第五章大数定律及中心极限定理

合集下载

第五章 大数定律和中心极限定理

第五章 大数定律和中心极限定理

一、大数定律切比雪夫大数定律:设随机变量X1,X2,…,X n,…相互独立,且具有相同的数学期望且方差有界,那么对辛钦大数定律:设X1,X2,…,X n,…为独立同分布的随机变量序列,且数学期望E(X i)=μ存在,则对任意【例87·填空题】设X1,X2,…,X n,…相互独立,且都服从P(λ),那么依概率收敛到_____[答疑编号986305101:针对该题提问]答案:【例88·填空题】设X1,X2,…,X n,…相互独立,且都服从参数为0.5的指数分布,则。

[答疑编号986305102:针对该题提问]【例89·选择题】设随机变量列X1,X2,…,X n,…相互独立,则根据辛钦大数定律,当n充分大时依概率收敛于共同的数学期望,只要X1,X2,…,X n,…()A.有相同的数学期望B.服从同一离散型分布C.服从同一泊松分布D.服从同一连续型分布[答疑编号986305103:针对该题提问]答案:C【例90·选择题】设随机变量,X1,X2,…,X n,…是独立同分布,且分布函数为则辛钦大数定律对此序列()A.适用B.当常数a,b取适当的数值时适用C.不适用D.无法判别[答疑编号986305104:针对该题提问]答案C二、中心极限定理独立同分布的中心极限定理:设随机变量X1,X2,…,X n,…相互独立,服从同一分布,【例91·选择题】(05-4-4)设X1,X2,…,X n,…为独立同分布的随机变量列,且均服从参数为λ(λ>0)的指数分布,记为标准正态分布函数,则()[答疑编号986305105:针对该题提问]答案:C。

第5章_大数定律和中心极限定理

第5章_大数定律和中心极限定理

3) 用平均值近似积分值
1 即 I N
g(r ) I
n1 n
N
问:若求 I b g ( x )dx 的值
a
应如何近似计算?请思考.
大数定律以严格的数学形式表达了随 机现象最根本的性质之一: 平均结果的稳定性 它是随机现象统计规律的具体表现. 大数定律在理论和实际中都有广泛的应用.
0
1
我们介绍均值法,步骤是
1) 产生在(0,1)上均匀分布的随机数rn, n=1,2,…,N 2) 计算g(rn), n=1,2,…,N
3) 用平均值近似积分值
1 即 I N
g(r ) I
n1 n
N
求 I g ( x )dx 的值
0
1
我们介绍均值法,步骤是
1) 产生在(0,1)上均匀分布的随机数rn, n=1,2,…,N 2) 计算g(rn), n=1,2,…,N
n
P a 则称{Xn}依概率收敛于a。可记为 X n
意思是: 当
n 时, Xn落在 (a , a )
Xn
内的概率越来越大。即 n0 , 使得n n0 ,
a
a
a
二、几个常用的大数定律
切比雪夫大数定律 设{Xk,k=1,2,...}为独立的随机变 量序列,且有相同的数学期望,及方差2>0,则
1 n P Yn X k n k 1
例 在掷骰子过程中,以Xn记第n次掷出的点数, 1 n 在依概率收敛意义下,求 X X k 的极限。
n
k 1
下面我们再举一例说明大数定律的 应用. 定积分的概率计算法 求 I g ( x )dx 的值
0 1

第五章大数定律及中心极限定理

第五章大数定律及中心极限定理
求P{V>105}的近似值
解 E(Vk)=5, D(Vk)=100/12 (k=1,2,…,20).
20
Vk 20 5
Z k1
V 20 5
100/ 12 20 100/ 12 20
近似服从正态分布N(0,1),
P{V 105} P{ V 20 5 105 20 5 }
100/ 12 20 100/ 12 20
设随机变量 X1 , X2 ,…, X n 相互独立, 服从同一分
布 , 且 具 有 相 同 的 数 学 期 望 和 方 差 , E(Xk) ,
D( Xk ) 2 0,(k 1,2,),则随机变量
n
n
n
Xk E( Xk ) Xk n
Yk k1
k 1 n
D( Xk )
k1
n
k 1
n k 1
Xk
|
}
1
说明
伯努利大数定理是辛钦定理的特殊情况。
n个随机变量的算术平均值以概率收敛于算术平
均值的数学期望。
三 小结
1、切比雪夫(Chebyshev)定理的特殊情况 用算术平均值作为所研究指标值的近似值。
2. 伯努利定理 事件发生的频率依概率收敛于事件的概率
3. 辛钦定理 n个随机变量的算术平均值以概率收敛于算术 平均值的数学期望。
(2.5) 0.9938
三 小结
1、独立同分布的中心极限定理
2.李雅普诺夫定理
3.棣莫佛-拉普拉斯定理
n
n
n
n
Xk E( Xk ) Xk k
Zn k1
k 1 n
D( Xk )
k1
k 1
Bn
k 1
近似服从标准正态分布N(0,1)。

概率论与数理统计第五章大数定律及中心极限定理

概率论与数理统计第五章大数定律及中心极限定理

概率论与数理统计第五章大数定律及中心极限定理课前导读概率论是研究大量试验后呈现出的统计规律性的一门理论。

数学中研究大量的工具是极限。

因此这一章学习概率论中的极限定理。

第一节大数定律随着试验次数的增大,事件的频率逐步稳定到事件的概率。

意味着随着试验次数的增多,在其中一种收敛意义下,频率的极限是概率。

大数定律解释了这一结论。

首先介绍切比雪夫不等式。

一、切比雪夫(Chebyshev)不等式随机变量X的取值总是围绕着其期望变动,若X的分布已知时,可以计算事件\{,X-E(X),\geq \epsilon \}的概率。

切比雪夫不等式:对切比雪夫不等式的直观理解:方差越小,X在其期望附近取值的密集程度越高,原理期望的区域的概率上加越小。

进一步说明了方差的概率意义,方差时随机变量取值与其中心位置的偏离程度的一种度量指标。

当随机变量X的分布未知时,可由X的观测数据估计得到X的期望和方差,然后使用切比雪夫不等式估计X关于E(X)的偏离程度。

二、依概率收敛随机变量序列即由随机变量构成的一个序列。

不能用类似定义数列极限的方式定义随机变量序列的极限,因为序列中的每一个元素X_n是随机变量,取值不确定,不可能和一个常数c的距离任意小。

只能说一些事件A发生的频率f_n(A)收敛到A的概率P(A)。

依概率收敛的定义:定理2:三、大数定律三个大数定律:切比雪夫大数定律、辛钦大数定律和伯努利大数定律。

注意这三个大数定律的条件有何异同。

定理3 切比雪夫大数定律:若随机变量序列相互不相关,方差存在且一致有上界,当n充分大时,随机序列的前n项的算术平均值和自身的期望充分接近几乎总是发生的。

定理4 相互独立同分布的大数定律(辛钦大数定律):辛钦大数定律为算术平均值法则提供了理论依据。

伯努利大数定律:伯努利大数定律是相互独立同分布大数定律的特例,限定分布为两点分布。

伯努利大数定律体现了:随着试验次数的增大,事件的频率逐步稳定到时间的概率,这里的稳定即为依概率收敛。

(完整版)大数定律和中心极限定理

(完整版)大数定律和中心极限定理

第五章 大数定律和中心极限定理一、内容提要(一)切贝谢夫不等式 1. 切贝谢夫不等式的内容设随机变量X 具有有限的数学期望E (X )和方差D (X ),则对任何正数ε,下列不等式成立。

(){}()(){}().1,22εεεεX D X E X P X D X E X P -≤-≤≥-2. 切贝谢夫不等式的意义(1)只要知道随机变量X 的数学期望和方差(不须知道分布律),利用切贝谢夫不等式,就能够对事件(){}ε≥-X E X 的概率做出估计,这是它的最大优点,今后在理论推导及实际应用中都常用到切贝谢夫不等式。

(2)不足之处为要计算(){}ε≥-X E X P 的值时,切贝谢夫不等式就无能为力,只有知道分布密度或分布函数才能解决。

另外,利用本不等式估值时精确性也不够。

(3)当X 的方差D (X )越小时,(){}ε≥-X E X P 的值也越小,表明X 与E (X )有较大“偏差”的可能性也较小,显示出D (X )确是刻画X 与E (X )偏差程度的一个量。

(二)依概率收敛如果对于任何ε>0,事件{}ε a X n -的概率当n →∞时,趋于1,即{}1lim =-∞→ε a X P n n ,则称随机变量序列X 1,X 2,…,X n ,…当n →∞时依概率收敛于α。

(三)大数定律 1. 大数定律的内容(1)大数定律的一般提法若X 1,X 2,…,X n ,…是随机变量序列,如果存在一个常数序列α1,…,αn ,…,对任意ε>0,恒有11lim 1=⎭⎬⎫⎩⎨⎧-∑=∞→ε n i n i n a X n P , 则称序列{X n }服从大数定律(或大数法则)。

(2)切贝谢夫大数定律设随机变量X 1,X 2,…,X n ,…相互独立,分别有数学期望E(X i )和方差D(X i ),且它们的方差有公共上界C ,即()().,,,2,1, n i C X D i =≤则对于任意的ε>0,恒有()111lim 11=⎭⎬⎫⎩⎨⎧-∑∑==∞→ε n i ni i i n X E n X n P 。

第五章大数定律及中心极限定理

第五章大数定律及中心极限定理

k 1
其中 X1, X2 ,, Xn是相互独立的、服从同一
均值为μ,方差为σ2>0的独立同分布的随机变量
n
X1,X2,…,Xn之和 X k 的标准化变量,当n充分
大时,有
k 1
n

k 1
Xk

nm
~近似N(0,1)
ns
n
这样可以用(标准)正态分布来对 X k 作
k 1
理论分析或实际计算,不必求分布函数
19/41
§5.2 中心极限定理
将上式改写为
即对任意的正数ε,当n充分

lim P n
1 n
n k 1
Xk
m

1.

大时,不等式 立的概率很大
|
X
m | 成
3/41
证 由随机变量X1,X2,…,Xn,…相互独立,且具有 相同的数学期望和方差,有
E

1 n
n k 1
Xk

lim
n
P

1 n
(X1

X2

Xn)
p




1,

lim
n
P

nA n

p





1.
伯努利大数定理表明,事件发生的频率nA/n依概率收敛
于事件的概率p,以严格的数学形式表达了频率的稳定性和概
率的合理性
近似:当n很大时,事件发生的频率nA/n与概率有较大偏差的 可能性很小,因此由实际推断原理,由于小概率事件几乎不
辛钦定 理
X P m

第5章__大数定律和中心极限定资料

第5章__大数定律和中心极限定资料

解:设在n重贝努里试验中,事件A出现的次数为X,
则X Bn,0.75,E X np 0.75n, D X npq 0.1875n,
又A事件的频率为:fn
A
X n
(1) n 7500, P
0.74
X n
0.76
P X 0.75n
0.01n
1
0.1875n
0.01n 2
1 n2
n
DXk
k 1
1 n2
n 2
2
n
由契比雪夫不等式得:P
1 n
n k 1
Xk
1
2
2
n
lim
n
P
1 n
n
Xk
k 1
1
7
定理二 伯努利大数定理
设事件A在每次试验中发生的概率为p,记nA为n次独立重复试验
中A发生的次数, 则
0, 有:lim
P
n
nA n
p
1
证明: nA Bn, p
1,
则称随机变量序列Yn依概率收敛于常数a,
记为:Yn P a。
a a a
依概率收敛性质: 若 X n P a, Yn Pb, 且g(x, y)在(a,b)处 连续,则 g( X n ,Yn)P g(a,b)
6
定理一 契比雪夫定理的特殊情况:
设随机变量序列X1, X 2, , X n , 相互独立,且具有相同的
且存在数学期望,作前n个随机变量的算术平均: X
1 n
n k 1
Xk
则 0,有:
lim P
n
X
lim
n
P
1 n
n
Xk
k 1

第五章大数定律及中心极限定律

第五章大数定律及中心极限定律
3 - 18
4.某单位设置一电话总机,共有200门电话 分机,每门电话分机有5%的时间要用外 线通话,假设各门分机是否使用外线通 话是相互独立的,问总机至少要配置多 少条外线,才能以90%的概率保证每门 分机要使用外线时,有外线可供使用.
3 - 19
lim P
n
fn( A) p 1
频率的稳定性!小概率事件!
3 -8
§5.2 中心极限定理
一. 独立同分布中心极限定理 二. 棣莫佛-拉普拉斯定理
3 -9
独立同分布的中心极限定理
设随机变量 X1, X 2 ,, X n , 独立同分布,且有
E( Xk ) , D( Xk ) 2 0(k 1,2,),
用来阐述大量随机现象平均结果的稳定性 的一系列定理统称为大数定律.
3 -3
§5.1 大数定律
一. 大数定律
切比雪夫定理
辛钦定理
伯努利大数定理
3 -4
大数定律: 切比雪夫定理
设随机变量序列 {Xn相} 互独立,且均存在数学期 望 E,(X方n) 差 D( X(nn )=1,K2,...), 则对任意的ε>0 , 有
大纲要求:
1.了解大数定理. 2.了解中心极限定理.
掌握中心极限定理的应用.
3 -1
学习内容
§5.1 大数定律 §5.2 中心极限定理
3 -2
前面各章节中所叙述的理论是以随机事件 概率的概念为基础的,而此概念的形成则是大 量现象的客观规律性--随机事件频率的稳定 性.概率论的理论与方法必须符合客观实际, 根据科学抽象得到的概念正确的反映了现实 世界的客观规律性.在大量随机现象中,不仅 看到随机事件频率的稳定性,而且还看到一般 的平均结果的稳定性.

第五章大数定律与中心极限定理

第五章大数定律与中心极限定理

Xi
1 n
n i 1
E(Xi)
1,
则称{Xn}服从大数定律.
(2)伯努利大数定律是切比雪夫大数定律的特例
(3) 伯努利大数定律和切比雪夫大数定律的证明 都用到切比雪夫不等式,而且需要方差存在。
定理 5.1.4. 辛钦大数定律
设X1, X 2 ,..., X n,...是独立同分布的随机变量序列,
意义:只要试验次数够大,发生事件的频率无限接近于 概率,频率稳定性,频率代替概率。
定理 5.1.3. 切比雪夫大数定律
设X1 , X 2 ,, X n ,是一相互独立的随机变 量序列,
它们的数学期望和方差 均存在,且方差有共同 的上界,
即存在常数 K 0,使得 D ( X i ) K , i 1,2, ,
不等式给出了X 与它的期望的偏差不小于的概率
的估计式.
例 1 E( ) 4, D( ) 0.2, 则由切比雪夫不等式知
P{| 4 | 2} P{| 4 | 1}
,
P{ X
}
2 2
,
P{1 7}
定义 5.1.1设{X n}是一个随机变量序列,a是常数,
若对于任意的 0,有
已知整个系统中至少有84个部件正常工作,系统
工作才正常.试求系统正常工作的概率.
解: 记Y为100个部件中正常工作的部件数,则
Y 近似服从 N(100 0.9,100 0.9 (1 0.9))
即Y 近似服从N (90, 9)
因此,所求概率为
P{Y 84}=1-P{Y<84}=1-P{ Y-90 < 84-90 }
解: 设Xi为第i个螺丝钉的重量,i 1, 2,...,100.
且设X 为一盒螺丝钉的重量.

第五章大数定律与中心极限定理

第五章大数定律与中心极限定理

• 例:一加法器同时收到 个噪声电压 k(k=1,2,…,20), 一加法器同时收到20个噪声电压 一加法器同时收到 个噪声电压V 它们相互独立且都在区间[0,10]上服从均匀分布 噪声 上服从均匀分布,噪声 它们相互独立且都在区间 上服从均匀分布 的近似值. 电压总和V=V1+V2+…+V20,求P{V>105}的近似值 电压总和 求 的近似值 • 解:易知 易知E(Vk)=5,D(Vk)=100/12,由独立同分布的中心 易知 由独立同分布的中心 20 极限定理知
∑ D( X
k =1
n
k
)=
σ2
n
1 n 所以 P{| ∑ X k − µ |< ε } = P {| X n − E ( X n ) |< ε } n k =1 D( X n ) σ2 ≥ 1− = 1− 2 2 nε ε
设随机变量序列{Y 如果存在一个常数a 定义 设随机变量序列{Yn},如果存在一个常数a,使得 ε>0 对任意的 ε>0,有
1 故 n
X k 1 . ∑ 2 P→ 3 k =1
§2
中心极限定理
定理(林德贝尔格 勒维 定理):设 定理 林德贝尔格-勒维 林德贝尔格 勒维(Lindeberg-Levy)定理 设 定理 {Xk}为相互独立的随机变量序列 服从同一分布 且 为相互独立的随机变量序列,服从同一分布 为相互独立的随机变量序列 服从同一分布,且 具有数学期望E(Xk)=µ和方差 和方差D(Xk)=σ2 ,则随机变 具有数学期望 和方差 则随机变 量
X 1 ~ U ( −1, 1). 则 1 (1) n X k,(2)1 ∑ n k =1
n 2 X k 分别 依概 率收 敛吗 ? ∑ k =1 n

《概率论与数理统计》课件第五章大数定律及中心极限定理

《概率论与数理统计》课件第五章大数定律及中心极限定理
有极其重要的地位?
4.大样本统计推断的理论基础
是什么?
大数定律中心极限定理
随机现象中平均结果的稳定性
大数定律的客观背景
大量抛掷硬币正面出现频率
字母使用频率
生产过程中的废品率
§5.1 大数定律
背景:1. 频率稳定性2. 大量测量结果算术平均值的稳定性
回顾
随机现象的主要研究方法
概率分布
01
证:_x001A__x001B__x001B_,_x001A__x001B__x001B_,⋯, _x001A__x001B__x001B_, ⋯相互独立同分布,则_x001A__x001B__x001B__x001B_,_x001A__x001B__x001B__x001B_, ⋯,_x001A__x001B__x001B__x001B_, ⋯也相互独立同分布,由辛钦大数定律得证.
第五章 大数定律及中心极限定理
§5.1 大数定律§5.2 中心极限定理
要点:用切比雪夫不等式估算概率独立同分布,用中心极限定理计算对于二项分布,当n很大时,计算
本章要解决的问题
1.为何能以某事件发生的频率
作为该事件的概率的估计?
2.为何能以样本均值作为总体
期望的估计?
3.为何正态分布在概率论中占
解:(1)设X表示一年内死亡的人数,则~(, ),其中=,=.%. 设Y表示保险公司一年的利润,=×−.需要求的是_x001A_<_x001B_.
由中心极限定理
_x001A_<_x001B_=_x001A_×−<_x001B_ =_x001A_>_x001B_=−_x001A_≤_x001B_
且,
由中心极限定理
解:设为第i个螺丝钉的重量, 相互独立同分布. 于是,一盒螺丝钉的重量为

概率论与数理统计第5章-大数定律和中心极限定理

概率论与数理统计第5章-大数定律和中心极限定理

DX } 1
(2
DX DX
)2

3 4

例 1.2 设随机变量 X ~ P(9) ,试根据切比雪夫不等式 估计概率 P{X 19}. 解 由于 X ~ P(9) ,所以 EX DX 9 ,且
P{X 9 10} P{X 1} 0 , 故有 P{X 19} P{X 9 10}
P{ X 9 10} 9 0.09 . 102
例 1.3 设随机变量 X ,Y 独立同分布,且 D(X ) 2 ,
试根据切比雪夫不等式估计概率 P{ X Y 2} .
解 由于 X ,Y 独立同分布,所以 E( X Y ) 0 ,且
D(X Y ) DX DY 4
lim
n
FYn
(
x)

(
x)

1
2
x

e
t2 2
dt

x

(,
)


【注 1】定理 2.1 称为列维—林德伯格中心极限定理,也 称为独立同分布随机变量序列的中心极限定理.
【注 2】由定理 2.1 表明,当 n 充分大时, FYn (x) (x) ,
近似
n
近似
即得Yn ~ N (0,1) ,从而有 Xi ~ N (n, n 2 ) .
P{ X Y 2} 1 D(X Y ) 1 ,
22
2
二、大数定律(了解) 1.相关概念
定义 1.1 设有随机变量序列 X1, X 2 ,L , X n ,L ,如果
存在常数 a ,使得对任意的 0 ,有
lim P{
n
Xn
a
}1,

第五章大数定律和中心极限定理

第五章大数定律和中心极限定理

第五章 大数定律和中心极限定理§1 大数定律设X 1,X 2,...X n ,...是一随机变量列,a 1,a 2,...a n ,...是一常数列,令Y n =∑=ni iXn11n=1,2,...,,所谓大数定律就是研究(Y n -a n )收敛到0的定理。

按收敛意义的不同,有弱大数定律和强大数定律。

我们主要介绍弱大数定律,弱大数定律也称大数定律。

契比雪夫不等式设R.V.X ,其2)(,)(σμ==X D X E 都存在,则对任意>ε均有 或一、大数定律定理5.1:(契比雪夫大数定律)若X 1,X 2,...X n ,...相互独立,它们的数学期望和方差都存在,且方差一致有界,即E(X i )=?i , D(X i )=?i 2?C(常数) i=1,2,...则对任意的??0,均有lim ∞→n P{?Y n-E(Y n)???}=1 (5.1)其中Y n=∑=ni iX n 11 定理5.2(伯努利大数定律)设伯努利试验中,事件A 发生的概率为p(0?p?1),m 为n 重伯努利试验中事件A 发生的次数,则对任意的??0,均有1lim =⎭⎬⎫⎩⎨⎧<-∞→εp n m P n (5.2) 定理5.3 (辛钦大数定律)若X 1,X 2,...,X n,...相互独立同分布,其数学期望存在,即E(X i )=?,i=1,2,...,则对任意的??0,均有111lim =⎭⎬⎫⎩⎨⎧<-∑=∞→εμn i i n X n P (5.3) 例:设X 1,X 2,...,X n,...独立同分布,且X i 的k 阶矩m k =E(X i k )存在(k 为正整数),则对任意的??0,均有二、中心极限定理定理5.4 (林德贝格-莱维定理)若X 1,X 2,...,X n,...相互独立同分布,其数学期望和方差均存在且方差大于零,即E(X i )=?,D(X i)=?2?0, i=1,2,...则∑=ni iX 1的标准化随机变量σμn n XY ni in-=∑=1的分布函数)(x F n 对于任意的x 满足即σμn n X ni∑-1的分布函数−→−∞→n )1,0(N .当n 很大时近似公式P <α{σμn n X ni∑-1}β<()()βαΦ-Φ≈.例:为了把问题简化,假定在计算机上进行加法计算时,对每个数都取最接近它的整数(即取整)再相加。

第五章 大数定律与中心极限定理

第五章 大数定律与中心极限定理

X
i 1
n
i
n

P{| Yn a | } 1 如果满足 lim n

Yn
依概率收敛于数a,记为
Yn a.
P
大数定律讨论的是依概率收敛的问题。
大数定律以严格的数学形式表达了随 机现象最根本的性质之一: 平均结果的稳定性 它是随机现象统计规律的具体表现. 大数定律在理论和实际中都有广泛的应用.
下面给出的独立同分布随机变量序列 的中心极限定理, 也称列维一林德伯格 (Levy-Lindberg)定理.
定理1(独立同分布下的中心极限定理) 设X1,X2, …,Xn是独立同分布的随机 变量序列,且E(Xi)= ,D(Xi)= 2 , i=1,2,…,n,则
lim P{
n
X
i 1
下面我们再举一例说明大数定律的 应用.
定积分的概率计算法 求 I g ( x )dx 的值
0 1
求 I g ( x )dx 的值
0
1
我们介绍均值法,步骤是
1) 产生在(0,1)上均匀分布的随机数rn, n=1,2,…,N 2) 计算g(rn), n=1,2,…,N
3) 用平均值近似积分值
0 1 解: X k ~ , 0.1 0.9
E(Xk)=0.1, k=1,2, …,n
诸Xk 独立同分布,且期望存在,故能 使用大数定律.
0 1 解: X k ~ , 0.1 0.9
E(Xk)=0.1, k=1,2, …,n
诸Xk 独立同分布,且期望存在,故能使用 大数定律.
n
D ( X k )
k 1
的分布函数的极限.
考虑 Z n
X
k 1

概率论第五章 大数定律及中心极限定理

概率论第五章 大数定律及中心极限定理

的标准化变量为
n
X i n
Yn i1 n
则Yn的分布函数Fn(x)对任意的x∈(-∞,+∞)都有
n X i n
lim
n
Fn
(
x)

lim
n
P(Yn

x)

lim
n
P
i 1
n
x




x

1
t2
e 2 dt
2
该定理说明,当n充分大时, Yn近似地服从标准正 态分布,Yn~N(0,1), (n )
P|
X


|




2 2

P X



1


2 2
证明 (1)设X的概率密度为p(x),则有
P{| X | } p(x)dx
| x |2
p(x)dx
|x|
|x|
2

1
2

(x



)2
p(
x)dx


2 2
Xi 2
0
pi
1 4
1 2
2
(i 1,2, , n, )
1 4

因为 X1, X 2 , , X n ,
相互独立, EX i 0 , E
X
2 i
1

DX i

E
X
2 i
EX i
2
1 0
1, i
1,2,
, n,

所以,满足切比雪夫大数定理的条件,可使用大数定理.

第五章大数定律与中心极限定理

第五章大数定律与中心极限定理

X lim P{
n i 1
n
i
np } lim
n
np(1 p)
Y np P{ n x} np(1 p)
1 2



e
t2 2
dt
例: 设某妇产医院出生男孩的概率为 0.515,求在 10000 个新生儿中,出生的女孩不少于男孩的概率.
解法1 设X为10000个新生儿中男孩个数 则X服从B(n,p),其中n=10000,p=0.515 由德莫弗-拉普拉斯中心极限定理,所求概率为
2
不等式求概率 P X 的近似值.

当 2时
P X 2
2
2
2
2
1 4
当 3时
P X 3
3
2
1 9
§1.2 大数定律
• 定义:设{Xk}是随机变量序列,数学期望 E(Xk)(k=1,2,...)存在,若对于任意ε >0,有
22 1 P{| X 20 | 4} 2 4 4
P{| X 20 | 4}
1 P{| X 20 | 4}
1 3 1 4 4
例:已知随机变量 X 的数学期望为 E(X)=μ ,方 差 D( X ) ,当 2 和 3 时,试用切比雪夫
n
1 n P{| X k | } 1 n k 1
注:
1 n 1 n E( X k ) E( X k ) n k 1 n k 1
例: 设随机变量 X 1 , X 2 ,, X n , 相互独立,且有如 下表的分布律,问:对随机变量 X 1 , X 2 ,, X n , 可 否使用大数定理?
  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

第五章大数定律及中心极限定理
[本章要求]
1.了解契比雪夫不等式,契比雪夫定理和贝努利定理。

2.了解独立同分布的中心极限定理和德莫佛——拉普拉斯中心极限定理。

[内容提要与疑难解析]
定理一(契比雪夫定理的特殊情况)设随机变量1X ,2X ,…n X …相互独立,且具有相同的数学期望和方差:E (k X )=μ,D (k X )=2σ(k=1,2,…)。

作前
n 个随机变量的算术平均,∑==n
1
k k n X n 1Y ,则对于任意正数ε有
}Y {P lim n n εμ<-∞→=}X n 1{P lim n
1
k k n εμ<-∑=∞→=1 这一定理表明,在定理条件下,n 个随机变量的算术平均,当n 无限增加时
几乎变成一个常数。

定理二(贝努利定理)设A n 是n 次独立重复试验中事件A 发生的次数。

P 是事件A 在每次试验中发生的概率,则对于任意正数ε>0有
}P n
n {
P lim A
n ε<-∞
→=1 或 }P n
n {
P l i m A
n ε≥-∞
→=0 这一定理说明当n 很大时,事件发生的频率与概率有很大的偏差的可能性很小。

定理三(辛钦定理)设随机变量1X ,2X ,…n X …相互独立,服从同一分布,且具有数学期望E (k X )=μ(k=1,2,…)则对于任意正数ε,有
}X n 1{P lim n
1
k k n εμ<-∑=∞→=1
定理四(独立同分布的中心极限定理)设随机变量1X ,2X ,…n X …相互独立,服从同一分布,且具有相同的数学期望和方差:E (k X )=μ,D (k X )=2σ0≠(k=1,2,…)则随机变量
)
X (D )
X (E X
Y n
1
k k n
1
k n
1k k k
n ∑∑∑===-=
=
σ
μ
n n X
n
1
k k
∑=-
的分布函数)x (F n 对于任意x 满足
=∞
→)x (F lim n n x}n n X
{P lim n
1
k k
n ≤-∑=∞
→σ
μ
=dt e
212
t x
2-

-⎰
π
定理五(De Moivre —Laplace 定理)设随机变量),2,1n (n =η 服从参数为
n,P(0<P<1)的二项分布,则对于任意x ,恒有
}x p)
-np(1{
P lim np
n n ≤-∞
→η=dt e
212
t x
2-

-⎰
π
中心极限定理表明,只要1X ,2X ,…n X 是独立同分布,无论k X 服从什么分
布,
∑=n
1
k k
X
都以正态分布为极限分布,今后,若求这种大量的独立随机变量的和
落在某个区域上的概率时,只要把这个标准化,我们就可以利用标准正态分布来作近似计算。

[典型例题]
例1 一台设备由10个独立工作的元件组成,每一个元件在时间T 发生故障的概率为0.05,设在时间T 发生故障的元件数为随机变量X 。

试借助于契比雪夫不等式估计X 和它的数学期望的偏差(1)小于2;(2)不小于2时大概率。

解 (1)用X 表示离散型随机变量—在时间T 发生故障的元件数。

因此, E(X)=np=10×0.05=0.5
D(X)=npq=10×0.05×0.95=0.475 由契比雪夫不等式
2)
X (D 1])X (E X [P ε
ε-≥<-
把E(X)=0.5, D(X)=0.475 ε=2 代入得
4
475
.01)25.0X (P -≥<-=0.88
(2)事件25.0X <-和25.0X ≥-为对立事件,因此它们的概率之和为1,故
0.120.88-12)5.0X (P =≤≥-
例2已知正常男性成人的血液中,每一毫升白细胞数平均是7300,均方差是700,利用契比雪夫不等式估计每毫升含白细胞数在5200~9400之间的概率P.
解 设每毫升血液中含白细胞数为 X ,则X 是随机变量,由题意可知
7300)X (E ==μ , 22700)X (D ==σ
所以, {},〈2
2
70017300
X P ε
ε-≥-
为了使5200<x<9400, -2100<x-7300<2100, 我们取2100=ε即得
P{5200<x<9400},98
911210070012
2=-=-≥ 故P 98≥.
例3 设)50,2,1i (X i =是相互独立的随机变量,且它们都是服从参数为
03.0=λ的泊松分布,记Z=,X X X 5021+++ 试用中心极限定理计算{}3Z P ≥.
解 500.03DX 0.03EX i 2i =======n ,,λσλμ 故由中心极限定理
03
.05003.050Z ⨯⨯-近似服从),1,0(N
故 {}≈⎭⎬⎫⎩⎨⎧⨯⨯-≥⨯⨯-=≥03.05003.050303
.05003.050Z P 3Z P
()
()=Φ-=Φ-=⎪⎪⎭⎫
⎝⎛⨯⨯-Φ-225.115.1103.05003.05031
1-0.8897=0.1103
例4 设对目标独立发射400发炮弹,单发命中率等于0.2,求命中70至100发的概率。

解 用拉普拉斯定理来近似估计这个概率 由于 np=4008002.0=⨯
118.02.040022npq ≈⨯⨯⨯= 82.11180
1002npq
np
≈-=
-β 91.011
80
702npq
np
-≈-=
-α 所以 {}()()[]=-Φ-Φ=<<91.082.12
1
100X 70P =
()()[]98.091.082.12
1
≈Φ+Φ
例5 在人寿保险公司里有3000个同一年龄的人参加人寿保险。

在一年里,这些人的死亡率为0.1%,参加保险的人在一年的头一天交付保险费10元,死亡时,家属可以从保险公司领取2000元。

(a).求保险公司一年中获利不少于10000元的概率;(b).保险公司亏本的概率是多少?
解 设一年中死亡等人数是X 人,X=,3000
,,1,0 死亡的概率P=0.001,把考虑3000个人在一年中是否死亡看成3000重伯努力试验,故X 服从二项分布,
即X~B(3000,0.01). 保险公司每年收入3000,30000
10=⨯付去2000X 元。

(a). P{保险公司获利不少于10000元}=
{}{}10X 0P 10000
2000X 30000P ≤≤=≥- np=300030.001=⨯ ()7312.1999.031np =⨯=-p
由公式
{}()()
()≈⎪⎭

⎬⎫⎪⎩⎪⎨
⎧--≤
--<--=<<p np np b p np np
p np np
a P
b a 111P ηη
()()⎪⎪⎭

⎝⎛--Φ-⎪⎪⎭⎫ ⎝⎛--Φ
p np np a p np np b 11 得:{}≈⎭⎬
⎫⎩⎨⎧-≤-≤-=≤≤7312.13107312.13X 7312.13P 10X 0P ≈⎪⎭

⎝⎛-Φ-⎪⎭⎫ ⎝⎛Φ7312.137312.17
()()()[]96.0733.111733.1043.4=Φ--=-Φ-Φ 即一年中以0.96的概率获利10000元以上。

(b). P{保险公司亏本}={}=>300002000X P {}=>15X P
-1{}=≤15X P {}=≤≤15X 0P -1≈⎭⎬⎫⎩⎨⎧≤≤1.73123-151.73123-X 1.73123-P -1
-1[⎪⎭

⎝⎛-Φ-⎪⎭⎫ ⎝⎛Φ7312.137312.112]=()0418.09582.01733.11=-=Φ-
可见保险公司亏本的概率很小。

相关文档
最新文档