平行四边形复习导学案.
认识平行四边形.导学案
底
底
底
3、填一填
①两组对边( )的四边形叫平行四边形。
②从平行四边形一条边上的一点到它的对边的( )是平行四边形的( )。
③平行四边形有( )的特性。三角形具有( )的特性
4、判断。
(1)平行四边形是长方形。 ( )
(2)平行四边形只有一条高。 ( )
(3)两个完全相同的三角形能拼成一个平行四边形。 ( )
7、从平行四边形一条边上的一点到它的对边的( )是平行四边形的高。
这条对边是平行四边形的( )。
8、你能再做两条这样的高吗?
平行四边形的高有( )条
9、平行四边形有什么特性? ( )
10、生活中哪些地方用到这一特性?
二、练习
1、下面图形中,是平行四边形的在( )中打“√”
( ) ( ) ( )
( ) ( )
导学案
学习内容
认识平行四边形
学习目标
1、经历在对简单图形分类、观察、比较、交流的活动过程,认识平行四边形。
2、学会用不同方法做出一个平行四边形,会在方格纸上画平行四边形,能正确判断一个平面图形是不是平行四边形,能测量或画出平行四边形的高。
3、在学习中感受数学与生活的联系。
学习重点难点
认识平行四边形,探究平行四边形的基本特征及认识平行四边形的高,能够画出并测量平行四边形的高
三、 提升练习
1、给下面图形加一条线段使其变成一个平行四边形和一个三角形
2、 在两条平行线之间画出两个等底等高的平行四边形
四、总结 通过学习知道了:
什么特征?”
长方形和正方形的对边()且();四个角都是()角。
2、平行四边形也有( )条边,特征是( )
平行四边形的面积(导学案)-2022-2023学年数学五年级上册-北师大版
平行四边形的面积(导学案)一、学习目标1.掌握计算平行四边形面积的方法。
2.能够运用所学的知识解决平行四边形面积相关的实际问题。
二、课前预习1.复习课本第2单元第5节“平行四边形”的相关知识。
2.阅读课本第2单元第6节“平行四边形的面积”及相关例题,理解计算平行四边形面积的方法。
三、课堂探究1. 导入请同学们回忆一下,之前我们学习的哪些图形可以通过公式计算面积?2. 模块讲解今天我们要学习的是如何计算平行四边形的面积。
平行四边形是一种矩形的特殊情况,其面积计算也有一定的规律。
请看下面的图片:A ---------- B| || || || |C ---------- D如果我们需要计算平行四边形ABCD的面积,可以通过以下公式计算:S = 底边长度 * 高其中,底边指平行四边形的一条边的长度,高指直线AC所在的长度。
请结合上图理解。
需要注意的是,这里的“底边”和“高”需要符合垂直的关系,即直线AC垂直于端点A和B之间的线段。
为了方便计算,我们也可以将平行四边形ABCD分成两个三角形,计算它们的面积之和。
具体公式如下:S = 1/2 * 底边长度 * 高 + 1/2 * 另一条底边长度 * 高其中,另一条底边指与底边平行的另一条边的长度。
3. 练习请同学们结合上述公式,计算以下平行四边形的面积。
1.以下是一个底边长度为6cm,高为4cm的平行四边形:A ----------- B| || |C ----------- D2.以下是一个底边长度为8cm,高为5cm的平行四边形:C ----------- D| || |A ----------- B3.以下是一个底边长度为10cm,高为6cm的平行四边形:C ----------- D| || |A ----------- B4.以下是一个底边长度为12cm,高为3cm的平行四边形:A ----------- B| || |C ----------- D4. 提高练习请同学们结合自己或周围的实际环境,寻找具有平行四边形特征的图形并计算其面积。
五 生活中的多边形《平行四边形的认识》【导学案】 青岛版五年级上册数学
五生活中的多边形——平行四边形的认识(导学案)一、背景介绍平行四边形是小学数学中的一个重要知识点。
在生活中,我们经常会遇到平行四边形,比如书桌的桌面、篮球场的地面等等。
因此,了解平行四边形的定义、性质和判别方法,可以帮助我们更好地理解周围的事物,提高我们的生活质量。
二、学习目标1.掌握平行四边形的定义和性质。
2.能够判别平行四边形和其他多边形。
3.能够应用平行四边形的性质解决实际问题。
三、学习内容1. 平行四边形的定义平行四边形是一个有四条边的四边形,其中对边两两平行。
2. 平行四边形的性质1.对边平行:平行四边形的两组对边都平行。
2.对角线互相平分:平行四边形的两条对角线互相平分。
3.相邻角互补:平行四边形内部相邻两角互补。
3. 判别平行四边形和其他多边形1.判别是否有对边平行。
2.判别是否有两条对角线互相平分。
3.判别是否有两个内角互补。
4. 应用1.利用平行四边形的性质求解实际问题,例如计算物体的面积、长度等。
四、学习方法1.观察生活中的平行四边形,比如桌子、书本等,体验平行四边形存在的形状和属性。
2.画图,通过画图加深对平行四边形的理解。
3.练习,多做一些平行四边形相关的题目,巩固和提高知识点的掌握程度。
五、学习评估1.在生活中了解、观察和认识平行四边形。
2.在课堂上积极参与讨论和互动,发表自己的看法和观点。
3.能够准确应用平行四边形的性质解决实际问题。
六、拓展延伸1.探究平行四边形的面积计算公式和推导过程。
2.学习更多多边形的定义和性质。
3.了解平行四边形在几何图形中的应用。
七、总结平行四边形是生活中常见的多边形之一,其性质具有重要的实用性和理论意义。
通过学习平行四边形的定义、性质和应用等内容,可以帮助我们更好地认识周围的事物,在实际生活中更加自如地应用数学知识。
北师大版九年级上册数学 第一章复习导学案1
第一章特殊平行四边形【学习目标】1、掌握并能区分矩形、菱形、正方形的性质与判定(重点)2、矩形、菱形、正方形的性质与判定综合运用.(难点)【学习方案】正方形、平行四边形、矩形、菱形的性质可比较如下:平行四边形矩形菱形正方形对边平行且相等四条边都相等对角相等四个角都是直角对角线互相平分对角线互相垂直对角线相等每条对角线平分一组对角(凡是图形所具有的性质,在表中相应的空格中填上“√”,没有的性质不要填写)矩形的判定方法.矩形判定方法1:对角钱相等的平行四边形是矩形.矩形判定方法2:有三个角是直角的四边形是矩形.矩形判定方法3:有一个角是直角的平行四边形是矩形.矩形判定方法4:对角线相等且互相平分的四边形是矩形直角三角形斜边上的中线等于斜边的一半1、已知:如图,矩形ABCD,AB长8 cm ,对角线比AD边长4 cm.求AD的长及点A到BD的距离AE的长.2、如图,已知矩形ABCD中,E是AD上的一点,F是AB上的一点,EF⊥EC,且EF=EC,DE=4cm,矩形ABCD的周长为32cm,求AE的长.3、如图,在□ABCD 中,E 为BC 的中点,连接AE 并延长交DC 的延长线于点F .(1)求证:AB=CF ;(2)当BC 与AF 满足什么数量关系时,四边形ABFC 是矩形,并说明理由.※4、如图,在□ABCD 中,DE ⊥AB 于E ,BM =MC =DC ,求证:∠EMC=3∠BEM.菱形的判定菱形判定方法1:对角线互相垂直的平行四边形是菱形.注意此方法包括两个条件:(1)是一个平行四边形;(2)两条对角线互相垂直.菱形判定方法2:四边都相等的四边形是菱形1、 已知:如图,四边形ABCD 是菱形,F 是AB 上一点,DF 交AC 于E . 求证:∠AFD=∠CBE .2、已知:如图ABCD 的对角线AC 的垂直平分线与边AD 、BC 分别交于E 、F .求证:四边形AFCE 是菱形.F E DC BAM EAB DC3、如图,在菱形ABCD 中,∠A =60°,AB =4,O 为对角线BD 的中点,过O 点作OE ⊥AB ,垂足为E .求线段BE 的长.4、如图,四边形ABCD 是菱形,DE ⊥AB 交BA 的延长线于E ,DF ⊥BC ,交BC 的延长线于F 。
平行四边形及特殊的平行四边形复习导学案
平行四边形及特殊的平行四边形复习导学案一、平行四边形:(一)知识点总结:1.平行四边形的定义:两组对边分别 的四边形叫做平行四边形。
2.平行四边形的性质(1)边:(2)角: (3)对角线: (4)对称性: 3.平行四边形的判定: 从边考虑:(1)(2) (3) 从角考虑:(4)两组对角 的四边形是平行四边形。
从对角线考虑:(5)对角线 的四边形是平行四边形。
(二)典型例题:如图,E F ,是四边形A B C D 的对角线A C 上两点,AF C E D F BE D F BE ==,,∥. 求证:(1)A F D C E B △≌△. (2)四边形A B C D 是平行四边形.(三)练一练:1、□ABCD 中, AB :BC=1:2,周长为24cm, 则AB=_____cm, AD=_____cm2、平行四边形ABCD 的周长是18,三角形ABC 的周长是14,则对角线AC 的长是 。
3、如图(1),在□A B C D 中,C E AB ⊥,E 为垂足.如果125A = ∠,则B C E =∠( )A.55B.35 C.25 D.30二、矩形:(一)知识点总结:1.定义: 的平行四边形是矩形.2.性质:ABDEFCA EBCD图(1)①矩形的 角都是直角 ②矩形的对角线 . 3.判定:①有 角是直角的平行四边形是矩形. ②有 角是直角的四边形是矩形. ③对角线 的平行四边形是矩形. (二) 典型例题:如图所示,△ABC 中,点O 是AC 边上一个动点,过点O 作直线MN ∥BC ,设MN 交∠BCA 的平分线于E ,交∠BCA 的外角平分线于点F .(1)求证:EO =FO(2)当点O 运动到何处时,四边形AECF 是矩形?并证明你的结论.(三)练一练:1、矩形具有而平行四边形不具有的性质是( ) A.对边相等 B.对角相等 C.对角互补 D.对角线平分2、矩形ABCD 对角线AC 、BD 交于点O ,AB=5,12,cm BC cm 则△ABO 的周长为 cm.3、 如图所示,四边形ABCD 为矩形纸片.把纸片ABCD 折叠,使点B 恰好落在CD 边的中点E 处,折痕为AF .若CD =6,则AF 等于 ( ) A.34B.33C.24D.8三、菱形:(一)知识点总结:1、定义:一组邻边 的平行四边形是菱形.2、性质:①菱形的 都相等.②菱形的对角线 3、判定:①一组邻边 的平行四边形是菱形. ② 都相等的四边形是菱形③对角线 平行四边形是菱形.4、面积公式: (二)典型例题:.如图.矩形ABCD 的对角线相交于点0.DE ∥AC , CE ∥BD .求证:四边形OCED 是菱形;A BC DEF 第3题图(三)练一练:1、下列条件中,能判断四边形是菱形的是( ) A 、两条对角线相等。
《平行四边形的性质(1)》导学案1
课题18.1.1平行四边形的性质(第1课时)授课教师班级学习时间设计人学习目标1.理解并掌握平行四边形的相关概念和性质,培养学生初步应用这些知识解决问题的水平。
2.学生亲自经历探索平行四边形相关概念和性质的过程,体会解决问题策略的多样性。
学习要点重点难点理解并掌握平行四边形的概念及其性质学生亲自经历探索平行四边形相关概念和性质的过程,体会解决问题策略的多样性。
学习内容学生学习活动设计备注【自学导航】阅读教材41页上半部分内容,完成下列各题:1、观察图形,说出它们的边有什么特征?(1)中的四边形的两组对边都不;(2)中的四边形一组对边,另一组对边,这种四边形叫;(3)中的四边形两组对边都分别,这种四边形。
2、(1)根据上述观察,请你用文字语言给平行四边形下个定义:。
(2)请你用几何语言给平行四边形下个定义:∵∥, ∥∴四边形ABCD是平行四边形3、平行四边形的数学符号是“”,平行四边形ABCD能够记作:。
此部分有学生预习,并在全班展示学习成果。
学生学习活动设计备注(3)(2)(1)学习内容【探索发现,巩固新知】1、平行四边形除了“两组对边分别平行”外,它的边、角之间有什么关系。
用尺和半圆仪度量一下。
AB= AD= ∠A=∠B=CD= BC= ∠C=∠D=2、归纳总结平行四边形性质:几何语言:∵四边形ABCD是平行四边形∴AB=____,AD=_____( )∠A=_____,∠B =____( )请你证明平行四边形的两个性质!学生课堂巩固基础题(必做)【例题解析,提升认知】例题1:如图,在平行四边形ABCD中,已知∠A=50°,你还能知道哪些角的度数?归纳:平行四边形的邻角。
例题2:如图,在平行四边形ABCD中,已知AB=8,你还能知道哪些边的长?基础巩固1、已知平行四边形ABCD中,∠A=60°,∠B= ,∠C= ,∠D= 。
2、如图2,四边形ABCD是平行四边形,则∠ADC= ,ABDCADCBABCD,则。
25平行四边形和梯形整理和复习-导学案(最新整理)
小学四年级数学导学案
班级:姓名:上课教师:备课日期:11月11日课题 :整理和复习
学习目标1、整理和回顾本单元的知识要点,运用本单元的知识解决实际问题。
2、在学习活动中,培养良好的学习习惯,体会知识间的密切联系,增强解
决问题的能力。
学习重点整理和回顾本单元的知识要点。
学习难点总结和归纳四边形的内角和是360°。
教学程序、内容及预见性问题
课前热身
①平行四边形具有()性,易()。
②以平行四边形的一条边为底,能作()条高。
③在同一平面内,()的两条直线叫平行线。
平行线之间的距离(
)。
④两条直线相交成直角,就说这两条直线互相(),这两条直线的交点叫做
()。
学习提升
1、小组交流本单元的知识要点,谈一谈你的学习收获。
2、回顾整理:
平行线和垂线
两条直线()———平行画图:
在同一平面里
两条直线()——垂直画图:
两组对边分别()——平行四边形画图:
四边形
()一组对边平行————梯形画图:
点到直线的()最短,。
20 平行四边形的判定导学案(华师)
A EDBFC20.1 平行四边形的判定学案(1)学习目标:掌握用“平行四边形的定义”判定一个四边形是平行四边形;理解并掌握用“两组对边分别相等的四边形是平行四边形”判定一个四边形是平行四边形. 学习重点:理解并掌握用“两组对边分别相等的四边形是平行四边形”判定一个四边形是平行四边形. 学习过程:一、回顾旧知,自主学习:1、什么叫平行四边形?平行四边形有哪些性质?并将其性质分别用命题形式叙述出来. ①如果一个四边形是平行四边形,那么它的 两组对边分别平行;(边) ②如果一个四边形是平行四边形,那么它的 ;(边) ③如果一个四边形是平行四边形,那么它的 ;(边) ④如果一个四边形是平行四边形,那么它的 ;(角) ⑤如果一个四边形是平行四边形,那么它的 . (对角线) 以上命题的逆命题分别是什么?并判断命题①②的逆命题是否是真命题?如果是,有何作用?2、①平行四边形的判定方法一(定义法):两组对边分别 的四边形是平行四边形.用几何语言表达为:∵ , , ∴四边形ABCD 是平行四边形. ②平行四边形的判定方法二:两组对边分别 的四边形是平行四边形.用几何语言表达为:∵ , , ∴四边形ABCD 是平行四边形. 二、边学边导,基础过关:1、如图,,,AB D C EF AD BC D E C F ====,图中哪些线段互相平行?A B D CABDC2、如图,已知□ABCD 中DE ⊥AC ,BF ⊥AC . 求证:四边形DEBF 为平行四边形.三、精讲点拨,巩固提升:如图,E 、F 分别为□ABCD 两边AD 、BC 的中点,连结BE 、DF . 求证:21∠=∠.四、达标检测,当堂过关:1、一组对边平行,另一组对边相等的四边形是平行四边形吗?2、如图,在□ABCD 中,AE 、CF 分别是DAB ∠、BC D ∠的平分线. 求证:四边形AECF 是平行四边形.五、拓展延伸,智力闯关:如图,四边形ABCD 中,△ADE ≌△CBF ,点E 、F 分别为AB 、CD 的中点,BD 是对角线,AG //DB 交CB 的延长线于点G . ①求证:四边形ABCD 是平行四边形;②若四边形BFDE 是菱形,求证:四边形AGBD 是矩形; ③在②中应增加什么条件,才能判定矩形AGBD 是正方形.六、作业:教材P 107习题20.1:2E FABDC12DABCFE EFDACB20.1 平行四边形的判定学案(2)学习目标:掌握“一组对边平行且相等的四边形是平行四边形”这一判定定理进行有关的论证和计算. 学习重点:掌握“一组对边平行且相等的四边形是平行四边形”这一判定定理进行有关的论证和计算. 学习过程:一、回顾旧知,自主学习:1、我们已学过哪些方法来判定一个四边形是平行四边形?平行四边形的判定方法一: 的四边形是平行四边形. 平行四边形的判定方法二: 的四边形是平行四边形.2、若一个四边形有一组对边平行且相等,能否判定这个四边形也是平行四边形呢? 已知:如图, . 求证:四边形ABCD 是平行四边形. 证明:结论:平行四边形的判定方法三:一组对边 的四边形是平行四边形.用几何语言表达为:∵ , ∴四边形ABCD 是平行四边形.二、边学边导,基础过关:1、如图,已知AD ∥BC ,要使四边形ABCD 为平行四边形,需添加一个条件为 . 2、如图,在□ABCD 中,E 、F 分别为对边BC 、AD 上的点,连结AE 、CF ,且DF =BE ,求证:四边形AECF 为平行四边形.三、精讲点拨,巩固提升:1、以不在同一直线上的三个点为顶点作平行四边形最多能作 个. 并将它们画出来.A BDCAB DCA ·B ·C ·A ·B ·C ·A ·B ·C ·2、如图,已知DC ∥AB ,且DC =12AB ,E 为AB 的中点.①求证:△AED ≌△EBC .②观察图形,在不添加辅助线的情况下,除△EBC 外,请再写出两个与△AED 的面积相 等的三角形(直接写出结果,不要求证明): .四、达标检测,当堂过关:1、不能判断四边形ABCD 是平行四边形的是( )A 、AB =CD ,AD =BC B 、AB =CD ,AB ∥CDC 、AB =CD ,AD ∥BC D 、AB ∥CD ,AD ∥BC2、如图,E 、F 是四边形ABCD 的对角线AC 上的两点,AE =CF ,DF =BE ,DF ∥BE . 求证:四边形ABCD 是平行四边形.五、拓展延伸,智力闯关:已知点D 、E 、F 分别在△ABC 的边BC 、AB 、AC 上,且DE ∥AF , G 在FD 的延长线上,DG =DF . 求证:AG 与ED 互相平分.六、作业:教材P 107习题20.1:3;A GFEDCB20.1 平行四边形的判定学案(3)学习目标:理解并掌握用“对角线互相平分的四边形是平行四边形”判定一个四边形是平行四边形;理解并掌握用“两组对角分别相等的四边形是平行四边形”判定一个四边形是平行四边形,会用这些定理进行有关的论证和计算.学习重点:掌握“对角线互相平分的四边形是平行四边形”和“两组对角分别相等的四边形是平行四边形”判定一个四边形是平行四边形.学习过程:一、回顾旧知,自主学习:1、我们已学过哪些方法来判定一个四边形是平行四边形?平行四边形的判定方法一: 的四边形是平行四边形. 平行四边形的判定方法二: 的四边形是平行四边形.平行四边形的判定方法三: 的四边形是平行四边形. 2、若一个四边形的对角线互相平分,能否判定这个四边形也是平行四边形呢? 已知:如图, . 求证:四边形ABCD 是平行四边形. 证明:结论:平行四边形的判定方法四:对角线 的四边形是平行四边形. 用几何语言表达为:∵ , ∴四边形ABCD 是平行四边形.3、若一个四边形的两组对角分别相等,能否判定这个四边形也是平行四边形呢?已知:如图, . 求证:四边形ABCD 是平行四边形. 证明:结论:平行四边形的判定方法五:两组对角 的四边形是平行四边形. 用几何语言表达为:∵ , ∴四边形ABCD 是平行四边形.二、边学边导,基础过关:1、如图,AO =OC ,BD =16cm ,则当OB = cm 时,四边形ABCD 是平行四边形.ABDCABDCOABDCO2、如图,在□ABCD 中,点E 、F 是对角线BD 上的两点,且BE =DF ,求证:四边形AECF 是平行四边形.三、精讲点拨,巩固提升:1、如图,在□ABCD 中,对角线AC 、BD 相交于点O ,E 、F 是对角线AC 上的两点,当E 、 F 满足下列哪个条件时,四边形DEBF 不一定是平行四边形( ) A 、AE =CF B 、DE =BF C 、∠ADE =∠CBF D 、∠AED =∠CFB2、如图,在□ABCD 中,MN // AC ,分别交DA 的延长线于点M ,DC 的延长线于点N ,AB 于点P ,BC 于点Q . 求证:PM =QN .四、达标检测,当堂过关:1、如图,延长△ABC 的中线AD 至E ,使得DE =AD ,那么四边形ABEC 是平行四边形吗?为什么?2、如图,在□ABCD 中,已知AE 、CF 分别是∠DAB 、 ∠BCD 的角平分线,试证明四边形AECF 是平行四边形.五、拓展延伸,智力闯关:如图,在△ABC 中,AB =5,AC =2,试求BC 边上的中线AD的取值范围.六、作业:教材P 105练习:1(做书上);P 106练习:2;A BDCEF A B CD M N PQA BCDE ABC D20.1 平行四边形的判定学案(4)学习目标:灵活运用平行四边形的判定方法. 学习重点:平行四边形的判定方法的综合运用. 学习过程:一、回顾旧知,自主学习:平行四边形的性质和判定方法有哪些?它们之间有何联系?二、边学边导,基础过关:1、刘师傅给客户加工一个平行四边形零件,如图,他要检查这个零件是否符合要求,以下方法不正确的是( ) A 、AB ∥CD ,AB =CD B 、AB ∥CD ,AD =BC C 、∠A =∠C ,∠B =∠D D 、AB =CD ,BC =AD2、一个四边形的边长依次是a 、b 、c 、d ,且222222a b c d ac bd +++=+,则这个四边形 是 ,依据是 .3、如图,在△ABC 中,D 是BC 的中点,F 、E 分别是AD 及其延长线上的点,CF ∥BE ,连结BF 、CE ,试判断四边形BECF 是不是平行四边形.4、如图,请在下列四个关系中,选出两个恰当....的关系作为条件,推出四边形ABCD 是平行四边形,并予以证明.(写出一种即可)关系:①AD ∥BC ,②AB =CD ,③∠A =∠C ,④∠B +∠C =180°. 已知:在四边形ABCD 中, , .求证:四边形ABCD 是平行四边形.A B D CABC DF EABCD三、精讲点拨,巩固提升:1、如图,在□ABCD 中,AE =CF ,M 、N 分别是DE 、BF 的中点. 求证:四边形MFNE 是平行四边形.2、如图,在△ABC 中,D 是AB 的中点,E 是AC 的中点. 求证:DE 12BC .四、达标检测,当堂过关:1、如图,AB 、CD 相交于点O ,AC ∥DB ,AO =BO ,E 、F 分别是OC 、OD 的中点. 求证:四边形AFBE 是平行四边形.2、如图,分别以Rt △ABC 的直角边AC 及斜边AB 向外作等边△ACD 、等边△ABE .已知∠BAC =30°,EF ⊥AB ,垂足为F ,边结DF .(1)试说明AC =EF ;(2)求证:四边形ADFE 是平行四边形.六、作业:教材P 125复习题B 组:8,9.ABDCEABCDE F20.2 矩形的判定学案学习目标:掌握矩形的判定方法及与其性质的综合应用.学习重点:矩形的判定方法.学习过程:一、回顾旧知,自主学习:1、什么叫做矩形?矩形有哪些特殊性质?2、矩形与平行四边形有什么共同之处?有什么不同之处?3、类比平行四边形的判定方法如何判定一个四边形是矩形呢?你能猜想出几种判定矩形的方法?并对你的猜想加以论证.归纳:矩形的判定方法:①;②;③.二、边学边导,基础过关:1、判断:①对角线相等的四边形是矩形;()②对角线互相平分且相等的四边形是矩形;()③有一个角是直角的四边形是矩形;()④四个角都是直角的四边形是矩形;()⑤四个角都相等的四边形是矩形;()⑥对角线相等且有一个角是直角的四边形是矩形;()⑦对角线相等且互相垂直的四边形是矩形. ()2、如图,O是矩形ABCD的对角线AC与BD的交点,E、F、G、H分别是AO、BO、CO、DO上的一点,且AE=BF=CG=DH.求证:四边形EFGH是矩形.三、精讲点拨,巩固提升:1、如图,在△ABC中,AB=AC,若将△ABC绕点C旋转180º,得到△EDC,当∠ACB为多少度时,四边形ABED为矩形?说明理由.DA ECB2、如果平行四边形四个内角的平分线能够围成一个四边形,那么这个四边形是矩形.四、达标检测,当堂过关:如图,四边形ABCD 是由两个全等的正三角形ABD 和正三角形BCD 组成的,M 、N 分别为BC 、AD 的中点.求证:四边形BMDN 是矩形.五、拓展延伸,智力闯关:如图,点O 是△ABC 的边AC 上一动点,过O 点作直线MN ∥BC ,设MN 交∠BCA 的平分线于点E ,交∠BCA 的外角平分线于点F .(1)证明:OE =OF ;(2)当点O 运动到何处时,四边形AECF 是矩形?并证明你的结论.六、作业:教材P 110习题20.2:1,2,3;.ADC BE FGHMNBCOAF EDBACDNM20.3 菱形的判定学案学习目标:掌握菱形的判定方法及与其性质的综合应用. 学习重点:菱形的判定方法. 学习过程:一、回顾旧知,自主学习:1、什么叫做菱形?菱形有哪些特殊性质?2、根据菱形的定义及其特殊性质,你能猜想出菱形的判定方法吗?并加以论证. 归纳:菱形的判定方法:① ; ② ; ③ . 二、边学边导,基础过关:1、判断:①对角线互相垂直的四边形是菱形;( ) ②对角线互相垂直平分的四边形是菱形;( ) ③对角线互相垂直,且有一组邻边相等的四边形是菱形; ( ) ④两条邻边相等,且一条对角线平分一组对角的四边形是菱形; ( ) ⑤一条对角线平分一组对角的平行四边形是菱形.( )2、如图,在□ABCD 中,AE 平分∠BAD ,与BC 相交于点E ,EF ∥AB ,与AD 相交于点F ,求证:四边形ABEF 是菱形.三、精讲点拨,巩固提升:已知□ABCD 的对角线AC 的垂直平分线与边AD 、BC 分别交于E 、F . 求证:四边形AFCE 是菱形.CFODE ABBA CEDF四、达标检测,当堂过关:1、如图,已知AD平分∠BAC,DE∥AC,DF∥AB. 判断四边形AEDF的形状.2、如图,□ABCD的两条对角线AC、BD相交于点O,AB=5,AC=8,DB=6.求证:四边形ABCD是菱形.五、拓展延伸,智力闯关:如图,△ABC中,∠ACB=90°,BF平分∠ABC,CD⊥AB于点D,与BF交于点G,GE∥CA. 求证:CE和FG互相垂直平分.六、作业:教材P116习题20.3:1,2,3;GEFDCBAAB CFDEABCDO20.4 正方形的判定学案学习目标:掌握正方形的判定方法及与其性质的综合应用. 学习重点:正方形的判定方法. 学习过程:一、回顾旧知,自主学习:1、什么叫做正方形?正方形有哪些特殊性质?2、正方形与平行四边形、矩形、菱形有什么共同之处?有什么不同之处?由此你能猜想出正方形的判定方法吗?并加以论证. 归纳:正方形的判定方法:① ; ② ; ③ . 二、边学边导,基础过关:1、在四边形ABCD 中,O 是对角线的交点,能判定这个四边形是正方形的是( ) A 、AC =BD ,AB ∥CD ,AB =CD B 、AD ∥BC ,∠A =∠C C 、AO =BO =CO =DO ,AC ⊥BD D 、AO =CO ,BO =DO ,AB =BC2、如图,△ABC 中,∠ACB =90°,CD 平分∠ACB ,DE ⊥BC , DF ⊥AC ,垂足分别为E 、 F .求证:四边形CFDE 是正方形.三、精讲点拨,巩固提升:如图,矩形ABCD 的外角平分线围成四边形EFGH .求证:四边形EFGH 是正方形.BACQE D PNMHGF四、达标检测,当堂过关:1、矩形ABCD加上一个条件:,就可以得到正方形ABCD.2、菱形ABCD加上一条条件:,就可以得到正方形ABC D.3、判断:(1)四个角都相等的四边形是正方形;()(2)四条边都相等的四边形是正方形;()(3)对角线相等的菱形是正方形;()(4)对角线互相垂直的矩形是正方形;()(5)对角线垂直且相等的四边形是正方形;()(6)四边相等,有一角是直角的四边形是正方形. ()4、在正方形ABCD中,点E、F、G、H分别在各边上,且AH=BE=CF=DG.四边形EFGH是正方形吗? 为什么?五、拓展延伸,智力闯关:如图,在△ABC中,AB=AC,点D在边BC上,DE⊥AB,DF⊥AC,垂足分别为E、F.请探究,当∠A满足什么条件或点D在什么位置时,四边形AEDF将成为矩形?四边形AEDF 将成为正方形?画出符合条件的图形,并证明.六、作业:教材P118习题20.4:1,2,3;BAC EDFHG ED AB F C20.5 等腰梯形的判定学案学习目标:掌握等腰梯形的判定方法,能用它们解决简单的问题. 学习重点:等腰梯形的判定方法. 学习过程:一、回顾旧知,自主学习:1、什么样的几何图形是梯形?什么样的几何图形是等腰梯形?2、等腰梯形有何特殊性质?3、根据等腰梯形的定义及其特殊性质,你能猜想出等腰梯形的判定方法吗?并加以论证. 归纳:等腰梯形的判定方法:① ; ② ;③ .二、边学边导,基础过关:1、如图,在四边形ABCD 中, AD ∥ BC ,但 AD ≠B C ,若使它成为等腰梯形,则需要添 加的条件是_______________________.(写出一个即可)2、如图,矩形ABCD 中,点E 、F 在边AD 上,AE =FD . 求证:四边形EBCF 是等腰梯形.3、如图,梯形ABCD 中,AD ∥BC ,∠1=∠2. 求证:四边形ABCD 是等腰梯形.ADBCA DB C三、精讲点拨,巩固提升:1、如图,在梯形ABCD 中,AD ∥BC ,若∠A +∠C =180°,则梯形ABCD 是等腰梯形吗? 请说明理由.结论: .2、如图,AD 是∠BAC 的平分线,DE ∥AB ,DE =AC ,AD ≠EC . 求证:四边形ADCE 是等腰梯形.四、达标检测,当堂过关:如图,在梯形ABCD 中,AD ∥BC ,CA 平分∠BCD , DM ∥A C ,∠B =2∠M . 求证:梯形ABCD 是等腰梯形.五、拓展延伸,智力闯关:如图,在梯形ABCD 中,AD ∥BC ,AD <BC ,E 、F 分别是AD 、BC 的中点,且EF ⊥BC . 求证:梯形ABCD 是等腰梯形.六、作业:教材P 122习题20.5:1,2,3;A D BCADBCMADBCEFABE OC D第二十章平行四边形的判定复习学案(1)学习目标:小结本章知识,巩固平行四边形、矩形、菱形、正方形、等腰梯形的判定方法. 学习重点:平行四边形、矩形、菱形、正方形、等腰梯形的判定方法及综合运用.学习过程:一、知识回顾,自主学习:平行四边形、矩形、菱形、正方形、等腰梯形有哪些性质和判定方法?图形性质判定方法平行四边形矩形菱形正方形等腰梯形二、边学边导,基础过关:1、下列说法不正确...的是()A、一组邻边相等的矩形是正方形B、对角线相等的菱形是正方形C、对角线互相垂直的矩形是正方形D、有一个角是直角的平行四边形是正方形2、如图,四边形ABCD的对角线AC、BD互相垂直,则下列条件能判定四边形ABCD为菱形的是()A、BA=BCB、AC、BD互相平分C、AC=BDD、AB∥CD3、如图,在□ABCD中,E是BC的中点,且∠AEC=∠DCE,下列结论不正确的是()A、四边形AECD是等腰梯形B、BF=12 DFC、S△AFD=2S△EFBD、∠AEB=∠ADCABCD BACEDF4、如图,E 、F 是 ABCD 对角线AC 上的两点,且BE ∥DF . 求证: (1)△ABE ≌△CDF ; (2)∠1=∠2.三、精讲点拨,巩固提升:1、如图,在等腰梯形ABCD 中,AB ∥DC ,AD =BC =CD ,点E 为AB 上一点,连结CE ,请添加一个你认为合适的条件 ,使四边形AECD 为菱形,并说明理由.2、如图,在A B C △中,点D 、E 、F 分别在边AB 、B C 、C A 上,且D E C A ∥,DF BA ∥.下列四种说法:①四边形AEDF 是平行四边形; ②如果90BAC ∠= ,那么四边形AEDF 是矩形; ③如果AD 平分B A C ∠,那么四边形AEDF 是菱形; ④如果AD BC ⊥且AB AC =,那么四边形AEDF 是菱形. 其中正确的有 .(只填写序号) 四、达标检测,当堂过关:1、如图,已知□ABCD ,下列条件:①AC =BD ,②AB =AD ,③∠1=∠2,④AB ⊥BC 中,能说明□ABCD 是矩形的有 .(只填写序号) 2、如图,在正方形ABCD 中,点E 、F 分别在BC 和CD 上,AE =AF. (1)求证:BE =DF ;(2)连接AC 交EF 于点O ,延长OC 至点M ,使OM =OA , 连接EM 、FM .判断四边形AEMF 是什么特殊四边形?并证明你的结论.五、作业:教材P 125复习题B 组:10,11,12.DCABEA FCDBE BA CD1 2AD BE FOCM第二十章 平行四边形的判定复习学案(2)学习目标:巩固熟练平行四边形、矩形、菱形、正方形、等腰梯形的判定方法. 学习重点:平行四边形、矩形、菱形、正方形、等腰梯形的判定方法及综合运用. 学习过程:一、自主学习,基础过关:1、如图,梯形ABCD 中,AD ∥BC ,点M 是BC 的中点,且MA =MD .求证:四边形ABCD是等腰梯形.2、如图,在等边△ABC 中,点D 是BC 边的中点,以AD 为边作等边△ADE . (1)求∠CAE 的度数;(2)取AB 边的中点F ,连结CF 、CE ,试证明四边形AFCE 是矩形.3、如图,四边形ABCD 是矩形,∠EDC =∠CAB ,∠DEC =90°. (1)求证:AC ∥DE ;(2)过点B 作BF ⊥AC 于点F ,连结EF ,试判断四边形BCEF的形状,并说明理由.二、精讲点拨,巩固提升:在平行四边形ABCD 中,AC 、BD 交于点O ,过点O 作直线EF 、GH ,分别交平行四边形的四条边于E 、G 、F 、H 四点,连结EG 、GF 、FH 、HE . (1)如图①,试判断四边形EGFH 的形状,并说明理由;(2)如图②,当EF ⊥GH 时,四边形EGFH 的形状是 ;(3)如图③,在(2)的条件下,若AC =BD ,四边形EGFH 的形状是 ; (4)如图④,在(3)的条件下,若AC ⊥BD ,试判断四边形EGFH 的形状,并说明理由.EFDA B CHG F E O D C BA图①H G F E O D CBA图②A BCDO E F GH 图③ABCDO EF G H 图④A D CBM三、达标检测,当堂过关:1、如图(1),在△ABC 和△EDC 中,AC =CE =CB =CD ,∠ACB =∠ECD =90°,AB 与CE 交于F ,ED 与A B 、BC 分别交于M 、H . (1)求证:CF =CH ; (2)如图(2),△ABC 不动,将△EDC 绕点C 旋转到∠BCE =45° 时,判断四边形ACDM 是什么四边形?并证明你的结论.2、如图 ,△ABC 是等腰直角三角形,∠A =90o,点P 、Q 分别是AB 、AC 上的动点,且满足BP =AQ ,D 是BC 的中点. (1)求证:△PDQ 是等腰直角三角形;(2)当点P 运动到什么位置时,四边形APDQ 是正方形,说明理由.四、拓展延伸,智力闯关: 若一次函数y =2x 和反比例函数y =2x的图象都经过点A 、B ,已知点A 在第三象限.(1)求点A 、B 两点的坐标;(2)根据函数图像,求不等式2x>2x 的解集;(3)若点C 的坐标为(3,0),且以点A 、B 、C 、D 为顶点的四边形是平行四边形,请你求出点D 的坐标; (4)若点C 的坐标为(t ,0),t >0,四边形ABCD 是平行四边形,当t 为何值时点D 在y 轴上.五、作业:教材P 126复习题C 组:13,14,15.。
第16章_平行四边形的认识导学案
16.1 平行四边形的特征 课时:一☆学习目标1.理解并掌握平行四边形的特征:平行四边形的对边平行且相等,对角相等; 2.会利用平行四边形的特征进行有关角和边的计算; ☆重点:平行四边形的概念和特征。
☆难点:探索和掌握平行四边形的特征 ☆自学导读1.你能从以下图形中找出平行四边形吗?2.归纳:※有两组对边分别 的四边形叫做平行四边形。
根据平行四边形的这一定义我们可得出:※平行四边形的一个主要性质:平行四边形的两组对边 。
平行四边形还具有哪些性质呢? ☆合作探究展示1平行四边形是一个 对称图形。
2平行四边形的对边 ,对角 . 3如图,已知A ′B ′∥BA ,B ′C ′∥CB ,C ′A ′∥AC . (1)在整个图形中,有多少个平行四边形?(2)∠ABC 与∠B ′,∠CAB 与∠A ′,∠BCA 与∠C ′有什么关系? (3)BA ′与BC ′,CA ′与CB ′,AC ′与AB ′有什么关系?1245634 如图,在ABCD中,已知∠A=40°,求其它各个内角的度数.5已知,ABCD中AB = 7,BC = 5,求ABCD的周长。
学习检测1.已知在ABCD中, ∠A + ∠C = 80°,求四个角的度数.2.已知在ABCD中,周长为40cm,且AB比BC长2cm,求它的各边的长.3.已知,的周长为56cm,AB:BC = 4:3,求CD、DA的长.4.如图,ABCD中,∠BAD = 130°,AE⊥BC,AF⊥CD,垂足分别为E,F,求∠EAF的度数.3.如图,ABCD中,AB比AD大2cm, ∠DAB的平分线AE交CD于E,∠ABC的平分线BF 交CD于F,如果ABCD的周长为24cm,求CE,EF,FD的长.学后反思:16.1 平行四边形的特征课时:二☆学习目标1.理解和掌握发现平行四边形的对角线互相平分的特征;2.了解两平行线之间距离的概念;3.会利用平行四边形的特征进行相关的计算和说理.☆重点:掌握平行四边形对角线互相平分的特征和平行线间距离处处相等的性质☆难点:体会两平行线之间的距离、点到直线之间距离、点与点之间距离的相互联系与转化.☆自学导读1.平行四边形的对边_且__平行四边形的对角__2.平行四边形是一个对称图形☆合作探究展示1如右图,把ABCD绕着点O旋转180°,观察点A与点C,点B与点D位置关系。
导学案 平行四边形的性质
第16章 平行四边形的认识§16.1 平行四边形的性质课时一 平行四边形的性质(一)【学习目标】1. 理解平行四边形的概念及表示方式.2. 理解平行四边形在边、角上的性质并能简单应用.【课前导习】1. 有两组对边 的四边形叫做平行四边形,用几何语言表述为:如图,在四边形ABCD 中,若 ∥ , ∥ ,则四边形ABCD是平行四边形,记为 .2.平行四边形的对边 ,用数学语言表述为: ABCD 中, = , =3. 平行四边形的对角 ,邻角 ,用几何语言表述为:在 ABCD 中,∠ =∠ ,∠ =∠ ,∠ +∠ =1800(互补的角只写出一对就行了)4. ABCD 中,6=AB ,4=AD ,则=BC ,=DC ,平行四边形ABCD 的 周长为 .5. ABCD 中,∠A=400,则∠C= 0,∠B= 0.6. ABCD 中,已知AB =8,周长等于24,则=DC ,=AD . 【主动探究】概念有两组对边分别平行的四边形叫做平行四边形找一找你能从图16.1.1所示的图形中找出平行四边形吗?图16.1.1试一试中绕着它的对角线AC 、BD 的交点O ,旋转180°之后看能否与原来的位置重合?你能通过操作过程中,发现些什么样的结论?概括平行四边形是 图形,对角线的交点O 就是 .平行四边形的 相等, 相等.例题讲解例1 中,已知∠A =40°,求其他各个内角的度数.例2 中,已知AB =8,周长等于24,求其余三条边的长.【当堂训练】1.在平行四边形ABCD 中,3AB =,5BC =,则平行四边形ABCD 的周长是 。
2. 在平行四边形ABCD 中,A ∠比B ∠多050,则C ∠= ,D ∠= 。
3. 平行四边形ABCD 的周长是10厘米,三角形ABC 的周长是8厘米,则对角线AC 的长是( )A 、2厘米B 、3厘米C 、4厘米D 、5厘米4. 平行四边形的两个邻角的角平分线相交所成的角是( )A 、锐角B 、直角C 、 钝角D 、不能确定5.一个平行四边形的一边长为9,对角线的长不可能是下列选项中的( )A 、5和6B 、10和12 C、10和20 D、2和18 6. 如图,在平行四边形ABCD 中,ABC ∠角平分线BE 交ADE 点,5=AB ,3=ED ,则平行四边形ABCD 的周长为( A 、16 B 、20 C 、26 D 、307. 如图,在 ABCD 中,AE 垂直于CD ,E 是垂足.如果055B ∠=,那么D ∠与DAE ∠分别等于多少度?8. 在 ABCD 中,A ∠与B ∠的度数之比为2:3,求这个平行四边形各个内角的度数.【回学反馈】1. 如图,在平行四边形ABCD 中,0115ADC ∠=, 021CAD ∠=, 求ABC ∠与CAB∠的度数.2. 如图,平行四边形ABCD 的周长是80厘米,对角线AC 与BD 相交于O ,AOB ∆的周长比AOD ∆的周长小20厘米,求这个平行四边形的各边的长。
平行四边形(学案)
《6.1平行四边形》导学案设计者:高密市朝阳中学王洪福一、温故知新:1、如图1,已知在□ABCD中,AD=3,AB=2,则□ABCD的周长等于_____2、如图2,在□ABCD中,E是AB延长线上的一点,若∠1=60°,则∠D的度数为_____3、如图3,直线AB∥CD,则∠1=________;直线AD∥BC,则∠3=________.4、如图4,已知点O是□ABCD的对角线的交点,AC=20,BD=16,AD=14 ,那么△OBC的周长等于______5、如图4,□ABCD的对角线AC、BC交于点O,则图中有_________对全等三角形.二、学习目标:1、会用推理的方法证明平行四边形的性质定理;2、能利用平行四边形的性质定理进行相关证明或计算.三、合作探究:探究点一:已知:四边形ABCD是平行四边形求证:AB=CD,BC = DA.证明:平行四边形的性质定理1:平行四边形的对边相等定理运用方法:∵四边形ABCD是平行四边形,∴AB=_________,BC=__________.探究点二:已知:四边形ABCD是平行四边形,求证:∠A= ∠C ,∠B= ∠D.证明:平行四边形的性质定理2:平行四边形的对角相等定理运用方法:∵四边形ABCD是平行四边形,∴∠A= ________ ,∠B= __________.探究点三:如图所示,四边形ABCD是平行四边形,对角线AC,BD相交于点O. 思考:对角线AC,BD有怎样的关系?求证:AO=CO,BO=DO.平行四边形的性质定理3:平行四边形的对角线互相平分定理运用方法:∵四边形ABCD是平行四边形,∴AO= _______ ,BO= ________. (1)(2)(3)(4)跟踪练习:已知:如图,在□ABCD 中, AE ⊥BD,CF ⊥BD,垂足分别为点E ,F. 求证:AE=CF.四:课堂小结:本节课我们学习了哪些内容? 你有哪些收获?五:当堂检测:1.(1分)如图,在□ABCD 中,∠B=110°,延长AD 至F ,延长CD 至E ,连接EF ,则∠E+∠F 等于( ) . A.110° B.30° C.50° D.70°2(1分)如图,在□ABCD 中,已知∠ODA =90°,AC =10 cm ,BD =6 cm ,则AD 的长为( ).(A )4 cm (B )5 cm (C )6 cm (D )8 cm3(3分)如图,四边形ABCD 是平行四边形,点E 、F 是直线AC 上的两点,且AE=CF. 求证:∠E=∠F六、课后作业:A 组:课后练习1、2题;B 组:习题1、2题.C 组:拓展探究:张老伯有一块平行四边形的土地ABCD,在边AB 是有一口井P,张老伯计划把这块平行四边形的土地用一条直线平均分成两部分,要求所分成的两部分形状、大小都相同,并且这口井P 在这条分界线上,你能帮助张老伯完成这个设想吗?七、学后反思(导学反思):P。
初三数学-平行四边形第十三周一对一导学案
初三数学复习导学案教学目标:1、通过复习,进一步加深学生对平行四边形、矩形、梯形的基本概念的理解和掌握2、通过复习使学生进一步掌握平行四边形、矩形、梯形的相关内容,并能熟练的进行运用教学重点:平行四边形的基础知识。
教学难点:平行四边形、矩形、梯形知识点的灵活运用。
知识网络和知识点:平行四边形、矩形、菱形、正方形知识点总结1. 平行四边形、矩形、菱形、正方形的性质:2. 判别方法小结:(1) 判别平行四边形的方法:①两组对边分别平行的四边形是平行四边形;②两组对边分别相等的四边形是平行四边形;③两组对角分别相等的四边形是平行四边形;④对角线互相平分的四边形是平行四边形;⑤一组对边平行且相等的四边形是平行四边形。
3.中位线定理。
三角形的中位线,平行第三边,且等于第三边的一半。
(2) 判别矩形的方法:①有一个角是直角的平行四边形是矩形;②对角线相等的平行四边形是矩形;③有三个角是直角的四边形是矩形;④对角线相等且互相平分的四边形是矩形。
(3) 判别菱形的方法:①有一组邻边相等的平行四边形是菱形;②对角线互相垂直的平行四边形是菱形;③四边都相等的四边形是菱形;④对角线互相垂直平分的四边形是菱形。
(4) 判别正方形的方法:①有一组邻边相等且有一个角是直角的平行四边形是正方形;②对角线互相垂直且相等的平行四边形是正方形;③有一组邻边相等的矩形是正方形;④对角线互相垂直的矩形是正方形;⑤有一个角是直角的菱形是正方形;⑥对角线相等的菱形是正方形;二、平行四边形、菱形、矩形、正方形的共性过对角线的交点的直线,把面积平分。
反过来,该直线过交点。
经典例题:(1)易错点例题:例1.(2011四川绵阳17,4)如图,将长8cm,宽4cm的矩形纸片ABCD折叠,使点A与C重合,则折痕EF的长为_____cm.【答案】25(2)重点例题:2. (2011四川凉山州,17,4分)已知菱形ABCD的边长是8,点E在直线AD上,若DE=3,连接BE与对角线AC相交于点M,则MCAM的值是。
《平行四边形的认识》导学案
《平行四边形的认识》导学案平行四边形的认识导学案第一部分:引入目标- 了解平行四边形的定义和性质- 能够确定平行四边形的特征- 掌握标记和表示平行四边形的方法话题简介在几何学中,平行四边形是一种特殊的四边形,具有独特的性质和特征。
通过研究平行四边形的认识,我们可以更好地理解和应用几何学中的概念和原理。
第二部分:概念解释平行四边形的定义平行四边形是指有两对对边相互平行的四边形。
换句话说,平行四边形的对边两两平行,且对边长度相等。
平行四边形的性质平行四边形具有以下性质:1. 对边两两平行;2. 对角线彼此平分;3. 相邻角互补,即相邻内角的和为180度;4. 同位角相等,即位于同一边界的两个内角相等。
第三部分:特征判断判断平行四边形的特征确定一个四边形是否为平行四边形时,可以根据以下特征进行判断:1. 观察其对边是否平行;2. 测量对边长度是否相等;3. 判断相邻角是否互补;4. 检查同位角是否相等。
第四部分:标记和表示方法标记方法为了方便表示和讨论平行四边形,我们可以使用以下标记方法:- 一般用大写字母ABCD表示四边形的顶点;- 使用小写字母a、b、c、d表示四边形的边长;- 使用小写字母m、n表示对角线。
表示方法平行四边形可以用如下表示方法呈现:ABCD 或 ABCD第五部分:练题1. 下图中的四边形是否为平行四边形?为什么?请在此插入图片并提供答案2. 给定ABCD为平行四边形,若AD=6cm,BC=8cm,AC=10cm,请问BD的长度是多少?请提供你的答案和解题步骤结束语通过本导学案的学习,我们希望你能够清楚地理解平行四边形的定义和性质,并能够熟练运用判断和表示平行四边形的方法。
如果你还有任何问题,请随时向老师提问。
祝愉快学习!。
平行四边形复习导学案
《四边形复习》导学案一、教学目标1.利用基本图形结构使本章内容系统化.2.对比掌握各种特殊四边形的概念,性质和判定方法. 3.运用知识解决简单数学问题。
二、导入与自主预习1、(在箭头上填上合适的数字序号)(1)两组对边分别平行 (2)有一个角为直角 (3)一组对边平行(4)另一组对边不平行 (5)一组邻边相等 (6)一组对边相等 三、知识探究与合作学习例3 四、总结归纳本节课你复习了什么?你能说出平行四边形与矩形、菱形、正方形的性质和判定吗? 五、当堂演练2、选择题例2. ①如图,矩形的对角线、交于点O ,过点D 作 ∥,且 ,连结,试说明:四边形是的形状。
AB DCOP 1、判断题:1)两条对角线相等且互相垂直的四边形是矩形. ( ) 2)两条对角线互相垂直平分的四边形是菱形. ( ) 3)两条对角线互相垂直的矩形是正方形. ( )4)两条对角线相等的菱形是正方形. ( )5)两条对角线垂直且相等的平行四边形是正方形.( ) 6)两条对角线垂直且相等的四边形是正方形. ( )①下列图形中既是轴对称图形,又是中心对称图形的是( ) A.等边三角形 B.平行四边形 C.菱形 D.等腰梯形3、填空题 (1)如图,矩形沿折叠,使D 点落在 边上的F 点处,如果∠60°,则∠ 。
(2)矩形的面积为122,一条边长为3,则对角线长为 。
4、(选做)以△的边、为边的等边三角形和等边三角形,四边形是平行四边形。
(1)当∠满足 时,四边形是矩形; (2)当∠满足 时,平行四边形不存在(3)当△分别满足什么条件时,平行四边形是菱形、正方形。
②正方形具有而矩形不一定具有的特征是 ( )A.对角线互相平分B.对角线相等③下列条件中,能判定四边形是平行四边形的是( )∥, ,④梯形中,,对角线与交于O ,则其中面积相等的三角形有 ( )A.1对B.2对C.3对D.4对ODCB AB CA EFD。
《平行四边形的性质(边角特征)》精品导学案 人教版八年级数学下册导学案(精品)
18.1.1 平行四边形的性质第1课时平行四边形的边、角特征学习目标:1.能熟练复述平行四边形的对边相等、对角相等的两条性质.2.会根据平行四边形的性质进行简单的计算和证明.学习重点:掌握平行四边形的对边相等、对角相等的两条性质.自主研习一、课前检测二、温故知新举例说明生活中平行四边形的例子三、预习导航〔预习教材41-43页, 标出你认为重要的关键词〕1.什么叫做平行四边形?如何表示右图中的平行四边形?文字语言:符号语言:文字语言:符号语言:4.________________________________________叫做这两条平行线之间的距离.四、自学自测1.如图, DC∥GH ∥AB, DA∥EF∥CB, 图中的平行四边形有多少个?将它们表示出来.2.在上题的条件下, 从图中找出三组相等的线段和角.五、我的疑惑〔反思〕探究点拨一、要点探究探究点1:平行四边形的边、角的特征量一量1.根据平行四边形的定义,请画一个平行四边形ABCD.用尺子等工具度量它的四条边, 并记录下数据, 你能发现AB与DC, AD与BC之间的数量关系吗?2.再用量角器等工具度量它的四个角, 并记录下数据, 你能发现∠A与∠C, ∠B与∠D之间的数量关系吗?思考你发现了什么规律?证一证:四边形ABCD是平行四边形.求证:AD=BC,AB=CD,∠BAD=∠BCD,∠ABC=∠ADC.证明:如图, 连接AC.∵四边形ABCD是平行四边形,∴AD___BC, AB___CD,∴∠1___∠2, ∠3___∠4.又∵AC是△ABC和△CDA的公共边,∴△ABC____△CDA,∴AD___BC, AB___CD, ∠ABC___∠ADC.∵∠BAD=∠1+∠4, ∠BCD=∠2+∠3,∴∠BAD___∠BCD.思考不添加辅助线, 你能否直接运用平行四边形的定义, 证明其对角相等?要点归纳:平行四边形的对边___________;平行四边形的对角___________.几何语言表示:即学即练:□ABCD中,∠A:∠B=2:3,求各角的度数.□ABCD的周长为28cm,AB:BC=3:4,求各边的长度.探究点2:平行线间的距离想一想:如图,假设m // n,作 AB // CD // EF, 分别交 m于A、C、E, 交 n于B、D、F.由________________________易知四边形ABDC, CDFE均为__________________.由平行四边形的性质得AB______CD_______EF.填一填:如图, 在□ABCD中, DE⊥AB, BF⊥CD, 垂足分别是E, F.求证:DE=BF.证明:∵四边形ABCD是平行四边形,∴∠A_____∠C, AD______CB.又∠AED= ∠CFB=90°,∴△ADE____△CBF〔_____〕,∴DE_____BF.要点归纳:1.两条平行线之间的任何平行线段都__________.2.两条平行线间的距离:两条平行线中, 一条直线上任意一点到另一条直线的__________________.3.两条平行线间的距离__________.=12cm2, 求△ABD中AB边上即学即练:3.如图, AB∥CD, BC⊥AB, 假设AB=4cm, S△ABC的高.二、精讲点拨例1如图, 在□ABCD中.〔1〕假设∠BAD =32°,求其余三个角的度数.〔2〕连接AC, □ABCD的周长等于20 cm, AC=7cm, 求△ABC的周长.例2如图, 在□ABCD中,E, F是对角线AC上的两点, 并且BE∥DF.求证: BE=DF.方法总结:三、变式训练1.如图, 在□ABCD中, 假设AE平分∠DAB, AD=5cm,AB=9cm,那么EC=_______.2.剪两张对边平行的纸条随意交叉叠放在一起, 重合局部构成了一个四边形,转动其中一张纸条, 线段AD和BC的长度有什么关系?为什么?四、课堂小结平行四边形内容定义性质其它结论星级达标★1.判断题:(1)平行四边形的两组对边分别平行且相等 ( )(2)平行四边形的四个内角都相等 ( )(3)平行四边形的相邻两个内角的和等于180° ( )(4)如果平行四边形相邻两边长分别是2cm和3cm, 那么周长是10cm ( )(5)在平行四边形ABCD中, 如果∠A=35°, 那么∠C=145°( )★2.在□ABCD 中, M 是BC 延长线上的一点, 假设∠A=135°, 那么∠MCD 的度数是〔 〕A .45°B . 55°C . 65°D . 75°★3.DE ∥AC,DF ∥BC,EF ∥AB, 那么图中有____个平行四边形. ★4.如图, 直线AE//BD,点C 在BD 上,假设AE=5, BD=8,△ABD 的面积为16, 那么△ACE 的面积为_________.★★5.:如图, 在□ABCD 中, ∠ABC 的平分线BE 交AD 于点E, ∠ADC 的平分线DF 交BC 于点F .求证:ED=BF .★★6.有一块形状如下图的玻璃, 不小心把EDF 局部打碎了, 现在只测得AE=60cm, BC=80cm, ∠B=60°且AE ∥BC 、AB ∥CF,你能根据测得的数据计算出DE 的长度和∠D 的度数吗?★★★7.如图, 在□ABCD 中,点E 是BC 边的中点, 连接AE 并延长与DC 的延长线交于F.〔1〕求证:CF=CD.〔2〕假设AF 平分∠BAD,连接DE, 试判断DE 与AF 的位置关系, 并说明理由. 我的反思〔收获, 缺乏〕 分层作业必做(教材 智慧学习 配套) 选做参考答案:即学即练:1.试题分析:根据平行四边形的边和角的性质解答.详解:在□ABCD 中,AD ∥BC, ∴∠A+∠B=180°,又∵∠A:∠B=2:3,∴∠A=52×180°=72°, ∠B=53×180°=108°. :根据平行四边形的边的性质解答.详解:在□ABCD 中,AD=BC, AB=CD.∵□ABCD 的周长为28cm,∴AB+BC=14cm,又∵AB:BC=3:4,∴AB=CD=73×14=6cm, BC=AD=74×14=8cm. :根据三角形的面积求出ABC △的边AB 上的高BC , 再根据平行线间的距离相等解答.第2题图 第3题图 第4题图详解:1141222ABCS AB BC BC=⋅=⨯⋅=,解得:6BC=,∵AB∥CD, ∴点D到AB边的距离等于BC的长度,∴ABD△中AB边上的高等于6cm.例1 试题分析:根据平行四边形的边和角的性质解答.详解:〔1〕在□ABCD中, ∠BAD=∠BCD,∠B=∠D.∵∠BAD =32°,∴∠BCD =32°.∵AD∥BC, ∴∠BAD +∠B=180°,∴∠B=∠D=148°.〔2〕在□ABCD中,AD=BC, AB=CD.∵□ABCD的周长为20cm,∴AB+BC=10cm,∴△ABC的周长=AB+BC+AC=10+7=17cm.例2 试题分析:先证BC=AD, ∠ACB=∠DAC, ∠CEB=∠AFD, 根据AAS证出△BEC≌△DFA, 从而得出BE=DF.证明:∵四边形ABCD是平行四边形,∴BC=AD, BC∥AD,∴∠ACB=∠DAC,∵BE∥DF, ∴∠BEC=∠AFD,∴△CBE≌△ADF, ∴BE=DF.变式训练:1.解:如图, 在平行四边形ABCD中, 那么AB∥CD, AB=CD.∴∠2=∠3,又AE平分∠BAD, 即∠1=∠3, ∴∠1=∠2, 即DE=AD,又AD=5cm, AB=9cm,∴EC=CD-DE=9-5=4cm.:首先可判断重叠局部为平行四边形, 然后由平行四边形的性质来进行判断.详解:∵四边形ABCD是用两张对边平行的纸条交叉重叠地放在一起而组成的图形,即AB∥CD, AD∥BC, ∴四边形ABCD是平行四边形.∴AD=BC.星级达标:1、〔1〕√〔2〕×〔3〕√〔4〕√〔5〕×2、试题分析:此题考查平行四边形的性质、邻补角定义等知识, 根据平行四边形对角相等, 求出∠BCD, 再根据邻补角的定义求出∠MCD 即可. 详解:∵四边形ABCD 是平行四边形, ∴∠A=∠BCD=135°,∴∠MCD=180°-∠BCD =180°-135°=45°.应选:A .3、试题解析:图中的平行四边形有□ADFE , □BDEF , □C EDF , 共三个, 故答案为3.4、试题分析:过点A 作AF ⊥BD 于点F, 由△ABD 的面积为16可求出AF 的长, 再由AE ∥BD 可知AF 为△ACE 的高, 由三角形的面积公式即可得出结论. 详解:过点A 作AF ⊥BD 于点F, ∵△ABD 的面积为16, BD=8, ∴12BD•AF=12×8×AF=16, 解得AF=4, ∵AE ∥BD,∴AF 的长是△ACE 的高, ∴S △ACE =12×AE×4=12×5×4=10.故答案为:10. 5、试题分析:根据平行四边形的性质及角平分线定义得到ABE AEB ∠=∠, 进而推出AE=AB, 同理CF CD =, 再根据线段的和差证明即可. 详解:四边形ABCD 是平行四边形, ∴AD ∥BC , AB CD =, AD BC =,AEB CBE ∴∠=∠,BE 平分ABC ∠, ABE CBE ∴∠=∠,ABE AEB ∴∠=∠, AE AB ∴=,同理:CF CD =.AE CF ∴=, AD AE BC CF ∴-=-, ED BF ∴=.6、试题分析:首先利用定义可判断四边形ABCD 为平行四边形, 然后利用平行四边形边和角的性质来进行计算即可.详解:∵AE ∥BC 、AB ∥CF,∴四边形ABCD 为平行四边形.∴AD=BC, ∠D=∠B.又∵AE=60cm, BC=80cm, ∠B=60°, ∴DE=80-60=20cm, ∠D=60°.7、试题分析:〔1〕根据平行四边形的性质可得到AB ∥CD, 从而可得到AB ∥DF, 根据平行线的性质可得到两组内错角相等, 点E 是BC 的中点, 从而可根据AAS 来判定△BAE ≌△CFE, 根据全等三角形的对应边相等可证得AB=CF, 进而得出CF=CD;〔2〕利用全等三角形的判定与性质得出AE=EF, 再利用角平分线的性质以及等角对等边求出DA=DF, 利用等腰三角形的性质求出即可.〔1〕证明:∵四边形ABCD是平行四边形,∴AB∥CD, AB=CD.∵点F为DC的延长线上的一点, ∴AB∥DF,∴∠BAE=∠CFE, ∠ECF=∠EBA,∵E为BC中点, ∴BE=CE,那么在△BAE和△CFE中,,∴△BAE≌△CFE〔AAS〕,∴AB=CF, ∴CF=CD;〔2〕解:DE⊥AF,理由:∵AF平分∠BAD, ∴∠BAF=∠DAF,∵∠BAF=∠F, ∴∠DAF=∠F, ∴DA=DF,∴△ADF为等腰三角形.又由〔1〕知△BAE≌△CFE, ∴AE=EF,∴DE⊥AF.第四单元第1课函数一、根底稳固1.一般地, 如果在一个变化过程中有两个变量x和y, 并且对于变量x的每一个值, 变量y都有________的值与它对应, 那么我们称y是x的________, 其中________是自变量.2.下面选项中给出了某个变化过程中的两个变量x和y, 其中y不是..x的函数的是()A.y:正方形的面积, x:这个正方形的周长B.y:等边三角形的周长, x:这个等边三角形的边长C.y:圆的面积, x:这个圆的直径D.y:一个正数的平方根, x:这个正数3.以下关系式中, y不是..x的函数的是()A.y=x B.y=x2+1C.y=|x|D.|y|=2x4.(泸州)以下曲线中不能..表示y 是x 的函数的是( ) 5.表示函数的方法一般有________、__________和__________;函数的表示方法可以互相转化, 应用中要根据具体情况选择适当的方法.6.在下表中, 设x 表示乘公共汽车的站数, y 表示应付的票价.x /站 1 2 3 4 5 6 7 8 9 10 y /元1112233344根据此表, 以下说法正确的选项是( ) A .y 是x 的函数 B .y 不是x 的函数C .x 是y 的函数D .以上说法都不对7.假设每上6个台阶就升高1 m, 那么上升高度h (单位:m)与上的台阶数m (单位:个)之间的函数关系式是( ) A .h =6m B .h =6+mC .h =m -6D .h =m68.(随州)“龟兔赛跑〞这那么寓言故事讲述的是比赛中兔子开始领先, 但它因为骄傲在途中睡觉, 而乌龟一直坚持爬行最终赢得比赛, 以下函数图象可以表达这一故事过程的是( ) 9.对于一个的函数, 自变量的取值范围是使这个函数________的一切值;对于一个实际问题, 自变量的取值必须使____________有意义.如果当x =a 时y =b , 那么b 叫做当自变量x 的值为a 时的__________. 10.(内江)函数y =x +1x -1, 那么自变量x 的取值范围是( ) A .-1<x <1 B .x ≥-1且x ≠1C .x ≥-1D .x ≠111.函数y =2x -1x +2中, 当x =a 时的函数值为1, 那么a 的值是( )A .-1B .1C .-3D .312.函数y =⎩⎪⎨⎪⎧x 2-3〔x ≤2〕x -1〔x >2〕当函数值y =6时, 自变量的值是( )A .7B .-3C .-3或7D .±3或7 二、拓展提升13.在国内投寄本埠平信应付邮资如下表: 信件质量x /g 0<x ≤2020<x ≤4040<x ≤60邮资y /元(2)分别求当x 取5, 10, 30, 50时的函数值.14.某生态公园方案在园内的坡地上造一片只有A, B两种树的混合林, 需要购置这两种树苗2 000棵, 种植A, B两种树苗的相关信息如下表:品种价格(单位:元/棵) 成活率劳务费(单位:元/棵)A1595% 3B2099% 4设购置A种树苗x棵, 造这片树林的总费用为y元, 解答以下问题:(1)写出y与x之间的函数表达式;(2)假设这批树苗种植后成活1 960棵, 那么造这片树林的总费用为多少元?第26章反比例函数实际问题与反比例函数2一、根底稳固1.某工厂现有原材料100吨, 每天平均用去x吨, 这批原材料能用y天, 那么y与x之间的函数表达式为〔〕A.y=100x B.y=C.y=+100D.y=100﹣x2.如图, 市煤气公司方案在地下修建一个容积为104m3的圆柱形煤气储存室, 那么储存室的底面积S〔单位:m2〕与其深度d〔单位:m〕的函数图象大致是〔〕A.B.C.D.3.甲、乙两地相距s〔单位:km〕, 汽车从甲地匀速行驶到乙地, 那么汽车行驶的时间y〔单位:h〕关于行驶速度x〔单位:km/h〕的函数图象是〔〕A.B.C.D.4.教室里的饮水机接通电源就进入自动程序, 开机加热每分钟上升10℃, 加热到100℃, 停止加热,水温开始下降, 此时水温〔℃〕与开机后用时〔min〕成反比例关系, 直至水温降至30℃, 饮水机关机.饮水机关机后即刻自动开机, 重复上述自动程序.水温y〔℃〕和时间x〔min〕的关系如图.某天张老师在水温为30℃时, 接通了电源, 为了在上午课间时〔8:45〕能喝到不超过50℃的水, 那么接通电源的时间可以是当天上午的〔〕A.7:50B.7:45C.7:30D.7:205.在温度不变的条件下, 通过一次又一次地对汽缸顶部的活塞加压, 测出每一次加压后缸内气体的体积和气体对汽缸壁所产生的压强, 如下表:那么可以反映y与x之间的关系的式子是〔〕体积x〔mL〕100 80 60 40 20压强y〔kPa〕60 75 100 150 300A.y=3 000x B.y=6 000x C.y=D.y=6.随着私家车的增加, 交通也越来越拥挤, 通常情况下, 某段公路上车辆的行驶速度〔千米/时〕与路上每百米拥有车的数量x〔辆〕的关系如下图, 当x≥8时, y与x成反比例函数关系, 当车速度低于20千米/时, 交通就会拥堵, 为防止出现交通拥堵, 公路上每百米拥有车的数量x应该满足的范围是〔〕A.x<32 B.x≤32 C.x>32 D.x≥327.如图, 在平面直角坐标系中, 函数y=〔k>0, x>0〕的图象与等边三角形OAB的边OA, AB分别交于点M, N, 且OM=2MA, 假设AB=3, 那么点N的横坐标为〔〕A.B.C.4D.68.如图, 反比例函数y1=〔k1>0〕和y2=〔k2<0〕中, 作直线x=10, 分别交x轴, y1=〔k1>0〕和y2=〔k2<0〕于点P, 点A, 点B, 假设=3, 那么=〔〕A.B.3C.﹣3D.9.直线y=x+3与x轴、y轴分别交于A, B点, 与y=〔x<0〕的图象交于C、D两点, E是点C关于点A的中心对称点, EF⊥OA于F, 假设△AOD的面积与△AEF的面积之和为时, 那么k =〔〕A.3B.﹣2C.﹣3D.﹣10.如图, 点A、B在双曲线〔x<0〕上, 连接OA、AB, 以OA、AB为边作▱OABC.假设点C恰落在双曲线〔x>0〕上, 此时▱OABC的面积为〔〕A.B.C.D.411.某物体对地面的压强P〔Pa〕与物体和地面的接触面积S〔m2m2时, 该物体对地面的压强是Pa.12.根据某商场对一款运动鞋五天中的售价与销量关系的调查显示, 售价是销量的反比例函数〔统计数据见下表〕.该运动鞋的进价为180元/双, 要使该款运动鞋每天的销售利润到达2400元, 那么其售价应定为元.售价x〔元/双〕200 240 250 400销售量y〔双〕30 25 24 1513.小刚同学家里要用1500W的空调, 家里保险丝通过的最大电流是10A, 额定电压为220V, 那么他家最多还可以有只50W的灯泡与空调同时使用.14.在一个可以改变体积的密闭容器内装有一定质量的某种气体, 当改变容器的体积时, 气体的密度也会随之改变, 密度ρ〔单位:kg/m3〕与体积v〔单位:m3〕满足函数关系式〔k为常数, k≠0〕其图象如下图过点〔6, 1.5〕, 那么k的值为.15.小丁在课余时间找了几副度数不同的老花镜, 让镜片正对太阳光, 上下移动镜片, 直到地上的光斑最小, 此时他测量了镜片与光斑的距离, 得到如下数据:老花镜的度数x/度…100 125 200 250 …镜片与光斑的距离y/m… 1 …m, 那么这副老花镜为度.16.为预防传染病, 某校定期对教室进行“药熏消毒〞, 药物燃烧阶段, 室内每立方米空气中的含药量y〔mg〕与燃烧时间x〔分钟〕成正比例;燃烧后, y与x成反比例〔如下图〕.现测得药物10分钟燃烧完, 此时教室内每立方米空气含药量为6mgmg时, 对人体方能无毒害作用, 那么从消毒开始, 至少需要经过分钟后, 学生才能回到教室.二、拓展提升17.近似眼镜片的度数y〔度〕是镜片焦距x〔cm〕〔x>0〕的反比例函数, 调查数据如表:眼镜片度数y〔度〕400 625 800 1000 (1250)镜片焦距x〔cm〕25 16 10 (8)〔1〕求y与x的函数表达式;〔2〕假设近视眼镜镜片的度数为500度, 求该镜片的焦距.18.y〔毫克/百毫升〕与时间x〔时〕成正比例;1.5小时后〔包括1.5小时〕y与x成反比例.根据图中提供的信息, 解答以下问题:〔1〕写出一般成人喝半斤低度白酒后, y与x之间的函数关系式及相应的自变量取值范围;〔2〕按国家规定, 车辆驾驶人员血液中的酒精含量大于或等于20毫克/百毫升时属于“酒后驾驶〞, 不能驾车上路.参照上述数学模型, 假设某驾驶员晚上21:00在家喝完半斤低度白酒, 第二天早上7:00能否驾车去上班?请说明理由.19.教室里的饮水机接通电源就进入自动程序, 开机加热时每分钟上升10℃, 加热到100℃停止加热, 水温开始下降, 此时水温y〔℃〕与开机后用时x〔min〕成反比例关系, 直至水温降至30℃, 饮水机关机, 饮水机关机后即刻自动开机, 重复上述自动程序.假设在水温为30℃时接通电源, 水温y〔℃〕与时间x〔min〕的关系如下图:〔1〕分别写出水温上升和下降阶段y与x之间的函数关系式;〔2〕怡萱同学想喝高于50℃的水, 请问她最多需要等待多长时间?20.某地建设一项水利工程, 工程需要运送的土石方总量为360万米3.〔1〕写出运输公司完成任务所需的时间y〔单位:天〕与平均每天的工作量x〔单位:万米3〕之间的函数关系式;〔2〕当运输公司平均每天的工作量15万米3, 完成任务所需的时间是多少?〔3〕为了能在150天内完成任务, 平均每天的工作量至少是多少万米3?21.蓄电池的电压为定值.使用此蓄电池作为电源时, 电流Ⅰ〔单位:A〕与电阻R〔单位:Ω〕是反比例函数关系, 它的图象如下图.〔1〕求这个反比例函数的表达式;〔2〕如果以此蓄电池为电源的用电器的电流不能超过8A, 那么该用电器的可变电阻至少是多少?22.某公司用100万元研发一种市场急需电子产品, 已于当年投入生产并销售, 生产这种电子产品的本钱为4元/件, 在销售过程中发现:每年的年销售量y〔万件〕与销售价格x〔元/件〕的关系如下图, 其中AB为反比例函数图象的一局部, 设公司销售这种电子产品的年利润为s〔万元〕.〔1〕请求出y〔万件〕与x〔元/件〕的函数表达式;〔2〕求出第一年这种电子产品的年利润s〔万元〕与x〔元/件〕的函数表达式, 并求出第一年年利润的最大值.23.为预防传染病, 某校定期对教室进行“药熏消毒〞.药物燃烧阶段, 室内每立方米空气中的含药量y〔mg〕与药物在空气中的持续时间x〔m〕成正比例;燃烧后, y与x成反比例〔如下图〕.现测得药物10分钟燃完, 此时教室内每立方米空气含药量为8mg.根据以上信息解答以下问题:〔1〕分别求出药物燃烧时及燃烧后y关于x的函数表达式mg时, 对人体方能无毒害作用, 那么从消毒开始, 在哪个时段消毒人员不能停留在教室里?mg 的持续时间超过20分钟, 才能有效杀灭某种传染病毒.试判断此次消毒是否有效, 并说明理由.第四单元第1课函数二、根底稳固1.一般地, 如果在一个变化过程中有两个变量x 和y , 并且对于变量x 的每一个值, 变量y 都有________的值与它对应, 那么我们称y 是x 的________, 其中________是自变量. 2.下面选项中给出了某个变化过程中的两个变量x 和 y , 其中y 不是..x 的函数的是( )A .y :正方形的面积, x :这个正方形的周长B .y :等边三角形的周长, x :这个等边三角形的边长C .y :圆的面积, x :这个圆的直径D .y :一个正数的平方根, x :这个正数 3.以下关系式中, y 不是..x 的函数的是( )A .y =xB .y =x 2+1C .y =|x |D .|y |=2x4.(泸州)以下曲线中不能..表示y 是x 的函数的是( ) 5.表示函数的方法一般有________、__________和__________;函数的表示方法可以互相转化, 应用中要根据具体情况选择适当的方法.6.在下表中, 设x 表示乘公共汽车的站数, y 表示应付的票价.x /站 1 2 3 4 5 6 7 8 9 10 y /元1112233344根据此表, 以下说法正确的选项是( ) A .y 是x 的函数 B .y 不是x 的函数C .x 是y 的函数D .以上说法都不对7.假设每上6个台阶就升高1 m, 那么上升高度h (单位:m)与上的台阶数m (单位:个)之间的函数关系式是( ) A .h =6m B .h =6+mC .h =m -6D .h =m68.(随州)“龟兔赛跑〞这那么寓言故事讲述的是比赛中兔子开始领先, 但它因为骄傲在途中睡觉, 而乌龟一直坚持爬行最终赢得比赛, 以下函数图象可以表达这一故事过程的是( ) 9.对于一个的函数, 自变量的取值范围是使这个函数________的一切值;对于一个实际问题, 自变量的取值必须使____________有意义.如果当x =a 时y =b , 那么b 叫做当自变量x 的值为a 时的__________.10.(内江)函数y =x +1x -1, 那么自变量x 的取值范围是( ) A .-1<x <1 B .x ≥-1且x ≠1C .x ≥-1D .x ≠111.函数y =2x -1x +2中, 当x =a 时的函数值为1, 那么a 的值是( )A .-1B .1C .-3D .312.函数y =⎩⎪⎨⎪⎧x 2-3〔x ≤2〕x -1〔x >2〕当函数值y =6时, 自变量的值是( )A .7B .-3C .-3或7D .±3或7 三、拓展提升13.在国内投寄本埠平信应付邮资如下表:(2)分别求当x 取5, 10, 30, 50时的函数值.14.某生态公园方案在园内的坡地上造一片只有A, B 两种树的混合林, 需要购置这两种树苗2 000棵, 种植 A, B 两种树苗的相关信息如下表:(1)写出y 与x 之间的函数表达式;(2)假设这批树苗种植后成活1 960棵, 那么造这片树林的总费用为多少元?。
平行四边形导学案
平行四边形的性质(一)导学案学习目标:1.理解并掌握平行四边形的概念和平行四边形对边、对角相等的性质.2.会用平行四边形的性质解决简单的平行四边形的计算问题.3.培养学生发现问题、解决问题的能力及逻辑推理能力.学习重点:平行四边形的定义;对角、对边相等的性质,以及性质的应用.学习难点:运用平行四边形的性质进行有关的论证和计算.学习过程:一、列举实例,揭示课题1.我们一起来观察下图中的竹篱笆格子和汽车的防护链,想一想它们是什么几何图形的形象?2.你还能举出平行四边形在生活中应用的例子吗?3.揭示平行四边形的概念。
如图,平行四边形ABCD可以表示为:,几何表示定义:二、观察比较,探索新知1.由定义可知平行四边形具有什么性质?2.亲自动手画一个平行四边形,从边与角两方面观察平行四边形所具有的性质。
3.结论:平行四边形的性质:4.思考:①已知平行四边形的一个内角的度数,能确定其他内角的度数吗?②用什么方法可以证明平行四边形的这些性质?5.例题解析①如图所示,小明用一根36m长的绳子围成了一个平行四边形的场地,其中AB 边长为8m,其他三边的长各是多少?②如图,在平行四边形ABCD中,AE=CF,求证:AF=CE.三、练习巩固,提升能力填空题1.两组对边分别______的四边形叫做平行四边形.它用符号“□”表示,平行四边形ABCD记作__________。
2.平行四边形的两组对边分别____且____;平行四边形的两组对角分别______;两邻角____;平行四边形的面积=底边长×______.3.在□ABCD中,若∠A-∠B=40°,则∠A=______,∠B=______.4.若平行四边形周长为54cm,两邻边之差为5cm,则这两边的长度分别为______.5.若□ABCD的对角线AC平分∠DAB,则对角线AC与BD的位置关系是______.6.如图,□ABCD中,CE⊥AB,垂足为E,如果∠A=115°,则∠BCE=______.6题图7题图9题图7.如图,在□ABCD中,DB=DC、∠A=65°,CE⊥BD于E,则∠BCE=______.8.若在□ABCD中,∠A=30°,AB=7cm,AD=6cm,则S□ABCD=______.选择题9.如图,将□ABCD沿AE翻折,使点B恰好落在AD上的点F处,则下列结论不一定成立.....的是( ).A、AF=EFB、AB=EFC、AE=AFD、AF=BE10.如图,下列推理不正确的是( ).A、∵AB∥CD∴∠ABC+∠C=180°B、∵∠1=∠2 ∴AD∥BCC、∵AD∥BC∴∠3=∠4D、∵∠A+∠ADC=180°∴AB∥CD11.平行四边形两邻边分别为24和16,若两长边间的距离为8,则两短边间的距离为( ).A、5B、6C、8D、12解答题12.已知:如图,□ABCD中,DE⊥AC于E,BF⊥AC于F.求证:DE=BF.13.如图,在□ABCD中,∠ABC的平分线交CD于点E,∠ADE的平分线交AB 于点F,试判断AF与CE是否相等,并说明理由.14.已知:如图,E、F分别为□ABCD的对边AB、CD的中点.(1)求证:DE=FB;(2)若DE、CB的延长线交于G点,求证:CB=BG.15.已知:如图,□ABCD中,E、F是直线AC上两点,且AE=CF.求证:(1)BE=DF;(2)BE∥DF.16.已知:□ABCD中,AB=5,AD=2,∠DAB=120°,若以点A为原点,直线AB为x轴,如图所示建立直角坐标系,试分别求出B、C、D三点的坐标.四、总结反思,拓展升华1、平行四边形的性质2、平行四边形性质的证明过程3、质疑:平行四边形还有哪些性质?五、教学反思平行四边形的性质(二)导学案学习目标:1.理解平行四边形中心对称的特征,掌握平行四边形对角线互相平分的性质.2.能综合运用平行四边形的性质解决有关计算问题和简单的证明题.3.培养推理论证能力和逻辑思维能力.学习重点:平行四边形对角线互相平分的性质,以及性质的应用.学习难点:综合运用平行四边形的性质进行有关的论证和计算.学习过程:一、复习旧知,揭示课题1. 什么样的四边形是平行四边形?四边形与平行四边形的关系是:2.平行四边形的性质:3、提出问题,揭示课题二、活动演示,探索新知1.在纸上画ABCD,并连接对角线AC、BD交于点O.在点O处钉一个图钉,将ABCD绕点O旋转180,观察它还和原来的图形完全重合吗?你还能发现平行四边形的什么性质吗?2.得出结论并证明3.例题解析已知四边形ABCD是平行四边形,AB=10cm,AD=8cm,AC⊥BC,求BC、CD、AC、OA 的长以及ABCD的面积.三、练习巩固,提升能力1.平行四边形一条对角线分一个内角为25°和35°,则4个内角分别为_____。
18.1 平行四边形导学案
A B D C 第18章平行四边形第1课时 18.1.1 平行四边形的性质导学案(1)【学习目标】1、理解平行四边形的定义及有关概念;2、能根据定义探索并掌握平行四边形的对边相等、对角相等的性质;3、能根据平行四边形的性质进行简单的计算和证明;【学习重点】平行四边形的定义,平行四边形对角、对边相等的性质;【学习难点】如何添加辅助线将平行四边形问题转化为三角形问题解决的思想方法;一、学前预习认真学习课本83页至84页的内容。
1、叫做平行四边形。
平行四边形用符号“”来表示。
2、阅读以下文字并填空:平行四边形中对边是指无公共点的边,对角是指不相邻的角,邻边是指有公共端点的边,邻角是指有一条公共边的两个角.如上图,在ABCD中,AB的对边是,AB的邻边是,AD是BC 的边。
∠C的邻角是,∠C的邻对角是。
二、探索思考探究(一)通过观察、测量,我们可以发现:①平行四边形的对边;②平行四边形的对角;请你用我们学过的知识证明(需要你自己作图、写已知、求证,最后证明。
)练习一1、(1)在ABCD中,∠A=50°,求∠B、∠C、∠D的度数。
2、已知:ABCD中,AB=5,BC=3,求它的周长探索(二)a // b,作AD // GH // BC,若a // b,DA、GH、CB垂直于a,1、上面两图中AD、GH、BC相等吗?为什么?2、两条平行线间的距离:两条平行线间的距离和点与点之间的距离、点到直线的距离有何联系与区别:三、典例分析例1:在ABCD中,DE⊥AB,BF⊥CD,垂足分别为E、F,求证:AE=CF四、当堂反馈1、.判断题:(1)平行四边形两组对边分别平行且相等. ( ) (2)平行四边形的四个内角都相等. ( )(3)平行四边形的相邻两个内角的和等于180°( )(4)如果平行四边形相邻两边长分别是2cm和3cm,那么周长是10cm. ( )2、在平行四边形ABCD中,如果∠A=42°,那么∠B= ,∠C=3、在□ ABCD中,∠A:∠B=2:3,则∠A= _____ ,∠B= ______,∠C= ______,∠D= _______.4、已知□ ABCD的周长为20cm,且AD-AB=1cm,求AD,CD5、如图,在平行四边形ABCD中,AE=CF,求证:AF=CE.五、学习反思:(1)知识点:(2)数学方法:A BDCFEa ab bA AB BC CD DGHGHABCDO第2课时 18.1.1 平行四边形的性质导学案(2)【学习目标】1、理解平行四边形中心对称的特征,掌握平行四边形对角线互相平分的性质.2、能运用平行四边形的性质解决平行四边形的有关计算问题和简单的证明题.3、培养学生的推理论证能力和逻辑思维能力. 【学习重点】掌握平行四边形对角线互相平分的性质【学习难点】能综合运用平行四边形的性质解决平行四边形的有关计算问题,和简单的证明题 一、学前预习1. 如图,若要使四边形ABCD 是平行四边形,可以添加条件: , 添加的理由是 2、平行四边形的性质:如图∵四边形ABCD 是平行四边形∴ , ( ) 二、探索思考探究(一)1、如图,在□ABCD 中,画出对角线, 对角线能画 条,分是 . 2、新出现的线段之间有什么关系?新出现的三角形之间有什么关系?理由是什么?3、由以上关系你发现平行四边形的对角线有什么性质?4、请证明;平行四边形的对角线互相平分.已知: 求证:5、性质定理3的符号语言表示:∵∴ ( ) 练习一 1、如图,在ABCD 中,B C =10cm ,A C =8cm ,B D =14cm ,△AOD 的周长是多少?△ABC 与△DBC 的周长那个长?长多少?.三、典例分析例1、已知四边形ABCD 是平行四边形,AB =20cm ,AD =16cm ,AC ⊥BC , 求BC 、CD 、AC 、OA 的长以及ABCD 的面积.练习二、已知四边形ABCD 是平行四边形,BC =4cm ,BD =10cm ,AC=6cm, 求AB 、CD 的长以及ABCD 的面积.例2、已知:如图ABCD 的对角线AC 、BD 相交于点O ,EF 过点O 与AB 、CD 分别相交于点E 、F .求证:OE =OF ,AE=CF ,BE=DF .四、当堂反馈1. 如图,□ABCD 的两条对角线相交于点O, 已知AB=8cm,BC=6cm,△AOB 的周长是18cm ,那么△AOD 的周长是 .2.如图,在□ABCD 中,AB=3,BC=5,对角线AC ,BD 相交于点O , 则OA 的取值范围是 .3、如图:ABCD 的对角线AC 、BD 相交于点O ,EF 过点O 与AB 、CD 分别相交于点E 、F .①求证:OE =OF ,AE=CF ,BE=DF .②若其他条件都不变,将EF 转动到图b 的位置,那么①中结论是否成立?若将EF 向两方延长与平行四边形的两对边的延长线分别相交(图c 和图d ),①中结论是否成立?说明你的理由.五、学习反思:(1)知识点: (2)数学方法BDA CBDA CCBADOB DCA OABCDO第3课时 18.1.2平行四边形的判定导学案(1)【学习目标】1.在探索平行四边形的判别条件中,理解并掌握用边、对角线来判定平行四边形的方法. 2.会综合运用平行四边形的判定方法和性质来解决问题. 3.体会用类比、逆向联想及运动的思维方法来研究问题. 【学习重点】平行四边形的判定方法及应用【学习难点】平行四边形的判定定理与性质定理的灵活应用一、学前准备1.平行四边形的定义是2.平行四边形的性质:边的性质角的性质: :对角线的性质: 符号语言:如图∵∴(边) ,(角) (对角线二、探索思考探究(一)请写出平行四边形边、角、对角线的性质定理的逆命题:有关边的: 有关角的:有关对角线的:例1、如图, ABCD 的对角线AC 、BD 相交于点O ,E ,F 是AC 上的两点,并且AE=CF. 求证:四边形BFDE 是平行四边形.四、当堂反馈1、如图,AB=DC=EF ,AD=BC ,DE=CF ,图中有哪些互相平行的线段?并说明理由2、已知:如图,ABCD 中,点E 、F 分别在CD 、AB 上,DF ∥BE ,EF 交BD于点O .求证:EO=OF .3、已知□ABCD 中,AC 、BD 相交于O ,E 、F 是BO 、DO 的中点求证:AE ∥CF五、学习反思:(1)知识点: (2)数学方法:这些命题正确吗?如果正确,请证明A BCDEF第4课时 18.1.2平行四边形的判定导学案(2)【学习目标】1.掌握用一组对边平行且相等来判定平行四边形的方法.2.会综合运用平行四边形的四种判定方法和性质来证明问题.3.通过平行四边形的性质与判定的应用,启迪学生的思维,提高分析问题的能力.【学习重点】平行四边形各种判定方法及其应用,尤其是根据不同条件能正确地选择判定方法.【学习难点】平行四边形的判定定理与性质定理的综合应用一、学前准备1、平行四边形的性质:如图1∵∴(边),( )(角) ,( )如图2∵(对角线)∴ ( )2、平行四边形的判定:如图1 (1)定义∵∴四边形ABCD是平行四边形. ( )如图1 (2)∵∴四边形ABCD是平行四边形. ( )如图1 (3)∵∴四边形ABCD是平行四边形. ( )如图2(4)∵∴四边形ABCD是平行四边形. ( )二、探索思考探究(一)1、请同学们猜想一下,如果只考虑四边形的一组对边,当它满足什么条件时这个四边形是平行四边形?(据以下4个问题,写出一个你认为正确的猜想,并证明你的猜想)问题1:一组对边平行的四边形是平行四边形吗?如果是请给出证明,如果不是请举出反例说明.问题2:满足一组对边相等的四边形是平行四边形吗?问题3:如果一组对边平行,而另一组对边相等的四边形是平行四边形吗?问题4:一组对边平行且相等的四边形是平行四边形吗?例1如图,在平行四边形ABCD中,E,F分别是AB,CD的中点.求证:四边形EBFD是平行四边形.练习1 已知:如图,在四边形ABCD中,对角线AC和BD相交于O,AO=OC,BA⊥AC,DC⊥AC. 求证:四边形ABCD是平行四边形.四、当堂反馈1、如图,点EF是平行四边形ABCD边AD、BC上两点,AE=CF求证:BE∥DF2、已知:如图,ABCD中,E、F分别是AC上两点,且BE⊥AC于E,DF⊥AC于F.求证:四边形BEDF是平行四边形.3、已知:如图,A′B′∥BA,B′C′∥CB,C′A′∥AC.求证:①∠ABC=∠B′,∠CAB=∠A′,∠BCA=∠C′;②△ABC的顶点分别是△B′C′A′各边的中点.五、学习反思:(1)知识点:(2)数学方法:BD AC图1ACD 图2BO第5课时 18.1.2平行四边形的判定导学案(3)【学习目标】1、会综合运用平行四边形的四种判定方法和性质来证明问题.2、理解三角形中位线的概念,掌握三角形中位线的性质【学习重点】三角形中位线的概念和性质【学习难点】证明三角形中位线定理一、学前准备平行四边形的判定:如图1 (1)定义∵∴四边形ABCD是平行四边形. ( )如图1 (2)∵∴四边形ABCD是平行四边形. ( )如图1 (3)∵∴四边形ABCD是平行四边形. ( )如图1 (3)∵∴四边形ABCD是平行四边形. ( )如图2(5)∵∴四边形ABCD是平行四边形. ( )二、探索思考探究(一)1、请按要求画图:(1)在右框画任意△ABC中,(2)画AB、AC边中点D、E,连接DE.2、定义:像DE这样,连接三角形两边中点的线段叫做.3、问题1:一个三角形有几条中位线?问题2:三角形中位线与三角形中线有什么区别?问题3:通过观察、测量,DE与BC有怎样的关系?4、尝试证明你的猜想5、三角形中位线定理:符号语言:∵∴2. 如图,△ABC中,D、E分别是AB、AC中点.(1)若DE=5,则BC= .(2)若∠B=65°,则∠ADE= °.(3)若DE+BC=12,则BC= .三、典例分析例:如图,在四边形ABCD中,E、F、G、H分别是AB、BC、CD、DA中点.求证:四边形EFGH是平行四边形.四、当堂反馈1、如图,A、B两点被池塘隔开,在AB外选一点C,连接AC和BC,怎样量出A、B两点间的距离?根据是什么?2、如图,ABCD的周长为36,对角线AC,BD相交于点O.点E是CD的中点,BD=12,求△DOE的周长3、如图,ABCD的对角线AC,BD相交于点O,且E、F、G、H分别是AO、BO、CO、DO的中点,求证:四边形EFGH是平行四边形五、学习反思:(1)知识点:(2)数学方法:BDAC图1ACD图2BEGFHB CDAABCAB CDOEGHF【学习目标】 【学习重点】 【学习难点】 一、学前准备二、探索思考 探究(一)三、典例分析四、当堂反馈五、学习反思:(1)知识点: (2)数学方法:1、在四边形ABCD 中:从下列条件(1)AB ∥CD ; (2)AD ∥BC ; (3)AD =BC ,(4)∠A =∠C ,选择两个条件,能判定四边形ABCD 是平行四边形的共有 种2、指出下列条件中,哪些一定能判定四边形ABCD 是平行四边形?(1). AB=BC, A D ∥BC (2). AB=CD,O A =OC (O 是对角线交点) (3). ∠A=∠B, ∠C=∠D (4).AB ∥CD, ∠A=∠C 3、如图,BD 是□ABCD 的对角线,点E 、F 在BD 上, 要使四边形AECF 是平行四边形,还需要增加的一个条 件是 (填上你认为正确的一个即可)。
平行四边形的判定2-导学案
吉昌中学八年数学(上)导学案课题18.1.2平行四边形的判定(2)课型新授时间~学习目标1.掌握用一组对边平行且相等来判定平行四边形的方法.2.会综合运用平行四边形的四种判定方法和性质来证明问题.重点平行四边形各种判定方法及其应用,尤其是根据不同条件正确地选择判定方法.{难点平行四边形的判定定理与性质定理的综合应用.学习内容(资源)教学设计学习指导:【复习反思】如图,在下列各题中,再添上一个条件使结论成立:(1)∵AB∥CD,,∴四边形ABCD是平行四边形.(2)∵AB=CD,,@∴四边形ABCD是平行四边形.如果只考虑一组对边,它们满足什么条件时,这个四边形能成为平行四边形【预习检测】取两根等长的木条AB、CD,将它们平行放置,再用两根木条BC、AD加固,得到的四边形ABCD是平行四边形吗(即“一组对边平行且相等的四边形是平行四边形”吗)已知:求证:"证明:【合作探究】—1、归纳:的四边形是平行四边形几何表述:∵∴四边形ABCD是平行四边形.2、例1:如图,在ABCD中,E,F分别是AB,CD的中点.求证:四边形EBFD是平行四边形.:在上题中,将“E,F分别是AB,CD的中点”改为“E,F分别是AB,CD上的点,且AE=CF”,结论是否仍然成立请说明理由.例2如图,四边形AEFD和EBCF都是平行四边形.求证:四边形ABCD是平行四边形.?例3如图,分别以Rt△ABC的直角边AC及斜边AB向外作等边△ACD、等边△ABE.且∠BAC=30°,EF⊥AB,垂足为F,连接DF.(1)试说明AC=EF;(2)求证:四边形ADFE是平行四边形.·【巩固练习】1、已知:如图,四边形ABCD中,AB=DC,AD=BC,点E在BC上,点F在AD上,AF=CE,EF与对角线BD交于点O,求证:O是BD的中点.2、已知:如图,在□ABCD中,点E、F在对角线AC上,且AE=CF.请你以F为一个端点,和图中已标明字母的某一点连成一条新线段,猜想并证明它和图中已有的某一条线段相等(只需证明一组线段相等即可).((1)连结______;(2)猜想:______=______;(3)证明:3、已知:如图,ABCD中,E、F分别是AC上两点,且BE⊥AC于E,DF⊥AC于F.求证:四边形BEDF是平行四边形.;AB CDA B C{E F;B CDEFABC}EF。
第18章《平行四边形》四步导学案
人教版八年级上册数学第十八章《平行四边形》四步导学案18.1.1平行四边形的性质(1)学习目标知识:理解并掌握平行四边形的概念和平行四边形对边、对角相等的性质. 能力:会用平行四边形的性质解决简单的平行四边形的计算问题。
情感:通过学生动手体验、探索、归纳等获取知识的途径,从而培养学生对学习数学的兴趣。
学习重点:理解并掌握平行四边形的概念和平行四边形对边、对角相等的性质.学习难点:解决简单的平行四边形的计算问题。
教学流程【导课】1、说说下列图形是什么图形?2、观察课本83页图19.1- 1,你能发现那些几何图形? 【多元互动合作探究】活动一:1、观察平行四边形与一般的四边形有什么异同?2、归纳平行四边形概念:3、平行四边形记法:如图“平行四边形”可用符号“表示。
平行四边形ABCD记作:ABCD活动二: B C1、观察上面这个四边形,它除具有四边形的性质和两组对边分别平行外以,它的边和角之间有什么关系?度量一下,是不是和你猜想的一致?2、证明你的猜想:已知:如图二ABCD ,求证:AB = CD , CB= AD,/ B = Z D,/ BAD = Z BCD .(分析:作二ABCD的对角线AC,它将平行四边形分成△ ABC和厶CDA,证明这两个三角形全等即可得到结论)由此得到:平行四边形性质1平行四边形的.平行四边形性质2平行四边形的.【训练检测目标探究】1•填空:【训练检测目标探究】第十八章平行四边形(1)在二ABCD 中,/ A=50,则/ B=®,/ C=度,/ D=度.(2)如果二ABCD 的周长为28cm,且AB: BC=2 : 5,那么AB=cm, BC=cm, CD=cm, CD=cm.2. 在-ABCD中,如果EF // AD, GH // CD , EF与GH相交与点O,那么图中的平行四边形一共有().(A) 4 个(B) 5 个 (C) 8 个 (D) 9 个3、平行四边形两角之比是2 : 3 ,各角都是多少度?4、、如图小明用一根36m长的绳子围成了一个平行四边形的场地,其中一条边AB长为8m,其他三条边各长多少?【迁移应用拓展探究】1•在平行四边形ABCD中,/ A=50 °则/ B= ° / D = °2、如果平行四边形ABCD的周长为28cm,且AB: BC=2 : 5,那么AB=cm, BC=cm, CD= cm, CD=cm3、如图,在平行四边形ABCD中,AE=CF,丁D 求证:AF =CE .4、如图,剪两张对边平行的纸条,随意交叉叠放在一起,转动其中一张,重合的部分构成了一个四边形(1)线段AD和BC的长度有什么关系?为什么?若这个四边形的一个外角/ a= 38°这个四边形的每个内角的度数分别是多少?为什么?布置作业板书设计教后反思授课时间:累计课时:第十八章平行四边形18.1.1平行四边形的性质(2)学习目标知识:理解平行四边形中心对称的特征,掌握平行四边形对角线互相平分的性质。
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
特殊的平行四边形复习导学案2 班级:姓名:
【教学目标】掌握平行四边形与各种特殊平行四边形的性质、判定方法,形成解决问题的基本技能。
【教学重点】熟练运用特殊平行四边形的性质、判定方法解决问题。
【教学难点】灵活运用特殊平行四边形的性质和判定进行证明和计算,形成解决问题的基本技能。
【课前准备】1、四边形结构网络 2、四边形包含关系
3
【自主探索】以上四边形的面积s=边长×高;特别地菱形和正方形的面积还可以用对角线乘积÷2来计算,为什么
牛刀小试:
1、若正方形ABCD的对角线长10厘米,那么它的面积是()平方厘米。
2、如图1,菱形ABCD的对角线的长分别为2和5,P是对角线AC上任一点(点P不与点A、C重合)且PE∥BC交AB于E,PF∥CD交AD于F,则阴影部分的面积是 .
○1性质和判定的运用
如图,矩形ABCD的对角线AC、BD交于点O,过点D作DP∥OC,且 DP=OC,连结CP,试判断四边形CODP的形状.
变式拓展
如果题目中的矩形变为菱形(图一),结论应变为什么?
如果题目中的矩形变为正方形(图二),结论又应变为什么?
【合作交流】
○1探索开放型
1.已知:如图2,AD∥BC,要使四边形ABCD为平行四边形,需要增加的一个条件是:
(!)若添加的是线段之间位置关系,则为:
(2)若添加的是线段之间数量关系,则为:
(3)若添加的是角之间数量关系,则为:_______或________或________或__________ 2.如图3,若四边形ABCD为平行四边形,请补充条件________或_________使得四边形ABCD 为菱形.
C
3.如图,在四边形ABCD中,E、F、G、H分别是边AB、BC、CD、DA的中点,不添加辅助线,
请添加一个条件,使四边形EFGH为菱形,并说明理由。
解:添加的条件是__________ 。
理由是: . 思考:上题中,其他条件不变。
1、当对角线AC和BD满足怎样的关系时,四边形EFGH为矩形?
2、当满足什么关系时四边形EFGH为正方形?
题后反思:
合作再探.
4.如图,以△ABC的边AB、AC为边的等边三角形ABD和等边三角形ACE,四边形ADFE是平行四边形.
(1)当∠BAC等于时,四边形ADFE是矩形;
(2)当∠BAC等于时,平行四边形ADFE不存在;
(3)当△ABC分别满足什么条件时,平行四边形是菱形、正方形.理由是什么?
○2有关四边形中角,线段,周长,面积等的计算问题:
如图.把矩形纸片ABCD沿FH折叠,使点B恰好落在点D处,点A落在点E处,若AB=6,BC=8,你能求出折痕的长度吗?
题后反思:
小结【作业布置】:
1、根据条件判定它是什么图形,并在括号内填出,在四边形ABCD中,对角线AC和BD相交
于点O:
(1)若AB=CD,AD=BC ;那么四边形ABCD是()
(2)若∠A=∠B=∠C=90°;那么四边形ABCD是()
(3)若AB=BC,四边形ABCD是平行四边形;那么四边形ABCD是()
(4)OA=OC=OB=OD ,AC⊥BD;那么四边形ABCD是()
2、菱形的两条对角线长分别是6厘米和8厘米,则菱形的边长为厘米。
3、矩形、菱形、正方形都具有的性质是()
A.对角线相等 B. 对角线平分一组对角 C.对角线互相平分 D. 对角线互相垂直
4、正方形具有而矩形不具有的特征是()
A. 内角为3600
B. 四个角都是直角
C. 两组对边分别相等
D. 对角线平分对角
5、检查一个四边形门框是矩形的方法之一是()
A、测量两条对角线是否相等.
B、测量有三个角是直角.
C 测量两条对角线是否互相平分. D、测量两条对角线是否互相垂直.
6.菱形的周长等于高的8倍,则其最大内角等于()
A、60°
B、90°
C、120°
D、150°
7、矩形ABCD中,AB=8,BC=6,E、F是AC的三等分点,则△BEF的面积是()
A、8
B、12
C、16
D、24
8、李大爷有一个边长为a的正方形鱼塘,鱼塘四个角的顶点A、B、C、D上各有一棵大树,
现在李大爷想把鱼塘扩建成一个圆形或正方形鱼塘(原鱼塘周围的面积足够大).又不想把树
挖掉(四棵大树要在新建鱼塘的边沿上).
(1)若按圆形设计,请画出你设计的示意图,并求出圆形鱼塘的面积;
(2)若按正方形设计,请画出你设计的示意图.
9、如图1:正方形ABCD的对角线AC、BD相交于点O,E是AC上的一点,连接EB,过点A作
AM⊥BE,垂足M,AM交BD于点F
(1)求证:OE=OF
(2)如图所示,若点E在AC的延长线上,AM⊥EB的延长线于点M,交DB的延长线于点F,
其他条件都不变,则结论“OE=OF”还成立吗?如果成立,请给出证明;如果不成立,请说明
理由
G
D
H
B
A。