数值分析试卷1
数值分析试卷1
一、填空(18分)(1) [a,b]上具有n+1个求积节点的求积公式的代数精度最多为( )。
(2) 设连续函数f (x )∈C[0,1],则它的n 次Bernstein 多项式为( )。
(3) 设f(x) ∈C[a,b],m 和M 分别为f(x)在[a,b]上的最小值与最大值,则f(x)在[a,b]上的零次最佳逼近多项式为( ).(4) n 次直交多项式的单根个数为( )。
(5) 设,110b x x x x a N N =<<<<=+ 则),,,(21N n x x x ϕ的一组基底为( ),其中),,,(21N n x x x ϕ表示以Nx x x ,,,21 为节点的n 次样条函数的全体。
(6) N 次Bezier 曲线的表示式是( )。
二、 判断题 (18分)(正确的√,错误的×)(1) 具有n 个求积节点的求积公式的代数精度至少为n-1。
( )。
(2) [a ,b]上的两个直交多项式n P 和1+n P 没有公共的根( )。
(3) n P 中的一个多项式p(x)成为C[a,b]中某给定函数f(x)的最佳逼近多项式必须且只需p(x)-f(x)在[a,b]上的偏离点的个数不少于n+2( )。
(4) Simpson 求积公式的代数精度是3( )。
(5) 设连续函数f (x )∈C[a,b],)(x P n 是其n 次最佳平方逼近多项式,则)()(limx f x P n n =∞→( )。
(6) n 次Chebysheff(切比雪夫)多项式在[-1,1]上恰有n 个极大值点。
( )。
三、(10分)叙述并证明W ereistrass 第一定理。
Weierstrass 第一定理:设()f x [,]C a b ∈,那么对于任意给定的0ε>,都存在这样的多项式()p x ,使得m ax ()()a x bp x f x ε≤≤-<四、(8分)求3x f(x)=在[0,1]上的一次平方逼近多项式。
数值分析模拟试卷1,2,3
数值分析模拟试卷1一、填空(共30分,每空3分) 1 设⎪⎪⎭⎫⎝⎛-=1511A ,则A 的谱半径=)(a ρ______,A 的条件数)(1A cond =________.2 设,2,1,0,,53)(2==+=k kh x xx f k ,则],,[21++n n n x x x f =________,],,[321+++n n n n x x x x f ,=________.3 设⎪⎩⎪⎨⎧≤≤-++≤≤+=21,1210,)(2323x cx bx x x x x x S ,是以0,1,2为节点的三次样条函数,则b=________,c=________.4 设∞=0)]([k k x q 是区间[0,1]上权函数为x x =)(ρ的最高项系数为1的正交多项式族,其中1)(0=x q ,则⎰=10)(dx x xq k ________,=)(2x q ________.5 设⎥⎥⎥⎦⎤⎢⎢⎢⎣⎡=11001aaa a A ,当∈a ________时,必有分解式,其中L 为下三角阵,当其对角线元素)3,2,1(=i L ii 满足条件________时,这种分解是唯一的.二、(14分)设49,1,41,)(21023====x x x x x f ,(1)试求)(x f 在]49,41[上的三次Hermite 插值多项式)(x H 使满足2,1,0),()(==i x f x H i i ,)()(11x f x H '='.(2)写出余项)()()(x H x f x R -=的表达式.三、(14分)设有解方程0cos 2312=+-x x 的迭代公式为n n x x cos 3241+=+,(1) 证明R x ∈∀0均有∙∞→=x x n x lim (∙x 为方程的根);(2) 取40=x ,用此迭代法求方程根的近似值,误差不超过,列出各次迭代值;(3)此迭代的收敛阶是多少?证明你的结论.四、(16分) 试确定常数A ,B ,C 和,使得数值积分公式有尽可能高的代数精度. 试问所得的数值积分公式代数精度是多少?它是否为Gauss 型的?五、(15分) 设有常微分方程的初值问题⎩⎨⎧=='00)(),(y x y y x f y ,试用Taylor 展开原理构造形如)()(11011--++++=n n n n n f f h y y y ββα的方法,使其具有二阶精度,并推导其局部截断误差主项.六、(15分) 已知方程组b Ax =,其中⎪⎪⎭⎫ ⎝⎛=⎪⎪⎭⎫⎝⎛=21,13.021b A , (1) 试讨论用Jacobi 迭代法和Gauss-Seidel 迭代法求解此方程组的收敛性. (2) 若有迭代公式)()()()1(b Axa xxk k k ++=+,试确定一个的取值范围,在这个范围内任取一个值均能使该迭代公式收敛. 七、(8分) 方程组,其中,A 是对称的且非奇异.设A 有误差,则原方程组变化为,其中为解的误差向量,试证明.其中1λ和2λ分别为A 的按模最大和最小的特征值.数值分析模拟试卷2填空题(每空2分,共30分)1. 近似数231.0=*x 关于真值229.0=x 有____________位有效数字; 2. 设)(x f 可微,求方程)(x f x =根的牛顿迭代格式是_______________________________________________;3. 对1)(3++=x x x f ,差商=]3,2,1,0[f _________________;=]4,3,2,1,0[f ________;4. 已知⎪⎪⎭⎫⎝⎛-='-=1223,)3,2(A x ,则=∞||||Ax ________________,=)(1A Cond______________________ ;5. 用二分法求方程01)(3=-+=x x x f 在区间[0,1]内的根,进行一步后根所在区间为_________,进行二步后根所在区间为_________________;6. 求解线性方程组⎪⎩⎪⎨⎧=+=+04511532121x x x x 的高斯—赛德尔迭代格式为_______________________________________;该迭代格式迭代矩阵的谱半径=)(G ρ_______________;7. 为使两点数值求积公式:⎰-+≈111100)()()(x f x f dx x f ωω具有最高的代数精确度,其求积节点应为=0x _____ , =1x _____,==10ωω__________. 8. 求积公式)]2()1([23)(30f f dx x f +≈⎰是否是插值型的__________,其代数精度为___________。
数值分析试题与答案
一. 填空题(本大题共4小题,每小题4分,共16分)1.设有节点012,,x x x ,其对应的函数()y f x =的值分别为012,,y y y ,则二次拉格朗日插值基函数0()l x 为 。
2.设()2f x x =,则()f x 关于节点0120,1,3x x x ===的二阶向前差分为 。
3.设110111011A -⎡⎤⎢⎥=--⎢⎥⎢⎥-⎣⎦,233x ⎡⎤⎢⎥=⎢⎥⎢⎥⎣⎦,则1A = ,1x = 。
4. 1n +个节点的高斯求积公式的代数精确度为 。
二.简答题(本大题共3小题,每小题8分,共24分)1. 哪种线性方程组可用平方根法求解?为什么说平方根法计算稳定?2. 什么是不动点迭代法?()x ϕ满足什么条件才能保证不动点存在和不动点迭代序列收敛于()x ϕ的不动点?3. 设n 阶矩阵A 具有n 个特征值且满足123n λλλλ>≥≥≥,请简单说明求解矩阵A 的主特征值和特征向量的算法及流程。
三.求一个次数不高于3的多项式()3P x ,满足下列插值条件:i x 1 2 3 i y 2 4 12 i y '3并估计误差。
(10分)四.试用1,2,4n =的牛顿-科特斯求积公式计算定积分1011I dx x=+⎰。
(10分) 五.用Newton 法求()cos 0f x x x =-=的近似解。
(10分) 六.试用Doolittle 分解法求解方程组:12325610413191963630x x x -⎡⎤⎡⎤⎡⎤⎢⎥⎢⎥⎢⎥-=⎢⎥⎢⎥⎢⎥⎢⎥⎢⎥⎢⎥----⎣⎦⎣⎦⎣⎦ (10分)七.请写出雅可比迭代法求解线性方程组123123123202324812231530x x x x x x x x x ++=⎧⎪++=⎨⎪-+=⎩ 的迭代格式,并判断其是否收敛?(10分)八.就初值问题0(0)y yy y λ'=⎧⎨=⎩考察欧拉显式格式的收敛性。
(10分)《数值分析》(A )卷标准答案(2009-2010-1)一. 填空题(每小题3分,共12分) 1. ()1200102()()()()x x x x l x x x x x --=--; 2.7;3. 3,8;4. 2n+1。
(完整)数值分析试题库与答案解析,推荐文档
模 拟 试 卷(一)一、填空题(每小题3分,共30分)1.有3个不同节点的高斯求积公式的代数精度是 次的.2.设,,则=.,= ______.152210142-⎡⎤⎢⎥=-⎢⎥⎢⎥-⎣⎦A 342⎛⎫⎪=- ⎪ ⎪⎝⎭x ∞A1x3.已知y =f (x )的均差(差商),,,01214[,,]3f x x x =12315[,,] 3f x x x =23491[,,]15f x x x =, 那么均差=.0238[,,] 3f x x x =423[,,]f x x x 4.已知n =4时Newton -Cotes 求积公式的系数分别是:则,152,4516,907)4(2)4(1)4(0===C C C = .)4(3C 5.解初始值问题的改进的Euler 方法是阶方法;0(,)()y f x y y x y '=⎧⎨=⎩6.求解线性代数方程组的高斯—塞德尔迭代公式为,123123123530.13260.722 3.51x x x x x x x x x --=⎧⎪-++=⎨⎪++=⎩若取, 则.(0)(1,1,1)=- x(1)=x 7.求方程根的牛顿迭代格式是 .()x f x =8.是以整数点为节点的Lagrange 插值基函数,则01(), (),, ()n x x x 01, ,, ,n x x x =.()nk jk k x x =∑9.解方程组的简单迭代格式收敛的充要条件是.=Ax b (1)()k k +=+x Bx g 10.设,则的三次牛顿插值多项式为(-1)1,(0)0,(1)1,(2)5f f f f ====()f x ,其误差估计式为 .二、综合题(每题10分,共60分)1.求一次数不超过4次的多项式满足:,,()p x (1)15p =(1)20p '=(1)30p ''=,.(2)57p =(2)72p '=2.构造代数精度最高的形式为的求积公式,并求出10101()()(1)2xf x dx A f A f ≈+⎰其代数精度.3.用Newton 法求方程在区间内的根, 要求.2ln =-x x ) ,2(∞8110--<-kk k x x x 4.用最小二乘法求形如的经验公式拟合以下数据:2y a bx=+i x 19253038iy 19.032.349.073.35.用矩阵的直接三角分解法解方程组.⎥⎥⎥⎥⎦⎤⎢⎢⎢⎢⎣⎡=⎥⎥⎥⎥⎦⎤⎢⎢⎢⎢⎣⎡⎥⎥⎥⎥⎦⎤⎢⎢⎢⎢⎣⎡71735 30103421101002014321x x x x 6 试用数值积分法建立求解初值问题的如下数值求解公式0(,)(0)y f x y y y '=⎧⎨=⎩,1111(4)3n n n n n hy y f f f +-+-=+++其中.(,),1,,1i i i f f x y i n n n ==-+三、证明题(10分)设对任意的,函数的导数都存在且,对于满足x ()f x ()f x '0()m f x M '<≤≤的任意,迭代格式均收敛于的根.20Mλ<<λ1()k k k x x f x λ+=-()0f x =*x 参考答案一、填空题1.5; 2. 8, 9 ; 3.; 4. ; 5. 二; 911516456. , (0.02,0.22,0.1543)(1)()()123(1)(1)()213(1)(1)(1)312(330.1)/5(220.7)/6(12)*2/7k k k k k k k k k x x x x x x x x x ++++++⎧=++⎪=+-⎨⎪=--⎩7. ; 8. ; 9. ;1()1()k k k k k x f x x x f x +-=-'-j x ()1B ρ<10.32(4)11,()(1)(1)(2)/24(1,2)66x x x f x x x x ξξ+-+--∈-二、综合题1.差商表:11122151515575720204272152230781233234()1520(1)15(1)7(1)(1)(2)5432p x x x x x x x x x x =+-+-+-+--=++++其他方法:设233()1520(1)15(1)7(1)(1)()p x x x x x ax b =+-+-+-+-+令,,求出a 和b.(2)57p =(2)72p '=2.取,令公式准确成立,得:()1,f x x =,, , .0112A A +=011123A A +=013A =116A =时,公式左右;时,公式左, 公式右2()f x x =14=3()f x x =15=524=∴ 公式的代数精度.2=3.此方程在区间内只有一个根,而且在区间(2,4)内。
数值分析1
MATLAB作业1. 判断如下命题是否正确(a) 一个问题的病态性如何,与求解它的算法有关系。
(错) (b) 无论问题是否病态,好的算法都会得到它好的近似解。
(错) (c) 计算中使用更高的精度,可以改善问题的病态性。
(错) (d) 用一个稳定的算法计算一个良态的问题,一定会得到它好的近似解。
(错) (e) 浮点数在整个数轴上是均匀分布的 (错) (f) 浮点数的加法满足结合律 (错) (g) 浮点数的加法满足交换律 (错) (h) 浮点数构成有限集合 (对) (i) 用一个收敛的算法计算一个良态的问题,一定会得到它好的近似解 (错)2. 函数sinx 有幂级数展开利用幂级数计算sinx 的Matlab 程序为 function s = powersin(x)% POWERSIN. Power series for sin(x).% POWERSIN(x) tries to compute sin(x) from a power series s = 0; t = x; n = 1;while s + t ~= s; s = s + t;t = -x^2/((n+1)*(n+2))*t; n = n + 2; end(a) 解释上述程序的终止准则;(b) 对于,计算的精度是多少?分别需要计算多少项?答:(a )当t 小于计算机的计算精度时,上述程序将终止。
(b ) x=/2π; n=23; s=1.0000x=11/2π; n=75; s= -1.0000x =21/2π; n=121; s= 0.9999/2,11/2,21/2x πππ=3. 考虑数列 ,它的统计平均值定义为它的标准差数学上等价于作为标准差的两种算法,你如何评价它们的得与失?第一种算法共进行了n 次乘方运算,2n 次求和运算,第二种算法进行了2n 次乘方和2n 次求和,运算次数较多。
而且第二种算法中2i x 与误差较为接近,易造成舍入2x n 。
(完整)数值分析历年考题
数值分析A 试题2007.1第一部分:填空题10⨯51.设3112A ⎛⎫= ⎪⎝⎭,则A ∞=___________ 2()cond A =___________2.将4111A ⎛⎫= ⎪⎝⎭分解成TA LL =,则对角元为正的下三角阵L =___________,请用线性最小二乘拟合方法确定拟合函数()bx f x ae =中的参数:a = ___________ b =___________4.方程13cos 2044x x π--=在[0,1]上有 个根,若初值取00.95x =,迭代方法113cos 244k k x x π+=-的收敛阶是5.解方程2210x x -+=的Newton 迭代方法为___________,其收敛阶为___________6。
设()s x = 3232323,[0,1]31,[1,2]ax x x x x x bx x +-+∈--+∈为三次样条函数,则a = ___________ b =___________ 7。
要想求积公式:1121()(()f x dx A f f x -≈+⎰的代数精度尽可能高,参数1A = ___________ 2x =___________此时其代数精度为:___________8.用线性多步法2121(0.50.5)n n n n n y y h f f f ++++-=-+来求解初值问题00'(,),(),y f x y y x y ==其中(,)n n n f f x y =,该方法的局部截断误差为___________,设,0,f y μμ=〈其绝对稳定性空间是___________9。
用线性多步法2121()n n n n n y ay by h f f ++++-+=-来求解初值问题00'(,),(),y f x y y x y ==其中(,)n n n f f x y =,希望该方法的阶尽可能高,那么a = ___________ b =___________,此时该方法是几阶的:___________10。
数值分析试题答案(1)
《数值分析》模拟试题(一)一、填空题 (20分)(1) 设* 2.40315x =是真值 2.40194x =的近似值,则*x 有________位有效数字. (2) 设3()1f x x x =+-,则差商[0,1,2,3]f =_____________,[0,1,2,3,4]f =________________.(3) ()x f x =求方程根的牛顿迭代格式是__________________. ^4).梯形求积公式和复化梯形公式都是插值型求积公式 (对或错). 5).牛顿—柯特斯求积公式的系数和()0nn k k C =∑ .二、计算题(每小题15分,共60分)(1) 用二次拉格朗日插值多项式2()L x 计算sin0.34的值。
插值节点和相应的函数值是(0,0),,,,.(2) 用二分法求方程3()1f x x x =--在[1.0,1.5]区间内的一个根,误差限210ε-=. |(3) 用列主元消去法解线性方程组1231231232346,3525,433032.x x x x x x x x x ++=⎧⎪++=⎨⎪++=⎩(4) 确定求积公式012()()(0)()hhf x dx A f h A f A f h -≈-++⎰.中待定参数i A 的值(0,1,2)i =,使求积公式的代数精度尽量高;并指出此时求积公式的代数精度. |三、证明题 (10分)设()[,]f x C a b ∈,()max |()|n n a x bM f x ≤≤=,若取21cos ,1,2,,222k a b a b k x k nn+--=+= 作节点,证明Lagrange 插值余项有估计式21()max |()|!2nn n a x b M b a R x n -≤≤-≤. 四、程序题(10分);试用Matlab 语言写出(Gauss--Seidel)迭代公式求解线性方程组Ax=b 的算法. 要求:输入方程个数n,矩阵A 的元素和b,初始向量120000(,,,)n T x x x x =,输出近似解和迭代次数.《数值分析》模拟题一参考答案一、填空题(每小题4分,共20分),(1) 3; (2)1,0; (3)1()1()n n n n n x f x x x f x +-=-'-; (4)错; (5)1.二、计算题(每小题15分,共60分) (1)020*******010*********()()()()()()()()()()()()()x x x x x x x x x x x x L x f f f x x x x x x x x x x x x ------=++------=*(2) N=61234561.25 1.375 1.31251.34375 1.3281251.3203125x x x x x x ======(3)解:234643303243303235253525352543303223462346433032433032011/441/219011/441/21903/21110002/114/1143303201182380012⎛⎫⎛⎫⎛⎫⎪ ⎪ ⎪→→ ⎪ ⎪ ⎪ ⎪ ⎪ ⎪⎝⎭⎝⎭⎝⎭⎛⎫⎛⎫⎪⎪→--→-- ⎪ ⎪ ⎪ ⎪--⎝⎭⎝⎭⎛⎫ ⎪→-- ⎪ ⎪⎝⎭即\123123233433032,13,118238,8,2.2.x x x x x x x x x ++==⎧⎧⎪⎪-=-⇒=⎨⎨⎪⎪==⎩⎩(4)分别将2()1,,f x x x =,代入求积公式,可得02114,33A A h A h===。
数值分析试卷及其答案1
1. 已知325413.0,325413*2*1==X X 都有6位有效数字,求绝对误差限。
(4分)解:由已知可知,n=65.01021,0,6,10325413.0016*1=⨯==-=⨯=ε绝对误差限n k k X 2分 620*21021,6,0,10325413.0-⨯=-=-=⨯=ε绝对误差限n k k X 2分2. 已知⎢⎢⎢⎣⎡=001A 220- ⎥⎥⎥⎦⎤440求21,,A A A ∞ (6分)解:{},88,4,1max 1==A1分{},66,6,1max ==∞A1分()AA A T max 2λ=1分⎢⎢⎢⎣⎡=001A A T420⎥⎥⎥⎦⎤-420⎢⎢⎢⎣⎡001220-⎥⎥⎥⎦⎤440=⎢⎢⎢⎣⎡00180⎥⎥⎥⎦⎤3200 2分{}3232,8,1max )(max ==A A T λ1分24322==A3. 设32)()(a x x f -= (6分) ① 写出f(x )=0解的Ne wt on迭代格式② 当a 为何值时,)(1k k x x ϕ=+ (k=0,1……)产生的序列{}k x 收敛于2解:①N ewton 迭代格式为:xa x x x ax a x x a x x x f x f x x k k k k k k k k k k 665)(665)(6)()(')(22321+=+=---=-=+ϕ 3分 ②时迭代收敛即当222,11210)2(',665)('2<<-<-=-=a a x a x ϕϕ 3分4. 给定线性方程组A x=b ,其中:⎢⎣⎡=13A ⎥⎦⎤22,⎥⎦⎤⎢⎣⎡-=13b 用迭代公式)()()()1(k k k Ax b x x -+=+α(k=0,1……)求解Ax =b,问取什么实数α,可使迭代收敛(8分)解:所给迭代公式的迭代矩阵为⎥⎦⎤--⎢⎣⎡--=-=ααααα21231A I B 2分其特征方程为0)21(2)31(=----=-αλαααλλB I2分即,解得αλαλ41,121-=-= 2分 要使其满足题意,须使1)(<B ρ,当且仅当5.00<<α 2分5. 设方程Ax=b,其中⎢⎢⎢⎣⎡=211A 212 ⎥⎥⎥⎦⎤-112,⎥⎥⎥⎦⎤⎢⎢⎢⎣⎡=765b 试讨论解此方程的Jaco bi迭代法的收敛性,并建立Gauss-Seidel 迭代格式 (9分)解:U D L A ++=⎢⎢⎢⎣⎡--=+-=-21)(1U L D B J22--⎥⎥⎥⎦⎤-012 3分,03213=====-λλλλλJ B I2分即10)(<=J B ρ,由此可知Jaco bi 迭代收敛 1分Gauss -Seidel 迭代格式:⎪⎩⎪⎨⎧--=--=+-=++++++)1(2)1(1)1(3)(3)1(1)1(2)(3)(2)1(12276225k k k k k k k k k x x x x x x x x x (k=0,1,2,3……) 3分6. 用Dool ittl e分解计算下列3个线性代数方程组:i i b Ax =(i =1,2,3)其中⎢⎢⎢⎣⎡=222A 331 ⎥⎥⎥⎦⎤421,23121,,974x b x b b ==⎥⎥⎥⎦⎤⎢⎢⎢⎣⎡= (12分)解:①11b Ax =⎢⎢⎢⎣⎡222 331 ⎥⎥⎥⎦⎤421⎥⎥⎥⎦⎤⎢⎢⎢⎣⎡=9741x A=⎢⎢⎢⎣⎡111 110 ⎥⎥⎥⎦⎤100⎢⎢⎢⎣⎡002021 ⎥⎥⎥⎦⎤211=LU 3分由Ly=b1,即⎢⎢⎢⎣⎡111110⎥⎥⎥⎦⎤100y=⎥⎥⎥⎦⎤⎢⎢⎢⎣⎡974得y =⎥⎥⎥⎦⎤⎢⎢⎢⎣⎡234 1分由Ux1=y ,即⎢⎢⎢⎣⎡002 021 ⎥⎥⎥⎦⎤211x1=⎥⎥⎥⎦⎤⎢⎢⎢⎣⎡234 得x1=⎥⎥⎥⎦⎤⎢⎢⎢⎣⎡111 2分②22b Ax =⎢⎢⎢⎣⎡222 331 ⎥⎥⎥⎦⎤421x2=⎥⎥⎥⎦⎤⎢⎢⎢⎣⎡111由Ly=b2=x 1,即⎢⎢⎢⎣⎡111110 ⎥⎥⎥⎦⎤100y=⎥⎥⎥⎦⎤⎢⎢⎢⎣⎡111 得y=⎥⎥⎥⎦⎤⎢⎢⎢⎣⎡001 1分由U x2=y,即⎢⎢⎢⎣⎡002 021 ⎥⎥⎥⎦⎤211x2=⎥⎥⎥⎦⎤⎢⎢⎢⎣⎡001得x2=⎥⎥⎥⎦⎤⎢⎢⎢⎣⎡005.0 2分③33b Ax =⎢⎢⎢⎣⎡222 331 ⎥⎥⎥⎦⎤421x3=⎥⎥⎥⎦⎤⎢⎢⎢⎣⎡005.0 由L y=b3=x2,即⎢⎢⎢⎣⎡111110 ⎥⎥⎥⎦⎤100y=⎥⎥⎥⎦⎤⎢⎢⎢⎣⎡005.0 得y=⎥⎥⎥⎦⎤⎢⎢⎢⎣⎡-05.05.0 1分由U x3=y,即⎢⎢⎢⎣⎡002 021 ⎥⎥⎥⎦⎤211x3=⎥⎥⎥⎦⎤⎢⎢⎢⎣⎡-05.05.0 得x3=⎥⎥⎥⎦⎤⎢⎢⎢⎣⎡-025.0375.0 2分7. 已知函数y=f(x)有关数据如下:要求一次数不超过3的H 插值多项式,使'11'33)(,)(y x H y x H i i == (6分)解:作重点的差分表,如下:3分21021101011001003))(](,,,[))(](,,[)](,[][)(x x x x x x x x f x x x x x x x f x x x x f x f x H --+--+-+= =-1+(x+1)-x(x+1)+2x.x(x +1)=232x x +3分8. 有如下函数表:试计算此列表函数的差分表,并利用New ton 前插公式给出它的插值多项式 (7分)解:由已知条件可作差分表,3分i ih x x i =+=0 (i =0,1,2,3)为等距插值节点,则N ew ton 向前插值公式为: 033210022100003!3))()((!2))((!1)()(f hx x x x x x f h x x x x f h x x f x N ∆---+∆--+∆-+= =4+5x+x(x-1)=442++x x4分9. 求f(x)=x 在[-1,1]上的二次最佳平方逼近多项式)(2x P ,并求出平方误差 (8分)解:令22102)(x a x a a x P ++=2分取m =1, n=x , k=2x ,计算得: (m,m)=dx ⎰-111=0 (m,n)=dx x ⎰-11=1 (m ,k)=dx x⎰-112=0(n,k)=dx x⎰-113=0.5 (k,k)=dx x⎰-114=0 (m,y )=dx x ⎰-11=1(n,y)=dx x ⎰-112=0 (k ,y )=dx x ⎰-113=0.5得方程组:⎪⎩⎪⎨⎧==+=5.05.005.011201a a a a 3分解之得c a a c a 2,1,210-=== (c 为任意实数,且不为零) 即二次最佳平方逼近多项式222)(cx x c x P -+=1分平方误差:32),(22222222=-=-=∑=i i i y a fp f ϕδ 2分10. 已知如下数据:用复合梯形公式,复合Si mps on 公式计算⎰+=10214dx x π的近似值(保留小数点后三位) (8分)解:用复合梯形公式: )}1()]87()43()85()21()83()41()81([2)0({1618f f f f f f f f f T ++++++++==3.1394分用复合Simpso n公式: )}1()]43()21()41([2)]87()85()83()81([4)0({2414f f f f f f f f f S ++++++++= =3.1424分11. 计算积分⎰=2sin πxdx I ,若用复合Simpso n公式要使误差不超过51021-⨯,问区间]2,0[π要分为多少等分?若改用复合梯形公式达到同样精确度,区间]2,0[π应分为多少等分? (10分)解: ①由Simp son 公式余项及x x f x x f sin )(,sin )()4(==得544)4(2041021)1()4(360)(max )4(1802)(-≤≤⨯≤=≤n x f n f R x n πππππ2分即08.5,6654≥≥n n ,取n=6 2分即区间]2,0[π分为12等分可使误差不超过51021-⨯1分②对梯形公式同样1)(''max 20≤≤≤x f x π,由余项公式得51021)2(122)(-⨯≤≤n f R n ππ2分即255,2.254=≥n n 取 2分即区间]2,0[π分为510等分可使误差不超过51021-⨯1分12. 用改进Eu le r格式求解初值问题:⎩⎨⎧==++1)1(0sin 2'y x y y y 要求取步长h 为0.1,计算y(1.1)的近似值 (保留小数点后三位)[提示:sin1=0.84,si n1.1=0.89] (6分)解:改进Eul er 格式为:⎪⎩⎪⎨⎧++=+=+-++-+)],(),([2),(1111n n n n n n n n n n y x f y x f hy y y x hf y y2分于是有⎪⎩⎪⎨⎧+++-=+-=+-++-+-+)sin sin (05.0)sin (1.012112121n n n n n n n n n n n n n x y y x y y y y x y y y y (n=0,1,2……) 2分 由y(1)=0y =1,计算得⎪⎩⎪⎨⎧=≈=+-=-838.0)1.1(816.0)1sin 11(1.01121y y y2分即y(1.1)的近似值为0.83813. ][],[],,[lim ],[),,(],,[)(0'000000'x f x x f x x f x x f b a x b a C x f x x ==∈∈→证明:定义:设(4分)证明:]['],[],[],[lim ][][lim]['00000000000x f x x f x x f x x f x x x f x f x f x x x x ===--=→→故可证出4分14. 证明:设nn RA ⨯∈,⋅为任意矩阵范数,则A A ≤)(ρ (6分)证明:设λ为A 的按模最大特征值,x 为相对应的特征向量,则有Ax=λx1分且λρ=)(A ,若λ是实数,则x 也是实数,得Ax x =λ1分而xx ⋅=λλx A x ,⋅≤⋅⋅≤λ故x A Ax2分 由于A x 0x ≤≠λ得到,两边除以1分 故A A ≤)(ρ1分当λ是复数时,一般来说x 也是复数,上述结论依旧成立。
数值分析作业题(1)
第一章 误差与算法1. 误差分为有__模型误差___, _观测误差___, __方法误差____, ___舍入误差____, Taylor 展开式近似表达函数产生的误差是_方法误差 .2. 插值余项是插值多项式的 方法误差。
0.2499作为1/4的近似值, 有几位有效数字?00.24990.249910,0m =⨯=即,031|0.2499|0.00010.5100.510,34m n n ---=<⨯=⨯=即22 3.1428751...,7=作为圆周率的近似值,误差和误差限分别是多少,有几位有效数字?2133.142875 3.14159260.00126450.5100.510---=<⨯=⨯有3位有效数字.* 有效数字与相对误差的关系3. 利用递推公式计算积分110,1,2,...,9n x n I x e dx n -==⎰错误!未找到引用源。
, 建立稳定的数值算法。
该算法是不稳定的。
因为:11()()...(1)!()n n n I n I n I εεε-=-==-111n n I I n n -=-, 10110I =4. 衡量算法优劣的指标有__时间复杂度,__空间复杂度_.时间复杂度是指: , 两个n 阶矩阵相乘的乘法次数是 , 则称两个n 阶矩阵相乘这一问题的时间复杂度为 .二 代数插值1.根据下表数据建立不超过二次的Lagrange 和Newton 插值多项式, 并写出误差估计式, 以及验证插值多项式的唯一性。
x 0 1 4f(x) 1 9 3Lagrange:设0120120,1,4;()1()9()3x x x f x f x f x ======则,, 对应 的标准基函数 为:1200102()()(1)(x 4)1()(1)(x 4)()()(01)(04)4x x x x x l x x x x x x ----===------ 1()...l x =2()...l x =因此, 所求插值多项式为:220()()()....i i i P x f x l x ===∑ (3)2()()(0)(1)(x 4)3!f R x x x ξ=--- Newton:构造出插商表:xi f(xi ) 一 二 三0 11 9 84 3 -2 -5/2所以, 所求插值多项式为:2001001201()()[,]()[,,]()()518(0)(0)(1)2...P x f x f x x x x f x x x x x x x x x x =+-+--=+----=插值余项: 2()[0,1,4,](0)(1)(x 4)R x f x x x =---2. 已知函数f(0)=1,f(1)=3,f(2)=7,则f[0,1]=___2________, f[0,1,2]=____1______)('],[000x f x x f =3.过0,1两节点构造三次Hermite 插值多项式, 使得满足插值条件: f(0)=1. .’(0)=... f(1.=2. .’(1)=1设0101010,1,()1()2'()0,'()1x x f x f x f x f x ======则,, 写出插商表:xi f(xi) 一 二 三0 10 1 01 a 1 11 a 1 0 a-1因此, 所求插值多项式为:插值余项:222()[0,0,1,1,](1)R x f x x x =-4.求f(x)=sinx 在[a,b]区间上的分段线性插值多项式, 并写出误差估计式。
数值分析试卷及答案
数值分析试卷及答案**注意:以下是一份数值分析试卷及答案,试卷和答案分别按照题目和解答的格式排版,以确保整洁美观,语句通顺。
**---数值分析试卷一、选择题(每题2分,共20分)1. 数值分析是研究如何用计算机处理数值计算问题的一门学科。
以下哪个选项不是数值分析的应用领域?A. 金融风险评估B. 天气预测C. 数据挖掘D. 图像处理2. 在数值计算中,稳定性是指算法对于输入数据的微小扰动具有较好的性质。
以下哪个算法是稳定的?A. 高斯消元法B. 牛顿迭代法C. 不动点迭代法D. 雅可比迭代法二、填空题(每题3分,共30分)1. 下面关于插值多项式的说法中,不正确的是:一般情况下,插值多项式的次数等于插值点的个数减1。
2. 线性方程组中,如果系数矩阵A是奇异的,则该方程组可能无解或有无穷多解。
......三、解答题(共50分)1. 请给出用割线法求解非线性方程 f(x) = 0 的迭代格式,并选择合适的初始值进行计算。
解:割线法的迭代公式为:x_(k+1) = x_k - f(x_k) * (x_k - x_(k-1)) / (f(x_k) - f(x_(k-1)))选择初始值 x0 = 1,x1 = 2 进行计算:迭代1次得到:x2 = x1 - f(x1) * (x1 - x0) / (f(x1) - f(x0))迭代2次得到:x3 = x2 - f(x2) * (x2 - x1) / (f(x2) - f(x1))继续迭代直至满足精度要求。
2. 对于一个给定的线性方程组,高斯消元法可以用来求解其解空间中的向量。
请简要描述高斯消元法的基本思想并给出求解步骤。
高斯消元法的基本思想是通过一系列的行变换将线性方程组化为上三角形式,然后再通过回代求解方程组的未知数。
求解步骤如下:步骤1:将方程组表示为增广矩阵形式,即将系数矩阵和常数向量连接在一起。
步骤2:从第一行开始,选取第一个非零元素作为主元,然后通过行变换将其它行的该列元素消去。
数值分析试卷
数值分析考试题(一) 满分70分一、选择题:(共3道小题,第1小题4分,第2、3小题3分,共10分) 1、将A 分解为U L D A --=,其中),,(2211nna a a diag D =,若对角阵D非奇异(即),1,0n i a ii =≠,则b Ax =化为b D x U L D x 11)(--++=(1) 若记b D f U L D B 1111),(--=+= (2)则方程组(1)的迭代形式可写作 )2,1,0(1)(1)1( =+=+k f x B xk k (3) 则(2)、(3)称 【 】(A)、雅可比迭代。
(B)、高斯—塞德尔迭代 (C)、LU 分解 (D)、Cholesky 分解。
2、记*x x e k k -=,若0lim1≠=+∞→c ee pk k k (其中p 为一正数)称序列}{k x 是 【 】(A)、p 阶收敛; (B)、1阶收敛; (C)、矩阵的算子范数; (D)、p 阶条件数。
3、牛顿切线法的迭代公式为 【 】(A)、 )()(1kx f x f x x k k k '-=+ (B)、)()())((111--+---=k k k k k k k x f x f x x x f x x1)()()1()()()(x xfxf xf k i k i k i ∂∂+=+ (D)、 )()()()1(k k k x f x x-=+二、填空题:(共2道小题,每个空格2分,共10分)1、设0)0(f =,16)1(f =,46)2(f =,则一阶差商=]1,0[f ,二阶差商=]1,2,0[f ,)x (f 的二次牛顿插值多项式为2、 用二分法求方程01x x )x (f 3=-+=在区间]1,0[内的根,进行第一步后根所在的区间为 ,进行第二步后根所在的区间为 。
三、计算题:(共7道小题,第1小题8分,其余每小题7分,共50分)1、表中各*x 都是对准确值x 进行四舍五入得到的近似值。
数值分析试题及答案
数值分析试题及答案一、单项选择题(每题3分,共30分)1. 线性代数中,矩阵A的逆矩阵记作()。
A. A^TB. A^-1C. A^+D. A*答案:B2. 插值法中,拉格朗日插值多项式的基函数是()。
A. 多项式B. 指数函数C. 正弦函数D. 余弦函数答案:A3. 在数值积分中,梯形规则的误差是()阶的。
A. O(h^2)B. O(h^3)C. O(h)D. O(1/h)答案:A4. 求解线性方程组时,高斯消元法的基本操作不包括()。
A. 行交换B. 行乘以非零常数C. 行加行D. 行除以非零常数答案:D5. 非线性方程f(x)=0的根的迭代法中,收敛的必要条件是()。
A. f'(x)≠0B. f'(x)=0C. |f'(x)|<1D. |f'(x)|>1答案:C6. 利用牛顿法求解非线性方程的根时,需要计算()。
A. 函数值B. 函数值和导数值C. 函数值和二阶导数值D. 函数值、一阶导数值和二阶导数值答案:B7. 矩阵的特征值和特征向量是()问题中的重要概念。
A. 线性方程组B. 特征值问题C. 线性规划D. 非线性方程组答案:B8. 在数值分析中,条件数是衡量矩阵()的量。
A. 稳定性B. 可逆性C. 正交性D. 稀疏性答案:A9. 利用龙格现象说明,高阶插值多项式在区间端点附近可能产生()。
A. 振荡B. 收敛C. 稳定D. 单调答案:A10. 雅可比迭代法和高斯-塞德尔迭代法都是求解线性方程组的()方法。
A. 直接B. 迭代C. 精确D. 近似答案:B二、填空题(每题4分,共20分)11. 线性代数中,矩阵A的行列式记作________。
答案:det(A) 或 |A|12. 插值法中,牛顿插值多项式的基函数是________。
答案:差商13. 在数值积分中,辛普森规则的误差是________阶的。
答案:O(h^4)14. 求解线性方程组时,迭代法的基本思想是从一个初始近似解出发,通过不断________来逼近精确解。
数值分析试题1
数值分析试卷1填空题(每空2分,共30分)1. 近似数231.0=*x 关于真值229.0=x 有____________位有效数字; 2. 设)(x f 可微,求方程)(x f x =根的牛顿迭代格式是_______________________________________________;3. 对1)(3++=x x x f ,差商=]3,2,1,0[f _________________;=]4,3,2,1,0[f ________; 4. 已知⎪⎪⎭⎫⎝⎛-='-=1223,)3,2(A x ,则=∞||||Ax ________________,=)(1A Cond ______________________ ;5. 求解线性方程组⎪⎩⎪⎨⎧=+=+04511532121x x x x 的高斯—赛德尔迭代格式为_______________________________________;该迭代格式迭代矩阵的谱半径=)(G ρ_______________;二、(12分)(1)设LU A =,其中L 为下三角阵,U 为单位上三角阵。
已知⎪⎪⎪⎪⎪⎭⎫ ⎝⎛------=210012*********2A ,求L ,U 。
(2)设A 为66⨯矩阵,将A 进行三角分解:LU A =,L 为单位下三角阵,U 为上三角阵,试写出L 中的元素65l 和U 中的元素56u 的计算公式。
三、给定数据表如下(1) 用三次插值多项式计算f ( 0.7 ) 的近似值; (2) 用二次插值多项式计算f ( 0.95 ) 的近似值:(3) 用分段二次插值计算 f ( x ) )2.12.0(≤≤x 的近似值能保证有几位有效数字(不计算舍入误差)?其中已知600)(max)2.12.0(≤'''≤≤x f x 。
四、设},1{22x span M =,试在2M 中求x x f =)(在区间 [-1,1] 上的最佳平方逼近元。
长江大学 数值分析试卷1
A 卷 第 1 页 共 4 页2007─2008学年 第二学期 《数值分析》课程考试试卷( A 卷) 专业:信计 年级:06级 考试方式:闭卷 学分:4 考试时间:120分钟 一、填空题(每空3分,共30分) 1.设(0)0f =,(1)16f =,(2)46f =,则[]0,1f = ,[]0,1,2f = ,()f x 的二次牛顿插值多项式为 . 2.用二分法求方程3()2510f x x x =--=在区间[]1,3内的根,进行二步后根所在区间为 . 3.2()(5)x x x ϕα=+-,要使迭代法1()k k x x ϕ+=局部收敛到*x =α的取值范围是 . 4.设A 为非奇异矩阵,则A 的谱条件数2cond()A = . 5.设1234A -⎡⎤=⎢⎥-⎣⎦,则F A = . 6.求解线性方程组12123511405x x x x +=⎧⎪⎨+=⎪⎩的Gauss-Seidel 迭代格式为 ,该迭代格式的迭代矩阵的谱半径()G ρ= ,此迭代格式是(收敛或发散). 二、(本题10分)A 卷 第 2 页 共 4 页设028Y =,按递推公式1n n Y Y -=(1,2,) 计算到100Y27.982≈(5位有效数字),试问计算100Y 将有多大误差?三、(本题15分)证明两点三次Hermite 插值余项是42231()()()()/4!k k R x f x x x x ξ+=--,1(,)k k x x ξ+∈ 并由此求出分段三次Hermite 插值的误差限.A 卷 第 3 页 共 4 页四、(本题15分) 设2()[,]f x C a b ∈,若x *为()f x 在[,]a b 上的根,且()0f x *'≠,证明:存在x *的邻域()U x δ*,使得任取初值0()x U x δ*∈,Newton 法产生的序列{}k x 收敛到x *,且满足 12()lim 2()k k k x x f x f x x x **+*→∞*''-='-.A 卷 第 4 页 共 4 页五、(本题15分)如果1B <,则I B ±为非奇异矩阵,且11()1I B B-±≤-.其中⋅是指矩阵的算子范数.六、(本题15分)设有方程组Ax b =,其中A 为对称正定阵.迭代公式 (1)()k k k x x b Ax ω+=+- (0,1,2,)k = , 证明:当20ωβ<<时上述迭代法收敛(其中0()A αλβ<≤≤).。
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
一、判断题
1. n n R ⨯中的任何范数都是算子范数 ( )
2.对于n n R ⨯中任何矩阵范数,在n R 中都存在与之相容的向量范数 ( )
3.用Newton 切线法可以求解任何非线性方程 ( )
4.若取一个(0)n x R ∈,代入(1)()k k x Gx d +=+,
0,1...k =产生的迭代向量序列(){}k x 收敛,则称该迭代法是收敛的 ( )
5.通过10个插值基点得到的代数插值多项式必为一个9次多项式 ( ) 二、填空题
1.近似数 3.14109012a =关于 3.14159265π=具 位有效数字
2.对于给定插值节点-1、0、1、2,若323()234N x x x x =+++为()f x 的Newton 插值多项式,则f [-1、0、1、2]=
3.若32
2
01
() 3 1 12
x x x S x ax x x ⎧-≤≤⎪=⎨-+≤≤⎪⎩是三次样条函数,则= 4.设()i l x ,i =0,1,2,3是以01x =-,10.5x =,2 1.5x =,3x 为插值节点的Lagrange
插值基函数,则3
3
02(1)i i i x l =-∑()=
5.若**()x x ϕ=,*()x ϕ''在*x 的某领域内连续,且*()0x ϕ'=,*()0x ϕ''≠,则存在*x 的某去心领域,且在该领域任取初值0x ,1()k k x x ϕ+=产生的迭代序列 阶收敛 三、判断证明题
1.判断下列迭代公式(1)()k k x Gx d +=+是否收敛,为什么?其中
122212221G ⎛⎫
⎪= ⎪ ⎪⎝⎭
2.若a R ∈,131232a A a a ⎛⎫
⎪
= ⎪ ⎪-⎝⎭
,a 取何值时用Jacobi 迭代法求解收敛?为什么?
四、计算题
1. 3121A --⎛⎫= ⎪⎝⎭,(0 4 3)T
x =-,求p x ,p A ,1,2,P =∞,()cond A ∞
2.已知函数表如下
求2(11.55)N ,估计截断误差并说明结果的有效数字 3. 已知函数表如下
求1(0.3367)L ,估计截断误差并说明结果的有效数字 4.求满足条件的Hermite 插值多项式:
5.已知函数如下,求三次样条插值函数:
(()
()
3
3
12211
1
1()()()6666i i i i i i i i
i i i i i
i
i i
x x x x M x x M x x S x M M y h y h h h h h ---------=++-
+-) 6.已知数据如下,试用线性函数进行曲线拟合
(8
0i i x ==∑,8
2
0i i x ==∑,8
18.1183i i y ==∑,8
8.443675i i i x y ==∑)。