《等比数列的前 项和公式》教案

合集下载

《 等比数列的前n项和公式 》教案

《 等比数列的前n项和公式 》教案
⑶等比数列通项公式结合前n项和公式涉及五个量, ,
五个量中“知三求二”(方程思想)。
3.等比数列前n项和公式推导方法:错位相减法。
例1

巩固练习:
例2已知{an}是等比数列,已知:
(1) 求
(2) ,求
巩固练习:(1) 求
(2) ,求
例3、求等比数列1、2、4……1024的和:
巩固练习:练习:求等比数列 ……的前6项和。
1、对比等差数列,探究等比数列的前n项和的推导方法。
2、培养学生观察、分析、解决问题的能力。
3、引导学生发现等比数列的前n项和公式的推导方法
培养学生观察、分析、解决问题的能力和不怕困难、勇于探索的求知精神。
1、理解错位相减法。
2、识记等比公式。
辨析公式的特点
及时回顾、复习所学内容,培养学生表达能力和概括能力
一、复习
二、情境引入
三、典型例题
教学实践
教学环节与主要内容
教学目标
教学活动
【复习导入】(时间分配:约2分钟)
回顾等比数列定义,通项公式。等差数列前n项和公式的推导方法:倒序相加法。
【新授】
教学活动Ⅰ(时间分配:约10分钟)
阅读:课本“国王赏麦的故事”。
问题:如何计算
引出课题:等比数列的前n项和。
问题:如何求等比数列 的前n项和公式
1、巩固课堂所学内容。
2、根据学生个体差异和基础及课堂接受情况,区别对待,提出不同训练要求。
学生:回忆并回答,
老师:提问、板书
学生:思考回答
师:展示多媒体投影并语言引导
生:观察、思考、回答
师:引导学生观察公式并分析公式特点
多媒体演示公式推导过程
板书公式

等比数列前n项和公式教案

等比数列前n项和公式教案

一、教案基本信息等比数列前n项和公式教案课时安排:1课时教学目标:1. 理解等比数列的概念;2. 掌握等比数列前n项和的计算方法;3. 能够运用等比数列前n项和公式解决实际问题。

教学内容:1. 等比数列的概念介绍;2. 等比数列前n项和的公式推导;3. 等比数列前n项和的计算方法讲解;4. 运用等比数列前n项和公式解决实际问题。

教学方法:1. 讲授法:讲解等比数列的概念、公式及计算方法;2. 案例分析法:分析实际问题,引导学生运用等比数列前n项和公式解决问题;3. 互动教学法:引导学生积极参与讨论,提高课堂氛围。

教学准备:1. PPT课件;2. 教学案例及练习题。

二、教学过程1. 导入:利用PPT课件展示等比数列的图片,引导学生思考等比数列的概念。

2. 等比数列的概念介绍:讲解等比数列的定义,引导学生理解等比数列的特点。

3. 等比数列前n项和的公式推导:利用PPT课件展示等比数列前n项和的公式推导过程,引导学生跟随步骤进行思考。

4. 等比数列前n项和的计算方法讲解:讲解等比数列前n项和的计算方法,引导学生理解并掌握公式的运用。

5. 运用等比数列前n项和公式解决实际问题:出示教学案例,引导学生运用所学知识解决实际问题,巩固知识点。

6. 课堂练习:出示练习题,让学生独立完成,检验学习效果。

7. 总结:对本节课的主要内容进行总结,强调等比数列前n项和公式的运用。

8. 课后作业:布置课后作业,让学生巩固所学知识。

三、教学反思本节课结束后,教师应认真反思教学效果,针对学生的掌握情况,调整教学策略,以提高教学效果。

四、教学评价通过课堂表现、课后作业和练习题的完成情况,评价学生对等比数列前n项和公式的掌握程度。

五、拓展延伸引导学生深入研究等比数列的性质,探索等比数列前n项和的性质,提高学生的数学思维能力。

六、教学活动设计1. 复习导入:复习等比数列的概念,引导学生回顾等比数列的特点。

2. 等比数列前n项和的公式回顾:简要回顾等比数列前n项和的公式,提醒学生注意公式的构成和运用。

等比数列的前n项和公式教学设计

等比数列的前n项和公式教学设计

教案:等比数列的前n 项和公式一、教材分析地位作用:这节内容是在学习完等差数列的通项公式,前n 项和公式,以及等比数列的定义、通项公式等知识的基础上进行的,它是数列的重要内容,不仅在现实生活中有着广泛的实际应用,如储蓄、分期付款的有关计算等等,而且公式推导过程所蕴含的归纳、类比、化归、分类讨论、整体变换和方程等思想方法,都是学生今后学习和工作必备的数学素养.二、学情分析高一学生整体素质不错,但逻辑思维能力还不够。

三、学法分析自主思考、合作探究。

四、教法分析整体建构,问题驱动。

主要是通过设计环环相扣的问题串引领学生不断思考,最终掌握思维的方式和方法。

五、教学过程1.设计问题,创设情境2.学生探究,尝试解决面对一个具体的、特殊的问题,学生展开探究:探究一、逐项累加,发现项数太多,在不利用计算机等科学计数器的情况下很难完成,但在教师的引导下获得难以求和的主要矛盾在于“项数较多”,为“错位相减法”铺垫了一定的基础.探究二、计算4321,,,S S S S 的值,通过观察、归纳、猜想出64S 的值.探究三、尝试用等差数列前n 项和公式的推导方法推导.设计意图:通过学生的自主探究,培养学生独立解决问题的能力,便于学生对题目有一个深刻的理解.3.师生交流,揭示规律通过师生交流,分别对三种探究方法进行分析和评价,得出探究二是目前解决问题的最有效方法后,再让全体学生加以探究.学生探究出问题的答案后,给出问题3。

问题3:在运用“观察——归纳——猜想”这一方法求和的过程中,除去我们所得的结果有规律外,在计算的过程中我们所运用的方法是否有规律呢?学生再次剖析解答过程后,通过抽象概括得出1222+=+n n n ,这一规律.然后教师加以引导得出这个数列的每一项都可以裂项,即n n n 2221-=+,从而得出“裂项相消法”.即 因为n n n 2221-=+,所以=64S 63212221++++)22()22()22()22(6364231201-++-+-+-= 1264-=.师生共同分析后,给这种方法命名为“裂项相消法”.问题4:观察)22()22()22()22(636423120164-++-+-+-= S 这个式子,你有什么发现吗?生2:这个式子的右边实际上存在两个数列,即 -++++=)2222(6432164 S )2221(6332++++师:这个式子中两个数列的和有什么联系吗?生3:6464642S S S -=.师生共同得出“错位相减法”,即因为=64S 63322221++++ ,①所以=642S 643212222++++ ,②①式减去②式,得 646421-=-S ,即126464-=S .师生共同给这种方法命名后,提出问题5。

等比数列的前n项和公式教案

等比数列的前n项和公式教案

等比数列的前n项和公式经典教案一、教学目标1. 理解等比数列的概念及其特点。

2. 掌握等比数列的前n项和公式的推导过程。

3. 能够运用等比数列的前n项和公式解决实际问题。

二、教学内容1. 等比数列的概念及其特点等比数列的定义等比数列的通项公式等比数列的性质2. 等比数列的前n项和公式的推导过程利用数学归纳法推导等比数列的前n项和公式理解等比数列前n项和公式的意义三、教学方法1. 讲授法:讲解等比数列的概念、特点和前n项和公式的推导过程。

2. 案例分析法:通过具体案例,让学生运用等比数列的前n项和公式解决实际问题。

3. 互动教学法:引导学生积极参与课堂讨论,提问回答,增强学生的理解和记忆。

四、教学准备1. 教学PPT:制作等比数列的概念、特点和前n项和公式的PPT课件。

2. 教学案例:准备一些实际问题,用于引导学生运用等比数列的前n项和公式。

五、教学步骤1. 导入新课:介绍等比数列的概念和特点,引导学生回顾等差数列的前n项和公式。

2. 讲解等比数列的前n项和公式:通过PPT课件,详细讲解等比数列的前n项和公式的推导过程。

3. 案例分析:给出一些实际问题,让学生运用等比数列的前n项和公式进行解答。

4. 课堂练习:布置一些练习题,让学生巩固等比数列的前n项和公式的应用。

教学反思:本节课通过讲解等比数列的概念、特点和前n项和公式的推导过程,让学生掌握了等比数列的前n项和公式的应用。

在案例分析环节,通过实际问题的解答,让学生更好地理解了等比数列的前n项和公式的应用。

在课堂练习环节,布置了一些练习题,让学生巩固了所学知识。

总体来说,本节课达到了预期的教学目标。

在今后的教学中,可以进一步增加课堂互动,引导学生积极参与讨论,提高学生的学习兴趣。

可以增加一些拓展问题,培养学生的思维能力和创新能力。

六、教学评估1. 课堂问答:通过提问学生,了解学生对等比数列概念和前n项和公式的理解和掌握情况。

2. 练习题解答:检查学生课堂练习题的完成情况,评估学生对等比数列前n项和公式的应用能力。

等比数列前n项和公式教案

等比数列前n项和公式教案

等比数列的前n项和公式一、教材分析《等比数列的前n项和》,是在学生学习了等差数列、等比数列的概念及通项公式,等差数列的前n项和公式的基础上进行的。

是进一步学习数列知识和解决一类求和问题的重要基础和有力工具。

它不仅在现实生活中有着广泛的实际应用,如储蓄、分期付款的有关计算等等,而且公式推导过程中所渗透的类比、化归、分类讨论、整体变换和方程等思想方法,都是学生今后学习和工作中必备的数学素养.数列内容的新课程设计与时俱进,注重数学过程,渗透数学思想和拓展思维空间。

与旧教材相比新教材让学生体验和理解公式形成的过程。

二、学情分析认识上:从学生的思维特点看,易与等差数列前n项和从公式的形成、特点等方面进行类比,但本节公式的推导与等差数列前n项和的推导有着本质的不同,这对学生的思维是一个突破,还应强调q=1的特殊情况。

能力上:教学对象是高一学生,在课堂教学过程中,应注重过程、激发兴趣、发展学生的个性思维品质和实践能力,还应注意学生缺乏冷静、深刻,易片面、不严谨。

情感态度:注意引导学生自主探究意识、培养学生处理问题时创新和实践能力及思维的严谨性三、教学目标知识与技能目标:理解并掌握等比数列前n项和公式的推导过程、公式的特点,在此基础上能初步应用公式解决与之有关的问题.能力与方法目标:通过对公式推导方法的探索与发现,向学生渗透特殊到一般、类比与转化、分类讨论等数学思想,培养学生观察、比较、抽象、概括等逻辑思维能力和逆向思维的能力.情感与态度价值观:通过对公式推导方法的探索与发现,让学生体验数学学习带来的自信和成功感,提到对数学的兴趣,树立学好数学的信心。

通过分类讨论的思想培养学生思维的严谨性。

通过发散思维的教学,培养学生思维灵活性。

四、教学重点、难点教学重点:等比数列前n项和公式的推导与应用。

教学难点:公式的推导方法和公式的灵活运用。

公式推导所使用的“错位相减法”是高中数学数列求和方法中最常用的方法之一,它蕴含了重要的数学思想,所以既是重点也是难点.五、学法与教法学法:合作学习:引导学生分组讨论,合作交流,共同探讨解决问题的途径。

等比数列的前n项和公式经典教案

等比数列的前n项和公式经典教案

等比数列的前n项和公式【学习目标】1.掌握等比数列的前n项和公式及推导公式的思想方法和过程,能够熟练应用等比数列的前n项和公式解决相关问题,提高应用求解能力.2.通过对等比数列的前n项和公式的推导与应用,使学生掌握错位相减法、方程思想、划归思想等数学思想和方法.3.激情参与,惜时高效,感受数学思维的严谨性.1.“我1.2.Ⅱ.1.2.3.等比通项公式a=n1.设A.C2AC.-31D.331、答案 D解析由8a2+a5=0得8a1q+a1q4=0,∴q=-2,则==-11.【我的疑惑】知识要点归纳:1.等比数列前n项和公式:(1)公式:S n==(q≠1).(q=1).(2)注意:应用该公式时,一定不要忽略q=1的情况.2.若{a n}是等比数列,且公比q≠1,则前n项和S n=(1-q n)=A(q n-1).其中A=.3.推导等比数列前n项和的方法叫法.一般适用于求一个等差数列与一个等比数列对应项积的前n项和.4.等比数列{a n}的前n项和为S n,当公比q≠1时,S n==;当q=1时,S n=.5.等比数列前n项和的性质:(1)连续m项的和(如S m、S2m-S m、S3m-S2m),仍构成数列.(注意:q≠-1或m为奇数)(2)S m+n=S m+q m S n(q为数列{a n}的公比).二、典型范例Ⅰ.质疑探究——质疑解惑、合作探究探究点等比数列的前n项和公式问题1:怎么求等比数列{}n a的前n项和n S?写出公式的推导过程。

S n问题2当=故当(1)(2(3)由(4)是数列求和的一种重要方法。

问题探究一错位相减法求和问题教材中推导等比数列前n项和的方法叫错位相减法.这种求和方法是我们应该掌握的重要方法之一,这种方法的适用范围可以拓展到一个等差数列{a n}与一个等比数列{b n}对应项之积构成的新数列求和.下面是利用错位相减法求数列{}前n项和的步骤和过程,请你补充完整.设S n=+++…+,∴S n=,∴S n-S n=,即S n==∴S n==2-.例1 在等比数列{a n }中,S 3=,S 6=,求a n . 解 由已知S 6≠2S 3,则q ≠1,又S 3=,S 6=, 即①,a 1(1-q 6)1-q =632.②))②÷①得1+q 3=9,∴q =2.可求得a 1=,因此a n =a 1q n -1=2n -2.问题探究二 等比数列前n 项和S n 与函数的关系问题 当公比q =1时,因为a 1≠0,所以S n =na 1,是n 的正比例函数(常数项为0的一次函数).当q =1时,数列S 1,S 2,S 3,…,S n ,…的图象是正比例函数y =a 1x 图象上一些孤立的点.A =,的一个指问题1 证明 =S m +(a =S m +q m S ∴S m +n =S m 1A .48 C .50 2A .C .3.设S n A .11 C .-4.设等比数列{a n }的公比q =2,前n 项和为S n ,则等于( )A .2B .4 C.D.5.已知{a n }是等比数列,a 2=2,a 5=,则a 1a 2+a 2a 3+…+a n a n +1等于 ( )A .16(1-4-n ) B .16(1-2-n )C.(1-4-n )D.(1-2-n )6.设{a n }是由正数组成的等比数列,S n 为其前n 项和,已知a 2a 4=1,S 3=7,则S 5等于( ) A. B. C.D.二、填空题7.等比数列{a n}的前n项和为S n,已知S1,2S2,3S3成等差数列,则{a n}的公比为________.8.设等比数列{a n}的前n项和为S n,若a1=1,S6=4S3,则a4=________.9.若等比数列{a n}中,a1=1,a n=-512,前n项和为S n=-341,则n的值是________.三、解答题10.设等比数列{a n}的前n项和为S n,已知a2=6,6a1+a3=30,求a n和S n.11.在等比数列{a n}中,已知S n=48,S2n=60,求S3n.12.已知等比数列{a n}中,a1=2,a3+2是a2和a4的等差中项.(1)求数列{a n}的通项公式;(2)记13(1)(2)1A.332A.1.1C.103.已知{aA.和5C.4.程和是A.C.5.数列{a n n1n+1n6A.3×44B.3×44+1C.45D.45+16.某企业在今年年初贷款a万元,年利率为γ,从今年年末开始每年偿还一定金额,预计五年内还清,则每年应偿还()A.万元B.万元C.万元D.万元二、填空题7.等比数列{a n}共2n项,其和为-240,且奇数项的和比偶数项的和大80,则公比q=________.8.等比数列{a n}中,前n项和为S n,S3=2,S6=6,则a10+a11+a12=________.9.某工厂月生产总值的平均增长率为q,则该工厂的年平均增长率为________.三、解答题10.在等比数列{a n}中,已知S30=13S10,S10+S30=140,求S20的值.11.利用等比数列前n项和公式证明a n+a n-1b+a n-2b2+…+b n=,其中n∈N*a,b是不为0的常数,且a≠b.12.已知{a n}是以a为首项,q为公比的等比数列,S n为它的前n项和.(1)当S1,S3,S4成等差数列时,求q的值;(2)当S m,S n,S l成等差数列时,求证:对任意自然数k,a m+k,a n+k,a l+k也成等差数列.四、探究与拓展1312≈1.1)过关测试1.D7.8.310.解当a1S n当a1S n11.6312.(1)a n(2)S n13.(1)a课后练习。

等比数列前n项和公式教案

等比数列前n项和公式教案

等比数列前n项和公式教案一、教学目标1. 知识与技能:(1)理解等比数列的概念;(2)掌握等比数列前n项和的公式;(3)能够运用等比数列前n项和公式解决实际问题。

2. 过程与方法:(1)通过观察、分析、归纳等比数列前n项和的特征;(2)引导学生运用类比、推理等方法探索等比数列前n项和的公式;(3)培养学生的逻辑思维能力和解决问题的能力。

3. 情感态度与价值观:(1)激发学生对数学知识的兴趣;(2)培养学生勇于探索、积极思考的科学精神;(3)让学生感受数学在生活中的应用,提高学生运用数学解决实际问题的能力。

二、教学内容1. 等比数列的概念:等比数列是一种特殊的数列,从第二项起,每一项都是前一项与一个常数(称为公比)的乘积。

2. 等比数列前n项和的公式:设等比数列的首项为a1,公比为q,则该等比数列前n项和为:Sn = a1 (1 q^n) / (1 q)三、教学重点与难点1. 教学重点:(1)等比数列的概念;(2)等比数列前n项和的公式。

2. 教学难点:(1)等比数列前n项和的公式的推导;(2)公比q不等于1和等于1时的特殊情况处理。

四、教学方法1. 采用问题驱动法,引导学生观察、分析等比数列前n项和的特征;2. 运用类比、推理等方法,让学生探索等比数列前n项和的公式;3. 通过例题讲解、练习,使学生掌握等比数列前n项和的公式的应用。

五、教学过程1. 导入:(1)回顾等差数列的前n项和公式;(2)引导学生思考等比数列的前n项和是否有类似的公式。

2. 新课讲解:(1)介绍等比数列的概念;(2)引导学生观察等比数列前n项和的特征;(3)引导学生探索等比数列前n项和的公式;(4)讲解公比q不等于1和等于1时的特殊情况。

3. 例题讲解:(1)运用等比数列前n项和公式解决简单问题;(2)引导学生分析、解答典型例题。

4. 课堂练习:(1)布置练习题,让学生巩固等比数列前n项和公式的应用;(2)引导学生互相讨论、交流,解答练习题。

《等比数列前n项和》说课稿(精选10篇)

《等比数列前n项和》说课稿(精选10篇)

《等比数列前n项和》说课稿(精选10篇)因为an = a1q^(n-1)这次为您整理了《等比数列前n项和》说课稿(精选10篇),在大家参照的同时,也可以分享一下给您最好的朋友。

《等比数列前n项和》说课稿篇一一、教材分析《等比数列前n项和》选自北师大版高中数学必修5第一章第3节的内容。

等比数列的前n 项和是“等差数列及其前n项和”与“等比数列”内容的延续,也是函数的延续,它实质上是一种特殊的函数;公式推导中蕴涵的数学思想方法如分类讨论等在各种数学问题中有着广泛的应用,如在“分期付款”等实际问题中也经常涉及到。

具有一定的探究性。

二、学情分析在认知结构上已经掌握等差数列和等比数列的有关知识。

在能力方面已经初步具备运用等差数列和等比数列解决问题的能力;但学生从特殊到一般、分类讨论的数学思想还需要进一步培养和提高。

在情感态度上学习兴趣比较浓,表现欲较强,但合作交流的意识等方面尚有待加强。

并且让学生在探究等比数列前n项和的过程中体会合作交流的重要性。

三、教学目标分析:知识与技能目标:(1)能够推导出等比数列的前n项和公式;(2)能够运用等比数列的前n项和公式解决一些简单问题。

过程与方法目标:提高学生的建模意识及探究问题、分析与解决问题的能力。

体会公式探求过程中从特殊到一般的思维方法、错位相减法和分类讨论思想。

情感与态度目标:培养学生勇于探索、敢于创新的精神,磨练思维品质,从中获得成功的体验。

四、重难点的确立《等比数列的前n项和》是这一章的重点,其中公式推导所使用的“错位相减法”是高中数学数列求和方法中最常用的方法之一,它蕴含了多种重要的数学思想,因此,本节课的教学重点为等比数列的前n项和公式的推导及其简单应用.而等比数列的前n项和公式的推导过程中用到的方法学生难以想到,因此本节课的难点为等比数列的前n项和公式的推导。

五、教学方法为突出重点和突破难点,我将采用的教学策略为启发式和探究式相结合的教学方法,教学手段采用计算机进行辅助教学。

等比数列的前n项和教学设计

等比数列的前n项和教学设计

等比数列的前n项和教学设计等比数列的前n项和教学设计篇1一、教材分析:等比数列的前n项和是高中数学必修五其次章第3.3节的内容。

它是“等差数列的前n项和”与“等比数列”内容的连续。

这局部内容授课时间2课时,本节课作为第一课时,重在讨论等比数列的前n项和公式的推导及简洁应用,教学中注意公式的形成推导过程并充分提醒公式的构造特征和内在联系。

意在培育学生类比分析、分类争论、归纳推理、演绎推理等数学思想。

在高考中占有重要地位。

二、教学目标依据上述教学内容的地位和作用,结合学生的认知水平和年龄特点,确定本节课的教学目标如下:1.学问与技能:理解等比数列的前n项和公式的推导方法;把握等比数列的前n项和公式并能运用公式解决一些简洁问题。

2.过程与方法:通过公式的推导过程,提高学生的建模意识及探究问题、类比分析与解决问题的力量,培育学生从特别到一般的思维方法,渗透方程思想、分类争论思想及转化思想,优化思维品质。

3.情感与态度:通过自主探究,合作沟通,激发学生的求知欲,体验探究的艰辛,体会胜利的喜悦,感受思维的奇异美、构造的对称美、形式的简洁美、数学的严谨美。

三、教学重点和难点重点:等比数列的前项和公式的推导及其简洁应用。

难点:等比数列的前项和公式的推导。

重难点确定的依据:从教材体系来看,它为后继学习供应了学问根底,具有承上启下的作用;从学问本身特点来看,等比数列前n项和公式的推导方法和等差数列的的前n项和公式的推导方法可比性低,无法用类比的方法进展,它需要对等比数列的概念和性质能充分理解并融会贯穿;从学生认知水平来看,学生的探究力量和用数学语言沟通的力量还有待提高。

四、教法学法分析通过创设问题情境,组织学生争论,让学生在尝摸索索中不断地发觉问题,以激发学生的求知欲,并在过程中获得自信念和胜利感。

强调学问的严谨性的同时重学问的形成过程,五、教学过程(一)创设情境,引入新知从故事入手:传奇,波斯国王下令要奖赏国际象棋的创造者,创造者对国王说,在棋盘的第一格内放上一粒麦子,在其次格内放两粒麦子,第三格内放4粒,第四格内放8米,……按这样的规律放满64格棋盘格。

等比数列的前n项和教案

等比数列的前n项和教案

等比数列的前n项和教案【篇一:等比数列前n项和教学设计】《等比数列的前n项和》教案一.教学目标知识与技能目标:理解等比数列的前n项和公式的推导方法;掌握等比数列的前n项和公式并能运用公式解决一些简单问题。

过程与方法目标:通过公式的推导过程,提高学生构造数列的意识及探究、分析与解决问题的能力,体会公式探求过程中从特殊到一般的思维方法,渗透方程思想、分类讨论思想及转化思想。

情感与态度目标:通过经历对公式的探索,激发学生的求知欲,鼓励学生大胆尝试、勇于探索、敢于创新,磨练思维品质,从中获得成功的体验,感受思维的奇异美、结构的对称美、形式的简洁美、数学的严谨美。

二.重点难点教学重点:公式的推导、公式的特点和公式的运用;教学难点:公式的推导方法及公式应用的条件。

三.教学方法利用多媒体辅助教学,采用启发---探讨---建构教学相结合。

四.教具准备教学课件,多媒体五.教学过程(一)创设情境,提出问题故事回放:在古印度,有个名叫西萨的人,发明了国际象棋,当时的印度国王大为赞赏,对他说:我可以满足你的任何要求.西萨说:请给我在棋盘的64个方格上,第1个格子里放1千吨小麦,第2个格子里放2千吨,第3个格子里放3千吨,如此下去,第64个格子放64千吨小麦,请给我这些小麦?(二).师生互动,探究问题问题1:同学们,你们知道西萨要的是多少小麦吗?引导学生写出小麦总数,带着这样的问题,学生会动手算起来,通过计算需要1+2+3+?+64=2080(千吨)结果出来后,国王认为西萨胃口太大,而国库空虚,还是提个简单的要求吧!西萨说:国王,我希望在第1个格子里放1颗麦粒,第2个格子里放2颗,第3个格子里放4颗,如此下去,每个格子放的麦粒数是前一格麦粒数的2倍,请给我这么多的麦粒数?问题2:同学们,你们知道西萨要的是多少粒小麦吗?引导学生写出麦粒总数1?2?22?23?????263,同时告诉学生一个抽象的答案,如果按西萨的要求,这是一个多么巨大的数字啊!它相当于全世界两千多年小麦产量的总和.问题3: 1,2,22,?,263是什么数列?有何特征?应归结为什么数学问题呢?探究一:1?2?22?23?????263,记为s64?1?2?22?23?????263??①式,注意观察每一项的特征,有何联系?(学生会发现,后一项都是前一项的2倍)探究二:如果我们把每一项都乘以2,就变成了它的后一项,①式两边同乘以2则有2s64?2?22?23?????264??②式.比较①、②两式,你有什么发现?经过比较、研究,学生发现:①、②两式有许多相同的项,把两式相减,相同的项就消去了,得到:s64?264?1 ,老师指出:这就是错位相减法,并要求学生纵观全过程。

等比数列的前n项和公式教案

等比数列的前n项和公式教案

等比数列的前n项和公式经典教案一、教学目标:1. 让学生理解等比数列的概念,掌握等比数列的前n项和的定义。

2. 通过探究等比数列前n项和的公式,培养学生的逻辑思维能力和归纳总结能力。

3. 能够运用等比数列前n项和公式解决实际问题,提高学生的数学应用能力。

二、教学内容:1. 等比数列的概念及其性质。

2. 等比数列的前n项和的定义。

3. 等比数列前n项和公式的探究。

4. 等比数列前n项和公式的应用。

三、教学重点与难点:1. 教学重点:等比数列前n项和公式的推导过程,以及公式的应用。

2. 教学难点:等比数列前n项和公式的理解和运用。

四、教学方法:1. 采用问题驱动法,引导学生自主探究等比数列前n项和公式。

2. 利用多媒体辅助教学,直观展示等比数列前n项和的图形,帮助学生理解。

3. 实例分析法,让学生通过解决实际问题,掌握等比数列前n项和公式的应用。

五、教学过程:1. 引入:回顾等差数列的前n项和公式,引导学生思考等比数列的前n项和能否也有类似的公式。

2. 等比数列的概念复习:回顾等比数列的定义及其性质。

3. 等比数列的前n项和的定义:引导学生理解等比数列前n项和的含义。

4. 探究等比数列前n项和公式:引导学生分组讨论,归纳总结等比数列前n项和公式。

5. 公式验证与应用:利用多媒体展示等比数列前n项和的图形,帮助学生理解公式。

并通过实例分析,让学生掌握公式的应用。

6. 总结与评价:对本节课的内容进行总结,对学生的学习情况进行评价。

7. 作业布置:布置相关练习题,巩固所学知识。

六、教学评估:1. 课堂提问:通过提问了解学生对等比数列概念和前n项和公式的理解程度。

2. 小组讨论:观察学生在小组讨论中的参与程度和思考过程,评估他们的合作能力。

3. 练习题解答:收集学生的练习题答案,评估他们对等比数列前n 项和公式的掌握情况。

七、教学拓展:1. 等比数列的极限:引导学生思考等比数列前n项和的极限值,为后续学习数列极限奠定基础。

(完整版)等比数列的前N项和优秀教案.docx

(完整版)等比数列的前N项和优秀教案.docx

等比数列的前n 项和一.教材分析1.在教材中的地位和作用在《数列》一章中,《等比数列的前n 项和》是一项重要的基础内容,从知识体系来看,它不仅是《等差数列的前 n 项和》与《等比数列》的顺延,也是前面所学函数的延续,实质是一种特殊的函数。

而且还为后继深入学习提供了知识基础,同时错位相减法是一种重要的数学思想方法,是求解一类混合数列前 n 项和的重要方法,因此,本节具有承上启下的作用。

等比数列的前 n 项和公式的推导过程中蕴涵了基本的数学思想方法,如分类讨论、错位相减等在数列求和问题中时常出现。

在实际问题中也有广泛的应用,如储蓄、分期付款的有关计算。

2.教材编排与课时安排提出问题——解决问题——等比数列的前n 项和公式推导——强化公式应用(例题与练习)二.教学目标知识目标:理解并掌握等比数列前n 项和公式的推导过程、公式的特点,在此基础上能初步应用公式解决与之有关的问题。

能力目标:通过启发、引导、分析、类比、归纳,并通过严谨科学的解题思想和解题方法的训练,提高学生的数学素养。

情感目标:通过解决生产实际和社会生活中的实际问题了解社会、认识社会,形成科学的世界观和价值观。

三.教学重点与难点:教学重点:公式的推导、公式的特点和公式的应用。

教学难点:公式的推导方法(“错位相减” )和公式的灵活运用。

四.教学过程:(一)、复习回顾:(1)等比数列及等比数列通项公式。

复习回顾例题1:a n为等比数列,请完成下表除s n外的所有项a1a2a3a4⋯⋯q a n s n127⋯⋯11⋯⋯22241 3⋯⋯3答案如下:a1a2a3a4⋯⋯qa n s n133227⋯⋯33n11111⋯⋯11222232422n3111⋯⋯1133233n2(2)回等差数列前n 和公式的推程,是用什么方法推的。

(二)、情境入:国象棋起源于古代印度 .相国王要国象棋的明者 .个故事大家听?“ 在第一个格子里放上 1 麦粒,第二个格子里放上 2 麦粒,第三个格子里放上 4 麦粒,以此推 .每一个格子里放的麦粒都是前一个格子里放的麦粒的 2 倍.直到第 64 个格子 .我足的麦粒以上述要求 .” 就是国象棋明者向国王提出的要求。

《等比数列的前n项和公式》说课稿(附教案)

《等比数列的前n项和公式》说课稿(附教案)

《等比数列的前n项和公式》说课稿《等比数列前n项和》是人教版必修5第二章数列中第五节第一课时的内容。

下面,我从教材分析,情境创设、公式推导,公式应用,教学反思等几个方面,谈谈自己的管窥之见,与各位老师探讨。

教材分析等比数列的前n项和是“等差数列的前n项和”与“等比数列”内容的延续、是进一步学习数列知识和解决一类求和问题的重要基础和有力工具。

它不仅在现实生活中有着广泛的实际应用,如储蓄、分期付款的有关计算等等,而且公式推导过程中所蕴涵的类比、分类讨论、方程等思想方法,都是学生今后学习和工作中必备的数学素养。

学情分析就学生而言,等差、等比数列的定义和通项公式,等差数列的前n项和的公式是学生在学习之前已经具备的知识基础。

学生具体研究学习了等差数列前n项和公式的推导方法,具备了一定的探究能力。

基于此,学生会产生思考,等比数列前n项和公式应该如何推导,公式是从什么新的角度建构?其重要性和普遍性体现在哪里?应该说学生从内心来讲,有想探究等比数列前n项和公式的欲望和驱动力。

教学目标在知识方面:理解等比数列的前n项和公式的推导方法,掌握等比数列的前n项和公式并能运用公式解决一些简单问题。

在能力方面:提高学生的建模意识,体会公式探求过程中从特殊到一般的思维方法,渗透方程思想、分类讨论思想,优化思维品质。

在情感方面:培养学生将数学学习放眼生活,用生活眼光看数学的思维品质。

重点难点重点:使学生掌握等比数列的前n项和公式,用等比数列的前n项和公式解决实际问题。

难点:由研究等比数列的结构特点推导等比数列的前n项和公式。

情境创设《数学课程标准》中明确指出:教材应注意创设情境,从具体实例出发,展现数学知识的发生、发展过程,使学生能够从中发现问题、提出问题,经历数学的发现和创造过程,了解知识的来龙去脉.是对课堂教学实践的要求.我选择的问题情景是国王赏麦的故事. 国际象棋起源于古代印度,关于国际象棋有这样一个传说: 相传古印度宰相达依尔,发明了国际象棋。

《等比数列前n项和》说课稿(优秀10篇)

《等比数列前n项和》说课稿(优秀10篇)

《等比数列前n项和》说课稿(优秀10篇)教学程序设计篇一1、导言:本节课是由印度国王西拉谟与国际象棋发明家的故事引入的,发明者要国王在他的棋盘上的64格中的第1格放入1粒麦粒,第2格放入2粒麦粒,第3格放入4粒麦粒,第4格放入8粒麦粒……问应给发明家多少粒麦粒?这样引入课题有以下三点好处:(1)利用学生求知好奇心理,以一个小故事为切入点,便于调动学生学习本节课的趣味性和积极性。

(2)故事内容紧扣本节课教学内容的主题与重点。

(3)有利于知识的迁移,使学生明确知识的现实应用性。

2、讲授新课:本节课有两项主要内容,等比数列的前n项和公式的推导和等比数列的前n项和公式及应用。

等比数列的前n项和公式的推导是本节课的难点。

依据如下:(1)从认知领域上讲,它在陈述性知识、程序性知识与策略性知识的分类中,属于学生最高需求层次的掌握策略与方法的策略性知识。

(2)从学科知识上讲,推导属于学科逻辑中的“瓶颈”,突破这一“瓶颈”则后面的问题迎刃而解。

(3)从心理学上讲,学生对这项学习内容的“熟悉度”不高,原有知识薄弱,不易理解。

突破难点方法:(1)明确难点、分解难点,采用层层推导延伸法,利用学生已有的知识切入,浅化知识内容。

比如可以先求麦粒的总数,通过设问使学生得到麦粒的总数为,然后引导学生观察上式的特点,发现上式中,每一项乘以2后都得它的后一项,即有,发现两式右边有62项相同,启发同学们找到解决问题的关键是等式左右同时乘以2,相减得和。

从而得知求等比数列前n项和……+的关键也应是等式左右各项乘以公比q,两式相减去掉相同项,得求和公式,也掌握了这种常用的数列求和方法,错位相减法,说明这种方法的用途。

(2)值得一提的是公式的证明还有两种方法:方法二:由等比数列的定义得:运用连比定理后两种方法可以启发引导学生自行完成。

这样学生从各种途径,用多种方法推导公式,从而培养学生的创造性思维。

等比数列前n项和公式及应用是本节课的重点内容。

等比数列前n项和教学教案

等比数列前n项和教学教案

等比数列前n项和教学教案一、教学目标1. 理解等比数列的概念,掌握等比数列的前n项和的定义及公式。

2. 能够运用等比数列前n项和公式解决实际问题。

3. 培养学生的逻辑思维能力,提高学生运用数学知识解决问题的能力。

二、教学内容1. 等比数列的概念:等比数列是一种特殊的数列,每一项与它前一项的比是常数。

2. 等比数列的前n项和公式:等比数列的前n项和为$S_n = \frac{a_1(1-q^n)}{1-q}$,其中$a_1$是首项,$q$是公比。

3. 等比数列前n项和的性质及应用。

三、教学重点与难点1. 教学重点:等比数列的概念,等比数列前n项和公式的推导及应用。

2. 教学难点:等比数列前n项和公式的理解和运用。

四、教学方法1. 采用问题驱动法,引导学生通过思考和讨论,自主探索等比数列前n项和的概念和公式。

2. 利用多媒体课件,生动形象地展示等比数列前n项和的过程,帮助学生直观理解。

3. 结合典型例题,引导学生运用等比数列前n项和公式解决实际问题。

五、教学安排1. 第1课时:介绍等比数列的概念,引导学生自主探索等比数列前n项和的概念。

2. 第2课时:讲解等比数列前n项和公式,引导学生理解和运用公式。

3. 第3课时:通过典型例题,培养学生的解题能力,提高学生运用数学知识解决问题的能力。

4. 第4课时:课堂小结,巩固等比数列前n项和的知识点。

5. 第5课时:布置作业,加深学生对等比数列前n项和的理解和运用。

六、教学策略1. 案例分析:通过分析具体的等比数列案例,让学生理解等比数列前n项和的实际意义。

2. 数形结合:利用图表和图形展示等比数列前n项和的变化规律,帮助学生直观理解。

3. 小组合作:组织学生进行小组讨论和合作交流,共同探索等比数列前n项和的性质和应用。

七、教学过程1. 导入新课:通过回顾等差数列的前n项和知识,引导学生自然过渡到等比数列前n项和的学习。

2. 自主探究:让学生自主探索等比数列前n项和的定义和公式,引导学生通过思考和讨论得出结论。

等比数列的前n项和公式经典教案

等比数列的前n项和公式经典教案

等比数列的前n项和公式经典教案一、教学目标1. 让学生理解等比数列的概念,掌握等比数列的基本性质。

2. 引导学生通过观察、归纳、推理等方法,探索并证明等比数列的前n项和公式。

3. 培养学生运用等比数列的前n项和公式解决实际问题的能力。

二、教学内容1. 等比数列的概念及基本性质。

2. 等比数列的前n项和公式的探索与证明。

3. 等比数列的前n项和公式的应用。

三、教学重点与难点1. 等比数列的概念及基本性质的理解与运用。

2. 等比数列的前n项和公式的探索与证明。

3. 等比数列的前n项和公式的应用。

四、教学方法1. 采用问题驱动法,引导学生通过观察、归纳、推理等方法探索等比数列的前n项和公式。

2. 运用实例讲解法,让学生在实际问题中体会等比数列的前n项和公式的应用。

3. 利用数形结合法,帮助学生直观地理解等比数列的性质和前n项和公式。

五、教学过程1. 引入:通过讲解现实生活中的等比增长现象,如银行利息、人口增长等,引出等比数列的概念。

2. 讲解等比数列的定义及基本性质,引导学生归纳等比数列的通项公式。

3. 引导学生分组讨论,探索等比数列的前n项和公式,总结并展示各组的探索成果。

4. 讲解等比数列的前n项和公式,并通过实例进行验证。

5. 运用等比数列的前n项和公式解决实际问题,如计算利息、求解等比数列的和等。

6. 总结本节课的主要内容和知识点,布置课后练习题。

注意:这只是一个教案框架,具体的教学内容和过程需要根据实际情况进行调整和补充。

在实际教学过程中,要关注学生的学习反馈,及时调整教学方法和节奏,以确保教学效果。

六、教学评估1. 课堂提问:通过提问了解学生对等比数列概念和性质的理解程度,以及他们是否能够运用前n项和公式解决实际问题。

2. 课后作业:布置相关的习题,要求学生独立完成,以此来检验他们对于等比数列前n项和公式的掌握情况。

3. 小组讨论:观察学生在小组讨论中的表现,了解他们是否能够有效地参与讨论,并与同伴共同解决问题。

等比数列的前n项和公式教案

等比数列的前n项和公式教案

【课题】 6.3 等比数列【教学目标】知识目标:(1)理解等比数列的定义;(2)理解等比数列通项公式.能力目标:(1)应用等比数列的通项公式,解决数列的相关计算,培养学生的计算技能;(2)应用等比数列知识,解决生活中实际问题,培养学生处理数据技能和分析解决问题的能力.情感目标:(1)经历等比数列的通项公式的探索,增强学生的创新思维;(2)关注数学知识的应用,形成对数学的兴趣。

【教学重点】等比数列的通项公式.【教学难点】等比数列通项公式的推导.【教学设计】本节的主要内容是等比数列的定义,等比数列的通项公式.重点是等比数列的定义、等比数列的通项公式;难点是通项公式的推导.等比数列与等差数列在内容上相类似,要让学生利用对比的方法去理解和记忆,并弄清楚二者之间的区别和联系.等比数列的定义是推导通项公式的基础,教学中要给以足够的重视.同时要强调“等比”的特点:q a a nn =+1(常数). 例1是基础题目,有助于学生进一步理解等比数列的定义.与等差数列一样,教材中等比数列的通项公式的归纳过程实际上也是不完全归纳法,公式的正确性也应该用数学归纳法加以证明,这一点不需要给学生讲.等比数列的通项公式中含有四个量:1a ,q ,n , n a , 只有知道其中任意三个量,就可以求出另外的一个量.教材中例2、例3都是这类问题.注意:例3中通过两式相除求公比的方法是研究等比数列问题常用的方法.从例4可以看到 ,这三个数的积正好等于,3a 很容易将a 求出.三个数成等比数列,则将这三个数设成是aq a qa ,,比较好. 【教学备品】教学课件.【课时安排】1课时.(40分钟)【教学过程】一.导入新课,展示目标(5分)【做一做】将一张纸连续对折5次,列出每次对折纸的层数第1次对折后纸的层次为122⨯=(层); 第2次对折后纸的层次为224⨯=(层);第3次对折后纸的层次为428⨯=(层);第4次对折后纸的层次为8216⨯=(层);第5次对折后纸的层次为16232⨯=(层).各次对折后纸的层次组成数列2,4,8,16,32.这个数列的特点是,从第2项起,每一项与它前面一项的比都等于2.二.设疑激探,自主学习 (10分)阅读课文,回答一下问题:1、等比数列的定义是什么?什么叫公比?用哪个字母表示?2、公比能为零吗?等比数列中能有一项为零吗?为什么?3、公比为1的数列是什么数列?4、0 0 0 0……是等差数列吗?是等比数列吗?常数列是等比数列吗?5、由定义可知:能找到第n 項与第n+1項的关系吗?如果一个数列的首项不为零,且从第2项开始,每一项与它前一项的比都等于同一个常数,那么这个数列叫做等比数列.这个常数叫做这个等比数列的公比,一般用字母q 来表示.由定义知,若{}n a 为等比数列,q 为公比,则1a 与q 均不为零,且有1n na q a +=,即 1n n a a q +=⋅ (6.5)***让学生注注意理解等比数列通项公式的推导过程。

等比数列的前n项和公式(教案)

等比数列的前n项和公式(教案)

等比数列的前n项和公式(教案)一. 教学目标1.知识与技能:使学生掌握等比数列前n项和公式及归纳、猜想、证明法,理解错位相消法,并能灵活运用公式2.过程与方法:通过公式的推导过程,培养学生类比、归纳、猜想、分析、综合等方面的能力,善于运用特殊与一般、分类与整合、方程的数学思想思考和解题,提升学生的逻辑思维能力3.情感态度与价值观:通过公式的探索发现过程,学生亲历结论的“再创造”过程,体验成功与快乐,感悟数学美通过分类讨论的教学和猜想之后还需证明培养学生思维的严谨性通过发散思维的教学,培养学生思维的批判性、灵活性。

二、重点和难点1.重点:等比数列前n项和公式、推导及应用2.难点:等比数列前n项和公式推导思路的获得三、授课对象:职高一年级学生,这些学生数学基础较差,自我约束较差,主动性、积极性不强,同时还缺乏学习兴趣,但是他们喜欢动手,观察能力强,对现实生活的实际例子还是很感兴趣,更对趣味性的东西好奇。

四、教学方法:启发诱导和任务驱动法,通过提问、讨论、探究等方法引导学生,从而达到教学目标。

五、时间安排:本节课我讲从七个方面来阐述:复习(2分钟)、情景问题引入(5分钟)、公式推到(12分钟)、例题讲解(15分钟)、课堂练习(6分钟)、课堂小结(3分钟)、交流心得(2分钟)。

六、教学用具:利用多媒体,动画式地展示,让学生有一种新奇感,从而激发学生的学习兴趣。

七、教学过程问题情境:自从八戒来到了高老庄,渐渐地开起了公司,并且生意红火,可最近出现资金周转不灵的现象,于是就向师兄悟空借钱,悟空很仗义,一口就答应了,并且在一个月(30天)里,第一天借1万元,第二天2万元,……以后的每天比前一天多借1万元。

不过有一个条件:要求八戒在这一个月的30天里,第一天还给八戒1分钱,第二天2分,……以后每天还的钱是前一天的两倍,直到第30天,大家两不相欠。

你认为八戒这钱能借吗?请大家讨论并猜想。

现在我们就来验证你们的想法是否正确。

等比数列的前n项和教案

等比数列的前n项和教案

等比数列的前n项和教案等比数列的前n项和教案等比数列的前n项和教案1教学目标1掌握等比数列前项和公式,并能运用公式解决简单的问题。

(1)理解公式的推导过程,体会转化的思想;(2)用方程的思想认识等比数列前项和公式,利用公式知三求一;与通项公式结合知三求二;2通过公式的灵活运用,进一步渗透方程的思想,分类讨论的思想,等价转化的思想。

3通过公式推导的教学,对学生进行思维的严谨性的训练,培养他们实事求是的科学态度。

教学建议:教材分析:(1)知识结构:先用错位相减法推出等比数列前项和公式,而后运用公式解决一些问题,并将通项公式与前项和公式结合解决问题,还要用错位相减法求一些数列的前项和。

(2)重点,难点分析:教学重点,难点是等比数列前项和公式的推导与应用。

公式的推导中蕴含了丰富的数学思想,方法(如分类讨论思想,错位相减法等),这些思想方法在其他数列求和问题中多有涉及,所以对等比数列前项和公式的要求,不单是要记住公式,更重要的是掌握推导公式的方法。

等比数列前项和公式是分情况讨论的,在运用中要特别注意和两种情况。

教学建议:(1)本节内容分为两课时,一节为等比数列前项和公式的推导与应用,一节为通项公式与前项和公式的综合运用,另外应补充一节数列求和问题。

(2)等比数列前项和公式的推导是重点内容,引导学生观察实例,发现规律,归纳总结,证明结论。

(3)等比数列前项和公式的推导的其他方法可以给出,提高学生学习的兴趣。

(4)编拟例题时要全面,不要忽略的情况。

(5)通项公式与前项和公式的综合运用涉及五个量,已知其中三个量可求另两个量,但解指数方程难度大。

(6)补充可以化为等差数列,等比数列的数列求和问题。

教学设计示例:课题:等比数列前项和的公式。

教学目标:(1)通过教学使学生掌握等比数列前项和公式的推导过程,并能初步运用这一方法求一些数列的前项和。

(2)通过公式的推导过程,培养学生猜想,分析,综合能力,提高学生的数学素质。

  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

6.3.3 等比数列的前n项和公式教案
一、教学目标
知识目标:掌握等比数列的前n项和公式及公式推导思路。

能力目标:会用等比数列的前n项和公式解决一些简单问题。

德育目标:帮助学生感受到数学是与生活息息相关的,认识到学好数学的重要性。

同时激发学生爱专业、学专业的热情。

二、学情分析
学生已经学习并知道等差数列前n项和公式的由来;熟悉等比数列及其特点。

但学生对等比数列前n项和的推导方法---错位相减法比较陌生,并且考虑事情缺乏全面性,容易忽略公比1
q=的情形。

三、教学的重难点
教学重点:灵活应用公式解决有关问题。

教学难点:等比数列前n项和的推导过程。

四、教学方法
1、教法
多媒体辅助教学,教师逐步引导!
2、学法
自主探索、观察发现、类比猜想。

五、教学过程
1、创设情境,提出问题
西游记后传——话说猪八戒自从西天取经之后,就回到了高老庄,成立了高老庄集团,自己也摇身一变成了总经理,因急需大量资金投入,决定找大师兄孙悟空帮忙,孙悟空一口答应了:我每天给你投资100万元,连续给你投资一个月(30天)。

你看可以吗?
猪八戒:猴哥你太好了,那……我何时还你钱?
孙悟空:咱俩谁跟谁呀!我给你投资的钱就不用还了,你就意思意思,第一天给我1元,第二天给我2元,第三天给我4元,……以后就每天给我的钱是前一天的两倍,一直给我30天,我们就算两清了,你看如何?
猪八戒心想:第一天1元换100万元,第二天2元换100万元,……哇,发财了!想:他会不会又在耍我?
让咱帮八戒算一算:八戒吸纳的资金为100×30=3000万元。

需返还悟空的钱数为
2329
30
=1+2+2+22
S+
=?事实上,这
是等比数列的求和问题,那么怎样求等比数列的前30项和呢?于是引入课题《等比数列的前n项和公式》
2、师生互动 探究问题
探讨1:设2329
30=1+2+2+22S +,记为(1)式,注意观察每一项的特征,有何联系?(学生会发现,后一项都是前一项的2倍)
探讨2: 如果我们把每一项都乘以2,就变成了它的后一项,(1)
式两边同乘以2则有,232930302=2+2+22+2S +,记为(2)式.比较
(1)、(2)两式,你有什么发现?
引导得出数列求和方法:错位相减法。

3、类比联想,解决问题
设等比数列{}n a 的首项为a ,公比为q ,如何求n S ? 112111-+∙∙∙+++=n n q a q a q a a S (1)
n n n q a q a q a q a q a qS 11131211++∙∙∙+++=- (2)
(1)—(2)得
()111n n q S a a q -=-
∴q ≠1时,得()
111n n a a q S q -=-=q q a a n --11 1q =时,得1na S n =
4、例题讲解,形成技能
例 求出等比数列1,−3,9,−27,…的前8项的和. 解 因为 8=n 又因为
所以
5、课堂训练,深化认识
在等比数列{}n a 中,(1)已知;14a =-,12
q =
,求10S ; (2)已知;11a =,243k a =,3q =,求k S .
6、总结归纳,加深理解
(1)等比数列的前n 项和公式:
(2)推导公式所用的方法:
7、课后作业,分层练习
(1)书面作业:P17教材6.3.3 T1,2(必做) 131,31a q -===-,q q a S n n --=1)(14
)3(188--=S 1640-=
(2)P19教材习题6.3B组T2(选做)。

相关文档
最新文档