高三数学第一轮复习教案第15课时—指数函数与对数函数

合集下载

指数函数和复合函数

指数函数和复合函数

2007年高考数学第一轮复习---指数与对数函数一、指数与对数运算: (一)知识归纳: 1.根式的概念:①定义:若一个数的n 次方等于),1(*∈>N n n a 且,则这个数称a 的n 次方根.即,若a x n =,则x 称a 的n 次方根)1*∈>N n n 且,1)当n 为奇数时,n a 的次方根记作n a ;2)当n 为偶数时,负数a 没有n 次方根,而正数a 有两个n 次方根且互为相反数,记作)0(>±a a n .②性质:1)a a n n =)(; 2)当n 为奇数时,a a n n =; 3)当n 为偶数时,⎩⎨⎧<-≥==)0()0(||a a a a a a n2.幂的有关概念:①规定:1)∈⋅⋅⋅=n a a a a n( N *, 2))0(10≠=a a , n 个 3)∈=-p aap p(1Q ,4)m a a a n m n m,0(>=、∈n N * 且)1>n ②性质:1)r a aa a sr sr,0(>=⋅+、∈s Q ), 2)r a a a sr sr ,0()(>=⋅、∈s Q ), 3)∈>>⋅=⋅r b a b a b a rr r ,0,0()( Q ) (注)上述性质对r 、∈s R 均适用.3.对数的概念:①定义:如果)1,0(≠>a a a 且的b 次幂等于N ,就是N a b=,那么数b 称以a 为底N 的对数,记作,log b N a =其中a 称对数的底,N 称真数. 1)以10为底的对数称常用对数,N 10log 记作N lg ,2)以无理数)71828.2( =e e 为底的对数称自然对数,N e log 记作N ln②基本性质:1)真数N 为正数(负数和零无对数), 2)01log =a , 3)1log =a a , 4)对数恒等式:N aNa =log③运算性质:如果,0,0,0,0>>≠>N M a a 则 1)N M MN a a a log log )(log +=; 2)N M NMa a alog log log -=; 3)∈=n M n M a n a (log log R ). ④换底公式:),0,1,0,0,0(log log log >≠>≠>=N m m a a aNN m m a1)1log log =⋅a b b a , 2).log log b mnb a na m = (二)学习要点:1.b N N a a N a b n ===log ,,(其中1,0,0≠>>a a N )是同一数量关系的三种不同表示形式,因此在许多问题中需要熟练进行它们之间的相互转化,选择最好的形式进行运算.在运算中,根式常常化为指数式比较方便,而对数式一般应化为同应化为同底.2.要熟练运用初中学习的多项式各种乘法公式;进行数式运算的难点是运用各种变换技巧,如配方、因式分解、有理化(分子或分母)、拆项、添项、换元等等,这些都是经常使用的变换技巧,必须通过各种题型的训练逐渐积累经验.【例1】解答下述问题: (1)计算:25.02121325.0320625.0])32.0()02.0()008.0()945()833[(÷⨯÷+--- [解析]原式=41322132)10000625(]102450)81000()949()278[(÷⨯÷+-922)2917(21]1024251253794[=⨯+-=÷⨯⨯+-=(2)计算1.0lg 21036.0lg 21600lg )2(lg 8000lg 5lg 23--+⋅.[解析]分子=3)2lg 5(lg 2lg 35lg 3)2(lg 3)2lg 33(5lg 2=++=++;分母=41006lg 26lg 101100036lg)26(lg =-+=⨯-+; ∴原式=43.(3)化简:.)2(2485332332323323134aa a a ab aaab b b a a ⋅⋅⨯-÷++--[解析]原式=51312121323131231313123133133131)()(2)2()2()(])2()[(a a a a ab a b b a a b a a ⋅⋅⨯-÷+⋅+- 23231616531313131312)2(a a a a aa ba ab a a =⨯⨯=⨯-⨯-=.(4)已知:36log ,518,9log 3018求==b a 值. [解析],5log ,51818b b =∴=ab a b -+-=-+-+=++=∴22)2(2)3log 18(log )9log 18(log 16log 5log 2log 18log 36log 181818181818181830. [评析]这是一组很基本的指数、对数运算的练习题,虽然在考试中这些运算要求并不高,但是数式运算是学习数学的基本功,通过这样的运算练习熟练掌握运算公式、法则,以及学习数式变换的各种技巧.【例2】解答下述问题:(1)已知1log 2log log ≠=+x x x x b c a 且, 求证:ba ac c log 2)(=[解析]0log ,1,log log 2log log log ≠∴≠=+x x bxc x x a a a a a a ,2log log )1(log log 2log 2log 11c b c c bc a a a a a a ⇒+=⇒=+∴=b ba a a a a ac c acb ac log 2log )()(log log )(log =⇒=⋅(2)若0lg lg )][lg(lg lg lg lg lg lg 2=-++++yx y x y y x x y x ,求)(log 2xy 的值.[解析]去分母得0)][lg()lg (lg 22=-++y x y x⎩⎨⎧=-=⇒⎩⎨⎧=-=+∴110)lg(0lg lg y x xy y x y x , x ∴、y -是二次方程012=--t t 的两实根,且y x y x y x >≠≠>>,1,1,0,0,解得251±=t , 0)(log ,215,215,02=+∴-=+=∴>y x y x x [评析]例2是更综合一些的指数、对数运算问题,这种问题更接近考试题的形式,应多从这种练习中积累经验. 二、指数函数与对数函数(一)学习要点: 1.指数函数:①定义:函数)1,0(≠>=a a a y x且称指数函数, 1)函数的定义域为R , 2)函数的值域为),0(+∞,3)当10<<a 时函数为减函数,当1>a 时函数为增函数.②函数图像: 1)指数函数的图象都经过点(0,1),且图象都在第一、二象限,2)指数函数都以x 轴为渐近线(当10<<a 时,图象向左无限接近x 轴,当1>a 时,图象向右无限接近x 轴),3)对于相同的)1,0(≠>a a a 且,函数xxa y a y -==与的图象关于y 轴对称.③函数值的变化特征:2.对数函数:①定义:函数)1,0(log ≠>=a a x y a 且称对数函数, 10<<a1>a①100<<>y x 时, ②10==y x 时,③10><y x 时 ①10>>y x 时, ②10==y x 时,③100<<<y x 时,1)函数的定义域为),0(+∞, 2)函数的值域为R , 3)当10<<a 时函数为减函数,当1>a 时函数为增函数,4)对数函数x y a log =与指数函数)1,0(≠>=a a a y x 且互为反函数. ②1)对数函数的图象都经过点(0,1),且图象都在第一、四象限,2)对数函数都以y 轴为渐近线(当10<<a 时,图象向上无限接近y 轴;当1>a 时,图象向下无限接近y 轴).4)对于相同的)1,0(≠>a a a 且,函数x y x y aa1log log ==与的图象关于x 轴对称.③函数值的变化特征:(二)学习要点:1.解决含指数式或对数式的各种问题,要熟练运用指数、对数运算法则及运算性质,更关键是熟练运用指数与对数函数的性质,其中单调性是使用率比较高的知识.2.指数、对数函数值的变化特点(上面知识结构表中的12个小点)是解决含指数、对数式的问题时使用频繁的关键知识,要达到滚瓜烂熟,运用自如的水平,在使用时常常还要结合指数、对数的特殊值共同分析.3.含有参数的指数、对数函数的讨论问题是重点题型,解决这类问题的最基本的分类方案是以“底”大于1或小于1分类.4.在学习中含有指数、对数的复合函数问题大多数都是以综合形式出现,如与其它函数(特别是二次函数)形成的复合函数问题,与方程、不等式、数列等内容形成的各类综合问题等等,因此要努力提高综合能力.【例1】已知11log )(--=x mxx f a 是奇函数 (其中)1,0≠>a a , (1)求m 的值;(2)讨论)(x f 的单调性; (3)求)(x f 的反函数)(1x f-;10<<a 1>a ①01<>y x 时, ②01==y x 时, ③010><<y x 时. ①01>>y x 时, ②01==y x 时, ③100<<<y x 时.(4)当)(x f 定义域区间为)2,1(-a 时,)(x f 的值域为),1(+∞,求a 的值.[解析](1)011log 11log 11log )()(222=--=--+--+=+-xx m x mx x mx x f x f a a a对定义域内的任意x 恒成立,10)1(11122222±=⇒=-⇒=--∴m x m xx m , 当)1(0)(1≠==x x f m 时不是奇函数,1-=∴m , (2)∴-+=,11log )(x x x f a 定义域为),1()1,(+∞--∞ , 求导得e x x f a log 12)(2--=', ①当1>a 时,)(,0)(x f x f ∴<'在),1()1,(+∞--∞与上都是减函数; ②当10<<a 时,),1()1,()(,0)(+∞--∞∴>'与在x f x f 上都是增函数; (另解)设11)(-+=x x x g ,任取111221>>-<<x x x x 或, 0)1)(1()(21111)()(2112112212<----=-+--+=-∴x x x x x x x x x g x g , )()(12x g x g <∴,结论同上;(3)111)1(1111log -+=⇒+=-⇒-+=⇒-+=y y yy y a a a x a x a x x a x x y , )10,0(11)(,0,011≠>≠-+=∴≠∴≠--a a x a a x f y a x x y且(4))2,1()(,3,21->∴-<<a x f a a x 在 上为减函数,∴命题等价于1)2(=-a f ,即014131log 2=+-⇒=--a a a a a, 解得32+=a .[评析]例1的各个小题概括了指数、对数函数的各种常见的基本问题,熟练掌握这些基本问题的解答程序及方法是很重要的能力训练,要认真总结经验.【例2】对于函数)32(log )(221+-=ax x x f ,解答下述问题:(1)若函数的定义域为R ,求实数a 的取值范围; (2)若函数的值域为R ,求实数a 的取值范围;(3)若函数在),1[+∞-内有意义,求实数a 的取值范围; (4)若函数的定义域为),3()1,(+∞-∞ ,求实数a 的值; (5)若函数的值域为]1,(--∞,求实数a 的值; (6)若函数在]1,(-∞内为增函数,求实数a 的取值范围. [解答]记2223)(32)(a a x ax x x g u -+-=+-==,(1)R x u ∈>对0 恒成立,33032min <<-⇒>-=∴a a u ,a ∴ 的取值范围是)3,3(-;(2)这是一个较难理解的问题。

2023年高考数学(文科)一轮复习——对数与对数函数

2023年高考数学(文科)一轮复习——对数与对数函数

第6节对数与对数函数考试要求 1.理解对数的概念及其运算性质,知道用换底公式将一般对数转化成自然对数或常用对数;了解对数在简化运算中的作用;2.理解对数函数的概念及其单调性,掌握对数函数图象通过的特殊点,会画底数为2,10,12的对数函数的图象;3.体会对数函数是一类重要的函数模型;4.了解指数函数y=a x(a>0,且a≠1)与对数函数y=log a x(a>0,且a≠1)互为反函数.1.对数的概念如果a x=N(a>0,且a≠1),那么x叫做以a为底N的对数,记作x=log a N,其中a叫做对数的底数,N叫做真数.2.对数的性质、运算性质与换底公式(1)对数的性质:①a log a N=N;②log a a b=b(a>0,且a≠1).(2)对数的运算性质如果a>0且a≠1,M>0,N>0,那么①log a(MN)=log a M+log a N;②log a MN=log a M-log a N;③log a M n=n log a M(n∈R).(3)换底公式:log b N=log a Nlog a b(a,b均大于零且不等于1,N>0).3.对数函数及其性质(1)概念:函数y=log a x(a>0,且a≠1)叫做对数函数,其中x是自变量,函数的定义域是(0,+∞).(2)对数函数的图象与性质a>10<a<1图象性质定义域:(0,+∞)值域:R当x =1时,y =0,即过定点(1,0)当x >1时,y >0;当0<x <1时,y <0当x >1时,y <0;当0<x <1时,y >0在(0,+∞)上是增函数在(0,+∞)上是减函数4.反函数指数函数y =a x (a >0,且a ≠1)与对数函数y =log a x (a >0,且a ≠1)互为反函数,它们的图象关于直线y =x 对称.1.换底公式的两个重要结论(1)log a b =1log b a (a >0,且a ≠1;b >0,且b ≠1).(2)log am b n =nm log a b (a >0,且a ≠1;b >0;m ,n ∈R ,且m ≠0). 2.在第一象限内,不同底的对数函数的图象从左到右底数逐渐增大.3.对数函数y =log a x (a >0,且a ≠1)的图象过定点(1,0),且过点(a ,1),⎝ ⎛⎭⎪⎫1a ,-1,函数图象只在第一、四象限.1.思考辨析(在括号内打“√”或“×”) (1)log 2x 2=2log 2x .( )(2)函数y =log 2(x +1)是对数函数.( ) (3)函数y =ln1+x1-x与y =ln(1+x )-ln(1-x )的定义域相同.( ) (4)当x >1时,若log a x >log b x ,则a <b .( ) 答案 (1)× (2)× (3)√ (4)×解析 (1)log 2x 2=2log 2|x |,故(1)错误.(2)形如y =log a x (a >0,且a ≠1)为对数函数,故(2)错误. (4)若0<b <1<a ,则当x >1时,log a x >log b x ,故(4)错误.2.(2021·全国甲卷)青少年视力是社会普遍关注的问题,视力情况可借助视力表测量,通常用五分记录法和小数记录法记录视力数据,五分记录法的数据L 和小数记录法的数据V 满足L =5+lg V .已知某同学视力的五分记录法的数据为4.9,则其视力的小数记录法的数据约为(1010≈1.259)( ) A.1.5 B.1.2 C.0.8D.0.6答案 C解析 由题意知,4.9=5+lg V ,得lg V =-0.1,得V =10-110=11010≈11.259≈0.8,所以该同学视力的小数记录法的数据约为0.8.3.(2021·天津卷)设a =log 2 0.3,b =log 120.4,c =0.40.3,则a ,b ,c 的大小关系为( )A.a <b <cB.c <a <bC.b <c <aD.a <c <b答案 D解析 ∵log 20.3<log 21=0,∴a <0. ∵log 120.4=-log 20.4=log 252>log 22=1,∴b >1.∵0<0.40.3<0.40=1,∴0<c <1, ∴a <c <b .4.(易错题)函数y =log a (x -1)+2(a >0,且a ≠1)的图象恒过的定点是________. 答案 (2,2)解析 当x =2时,函数y =log a (x -1)+2(a >0,且a ≠1)的值为2,所以图象恒过定点(2,2).5.(易错题)已知lg x +lg y =2lg(x -2y ),则xy =________. 答案 4解析 ∵lg x +lg y =2lg(x -2y ), ∴lg(xy )=lg(x -2y )2,∴⎩⎪⎨⎪⎧x >0,y >0,x -2y >0,xy =(x -2y )2,即⎩⎪⎨⎪⎧x >2y ,y >0,(x -y )(x -4y )=0,则x =4y >0,∴xy =4.6.若函数y =log a x (a >0,a ≠1)在[2,4]上的最大值与最小值的差是1,则a =________. 答案 2或12解析 当0<a <1时,f (x )=log a x 在[2,4]上单调递减,故f (x )max =f (2),f (x )min =f (4),则f (2)-f (4)=log a 12=1,解得a =12.当a >1时,f (x )在[2,4]上单调递增,此时f (x )max =f (4),f (x )min =f (2),则f (4)-f (2)=log a 2=1,解得a =2.考点一 对数的运算1.(2020·全国Ⅰ卷)设a log 34=2,则4-a =( ) A.116 B.19C.18D.16答案 B解析 法一 因为a log 34=2,所以log 34a =2,则4a =32=9,所以4-a =14a =19. 法二 因为a log 34=2,所以a =2log 34=2log 43=log 432=log 49,所以4-a =4-log 49=4log 49-1=9-1=19.2.在天文学中,天体的明暗程度可以用星等或亮度来描述.两颗星的星等与亮度满足m 2-m 1=52lg E 1E 2,其中星等为m k 的星的亮度为E k (k =1,2).已知太阳的星等是-26.7,天狼星的星等是-1.45,则太阳与天狼星的亮度的比值为( ) A.1010.1 B.10.1 C.lg 10.1D.10-10.1答案 A解析 依题意,m 1=-26.7,m 2=-1.45,代入所给公式得52lg E 1E 2=-1.45-(-26.7)=25.25.所以lg E 1E 2=25.25×25=10.1,即E 1E 2=1010.1.3.(2021·天津卷)若2a =5b =10,则1a +1b =( ) A.-1 B.lg 7 C.1 D.log 710答案 C解析 ∵2a =5b =10, ∴a =log 210,b =log 510,∴1a +1b =1log 210+1log 510=lg 2+lg 5=lg 10=1.4.计算:(1-log 63)2+log 62·log 618log 64=________.答案 1解析 原式=1-2log 63+(log 63)2+log 663·log 6(6×3)log 64=1-2log 63+(log 63)2+1-(log 63)2log 64=2(1-log 63)2log 62=log 66-log 63log 62=log 62log 62=1.感悟提升 1.在对数运算中,先利用幂的运算把底数或真数进行变形,化成分数指数幂的形式,使幂的底数最简,然后用对数运算法则化简合并.2.先将对数式化为同底数对数的和、差、倍数运算,然后逆用对数的运算法则,转化为同底对数真数的积、商、幂再运算.3.a b =N ⇔b =log a N (a >0,且a ≠1)是解决有关指数、对数问题的有效方法,在运算中应注意互化.考点二 对数函数的图象及应用例1 (1)函数f (x )=log a |x |+1(0<a <1)的图象大致为( )(2)若方程4x =log a x 在⎝ ⎛⎦⎥⎤0,12上有解,则实数a 的取值范围为________.答案 (1)A (2)⎝⎛⎦⎥⎤0,22解析 (1)由函数f (x )的解析式可确定该函数为偶函数,图象关于y 轴对称.设g (x )=log a |x |,先画出x >0时,g (x )的图象,然后根据g (x )的图象关于y 轴对称画出x <0时g (x )的图象,最后由函数g (x )的图象向上整体平移一个单位长度即得f (x )的图象,结合图象知选A.(2)若方程4x =log a x 在⎝ ⎛⎦⎥⎤0,12上有解,则函数y =4x 和函数y =log a x 的图象在⎝ ⎛⎦⎥⎤0,12上有交点,由图象知⎩⎨⎧0<a <1,log a 12≤2,解得0<a ≤22. 感悟提升 对数函数图象的识别及应用方法(1)在识别函数图象时,要善于利用已知函数的性质,函数图象上的特殊点(与坐标轴的交点、最高点、最低点等)排除不符合要求的选项.(2)一些对数型方程、不等式问题常转化为相应的函数图象问题,利用数形结合法求解.训练1 (1)已知函数y =log a (x +c )(a ,c 为常数,其中a >0,a ≠1)的图象如图,则下列结论成立的是( )A.a >1,c >1B.a >1,0<c <1C.0<a <1,c >1D.0<a <1,0<c <1(2)已知函数f (x )=⎩⎨⎧log 2x ,x >0,3x ,x ≤0,关于x 的方程f (x )+x -a =0有且只有一个实根,则实数a 的取值范围是________. 答案 (1)D (2)(1,+∞)解析 (1)由该函数的图象通过第一、二、四象限知该函数为减函数,∴0<a <1,∵图象与x 轴的交点在区间(0,1)之间,∴该函数的图象是由函数y =log a x 的图象向左平移不到1个单位长度后得到的,∴0<c <1.(2)问题等价于函数y =f (x )与y =-x +a 的图象有且只有一个交点,结合函数图象可知a >1.考点三 解决与对数函数的性质有关的问题 角度1 比较大小例2 (1)已知a =2-13,b =log 213,c =log 1213,则( )A.a >b >cB.a >c >bC.c >b >aD.c >a >b(2)若实数a ,b ,c 满足log a 2<log b 2<log c 2<0,则下列关系中正确的是( ) A.a <b <c B.b <a <c C.c <b <aD.a <c <b(3)(2021·衡水中学检测)已知a =⎝ ⎛⎭⎪⎫120.2,b =log 120.2,c =a b ,则a ,b ,c 的大小关系是( ) A.a <b <c B.c <a <b C.a <c <bD.b <c <a答案 (1)D (2)C (3)B解析 (1)∵0<a <1,b =log 213=-log 23<0,c =log 1213=log 23>1.∴c >a >b .(2)根据不等式的性质和对数的换底公式可得1log 2a <1log 2b <1log 2c <0,即log 2c <log 2b <log 2a <0, 可得c <b <a <1.故选C.(3)函数y =⎝ ⎛⎭⎪⎫12x与y =log 12x 的图象关于直线y =x 对称,则0<⎝ ⎛⎭⎪⎫120.2<1<log 120.2,∴a <b .又c =a b =⎝ ⎛⎭⎪⎫120.2log 120.2=⎝ ⎛⎭⎪⎫12log 120.20.2=0.20.2<⎝ ⎛⎭⎪⎫120.2=a ,所以b >a >c . 角度2 解对数不等式例3 (1)(2022·太原质检)定义在R 上的奇函数f (x ),当x ∈(0,+∞)时,f (x )=log 2x ,则不等式f (x )<-1的解集是________.(2)不等式log a (a 2+1)<log a (2a )<0,则a 的取值范围是________. 答案 (1)(-∞,-2)∪⎝ ⎛⎭⎪⎫0,12 (2)⎝ ⎛⎭⎪⎫12,1解析 (1)设x <0,则-x >0, ∴f (x )=-f (-x )=-log 2(-x ), ∴f (x )=⎩⎪⎨⎪⎧log 2x ,x >0,0,x =0,-log 2(-x ),x <0.当x >0时,f (x )<-1,即log 2x <-1=log 212,解得0<x <12. 当x <0时,f (x )<-1,即-log 2(-x )<-1, 则log 2(-x )>1=log 22,解得x <-2. 当x =0时,f (x )=0<-1显然不成立.综上,原不等式的解集为(-∞,-2)∪⎝ ⎛⎭⎪⎫0,12.(2)由题意得a >0且a ≠1, 故必有a 2+1>2a .又log a (a 2+1)<log a (2a )<0,所以0<a <1, 所以2a >1,即a >12. 综上,12<a <1.角度3 对数型函数性质的综合应用 例4 已知函数f (x )=log 2⎝ ⎛⎭⎪⎫12x +a .(1)若函数f (x )是R 上的奇函数,求a 的值;(2)若函数f (x )的定义域是一切实数,求a 的取值范围;(3)若函数f (x )在区间[0,1]上的最大值与最小值的差不小于2,求实数a 的取值范围.解 (1)若函数f (x )是R 上的奇函数,则f (0)=0,∴log 2(1+a )=0,∴a =0.当a =0时,f (x )=-x 是R 上的奇函数. 所以a =0.(2)若函数f (x )的定义域是一切实数, 则12x +a >0恒成立.即a >-12x 恒成立,由于-12x ∈(-∞,0), 故只要a ≥0,则a 的取值范围是[0,+∞).(3)由已知得函数f (x )是减函数,故f (x )在区间[0,1]上的最大值是f (0)=log 2(1+a ),最小值是f (1)=log 2⎝ ⎛⎭⎪⎫12+a .由题设得log 2(1+a )-log 2⎝ ⎛⎭⎪⎫12+a ≥2,则log 2(1+a )≥log 2(4a +2). ∴⎩⎪⎨⎪⎧1+a ≥4a +2,4a +2>0,解得-12<a ≤-13. 故实数a 的取值范围是⎝ ⎛⎦⎥⎤-12,-13.感悟提升 1.比较对数值的大小与解形如log a f (x )>log a g (x )的不等式,主要是应用函数的单调性求解,如果a 的取值不确定,需要分a >1与0<a <1两种情况讨论. 2.与对数函数有关的复合函数的单调性问题,必须弄清三方面的问题:一是定义域,所有问题都必须在定义域内讨论;二是底数与1的大小关系;三是复合函数的构成,即它是由哪些基本初等函数复合而成的.训练2 (1)(2019·天津卷)已知a =log 27,b =log 38,c =0.30.2,则a ,b ,c 的大小关系为( ) A.c <b <aB.a <b <cC.b <c <aD.c <a <b(2)若f (x )=lg(x 2-2ax +1+a )在区间(-∞,1]上单调递减,则a 的取值范围为________.(3)已知函数f (x )=log a (8-ax )(a >0,且a ≠1),若f (x )>1在区间[1,2]上恒成立,则实数a 的取值范围是________.答案 (1)A (2)[1,2) (3)⎝ ⎛⎭⎪⎫1,83 解析 (1)显然c =0.30.2∈(0,1).因为log 33<log 38<log 39,所以1<b <2.因为log 27>log 24=2,所以a >2.故c <b <a .(2)令函数g (x )=x 2-2ax +1+a =(x -a )2+1+a -a 2,对称轴为x =a , 要使函数在(-∞,1]上递减,则有⎩⎪⎨⎪⎧g (1)>0,a ≥1,即⎩⎪⎨⎪⎧2-a >0,a ≥1,解得1≤a <2,即a ∈[1,2).(3)当a >1时,f (x )=log a (8-ax )在[1,2]上是减函数,由f (x )>1在区间[1,2]上恒成立,则f (x )min =f (2)=log a (8-2a )>1,即8-2a >a ,且8-2a >0,解得1<a <83.当0<a <1时,f (x )在[1,2]上是增函数,由f (x )>1在区间[1,2]上恒成立,知f (x )min =f (1)=log a (8-a )>1,且8-2a >0.∴8-a <a 且8-2a >0,此时解集为∅.综上可知,实数a 的取值范围是⎝ ⎛⎭⎪⎫1,83.1.已知b >0,log 5b =a ,lg b =c ,5d =10,则下列等式一定成立的是( )A.d =acB.a =cdC.c =adD.d =a +c 答案 B解析 ∵log 5b =a ,lg b =c ,∴5a =b ,10c =b .又∵5d =10,∴5a =b =10c =(5d )c =5cd ,∴a =cd .2.(2021·濮阳模拟)已知函数f (x )=lg ⎝ ⎛⎭⎪⎫3x +43x +m 的值域是全体实数,则实数m 的取值范围是( )A.(-4,+∞)B.[-4,+∞)C.(-∞,-4)D.(-∞,-4]答案 D解析 由题意可知3x +43x +m 能取遍所有正实数.又3x +43x +m ≥m +4,所以m +4≤0,即m ≤-4.∴实数m 的取值范围为(-∞,-4].3.若函数f (x )=|x |+x 3,则f (lg 2)+f ⎝ ⎛⎭⎪⎫lg 12+f (lg 5)+f ⎝ ⎛⎭⎪⎫lg 15=( ) A.2B.4C.6D.8答案 A 解析 由于f (x )=|x |+x 3,得f (-x )+f (x )=2|x |.又lg 12=-lg 2,lg 15=-lg 5.所以原式=2|lg 2|+2|lg 5|=2(lg 2+lg 5)=2.4.(2021·新高考Ⅱ卷)已知a =log 52,b =log 83,c =12,则下列判断正确的是( )A.c <b <aB.b <a <cC.a <c <bD.a <b <c答案 C解析 a =log 52<log 55=12=log 822<log 83=b ,即a <c <b .5.在同一直角坐标系中,函数y =1a x ,y =log a ⎝ ⎛⎭⎪⎫x +12(a >0,且a ≠1)的图象可能是( )答案 D解析 若a >1,则y =1a x 单调递减,A ,B ,D 不符合,且y =log a ⎝ ⎛⎭⎪⎫x +12过定点⎝ ⎛⎭⎪⎫12,0,C 项不符合,因此0<a <1.当0<a <1时,函数y =a x 的图象过定点(0,1),在R 上单调递减,于是函数y =1a x的图象过定点(0,1),在R 上单调递增,函数y =log a ⎝ ⎛⎭⎪⎫x +12的图象过定点⎝ ⎛⎭⎪⎫12,0,在(-12,+∞)上单调递减.因此, 选项D 中的两个图象符合.6.已知函数f (x )=log 2(1-|x |),则关于函数f (x )有下列说法:①f (x )的图象关于原点对称;②f (x )的图象关于y 轴对称;③f (x )的最大值为0;④f (x )在区间(-1,1)上单调递增.其中正确的是( )A.①③B.①④C.②③D.②④答案 C解析f(x)=log2(1-|x|)为偶函数,不是奇函数,∴①错误,②正确;根据f(x)的图象(图略)可知④错误;∵1-|x|≤1,∴f(x)≤log21=0,故③正确.7.(2021·济南一中检测)已知函数y=log a(2x-3)+2(a>0且a≠1)的图象恒过定点A,若点A也在函数f(x)=3x+b的图象上,则b=________.答案-7解析令2x-3=1,得x=2,∴定点为A(2,2),将定点A的坐标代入函数f(x)中,得2=32+b,解得b=-7.8.计算:lg 25+lg 50+lg 2·lg 500+(lg 2)2=________.答案 4解析原式=2lg 5+lg(5×10)+lg 2·lg(5×102)+(lg 2)2=2lg 5+lg 5+1+lg 2·(lg 5+2)+(lg 2)2=3lg 5+1+lg 2·lg 5+2lg 2+(lg 2)2=3lg 5+2lg 2+1+lg 2(lg 5+lg 2)=3lg 5+2lg 2+1+lg 2=3(lg 5+lg 2)+1 =4.9.函数f(x)=log2x·log2(2x)的最小值为________.答案-1 4解析依题意得f(x)=12log2x·(2+2log2x)=(log2x)2+log2x=⎝ ⎛⎭⎪⎫log2x+122-14≥-14,当log2x=-12,即x=22时等号成立,所以函数f(x)的最小值为-14.10.已知f(x)是定义在R上的偶函数,且当x≥0时,f(x)=log a(x+1)(a>0,且a≠1).(1)求函数f (x )的解析式;(2)若-1<f (1)<1,求实数a 的取值范围.解 (1)当x <0时,-x >0,由题意知f (-x )=log a (-x +1),又f (x )是定义在R 上的偶函数,所以f (-x )=f (x ).所以当x <0时,f (x )=log a (-x +1),所以函数f (x )的解析式为f (x )=⎩⎪⎨⎪⎧log a (x +1),x ≥0,log a (-x +1),x <0.(2)因为-1<f (1)<1,所以-1<log a 2<1,所以log a 1a <log a 2<log a a .①当a >1时,原不等式等价于⎩⎨⎧1a <2,a >2,解得a >2; ②当0<a <1时,原不等式等价于⎩⎨⎧1a >2,a <2,解得0<a <12.综上,实数a 的取值范围为⎝ ⎛⎭⎪⎫0,12∪(2,+∞). 11.已知函数f (x )=log 21+ax x -1(a 为常数)是奇函数. (1)求a 的值与函数f (x )的定义域;(2)若当x ∈(1,+∞)时,f (x )+log 2(x -1)>m 恒成立,求实数m 的取值范围.解 (1)因为函数f (x )=log 21+ax x -1是奇函数,所以f (-x )=-f (x ),所以log21-ax-x-1=-log21+axx-1,即log2ax-1x+1=log2x-11+ax,所以a=1,f(x)=log21+x x-1,令1+xx-1>0,解得x<-1或x>1,所以函数的定义域为{x|x<-1或x>1}.(2)f(x)+log2(x-1)=log2(1+x),当x>1时,x+1>2,所以log2(1+x)>log22=1.因为x∈(1,+∞)时,f(x)+log2(x-1)>m恒成立,所以m≤1,所以m的取值范围是(-∞,1].12.(2022·烟台模拟)某工厂产生的废气经过滤后排放,过滤过程中废气的污染物含量P(单位:mg/L)与时间t(单位:h)间的关系式为P=P0e-kt,其中P0,k为正常数.如果一定量的废气在前10 h的过滤过程中污染物被消除了20%,那么污染物减少到最初含量的50%还需要经过多长时间?(结果四舍五入取整数,参考数据:ln 2≈0.693,ln 5≈1.609)()A.11 hB.21 hC.31 hD.41 h答案 B解析由已知得1-15=e-10k,方程两边同取自然对数得ln 45=-10k,所以k=2ln 2-ln 5-10≈0.022 3.设污染物减少到最初含量的50%需要经过t h,则12=e-0.022 3t,方程两边同取自然对数得ln 12=-0.022 3t,解得t≈31.所以还需要经过31-10=21(h)使污染物减少到最初含量的50%,故选B.13.已知函数f (x )=⎩⎨⎧log 2(x -1),x >1,2x ,x ≤1,且关于x 的方程f (x )-a =0有两个实数根,则实数a 的取值范围为( )A.(0,1)B.(0,1]C.(1,2)D.(0,2]答案 D解析 作出函数y =f (x )的图象(如图),方程f (x )-a =0有两个实数根,即y =f (x )与y =a 有两个交点,由图知,0<a ≤2.14.(2022·郑州调研)在①f (x )+f (-x )=0,②f (x )-f (-x )=0,③f (-2)=-f (2)这三个条件中选择一个合适的补充在下面问题中,并给出解答.已知函数f (x )=log 2(x 2+a +x )(a ∈R )满足________.(1)求a 的值;(2)若函数g (x )=2f (-x )+1-x 2+1,证明:g (x 2-x )≤54. 注:如果选择多个条件分别解答,按第一个解答计分.解 若选择②f (x )-f (-x )=0,因为f (x )-f (-x )=0,所以log 2(x 2+a +x )-log 2(x 2+a -x )=0, 所以x 2+a +x =x 2+a -x ,所以x =0,a ≥0,此时求不出a 的具体值,所以不能选②. 若选择①f (x )+f (-x )=0,(1)因为f (x )+f (-x )=0,所以log 2(x 2+a +x )+log 2(x 2+a -x )=0, 所以log 2[(x 2+a +x )(x 2+a -x )]=0, 所以x 2+a -x 2=1,解得a =1. 若选择③f (-2)=-f (2),(1)因为f (-2)=-f (2),所以log 2(4+a -2)=-log 2(4+a +2), 所以(4+a -2)(4+a +2)=1, 所以4+a -4=1,所以a =1.(2)由(1)知f (x )=log 2(x 2+1+x ), f (-x )=log 2(x 2+1-x ),所以g (x )=2log2(x 2+1-x )+1-x 2+1 =x 2+1-x +1-x 2+1=-x +1, 所以g (x 2-x )=-(x 2-x )+1=-x 2+x +1=-⎝ ⎛⎭⎪⎫x -122+54≤54.。

指数+课件-2025届高三数学一轮复习

指数+课件-2025届高三数学一轮复习
16的4次方根有两个,为±2,故B正确;
负数没有偶次方根,故C错误;
x + y 2 是非负数,所以
x+y
2
= |x + y|,故D正确.
)
例1-2 [教材链接题]已知a,b ∈ ,下列各式总能成立的有( B )
A.
3
a−b
4
3
=b−a
B.
4
C. a4 − b 4 = a − b
【解析】
3
a−b
3
【答案】 − = − =

− ,∴
− =

+


− = − ,


− =



=


+−

=



=



,

,

故 − + �� − = − +




.

− × = ( − ) =
再将x + x −1 = 7平方并化简得x 2 + x −2 = 47,
3
2
x +x
3
−2
1
2
= x +x
1
−2
1
2
x−x ⋅x
3
2
1
−2
方和公式展开求解,也可由x + x
解)
从而
3
3

x2 +x 2 +2
x2 +x−2 +3
=
18+2

指数函数与对数函数高三数学第一轮复习教案 人教版

指数函数与对数函数高三数学第一轮复习教案 人教版

指数函数与对数函数高三数学第一轮复习教案【教学目标】1.掌握指(对)数运算法则;2.理解指数函数与对数函数的图象性质,并能利用图象辅助解题.【教学重点】指数函数与对数函数的性质【教学难点】指数函数与对数函数的性质的灵活应用【例题设置】例1(指数函数图象),例2(几个数大小的比较),例3(指(对)数的运算)【教学过程】一、复习指(对)数式运算法则 1.幂的有关概念)(*∈⋅⋅⋅⋅=N n a a a a a n n48476Λ个;)0(10≠=a a ;()10,n n a a n N a-*=≠∈)0,,,1m na a m n N n *=>∈>;)10,,,1m nm naa m n N n a-*==>∈>当n 是奇数,则a a n n =;当n 是偶数,则⎩⎨⎧<-≥==00a aa a a a n n★注:0的正分数指数幂等于0,0的负分数指数幂没有意义,零的任何次方根都是零.2.指数运算性质(0,0,,a b m n R >>∈)m n m n a a a +⋅=,m n m n a a a -÷=,()m n mn a a =,()n n n ab a b =(推广:()n n n a a b b÷=)★ 注意区别()n m n m a a 、,如232239(2)864,22512====3.指、对数的联系:log ba a Nb N =⇔=(0,1,0a a N >≠>)4.对数运算性质(,0,,1,,0a b a b M N >≠>且)log ()log log a a a MN M N =+,log log log aa a MM N N=-, log log ()n a a M n M n R =∈(推广log log (,,0)m n a a nM M m n R m m=∈≠且换底公式:log log log b a b M M a =(特别地,有1log log a b b a =)该部分让学生自主复习掌握.二、复习指(对)数函数性质三、例题精讲〖例1〗 已知实数,a b 满足等式11()()23a b =,下列五个关系式:①0b a <<;②0a b <<;③0a b <<;④0b a <<;⑤a b =其中不可能成立的关系式有 A .1个B .2个C .3个D .4个解:在同一坐标系中作出11()2x y =与21()3x y =的图象(如右图所示),由图象可知:当0a b <<,或0b a <<,或a b ==时,等式11()()23a b =才有可能成立,故选B .★点评:1.作xy a =的图象时,应至少描两点:(0,1)和(1,)a 同理,作log a y x =的图象时,应至少描两点:(1,0)和(,1)a .2.若图象给出两个指数函数(或对数函数图象)要求判断底数大小时,只需作出特征线,即可从图象中看出底数大小.〖例2〗 比较0.90.7 1.1log 0.8,log 0.9, 1.1a b c ===的大小.法一:由于0.70.70.70log 1log 0.8log 0.71a =<=<=, 1.1 1.1log 0.9log 10b =<=,0.901.1 1.11c =>=,故b a c <<法二:可在同一坐标系中同时作出10.72 1.13log ,log , 1.1x y x y x y ===的图象,通过描点即可知其三数大小.基本性质只需从图象即可了解.这里可能有很多同学会将两函数图象弄错位置,究其原因,还是因为没按规范画图(即未描点)★点评:比较几个数的大小的常用方法有:①通过中间量为桥梁(常见的有0和1);②利用函数的单调性;③作差.〖例3〗设函数()f x =D ,当x D ∈时,试讨论111()4()242x x y -=-⋅+的最值情况.解:由12log 10x +≥得()f x 的定义域D 为(0,2],令1()2x t =,当x D ∈时,1[,1)4t ∈122111()4()24424()1422x x y t t t -=-⋅+=-+=-+当12t =时,min 1y =;而114||t t y y ==>,故无最大值.★点评:1.解决与对数函数有关的问题,要特别重视定义域;2.含指(对)数的方程、不等式的解题思路都是先化成同底的,再根据其单调性进行解题,指(对)数函数的单调性决定于底数大于1还是小于1.【课堂小结】1.加强换底公式的使用; 2.比较数的大小的常用方法;3.解决含指(对)数问题是可结合图象,根据其单调性解题; 4.解决与对数函数有关的问题,要特别重视定义域.附:在指(对)数函数的教学中常有以下两个误区 1.(1)x y a a =>与直线y x =没有交点用几何画板作图可以得到,当 1.45x y =与直线y x = 恰有一个交点;当0 1.45a <<时,(1)x y a a =>与直 线y x =有两个交点.这其实用指数函数变化的趋势亦可说得通,利用特征线容易得出:在第一象限,绕着点(0,1)逆时针旋转,底数逐渐增大,当1a =时,1y =与直线y x =恰有一个交点,当1a +→时,这时(1)x y a a =>的图象刚刚跷起,故此时应有两个交点.这里可能有学生将定义域误求成(1,0]-,原因是他们平时书写不规范,造成误将1x +当成真数.2.函数x y a =与log a y x =(其中01a <<)只有在直线y x =上有一个交点.同样由几何画板作图可以知道函数x y a =与log a y x =(其中01a <<)的图象也可能有三个交点. 如:1()16xy =与116log y x =除了在y x =有一个交点外,还有其它两个交点:11(,)24和11(,)42【教后反思】。

高考数学第一轮复习教案-专题2函数概念与基本初等函数

高考数学第一轮复习教案-专题2函数概念与基本初等函数
函数三要素是定义域,对应法则和值域,而定义域和对应法则是起决定作用的要素,因 为这二者确定后,值域也就相应得到确定,因此只有定义域和对应法则二者完全相同的函数 才是同一函数. (3)反函数
反函数的定义
设函数 y f (x)(x A) 的值域是 C,根据这个函数中 x,y 的关系,用 y 把 x 表
高考数学第一轮复习教案汇总【精华】
专题二 函数概念与基本初等函数
一、考试内容: 映射、函数、函数的单调性、奇偶性. 反函数.互为反函数的函数图像间的关系. 指数概念的扩充.有理指数幂的运算性质.指数函数. 对数.对数的运算性质.对数函数. 函数的应用. 二、考试要求: (1)了解映射的概念,理解函数的概念. (2)了解函数单调性、奇偶性的概念,掌握判断一些简单函数的单调性、奇偶性的方法. (3)了解反函数的概念及互为反函数的函数图像间的关系,会求一些简单函数的反函数. (4)理解分数指数幂的概念,掌握有理指数幂的运算性质,掌握指数函数的概念、图像 和 性质. (5)理解对数的概念,掌握对数的运算性质;掌握对数函数的概念、图像和性质. (6)能够运用函数的性质、指数函数和对数函数的性质解决某些简单的实际问题. 三、命题热点
y f 1(x)
(二)函数的性质 函数的单调性
定义:对于函数 f(x)的定义域 I 内某个区间上的任意两个自变量的值 x1,x2, ⑴若当 x1<x2 时,都有 f(x1)<f(x2),则说 f(x)在这个区间上是增函数; ⑵若当 x1<x2 时,都有 f(x1)>f(x2),则说 f(x) 在这个区间上是减函数.
奇函 数的定 义:如果 对于函 数f(x)的定 义域内 任意一 个x,都有 f(-x)=-f(x),那么 函数f(x)就叫 做奇函 数.

指数函数的说课稿(通用7篇)

指数函数的说课稿(通用7篇)

指数函数的说课稿指数函数的说课稿(通用7篇)作为一名教学工作者,时常需要编写说课稿,是说课取得成功的前提。

说课稿要怎么写呢?下面是小编整理的指数函数的说课稿,希望对大家有所帮助。

指数函数的说课稿篇1一、说教材分析1、《指数函数》在教材中的地位、作用和特点2、教学目标、重点和难点(1)知识目标:①掌握指数函数的概念;②掌握指数函数的图象和性质;③能初步利用指数函数的概念解决实际问题。

(2)技能目标:①渗透分类讨论、数形结合的基本数学思想方法;②培养学生观察、联想、类比、猜测、归一、教材分析。

1、《指数函数》在教材中的地位、作用和特点《指数函数》是人教版高中数学(必修)第一册第二章“函数”的第六节内容,是在学习了《指数》一节内容之后编排的。

通过本节课的学习,既可以对指数和函数的概念等知识进一步巩固和深化,又可以为后面进一步学习对数、对数函数尤其是利用互为反函数的图象间的关系来研究对数函数的性质打下坚实的概念和图象基础,又因为《指数函数》是进入高中以后学生遇到的第一个系统研究的函数,对高中阶段研究对数函数、三角函数等完整的函数知识,初步培养函数的应用意识打下了良好的学习基础,所以《指数函数》不仅是本章《函数》的重点内容,也是高中学段的主要研究内容之一,有着不可替代的重要作用。

此外,《指数函数》的知识与我们的日常生产、生活和科学研究有着紧密的联系,尤其体现在细胞分裂、借贷利率的计算和考古中的年代测算等方面,因此学习这部分知识还有着广泛的现实意义。

本节内容的特点之一是概念性强,特点之二是凸显了数学图形在研究函数性质时的重要作用。

2、教学目标、重点和难点通过初中学段的学习和高中对集合、函数等知识的系统学习,学生对函数和图象的关系已经构建了一定的认知结构,主要体现在三个方面:知识维度:对正比例函数、反比例函数、一次函数,二次函数等最简单的函数概念和性质已有了初步认识,能够从初中运动变化的角度认识函数初步转化到从集合与对应的观点来认识函数。

高三数学一轮复习精品教案1:2.5对数与对数函数教学设计

高三数学一轮复习精品教案1:2.5对数与对数函数教学设计

2.5对数与对数函数1.对数的定义如果a x =N (a >0且a ≠1),那么数x 叫做以a 为底N 的对数,记作x =log a N ,其中a 叫做对数的底数,N 叫做真数. 2.对数的性质与运算及换底公式 (1)对数的性质(a >0且a ≠1):①log a 1=0;②log a a =1;③a log a N =N . (2)对数的换底公式基本公式:log a b =log c blog c a (a ,c 均大于0且不等于1,b >0).(3)对数的运算法则:如果a >0且a ≠1,M >0,N >0,那么 ①log a (M ·N )=log a M +log a N , ②log a MN =log a M -log a N ,③log a M n =n log a M (n ∈R ). 3.对数函数的图像与性质4.反函数指数函数y =a x (a >0且a ≠1)与对数函数y =log a x (a >0且a ≠1)互为反函数,它们的图像关于直线y =x 对称.1.在运算性质log a M n =n log a M 中,易忽视M >0. 2.解决与对数函数有关的问题时易漏两点: (1)函数的定义域; (2)对数底数的取值范围. 『试一试』1.(2013·苏中三市、连云港、淮安二调)“M >N ”是“log 2M >log 2N ”成立的____________条件(填“充分不必要”“必要不充分”“充要”或“既不充分又不必要”).『解析』当M ,N 为负数时,不能得到log 2M >log 2N ,而根据函数y =log 2x 的单调性可知,当log 2M >log 2N 时,可得M >N . 『答案』必要不充分2.(2014·常州期末)函数f (x )=log 2(4-x 2)的值域为________.『解析』因为4-x 2∈(0,4』,所以log 2(4-x 2)∈(-∞,2』,故原函数的值域为(-∞,2』. 『答案』(-∞,2』1.对数值的大小比较的基本方法(1)化同底后利用函数的单调性;(2)作差或作商法; (3)利用中间量(0或1);(4)化同真数后利用图像比较. 2.明确对数函数图像的基本点 (1)当a >1时,对数函数的图像“上升”; 当0<a <1时,对数函数的图像“下降”.(2)对数函数y =log a x (a >0,且a ≠1)的图像过定点(1,0),且过点(a,1)⎝⎛⎭⎫1a ,-1,函数图像只在第一、四象限. 『练一练』1.函数y =log a (3x -2)(a >0,a ≠1)的图像经过定点A ,则A 点坐标是________. 『答案』(1,0)2.(2013·全国卷Ⅱ改编)设a =log 32,b =log 52,c =log 23,则a ,b ,c 的大小关系为________. 『解析』易知log 23>1,log 32,log 52∈(0,1).在同一平面直角坐标系中画出函数y =log 3 x 与y =log 5 x 的图像,观察可知log 32>log 52.所以c >a >b .比较a ,b 的其他解法:log 32>log 33=12,log 52<log 55=12,得a >b ;0<log 23<log 25,所以1log 23>1log 25,结合换底公式即得log 32>log 5 2.『答案』c >a >b计算下列各题: (1)lg 37+lg 70-lg 3-lg 32-lg 9+1;(2)12lg 3249-43lg 8+lg 245 『解析』(1)原式=lg 37×703-lg 32-2lg 3+1=lg 10-lg 3-12=1-|lg 3-1|=lg3.(2)12lg 3249-43lg 8+lg 245 =12×(5lg 2-2lg 7)-43×32lg 2+12(lg 5+2lg 7) =52lg 2-lg 7-2lg 2+12lg 5+lg 7 =12lg 2+12lg 5=12lg(2×5)=12. 『备课札记』 『类题通法』对数运算的一般思路(1)首先利用幂的运算把底数或真数进行变形,化成分数指数幂的形式,使幂的底数最简,然后正用对数运算性质化简合并.(2)将对数式化为同底数对数的和、差、倍数运算,然后逆用对数的运算性质,转化为同底对数真数的积、商、幂的运算.『典例』 (1)(2014·南通期末)如图,矩形ABCD 的三个顶点A ,B ,C 分别在函数y =log22x ,y =x 12,y =⎝⎛⎭⎫22x 的图像上,且矩形的边分别平行于两坐标轴.若点A 的纵坐标为2,则点D 的坐标为________. (2)当0<x ≤12时,4x <log a x ,则a 的取值范围是________.『解析』 (1)由条件得,点A 在函数y =log22x 的图像上,从而由2=log 22x 得x A =12.而点B 在函数y =x 12上,从而2=x 12,解得x B =4.于是点C 的横坐标为4.又点C 在函数y =⎝⎛⎭⎫22x上,从而y C =14,于是点D 的坐标为⎝⎛⎭⎫12,14. (2)构造函数f (x )=4x 和g (x )=log a x ,当a >1时不满足条件,当0<a <1时,画出两个函数在⎝⎛⎦⎤0,12上的图像,可知,f ⎝⎛⎭⎫12<g ⎝⎛⎭⎫12,即2<log a 12,则a >22,所以a 的取值范围为⎝⎛⎭⎫22,1.『答案』 (1)⎝⎛⎭⎫12,14 (2)⎝⎛⎭⎫22,1 『备课札记』『解析』设f 1(x )=(x -1)2,f 2(x )=log a x ,要使当x ∈(1,2)时,不等式(x -1)2<log a x 恒成立,只需f 1(x )=(x -1)2在(1,2)上的图像在f 2(x )=log a x 图像的下方即可. 当0<a <1时,显然不成立; 当a >1时,如图,要使x ∈(1,2)时f 1(x )=(x -1)2的图像在f 2(x )=log a x 的图像下方,只需f 1(2)≤f 2(2), 即(2-1)2≤log a 2, 又即log a 2≥1.所以1<a ≤2,即实数a 的取值范围是(1,2』. 『答案』(1,2』 『类题通法』应用对数型函数的图像可求解的问题(1)对一些可通过平移、对称变换作出其图像的对数型函数,在求解其单调性(单调区间)、值域(最值)、零点时,常利用数形结合思想.(2)一些对数型方程、不等式问题常转化为相应的函数图像问题,利用数形结合法求解. 『针对训练』已知函数f (x )=⎩⎪⎨⎪⎧lg x , 0<x ≤10,⎪⎪⎪⎪-12x +6, x >10,若a ,b ,c 互不相等,且f (a )=f (b )=f (c ),则a +b +c 的取值范围是________.『解析』令-12x +6=0,得x =12.因为a ,b ,c 互不相等,令a <b <c ,作出f (x )的图像,如图所示.令f (a )=f (b )=f (c )=t ,则根据图像可得1<a <10,b +c =2×12=24,故a +b +c ∈(25,34).『答案』(25,34)『典例』 已知函数f (x )=log 4(ax 2+2x +3). (1)若f (1)=1,求f (x )的单调区间;(2)是否存在实数a ,使f (x )的最小值为0?若存在,求出a 的值;若不存在,说明理由. 『解析』 (1)∵f (1)=1,∴log 4(a +5)=1,因此a +5=4,a =-1, 这时f (x )=log 4(-x 2+2x +3).由-x 2+2x +3>0得-1<x <3,函数f (x )的定义域为(-1,3). 令g (x )=-x 2+2x +3,则g (x )在(-1,1)上单调递增,在(1,3)上单调递减. 又y =log 4x 在(0,+∞)上单调递增,所以f (x )的单调递增区间是(-1,1),单调递减区间是(1,3). (2)假设存在实数a 使f (x )的最小值为0, 则h (x )=ax 2+2x +3应有最小值1, 因此应有⎩⎪⎨⎪⎧a >0,3a -1a =1,解得a =12.故存在实数a =12使f (x )的最小值为0.『备课札记』『类题通法』求复合函数y =f (g (x ))的单调区间的步骤(1)确定定义域;(2)将复合函数分解成基本初等函数y =f (u ),u =g (x ); (3)分别确定这两个函数的单调区间;(4)若这两个函数同增或同减,则y =f (g (x ))为增函数,若一增一减,则y =f (g (x ))为减函数,即“同增异减”. 『针对训练』已知f (x )=log a (a x -1)(a >0且a ≠1). (1)求f (x )的定义域; (2)判断函数f (x )的单调性.『解析』(1)由a x -1>0得a x >1,当a >1时,x >0; 当0<a <1时,x <0.∴当a >1时,f (x )的定义域为(0,+∞); 当0<a <1时,f (x )的定义域为(-∞,0). (2)当a >1时,设0<x 1<x 2,则1<ax 1<ax 2, 故0<ax 1-1<ax 2-1, ∴log a (ax 1-1)<log a (ax 2-1). ∴f (x 1)<f (x 2).故当a >1时,f (x )在(0,+∞)上是增函数.类似地,当0<a <1时,f (x )在(-∞,0)上为增函数.『课堂练通考点』1.(2014·深圳第一次调研)设f (x )为定义在R 上的奇函数,当x >0时,f (x )=log 3(1+x ),则f (-2)=________.『解析』由题意得,f (-2)=-f (2)=-log 3(1+2)=-1. 『答案』-12.(2013·广东高考改编)函数y =lg x +1x -1的定义域是________.『解析』由题意得⎩⎪⎨⎪⎧ x +1>0,x -1≠0,∴⎩⎪⎨⎪⎧x >-1,x ≠1,『答案』(-1,1)∪(1,+∞)3.(2013·苏北四市二调)已知函数f (x )=a log 2x -b log 3x +2,若f ⎝⎛⎭⎫12 014=4,则f (2 014)的值为________.『解析』令g (x )=f (x )-2=a log 2x -b log 3x ,可得g (x )满足g ⎝⎛⎭⎫1x =-g (x ).所以由g ⎝⎛⎭⎫12 014=f ⎝⎛⎭⎫12 014-2=2,得g (2 014)=-2,所以f (2 014)=0. 『答案』04.设函数f (x )=⎩⎪⎨⎪⎧21-x ,x ≤1,1-log 2x ,x >1,则满足f (x )≤2的x 的取值范围是________.『解析』f (x )≤2⇔⎩⎪⎨⎪⎧ x ≤1,21-x ≤2,或⎩⎪⎨⎪⎧x >1,1-log 2x ≤2,⇔0≤x ≤1或x >1.『答案』『0,+∞)5.(2014·南京模拟)若log 2a 1+a 21+a <0,则a 的取值范围是________.『解析』当2a >1时,∵log 2a 1+a 21+a <0=log 2a 1,∴1+a 21+a <1.∵1+a >0,∴1+a 2<1+a , ∴a 2-a <0,∴0<a <1,∴12<a <1.当0<2a <1时,∵log 2a 1+a 21+a <0=log 2a 1,∴1+a 21+a>1. ∵1+a >0,∴1+a 2>1+a .∴a 2-a >0,∴a <0或a >1,此时不合题意. 综上所述,a ∈⎝⎛⎭⎫12,1. 『答案』⎝⎛⎭⎫12,16.(2013·北京高考)函数f (x )=⎩⎪⎨⎪⎧log 12x ,x ≥1,2x ,x <1的值域为________.『解析』当x ≥1时,log 12x ≤0,当x <1时,0<2x <2,故值域为(0,2)∪(-∞,0』=(-∞,2).『答案』(-∞,2)。

高中数学必修一指数函数与对数函数复习教案

高中数学必修一指数函数与对数函数复习教案

个性化教案 (内部资料,存档保存,不得外泄)海豚教育个性化教案 编号: 教案正文:指数函数重难点:对分数指数幂的含义的理解,学会根式与分数指数幂的互化并掌握有理指数幂的运算性质;指数函数的性质的理解与应用,能将讨论复杂函数的单调性、奇偶性问题转化为讨论比较简单的函数的有关问题. 考纲要求:①了解指数函数模型的实际背景;②理解有理指数幂的含义,了解实数指数幂的意义,掌握幂的运算; ③理解指数函数的概念,并理解指数函数的单调性与函数图像通过的特殊点; ④知道指数函数是一类重要的函数模型.经典例题:求函数y =3322++-x x 的单调区间和值域.当堂练习:1.数111684111(),(),()235a b c ---===的大小关系是( )A .a b c <<B .b a c <<C .c a b <<D .c b a << 2.要使代数式13(1)x --有意义,则x 的取值范围是( )A .1x >B .1x <C .1x ≠D .一切实数 3.下列函数中,图象与函数y =4x的图象关于y 轴对称的是( )A .y =-4xB .y =4-xC .y =-4-xD .y =4x +4-x4.把函数y=f(x)的图象向左、向下分别平移2个单位长度,得到函数2xy =的图象,则( ) A .2()22x f x -=+ B .2()22x f x -=- C .2()22x f x +=+ D .2()22x f x +=-5.设函数()(0,1)xf x a a a -=>≠,f(2)=4,则( )A .f(-2)>f(-1)B .f(-1)>f(-2)C .f(1)>f(2)D .f(-2)>f(2) 6.计算.3815211[()](4)()28----⨯-⨯= . 7.设221m nmn x x a -+-=,求21x x --=.8.已知1()31xf x m =++是奇函数,则(1)f -= .9.函数1()1(0,1)x f x aa a -=->≠的图象恒过定点 .10.若函数()()0,1xf x a b a a =->≠的图象不经过第二象限,则,a b 满足的条件是 .11.先化简,再求值: (1)232aba b ab,其中256,2006a b ==;(2) 1131212222[()()]a b a b a ------,其中13812,2a b -==.12.(1)已知x ∈[-3,2],求f(x)=11142xx-+的最小值与最大值.(2)已知函数233()x x f x a -+=在[0,2]上有最大值8,求正数a 的值.(3)已知函数221(0,1)xx y a a a a =-->≠在区间[-1,1]上的最大值是14,求a 的值.13.求下列函数的单调区间及值域: (1) (1)2()()3x x f x +=; (2)124xxy -=;(3)求函数232()2x x f x -++=的递增区间.14.已知2()(1)1x x f x a a x -=+>+(1)证明函数f(x)在(1,)-+∞上为增函数;(2)证明方程0)(=x f 没有负数解.对数函数重难点:理解并掌握对数的概念以及对数式和指数式的相互转化,能应用对数运算性质及换底公式灵活地求值、化简;理解对数函数的定义、图象和性质,能利用对数函数单调性比较同底对数大小,了解对数函数的特性以及函数的通性在解决有关问题中的灵活应用.考纲要求:①理解对数的概念及其运算性质,知道用换底公式能将一般对数转化成自然对数或常用对数;了解对数在简化运算中的作用;②理解对数函数的概念;理解对数函数的单调性,掌握函数图像通过的特殊点; ③知道对数函数是一类重要的函数模型;④了解指数函数xy a =与对数函数log a y x =互为反函数(),1a o a ≠ .经典例题:已知f (log a x )=22(1)(1)a x x a --,其中a >0,且a ≠1.(1)求f (x ); (2)求证:f (x )是奇函数; (3)求证:f (x )在R 上为增函数.当堂练习:1.若lg 2,lg 3a b ==,则lg 0.18=( )A .22a b +-B .22a b +-C .32a b --D .31a b +- 2.设a 表示135-的小数部分,则2log (21)a a +的值是( )A .1-B .2-C .0D .123.函数2lg(367)y x x =-++的值域是( )A .[13,13]-+B .[0,1]C .[0,)+∞D .{0}4.设函数200,0(),()1,lg(1),0x x f x f x x x x ≤=>+>⎧⎨⎩若则的取值范围为( )A .(-1,1)B .(-1,+∞)C .(,9)-∞D .(,1)(9,)-∞-+∞5.已知函数1()()2xf x =,其反函数为()g x ,则2()g x 是( )A .奇函数且在(0,+∞)上单调递减B .偶函数且在(0,+∞)上单调递增C .奇函数且在(-∞,0)上单调递减D .偶函数且在(-∞,0)上单调递增 6.计算322011log [log (log 8)]= . 7.若2.5x=1000,0.25y=1000,求11xy-= .8.函数f(x)的定义域为[0,1],则函数3[log (3)]f x -的定义域为 . 9.已知y =log a (2-ax )在[0,1]上是x 的减函数,则a 的取值范围是 . 10.若集合{x ,xy ,lg xy }={0,|x |,y },则log 8(x 2+y 2)的值为多少.11.(1) 求函数22(log )(log )34xxy =在区间[22,8]上的最值.(2)已知211222log 5log 30,x x +-<求函数2124()(log )(log )8x f x x=⋅的值域.y xc1c212.已知函数1()log (0,1)1amx f x a a x -=>≠-的图象关于原点对称. (1)求m 的值;(2)判断f(x) 在(1,)+∞上的单调性,并根据定义证明.13.定义在R 上的函数f (x )满足:如果对任意x 1,x 2∈R ,都有f (122x x +)≤12[f (x 1)+f (x 2)],则称函数f (x )是R 上的凹函数.已知函数f (x )=ax 2+x (a ∈R 且a ≠0),求证:当a >0时,函数f (x )是凹函数;幂函数重难点:掌握常见幂函数的概念、图象和性质,能利用幂函数的单调性比较两幂值的大小. 考纲要求:①了解幂函数的概念; ②结合函数12321,,,,y x y x y x y y x x=====的图像,了解他们的变化情况.经典例题:比较下列各组数的大小:(1)1.531,1.731,1; (2)(-22)32-,(-107)32,1.134-;(3)3.832-,3.952,(-1.8)53; (4)31.4,51.5.当堂练习:1.函数y =(x 2-2x )21-的定义域是( )A .{x |x ≠0或x ≠2}B .(-∞,0) (2,+∞)C .(-∞,0) [2,+∞)D .(0,2) 3.函数y =52x 的单调递减区间为( )A .(-∞,1)B .(-∞,0)C .[0,+∞ ]D .(-∞,+∞)3.如图,曲线c 1, c 2分别是函数y =x m和y =x n在第一象限的图象,那么一定有( )A .n<m<0B .m<n<0C .m>n>0D .n>m>04.下列命题中正确的是( )A .当0α=时,函数y x α=的图象是一条直线 B .幂函数的图象都经过(0,0),(1,1)两点 C .幂函数的y x α= 图象不可能在第四象限内 D .若幂函数y x α=为奇函数,则在定义域内是增函数5.下列命题正确的是( )A . 幂函数中不存在既不是奇函数又不是偶函数的函数B . 图象不经过(—1,1)为点的幂函数一定不是偶函数C . 如果两个幂函数的图象具有三个公共点,那么这两个幂函数相同D . 如果一个幂函数的幂指数为奇数,那么一定是奇函数 6.函数y =221m mx --在第二象限内单调递增,则m 的最大负整数是_______ _.7.幂函数的图象过点(2,14), 则它的单调递增区间是 .8.设x ∈(0, 1),幂函数y =ax 的图象在y =x 的上方,则a 的取值范围是 . 9.函数y =34x -在区间上 是减函数.10.试比较530.75380.16,1.5,6.25的大小.11.讨论函数y =x 54的定义域、值域、奇偶性、单调性。

新课标数学高考第一轮复习学案指数与对数函数

新课标数学高考第一轮复习学案指数与对数函数

新课标数学2010届高考第一轮复习学案 第10讲 指数与对数函数(第一课时)一、目标要求:(1)指数函数:①了解指数函数模型的实际背景.②理解指数函数的概念,并理解指数函数的单调性与函数图象通过的特殊点.理解指数函数的概念和意义;理解指数函数的性质,会画指数函数的图象.③知道指数函数是一类重要的函数模型,了解指数函数模型的实际案例,会用指数函数模型解决简单的实际问题.(2)对数函数:①理解对数函数的概念;理解对数函数的单调性,掌握函数图象通过的特殊点.②知道对数函数是一类重要的函数模型;会画指数函数的图象③了解指数函数y =ax 与对数函数y =log ax 互为反函数(a >0,a ≠1). 了解对数函数模型的实际案例。

二、基础知识:1.指数函数注意:①应根据图象记忆和应用性质;②性质(4)即函数值的分布情况,可表述为以下的等价形式:若0)1(>-x a ,则1>xa ;若0)1(<-x a ,则10<<xa 。

利用1-a 与x 同号或异号,借助指数函数的增减性极易证明。

3.指、对数函数的性质比较(1)x a y =恒过定点)1,0(,x y a log =恒过定点)0,1(;(2)当1>a 时,x a y =与均为增函数,10<<a 时,均为减函数。

(3)x a y =与xay )1(=的函数图象关于y 轴对称;x y a log =与x y a1log =的函数图象关于x 轴对称。

(4)对于对数函数值的正负情况有下列关系:),(0)1)(1(0log +∈>--⇔>=R b a b a b y a ;),(0)1)(1(0log +∈>--⇔>=R b a b a b y a 。

对于该结论要熟记。

4.指、对数函数的图象比较(1)对于指数函数x a y =:当1>a 时,底数越大,图象越贴近y 轴,当10<<a 时,底数越小,图象越贴近y 轴。

高三数学第一轮复习 对数与对数函数教案 文 教案

高三数学第一轮复习 对数与对数函数教案 文 教案

对数与对数函数一、知识梳理:(阅读教材必修1第62页—第76页)1、对数与对数的运算性质(1)、一般地,如果 (a>0,且) 那么数x叫做以a为底的对数,记做x= ,其中a叫做对数的底,叫做对数的真数。

(2)、以10为底的对数叫做常用对数,并把记为lgN, 以e为底的对数称为自然对数,并把记为lnN. (3)、根据对数的定义,可以得到对数与指数和关系:(4)、零和负数没有对数; =1; =0;=N(5)、对数的运算性质:如果,M>0,N>0 ,那么=+==n(n)换底公式:=对数恒等式:=N2、对数函数与对数函数的性质(1)、一般地,我们把函数f(x)=)叫做对函数,其中x是自变量,函数的定义域是(0,+。

(2)、对数函数的图象及性质图象的性质:①定义域②值域③单调性④奇偶性⑤周期性⑥特殊点⑦特殊线图象分a1 与a<1两种情况。

3、反函数:对数函数f(x)=)与指数函数f(x)=)互为反函数。

原函数的定义域是反函数的值域,原函数的值域是反函数的定义域。

互为反函数的图象在同一坐标系关于直线y=x对称。

【关于反函数注意大纲的要求】二、题型探究探究一:对数的运算例1:(15年安徽文科)=-+-1)21(2lg225lg。

【答案】-1【解析】试题分析:原式=12122lg5lg2lg22lg5lg-=-=-+=-+-考点:对数运算.例2:【2014辽宁高考】已知132a-=,21211log,log33b c==,则()A.a b c>>B.a c b>>C.c a b>>D.c b a>>例3:【2015高考浙江】若4log3a=,则22a a-+=.【答案】334.【考点定位】对数的计算探究二:对数函数及其性质例4:【2014江西高考】函数)ln()(2xxxf-=的定义域为()A.)1,0(B. ]1,0[C. ),1()0,(+∞-∞ D. ),1[]0,(+∞-∞例5:下列关系 中,成立的是(A )、lo>> (B) >> lo (C) lo> > (D) lo>探究三、应用对数函数的单调性解方程、不等式问题 例7:【15年天津文科】已知定义在R 上的函数||()21()xm f x m 为实数为偶函数,记0.5(log 3),af 2b(log 5),c(2)f f m ,则,,a b c ,的大小关系为( )(A) b c a(B) b c a (C) b a c (D) b c a【答案】B 【解析】试题分析:由()f x 为偶函数得0m =,所以2,4,0a b c ===,故选B. 考点:1.函数奇偶性;2.对数运算.例8:【2014陕西高考】已知,lg ,24a x a==则x =________.三、方法提升:1、 处理对数函数问题时要特别注意函数的定义域问题,尤其在大题中【最后的导数题】,一定要首先考虑函数的定义域,然后在定义域中研究问题,以避免忘记定义域出现错误;2、 在2015年高考小题中,考察主要是针对对数的大小比较、指数与对数的关系,中档难度。

高考数学(对数、指数函数)第一轮复习

高考数学(对数、指数函数)第一轮复习

高考数学(指数函数和对数函数)第一轮复习资料知识点小结(0,,)()(0,,)()(0,0,)(01)1lo m n a n a r s r s a a a a r s Q r s rs a a a r s Q r r s ab a b a b r Q x y a a a x +=>∈=>∈=>>∈=>≠=⎧⎧⎪⎪⎪⎪⎪⎪⎧⎨⎪⎪⎪⎪⎨⎨⎪⎪⎪⎪⎪⎩⎩⎪⎧⎪⎨⎪⎩⎩为根指数,为被开方数分数指数幂指数的运算指数函数性质定义:一般地把函数且叫做指数函数。

指数函数性质:见表对数:基本初等函数对数的运算对数函数g ,log ()log log ;log log log ;.log log ;(0,1,0,0)log log (01)1log (,0,1,0)log c a c N a N a M N M N a a a M M N a a a N n M n M a a M N a a y x a a a b b a c a c b a ⋅=+=-=>≠>>=>≠⎧⎧⎪⎪⎧⎪⎪⎪⎪⎪⎪⎪⎪⎪⎨⎪⎨⎪⎪⎨⎪⎪⎪⎪⎪=>≠>⎪⎪⎩⎩⎧⎨⎩⎩为底数,为真数性质换底公式:定义:一般地把函数且叫做对数函数对数函数性质:见表且y x x αα⎧⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎨⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎧=⎪⎨⎪⎩⎩幂函数定义:一般地,函数叫做幂函数,是自变量,是常数。

性质:见表2试题选讲第一节对函数的进一步认识第一节 指数函数A 组1.(2010年黑龙江哈尔滨模拟)若a >1,b <0,且a b +a -b =22,则a b -a -b 的值等于________.解析:∵a >1,b <0,∴0<a b <1,a -b >1.又∵(a b +a -b )2=a 2b +a -2b +2=8,∴a 2b +a -2b =6,∴(a b -a -b )2=a 2b +a -2b -2=4,∴a b -a -b =-2.答案:-2 2.已知f (x )=a x +b 的图象如图所示,则f (3)=________.解析:由图象知f (0)=1+b =-2,∴b =-3.又f (2)=a 2-3=0,∴a =3,则f (3)=(3)3-3=33-3.答案:33-33.函数y =(12)2x -x 2的值域是________.解析:∵2x -x 2=-(x -1)2+1≤1, ∴(12)2x -x 2≥12.答案:[12,+∞) 4.(2009年高考山东卷)若函数f (x )=a x -x -a (a >0,且a ≠1)有两个零点,则实数a 的取值范围是________.解析:函数f (x )的零点的个数就是函数y =a x 与函数y =x +a 交点的个数,由函数的图象可知a >1时两函数图象有两个交点,0<a <1时两函数图象有惟一交点,故a >1. 答案:(1,+∞)5.(原创题)若函数f (x )=a x-1(a >0,a ≠1)的定义域和值域都是[0,2],则实数a 等于________.解析:由题意知⎩⎪⎨⎪⎧ 0<a <1a 2-1=0a 0-1=2无解或⎩⎪⎨⎪⎧a >1a 0-1=0a 2-1=2⇒a = 3.答案: 3 6.已知定义域为R 的函数f (x )=-2x +b2x +1+a是奇函数.(1)求a ,b 的值;(2)若对任意的t ∈R ,不等式f (t 2-2t )+f (2t 2-k )<0恒成立,求k 的取值范围.解:(1)因为f (x )是R 上的奇函数,所以f (0)=0,即-1+b2+a=0,解得b =1.从而有f (x )=-2x+12x +1+a .又由f (1)=-f (-1)知-2+14+a =--12+11+a,解得a =2.(2)法一:由(1)知f (x )=-2x +12x +1+2=-12+12x +1,由上式易知f (x )在R 上为减函数,又因f (x )是奇函数,从而不等式f (t 2-2t )+f (2t 2-k )<0⇔f (t 2-2t )<-f (2t 2-k )=f (-2t 2+k ).因f (x )是R 上的减函数,由上式推得t 2-2t >-2t 2+k .即对一切t ∈R 有3t 2-2t -k >0,从而Δ=4+12k <0,解得k <-13.法二:由(1)知f (x )=-2x +12x +1+2,又由题设条件得-2t 2-2t +12t 2-2t +1+2+-22t 2-k +122t 2-k +1+2<0即(22t2-k +1+2)(-2t2-2t+1)+(2t2-2t +1+2)(-22t2-k+1)<0整理得23t2-2t -k>1,因底数2>1,故3t 2-2t -k >0上式对一切t ∈R 均成立,从而判别式Δ=4+12k <0,解得k <-13.B 组1.如果函数f (x )=a x +b -1(a >0且a ≠1)的图象经过第一、二、四象限,不经过第三象限,那么一定有________.①0<a <1且b >0 ②0<a <1且0<b <1 ③a >1且b <0 ④a >1且b >0解析:当0<a <1时,把指数函数f (x )=a x 的图象向下平移,观察可知-1<b -1<0,即0<b <1.答案:②2.(2010年保定模拟)若f (x )=-x 2+2ax 与g (x )=(a +1)1-x 在区间[1,2]上都是减函数,则a 的取值范围是________.解析:f (x )=-x 2+2ax =-(x -a )2+a 2,所以f (x )在[a ,+∞)上为减函数,又f (x ),g (x )都在[1,2]上为减函数,所以需⎩⎪⎨⎪⎧a ≤1a +1>1⇒0<a ≤1.答案:(0,1]3.已知f (x ),g (x )都是定义在R 上的函数,且满足以下条件①f (x )=a x ·g (x )(a >0,a ≠1);②g (x )≠0;若f (1)g (1)+f (-1)g (-1)=52,则a 等于________.解析:由f (x )=a x ·g (x )得f (x )g (x )=a x ,所以f (1)g (1)+f (-1)g (-1)=52⇒a +a -1=52,解得a =2或12.答案:2或124.(2010年北京朝阳模拟)已知函数f (x )=a x (a >0且a ≠1),其反函数为f -1(x ).若f (2)=9,则f -1(13)+f (1)的值是________.解析:因为f (2)=a 2=9,且a >0,∴a =3,则f (x )=3x =13,∴x =-1,故f -1(13)=-1.又f (1)=3,所以f -1(13)+f (1)=2.答案:25.(2010年山东青岛质检)已知f (x )=(13)x ,若f (x )的图象关于直线x =1对称的图象对应的函数为g (x ),则g (x )的表达式为________.解析:设y =g (x )上任意一点P (x ,y ),P (x ,y )关于x =1的对称点P ′(2-x ,y )在f (x )=(13)x 上,∴y =(13)2-x =3x -2.答案:y =3x -2(x ∈R ) 6.(2009年高考山东卷改编)函数y =e x +e -xe x -e-x 的图象大致为________.解析:∵f (-x )=e -x+e x e -x -e x =-e x+e-xe x -e -x =-f (x ),∴f (x )为奇函数,排除④.又∵y =e x +e -x e x -e -x =e 2x +1e 2x -1=e 2x-1+2e 2x -1=1+2e 2x -1在(-∞,0)、(0,+∞)上都是减函数,排除②、③.答案:①7.(2009年高考辽宁卷改编)已知函数f (x )满足:当x ≥4时,f (x )=(12)x ;当x <4时,f (x )=f (x+1),则f (2+log 23)=________.解析:∵2<3<4=22,∴1<log 23<2.∴3<2+log 23<4,∴f (2+log 23)=f (3+log 23)=f (log 224)=(12)log 224=2-log 224=2log 2124=124.答案:1248.(2009年高考湖南卷改编)设函数y =f (x )在(-∞,+∞)内有定义,对于给定的正数K ,定义函数f K (x )=⎩⎪⎨⎪⎧f (x ),f (x )≤K ,K , f (x )>K .取函数f (x )=2-|x |,当K =12时,函数f K (x )的单调递增区间为________.解析:由f (x )=2-|x |≤12得x ≥1或x ≤-1,∴f K (x )=⎩⎪⎨⎪⎧2-|x |,x ≥1或x ≤-1,12,-1<x <1.则单调增区间为(-∞,-1].答案:(-∞,-1]9.函数y =2|x |的定义域为[a ,b ],值域为[1,16],当a 变动时,函数b =g (a )的图象可以是________.解析:函数y =2|x |的图象如图.当a =-4时,0≤b ≤4,当b =4时,-4≤a ≤0,答案:②10.(2010年宁夏银川模拟)已知函数f (x )=a 2x +2a x -1(a >0,且a ≠1)在区间[-1,1]上的最大值为14,求实数a 的值.解:f (x )=a 2x +2a x -1=(a x +1)2-2,∵x ∈[-1,1],(1)当0<a <1时,a ≤a x ≤1a ,∴当a x =1a 时,f (x )取得最大值.∴(1a +1)2-2=14,∴1a =3,∴a =13. (2)当a >1时,1a≤a x ≤a ,∴当a x =a 时,f (x )取得最大值.∴(a +1)2-2=14,∴a =3.综上可知,实数a 的值为13或3.11.已知函数f (x )=-22x -a +1.(1)求证:f (x )的图象关于点M (a ,-1)对称;(2)若f (x )≥-2x在x ≥a 上恒成立,求实数a 的取值范围.解:(1)证明:设f (x )的图象C 上任一点为P (x ,y ),则y =-22x -a +1,P (x ,y )关于点M (a ,-1)的对称点为P ′(2a -x ,-2-y ).∴-2-y =-2+22x -a +1=-2·2x -a 2x -a +1=-21+2-(x -a )=-22(2a -x )-a+1, 说明点P ′(2a -x ,-2-y )也在函数y =-22x -a +1的图象上,由点P 的任意性知,f (x )的图象关于点M (a ,-1)对称.(2)由f (x )≥-2x 得-22x -a +1≥-2x ,则22x -a +1≤2x ,化为2x -a ·2x +2x -2≥0,则有(2x )2+2a ·2x -2·2a ≥0在x ≥a 上恒成立.令g (t )=t 2+2a ·t -2·2a ,则有g (t )≥0在t ≥2a 上恒成立.∵g (t )的对称轴在t =0的左侧,∴g (t )在t ≥2a上为增函数. ∴g (2a )≥0.∴(2a )2+(2a )2-2·2a ≥0,∴2a (2a -1)≥0,则a ≥0.即实数a 的取值范围为a ≥0.12.(2008年高考江苏)若f 1(x )=3|x -p 1|,f 2(x )=2·3|x -p 2|,x ∈R ,p 1、p 2为常数,且f (x )=⎩⎪⎨⎪⎧f 1(x ),f 1(x )≤f 2(x ),f 2(x ),f 1(x )>f 2(x ).(1)求f (x )=f 1(x )对所有实数x 成立的充要条件(用p 1、p 2表示);(2)设a ,b 是两个实数,满足a <b ,且p 1、p 2∈(a ,b ).若f (a )=f (b ),求证:函数f (x )在区间[a ,b ]上的单调增区间的长度之和为b -a2(闭区间[m ,n ]的长度定义为n -m ).解:(1)f (x )=f 1(x )恒成立⇔f 1(x )≤f 2(x )⇔3|x -p 1|≤2·3|x -p 2|⇔3|x -p 1|-|x -p 2|≤2⇔|x -p 1|-|x -p 2|≤log 32.(*)若p 1=p 2,则(*)⇔0≤log 32,显然成立;若p 1≠p 2,记g (x )=|x -p 1|-|x -p 2|,当p 1>p 2时,g (x )=⎩⎪⎨⎪⎧p 1-p 2,x <p 2,-2x +p 1+p 2,p 2≤x ≤p 1,p 2-p 1,x >p 1.所以g (x )max =p 1-p 2,故只需p 1-p 2≤log 32. 当p 1<p 2时,g (x )=⎩⎪⎨⎪⎧p 1-p 2,x <p 1;2x -p 1-p 2,p 1≤x ≤p 2;p 2-p 1,x >p 2.所以g (x )max =p 2-p 1,故只需p 2-p 1≤log 32.综上所述,f (x )=f 1(x )对所有实数x 成立的充要条件是|p 1-p 2|≤log 32. (2)证明:分两种情形讨论. ①当|p 1-p 2|≤log 32时,由(1)知f (x )=f 1(x )(对所有实数x ∈[a ,b ]),则由f (a )=f (b )及a <p 1<b易知p 1=a +b2.再由f 1(x )=⎩⎪⎨⎪⎧3p 1-x ,x <p 1,3x -p 1,x ≥p 1,的单调性可知,f (x )在区间[a ,b ]上的单调增区间的长度为b -a +b 2=b -a2.②当|p 1-p 2|>log 32时,不妨设p 1<p 2,则p 2-p 1>log 32.于是,当x ≤p 1时,有f 1(x )=3p 1-x<3p 2-x <f 2(x ),从而f (x )=f 1(x ).当x ≥p 2时,f 1(x )=3x -p 1=3p 2-p 1·3x -p 2>3log 32·3x -p 2=f 2(x ),从而f (x )=f 2(x ).当p 1<x <p 2时,f 1(x )=3x -p 1及f 2(x )=2·3p 2-x ,由方程3x 0-p 1=2·3p 2-x 0,解得f 1(x )与f 2(x )图象交点的横坐标为x 0=p 1+p 22+12log 32.①显然p 1<x 0=p 2-12[(p 2-p 1)-log 32]<p 2,这表明x 0在p 1与p 2之间.由①易知f (x )=⎩⎪⎨⎪⎧f 1(x ),p 1≤x ≤x 0,f 2(x ),x 0<x ≤p 2.综上可知,在区间[a ,b ]上,f (x )=⎩⎪⎨⎪⎧f 1(x ),a ≤x ≤x 0,f 2(x ),x 0<x ≤b .故由函数f 1(x )与f 2(x )的单调性可知,f (x )在区间[a ,b ]上的单调增区间的长度之和为(x 0-p 1)+(b -p 2),由于f (a )=f (b ),即3p 1-a =2·3b -p 2,得p 1+p 2=a +b +log 32.②故由①②得(x 0-p 1)+(b -p 2)=b -12(p 1+p 2-log 32)=b -a 2.综合①、②可知,f (x )在区间[a ,b ]上单调增区间的长度之和为b -a2.第二节 对数函数A 组1.(2009年高考广东卷改编)若函数y =f (x )是函数y =a x (a >0,且a ≠1)的反函数,其图象经过点(a ,a ),则f (x )=________.解析:由题意f (x )=log a x ,∴a =log a a 12=12,∴f (x )=log 12x .答案:log 12x2.(2009年高考全国卷Ⅱ)设a =log 3π,b =log 23,c =log 32,则a 、b 、c 的大小关系是________.解析:a =log 3π>1,b =log 23=12log 23∈(12,1),c =log 32=12log 32∈(0,12),故有a >b >c .答案:a >b >c3.若函数f (x )=⎪⎩⎪⎨⎧∈-∈⎪⎭⎫ ⎝⎛]1,0[,4)0,1[,41x x xx,则f (log 43)=________.解析:0<log 43<1,∴f (log 43)=4log 43= 3.答案:3 4.如图所示,若函数f (x )=a x-1的图象经过点(4,2),则函数g (x )=log a 1x +1的图象是________.解析:由已知将点(4,2)代入y =a x -1,∴2=a4-1,即a =213>1.又1x +1是单调递减的,故g (x )递减且过(0,0)点,∴④正确.答案:④ 5.(原创题)已知函数f (x )=a log 2x +b log 3x +2,且f (12010)=4,则f (2010)的值为_.解析:设F (x )=f (x )-2,即F (x )=a log 2x +b log 3x ,则F (1x )=a log 21x +b log 31x=-(a log 2x+b log 3x )=-F (x ),∴F (2010)=-F (12010)=-[f (12010)-2]=-2,即f (2010)-2=-2,故f (2010)=0.答案:06.若f (x )=x 2-x +b ,且f (log 2a )=b ,log 2f (a )=2(a >0且a ≠1).(1)求f (log 2x )的最小值及相应x 的值;(2)若f (log 2x )>f (1)且log 2f (x )<f (1),求x 的取值范围.解:(1)∵f (x )=x 2-x +b ,∴f (log 2a )=(log 2a )2-log 2a +b =b ,∴log 2a =1,∴a =2.又∵log 2f (a )=2,∴f (a )=4.∴a 2-a +b =4,∴b =2.∴f (x )=x 2-x +2.∴f (log 2x )=(log 2x )2-log 2x +2=(log 2x -12)2+74.∴当log 2x =12,即x =2时,f (log 2x )有最小值74.(2)由题意知⎩⎪⎨⎪⎧ (log 2x )2-log 2x +2>2,log 2(x 2-x +2)<2.∴⎩⎪⎨⎪⎧log 2x <0或log 2x >1,0<x 2-x +2<4. ∴⎩⎪⎨⎪⎧0<x <1或x >2,-1<x <2.∴0<x <1. B 组1.(2009年高考北京卷改编)为了得到函数y =lg x +310的图象,只需把函数y =lg x 的图象上所有的点________.解析:∵y =lg x +310=lg(x +3)-1,∴将y =lg x 的图象上的点向左平移3个单位长度得到y =lg(x +3)的图象,再将y =lg(x +3)的图象上的点向下平移1个单位长度得到y =lg(x +3)-1的图象.答案:向左平移3个单位长度,再向下平移1个单位长度2.(2010年安徽黄山质检)对于函数f (x )=lg x 定义域中任意x 1,x 2(x 1≠x 2)有如下结论:①f (x 1+x 2)=f (x 1)+f (x 2);②f (x 1·x 2)=f (x 1)+f (x 2);③f (x 1)-f (x 2)x 1-x 2>0;④f (x 1+x 22)<f (x 1)+f (x 2)2.上述结论中正确结论的序号是________.解析:由运算律f (x 1)+f (x 2)=lg x 1+lg x 2=lg x 1x 2=f (x 1x 2),所以②对;因为f (x )是定义域内的增函数,所以③正确;f (x 1+x 22)=lg x 1+x 22,f (x 1)+f (x 2)2=lg x 1+lg x 22=lg x 1x 2,∵x 1+x 22≥x 1x 2,且x 1≠x 2,∴lg x 1+x 22>lg x 1x 2,所以④错误.答案:②③3.(2010年枣庄第一次质检)对任意实数a 、b ,定义运算“*”如下:a *b =⎩⎪⎨⎪⎧a (a ≤b )b (a >b ),则函数f (x )=log 12(3x -2)*log 2x 的值域为________.解析:在同一直角坐标系中画出y =log 12(3x -2)和y =log 2x 两个函数的图象,由图象可得f (x )=⎩⎪⎨⎪⎧log 2x (0<x ≤1)log 12(3x -2) (x >1),值域为(-∞,0].答案:(-∞,0]4.已知函数y =f (x )与y =e x 互为反函数,函数y =g (x )的图象与y =f (x )的图象关于x 轴对称,若g (a )=1,则实数a 的值为________.解析:由y =f (x )与y =e x 互为反函数,得f (x )=ln x ,因为y =g (x )的图象与y =f (x )的图象关于x 轴对称,故有g (x )=-ln x ,g (a )=1⇒ln a =-1,所以a =1e.答案:1e5.已知函数f (x )满足f (2x +|x |)=log 2x |x |,则f (x )的解析式是________.解析:由log 2x |x |有意义可得x >0,所以,f (2x +|x |)=f (1x ),log 2x |x |=log 2x ,即有f (1x )=log 2x ,故f (x )=log 21x=-log 2x .答案:f (x )=-log 2x ,(x >0)6.(2009年高考辽宁卷改编)若x 1满足2x +2x =5,x 2满足2x +2log 2(x -1)=5,则x 1+x 2=________.解析:由题意2x 1+2x 1=5,①2x 2+2log 2(x 2-1)=5,②所以2x 1=5-2x 1,x 1=log 2(5-2x 1),即2x 1=2log 2(5-2x 1).令2x 1=7-2t ,代入上式得7-2t =2log 2(2t -2)=2+2log 2(t -1),∴5-2t =2log 2(t -1)与②式比较得t =x 2,于是2x 1=7-2x 2.∴x 1+x 2=T 2.答案:727.当x ∈[n ,n +1),(n ∈N )时,f (x )=n -2,则方程f (x )=log 2x 根的个数是________.解析:当n =0时,x ∈[0,1),f (x )=-2; 当n =1时,x ∈[1,2),f (x )=-1; 当n =2时,x ∈[2,3),f (x )=0; 当n =3时,x ∈[3,4),f (x )=1; 当n =4时,x ∈[4,5),f (x )=2;当n =5时,x ∈[5,6),f (x )=3.答案:2 8.(2010年福建厦门模拟)已知lg a +lg b =0,则函数f (x )=a x与函数g (x )=-log b x 的图象可能是________.解析:由题知,a =1b ,则f (x )=(1b)x =b -x ,g (x )=-log b x ,当0<b <1时,f (x )单调递增,g (x )单调递增,②正确;当b >1时,f (x )单调递减,g (x )单调递减.答案:② 9.已知曲线C :x 2+y 2=9(x ≥0,y ≥0)与函数y =log 3x 及函数y =3x 的图象分别交于点A (x 1,y 1),B (x 2,y 2),则x 12+x 22的值为________.解析:∵y =log 3x 与y =3x 互为反函数,所以A 与B 两点关于y =x 对称,所以x 1=y 2,y 1=x 2,∴x 12+x 22=x 12+y 12=9.答案:910.已知函数f (x )=lg kx -1x -1(k ∈R 且k >0).(1)求函数f (x )的定义域;(2)若函数f (x )在[10,+∞)上是单调增函数,求k 的取值范围.解:(1)由kx -1x -1>0及k >0得x -1k x -1>0,即(x -1k )(x -1)>0.①当0<k <1时,x <1或x >1k ;②当k =1时,x ∈R 且x ≠1;③当k >1时,x <1k或x >1.综上可得当0<k <1时,函数的定义域为(-∞,1)∪(1k,+∞);当k ≥1时,函数的定义域为(-∞,1k)∪(1,+∞).(2)∵f (x )在[10,+∞)上是增函数,∴10k -110-1>0,∴k >110.又f (x )=lg kx -1x -1=lg(k +k -1x -1),故对任意的x 1,x 2,当10≤x 1<x 2时,恒有f (x 1)<f (x 2),即lg(k +k -1x 1-1)<lg(k +k -1x 2-1),∴k -1x 1-1<k -1x 2-1,∴(k -1)·(1x 1-1-1x 2-1)<0,又∵1x 1-1>1x 2-1,∴k -1<0,∴k <1.综上可知k ∈(110,1).11.(2010年天津和平质检)已知f (x )=log a 1+x1-x(a >0,a ≠1).(1)求f (x )的定义域;(2)判断f (x )的奇偶性并给予证明;(3)求使f (x )>0的x 的取值范围.解:(1)由1+x1-x>0 ,解得x ∈(-1,1).(2)f (-x )=log a 1-x1+x=-f (x ),且x ∈(-1,1),∴函数y =f (x )是奇函数.(3)若a >1,f (x )>0,则1+x 1-x >1,解得0<x <1;若0<a <1,f (x )>0,则0<1+x1-x<1,解得-1<x <0.12.已知函数f (x )满足f (log a x )=a a 2-1(x -x -1),其中a >0且a ≠1.(1)对于函数f (x ),当x ∈(-1,1)时,f (1-m )+f (1-m 2)<0,求实数m 的集合; (2)x ∈(-∞,2)时,f (x )-4的值恒为负数,求a 的取值范围.解:令log a x =t (t ∈R ),则x =a t ,∴f (t )=a a 2-1(a t -a -t ),∴f (x )=a a 2-1(a x -a -x ).∵f (-x )=a a 2-1(a -x -a x )=-f (x ),∴f (x )是R 上的奇函数.当a >1时,a a 2-1>0,a x 是增函数,-a -x 是增函数,∴f (x )是R 上的增函数;当0<a <1,a a 2-1<0,a x 是减函数,-a -x 是减函数,∴f (x )是R 上的增函数.综上所述,a >0且a ≠1时,f (x )是R 上的增函数.(1)由f (1-m )+f (1-m 2)<0有f (1-m )<-f (1-m 2)=f (m 2-1),∴⎩⎪⎨⎪⎧1-m <m 2-1,-1<1-m <1,-1<m 2-1<1.解得m ∈(1,2).(2)∵f (x )是R 上的增函数,∴f (x )-4也是R 上的增函数,由x <2,得f (x )<f (2), ∴f (x )-4<f (2)-4,要使f (x )-4的值恒为负数,只需f (2)-4≤0,即a a 2-1(a 2-a -2)-4≤0,解得2-3≤a ≤2+3, ∴a 的取值范围是2-3≤a ≤2+3且a ≠1.第三节 幂函数与二次函数的性质A 组1.若a >1且0<b <1,则不等式a log b (x -3)>1的解集为________.解析:∵a >1,0<b <1,∴a log b (x -3)>1⇔log b (x -3)>0⇔log b (x -3)>log b 1⇔0<x -3<1⇔3<x <4.答案:{x |3<x <4}2.(2010年广东广州质检)下列图象中,表示y =x 32的是________.解析:y =x 32=3x 2是偶函数,∴排除②、③,当x >1时,32xx =x 31>1,∴x >x 32,∴排除①.答案:④3.(2010年江苏海门质检)若x ∈(0,1),则下列结论正确的是__________.①2x >x 21>lg x ②2x >lg x >x 21 ③x 21>2x >lg x ④lg x >x 21>2x 解析:∵x ∈(0,1),∴2>2x>1,0<x 21<1,lg x <0.答案:① 4.(2010年东北三省模拟)函数f (x )=|4x -x 2|-a 恰有三个零点,则a =__________.解析:先画出f (x )=4x -x 2的图象,再将x 轴下方的图象翻转到x 轴的上方,如图,y =a 过抛物线顶点时恰有三个交点,故得a 的值为4.答案:45.(原创题)方程x 12=log sin1x 的实根个数是__________.解析:在同一坐标系中分别作出函数y 1=x 21 和y 2=log sin1x 的图象,可知只有惟一一个交点.答案:16.(2009年高考江苏卷)设a 为实数,函数f (x )=2x 2+(x -a )·|x -a |.(1)若f (0)≥1,求a 的取值范围;(2)求f (x )的最小值;(3)设函数h (x )=f (x ),x ∈(a ,+∞),直接写出(不需给出演算步骤)不等式h (x )≥1的解集.解:(1)因为f (0)=-a |-a |≥1,所以-a >0,即a <0.由a 2≥1知a ≤-1.因此,a 的取值范围为(-∞,-1].(2)记f (x )的最小值为g (a ).则有f (x )=2x 2+(x -a )|x -a |=⎩⎪⎨⎪⎧3(x -a 3)2+2a 23,x >a , ①(x +a )2-2a 2,x ≤a , ②(ⅰ)当a ≥0时,f (-a )=-2a 2,由①②知f (x )≥-2a 2,此时g (a )=-2a 2.(ⅱ)当a <0时,f (a 3)=23a 2.若x >a ,则由①知f (x )≥23a 2;若x ≤a ,则x +a ≤2a <0,由②知f (x )≥2a 2>23a 2.此时g (a )=23a 2.综上,得g (a )=⎩⎪⎨⎪⎧-2a 2, a ≥0,2a 23, a <0.(3)(ⅰ)当a ∈(-∞,-62]∪[22,+∞)时,解集为(a ,+∞); (ⅱ)当a ∈[-22,22)时,解集为[a +3-2a 23,+∞);(ⅲ)当a ∈(-62,-22)时,解集为(a ,a -3-2a 23]∪[a +3-2a 23,+∞).B 组1.(2010年江苏无锡模拟)幂函数y =f (x )的图象经过点(-2,-18),则满足f (x )=27的x 的值是__________.解析:设幂函数为y =x α,图象经过点(-2,-18),则-18=(-2)α,∴α=-3,∵x -3=27,∴x =13.答案:132.(2010年安徽蚌埠质检)α则不等式f (|x |)≤2的解集是解析:由表知22=(12)α,∴α=12,∴f (x )=x 12.∴(|x |)12≤2,即|x |≤4,故-4≤x ≤4.答案:{x |-4≤x ≤4}3.(2010年广东江门质检)设k ∈R ,函数f (x )=⎩⎪⎨⎪⎧1x (x >0),e x (x ≤0),F (x )=f (x )+kx ,x ∈R .当k =1时,F (x )的值域为__________.解析:当x >0时,F (x )=1x+x ≥2;当x ≤0时,F (x )=e x +x ,根据指数函数与幂函数的单调性,F (x )是单调递增函数,F (x )≤F (0)=1,所以k =1时,F (x )的值域为(-∞,1]∪[2,+∞).答案:(-∞,1]∪[2,+∞)4.设函数f (x )=⎩⎪⎨⎪⎧-2 (x >0),x 2+bx +c (x ≤0),若f (-4)=f (0),f (-2)=0,则关于x 的不等式f (x )≤1的解集为__________.解析:由f (-4)=f (0),得b =4.又f (-2)=0,可得c =4,∴⎩⎪⎨⎪⎧ x ≤0,x 2+4x +4≤1或⎩⎪⎨⎪⎧x >0,-2≤1,可得-3≤x ≤-1或x >0.答案:{x |-3≤x ≤-1或x >0}5.(2009年高考天津卷改编)已知函数f (x )=⎩⎪⎨⎪⎧x 2+4x , x ≥0,4x -x 2, x <0.若f (2-a 2)>f (a ),则实数a 的取值范围是__________.解析:函数f (x )=⎩⎪⎨⎪⎧x 2+4x ,x ≥0,4x -x 2,x <0,的图象如图. 知f (x )在R 上为增函数. ∵f (2-a 2)>f (a ),即2-a 2>a . 解得-2<a <1.答案:-2<a <16.(2009年高考江西卷改编)设函数f (x )=ax 2+bx +c(a <0)的定义域为D ,若所有点(s ,f (t ))(s ,t ∈D )构成一个正方形区域,则a 的值为__________.解析:由题意定义域D 为不等式ax 2+bx +c ≥0的解集.∵ax 2+bx +c =a (x +b 2a )2+4ac -b24a ,∵a <0,∴0≤y ≤ 4ac -b 24a,∴所有点(s ,f (t )),(s ,t ∈D )构成一个正方形区域,意味着方程ax 2+bx +c =0的两根x 1,x 2应满足|x 1-x 2|= 4ac -b 24a,由根与系数的关系知4ac -b 24a =b 2a 2-4c a =b 2-4aca 2,∴4a =-a 2.∵a <0,∴a =-4.答案:-47.(2010年辽宁沈阳模拟)已知函数f (x )=⎩⎪⎨⎪⎧-2+x ,x >0,-x 2+bx +c ,x ≤0.若f (0)=-2f (-1)=1,则函数g (x )=f (x )+x 的零点的个数为__________.解析:∵f (0)=1,∴c =1.又f (-1)=-12,∴-1-b +1=-12,∴b =12.当x >0时,g (x )=-2+2x =0,∴x =1;当x ≤0时,g (x )=-x 2+12x +1+x =0,∴x 2-32x -1=0,∴x =2(舍)或x =-12,所以有两个零点.答案:28.设函数f (x )=x |x |+bx +c ,给出下列四个命题:①c =0时,f (x )是奇函数;②b =0,c >0时,方程f (x )=0只有一个实根;③f (x )的图象关于(0,c )对称;④方程f (x )=0至多有两个实根.其中正确的命题是__________.解析:c =0时,f (-x )=-x |-x |+b (-x )=-x |x |-bx =-f (x ),故f (x )是奇函数;b =0,c >0时,f (x )=x |x |+c =0,∴x ≥0时,x 2+c =0无解,x <0时,f (x )=-x 2+c =0,∴x =-c ,有一个实数根.答案:①②③9.(2010年湖南长沙质检)对于区间[a ,b ]上有意义的两个函数f (x )与g (x ),如果对于区间[a ,b ]中的任意数x 均有|f (x )-g (x )|≤1,则称函数f (x )与g (x )在区间[a ,b ]上是密切函数,[a ,b ]称为密切区间.若m (x )=x 2-3x +4与n (x )=2x -3在某个区间上是“密切函数”,则它的一个密切区间可能是________.①[3,4] ②[2,4] ③[2,3] ④[1,4]解析:|m (x )-n (x )|≤1⇒|x 2-5x +7|≤1,解此绝对值不等式得2≤x ≤3,故在区间[2,3]上|m (x )-n (x )|的值域为[0,1],∴|m (x )-n (x )|≤1在[2,3]上恒成立.答案:③10.设函数f (x )=x 2+2bx +c (c <b <1),f (1)=0,方程f (x )+1=0有实根.(1)证明:-3<c ≤-1且b ≥0;(2)若m 是方程f (x )+1=0的一个实根,判断f (m -4)的正负并加以证明.解:(1)证明:f (1)=0⇒1+2b +c =0⇒b =-c +12.又c <b <1,故c <-c +12<1⇒-3<c <-13.方程f (x )+1=0有实根,即x 2+2bx +c +1=0有实根,故Δ=4b 2-4(c +1)≥0,即(c +1)2-4(c +1)≥0⇒c ≥3或c ≤-1.又c <b <1,得-3<c ≤-1,由b =-c +12知b ≥0.(2)f (x )=x 2+2bx +c =x 2-(c +1)x +c =(x -c )(x -1),f (m )=-1<0, ∴c <m <1,∴c -4<m -4<-3<c ,∴f (m -4)=(m -4-c )(m -4-1)>0, ∴f (m -4)的符号为正.11.(2010年安徽合肥模拟)设函数f (x )=ax 2+bx +c ,且f (1)=-a2,3a >2c >2b ,求证:(1)a >0且-3<b a <-34;(2)函数f (x )在区间(0,2)内至少有一个零点;(3)设x 1、x 2是函数f (x )的两个零点,则2≤|x 1-x 2|<574.证明:(1)∵f (1)=a +b +c =-a2,∴3a +2b +2c =0.又3a >2c >2b ,∴3a >0,2b <0,∴a >0,b <0.又2c =-3a -2b ,由3a >2c >2b ,∴3a >-3a -2b >2b .∵a >0,∴-3<b a <-34.(2)∵f (0)=c ,f (2)=4a +2b +c =a -c ,①当c >0时,∵a >0,∴f (0)=c >0且f (1)=-a2<0,∴函数f (x )在区间(0,1)内至少有一个零点.②当c ≤0时,∵a >0,∴f (1)=-a2<0且f (2)=a -c >0,∴函数f (x )在区间(1,2)内至少有一个零点.综合①②得f (x )在(0,2)内至少有一个零点.(3)∵x 1、x 2是函数f (x )的两个零点,则x 1、x 2是方程ax 2+bx +c =0的两个根,∴x 1+x 2=-b a ,x 1x 2=c a =-32-b a ,∴|x 1-x 2|=(x 1+x 2)2-4x 1x 2= (-b a )2-4(-32-b a )=(b a +2)2+2.∵-3<b a <-34,∴2≤|x 1-x 2|<574. 12.已知函数f (x )=ax 2+4x +b (a <0,a 、b ∈R ),设关于x 的方程f (x )=0的两实根为x 1、x 2,方程f (x )=x 的两实根为α、β.(1)若|α-β|=1,求a 、b 的关系式;(2)若a 、b 均为负整数,且|α-β|=1,求f (x )的解析式;(3)若α<1<β<2,求证:(x 1+1)(x 2+1)<7.解:(1)由f (x )=x 得ax 2+3x +b =0(a <0,a 、b ∈R )有两个不等实根为α、β,∴Δ=9-4ab >0,α+β=-3a ,α·β=ba.由|α-β|=1得(α-β)2=1,即(α+β)2-4αβ=9a 2-4ba=1,∴9-4ab =a 2,即a 2+4ab =9(a <0,a 、b ∈R ).(2)由(1)得a (a +4b )=9,∵a 、b 均为负整数, ∴⎩⎪⎨⎪⎧a =-1a +4b =-9或⎩⎪⎨⎪⎧ a =-9a +4b =-1或⎩⎪⎨⎪⎧a =-3,a +4b =-3,显然后两种情况不合题意,应舍去,从而有⎩⎪⎨⎪⎧a =-1,a +4b =-9,∴⎩⎪⎨⎪⎧a =-1,b =-2.故所求函数解析式为f (x )=-x 2+4x -2.(3)证明:由已知得x 1+x 2=-4a ,x 1·x 2=b a ,又由α<1<β<2得α+β=-3a <3,α·β=ba<2,∴-1a <1,∴(x 1+1)(x 2+1)=x 1·x 2+(x 1+x 2)+1=b a -4a +1<2+4+1=7,即(x 1+1)(x 2+1)<7.第四节 函数的图像特征A 组1.命题甲:已知函数f (x )满足f (1+x )=f (1-x ),则f (x )的图象关于直线x =1对称.命题乙:函数f (1+x )与函数f (1-x )的图象关于直线x =1对称.则甲、乙命题正确的是__________.解析:可举实例说明如f (x )=2x ,依次作出函数f (1+x )与函数f (1-x )的图象判断.答案:甲2.(2010年济南市高三模拟考试)函数y =x |x |·a x(a >1)的图象的基本形状是_____.解析:先去绝对值将已知函数写成分段函数形式,再作图象即可,函数解析式:y =⎩⎪⎨⎪⎧ax (x >0)-ax (x <0),由指数函数图象易知①正确.答案:①3.已知函数f (x )=(15)x -log 3x ,若x 0是方程f (x )=0的解,且0<x 1<x 0,则f (x 1)的值为__________(正负情况).解析:分别作y =(15)x 与y =log 3x 的图象,如图可知,当0<x 1<x 0时,(15)x1>log 3x 1,∴f (x 1)>0.答案:正值4.(2009年高考安徽卷改编)设a <b ,函数y =(x -a )2(x -b )的图象可能是_____.解析:∵x >b 时,y >0.由数轴穿根法,从右上向左下穿,奇次穿偶次不穿可知,只有③正确.答案:③5.(原创题)已知当x ≥0时,函数y =x 2与函数y =2x 的图象如图所示,则当x ≤0时,不等式2x ·x 2≥1的解集是__________.解析:在2x ·x 2≥1中,令x =-t ,由x ≤0得t ≥0, ∴2-t ·(-t )2≥1,即t 2≥2t ,由所给图象得2≤t ≤4, ∴2≤-x ≤4,解得-4≤x ≤-2. 答案:-4≤x ≤-26.已知函数f (x )=⎩⎨⎧.(2,5]∈,3-,1,2]-[∈,-32x x x x(1)画出f (x )的图象;(2)写出f (x )的单调递增区间.解:(1)函数f (x )的图象如图所示.,(2)由图象可知,函数f (x )的单调递增区间为[-1,0],[2,5].B 组 1.(2010年合肥市高三质检)函数f (x )=ln 1-x1+x的图象只可能是__________.解析:本题中f (x )的定义域为{x |-1<x <1},从而排除②③选项.又由于u (x )=-1+21+x在定义域{x |-1<x <1}内是减函数,而g (x )=ln x 在定义域(0,+∞)内是增函数,从而f (x )=ln 1-x 1+x =ln(-1+21+x )在定义域{x |-1<x <1}是减函数. 答案:①2.家电下乡政策是应对金融危机、积极扩大内需的重要举措.我市某家电制造集团为尽快实现家电下乡提出四种运输方案,据预测,这四种方案均能在规定时间T 内完成预期的运输任务Q 0,各种方案的运输总量Q 与时间t 的函数关系如下图所示.在这四种方案中,运输效率(单位时间的运输量)逐步提高的是解析:运输效率是运输总量Q 与时间t 的函数的导数,几何意义为图象的切线,切线斜率的增长表明运输效率的提高,从图形看,②正确.答案:②3.如图,过原点O 的直线与函数y =2x 的图象交于A ,B 两点,过B作y 轴的垂线交函数y =4x的图象于点C ,若AC 平行于y 轴,则点A 的坐标是__________.解析:设C (a,4a ),所以A (a,2a ),B (2a,4a ),又O ,A ,B 三点共线,所以2a a =4a 2a,故4a =2×2a ,所以2a =0(舍去)或2a =2,即a =1,所以点A 的坐标是(1,2).答案:(1,2)4.已知函数f (x )=4-x 2,g (x )是定义在(-∞,0)∪(0,+∞)上的奇函数,当x >0时,g (x )=log 2x ,则函数y =f (x )·g (x )的大致图象为__________.解析:f (x )为偶函数,g (x )是奇函数,所以f (x )·g (x )为奇函数,图象关于原点对称,当x →+∞时,f (x )→-∞,g (x )→+∞,所以f (x )·g (x )→-∞答案:②5.某加油机接到指令,给附近空中一运输机加油.运输机的余油量为Q 1(吨),加油机加油箱内余油Q 2(吨),加油时间为t 分钟,Q 1、Q 2与时间t 的函数关系式的图象如右图.若运输机加完油后以原来的速度飞行需11小时到达目的地,问运输机的油料是否够用?________.解析:加油时间10分钟,Q 1由30减小为0.Q 2由40增加到69,因而10分钟时间内运输机用油1吨.以后的11小时需用油66吨.因69>66,故运输机的油料够用.答案:够用 6.已知函数y =f (x )(x ∈R )满足f (x +2)=f (x ),且x ∈(-1,1]时,f (x )=|x |,则y =f (x )与y =log 7x 的交点的个数为__________.解析:由f (x +2)=f (x )知函数y =f (x )为周期为2的周期函数,作图. 答案:67.函数y =x mn (m ,n ∈Z ,m ≠0,|m |,|n |互质)图象如图所示,则下列结论正确的是__________.①mn >0,m ,n 均为奇数②mn <0,m ,n 一奇一偶 ③mn <0,m ,n 均为奇数 ④mn >0,m ,n 一奇一偶解析:由于幂函数在第一象限的图象趋势表明函数在(0,+∞)上单调递减,此时只需保证mn<0,即mn <0,有y =x m n =x -|m ||n |;同时函数只在第一象限有图象,则函数的定义域为(0,+∞),此时|n |定为偶数,n 即为偶数,由于两个数互质,则m 定为奇数.答案:②8.(2009年高考福建卷改编)定义在R 上的偶函数f (x )的部分图象如图所示,则在(-2,0)上,下列函数中与f (x )的单调性不同的是①y =x 2+1②y =|x |+1③y =⎩⎪⎨⎪⎧2x +1,x ≥0x 3+1,x <0④y =⎩⎪⎨⎪⎧e x ,x ≥0e -x ,x <0解析:∵f (x )为偶函数,由图象知,f (x )在(-2,0)上为减函数,而y =x 3+1在(-∞,0)上为增函数.答案:③9.(2010年安徽合肥模拟)已知函数图象C ′与C :y (x +a +1)=ax +a 2+1关于直线y =x 对称,且图象C ′关于点(2,-3)对称,则a 的值为__________.解析:∵C ′与C :y (x +a +1)=ax +a 2+1关于直线y =x 对称,∴C ′为x (y +a +1)=ay +a 2+1.整理得,y +1+a =1-ax -a.∵C ′关于点(2,-3)对称,∴a =2.答案:2 10.作下列函数的图象:(1)y =1|x |-1;(2)y =|x -2|(x +1);(3)y =1-|x ||1-x |;(4)y =|log 2x -1|;(5)y =2|x -1|.解:(1)定义域{x |x ∈R 且x ≠±1},且函数是偶函数.又当x ≥0且x ≠1时,y =1x -1.先作函数y =1x 的图象,并将图象向右平移1个单位,得到函数y =1x -1(x ≥0且x ≠1)的图象(如图(a)所示).又函数是偶函数,作关于y 轴对称图象,得y =1|x |-1的图象(如图(b)所示).(2)函数式可化为y =⎩⎨⎧(x -12)2-94 (x ≥2),-(x -12)2+94(x <2).其图象如图①所示.(3)函数式化为y =⎩⎪⎨⎪⎧1+x 1-x (x <0),1 (0≤x <1),-1 (x >1).其图象如图②所示.(4)先作出y =log2x 的图象,再将其图象向下平移1个单位长度,保留x 轴上方的部分,将x 轴下方的图象翻折到x 轴上方,即得y =|log2x -1|的图象,如图③所示.(5)先作出y =2x的图象,再将其图象在y 轴左边的部分去掉,并作出y 轴右边的图象关于y 轴对称的图象,即得y =2|x |的图象,再将y =2|x |的图象向右平移1个单位长度,即得y=2|x -1|的图象,如图④所示.11.已知函数f (x )=-a a x +a(a >0且a ≠1).(1)证明:函数y =f (x )的图象关于点(12,-12)对称;(2)求f (-2)+f (-1)+f (0)+f (1)+f (2)+f (3)的值.解:(1)证明:函数f (x )的定义域为R ,任取一点(x ,y ),它关于点(12,-12)对称的点的坐标为(1-x ,-1-y ).由已知,y =-a a x +a ,则-1-y =-1+a a x +a =-a xa x +a.,f (1-x )=-a a 1-x +a =-a a a x+a =-a ·a x a +a ·a x =-a xa x +a .∴-1-y =f (1-x ).即函数y =f (x )的图象关于点(12,-12)对称.(2)由(1)有-1-f (x )=f (1-x ).即f (x )+f (1-x )=-1. ∴f (-2)+f (3)=-1,f (-1)+f (2)=-1,f (0)+f (1)=-1. 则f (-2)+f (-1)+f (0)+f (1)+f (2)+f (3)=-3.12.设函数f (x )=x +b ax -1(x ∈R ,且a ≠0,x ≠1a ).(1)若a =12,b =-32,指出f (x )与g (x )=1x 的图象变换关系以及函数f (x )的图象的对称中心;(2)证明:若ab +1≠0,则f (x )的图象必关于直线y =x 对称.解:(1)a =12,b =-32,f (x )=x -3212x -1=2x -3x -2=2+1x -2,∴f (x )的图象可由g (x )的图象沿x 轴右移2个单位,再沿y 轴上移2个单位得到,f (x )的图象的对称中心为点(2,2).(2)证明:设P (x 0,y 0)为f (x )图象上任一点,则y 0=x 0+bax 0-1,P (x 0,y 0)关于y =x 的对称点为P ′(y 0,x 0).由y 0=x 0+b ax 0-1得x 0=y 0+bay 0-1.∴P ′(y 0,x 0)也在f (x )的图象上.故f (x )的图象关于直线y =x 对称.。

对数与对数函数+课件——2025届高三数学一轮复习

对数与对数函数+课件——2025届高三数学一轮复习

B.c>a>b
C.c>b>a
D.b>c>a
解析 因为 a=log23+log32>2 log23·log32=2,所以 a>b.因为 f(x)=log2x,g(x) =log3x 单调递增,所以 c=log2π+log3π>log23+log32,所以 c>a.综上,c>a>b.故选 B.
【通性通法】 对数值比较大小的四种常见类型
(1)底数为同一常数,可由对数函数的单调性直接进行判断. (2)底数为同一字母,需对底数进行分类讨论. (3)底数不同,真数相同,可以先用换底公式化为同底后,再进行比较. (4)底数与真数都不同,常借助 1,0 等中间量进行比较.
考向 2 解简单的对数不等式
例 4 (1)已知函数 f(x)=log2x-x+1,则不等式 f(x)<0 的解集是( )
logcb
4.换底公式:logab= 17 __lo_g_c_a________ (a>0,且 a≠1;b>0;c>0,且 c≠1).
1.概念辨析(正确的打“√”,错误的打“×”)
(1)loga(MN)=logaM+logaN.( × ) (2)logax·logay=loga(x+y).( × ) (3)log2x2=2log2x.( × ) (4)函数 y=log2x 与 y=log121x的图象重合.( √ )
20 __(_0_,__+__∞__) ___ 21 _____R________ 当 x=1 时,y=0,即图象过定点 22 ___(_1_,__0_)_____
性质 当 x>1 时,y>0;当 0<x<1 时,y<0 当 x>1 时,y<0;当 0<x<1 时,y>0

高中数学 第三章指数函数与对数函数复习一教案 北师大版必修1

高中数学 第三章指数函数与对数函数复习一教案 北师大版必修1

[北师版] –必修1第三章指数函数与对数函数 复习一(教案)[教学目标]1、知识与技能(1)梳理知识网络,建构知识体系.(2)熟练掌握指数、对数的运算性质,并进行化简计算. 2、 过程与方法(1)让学生通过复习对本章知识有一个总体认识,能够形成知识网络.(2)对于公式性质要熟练掌握,. 3、情感.态度与价值观使学生通过学习指数、对数的运算,增强代数运算能力. [教学重点]: 指数、对数的运算性质 [教学难点]:对数的运算性质. [课时安排]: 1课时[学法指导]:学生动脑、动手.[讲授过程]【建构知识网络】 【指数的运算】例1.计算下列各式(式子中字母都是正数):(1)(22132b a )(-63121b a )÷(-36561b a ); (2)(88341)-n m解:(1)(22132b a )(-63121b a )÷(-36561b a ) =[2×(-6)÷(-3)]653121612132-+-+ba=4a(2)(88341)-n m =(32883841)()--=n m n m练习1:计算下列各式(式子中字母都是正数):1153322(1)(4x y )(3x y )⋅; 11143223332(2)(2m n )(3mn )(m n )⋅÷【根式的运算】例2.计算下列各式:(1)4325)12525(÷-; (2)322a a a •(a >0)解:(1)4325)12525(÷-=55556121232132-=---=65-5 (2)322a a a •(a >0)=6532212a a =--=65a练习2:.计算下列各式:;【对数的运算】例3.计算:log 12-(3+22)的值.解:log12-(3+22)=121)1)log 1)2log 1)2-==-例4.已知lgx = a ,lgy = b ,lgz = c ,且有a +b +c = 0,求x cb 11+·yac 11+·xba 11+的值.解:.由lgx = a ,lgy = b ,lgz = c ,得x = 10a ,y = 10b ,z = 10c ,所以x cb 11+·y ac 11+·x ba 11+=10)()()(ca cb b a bc a c a b +++++=10111---=3-=10001. 练习3:(1).已知log 2[ log 21( log 2x )] = log 3[ log 31( log 3y )] = log 5[ log 51( log 5z )] = 0,试比较x 、y 、z 的大小.解:由log 2[ log 21( log 2x )] = 0得,log 21( log 2x )= 1,log 2x =21,即x = 221;由log 3[ log 31( log 3y )] = 0得,log 31( log 3y ) = 1,log 3y =31,即y =331;由log 5[ log 51( log 5z )] = 0得,log 51( log 5z ) = 1,log 5z =51,即z = 551.∵y =331= 362= 961,∴x = 221= 263= 861,∴y >x , 又∵x = 221= 2105= 32101,z = 551= 5102= 25101,∴x >z .故y >x >z .(2).设a ,b 为正数,且a 2-2ab -9b 2= 0,求lg (a 2+ab -6b 2)-lg (a 2+4ab +15b 2)的值.解:由a 2-2ab -9b 2= 0,得(b a )2-2(ba)-9 = 0, 令ba = x >0,∴x 2-2x -9 = 0,解得x =1+10,(舍去负根),且x 2= 2x +9,∴lg (a 2+ab -6b 2)-lg (a 2+4ab +15b 2) = lg 22221546bab a b ab a ++-+= lg 154622++-+x x x x = lg 154)92(6)92(+++-++x x x x = lg )4(6)1(3++x x = lg )4(21++x x =lg)4101(21101++++= lg1010=-21.作业:复习题三A 组1-4。

高三数学第一轮复习教案第15课时—指数函数与对数函数

高三数学第一轮复习教案第15课时—指数函数与对数函数

第二章 函数——第15课时:指数函数与对数函数一.课题:指数函数与对数函数二.教学目标:1.掌握指数函数与对数函数的概念、图象和性质;2.能利用指数函数与对数函数的性质解题.三.教学重点:运用指数函数、对数函数的定义域、单调性解题.四.教学过程:(一)主要知识:1.指数函数、对数函数的概念、图象和性质;2.同底的指数函数x y a =与对数函数log a y x =互为反函数;(二)主要方法:1.解决与对数函数有关的问题,要特别重视定义域;2.指数函数、对数函数的单调性决定于底数大于1还是小于1,要注意对底数的讨论;3.比较几个数的大小的常用方法有:①以0和1为桥梁;②利用函数的单调性;③作差.(三)例题分析:例1.(1)若21a b a >>>,则log b b a,log b a ,log a b 从小到大依次为 ; (2)若235x y z ==,且x ,y ,z 都是正数,则2x ,3y ,5z 从小到大依次为 ;(3)设0x >,且1x x a b <<(0a >,0b >),则a 与b 的大小关系是 ( ) (A )1b a << (B )1a b << (C )1b a << (D )1a b <<解:(1)由21a b a >>>得b a a <,故log b b a<log b a 1<<log a b . (2)令235x y z t ===,则1t >,lg lg 2t x =,lg lg3t y =,lg lg5t z =, ∴2lg 3lg lg (lg9lg8)230lg 2lg3lg 2lg3t t t x y ⋅--=-=>⋅,∴23x y >; 同理可得:250x z -<,∴25x z <,∴325y x z <<.(3)取1x =,知选(B ).例2.已知函数2()1x x f x a x -=++(1)a >, 求证:(1)函数()f x 在(1,)-+∞上为增函数;(2)方程()0f x =没有负数根. 证明:(1)设121x x -<<, 则1212121222()()11xx x x f x f x a a x x ---=+--++ 121212*********()11(1)(1)x x x x x x x x a a a a x x x x ---=-+-=-+++++, ∵121x x -<<,∴110x +>,210x +>,120x x -<,第二章 函数——第15课时:指数函数与对数函数 ∴12123()0(1)(1)x x x x -<++; ∵121x x -<<,且1a >,∴12x x a a <,∴120x x a a -<,∴12()()0f x f x -<,即12()()f x f x <,∴函数()f x 在(1,)-+∞上为增函数;(2)假设0x 是方程()0f x =的负数根,且01x ≠-,则000201x x a x -+=+, 即00000023(1)31111x x x a x x x --+===-+++, ① 当010x -<<时,0011x <+<,∴0331x >+,∴03121x ->+,而由1a >知01x a <, ∴①式不成立;当01x <-时,010x +<,∴0301x <+,∴03111x -<-+,而00x a >, ∴①式不成立.综上所述,方程()0f x =没有负数根.例3.已知函数()log (1)x a f x a =-(0a >且1a ≠).(《高考A 计划》考点15,例4). 求证:(1)函数()f x 的图象在y 轴的一侧;(2)函数()f x 图象上任意两点连线的斜率都大于0.证明:(1)由10x a ->得:1x a >,∴当1a >时,0x >,即函数()f x 的定义域为(0,)+∞,此时函数()f x 的图象在y 轴的右侧; 当01a <<时,0x <,即函数()f x 的定义域为(,0)-∞,此时函数()f x 的图象在y 轴的左侧. ∴函数()f x 的图象在y 轴的一侧;(2)设11(,)A x y 、22(,)B x y 是函数()f x 图象上任意两点,且12x x <, 则直线AB 的斜率1212y y k x x -=-,1122121log (1)log (1)log 1x x x a a a x a y y a a a --=---=-, 当1a >时,由(1)知120x x <<,∴121x x a a <<,∴12011x x a a <-<-, ∴121011x x a a -<<-,∴120y y -<,又120x x -<,∴0k >; 当01a <<时,由(1)知120x x <<,∴121x x a a >>,∴12110x x a a ->->, ∴12111x x a a ->-,∴120y y -<,又120x x -<,∴0k >. ∴函数()f x 图象上任意两点连线的斜率都大于0.(四)巩固练习:1.已知函数()|lg |f x x =,若11a b c>>>,则()f a 、()f b 、()f c 从小到大依次为第二章 函数——第15课时:指数函数与对数函数()()()f b f a f c <<;(注:1()()f f c c=) 2.若a 为方程20x x +=的解,b 为不等式2log 1x >的解,c 为方程12log x x =的解,则a 、b 、c 从小到大依次为a c b <<;3.若函数|1|()2x f x m --=-的图象与x 轴有交点,则实数m 的取值范围是01m <≤.五.课后作业:《高考A 计划》考点15,智能训练3,5,7,10,12,15. 经典语录1、最疼的疼是原谅,最黑的黑是背叛。

【精品】高考数学一轮复习必备 第15课时第二章 函数-指数式与对数式教案

【精品】高考数学一轮复习必备 第15课时第二章 函数-指数式与对数式教案

第15课时:第二章函数——指数式与对数式一.课题:指数式与对数式二.教学目标:1.理解分数指数幂的概念,掌握有理数指数幂的运算性质;2.理解对数的概念,掌握对数的运算性质.三.教学重点:运用指数、对数的运算性质进行求值、化简、证明.四.教学过程:(一)主要知识:1.指数、对数的运算法则;2.指数式与对数式的互化:logbaa N N b=⇔=.(二)主要方法:1.重视指数式与对数式的互化;2.不同底的对数运算问题,应化为同底对数式进行运算;3.运用指数、对数的运算公式解题时,要注意公式成立的前提.(三)例题分析:例1.计算:(1)121316324 (12427162(8)--+-+-;(2)2(lg2)lg2lg50lg25+⋅+;(3)3948(log2log2)(log3log3)+⋅+.解:(1)原式12133(1)246324(113228⨯-⨯-⨯⨯=-+-⨯213332113222118811⨯=+-⨯=-=.(2)原式22(lg2)(1lg5)lg2lg5(lg2lg51)lg22lg5 =+++=+++ (11)lg22lg52(lg2lg5)2=++=+=.(3)原式lg2lg2lg3lg3lg2lg2lg3lg3 ()()()() lg3lg9lg4lg8lg32lg32lg23lg2 =+⋅+=+⋅+3lg25lg352lg36lg24=⋅=.例2.已知11223x x-+=,求22332223x xx x--+-+-的值.解:∵11223x x-+=,∴11222()9x x-+=,∴129x x-++=,∴17x x-+=,∴12()49x x-+=,∴2247x x-+=,又∵331112222()(1)3(71)18x x x x x x---+=+⋅-+=⋅-=,∴223322247231833x x x x--+--==-+-.例3.已知35a b c ==,且112a b +=,求c 的值.解:由3a c =得:log 31a c =,即log 31c a =,∴1log 3c a =;同理可得1log 5c b =,∴由112a b += 得log 3log 52c c +=, ∴log 152c =,∴215c =,∵0c >,∴c =例4.设1x >,1y >,且2log 2log 30x y y x -+=,求224T x y =-的最小值. 解:令 log x t y =,∵1x >,1y >,∴0t >.由2log 2log 30x y y x -+=得2230t t -+=,∴22320t t +-=,∴(21)(2)0t t -+=,∵0t >,∴12t =,即1log 2x y =,∴12y x =, ∴222244(2)4T x y x x x =-=-=--, ∵1x >,∴当2x =时,min4T =-.例5.设a 、b 、c 为正数,且满足222a b c +=.(1)求证:22log (1)log (1)1b c a c a b +-+++=(2)若4log (1)1b c a ++=,82log ()3a b c +-=,求a 、b 、c 的值. 证明:(1)左边222log log log ()a b c a b c a b c a b c a b a b +++-+++-=+=⋅ 22222222222()22log log log log 21a b c a ab b c ab c c ab ab ab +-++-+-=====;解:(2)由4log (1)1b c a ++=得14b c a ++=,∴30a b c -++=……………①由82log ()3a b c +-=得2384a b c +-==………… ……………② 由①+②得2b a -=……………………………………………③由①得3c a b =-,代入222a b c +=得2(43)0a a b -=,∵0a >,∴430a b -=……………………………………………………④ 由③、④解得6a =,8b =,从而10c =.(四)巩固练习:12b =,则a 与b 的大小关系为 ;2.若2lg lg lg 2x yx y -=+的值.五.课后作业:《高考A 计划》考点14,智能训练4,6,10,13,14,15。

职高复习第一轮教案02指数函数和对数函数

职高复习第一轮教案02指数函数和对数函数

指数式与对数式一、高考要求:1.掌握指数的观点、指数幂的运算法例 .2.掌握对数的观点、性质和对数的运算法例 ,掌握换底公式 ,认识常用对数和自然对数 . 二、知识重点:1.指数的定义及性质 :(1)有理数指数幂的定义 : ①a01(a0) ;② a n1n (a0, n N ) ; amN ,且m为既约分数 ) ;③ a n n m (a0,m、 nnm1,且m为既约分数 ) .④ an( a0, m、n Nn m n(2)实数指数幂的运算法例 : ①a m a n a m n;② (a m ) n a mn;③ (ab)n a n b n.2.对数的定义及性质 :(1)对数的定义 :令 N= a b (a> 0 且 a≠ 1)中,b 叫做以 a 为底 N 的对数 ,N 叫做真数 ,记作 : log a N b .(2) 对数的性质 : ①真数一定是正数 ,即零和负数没有对数 ;② log a10 (a>0且a≠ 1);③ log a a 1(a>0且a≠1);④对数恒等式 : a log a N N (a>0且a≠ 1).(3)对数的运算法例 :当 a>0 且 a≠ 1,M> 0,N>0 时,有① log a (MN )log a M log a N② log a Mlog a M log a N N1log a M③ log a M n n log a M④ log a n Mn(4) 换底公式 : log alog b N N.log b a(5) 常用对数 :底是 10 的对数叫做常用对数 ,即log10N lg N .(6) 自然对数 :底是 e 的对数叫做自然对数 ,即log e N ln N(此中无理数 e≈ .自然对数和常用对数的关系是 : ln N lg N .lg e三、典型例题:17 010.253111例 1:计算 : (1) ( 0.0081)4 [3(][81(3 3 ]2100.0273 ;))88(2)2 log32 log332log385log53.9例 2:化简 : (1) (1 a) 411)3;(2) (lg 5)2lg 2 lg 50(a例 3: (1)已知log142 a ,求log27的值;(2)设log189a,18 b5, 求 log 36 45 的值.例 4:解以下方程 :2x-2=81;2(3) (3x(45;2(1)3(2)lg(x-1) =2; 4 )3)(4)lg(2-x )=lg(2-3x)-lg2;(5) 3x 232 x80 ;(6) 2log x83log 8 x 1 .四、概括小结:1.掌握指数和对数的定义、性质以及运算法例是正确进行指数式和对数式的计算与化简的重点 ,特别是运算法例及换底公式的灵巧运用 .2.指数、对数方程属于初等超越方程 ,能够化成代数方程后求解的简单的指数、对数方程主要有以下几种种类 :(1)基本型 : a x b x log a b 和 log a x b x a b;f ( x)g( x)(2)同底数型 : a f ( x) a g ( x) f ( x) g( x) 和 log a f ( x) log a g (x) f ( x)0;g ( x)0(3)需代换型 :作代换y a f (x)或y log a f ( x)后化为 y 的代数方程 ,解出 y 后转变为基本型求解 .五、基础知识训练: (一)选择题:1. 以下运算正确的选项是 ()A. ( a 2 )3 ( a 3 ) 2B.( a 2 )3a 2 3 C.( a 2 )3 a 2 3 D.( a 2 ) 3 ( 1)3 a 2 3a 62. 考察以下四个结论 :31(1) 当 a < 0 时 , (a 2 ) 2a 3 ;(2) 函 数 y( x2) 2 (3x7) 0 的 定 义 域 是 x ≥ 2;11(3) (3 a) 2( a5)3;(4)已知 100 a 50,10b2, ,则 2a+b=1.此中正确的结论有 ( )个个 个个3. 以下各式上当算错误的选项是 ( )A. ( a 2 b) 2 ( ab 2 )3 a 7b 8( a 2 b 3 )3 ( ab 2 ) 3a 3b 3B.C.( a 3 ) 2 ( b 2 ) 3 a 6b 6D.[( a 3 ) 2 ( b 2 ) 3 ] 3a 18b 184. 与对数式 log b aN ( a 0,b0,b1) 对应的指数式是 ()A. a bNB.b a NC.a NbD. b Na5.813)的值是 (416A.8B.8332727C.D.226. 若 lg(log 3 x) 0 ,则 x=().3C或 107. 以下等式不建立的是 ()A. log a nbnlog a b B.logaN2 log a NC.log a b1D. log 3 a N 1log a Nlog b a38.设 a,b 是正数 ,且 a bb a ,b=9a,则 a 的值为 ()A.1B.9 9C.3 9D.4 393,则 x 的值是 (9. 若 log x 8)2C.1D.1B.42 410.假如 log 5 [log 3 (log 2 x)]0,那么 4 x =()A.4 2B.4 23C.23D.3211.已知 log 2 3a,log 2 5 b ,则 log 29 =() 5B.2a-ba2D.2a C.b b12.若 a>b>1,P=lg a lg b ,Q= 1(lg a lg b) ,R=lga b,则() 22>P>R>Q>P>P>Q>R>P (二)填空题:13.若 3a 2 ,3b 5 ,则 32a b =.118,则 x2 1 =14.已知 x 2x2.x(三)解答题:15.已知 lg x lg y 2 lg( x 2 y) ,求x的值. y16.设3x 4 y36,求21的值.x y指数函数和对数函数一、高考要求:3.掌握指数函数、对数函数的观点、图象和性质 .4.掌握指数函数和对数函数在实质问题中的应用 .二、知识重点:指数函数和对数函数的观点、图象和性质比较表名指数函数对数函数形y a x (a 0, a 1)y log a x( a 0, a1)式函数图象定(-∞,+ ∞)(0,+ ∞)义值(0,+ ∞)(-∞,+ ∞)域定(0,1)(1,0)点函当 a>1 时当 0<a<1 时当 a>1 时当 0<a<1 时数 a x1(x0)0 a x1( x 0)0(x1)0(0x 1)值 a x1(x0) a x1( x0)log a x 0(x1)log a x 0(x1)变0 a x1( x 0) a x1( x0)0(0x 1)0(x1)化奇偶非奇非偶函数性单当 a>1 时,当 0<a<1 时,当 a>1 时,当 0<a<1 时 ,调a x是增函数 . a x是减函数.log a x 是增函数.log a x 是减函数.性三、典型例题:a x1(a> 0且 a≠ 1).例 1:已知函数f ( x)a x1(1)求 f (x) 的定义域和值域;(2)议论 f ( x) 的奇偶性;(3)议论 f ( x) 的单一性.例 2:求函数y log 0.5 ( x 22x 8) 的定义域及单一区间.a1例 3:已知 a 0 且 a 1 , f (log a x)a2 1 (x x ) .(1)求 f ( x) ;(2)判断 f (x) 的奇偶性和单一性;(3) 对于f (x) ,当x( 1,1) 时,有 f (1 m) f (1 m2 )0 ,求 m 的取值范围.四、概括小结:1. 函数y a x与函数 y a x的图象对于y 轴对称;函数y log a x 与函数 y log 1 x 的图a象对于 x 轴对称;函数y a x与函数 y log a x 的图象对于直线y=x 对称 .2.指数函数和对数函数互为反函数 .它们的性质能够用类比的方法进行记忆 .3.指数不等式、对数不等式的求解主要依照指、对函数的单一性 . 五、基础知识训练:(一)选择题:1.同时拥有以下性质 : ①图象经过点 (0,1);在②区间 (0,+∞)上是减函数 ; ③是偶函数的函数是 ()A. f ( x) 2xB. f (x) 2 xC. f ( x) x21D. f ( x)x 212.以下函数图象中 ,必定经过点 (0,1)的是 ()A. y x2B. y xC.y 2 xD. y log 2 x3.若 a >1554 a4,则 a 的取值范围是 ()< 0 C.0< a< 14. 已知函数 f (x)lg( x 2) lg( x1) ,对于此函数的命题有(1)函数 f ( x) 的定义域为(2,+∞在),定义域内是增函数;(2)函数 f ( x) 的定义域为(-1,+∞),在定义域内是增函数;(3)函数 f ( x) 的值为1时,则x的值为4;(4)函数 f ( x) 在定义域内为奇函数.此中正确的说法是 ()A.(1) (3)B.(2) (4)C.(1) (2)D.(3) (4)5.若会合 A={y|y= 2x ,x∈ R},B={y|y= x2,x∈R },则()B=B6.函数 f (x)log a x 与 y log a (x) 的图象对于()轴对称轴对称 C.直线 y=x 对称 D.原点对称7.函数 f ( x)log 1 (x1) 的定义域是()2A.(1,+∞ )B.(2,+∞ )C.(-∞ ,2)D.(1,2]8.函数 f ( x)log 2 x 3(x≥1),则反函数 f1 ( x) 的定义域是()B.{x|x≥ 1}C.{x|0<x<1}D.{x|x ≥ 3}9.函数 y f (x) 的反函数为 y lg( x1) 3 (x>1),则 f (x) =()A.10x 31B.10x31C.10x 31D.10x 3110. 函数 ylog 1 ( x 2 3x2) 的单一递加区间是 ()2A.(-∞ ,1)B.(2,+ ∞ )3 D.( 3,+ ∞)C.(-∞, )22(二)填空题:11. 若 a 1 ,试将 log 1 0.5 , log a 1, log 1 0.6从小到大用不等号连结 ,则有a a212. 若 log a 3 1,则 a 的取值范围是 .(三)解答题:13. 已知 f ( x)ka x 1 、a是 R 上的奇函数 ,a x (, 0,1)1(1) 求 k 值; (2)求 f (x) 的反函数 f1( x) ;( 3)解不等式 f 1 (x) 01 a 是 x ≠0上的奇函数 ,a 是常数 ,求 a 的值 .14.已知函数 f ( x)2x1 a x 1 15.已知函数 f ( x)(a > 1).a x1(1) 判断 f ( x) 的奇偶性 ; (2) 求 f (x) 的值域 ;(3) 证明 f ( x) 是区间 (-∞ ,+ ∞)上的增函数 .。

北师大版高中数学必修1《三章 指数函数和对数函数 5 对数函数 5.1 对数函数的概念》优质课教案_15

北师大版高中数学必修1《三章 指数函数和对数函数  5 对数函数  5.1 对数函数的概念》优质课教案_15

2.1函数概念一、教材的地位与作用函数内容是高中数学学习的一条主线,它贯穿整个高中数学学习中。

函数是高中数学七大主干知识之一,又是沟通代数﹑方程﹑不等式﹑数列、三角函数、解析几何、导数等内容的桥梁,同时也是今后进一步学习高等数学的基础。

函数的学习过程经历了直观感知、观察分析、归纳类比、抽象概括等思维过程,通过学习可以提高了学生的数学思维能力。

二、教学目标1.知识与技能:(1)能对具体函数指出定义域、对应法则、值域;(2)会求一些简单函数(带根号,分式)的定义域和值域;(3)能够从函数的三要素的角度去判定两个函数是否是同一个函数;(4)能够正确使用“区间”的符号表示某些函数的定义域。

2、过程与方法: 通过实例,进一步体会函数是描述变量之间的依赖关系的重要数学模型,在此基础上学习用集合与对应的语言来刻画函数,体会对应关系在刻画函数概念中的作用。

3、情感态度与价值观:使学生感受到学习函数的必要性的重要性,激发学习的积极性。

三、教学重难点教学重点:理解函数的模型化思想,函数的三要素。

教学难点:符号“)fy ”的含义,函数定义域和值域的区间表示,从具体(x实例抽象出函数概念。

四、教法学法与教具问题式教学法(实例情境、启发引导、合作交流、归纳抽象),根据学生的心理特征和认知规律,以问题为主线,以学生为主体,以教师为主导的教学理念。

采用一系列的设问、引导、启发、发现,让学生归纳、概括出函数概念的本质,并灵活应用多媒体、黑板呈现、展示、交流。

教具:多媒体 .五、教学过程一、创设情景,揭示课题1、复习初中所学函数的概念,强调函数的模型化思想;2、阅读课本引例,体会函数是描述客观事物变化规律的数学模型的思想:(1)炮弹的射高与时间的变化关系问题;(2)南极臭氧空洞面积与时间的变化关系问题;(3)“八五”计划以来我国城镇居民的恩格尔系数与时间的变化关系问题3、分析、归纳以上三个实例,它们有什么共同点。

4、引导学生应用集合与对应的语言描述各个实例中两个变量间的依赖关系;5、根据初中所学函数的概念,判断各个实例中的两个变量间的关系是否是函数关系.二、讲解新课1、函数的有关概念(1)函数的概念:设A、B是非空的数集,如果按照某个确定的对应关系f,使对于集合A中的任意一个数x,在集合B中都有唯一确定的数f(x)和它对应,那么就称f:A→B 为从集合A到集合B的一个函数(function).记作:y=f(x),x∈A.其中,x叫做自变量,x的取值范围A叫做函数的定义域(domain);与x的值相对应的y值叫做函数值,函数值的集合{f(x)| x∈A }叫做函数的值域(range).注意:①“y=f(x)”是函数符号,可以用任意的字母表示,如“y=g(x)”;②函数符号“y=f(x)”中的f(x)表示与x对应的函数值,一个数,而不是f乘x.(2)构成函数的三要素是什么?定义域、对应关系和值域(3)区间的概念①区间的分类:开区间、闭区间、半开半闭区间;②无穷区间;③区间的数轴表示.设计意图:比较描述性定义和集合,与对应语言刻画的定义,体会函数的概念。

  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

一.课题:指数函数与对数函数
二.教学目标:1.掌握指数函数与对数函数的概念、图象和性质;
2.能利用指数函数与对数函数的性质解题.
三.教学重点:运用指数函数、对数函数的定义域、单调性解题.
四.教学过程:
(一)主要知识:
1.指数函数、对数函数的概念、图象和性质;
2.同底的指数函数x y a =与对数函数log a y x =互为反函数;
(二)主要方法:
1.解决与对数函数有关的问题,要特别重视定义域;
2.指数函数、对数函数的单调性决定于底数大于1还是小于1,要注意对底数的讨论;
3.比较几个数的大小的常用方法有:①以0和1为桥梁;②利用函数的单调性;③作差.
(三)例题分析:
例1.(1)若21a b a >>>,则log b
b a
,log b a ,log a b 从小到大依次为 ; (2)若235x y z ==,且x ,y ,z 都是正数,则2x ,3y ,5z 从小到大依次为 ;
(3)设0x >,且1x x a b <<(0a >,0b >),则a 与b 的大小关系是 ( ) (A )1b a << (B )1a b << (C )1b a << (D )1a b <<
解:(1)由21a b a >>>得
b a a <,故log b b a
<log b a 1<<log a b . (2)令235x y z t ===,则1t >,lg lg 2t x =,lg lg 3t y =,lg lg 5
t z =, ∴2lg 3lg lg (lg 9lg8)230lg 2lg 3lg 2lg 3
t t t x y ⋅--=-=>⋅,∴23x y >; 同理可得:250x z -<,∴25x z <,∴325y x z <<.(3)取1x =,知选(B ).
例2.已知函数2()1
x x f x a x -=++(1)a >, 求证:(1)函数()f x 在(1,)-+∞上为增函数;(2)方程()0f x =没有负数根. 证明:(1)设121x x -<<, 则1212
121222()()11
x x x x f x f x a a x x ---=+--++ 121212*********()11(1)(1)
x x x x x x x x a a a a x x x x ---=-+-=-+++++, ∵121x x -<<,∴110x +>,210x +>,120x x -<, ∴12123()0(1)(1)x x x x -<++; ∵121x x -<<,且1a >,∴12x x a a <,∴120x x a a -<,
∴12()()0f x f x -<,即12()()f x f x <,∴函数()f x 在(1,)-+∞上为增函数;
(2)假设0x 是方程()0f x =的负数根,且01x ≠-,则000201
x x a x -+=+,
即00000023(1)31111
x x x a x x x --+=
==-+++, ① 当010x -<<时,0011x <+<,∴0331x >+,∴03121x ->+,而由1a >知01x a <, ∴①式不成立;
当01x <-时,010x +<,∴0301x <+,∴03111
x -<-+,而00x a >, ∴①式不成立.
综上所述,方程()0f x =没有负数根.
例3.已知函数()log (1)x a f x a =-(0a >且1a ≠).(《高考A 计划》考点15,例4).
求证:(1)函数()f x 的图象在y 轴的一侧;
(2)函数()f x 图象上任意两点连线的斜率都大于0.
证明:(1)由10x a ->得:1x a >,
∴当1a >时,0x >,即函数()f x 的定义域为(0,)+∞,此时函数()f x 的图象在y 轴的右侧;
当01a <<时,0x <,即函数()f x 的定义域为(,0)-∞,此时函数()f x 的图象在y 轴的左侧.
∴函数()f x 的图象在y 轴的一侧;
(2)设11(,)A x y 、22(,)B x y 是函数()f x 图象上任意两点,且12x x <,
则直线AB 的斜率1212y y k x x -=-,1122121log (1)log (1)log 1
x x x a a a x a y y a a a --=---=-, 当1a >时,由(1)知120x x <<,∴121x x a a <<,∴12011x x
a a <-<-, ∴121011
x x a a -<<-,∴120y y -<,又120x x -<,∴0k >; 当01a <<时,由(1)知120x x <<,∴121x x a a >>,∴12110x x a a ->->, ∴12111
x x a a ->-,∴120y y -<,又120x x -<,∴0k >. ∴函数()f x 图象上任意两点连线的斜率都大于0.
(四)巩固练习:
1.已知函数()|lg |f x x =,若11a b c
>>>,则()f a 、()f b 、()f c 从小到大依次为 ()()()f b f a f c <<;(注:1()()f f c c
=) 2.若a 为方程20x x +=的解,b 为不等式2log 1x >的解,c 为方程12
log x x =的解,则
a 、
b 、
c 从小到大依次为a c b <<;
3.若函数|1|()2x f x m --=-的图象与x 轴有交点,则实数m 的取值范围是01m <≤.
五.课后作业:《高考A 计划》考点15,智能训练3,5,7,10,12,15.。

相关文档
最新文档