯成如图形状,设各线段都在同一平面内(纸面内),其中第二段是半径为R 的四分之一圆弧,其余为直线.导线中通有电流I ,求图中O 点处的磁感强度.15. 平面闭合回路由半径为R 1及R 2 (R 1 > R 2 )的两个同心半圆弧和两个直导线段组成(如图).已知两个直导线段在两半圆弧中心O 处的磁感强度为零,且闭合载流回路在O 处产生的总的磁感强度B 与半径为R 2的半圆弧在O 点产生的磁感强度B 2的关系为B = 2 B 2/3,求R 1与R 2的关系.R 1 R 2 OI16. 如图所示,一半径为R 的均匀带电无限长直圆筒,面电荷密度为σ.该筒以角速度ω绕其轴线匀速旋转.试求圆筒内部的磁感强度.作业题五(电流在磁场中受力)班级:_____________ 姓名:_____________ 学号:_____________一、选择题1. 按玻尔的氢原子理论,电子在以质子为中心、半径为r 的圆形轨道上运动.如果把这样一个原子放在均匀的外磁场中,使电子轨道平面与B垂直,如图所示,则在r 不变的情况下,电子轨道运动的角速度将:[ ](A) 增加. (B) 减小. (C) 不变. (D) 改变方向. 2. 如图,一个电荷为+q 、质量为m 的质点,以速度v沿x 轴射入磁感强度为B 的均匀磁场中,磁场方向垂直纸面向里,其范围从x = 0延伸到无限远,如果质点在x = 0和y = 0处进入磁场,则它将以速度v-从磁场中某一点出来,这点坐标是x = 0 和 [ ] (A) qB m y v +=. (B) qB m y v2+=. (C) qB m y v 2-=. (D) qBm y v-=.3. 一铜条置于均匀磁场中,铜条中电子流的方向如图所示.试问下述哪一种情况将× ××会发生? (A) 在铜条上a 、b 两点产生一小电势差,且U a > U b . (B) 在铜条上a 、b 两点产生一小电势差,且U a < U b . (C) 在铜条上产生涡流. (D) 电子受到洛伦兹力而减速. [ ] 4. 如图,无限长直载流导线与正三角形载流线圈在同一平面内,若长直导线固定不动,则载流三角形线圈将 [ ](A) 向着长直导线平移. (B) 离开长直导线平移. (C) 转动. (D) 不动.5. 长直电流I 2与圆形电流I 1共面,并与其一直径相重合如图(但两者间绝缘),设长直电流不动,则圆形电流将 (A) 绕I 2旋转. (B) 向左运动. (C) 向右运动. (D) 向上运动.(E) 不动. [ ] 6. 如图,在一固定的载流大平板附近有一载流小线框能自由转动或平动.线框平面与大平板垂直.大平板的电流与线框中电流方向如图所示,则通电线框的运动情况对着从大平板看是: [ ] (A) 靠近大平板. (B) 顺时针转动.(C) 逆时针转动. (D) 离开大平板向外运动. 7. 两个同心圆线圈,大圆半径为R ,通有电流I 1;小圆半径为r ,通有电流I 2,方向如图.若r << R (大线圈在小线圈处产生的磁场近似为均匀磁场),当它们处在同一平面内时小线圈所受磁力矩的大小为 [ ]I 116. I 1 I 2O r RI 1 I 2(A)Rr I I 22210πμ. (B)Rr I I 22210μ.(C)rR I I 22210πμ. (D)0.8. 两根载流直导线相互正交放置,如图所示.I 1沿y 轴的正方向,I 2沿z 轴负方向.若载流I 1的导线不能动,载流I 2的导线可以自由运动,则载流I 2的导线开始运动的趋势是 [ ] (A) 沿x 方向平动. (B) 绕x 轴转动. (C) 绕y 轴转动. (D) 无法判断.二、填空题9. 如图,均匀磁场中放一均匀带正电荷的圆环,其线电荷密度为λ,圆环可绕通过环心O 与环面垂直的转轴旋转.当圆环以角速度ω 转动时,圆环受到的磁力矩为_________________,其方向__________________________.10. 有一半径为a ,流过稳恒电流为I 的1/4圆弧形载流导线bc ,按图示方式置于均匀外磁场B中,则该载流导线所受的 安培力大小为_______________________.11. 如图所示,在真空中有一半径为a 的3/4圆弧形的导线,其中通以稳恒电流I ,导线置于均匀外磁场B 中,且B与导线所在平面垂直.则该载流导线bc 所受的磁力大小为_________________.12. 如图所示,在真空中有一半圆形闭合线圈,半径为a ,流过稳恒电流I ,则圆心O 处的电流元l I d 所受的安培力Fd 的大小为_______________,方向_________________.y zxI 1I 2c aIIlI d三、计算题13. 在一顶点为45°的扇形区域,有磁感强度为B 方向垂直指向纸面内的均匀磁场,如图.今有一电子(质量为m ,电荷为-e )在底边距顶点O 为l 的地方,以垂直底边的速度 v射入该磁场区域,若要使电子不从上面边界跑出,电子的速度最大不应超过多少?14. 一圆线圈的半径为R ,载有电流I ,置于均匀外磁场B中(如图示).在不考虑载流圆线圈本身所激发的磁场的情况下,求线圈导线上的张力.(载流线圈的法线方向规定与B的方向相同.)l 45° vBO15. 一矩形线圈边长分别为a =10 cm 和b =5 cm ,导线中电流为I = 2 A ,此线圈可绕它的一边OO '转动,如图.当加上正y 方向的B =0.5 T 均匀外磁场B,且与线圈平面成30°角时,线圈的角加速度为β = 2 rad/s 2,求∶(1) 线圈对OO '轴的转动惯量J =?(2) 线圈平面由初始位置转到与B 垂直时磁力所做的功?16. 一根同轴线由半径为R 1的长导线和套在它外面的内半径为R 2、外半径为R 3的同轴导体圆筒组成.中间充满磁导率为μ的各向同性均匀非铁磁绝缘材料,如图.传导电流I 沿导线向上流去,由圆筒向下流回,在它们的截面上电流都是均匀分布的.求同轴线内外的磁感强度大小B 的分布.O xyz I30° BO ′ a bI作业题六(电磁感应)班级:_____________ 姓名:_____________ 学号:_____________一、选择题1. 将形状完全相同的铜环和木环静止放置,并使通过两环面的磁通量随时间的变化率相等,则不计自感时(A) 铜环中有感应电动势,木环中无感应电动势. (B) 铜环中感应电动势大,木环中感应电动势小. (C) 铜环中感应电动势小,木环中感应电动势大. (D) 两环中感应电动势相等. [ ]2. 如图所示,矩形区域为均匀稳恒磁场,半圆形闭合导线回路在纸面内绕轴O 作逆时针方向匀角速转动,O 点是圆心且恰好落在磁场的边缘上,半圆形闭合导线完全在磁场外时开始计时.图(A)—(D)的 --t 函数图象中哪一条属于半圆形导线回路中产生的感应电动势?[ ]3. 一块铜板垂直于磁场方向放在磁感强度正在增大的磁场中时,铜板中出现的涡流(感应电流)将 (A) 加速铜板中磁场的增加. (B) 减缓铜板中磁场的增加.(C) 对磁场不起作用. (D) 使铜板中磁场反向. [ ] 4. 如图所示,导体棒AB 在均匀磁场B 中 绕通过C 点的垂直于棒长且沿磁场方向的轴OO ' 转动(角速度ω 与B同方向),BC 的长t O (A)t O(C)t O (B)t O(D)度为棒长的31,则(A) A 点比B 点电势高.(B) A 点与B 点电势相等.(B) A 点比B 点电势低.(D)有稳恒电流从A 点流向B 点. [ ]5. 如图所示,直角三角形金属框架abc 放在均匀磁场中,磁场B平行于ab 边,bc 的长度为l .当金属框架绕ab 边以匀角速度ω转动时,abc 回路中的感应电动势 和a 、c 两点间的电势差U a – U c 为 [ ] (A) =0,U a – U c =221l B ω.(B) =0,U a – U c =221l B ω-. (C) =2l B ω,U a – U c =221l B ω.(D) =2l B ω,U a – U c =221l B ω-.6. 如图所示,两个线圈P 和Q 并联地接到一电动势恒定的电源上.线圈P 的自感和电阻分别是线圈Q 的两倍,线圈P 和Q 之间的互感可忽略不计.当达到稳定状态后,线圈P 的磁场能量与Q 的磁场能量的比值是[](A) 4. (B) 2. (C) 1. (D) 21.7. 在感应电场中电磁感应定律可写成t l E LK d d d Φ-=⎰⋅ ,式中K E 为感应电场的电场强度.此式表明:(A) 闭合曲线L 上K E处处相等.(B) 感应电场是保守力场. (C) 感应电场的电场强度线不是闭合曲线. (D) 在感应电场中不能像对静电场那样引入电势的概念. [ ] 8. 对位移电流,有下述四种说法,请指出哪一种说法正确. (A) 位移电流是指变化电场. (B) 位移电流是由线性变化磁场产生的. (C) 位移电流的热效应服从焦耳─楞次定律. (D) 位移电流的磁效应不服从安培环路定理. [ ]二、填空题Ba b clω9. 如图所示,aOc 为一折成∠形的金属导线(aO =Oc=L ),位于xy 平面中,磁感强度为 B的匀强磁场垂直于xy 平面.当aOc 以速度v沿x 轴正向运动时,导线上a 、c两点间电势差U ac =____________;当aOc 以速度v沿y 轴正向运动时,a 、c 两点的电势相比较, 是____________点电势高.10. 一导线被弯成如图所示形状,acb 为半径为R 的四分之三圆弧,直线段Oa 长为R .若此导线放在匀强磁场B 中,B的方向垂直图面向内.导线以角速度ω在图面内绕O 点匀速转动,则此导线中的动生电动势 i =___________ ,电势最高的点是________________________.11. 一长直导线旁有一长为b ,宽为a 的矩形线圈,线圈与导线共面,长度为b 的边与导线平行且与直导线相距为d ,如图.线圈与导线的互感系数为 ______________________.12. 一无铁芯的长直螺线管,在保持其半径和总匝数不变的情况下,把螺线管拉长一些,则它的自感系数将____________________.三、计算题13. 均匀磁场 B被限制在半径R =10 cm 的无限长圆柱空间内,方向垂直纸面向里.取一固定的等腰梯形回路abcd ,梯形所在平面的法向与圆柱空间的轴平行,位置如图所示.设磁感强度以d B /d t =1 T/s 的匀速率增加,已知 π=31θ,cm 6==Ob Oa ,求等腰梯形回路中感生电动势的大小和方向.x×××××c14.如图所示,有一半径为r =10 cm 的多匝圆形线圈,匝数N =100,置于均匀磁场B中(B = 0.5T ).圆形线圈可绕通过圆心的轴O 1O 2转动,转速 n =600 rev/min .求圆线圈自图示的初始位置转过π21时,(1) 线圈中的瞬时电流值(线圈的电阻R 为 100 Ω,不计自感);(2) 圆心处的磁感强度.(μ0 =4π×10-7 H/m)15. 两个半径分别为R 和r 的同轴圆形线圈相距x ,且R >>r ,x >>R .若大线圈通有电流I 而小线圈沿x 轴方向以速率v 运动,试求x =NR 时(N 为正数)小线圈回路中产生的感应电动势的大小.16. 载有电流的I 长直导线附近,放一导体半圆环MeN 与长直导线共面,且端点MN 的连线与长直导线垂直.半圆环的半径为b ,环心O 与导线相距a .设半圆环以速度 v平行导线平移,求半圆环内感应电动势的大小和方向以及MN 两端的电压U M - U N .。
大学物理B智慧树知到课后章节答案2023年下西华大学
大学物理B智慧树知到课后章节答案2023年下西华大学西华大学第一章测试1.()一小球沿斜面向上运动,其运动方程为(SI),则小球运动到最高点的时刻是:A: B: C: D:答案:2.()某物体的运动规律为,式中的k为大于零的常数。
当t=0时,初速为,则速度v与时间t的函数关系是:A: B: C: D:答案:3.一运动质点在某瞬时位于矢径r(x,y)的端点处,其速度大小为( )A: B: C: D:答案:4.一质点沿半径为R的圆周作匀速率运动,每t秒转一圈,在2t时间间隔中,其平均速度大小和平均速率大小分别为( )A: B: C: D:答案:5.对于沿曲线运动的物体,以下几种说法中哪一种是正确的( )A:由于速度沿切线方向,法向分速度必为零,因此法向加速度必为零 B:法向加速度必不为零 C:若物体的加速度a为恒矢量,它一定作匀变速率运动 D:若物体作匀速率运动,其总加速度必为零 E:切向加速度必不为零答案:法向加速度必不为零6.某质点作直线运动的运动学方程为x=3t-5t3 + 6 (SI),则该质点作( )。
A:匀加速直线运动,加速度沿x轴正方向 B:变加速直线运动,加速度沿x轴负方向 C:变加速直线运动,加速度沿x轴正方向 D:匀加速直线运动,加速度沿x轴负方向答案:变加速直线运动,加速度沿x轴负方向7.一质点作直线运动,某时刻的瞬时速度,瞬时加速度,则一秒钟后质点的速度()A:不能确定 B:等于零 C:等于-2 m/s D:等于2 m/s答案:不能确定8.质点沿半径为R的圆周作匀速率运动,每T秒转一圈.在2T时间间隔中,其平均速度大小与平均速率大小分别为()A: 0 , 0 B:2p R/T , 0 C:0 , 2p R/T D:2p R/T , 2p R/T答案:0 , 2p R/T9.对于沿曲线运动的物体,以下几种说法中哪一种是正确的()A:法向加速度必不为零(拐点处除外) B:若物体的加速度为恒矢量,它一定作匀变速率运动C:由于速度沿切线方向,法向分速度必为零,因此法向加速度必为零 D:若物体作匀速率运动,其总加速度必为零 E:切向加速度必不为零答案:法向加速度必不为零(拐点处除外)10.一物体从某一确定高度以的速度水平抛出,已知它落地时的速度为,那么它运动的时间是()A:B:C:D:答案:第二章测试1.两滑块A、B,质量分别为和,与图中所示斜面间的摩擦系数分别为和。
大学物理课后习题答案上册和下册
大学物理习题及解答习题一1-1 |r ∆|与r ∆有无不同?t d d r 和t d d r 有无不同? t d d v 和t d d v有无不同?其不同在哪里?试举例说明.解:(1)r ∆是位移的模,∆r 是位矢的模的增量,即r ∆12r r -=,12r r r -=∆; (2)t d d r 是速度的模,即t d d r ==v tsd d . t rd d 只是速度在径向上的分量.∵有r r ˆr =(式中r ˆ叫做单位矢),则t ˆr ˆt r t d d d d d d r rr += 式中t rd d 就是速度径向上的分量,∴t r t d d d d 与r 不同如题1-1图所示.题1-1图(3)t d d v 表示加速度的模,即t v a d d =,t v d d 是加速度a 在切向上的分量. ∵有ττ (v =v 表轨道节线方向单位矢),所以t v t v t v d d d d d d ττ +=式中dt dv就是加速度的切向分量.(t tr d ˆd d ˆd τ 与的运算较复杂,超出教材规定,故不予讨论) 1-2 设质点的运动方程为x =x (t ),y =y (t ),在计算质点的速度和加速度时,有人先求出r =22y x +,然后根据v =t rd d ,及a =22d d t r 而求得结果;又有人先计算速度和加速度的分量,再合成求得结果,即v =22d d d d ⎪⎭⎫ ⎝⎛+⎪⎭⎫ ⎝⎛t y t x 及a =222222d d d d ⎪⎪⎭⎫ ⎝⎛+⎪⎪⎭⎫ ⎝⎛t y t x 你认为两种方法哪一种正确?为什么?两者差别何在?解:后一种方法正确.因为速度与加速度都是矢量,在平面直角坐标系中,有j y i x r+=,jt y i t x t r a jt y i t x t r v222222d d d d d d d d d d d d +==+==∴故它们的模即为222222222222d d d d d d d d ⎪⎪⎭⎫ ⎝⎛+⎪⎪⎭⎫ ⎝⎛=+=⎪⎭⎫ ⎝⎛+⎪⎭⎫ ⎝⎛=+=t y t x a a a t y t x v v v y x y x而前一种方法的错误可能有两点,其一是概念上的错误,即误把速度、加速度定义作22d d d d t r a trv ==其二,可能是将22d d d d t r tr 与误作速度与加速度的模。
大学物理课后习题解答答案
某点的弧长 v0 , b 都是常量,求:(1) t 时刻质点的加速度;(2) t 为何值时,加速度在数
值上等于 b 。
解:(1)
v
ds dt
v0
bt
a
dv dt
b
an
v2 R
(v0
bt)2 R
则
a
a2 an2
b2 (v0 bt)4 R2
加速度与半径的夹角为
(2)由题意应有
arctan a an
(6) 一质点沿半径为 R 的圆周作匀速率运动,每 t 秒转一圈,在 2t 时间间隔中,其
平均速度大小和平均速率大小分别为(答案:B)
(A) 2R , 2R tt
(B) 0, 2R t
(C) 0,0
(D) 2R ,0 t
1.2 填空题
(1) 一质点,以 m / s 的匀速率作半径为 5m 的圆周运动,则该质点在 5s 内,位
(4) 质点作变速曲线运动时,其切向加速度、法向加速度及加速度均不为零。
1.6 r 与 r 有无不同? dr 和 dr 有无不同? dv 和 dv 有无不同?其不同在哪
dt dt
dt dt
里?试举例说明。
解:(1) r
是位移的模, r 是位矢的模的增量,即 r
r2 r1
, r
r2
r1
;
(2) dr 是速度的模,即 dr v ds .
dt
dt
dt
dr 只是速度在径向上的分量. dt ∵有 r r rˆ (式中 rˆ 叫做单位矢),则 dr d r rˆ r drˆ
dt dt dt 式中 dr 就是速度在径向上的分量,
dt
∴ dr 与 d r 不同如题 1.6 图所示. dt dt
大学物理习题集(上-含解答)
大学物理习题集(上册,含解答)第一章 质点运动学1.1 一质点沿直线运动,运动方程为x (t ) = 6t 2 - 2t 3.试求: (1)第2s 内的位移和平均速度;(2)1s 末及2s 末的瞬时速度,第2s 内的路程; (3)1s 末的瞬时加速度和第2s 内的平均加速度.[解答](1)质点在第1s 末的位置为:x (1) = 6×12 - 2×13 = 4(m).在第2s 末的位置为:x (2) = 6×22 - 2×23 = 8(m). 在第2s 内的位移大小为:Δx = x (2) – x (1) = 4(m),经过的时间为Δt = 1s ,所以平均速度大小为:v =Δx /Δt = 4(m·s -1). (2)质点的瞬时速度大小为:v (t ) = d x /d t = 12t - 6t 2,因此v (1) = 12×1 - 6×12 = 6(m·s -1),v (2) = 12×2 - 6×22 = 0质点在第2s 内的路程等于其位移的大小,即Δs = Δx = 4m . (3)质点的瞬时加速度大小为:a (t ) = d v /d t = 12 - 12t ,因此1s 末的瞬时加速度为:a (1) = 12 - 12×1 = 0,第2s 内的平均加速度为:a = [v (2) - v (1)]/Δt = [0 – 6]/1 = -6(m·s -2).[注意] 第几秒内的平均速度和平均加速度的时间间隔都是1秒.1.2 一质点作匀加速直线运动,在t = 10s 内走过路程s = 30m ,而其速度增为n = 5倍.试证加速度为22(1)(1)n sa n t-=+,并由上述数据求出量值. [证明]依题意得v t = nv o ,根据速度公式v t = v o + at ,得a = (n – 1)v o /t , (1)根据速度与位移的关系式v t 2 = v o 2 + 2as ,得 a = (n 2 – 1)v o 2/2s ,(2) (1)平方之后除以(2)式证得:22(1)(1)n sa n t-=+. 计算得加速度为:22(51)30(51)10a -=+= 0.4(m·s -2).1.3 一人乘摩托车跳越一个大矿坑,他以与水平成22.5°的夹角的初速度65m·s -1从西边起跳,准确地落在坑的东边.已知东边比西边低70m ,忽略空气阻力,且取g = 10m·s -2.问:(1)矿坑有多宽?他飞越的时间多长?(2)他在东边落地时的速度?速度与水平面的夹角? [解答]方法一:分步法.(1)夹角用θ表示,人和车(人)在竖直方向首先做竖直上抛运动,初速度的大小为v y 0 = v 0sin θ = 24.87(m·s -1).取向上的方向为正,根据匀变速直线运动的速度公式v t - v 0 = at ,这里的v 0就是v y 0,a = -g ;当人达到最高点时,v t = 0,所以上升到最高点的时间为t 1 = v y 0/g = 2.49(s).再根据匀变速直线运动的速度和位移的关系式:v t 2 - v 02 = 2a s , 可得上升的最大高度为:h 1 = v y 02/2g = 30.94(m).人从最高点开始再做自由落体运动,下落的高度为;h 2 = h 1 + h = 100.94(m).根据自由落体运动公式s = gt 2/2,得下落的时间为:2t =.图1.3因此人飞越的时间为:t = t 1 + t 2 = 6.98(s). 人飞越的水平速度为;v x 0 = v 0cos θ = 60.05(m·s -1), 所以矿坑的宽度为:x = v x 0t = 419.19(m).(2)根据自由落体速度公式可得人落地的竖直速度大小为:v y = gt = 69.8(m·s -1), 落地速度为:v = (v x 2 + v y 2)1/2 = 92.08(m·s -1), 与水平方向的夹角为:φ = arctan(v y /v x ) = 49.30º,方向斜向下.方法二:一步法.取向上为正,人在竖直方向的位移为y = v y 0t - gt 2/2,移项得时间的一元二次方程201sin 02gt v t y θ-+=,解得:0(sin t v g θ=.这里y = -70m ,根号项就是人落地时在竖直方向的速度大小,由于时间应该取正值,所以公式取正根,计算时间为:t = 6.98(s).由此可以求解其他问题.1.4 一个正在沿直线行驶的汽船,关闭发动机后,由于阻力得到一个与速度反向、大小与船速平方成正比例的加速度,即d v /d t = -kv 2,k 为常数.(1)试证在关闭发动机后,船在t 时刻的速度大小为011kt v v =+; (2)试证在时间t 内,船行驶的距离为01ln(1)x v kt k =+. [证明](1)分离变量得2d d vk t v =-, 故 020d d v t v v k t v =-⎰⎰,可得:011kt v v =+. (2)公式可化为001v v v kt=+,由于v = d x/d t ,所以:00001d d d(1)1(1)v x t v kt v kt k v kt ==+++ 积分00001d d(1)(1)x tx v kt k v kt =++⎰⎰.因此 01ln(1)x v kt k=+. 证毕.[讨论]当力是速度的函数时,即f = f (v ),根据牛顿第二定律得f = ma . 由于a = d 2x /d t 2, 而 d x /d t = v , a = d v /d t , 分离变量得方程:d d ()m vt f v =, 解方程即可求解.在本题中,k 已经包括了质点的质量.如果阻力与速度反向、大小与船速的n 次方成正比,则 d v /d t = -kv n . (1)如果n = 1,则得d d vk t v=-, 积分得ln v = -kt + C .当t = 0时,v = v 0,所以C = ln v 0, 因此ln v/v 0 = -kt ,得速度为 :v = v 0e -kt .而d v = v 0e -kt d t ,积分得:0e `ktv x C k-=+-. 当t = 0时,x = 0,所以C` = v 0/k ,因此0(1-e )kt vx k -=.(2)如果n ≠1,则得d d n vk t v=-,积分得11n v kt C n -=-+-. 当t = 0时,v = v 0,所以101n v C n-=-,因此11011(1)n n n kt v v --=+-. 如果n = 2,就是本题的结果.如果n ≠2,可得1(2)/(1)020{[1(1)]1}(2)n n n n n v kt x n v k----+--=-,读者不妨自证.1.5 一质点沿半径为0.10m 的圆周运动,其角位置(以弧度表示)可用公式表示:θ = 2 + 4t 3.求: (1)t = 2s 时,它的法向加速度和切向加速度;(2)当切向加速度恰为总加速度大小的一半时,θ为何值? (3)在哪一时刻,切向加速度和法向加速度恰有相等的值? [解答](1)角速度为ω = d θ/d t = 12t 2 = 48(rad·s -1),法向加速度为 a n = rω2 = 230.4(m·s -2); 角加速度为 β = d ω/d t = 24t = 48(rad·s -2), 切向加速度为 a t = rβ = 4.8(m·s -2). (2)总加速度为a = (a t 2 + a n 2)1/2,当a t = a /2时,有4a t 2 = a t 2 + a n 2,即n a a =由此得2r r ω=22(12)24t =解得36t =.所以3242(13)t θ=+=+=3.154(rad).(3)当a t = a n 时,可得rβ = rω2, 即: 24t = (12t 2)2,解得 : t = (1/6)1/3 = 0.55(s).1.6 一飞机在铅直面内飞行,某时刻飞机的速度为v = 300m·s -1,方向与水平线夹角为30°而斜向下,此后飞机的加速度为am·s -2,方向与水平前进方向夹角为30°而斜向上,问多长时间后,飞机又回到原来的高度?在此期间飞机在水平方向飞行的距离为多少?[解答]建立水平和垂直坐标系,飞机的初速度的大小为v 0x = v 0cos θ, v 0y = v 0sin θ. 加速度的大小为a x = a cos α, a y = a sin α. 运动方程为2012x x x v t a t =+, 2012y y y v t a t =-+.即 201cos cos 2x v t a t θα=⋅+⋅, 201sin sin 2y v t a t θα=-⋅+⋅.令y = 0,解得飞机回到原来高度时的时间为:t = 0(舍去);02sin sin v t a θα==.将t 代入x 的方程求得x = 9000m .[注意]选择不同的坐标系,如x 方向沿着a 的方向或者沿着v 0的方向,也能求出相同的结果.1.7 一个半径为R = 1.0m 的轻圆盘,可以绕一水平轴自由转动.一根轻绳绕在盘子的边缘,其自v 图1.7由端拴一物体A .在重力作用下,物体A 从静止开始匀加速地下降,在Δt = 2.0s 内下降的距离h = 0.4m .求物体开始下降后3s 末,圆盘边缘上任一点的切向加速度与法向加速度.[解答]圆盘边缘的切向加速度大小等于物体A 下落加速度.由于212t h a t =∆, 所以a t = 2h /Δt 2 = 0.2(m·s -2).物体下降3s 末的速度为v = a t t = 0.6(m·s -1),这也是边缘的线速度,因此法向加速度为2n v a R== 0.36(m·s -2).1.8 一升降机以加速度1.22m·s -2上升,当上升速度为2.44m·s -1时,有一螺帽自升降机的天花板上松落,天花板与升降机的底面相距2.74m .计算:(1)螺帽从天花板落到底面所需的时间;(2)螺帽相对于升降机外固定柱子的下降距离.[解答]在螺帽从天花板落到底面时,升降机上升的高度为21012h v t at =+;螺帽做竖直上抛运动,位移为22012h v t gt =-. 由题意得h = h 1 - h 2,所以21()2h a g t =+,解得时间为t .算得h 2 = -0.716m ,即螺帽相对于升降机外固定柱子的下降距离为0.716m .[注意]以升降机为参考系,钉子下落时相对加速度为a + g ,而初速度为零,可列方程h = (a + g )t 2/2,由此可计算钉子落下的时间,进而计算下降距离.1.9 有一架飞机从A 处向东飞到B 处,然后又向西飞回到A 处.已知气流相对于地面的速度为u ,AB 之间的距离为l ,飞机相对于空气的速率v 保持不变.(1)如果u = 0(空气静止),试证来回飞行的时间为02l t v =; (2)如果气流的速度向东,证明来回飞行的总时间为01221/t t u v =-;(3)如果气流的速度向北,证明来回飞行的总时间为2t =.[证明](1)飞机飞行来回的速率为v ,路程为2l ,所以飞行时间为t 0 = 2l /v . (2)飞机向东飞行顺风的速率为v + u ,向西飞行逆风的速率为v - u , 所以飞行时间为1222l l vl t v u v u v u =+=+-- 022222/1/1/t l v u v u v==--. (3)飞机相对地的速度等于相对风的速度加风相对地的速度.为了使飞机沿着AB 之间的直线飞行,就要使其相对地的速度偏向北方,可作矢量三角形,其中沿AB方向的速度大小为V =,所以飞行时间为22l t V ==== 证毕.1.10 如图所示,一汽车在雨中沿直线行驶,其速度为v 1,下落雨的速度方向与铅直方向的夹角为θ,偏向于汽车前进方向,速度为v 2.今在车后放一长方形物体,问车速v 1为多大时此物体刚好不会被雨水淋湿?AB AB vv + uv - uABvuuvv[解答]雨对地的速度2v r 等于雨对车的速度3v r 加车对地的速度1v r,由此可作矢量三角形.根据题意得tan α = l/h .方法一:利用直角三角形.根据直角三角形得v 1 = v 2sin θ + v 3sin α,其中v 3 = v ⊥/cos α,而v ⊥ = v 2cos θ, 因此v 1 = v 2sin θ + v 2cos θsin α/cos α, 即 12(sin cos )lv v hθθ=+. 证毕. 方法二:利用正弦定理.根据正弦定理可得12sin()sin(90)v v θαα=+︒-,所以:12sin()cos v v θαα+=2sin cos cos sin cos v θαθαα+=2(sin cos tan )v θθα=+,即 12(sin cos )lv v hθθ=+. 方法三:利用位移关系.将雨滴的速度分解为竖直和水平两个分量,在t 时间内,雨滴的位移为 l = (v 1 – v 2sin θ)t , h = v 2cos θ∙t .两式消去时间t 即得所求. 证毕.第二章 运动定律与力学中的守恒定律(一) 牛顿运动定律2.1 一个重量为P 的质点,在光滑的固定斜面(倾角为α)上以初速度0v r 运动,0v r 的方向与斜面底边的水平约AB 平行,如图所示,求这质点的运动轨道.[解答]质点在斜上运动的加速度为a = g sin α,方向与初速度方向垂直.其运动方程为 x = v 0t ,2211sin 22y at g t α==⋅.将t = x/v 0,代入后一方程得质点的轨道方程为22sin g y x v α=,这是抛物线方程.2.2 桌上有一质量M = 1kg 的平板,板上放一质量m = 2kg 的另一物体,设物体与板、板与桌面之间的滑动摩擦因素均为μk = 0.25,静摩擦因素为μs = 0.30.求:(1)今以水平力F r拉板,使两者一起以a = 1m·s -2的加速度运动,试计算物体与板、与桌面间的相互作用力;(2)要将板从物体下面抽出,至少需要多大的力? [解答](1)物体与板之间有正压力和摩擦力的作用.板对物体的支持大小等于物体的重力:N m = mg = 19.6(N), 这也是板受物体的压力的大小,但压力方向相反.物体受板摩擦力做加速运动,摩擦力的大小为:f m = ma = 2(N), 这也是板受到的摩擦力的大小,摩擦力方向也相反.板受桌子的支持力大小等于其重力:N M = (m + M )g = 29.4(N),图1.101h lα图2.1这也是桌子受板的压力的大小,但方向相反.板在桌子上滑动,所受摩擦力的大小为:f M = μk N M = 7.35(N). 这也是桌子受到的摩擦力的大小,方向也相反.(2)设物体在最大静摩擦力作用下和板一起做加速度为a`的运动,物体的运动方程为 f =μs mg = ma`,可得 a` =μs g .板的运动方程为F – f – μk (m + M )g = Ma`, 即 F = f + Ma` + μk (m + M )g= (μs + μk )(m + M )g ,算得 F = 16.17(N).因此要将板从物体下面抽出,至少需要16.17N 的力.2.3 如图所示:已知F = 4N ,m 1 = 0.3kg ,m 2 = 0.2kg ,两物体与水平面的的摩擦因素匀为0.2.求质量为m 2的物体的加速度及绳子对它的拉力.(绳子和滑轮质量均不计)[解答]利用几何关系得两物体的加速度之间的关系为a 2 = 2a 1,而力的关系为T 1 = 2T 2. 对两物体列运动方程得T 2 - μm 2g = m 2a 2, F – T 1 – μm 1g = m 1a 1. 可以解得m 2的加速度为 12212(2)/22F m m g a m m μ-+=+= 4.78(m·s -2),绳对它的拉力为2112(/2)/22m T F m g m m μ=-+= 1.35(N).2.4 两根弹簧的倔强系数分别为k 1和k 2.求证:(1)它们串联起来时,总倔强系数k 与k 1和k 2.满足关系关系式12111k k k =+; (2)它们并联起来时,总倔强系数k = k 1 + k 2.[解答]当力F 将弹簧共拉长x 时,有F = kx ,其中k 为总倔强系数.两个弹簧分别拉长x 1和x 2,产生的弹力分别为 F 1 = k 1x 1,F 2 = k 2x 2. (1)由于弹簧串联,所以F = F 1 = F 2,x = x 1 + x 2, 因此 1212F F F kk k =+,即:12111k k k =+. (2)由于弹簧并联,所以F = F 1 + F 2,x = x 1 = x 2,因此 kx = k 1x 1 + k 2x 2, 即:k = k 1 + k 2.2.5 如图所示,质量为m 的摆悬于架上,架固定于小车上,在下述各种情况中,求摆线的方向(即摆线与竖直线的夹角θ)及线中的张力T .(1)小车沿水平线作匀速运动;(2)小车以加速度1a r 沿水平方向运动;(3)小车自由地从倾斜平面上滑下,斜面与水平面成φ角;(4)用与斜面平行的加速度1b r把小车沿斜面往上推(设b 1 = b );(5)以同样大小的加速度2b r(b 2 = b ),将小车从斜面上推下来.[解答](1)小车沿水平方向做匀速直线运动时,摆在水平方向没有受到力12图2.32 图2.4的作用,摆线偏角为零,线中张力为T = mg .(2)小车在水平方向做加速运动时,重力和拉力的合力就是合外力.由于tan θ = ma/mg , 所以 θ = arctan(a/g );绳子张力等于摆所受的拉力:T ==(3)小车沿斜面自由滑下时,摆仍然受到重力和拉力, 合力沿斜面向下,所以θ = φ; T = mg cos φ.(4)根据题意作力的矢量图,将竖直虚线延长, 与水平辅助线相交,可得一直角三角形,θ角的对边 是mb cos φ,邻边是mg + mb sin φ,由此可得:cos tan sin mb mg mb ϕθϕ=+, 因此角度为cos arctansin b g b ϕθϕ=+;而张力为T=.(5)与上一问相比,加速度的方向反向,只要将上一结果中的b 改为-b 就行了.2.6 如图所示:质量为m =0.10kg 的小球,拴在长度l =0.5m 的轻绳子的一端,构成一个摆.摆动时,与竖直线的最大夹角为60°.求: (1)小球通过竖直位置时的速度为多少?此时绳的张力多大? (2)在θ < 60°的任一位置时,求小球速度v 与θ的关系式.这时小球的加速度为多大?绳中的张力多大?(3)在θ = 60°时,小球的加速度多大?绳的张力有多大?[解答](1)小球在运动中受到重力和绳子的拉力,由于小球沿圆弧运动,所以合力方向沿着圆弧的切线方向,即F = -mg sin θ,负号表示角度θ增加的方向为正方向.小球的运动方程为 22d d s F ma m t ==,其中s 表示弧长.由于s = Rθ = lθ,所以速度为d d d d s v l t t θ==,因此d d d d d d d d v v m v F mm v t t l θθθ===,即 v d v = -gl sin θd θ, (1) 取积分60d sin d Bv v v gl θθ︒=-⎰⎰,(2)图2.6得2601cos 2B v gl θ︒=,解得:B v =s -1).由于:22B BB v v T mg m m mgR l -===,所以T B = 2mg = 1.96(N).(2)由(1)式积分得21cos 2C v gl C θ=+,当 θ = 60º时,v C = 0,所以C = -lg /2,因此速度为C v =切向加速度为a t = g sin θ;法向加速度为2(2cos 1)Cn v a g R θ==-.由于T C – mg cos θ = ma n ,所以张力为T C = mg cos θ + ma n = mg (3cos θ – 1). (3)当 θ = 60º时,切向加速度为2t a g== 8.49(m·s -2),法向加速度为 a n = 0,绳子的拉力T = mg /2 = 0.49(N).[注意]在学过机械能守恒定律之后,求解速率更方便.2.7 小石块沿一弯曲光滑轨道上由静止滑下h 高度时,它的速率多大?(要求用牛顿第二定律积分求解)[解答]小石块在运动中受到重力和轨道的支持力,合力方向沿着曲线方向.设切线与竖直方向的夹角为θ,则F = mg cos θ.小球的运动方程为22d d sF ma m t ==,s 表示弧长.由于d d s v t =,所以 22d d d d d d d ()d d d d d d d s s v v s v v t t t t s t s ====,因此 v d v = g cos θd s = g d h ,h 表示石下落的高度.积分得 212v gh C =+,当h = 0时,v = 0,所以C = 0,因此速率为v =2.8 质量为m 的物体,最初静止于x 0,在力2kf x =-(k 为常数)作用下沿直线运动.证明物体在x处的速度大小v = [2k (1/x – 1/x 0)/m ]1/2.[证明]当物体在直线上运动时,根据牛顿第二定律得方程图2.7222d d k x f ma m x t =-==利用v = d x/d t ,可得22d d d d d d d d d d x v x v v v t t t x x ===,因此方程变为2d d k xmv v x =-,积分得212k mv C x =+.利用初始条件,当x = x 0时,v = 0,所以C = -k /x 0,因此2012k k mv x x =-,即v =证毕.[讨论]此题中,力是位置的函数:f = f (x ),利用变换可得方程:mv d v = f (x )d x ,积分即可求解.如果f (x ) = -k/x n ,则得21d 2nx mv k x =-⎰. (1)当n = 1时,可得21ln 2mv k x C =-+利用初始条件x = x 0时,v = 0,所以C = ln x 0,因此 21ln 2x mv k x =, 即v =(2)如果n ≠1,可得21121n k mv x C n -=-+-.利用初始条件x = x 0时,v = 0,所以101n k C x n -=--,因此 2110111()21n n k mv n x x --=--, 即v =当n = 2时,即证明了本题的结果.2.9 一质量为m 的小球以速率v 0从地面开始竖直向上运动.在运动过程中,小球所受空气阻力大小与速率成正比,比例系数为k .求:(1)小球速率随时间的变化关系v (t ); (2)小球上升到最大高度所花的时间T .[解答](1)小球竖直上升时受到重力和空气阻力,两者方向向下,取向上的方向为下,根据牛顿第二定律得方程d d vf mg kv mt =--=,分离变量得d d()d v m mg kv t m mg kv k mg kv +=-=-++,积分得ln ()mt mg kv C k =-++.当t = 0时,v = v 0,所以0ln ()mC mg kv k =+,因此00/ln ln/m mg kv m mg k v t k mg kv k mg k v ++=-=-++, 小球速率随时间的变化关系为0()exp()mg kt mgv v k m k =+--.(2)当小球运动到最高点时v = 0,所需要的时间为00/ln ln(1)/mg k v kv m m T k mg k k mg +==+.[讨论](1)如果还要求位置与时间的关系,可用如下步骤: 由于v = d x/d t ,所以0d [()exp()]d mg kt mg x v t k m k =+--,即0(/)d d exp()d m v mg k kt mgx tk m k +=---,积分得0(/)exp()`m v mg k kt mgx t C k m k +=---+, 当t = 0时,x = 0,所以0(/)`m v mg k C k +=,因此0(/)[1exp()]m v mg k kt mg x tk m k +=---.(2)如果小球以v 0的初速度向下做直线运动,取向下的方向为正,则微分方程变为d d vf mg kv mt =-=,用同样的步骤可以解得小球速率随时间的变化关系为0()exp()mg mg ktv v k k m =---.这个公式可将上面公式中的g 改为-g 得出.由此可见:不论小球初速度如何,其最终速率趋于常数v m =mg/k .2.10 如图所示:光滑的水平桌面上放置一固定的圆环带,半径为R .一物体帖着环带内侧运动,物体与环带间的滑动摩擦因数为μk .设物体在某时刻经A 点时速率为v 0,求此后时刻t 物体的速率以及从A 点开始所经过的路程.[解答]物体做圆周运动的向心力是由圆环带对物体的压力,即 N = mv 2/R .物体所受的摩擦力为f = -μk N ,负号表示力的方向与速度的方向相反.根据牛顿第二定律得2d d k v v f m m R t μ=-=, 即 : 2d d k vt R v μ=-.积分得:1k t C R v μ=+.当t = 0时,v = v 0,所以01C v =-, 因此 011kt Rv v μ=-.解得 001/k v v v t R μ=+.由于0000d d(1/)d 1/1/k k k k v t v t R R x v t R v t R μμμμ+==++, 积分得0ln (1)`k kv tR x C Rμμ=++,当t = 0时,x = x 0,所以C = 0,因此0ln (1)k kv tRx Rμμ=+.2.11 如图所示,一半径为R 的金属光滑圆环可绕其竖直直径转动.在环上套有一珠子.今逐渐增大圆环的转动角速度ω,试求在不同转动速度下珠子能静止在环上的位置.以珠子所停处的半径与竖直直径的夹角θ表示.[解答]珠子受到重力和环的压力,其合力指向竖直直径,作为珠子做圆周运动的向心力,其大小为:F = mg tg θ.珠子做圆周运动的半径为r = R sin θ. 根据向心力公式得F = mg tg θ = mω2R sin θ,可得2cos mgR ωθ=,解得2arccosg R θω=±.(二)力学中的守恒定律2.12 如图所示,一小球在弹簧的弹力作用下振动.弹力F = -kx ,而位移x = A cos ωt ,其中k ,A 和ω都是常数.求在t = 0到t = π/2ω的时间间隔内弹力予小球的冲量.[解答]方法一:利用冲量公式.根据冲量的定义得d I = F d t = -kA cos ωt d t , 积分得冲量为 /20(cos )d I kA t tωω=-⎰π,/20sin kAkAtωωωω=-=-π方法二:利用动量定理.小球的速度为v = d x/d t = -ωA sin ωt ,设小球的质量为m ,其初动量为p 1 = mv 1 = 0, 末动量为p 2 = mv 2 = -mωA ,mg图2.11小球获得的冲量为I = p 2 – p 1 = -mωA , 可以证明k =mω2,因此I = -kA /ω.2.13一个质量m = 50g ,以速率的v = 20m·s -1作匀速圆周运动的小球,在1/4周期内向心力给予小球的冲量等于多少?[解答]小球动量的大小为p = mv ,但是末动量与初动量互相垂直,根据动量的增量的定义21p p p ∆=-r r r 得:21p p p =+∆r r r,由此可作矢量三角形,可得:p ∆==. 因此向心力给予小球的的冲量大小为I p =∆= 1.41(N·s).[注意]质点向心力大小为F = mv 2/R ,方向是指向圆心的,其方向在 不断地发生改变,所以不能直接用下式计算冲量24v TI Ft mR ==2/42R T T mv mvR ππ==.假设小球被轻绳拉着以角速度ω = v/R 运动,拉力的大小就是向心力F = mv 2/R = mωv , 其分量大小分别为 F x = F cos θ = F cos ωt ,F y = F sin θ = F sin ωt ,给小球的冲量大小为 d I x = F x d t = F cos ωt d t ,d I y = F y d t = F sin ωt d t , 积分得 /4/4cos d sin T T x FI F t t tωωω==⎰Fmvω==,/4/4sin d cos T T y FI F t t tωωω==-⎰Fmvω==,合冲量为I ==,与前面计算结果相同,但过程要复杂一些.2.14 用棒打击质量0.3kg ,速率等于20m·s -1的水平飞来的球,球飞到竖直上方10m 的高度.求棒给予球的冲量多大?设球与棒的接触时间为0.02s ,求球受到的平均冲力?[解答]球上升初速度为y v =s -1),其速度的增量为v ∆== 24.4(m·s -1). 棒给球冲量为I = m Δv = 7.3(N·s), 对球的作用力为(不计重力):F = I/t = 366.2(N).v xΔvv y2.15 如图所示,三个物体A 、B 、C ,每个质量都为M ,B 和C 靠在一起,放在光滑水平桌面上,两者连有一段长度为0.4m 的细绳,首先放松.B 的另一侧则连有另一细绳跨过桌边的定滑轮而与A 相连.已知滑轮轴上的摩擦也可忽略,绳子长度一定.问A 和B 起动后,经多长时间C 也开始运动?C 开始运动时的速度是多少?(取g = 10m·s -2)[解答]物体A 受到重力和细绳的拉力,可列方程Mg – T = Ma ,物体B 在没有拉物体C 之前在拉力T 作用下做加速运动, 加速度大小为a ,可列方程:T = Ma ,联立方程可得:a = g/2 = 5(m·s -2).根据运动学公式:s = v 0t + at 2/2, 可得B 拉C之前的运动时间;t =. 此时B 的速度大小为:v = at = 2(m·s -1).物体A 跨过动滑轮向下运动,如同以相同的加速度和速度向右运动.A 和B 拉动C 运动是一个碰撞过程,它们的动量守恒,可得:2Mv = 3Mv`, 因此C 开始运动的速度为:v` = 2v /3 = 1.33(m·s -1).2.16 一炮弹以速率v 0沿仰角θ的方向发射出去后,在轨道的最高点爆炸为质量相等的两块,一块沿此45°仰角上飞,一块沿45°俯角下冲,求刚爆炸的这两块碎片的速率各为多少?[解答] 炮弹在最高点的速度大小为v = v 0cos θ,方向沿水平方向. 根据动量守恒定律,可知碎片的总动量等于炮弹爆炸前的 总动量,可作矢量三角形,列方程得 /2`cos 452mmv v =︒,所以 v` = v /cos45°= 0cos θ.2.17 如图所示,一匹马拉着雪撬沿着冰雪覆盖的弧形路面极缓慢地匀速移动,这圆弧路面的半径为R .设马对雪橇的拉力总是平行于路面.雪橇的质量为m ,它与路面的滑动摩擦因数为μk .当把雪橇由底端拉上45°圆弧时,马对雪橇做了多少功?重力和摩擦力各做了多少功?[解答]取弧长增加的方向为正方向,弧位移d s r的大小为 d s = R d θ.重力G r的大小为:G = mg ,方向竖直向下,与位移元的夹角为π + θ,所做的功元为1d d cos(/2)d W G s G s θ=⋅=+πr rsin d mgR θθ=-,积分得重力所做的功为454510(sin )d cos W mgR mgR θθθ︒︒=-=⎰(1mgR =-.摩擦力f r的大小为:f = μk N = μk mg cos θ,方向与弧位移的方向相反,所做的功元为2d d cos d W f s f s =⋅=πr rcos d k u mg R θθ=-,积分得摩擦力所做的功为图2.174520(cos )d k W mgR μθθ︒=-⎰450sin k k mgR mgR μθ︒=-=.要使雪橇缓慢地匀速移动,雪橇受的重力G r 、摩擦力f r 和马的拉力F r 就是平衡力,即0F G f ++=rr r ,或者()F G f =-+r r r . 拉力的功元为:d d (d d )W F s G s f s =⋅=-⋅+⋅r r r rr r 12(d d )W W =-+,拉力所做的功为12()W W W =-+(1)22k mgR μ=-+.由此可见,重力和摩擦力都做负功,拉力做正功.2.18 一质量为m 的质点拴在细绳的一端,绳的另一端固定,此质点在粗糙水平面上作半径为r 的圆周运动.设质点最初的速率是v 0,当它运动1周时,其速率变为v 0/2,求:(1)摩擦力所做的功; (2)滑动摩擦因数;(3)在静止以前质点运动了多少圈?[解答] (1)质点的初动能为:E 1 = mv 02/2, 末动能为:E 2 = mv 2/2 = mv 02/8,动能的增量为:ΔE k = E 2 – E 1 = -3mv 02/8, 这就是摩擦力所做的功W .(2)由于d W = -f d s = -μk N d s = -μk mgr d θ,积分得:20()d 2k k W mgr mgrπμθπμ=-=-⎰.由于W = ΔE ,可得滑动摩擦因数为20316k v gr μ=π.(3)在自然坐标中,质点的切向加速度为:a t = f/m = -μk g , 根据公式v t 2 – v o 2 = 2a t s ,可得质点运动的弧长为22008223k v v r s a g πμ===,圈数为 n = s/2πr = 4/3.[注意]根据用动能定理,摩擦力所做的功等于质点动能的增量:-fs = ΔE k , 可得 s = -ΔE k /f ,由此也能计算弧长和圈数。
大学物理习题与答案解析
dvy dt
kv
2 y
v dvy kdt
2 y
设入水时为计时起点,水面为坐标原点, 0 时,y=0, v y v0 , t 运动过程中t时刻速度为 v y ,将上式两侧分别以 v y和t为积分变量, k 以 和 y 2 为被积函数作积分得: v
v v0 (kv0 t 1)
x x0 vdt A costdt A sin t
0 0
t
t
x A sin t
大学物理
4、一质点在XOY平面内运动,其运动方程为 x at , y b ct 2 式中a、b、c为常数,当质点运动方向与x 轴成 450角时,它的速率为 v 2a 。
则解得
2 t 9
3
3
2 于是角位移为 2 3t 2 3 0.67(rad) 9
大学物理 2 4、一质点作平面运动,加速度为 ax A cost , a y B 2 sin t ,A B,A 0 ,B 0。当 t 0
时,v x 0 0 ,x0 点的运动轨迹。
2 2 t 1s时,v 2e i 2e j (m/s)
t 1s时,a 4e2i 4e2 j (m/s2 )
dv 2t 2t a 4e i 4e j (m/s 2 ) dt
dr 2t 2t v 2e i 2e j (m/s) dt
0
大学物理 6、一质点沿x轴作直线运动,在 t 0时,质点位于x0 2m
2 处,该质点的速度随时间的变化规律是 v 12 3t , 当质点瞬时静止时,其所在的位置和加速度分别为(A) x=来自6m, a=-12 m/s2 .
大物习题册答案全套
练习一 力学导论 参考解答1. (C); 提示:⎰⎰=⇒=t3x9vdt dxtd xd v2. (B); 提示:⎰⎰+=R20y 0x y d F x d F A3. 0.003 s ; 提示:0t 3104400F 5=⨯-=令 0.6 N·s ; 提示: ⎰=003.00Fdt I2 g ; 提示: 动量定理0mv 6.0I -==3. 5 m/s 提示:图中三角形面积大小即为冲量大小;然后再用动量定理求解 。
5.解:(1) 位矢 j t b i t a rωωsin cos += (SI)可写为 t a x ωc o s = , t b y ωs i n= t a t x x ωωsin d d -==v , t b ty ωωc o s d dy-==v 在A 点(a ,0) ,1cos =t ω,0sin =t ω E KA =2222212121ωmb m m y x =+v v由A →B ⎰⎰-==0a 20a x x x t c o sa m x F A d d ωω=⎰=-022221d a ma x x m ωω ⎰⎰-==b 02b 0y y t sin b m y F A dy d ωω=⎰-=-b mb y y m 022221d ωω6. 解:建立图示坐标,以v x 、v y 表示小球反射速度的x 和y 分量,则由动量定理,小球受到的冲量的x,y 分量的表达式如下: x 方向:x x x v v v m m m t F x 2)(=--=∆ ① y 方向:0)(=---=∆y y y m m t F v v ② ∴ t m F F x x ∆==/2v v x =v cos a∴ t m F ∆=/cos 2αv 方向沿x 正向.根据牛顿第三定律,墙受的平均冲力 F F =' 方向垂直墙面指向墙内.ααmmOx y练习二 刚体的定轴转动 参考解答1.(C) 提示: 卫星对地心的角动量守恒2.(C) 提示: 以物体作为研究对象P-T=ma (1);以滑轮作为研究对象 TR=J β (2)若将物体去掉而以与P 相等的力直接向下拉绳子,表明(2)式中的T 增大,故β也增大。
大学物理习题集加答案解析
大学物理习题集(一)大学物理教研室2010年3月目录部分物理常量┄┄┄┄┄┄┄┄┄┄┄┄┄┄┄┄┄┄┄┄┄┄┄┄┄┄┄┄┄2练习一库伦定律电场强度┄┄┄┄┄┄┄┄┄┄┄┄┄┄┄┄┄┄┄┄┄┄3练习二电场强度(续)电通量┄┄┄┄┄┄┄┄┄┄┄┄┄┄┄┄┄┄┄┄┄4练习三高斯定理┄┄┄┄┄┄┄┄┄┄┄┄┄┄┄┄┄┄┄┄┄┄┄┄┄┄┄5练习四静电场的环路定理电势┄┄┄┄┄┄┄┄┄┄┄┄┄┄┄┄┄┄┄┄6练习五场强与电势的关系静电场中的导体┄┄┄┄┄┄┄┄┄┄┄┄┄┄┄8练习六静电场中的导体(续)静电场中的电介质┄┄┄┄┄┄┄┄┄┄┄┄9练习七静电场中的电介质(续)电容静电场的能量┄┄┄┄┄┄┄┄┄┄10练习八恒定电流┄┄┄┄┄┄┄┄┄┄┄┄┄┄┄┄┄┄┄┄┄┄┄┄┄┄11练习九磁感应强度洛伦兹力┄┄┄┄┄┄┄┄┄┄┄┄┄┄┄┄┄┄┄┄┄13练习十霍尔效应安培力┄┄┄┄┄┄┄┄┄┄┄┄┄┄┄┄┄┄┄┄┄┄14练习十一毕奥—萨伐尔定律┄┄┄┄┄┄┄┄┄┄┄┄┄┄┄┄┄┄┄┄┄16练习十二毕奥—萨伐尔定律(续)安培环路定律┄┄┄┄┄┄┄┄┄┄┄┄17练习十三安培环路定律(续)变化电场激发的磁场┄┄┄┄┄┄┄┄┄┄┄18练习十四静磁场中的磁介质┄┄┄┄┄┄┄┄┄┄┄┄┄┄┄┄┄┄┄┄┄20练习十五电磁感应定律动生电动势┄┄┄┄┄┄┄┄┄┄┄┄┄┄┄┄┄┄21练习十六感生电动势互感┄┄┄┄┄┄┄┄┄┄┄┄┄┄┄┄┄┄┄┄┄┄23练习十七互感(续)自感磁场的能量┄┄┄┄┄┄┄┄┄┄┄┄┄┄┄┄┄24练习十八麦克斯韦方程组┄┄┄┄┄┄┄┄┄┄┄┄┄┄┄┄┄┄┄┄┄┄26练习十九狭义相对论的基本原理及其时空观┄┄┄┄┄┄┄┄┄┄┄┄┄27练习二十相对论力学基础┄┄┄┄┄┄┄┄┄┄┄┄┄┄┄┄┄┄┄┄┄28练习二十一热辐射┄┄┄┄┄┄┄┄┄┄┄┄┄┄┄┄┄┄┄┄┄┄┄┄┄29练习二十二光电效应康普顿效应热辐射┄┄┄┄┄┄┄┄┄┄┄┄┄┄┄┄30练习二十三德布罗意波不确定关系┄┄┄┄┄┄┄┄┄┄┄┄┄┄┄┄┄┄32练习二十四薛定格方程氢原子┄┄┄┄┄┄┄┄┄┄┄┄┄┄┄┄┄┄┄┄33部分物理常量万有引力常量G=×1011N·m2·kg2重力加速度g=s2阿伏伽德罗常量N A=×1023mol1摩尔气体常量R=·mol1·K1玻耳兹曼常量k=×1023J·K1斯特藩玻尔兹曼常量= ×10-8 W·m2·K4标准大气压1atm=×105Pa真空中光速c=×108m/s基本电荷e=×1019C电子静质量m e=×1031kg质子静质量m n=×1027kg中子静质量m p=×1027kg真空介电常量0= ×1012 F/m真空磁导率0=4×107H/m=×106H/m普朗克常量h = ×1034 J·s维恩常量b=×103m·K说明:字母为黑体者表示矢量练习一库伦定律电场强度一.选择题1.关于试验电荷以下说法正确的是(A) 试验电荷是电量极小的正电荷;(B) 试验电荷是体积极小的正电荷;(C) 试验电荷是体积和电量都极小的正电荷;(D) 试验电荷是电量足够小,以至于它不影响产生原电场的电荷分布,从而不影响原电场;同时是体积足够小,以至于它所在的位置真正代表一点的正电荷(这里的足够小都是相对问题而言的).2.关于点电荷电场强度的计算公式E = q r / (4 0 r3),以下说法正确的是(A) r→0时, E→∞;(B) r→0时,q不能作为点电荷,公式不适用;(C) r→0时,q仍是点电荷,但公式无意义;(D) r→0时,q已成为球形电荷,应用球对称电荷分布来计算电场.3.关于电偶极子的概念,其说法正确的是(A) 其电荷之间的距离远小于问题所涉及的距离的两个等量异号的点电荷系统;(B) 一个正点电荷和一个负点电荷组成的系统;(C) 两个等量异号电荷组成的系统;(D) 一个正电荷和一个负电荷组成的系统.(E) 两个等量异号的点电荷组成的系统4.试验电荷q0在电场中受力为f , 其电场强度的大小为f / q0 , 以下说法正确的是(A) E正比于f;(B) E反比于q0;(C) E正比于f 且反比于q0;(D) 电场强度E是由产生电场的电荷所决定的,不以试验电荷q0及其受力的大小决定.5.在没有其它电荷存在的情况下,一个点电荷q1受另一点电荷q2的作用力为f12,当放入第三个电荷Q后,以下说法正确的是(A) f12的大小不变,但方向改变, q1所受的总电场力不变;(B) f12的大小改变了,但方向没变, q1受的总电场力不变;(C) f12的大小和方向都不会改变, 但q1受的总电场力发生了变化;(D) f12的大小、方向均发生改变, q1受的总电场力也发生了变化.二.填空题1.如图所示,一电荷线密度为的无限长带电直线垂直通过图面上的A点,一电荷为Q的均匀球体,其球心为O点,ΔAOP是边长为a的等边三角形,为了使P点处场强方向垂直于OP, 则和Q的数量关系式为,且与Q为号电荷(填同号或异号) .2.在一个正电荷激发的电场中的某点A,放入一个正的点电荷q ,测得它所受力的大小为f1;将其撤走,改放一个等量的点电荷q,测得电场力的大小为f2 ,则A点电场强度E的大小满足的关系式为.3.一半径为R的带有一缺口的细圆环, 缺口宽度为d (d<<R)环上均匀带正电, 总电量为q ,如图所示, 则圆心O处的场强大小E = ,场强方向为.三.计算题1.一“无限长”均匀带电的半圆柱面,半径为R, 设半圆柱面沿轴线单位长度上的电量为,如图所示.试求轴线上一点的电场强度.2.一带电细线弯成半径为R的半圆形, 电荷线密度为= 0 sin, 式中0为一常数, 为半径R与X 轴所成的夹角, 如图所示,试求环心O处的电场强度.练习二电场强度(续)电通量一.选择题1. 以下说法错误的是(A) 电荷电量大,受的电场力可能小;(B)电荷电量小,受的电场力可能大;(C)电场为零的点,任何点电荷在此受的电场力为零;(D)电荷在某点受的电场力与该点电场方向一致.2.在点电荷激发的电场中,如以点电荷为心作一个球面,关于球面上的电场,以下说法正确的是(A) 球面上的电场强度矢量E处处不等;(B) 球面上的电场强度矢量E处处相等,故球面上的电场是匀强电场;(C) 球面上的电场强度矢量E的方向一定指向球心;(D) 球面上的电场强度矢量E的方向一定沿半径垂直球面向外.3.关于电场线,以下说法正确的是(A) 电场线上各点的电场强度大小相等;(B) 电场线是一条曲线,曲线上的每一点的切线方向都与该点的电场强度方向平行;(A) 开始时处于静止的电荷在电场力的作用下运动的轨迹必与一条电场线重合;(D) 在无电荷的电场空间,电场线可以相交.4.如图,一半球面的底面园所在的平面与均强电场E的夹角为30°,球面的半径为R,球面的法线向外,则通过此半球面的电通量为(A)R2E/2 .(B) R2E/2.(C) R2E.(D) R2E.5.真空中有AB两板,相距为d ,板面积为S(S>>d2),分别带+q和q,在忽略边缘效应的情况下,两板间的相互作用力的大小为(A)q2/(40d2 ) .(B) q2/(0 S) .(C) 2q2/(0 S).(D) q2/(20 S) .二.填空题1.真空中两条平行的无限长的均匀带电直线,电荷线密度分别为+ 和,点P1和P2与两带电线共面,其位置如图所示,取向右为坐标X正向,则= ,= .2.为求半径为R带电量为Q的均匀带电园盘中心轴线上P点的电场强度, 可将园盘分成无数个同心的细园环, 园环宽度为d r,半径为r,此面元的面积d S= ,带电量为d q = ,此细园环在中心轴线上距圆心x的一点产生的电场强度E = .3.如图所示,均匀电场E中有一袋形曲面,袋口边缘线在一平面S内,边缘线所围面积为S0,袋形曲面的面积为S ,法线向外,电场与S面的夹角为,则通过袋形曲面的电通量为.三.计算题1.一带电细棒弯曲线半径为R的半圆形,带电均匀,总电量为Q,求圆心处的电场强度E.2.真空中有一半径为R的圆平面,在通过圆心O与平面垂直的轴线上一点P处,有一电量为q 的点电荷,O、P间距离为h ,试求通过该圆平面的电通量.练习三高斯定理一.选择题1.如果对某一闭合曲面的电通量为=0,以下说法正确的是(A) S面上的E必定为零;(B) S面内的电荷必定为零;(C) 空间电荷的代数和为零;(D) S面内电荷的代数和为零.2.如果对某一闭合曲面的电通量0,以下说法正确的是(A) S面上所有点的E必定不为零;(B) S面上有些点的E可能为零;(C) 空间电荷的代数和一定不为零;(D) 空间所有地方的电场强度一定不为零.3.关于高斯定理的理解有下面几种说法,其中正确的是(A) 如高斯面上E处处为零,则该面内必无电荷;(B) 如高斯面内无电荷,则高斯面上E处处为零;(C) 如高斯面上E处处不为零,则高斯面内必有电荷;(D) 如高斯面内有净电荷,则通过高斯面的电通量必不为零;(E) 高斯定理仅适用于具有高度对称的电场.4.图示为一轴对称性静电场的E~r关系曲线,请指出该电场是由哪种带电体产生的(E表示电场强度的大小, r表示离对称轴的距离)(A) “无限长”均匀带电直线;(B) 半径为R的“无限长”均匀带电圆柱体;(C) 半径为R的“无限长”均匀带电圆柱面;(D) 半径为R的有限长均匀带电圆柱面.5.如图所示,一个带电量为q 的点电荷位于立方体的A角上,则通过侧面a b c d 的电场强度通量等于:(A) q / 240.(B) q / 120.(C) q / 6 0 .(D) q / 480.二.填空题1.两块“无限大”的均匀带电平行平板,其电荷面密度分别为( 0)及2 ,如图所示,试写出各区域的电场强度EⅠ区E的大小,方向;Ⅱ区E的大小,方向;Ⅲ区E的大小,方向.2.如图所示,真空中两个正点电荷,带电量都为Q,相距2R,若以其中一点电荷所在处O点为中心,以R为半径作高斯球面S,则通过该球面的电场强度通量= ;若以r0表示高斯面外法线方向的单位矢量,则高斯面上a、b 两点的电场强度的矢量式分别为,.3.点电荷q1、q2、q3和q4在真空中的分布如图所示,图中S为闭合曲面,则通过该闭合曲面的电通量= ,式中的E是哪些点电荷在闭合曲面上任一点产生的场强的矢量和答:是.三.计算题1.厚度为d的无限大均匀带电平板,带电体密度为,试用高斯定理求带电平板内外的电场强度.2.半径为R的一球体内均匀分布着电荷体密度为的正电荷,若保持电荷分布不变,在该球体内挖去半径r的一个小球体,球心为O′ , 两球心间距离= d, 如图所示, 求:(1) 在球形空腔内,球心O处的电场强度E0;(2) 在球体内P点处的电场强度E.设O、O、P三点在同一直径上,且= d .练习四静电场的环路定理电势一.选择题1.真空中某静电场区域的电力线是疏密均匀方向相同的平行直线,则在该区域内电场强度E和电位U是(A) 都是常量.(B) 都不是常量.(C) E是常量, U不是常量.(D) U是常量, E不是常量.2.电量Q均匀分布在半径为R的球面上,坐标原点位于球心处,现从球面与X轴交点处挖去面元S, 并把它移至无穷远处(如图,若选无穷远为零电势参考点,且将S移走后球面上的电荷分布不变,则此球心O点的场强E0与电位U0分别为(注:i为单位矢量)(A)-i QS/[(4 R2 )20 ];[Q/(40R)][1-S/(4R2)].(B) i QS/[(4 R2 )20 ];[Q/(40R)][1-S/(4R2)].(C) i QS/[(4 R2 )20 ];[Q/(40R)][1-S/(4R2)].(D) -i QS/[(4 R2 )20 ];[Q/(40R)][1-S/(4R2)].3.以下说法中正确的是(A) 沿着电力线移动负电荷,负电荷的电势能是增加的;(B) 场强弱的地方电位一定低,电位高的地方场强一定强;(C) 等势面上各点的场强大小一定相等;(D) 初速度为零的点电荷, 仅在电场力作用下,总是从高电位处向低电位运动;(E) 场强处处相同的电场中,各点的电位也处处相同.4.如图,在点电荷+q的电场中,若取图中P点处为电势零点,则M点的电势为(A) .(B) .(C) .(D) .5.一电量为q的点电荷位于圆心O处,A、B、C、D为同一圆周上的四点,如图所示,现将一试验电荷从A点分别移动到B、C、D各点,则(A) 从A到B,电场力作功最大.(B) 从A到各点,电场力作功相等.(C) 从A到D,电场力作功最大.(D) 从A到C,电场力作功最大.二.填空题1.电量分别为q1 , q2 , q3的三个点电荷分别位于同一圆周的三个点上,如图所示,设无穷远处为电势零点,圆半径为R, 则b点处的电势U = .2.如图,在场强为E的均匀电场中,A、B两点距离为d, AB连线方向与E方向一致, 从A点经任意路径到B点的场强线积分= .3.如图所示,BCD是以O点为圆心, 以R为半径的半圆弧, 在A点有一电量为+q的点电荷, O点有一电量为–q的点电荷, 线段= R, 现将一单位正电荷从B点沿半圆弧轨道BCD移到D点,则电场力所作的功为.三.计算题1.电量q均匀分布在长为2 l的细杆上, 求在杆外延长线上与杆端距离为a的P点的电势(设无穷远处为电势零点) .2.一均匀带电的球层, 其电荷体密度为, 球层内表面半径为R1 , 外表面半径为R2 ,设无穷远处为电势零点, 求空腔内任一点的电势.练习五场强与电势的关系静电场中的导体一.选择题1.以下说法中正确的是(A) 电场强度相等的地方电势一定相等;(B) 电势梯度绝对值大的地方场强的绝对值也一定大;(C) 带正电的导体上电势一定为正;(D) 电势为零的导体一定不带电2.以下说法中正确的是(A) 场强大的地方电位一定高;(B) 带负电的物体电位一定为负;(C) 场强相等处电势梯度不一定相等;(D) 场强为零处电位不一定为零.3. 如图,真空中有一点电荷Q及空心金属球壳A, A处于静电平衡, 球内有一点M, 球壳中有一点N, 以下说法正确的是(A) E M≠0, E N=0 ,Q在M处产生电场,而在N处不产生电场;(B) E M =0, E N≠0 ,Q在M处不产生电场,而在N处产生电场;(C) E M =E N =0 ,Q在M、N处都不产生电场;(D) E M≠0,E N≠0,Q在M、N处都产生电场;(E) E M =E N =0 ,Q在M、N处都产生电场.4.如图,原先不带电的金属球壳的球心处放一点电荷q1, 球外放一点电荷q2,设q2、金属内表面的电荷、外表面的电荷对q1的作用力分别为F1、F2、F3 , q1受的总电场力为F, 则(A) F1=F2=F3=F=0.(B) F1= q1 q2 / ( 4 0d2 ) ,F2 = 0 , F3 = 0, F=F1 .(C) F1= q1 q2 / ( 4 0d2 ) , F2 = 0,F3 = q1 q2 / ( 4 0d2 ) (即与F1反向), F=0 .(D) F1= q1 q2 / ( 4 0d2 ) ,F2 与F3的合力与F1等值反向,F=0 .(E) F1= q1 q2 / ( 4 0d2 ) , F2= q1 q2 / ( 4 0d2 ) (即与F1反向), F3 = 0, F=0 .5.如图,一导体球壳A,同心地罩在一接地导体B上,今给A球带负电Q, 则B球(A)带正电.(B) 带负电.(C) 不带电.(D) 上面带正电,下面带负电.二.填空题1.一偶极矩为P的电偶极子放在电场强度为E的均匀外电场中, P与E的夹角为角,在此电偶极子绕过其中心且垂直于P与E组成平面的轴沿角增加的方向转过180°的过程中,电场力作功为A = .2.若静电场的某个立体区域电势等于恒量, 则该区域的电场强度分布是;若电势随空间坐标作线性变化, 则该区域的场强分布是.3.一“无限长”均匀带电直线,电荷线密度为,在它的电场作用下,一质量为m,带电量为q 的质点以直线为轴线作匀速圆周运动,该质点的速率v = .三.计算题1.如图所示,三个“无限长”的同轴导体圆柱面A、B和C,半径分别为R A、R B、R C,圆柱面B上带电荷,A和C 都接地,求B的内表面上电荷线密度1,和外表面上电荷线密度之比值1/2.22.已知某静电场的电势函数U=-+ ln x(SI) ,求点(4,3,0)处的电场强度各分量值.练习六静电场中的导体(续)静电场中的电介质一.选择题1.一孤立的带正电的导体球壳有一小孔,一直导线AB穿过小孔与球壳内壁的B点接触,且与外壁绝缘,如图、D分别在导体球壳的内外表面上,A、C、D三点处的面电荷密度分别为A、C、D , 电势分别为U A、U C、U D ,其附近的电场强度分别为E A、E C、E D , 则:(A) A>D ,C = 0 , E A> E D , E C = 0 , U A = U C = U D .(B) A>D ,C = 0 , E A> E D , E C = 0 , U A > U C = U D .(C) A=C ,D≠0 , E A= E C=0, E D ≠0 , U A = U C =0 , U D≠0.(D) D>0 ,C <0 ,A<0 , E D沿法线向外, E C沿法线指向C ,E A平行AB指向外,U B >U C > U A .2.如图,一接地导体球外有一点电荷Q,Q距球心为2R,则导体球上的感应电荷为(A)0.(B) Q.(C) +Q/2.(D) –Q/2.3.导体A接地方式如图,导体B带电为+Q,则导体A(A) 带正电.(B) 带负电.(C) 不带电.(D) 左边带正电,右边带负电.4.半径不等的两金属球A、B ,R A = 2R B ,A球带正电Q ,B球带负电2Q,今用导线将两球联接起来,则(A) 两球各自带电量不变.(B) 两球的带电量相等.(C) 两球的电位相等.(D) A球电位比B球高.5. 如图,真空中有一点电荷q , 旁边有一半径为R的球形带电导体,q距球心为d ( d > R ) 球体旁附近有一点P ,P在q与球心的连线上,P点附近导体的面电荷密度为.以下关于P点电场强度大小的答案中,正确的是(A) / (20 ) + q /[40 ( d-R )2 ];(B) / (20 )-q /[40 ( d-R )2 ];(C) / 0 + q /[40 ( d-R )2 ];(D)/ 0-q /[40 ( d-R )2 ];(E)/ 0;(F) 以上答案全不对.二.填空题1.如图,一平行板电容器, 极板面积为S,,相距为d,若B板接地,,且保持A板的电势U A=U0不变,,如图, 把一块面积相同的带电量为Q的导体薄板C平行地插入两板中间, 则导体薄板C的电势U C = .2.地球表面附近的电场强度约为100N/C ,方向垂直地面向下,假设地球上的电荷都均匀分布在地表面上,则地面的电荷面密度= , 地面电荷是电荷(填正或负).3.如图所示,两块很大的导体平板平行放置,面积都是S,有一定厚度,带电量分别为Q1和Q2,如不计边缘效应,则A、B、C、D四个表面上的电荷面密度分别为、、、.三.计算题1.半径分别为r1 = cm 和r2 = cm 的两个球形导体, 各带电量q = ×108C, 两球心相距很远, 若用细导线将两球连接起来, 并设无限远处为电势零点,求: (1)两球分别带有的电量;(2)各球的电势.2.如图,长为2l的均匀带电直线,电荷线密度为,在其下方有一导体球,球心在直线的中垂线上,距直线为d,d大于导体球的半径R,(1)用电势叠加原理求导体球的电势;(2)把导体球接地后再断开,求导体球上的感应电量.练习七静电场中的电介质(续)电容静电场的能量一.选择题1.极化强度P是量度介质极化程度的物理量, 有一关系式为P = 0(r1)E , 电位移矢量公式为D = 0E + P ,则(A) 二公式适用于任何介质.(B) 二公式只适用于各向同性电介质.(C) 二公式只适用于各向同性且均匀的电介质.(D) 前者适用于各向同性电介质, 后者适用于任何电介质.2.电极化强度P(A) 只与外电场有关.(B) 只与极化电荷产生的电场有关.(C) 与外场和极化电荷产生的电场都有关.(D) 只与介质本身的性质有关系,与电场无关.3.真空中有一半径为R, 带电量为Q的导体球, 测得距中心O为r 处的A点场强为E A =Q r /(40r3) ,现以A为中心,再放上一个半径为,相对电容率为r的介质球,如图所示,此时下列各公式中正确的是(A) A点的电场强度E A=E A / r;(B) ;(C) =Q/0;(D) 导体球面上的电荷面密度= Q /( 4R2 ).4.平行板电容器充电后与电源断开,然后在两极板间插入一导体平板,则电容C, 极板间电压V,极板空间(不含插入的导体板)电场强度E以及电场的能量W将(↑表示增大,↓表示减小)(A) C↓,U↑,W↑,E↑.(B) C↑,U↓,W↓,E不变.(C) C↑,U↑,W↑,E↑.(D) C↓,U↓,W↓,E↓.5.如果某带电体电荷分布的体电荷密度增大为原来的2倍,则电场的能量变为原来的(A) 2倍.(B) 1/2倍.(C) 1/4倍.(D) 4倍.二.填空题1.一平行板电容器,充电后断开电源, 然后使两极板间充满相对介电常数为r的各向同性均匀电介质, 此时两极板间的电场强度为原来的倍, 电场能量是原来的倍.2.在相对介电常数r= 4 的各向同性均匀电介质中,与电能密度w e=2×106J/cm3相应的电场强度大小E = .3.一平行板电容器两极板间电压为U,其间充满相对介电常数为r的各向同性均匀电介质,电介质厚度为d , 则电介质中的电场能量密度w = .三.计算题1.一电容器由两个很长的同轴薄圆筒组成,内外圆筒半径分别为R 1=2cm ,R2= 5cm,其间充满相对介电常数为r的各向同性、均匀电介质、电容器接在电压U=32V的电源上(如图所示为其横截面),试求距离轴线R=处的A点的电场强度和A点与外筒间的电势差.2.假想从无限远处陆续移来微电荷使一半径为R的导体球带电.(1) 球上已带电荷q时,再将一个电荷元dq从无限远处移到球上的过程中,外力作多少功(2) 使球上电荷从零开始加到Q的过程中,外力共作多少功练习八恒定电流一.选择题1.两个截面不同、长度相同的用同种材料制成的电阻棒,串联时如图(1)所示,并联时如图(2)所示,该导线的电阻忽略,则其电流密度J与电流I应满足:(A) I1 =I2 J1 = J2 I1 = I2 J1 = J2.(B) I1 =I2 J1 >J2 I1<I2 J1 = J2.(C) I1<I2 J1 = J2 I1 = I2 J1>J2.(D) I1<I2 J1 >J2 I1<I2 J1>J2.2.两个截面相同、长度相同,电阻率不同的电阻棒R1 、R2(1>2)分别串联(如上图)和并联(如下图)在电路中,导线电阻忽略,则(A) I1<I2 J1<J2 I1= I2 J1 = J2.(B)I1 =I2 J1 =J2 I1= I2 J1 = J2.(C)I1=I2 J1 = J2 I1<I2 J1<J2.(D)I1<I2 J1<J2 I1<I2 J1<J2.3.室温下,铜导线内自由电子数密度为n= × 1028个/米3,电流密度的大小J= 2×106安/米2,则电子定向漂移速率为:(A)×10-4米/秒.(B) ×10-2米/秒.(C) ×102米/秒.(D) ×105米/秒.4.在一个长直圆柱形导体外面套一个与它共轴的导体长圆筒,两导体的电导率可以认为是无限大,在圆柱与圆筒之间充满电导率为的均匀导电物质,当在圆柱与圆筒上加上一定电压时,在长度为l的一段导体上总的径向电流为I,如图所示,则在柱与筒之间与轴线的距离为r 的点的电场强度为:(A) 2rI/ (l2).(B) I/(2rl).(C) Il/(2r2).(D) I/(2rl).5.在如图所示的电路中,两电源的电动势分别为1、2、,内阻分别为r1、r2,三个负载电阻阻值分别为R1、R2、R,电流分别为I1、I2、I3 ,方向如图,则由A到B的电势增量U B-U A为:(A) 2-1-I1 R1+I2 R2-I3 R .(B) 2+1-I1(R1 + r1)+I2(R2 + r2)-I3 R.(C) 2-1-I1(R1-r1)+I2(R2-r2) .(D) 2-1-I1(R1 + r1)+I2(R2 + r2) .二.填空题1.用一根铝线代替一根铜线接在电路中,若铝线和铜线的长度、电阻都相等,那么当电路与电源接通时铜线和铝线中电流密度之比J1:J2 = .(铜电阻率×106·cm , 铝电阻率×106 · cm , )2.金属中传导电流是由于自由电子沿着与电场E相反方向的定向漂移而形成, 设电子的电量为e , 其平均漂移率为v , 导体中单位体积内的自由电子数为n , 则电流密度的大小J = , J的方向与电场E的方向.3.有一根电阻率为、截面直径为d、长度为L的导线,若将电压U加在该导线的两端,则单位时间内流过导线横截面的自由电子数为;若导线中自由电子数密度为n,则电子平均漂移速率为.(导体中单位体积内的自由电子数为n)三.计算题1.两同心导体球壳,内球、外球半径分别为r a , r b,其间充满电阻率为的绝缘材料,求两球壳之间的电阻.2.在如图所示的电路中,两电源的电动势分别为1=9V和2 =7V,内阻分别为r1 = 3和r2= 1,电阻R=8,求电阻R两端的电位差.练习九磁感应强度洛伦兹力一.选择题1.一个动量为p电子,沿图所示的方向入射并能穿过一个宽度为D、磁感应强度为B(方向垂直纸面向外)的均匀磁场区域,则该电子出射方向和入射方向间的夹角为(A) =arccos(eBD/p).(B) =arcsin(eBD/p).(C) =arcsin[BD /(ep)].(D) =arccos[BD/(e p)].2.一均匀磁场,其磁感应强度方向垂直于纸面,两带电粒子在该磁场中的运动轨迹如图所示,则(A)两粒子的电荷必然同号.(B) 粒子的电荷可以同号也可以异号.(C) 两粒子的动量大小必然不同.(D) 两粒子的运动周期必然不同.3.一运动电荷q,质量为m,以初速v0进入均匀磁场,若v0与磁场方向的夹角为,则(A)其动能改变,动量不变.(B) 其动能和动量都改变.(C) 其动能不变,动量改变.(D) 其动能、动量都不变.4.两个电子a和b同时由电子枪射出,垂直进入均匀磁场,速率分别为v和2v,经磁场偏转后,它们是(A)a、b同时回到出发点.(B) a、b都不会回到出发点.(C) a先回到出发点.(D) b先回到出发点.5. 如图所示两个比荷(q/m)相同的带导号电荷的粒子,以不同的初速度v1和v2(v1v2)射入匀强磁场B中,设T1、T2分别为两粒子作圆周运动的周期,则以下结论正确的是:(A) T1 = T2,q1和q2都向顺时针方向旋转;(B) T1 = T 2,q1和q2都向逆时针方向旋转(C) T1T2,q1向顺时针方向旋转,q2向逆时针方向旋转;(D) T1 = T2,q1向顺时针方向旋转,q2向逆时针方向旋转;二.填空题1. 一电子在B=2×10-3T的磁场中沿半径为R=2×10-2m、螺距为h=×10-2m的螺旋运动,如图所示,则磁场的方向, 电子速度大小为.2. 磁场中某点处的磁感应强度B=-(T), 一电子以速度v=×106i+×106j (m/s)通过该点,则作用于该电子上的磁场力F= .3.在匀强磁场中,电子以速率v=×105m/s作半径R=的圆周运动.则磁场的磁感应强度的大小B= .三.计算题1.如图所示,一平面塑料圆盘,半径为R ,表面均匀带电,电荷面密度为,假定盘绕其轴线OO以角速度转动,磁场B垂直于轴线OO,求圆盘所受磁力矩的大小。
大学物理练习册与大题答案
大学物理(一)练习册 参考解答3. 质点作曲线运动,r 表示位置矢量,v表示速度,a 表示加速度,S 表示路程,a t 表示切向加速度,下列表达式中,(1) a t d /d v , (2) v t r d /d , (3) v t S d /d , (4) t a t d /d v.(A) 只有(1)、(4)是对的. (B) 只有(2)、(4)是对的. (C) 只有(2)是对的. (D) 只有(3)是对的. 答案: (D) 参考解答:质点作曲线运动,应该考虑速度v,加速度a 的矢量性。
注意正确书写矢量公式,例如:.d d ,d d v vtr a t速度和速率是两个不同概念。
前者为矢量,后者为标量;瞬时速度的大小和瞬时速率相同:v t S d /d . 所以只有(3)是对的。
大学物理(一)练习册 参考解答第1章 质点运动学一、选择题1(D),2(D),3(B),4(D),5(B),6(D),7(D),8(E),9(B),10(B), 二、填空题 (1).1221n (n = 0,1,… ), t A sin 2 (2). 8 m ,10 m. (3). 23 m/s. (4). 16Rt 2(5). 4t 3-3t 2 (rad/s),12t 2-6t (m/s 2). (6).331ct ,2ct ,c 2t 4/R . (7). 2.24 m/s 2,104o(8).)5cos 5sin (50j t i tm/s ,0,圆. (9). K m x /0max v(10). 02121v v kt三、计算题1. 有一质点沿x 轴作直线运动,t 时刻的坐标为x = 4.5 t 2 – 2 t 3 (SI) .试求:(1) 第2秒内的平均速度; (2) 第2秒末的瞬时速度; (3) 第2秒内的路程.解:(1) 5.0/ t x v m/s(2) v = d x /d t = 9t - 6t 2, v (2) =-6 m/s. (3) S = |x (1.5)-x (1)| + |x (2)-x (1.5)| = 2.25 m.2. 一质点沿半径为R 的圆周运动.质点所经过的弧长与时间的关系为221ct bt S其中b 、c 是大于零的常量,求从0 t 开始到切向加速度与法向加速度大小相等时所经历的时间.解: ct b t S d /d v c t a t d /d v R ct b a n /2根据题意: a t = a n 即 R ct b c /2解得 cb c R t3. 一质点沿x 轴运动,其加速度为a 4t (SI),已知t 0时,质点位于x 10 m 处,初速度v 0.试求其位置和时间的关系式.解: a d v /d t 4 t , d v 4 t d tvv 0d 4d tt t v = 2t 2v d x /d t 2 t 2t t x txx d 2d 020x 2 t 3 /3+x 0 (SI)4. 一物体悬挂在弹簧上作竖直振动,其加速度为 a ky ,式中k 为常量,y 是以平衡位置为原点所测得的坐标. 假定振动的物体在坐标y 0处的速度为v 0,试求速度v 与坐标y 的函数关系式.解: yt y y t a d d d d d d d d v v v v又 a ky ∴ -k y v d v / d yC ky y ky 222121 , d d v v v已知 y y 0 , v v 0 则 20202121ky C v)(220202y y k v v5. 一飞机驾驶员想往正北方向航行,而风以60 km/h 的速度由东向西刮来,如果飞机的航速(在静止空气中的速率)为 180 km/h ,试问驾驶员应取什么航向?飞机相对于地面的速率为多少?试用矢量图说明.解:设下标A 指飞机,F 指空气,E 指地面,由题可知:v FE =60 km/h 正西方向 v AF =180 km/h 方向未知v AE 大小未知, 正北方向由相对速度关系有: FE AF AE v v vAE v 、 AF v 、EE v 构成直角三角形,可得 km/h 17022 v v v FE AF AE 4.19/tg 1 AE FE v v(飞机应取向北偏东19.4 的航向).四 研讨题1. 在下列各图中质点M 作曲线运动,指出哪些运动是不可能的?参考解答: (1)、(3)、(4)是不可能的. (1) 曲线运动有法向加速度,加速度不可能为零; (3) 曲线运动法向加速度要指向曲率圆心;(4) 曲线运动法向加速度不可能为零.2. 设质点的运动方程为)(t x x ,)(t y y 在计算质点的速度和加速度时:第一种方法是,先求出22y x r ,然后根据 t d d rv 及 22d d tr a 而求得结果;第二种方法是,先计算速度和加速度的分量,再合成求得结果,即22)d d ()d d (t y t x v 和 222222)d d ()d d (ty t x a .你认为两种方法中哪种方法正确?参考解答:第二种方法是正确的。
大物答案集合
第10章 静电场(参考答案)§10.2电场强度一.选择题和填空题1、C 2、B3、-3σ / (2ε0) -σ / (2ε0) 3σ / (2ε0)4、()30220824Rqdd R R qd εεπ≈-ππ 从O 点指向缺口中心点.二.计算题1、解:设杆的左端为坐标原点O ,x 轴沿直杆方带电直杆的电荷线密度为λ=q / L ,在x 处取一电荷元d q = λd x = q d x / L ,P 点的场强:()204d d x d L q E -+π=ε()204d x d L L x q -+π=ε 2分总场强为 ⎰+π=Lx d L x L q E 020)(d 4-ε()d L d q+π=04ε3分 方向沿x 轴,即杆的延长线方向.2、解:先计算细绳上的电荷在O 点产生的场强.选细绳顶端作坐标原点O ,x 轴向下为正.在x 处取一电荷元 d q = λd x = Q d x /(3R )它在环心处的场强为 ()20144d d x R qE -π=ε ()20412d x R R xQ -π=ε 2分 整个细绳上的电荷在环心处的场强()203020116412R Qx R dx R Q E R εεπ=-π=⎰ 2分 圆环上的电荷分布对环心对称,它在环心处的场强E 2=0 2分由此,合场强 i R Qi E E20116επ== 2分方向竖直向下.三.理论推导与证明题证:选环心作原点,x 轴沿圆环轴线方向,y 、z 轴如图所示.在环上任取一电荷元d q =(Q d θ) / (2π),设P 点位于x处,从电荷元d q 到P 点的矢径为r ,它在P 点产生的场强为 r rQ r r q E ˆ8d ˆ4d d 20220εθεπ=π= r ˆ为矢径r 方向上的单位矢量.d E 沿x 轴的分量为 d E x =d E cos φ (φ为矢径r与x 轴正向夹角) 由对称性容易证明 E y =0 E z =0R3x x因而有 E =E x 20202024cos d 8cos r Q r Q εφθεθππ=π=⎰()2/32204xR Qx+π=ε 当x >>R 时,可得 E ≈Q / (4πε0x 2)这相当于一个位于原点O 的带电量为Q 的点电荷在P 点产生的场强. §10.3 电场强度通量 高斯定理一、选择题和填空题 1-4、 D D C B 5、 q / (6ε0)6、 0 r rR302εσ 7、204r qεπ 0二. 计算题1、解:在球内取半径为r 、厚为d r 的薄球壳,该壳内所包含的电荷为r r Ar V q d 4d d 2π⋅==ρ在半径为r 的球面内包含的总电荷为403d 4Ar r Ar dV q rVπ=π==⎰⎰ρ (r ≤R)以该球面为高斯面,按高斯定理有 0421/4εAr r E π=π⋅ 得到()0214/εAr E =, (r ≤R )方向沿径向,A >0时向外, A <0时向里.在球体外作一半径为r 的同心高斯球面,按高斯定理有 0422/4εAR r E π=π⋅ 得到 ()20424/r AR E ε=, (r >R ) 方向沿径向,A >0时向外,A <0时向里.2解:由高斯定理 ⎪⎩⎪⎨⎧<<><=21021,2,,0R R R R R R R R E πελ3解:挖去电荷体密度为ρ 的小球,以形成球腔时的求电场问题,可在不挖时求出电场1E,而另在挖去处放上电荷体2E,并令任意点的场密度为-ρ的同样大小的球体,求出电场强为此二者的叠加,即可得210E E E += 在图(a)中,以O 点为球心,d 为半径作球面为高斯面S ,则可求出O '与P 处场强的大小.ρε302113414d d d E S E S π⋅=π⋅=⋅⎰ 有 E 1O’=E 1P =d E 013ερ=图(c)2O’=0 图(b)方向分别如图所示.在图(b)中,以O '点为小球体的球心,可知在O '点E 2=0. 又以O ' 为心,2d 为半径作球面为高斯面S ' 可求得P 点场强E 2P()032223/)(4)(24d ερ-π=π⋅='⋅⎰'r d E S E S203212dr E Pερ-= (1) 求O '点的场强'O E. 由图(a)、(b)可得E O ’ = E 1O’ =03ερd, 方向如图(c)所示.(2)求P 点的场强P E.由图(a)、(b)可得⎪⎪⎭⎫ ⎝⎛-=+=2302143d r d E E E P P P ερ 方向如(d)图所示.§10.4 静电场的环路定理 电势能一. 填空题1、0d =⋅⎰Ll E单位正电荷在静电场中沿任意闭合路径绕行一周,电场力作功等于零 有势(或保守力)2、功的值与路径的起点和终点的位置有关,与电荷移动的路径无关 保守§10.5 电势 电势差一.选择题和填空题1-5、CDBA C6、0 λ / (2ε0) 7、q / (6πε0R )8、⎪⎭⎫⎝⎛π∆-π20414R S R Q ε 二.计算题1、解:设坐标原点位于杆中心O 点,x 轴沿杆的方向,如图所示.细杆的电荷线密度λ=q / (2l ),在x 处取电荷元d q = λd x =q d x / (2l ),它在P 点产生的电势为()()x a l l xq x a l q U P -+π=-+π=008d 4d d εε 整个杆上电荷在P 点产生的电势 ()⎰--+π=ll P x a l x lq U d 80ε()l lx a l l q --+π-=ln 80ε⎪⎭⎫⎝⎛+π=a l l q 21ln 80ε 2、解:(1)由高斯定理求得电场的分布:21220212011,,44,0R r R R r rQ Q r Q R r E <<⎪⎪⎪⎪⎩⎪⎪⎪⎪⎨⎧>+<=πεπε 各区域电势的分布为:(r<R 1)202101202121012021201114144)11(444221R Q R Q R Q Q R R Q dr r Q Q dr rQ U R R R πεπεπεπεπεπε+=++-=++=⎰⎰∞21202012,44R r R R Q r Q l d E U r <<+=⋅=⎰∞πεπε)(,420213R r rQ Q U >+=πε(2))11(42101R R Q U -=∆πε 作图略§10.6 等势面 *电场强度与电势的微分关系一.选择题和填空题1、D 2、k bz j y i x a E2)(2-+-=§10.7 静电场中的导体 电容一.选择题和填空题1.C 2.D 3.D 4.C5、 不变减小二.计算题1解:(1) 由静电感应,金属球壳的内表面上有感生电荷-q ,外表面上带电荷q +Q .(2) 不论球壳内表面上的感生电荷是如何分布的,因为任一电荷元离O 点的 距离都是a ,所以由这些电荷在O 点产生的电势为 adqU q 04επ=⎰-aq04επ-=(3) 球心O 点处的总电势为分布在球壳内外表面上的电荷和点电荷q 在O 点 产生的电势的代数和 q Q q q O U U U U +-++= r q 04επ=a q 04επ-b q Q 04επ++ )111(40b a r q +-π=εbQ04επ+2、解 由静电平衡的条件 知0=+=+感E E E q o00q 4E E r dq πε-=-=+感0r为水平向右的单位矢量。
大学物理(上、下册)习题答案
《大学物理》上册习题答案第1章 矢量和运动学1.2(1)s m v /282-=,22/12s m a =;(2)向x 轴负方向作变减速运动。
1.3 () 2213 x x +=v 1.4 (1) 5.0-m/s ;(2)6 m/s ;(3)2.25 m1.5 cb c R t -= 1.6 (1)202/21v g x y =;(2)22202//d d t g t g t a t +==v v 与v 同向. ()222002/122/t g g a g a t n +=-=v v 方向与t a 垂直.1.7 解:(1) j t r i t r j y i x r sin cos ωω+=+= (2) j t r i t r t r cos sin d d ωωωω+-==v j t r i t r t a sin cos d d 22ωωωω--==v (3) ()r j t r i t r a sin cos 22ωωωω-=+-=这说明 a 与 r 方向相反,即a 指向圆心 1.8 解:设抛出时刻车的速度为0 v ,球的相对于车的速度为/0 v ,与竖直方向成θ角.抛射过程中,在地面参照系中,车的位移 20121at t x +=∆v ① 球的位移 ()t x θs i n/002v v +=∆ ② ()2/0221cos gt t y -=∆θv ③ 小孩接住球的条件 0221=∆∆=∆y x x ,即 ()t at /θsin 2102v = , ()t gt θcos 21/02v =两式相比得 tg /θ=g a ,∴()g a /tg 1-=θ 1.9 解:(1) 球相对地面的初速度 =+='v v v 030 m/s抛出后上升高度 9.4522='=gh v m/s 离地面高度 H = (45.9+10) m =55.9 m(2) 球回到电梯上时电梯上升高度=球上升高度2021)(gt t t -+=v v v02v 4.08t s g ==第2章 牛顿运动定律2.2 (1)N F 31066.5⨯=;(2)N F 31012.5⨯=。
大学物理课后习题及答案(2)
习 题 十 三13-1 求各图中点P 处磁感应强度的大小和方向。
[解] (a) 因为长直导线对空间任一点产生的磁感应强度为:()210cos cos 4θθπμ-=aIB 对于导线1:01=θ,22πθ=,因此aI B πμ401=对于导线2:πθθ==21,因此02=BaIB B B πμ4021p =+= 方向垂直纸面向外。
(b) 因为长直导线对空间任一点产生的磁感应强度为:()210cos cos 4θθπμ-=aIB 对于导线1:01=θ,22πθ=,因此r I a I B πμπμ44001==,方向垂直纸面向内。
对于导线2:21πθ=,πθ=2,因此rI a I B πμπμ44002==,方向垂直纸面向内。
半圆形导线在P 点产生的磁场方向也是垂直纸面向内,大小为半径相同、电流相同的圆形导线在圆心处产生的磁感应强度的一半,即rIr I B 4221003μμ==,方向垂直纸面向内。
所以,rIr I r I r I r I B B B B 4244400000321p μπμμπμπμ+=++=++=(c) P 点到三角形每条边的距离都是a d 63=o 301=θ,o 1502=θ每条边上的电流在P 点产生的磁感应强度的方向都是垂直纸面向内,大小都是()aI d IB πμπμ23150cos 30cos 400000=-=故P 点总的磁感应强度大小为aIB B πμ29300== 方向垂直纸面向内。
13-2 有一螺线管长L =20cm ,半径r =2.0cm ,导线中通有强度为I =5.0A 的电流,若在螺线管轴线中点处产生的磁感应强度B =310166-⨯.T 的磁场,问该螺线管每单位长度应多少匝?[解] 已知载流螺线管轴线上场强公式为()120cos cos 2θθμ-=nIB由图知: 10410cos 2=θ,10410cos 1-=θ,所以,⎪⎪⎭⎫ ⎝⎛⨯=10410220nI B μ, 所以,匝=1000101040IBn μ=13-3 若输电线在地面上空25m 处,通以电流31081⨯.A 。
(完整版)《大学物理》练习题及参考答案.doc
卡 循 是由两个平衡的 程和两个平衡的等 程 成的
11.如 所示,在E的匀 中,有一个半径
R的半
球面,若E的方向与半球面的 称 平行, 通 个半球面
的 通量大小 ⋯⋯⋯⋯⋯⋯⋯(
)
参看 本P172-173
A .
R2E
B .2 R2E
C.
2 R2E
D. 0
12.一点 荷,放在球形高斯面的中心 ,下列情况中通 高斯面
的速度为200m/s,则子弹受到的冲量为_____________.参看课本P55-56
41.将电荷量为2.0×10-8C的点电荷, 从电场中A点移到B点,电场力做功6.0×10-6J.
则A、B两点的电势差
UAB=__________ __ .
参看课本P181
42.
如图所示,图中
O点的磁感应强度大小
34.一人从10 m深的井中提水,起始 ,桶中装有10 kg的水,桶的 量1 kg,由
于水桶漏水,每升高1m要漏去0. 1 kg的水, 水桶匀速地从井中提到井口,人所作的功
____________.参看 本P70 (2-14)
35.量m、半径R、自 运 周期T的月球,若月球是密度均匀分布的 球体, 其 自 的 量是__________,做自 运 的 能是__________.参看 本
24.下列关于机械振 和机械波的 法正确的是⋯⋯⋯()参看 本P306
A.点做机械振 ,一定 生机械波
B.波是指波源 点在介 的 播 程
C.波的 播速度也就是波源的振 速度
D.波在介 中的 播 率与波源的振 率相同,而与介 无关
25.在以下矢量 中,属保守力 的是⋯⋯⋯⋯⋯⋯⋯()
A.静B.旋参看 本P180,212,258
西华大学《大学物理学》习题集及答案
第二章
一、选择题
动量守恒和能量守恒
1、 A
水平方向动量守恒: mv0 m1v1 x m2 0 ; v1 x dt v0 dt 而m1 m
m1v1 y
m1v1 m1v1x
v1 x v0
竖直方向动量守恒: 0 m1 v1 y m 2 v 2
2
12、C 13、C
Ek A
R2
R1
Mm ( G 2 )dr r
14、C
AB间自由下落 BC间: 加速 mg 速度最大 x k 减速
A B
0 kx a g 0 m 0
A B
取C重力势能零点,机械能守恒:
kx
mg
mg (h x) Ek max
5、 B
取质量元m, 其与传送带作用前后动量变化如图
mv 2
mv1
I
由几何关系: tg mv1 / mv 2 2 gh / 3 4 / 3 53
0
6、 C
IG mg 0.5T ;T 2 R / v , 方向竖直向下; mg R 表示矢量形式: IG ( j ) v
m1v1 (m1 m2 )v sin
mv2
0
m2v2 (m1 m2 )v cos
v 10m / s; 北偏东36.87
mv1
4、
mv1
mv2
mv2
mv1
I
由图易得I 3mv m 6gh
则小球对斜面的冲量I'=m 6gh;
方向为垂直于斜面指向下方
1
1 2 1 2 动能定理:A Ek mv2 mv1 2 2
大学物理第二册习题答案详解
(2)电荷增加,场强变大,电势差不变,电容变大,电容器储能增加。
9-4电容分别为C1,C2的两个电容器,将它们并联后用电压U充电与将它们串联后用电压2U充电的两种情况下,哪一种电容器组合储存的电量多?哪一种储存的电能大?
(1)A板 上电荷守恒,且为等势体
(1)
(2)
=-2.0×10-7C
QB=-1.0×10-7C
=2.26×103V
(2)当A,B两板间充满相对介电常量εr时
(1)
(2)
=0.86×10-7C
QB=-2.14×10-7C
=9.7×102V
=-2.0×10-7C
QB=-1.0×10-7C
=2.26×103V
题8-19图
[ ]
(2) 电荷在 点产生电势,以
同理 产生
半圆环产生
∴
8-20两半径分别为R1和R2(R2>R1),带等值导号电荷的无限长同轴圆柱面,电荷线密度为±λ,求两圆柱面间的电势差.
解:在两圆柱面间的电场强度,根据高斯定理
得:
两导体的电势差,由定义
得:
第九章
9-1若一带电导体表面上某点电荷面密度为σ,则该点外侧附近场强为σ/ε0,如果将另一带电体移近,该点场强是否改变?公式Ε=σ/ε0是否仍成立?
∴2+3= 0 (1)
2= -3
解:题中的两种说法均不对.第一种说法中把两带电板视为点电荷是不对的,第二种说法把合场强 看成是一个带电板在另一带电板处的场强也是不对的.正确解答应为一个板的电场为 ,另一板受它的作用力 ,这是两板间相互作用的电场力.
8-3一个点电荷q放在球形高斯面的中心,试问在下列情况下,穿过这高斯面的E通量是否改变?高斯面上各点的场强E是否改变?
大学物理习题集(下,含解答)
大学物理习题集(下册,含解答)单元一 简谐振动一、 选择题1. 对一个作简谐振动的物体,下面哪种说法是正确的? [ C ](A) 物体处在运动正方向的端点时,速度和加速度都达到最大值; (B) 物体位于平衡位置且向负方向运动时,速度和加速度都为零; (C) 物体位于平衡位置且向正方向运动时,速度最大,加速度为零;(D) 物体处在负方向的端点时,速度最大,加速度为零。
2. 一沿X 轴作简谐振动的弹簧振子,振幅为A ,周期为T ,振动方程用余弦函数表示,如果该振子的初相为43π,则t=0时,质点的位置在: [ D ](A) 过1x A 2=处,向负方向运动; (B) 过1x A 2=处,向正方向运动;(C) 过1x A 2=-处,向负方向运动;(D) 过1x A 2=-处,向正方向运动。
3. 一质点作简谐振动,振幅为A ,在起始时刻质点的位移为/2A ,且向x 轴的正方向运动,代表此简谐振动的旋转矢量图为 [ B ]x o A x ω(A) A/2 ω (B) (C)(D)o ooxxxA x ω ωAxAxA/2 -A/2 -A/2 (3)题4. 图(a)、(b)、(c)为三个不同的谐振动系统,组成各系统的各弹簧的倔强系数及重物质量如图所示,(a)、(b)、(c)三个振动系统的ω (ω为固有圆频率)值之比为: [ B ](A) 2:1:1; (B) 1:2:4; (C) 4:2:1; (D) 1:1:25. 一弹簧振子,当把它水平放置时,它可以作简谐振动,若把它竖直放置或放在固定的光滑斜面上如图,试判断下面哪种情况是正确的: [ C ](A) 竖直放置可作简谐振动,放在光滑斜面上不能作简谐振动;(B) 竖直放置不能作简谐振动,放在光滑斜面上可作简谐振动; (C) 两种情况都可作简谐振动; (D) 两种情况都不能作简谐振动。
(4)题(5)题6. 一谐振子作振幅为A 的谐振动,它的动能与势能相等时,它的相位和坐标分别为: [ C ]2153(A),or ;A;(B),;A;3326623223(C),or ;A;(D),;A442332ππ±±π±±±π±ππ±±π±±±π±7. 一质点沿x 轴作简谐振动,振动方程为 10.04cos(2)3x t ππ=+(SI ),从t = 0时刻起,到质点位置在x = -0.02 m 处,且向x 轴正方向运动的最短时间间隔为 [ D ](A)s 81; (B) s 61; (C) s 41; (D) s 218. 图中所画的是两个简谐振动的振动曲线,这两个简谐振动叠加后合成的余弦振动的初相为[ C ]xtOx 1x 2(8)题(A) π23; (B) π; (C) π21 ; (D) 0二、 填空题9. 一简谐振动用余弦函数表示,振动曲线如图所示,则此简谐振动的三个特征量为: A=10cm , /6rad /s =ωπ,/3=φπ10. 用40N 的力拉一轻弹簧,可使其伸长20 cm 。
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
mv1
4、 、
mv1
mv 2
mv2
mv1
I
由图易得I = 3mv = m 6 gh
则小球对斜面的冲量I'=m 6gh;
方向为垂直于斜面指向下方
5、 对A、B用动量定理: 、
F △t1 = (m1 + m2 )v A v A = F △t1 /(m1 + m2 )
子弹射穿A,未进入B时:vB1 = v A ; 对B用动量定理:F △t2 = m2 vB m2 vB1 vB = F △t1 /(m1 + m2 ) + F △t2 / m2
x = 10cm h = 10cm
x + h = 20cm
二、填空题
1、(1) 、 )
动量守恒PA 0 + PB 0 = PA + PB ; 开始时t = 0 : PA 0 = P0 PB 0 = 0 P0 + 0 = P0 bt + PB1 PB1 = bt
(2) )
动量守恒PA0 + PB 0 = PA + PB ; 开始时t = 0 : PA 0 = P0 PB 0 = P0 0 = P0 bt + PB 2 PB 2 = P0 + bt
1 2 1 mg m2 g2 A外 = kx = k = 2k 2 2 k
2
12、C 、 13、C 、
E k = A = ∫
R2
R1
Mm ( G 2 )dr r
14、C 、
AB间自由下落 间自由下落 BC间: 间 加速 mg 速度最大 → x = k 减速
A B
> 0 kx a = g = 0 m < 0
由题意得知:
f BA = mB a B
a AB = a B
联解上四方程得:
f = 3× 10 N
3
f BA
mB 3 = f = 1.8 × 10 N m A + mB
(2)动量定理:
ft = (m A + m B )v A
求解得到: v A = 6m / s 动量守恒: mv0 = m A v A + ( m B + m)v B 求解得到:
l
v0
m
M
vLeabharlann 解:(1)因穿透时间极短,故可以认为物体未离 开平衡位置。因此,作用于子弹、物体系统上的 外力均在铅直方向,故系统在水平方向动量守恒, 令子弹穿出时物体的水平速度为 v '
mv0 = mv + Mv ' v ' = 3.13m / s 2 v' T = Mg + M = 26.5 N l (2) I = m(v v0 ) = 4.7 Ns
A 30o 15o B
解:取m为研究对象
p = (mv1 ) 2 + (mv2 ) 2 2(m) 2 v1v2 cos 750
p
mv 2
150 300
= 3.98m
设传送带对矿砂平均作用力F
θ
mv1
F t = p
p
m 2000 F= = 3.98 = 3.98qm = 3.98 × t t 3600
负号表示冲量方向与v0方向相反
v0
T'
M
Mg
l
v
m
P21-4:一人从10m深的井中提水,起始时桶 :一人从 深的井中提水, 深的井中提水 中装有10kg的水,桶的质量为 的水, 中装有 的水 桶的质量为1kg,由于水 , 桶漏水,每升高1m要漏去 要漏去0.2kg的水。求水 的水。 桶漏水,每升高 要漏去 的水 桶匀速地从井中提到井口,人所作的功。 桶匀速地从井中提到井口,人所作的功。
第二章
一、选择题
动量守恒和能量守恒
1、A 、
水平方向动量守恒: 水平方向动量守恒: mv0 = m1v1 x + m2 0 ; ∫ v1 x dt > ∫ v0 dt 而m1 < m
m1v1y
v1 x > v0
m1v1 m1v1x
mv0 m2 v2
竖直方向动量守恒: 竖直方向动量守恒: 0 = m1v1 y m2 v2
2、C 、
I = P = mv 2 mv1
由几何关系: 由几何关系: I = 3mv
mv1
I
mv 2
3、B 、
对质点系内力冲量和为零; 对质点系内力冲量和为零; 系统动量守恒: 系统动量守恒:m Av A = m B v B ; 1 2 动能E = mv E KA / E KB = 2 2
4、A 、
kxm mg xm
F
GMm GMm 2GMm 14、 (1) E p引 = ( 、 ) ( )= 3R R 3R
(2) E p引 GMm = 3R
三、计算题 如图所示,有两个长方形物体A P20-1:如图所示,有两个长方形物体A和B紧靠放在 20光滑的水平桌面上。 已知m 光滑的水平桌面上 。 已知 A=2kg, mB=3kg 。 有 , 一质量m=100g的子弹以速率V0=800m/S水平射入长方 的子弹以速率V m/S水平射入长方 一质量 的子弹以速率 800m/S 经过0 01s 又射入长方体B 体A,经过0.01s,又射入长方体B,最后停留在长方 内未射出。 设子弹射入A 体 B 内未射出 。 设子弹射入 A 时所受到的摩擦力为
10、 、 11、 、
1 1 1 功能原理:A = E = mg l = mgl 5 10 50
GMm mv2 (1) = 2 (3 R ) 3R 1 GMm 2 Ek = mv = 2 6R
(2)
E引p
Mm = G 3R
12、倔强系数k的弹簧,上端固定, 12、倔强系数k的弹簧,上端固定,下端悬挂重
(1) E p重 = mgx0 = kx
x0
2 0
1 2 (2)Ep弹 = ∫ kxdx = kx0 0 2 1 2 (3)E p = E p重 + E p弹 = kx0 2
o′
x0 mg=kx0 o Ep = 0
1 2 13、 功能原理:Fxm mgxm = kxm 、 2 1 2( F mg ) 2 2 E p弹 = kxm = 2 k
v B = 22m / s
P20-2:矿砂从传送带A落到另一传送带 ,其速率 :矿砂从传送带 落到另一传送带 落到另一传送带B, 大小v 度角, 大小 1=4m/s,速度方向与竖直方向成 度角,而 ,速度方向与竖直方向成30度角 传送带B与水平成 度角,其速度的大小v 与水平成15度角 传送带 与水平成 度角,其速度的大小 2=2m/s。 。 如果传送带的运送量恒定,设为q 如果传送带的运送量恒定,设为 m=2000kg/h,求 , 矿砂作用在传送带B上的力的大小和方向 上的力的大小和方向。 矿砂作用在传送带 上的力的大小和方向。
2、 、
水平方向动量守恒Mv = ( M + m )u u = Mv /( M + m )
3、 m1 v1 + m2 v 2 = (m1 + m2 )v 、
m1v1 = (m1 + m2 )v sin φ
mv 2 φ
0
m2 v2 = (m1 + m2 )v cos φ
v = 10m / s; 北偏东36.87
l
(1)保守力作正功,系统内相应的势能减 )保守力作正功, 。(2)正确。( 。(3) 小。( )正确。( )一对力做功等于其 中一个力的大小与相对位移的乘积。 中一个力的大小与相对位移的乘积。
11、C 、
临界条件: 临界条件:N=0;
F=kx=mg
功能原理: 功能原理: A外 + A非保内 = E2 E1
A
重力势能零点, 取C重力势能零点,机械能守恒: 重力势能零点 机械能守恒:
B
C
kx
mg
mg (h + x) = Ek max
15、D 、
1 2 + kx 2
1 s 1 1 2 2 动能定理: 动能定理 : fs = 0 mv ; f = mu mv 2 2 2 2 2
16、C 、
r = A cos ω ti + B sin ω tj v = Aω sin ω ti + Bω cos ω tj ( v )t =0 = Bω ; ( v )t
A B
1500 × 5 = 1500 N 6、 F x △t =△mvx F x = 、 5
7、 W = ∫A F d r = ∫A ( Fx dx + Fy dy + Fz dz ) 、
B
B
= ∫ ( F0 dx + 0dy + 0dz ) = ∫
A
B
R
0
F0 dx = F0 R
B
R
o
x
A
质点系动量守恒 m A v A1 + m B v B1 = m A v A 2 + m B v B 2 m A (3i + 4 j ) + 4m A (2i 7 j ) = m A (7i 4 j ) + 4m A v B 2
5、B 、
取质量元m, 其与传送带作用前后动量变化如图
mv 2
mv 1
物。当弹簧伸长x0,重物在o处达到平衡,现取重 当弹簧伸长x 重物在o处达到平衡, 物在o处时各种势能为零,则当弹簧为原长时, 物在o处时各种势能为零,则当弹簧为原长时,系 统的重力势能为____ 系统的弹性势能为____ ____; ____; 统的重力势能为____;系统的弹性势能为____; 系统的总势能为____ 系统的总势能为____
3 ×10 N