备战中考数学培优专题复习圆与相似练习题含详细答案

合集下载

中考数学圆与相似(大题培优 易错 难题)含答案解析

中考数学圆与相似(大题培优 易错 难题)含答案解析

中考数学圆与相似(大题培优易错难题)含答案解析一、相似1.Rt△ABC中,∠ACB=90°,AC=3,BC=7,点P是边AC上不与点A、C重合的一点,作PD∥BC交AB边于点D.(1)如图1,将△APD沿直线AB翻折,得到△AP'D,作AE∥PD.求证:AE=ED;(2)将△APD绕点A顺时针旋转,得到△AP'D',点P、D的对应点分别为点P'、D',①如图2,当点D'在△ABC内部时,连接P′C和D'B,求证:△AP'C∽△AD'B;②如果AP:PC=5:1,连接DD',且DD'= AD,那么请直接写出点D'到直线BC的距离.【答案】(1)证明:∵将△APD沿直线AB翻折,得到△AP'D,∴∠ADP'=∠ADP,∵AE∥PD,∴∠EAD=∠ADP,∴∠EAD=∠ADP',∴AE=DE(2)解:①∵DP∥BC,∴△APD∽△ACB,∴,∵旋转,∴AP=AP',AD=AD',∠PAD=∠P'AD',∴∠P'AC=∠D'AB,,∴△AP'C∽△AD'B②若点D'在直线BC下方,如图,过点A作AF⊥DD',过点D'作D'M⊥AC,交AC的延长线于M,∵AP:PC=5:1,∴AP:AC=5:6,∵PD∥BC,∴ = ,∵BC=7,∴PD=,∵旋转,∴AD=AD',且AF⊥DD',∴DF=D'F= D'D,∠ADF=∠AD'F,∵cos∠ADF== = ,∴∠ADF=45°,∴∠AD'F=45°,∴∠D'AD=90°∴∠D'AM+∠PAD=90°,∵D'M⊥AM,∴∠D'AM+∠AD'M=90°,∴∠PAD=∠AD'M,且AD'=AD,∠AMD'=∠APD,∴△AD'M≌△DAP(AAS)∴PD=AM=,∵CM=AM﹣AC=﹣3,∴CM=,∴点D'到直线BC的距离为若点D'在直线BC的上方,如图,过点D'作D'M⊥AC,交CA的延长线于点M,同理可证:△AMD'≌△DPA,∴AM=PD=,∵CM=AC+AM,∴CM=3+ =,∴点D'到直线BC的距离为综上所述:点D'到直线BC的距离为或;【解析】【分析】(1)由折叠的性质和平行线的性质可得∠EAD=∠ADP=∠ADP',即可得AE=DE;(2)①由题意可证△APD∽△ACB,可得,由旋转的性质可得AP=AP',AD=AD',∠PAD=∠P'AD',即∠P'AC=∠D'AB,,则△AP'C∽△AD'B;②分点D'在直线BC的下方和点D'在直线BC的上方两种情况讨论,根据平行线分线段成比例,可求PD=,通过证明△AMD'≌△DPA,可得AM=PD=,即可求点D'到直线BC 的距离.2.如图,四边形ABCD内接于⊙O,AB是⊙O的直径,AC和BD相交于点E,且DC2=CE·CA.(1)求证:BC=CD;(2)分别延长AB,DC交于点P,若PB=OB,CD=,求⊙O的半径.【答案】(1)证明:∵DC2=CE·CA,∴,∵∠DCE=∠ACD,∴△CDE~△CAD,∴∠CDE=∠CAD,又∵∠CBD=∠CAD,∴∠CDE=∠CBD,∴CD=CB.(2)解:连结OC(如图),设⊙O的半径为r,由(1)知CD=CB,∴弧CD=弧CB,∴∠CDB=∠CBD=∠CAB=∠CAD=∠BAD,∠BOC=2∠CAB,∴∠BOC=∠BAD,∴OC∥AD,∴,∵PB=OB,∴PB=OB=OA=r,PO=2r,∴=2,∵CD=2,∴PC=4,PD=PC+CD=6,又∵∠PCB=∠CDB+∠CBD,∠PAD=∠PACB+∠CAD,∴∠PCB=∠PAD,∵∠CPB=∠APD,∴△PCB~△PAD,∴,即,解得:r=4.即⊙O的半径为4.【解析】【分析】(1)根据相似三角形的判定:两边对应成比例及夹角相等可得△CDE~△CAD,再由相似三角形的性质:对应角相等,等量代换可得∠CDE=∠CBD,根据等腰三角形的性质即可得证.(2)连结OC,设⊙O的半径为r,根据圆周角定理可得∠BOC=∠BAD,由平行线的判定得OC∥AD,根据平行线所截线段成比例可得=2,从而求得PC、PD长,再根据相似三角形的判定可得△PCB~△PAD,由相似三角形的性质可得,从而求得半径.3.如图1,以□ABCD的较短边CD为一边作菱形CDEF,使点F落在边AD上,连接BE,交AF于点G.(1)猜想BG与EG的数量关系.并说明理由;(2)延长DE,BA交于点H,其他条件不变,①如图2,若∠ADC=60°,求的值;②如图3,若∠ADC=α(0°<α<90°),直接写出的值.(用含α的三角函数表示)【答案】(1)解:,理由如下:∵四边形是平行四边形,∴∥, .∵四边形是菱形,∴∥, .∴∥, .∴ .又∵,∴≌ .∴(2)解:方法1:过点作∥,交于点,∴ .∵,∴∽ .∴ .由(1)结论知 .∴ .∴ .∵四边形为菱形,∴ .∵四边形是平行四边形,∴∥ .∴ .∵∥,∴ .∴,即 .∴是等边三角形。

备战中考数学与圆与相似有关的压轴题附详细答案

备战中考数学与圆与相似有关的压轴题附详细答案

备战中考数学与圆与相似有关的压轴题附详细答案一、相似1.设C为线段AB的中点,四边形BCDE是以BC为一边的正方形.以B为圆心,BD长为半径的⊙B与AB相交于F点,延长EB交⊙B于G点,连接DG交于AB于Q点,连接AD.求证:(1)AD是⊙B的切线;(2)AD=AQ;(3)BC2=CF•EG.【答案】(1)证明:连接BD,∵四边形BCDE是正方形,∴∠DBA=45°,∠DCB=90°,即DC⊥AB,∵C为AB的中点,∴CD是线段AB的垂直平分线,∴AD=BD,∴∠DAB=∠DBA=45°,∴∠ADB=90°,即BD⊥AD,∵BD为半径,∴AD是⊙B的切线(2)证明:∵BD=BG,∴∠BDG=∠G,∵CD∥BE,∴∠CDG=∠G,∴∠G=∠CDG=∠BDG= ∠BCD=22.5°,∴∠ADQ=90°﹣∠BDG=67.5°,∠AQB=∠BQG=90°﹣∠G=67.5°,∴∠ADQ=∠AQD,∴AD=AQ(3)证明:连接DF,在△BDF中,BD=BF,∴∠BFD=∠BDF,又∵∠DBF=45°,∴∠BFD=∠BDF=67.5°,∵∠GDB=22.5°,在Rt△DEF与Rt△GCD中,∵∠GDE=∠GDB+∠BDE=67.5°=∠DFE,∠DCF=∠E=90°,∴Rt△DCF∽Rt△GED,∴ ,又∵CD=DE=BC,∴BC2=CF•EG.【解析】【分析】(1)连接BD,要证AD是圆B的切线,根据切线的判定可知,只须证明∠ADB=即可。

由正方形的性质易得BC=CD,∠DCB=∠DCA=,∠DBC=∠CDB=,根据点C为AB的中点可得BC=CD=AC,所以可得∠ADC=,则∠∠ADB=,问题得证;(2)要证AQ=AD,需证∠AQD=∠ADQ。

由题意易得∠AQD=-∠G,∠ADQ=-∠BDG,根据等边对等角可得∠G=∠BDG,由等角的余角相等可得∠AQD=∠ADQ,所以AQ=AD;(3)要证乘积式成立,需证这些线段所在的两个三角形相似,而由正方形的性质可得CD=DE=BC,所以可知BC、CF、EG分别在三角形DCF和三角形GED中,连接DF,用有两对角对应相等的两个三角形相似即可得证。

初三数学圆与相似的专项培优练习题(含答案)附答案

初三数学圆与相似的专项培优练习题(含答案)附答案

初三数学圆与相似的专项培优练习题(含答案)附答案一、相似1.如图1,等腰△ABC中,AC=BC,点O在AB边上,以O为圆心的圆与AC相切于点C,交AB边于点D,EF为⊙O的直径,EF⊥BC于点G.(1)求证:D是弧EC的中点;(2)如图2,延长CB交⊙O于点H,连接HD交OE于点K,连接CF,求证:CF=OK+DO;(3)如图3,在(2)的条件下,延长DB交⊙O于点Q,连接QH,若DO=,KG=2,求QH的长【答案】(1)证明:如图1中,连接OC.∵AC是⊙O的切线,∴OC⊥AC,∴∠ACO=90°,∴∠A+∠AOC=90°,∵CA=CB,∴∠A=∠B,∵EF⊥BC,∴∠OGB=90°,∴∠B+∠BOG=90°,∴∠BOG=∠AOC,∵∠BOG=∠DOE,∴∠DOC=∠DOE,∴点D是的中点(2)证明:如图2中,连接OC.∵EF⊥HC,∴CG=GH,∴EF垂直平分HC,∴FC=FH,∵∠CFK= ∠COE,∵∠COD=∠DOE,∴∠CFK=∠COD,∵∠CHK= ∠COD,∴∠CHK= ∠CFK,∴点K在以F为圆心FC为半径的圆上,∴FC=FK=FH,∵DO=OF,∴DO+OK=OF+OK=FK=CF,即CF=OK+DO;(3)解:如图3中,连接OC、作HM⊥AQ于M.设OK=x,则CF= +x,OG=2﹣x,GF= ﹣(2﹣x),∵CG2=CF2﹣FG2=CO2﹣OG2,∴( +x)2﹣[ -(2﹣x)]2=()2﹣(2﹣x)2,解得x= ,∴CF=5,FG=4,CG=3,OG= ,∵∠CFE=∠BOG,∴CF∥OB,∴ = = ,可得OB= ,BG= ,BH= ,由△BHM∽△BOG,可得 = = ,∴BM= ,HM= ,MQ=OQ﹣OB﹣BM=在Rt△HMQ中,QH= = =【解析】【分析】(1)如图1中,连接OC.根据切线的性质得出OC⊥AC,根据垂直的定义得出∠ACO=90°,根据直角三角形两锐角互余得出∠A+∠AOC=90°,根据等边对等角得出∠A=∠B,根据垂直的定义得出∠OGB=90°,根据直角三角形两锐角互余得出∠B+∠BOG=90°,根据等角的余角相等得出∠BOG=∠AOC,根据对顶角相等及等量代换得出∠DOC=∠DOE,根据相等的圆心角所对的弧相等得出结论;(2)如图2中,连接OC.根据垂径定理得出CG=GH,进而得出EF垂直平分HC,根据线段垂直平分线上上的点到线段两个端点的距离相等得出FC=FH,根据圆周角定理及等量代换得出∠CFK=∠COD,∠CHK=∠CFK,从而得出点K在以F为圆心FC为半径的圆上,根据同圆的半径相等得出FC=FK=FH,DO=OF,根据线段的和差及等量代换得出CF=OK+DO;(3)如图3中,连接OC、作HM⊥AQ于M.设OK=x,则CF= +x,OG=2﹣x,GF=﹣(2﹣x),根据勾股定理由CG2=CF2﹣FG2=CO2﹣OG2,列出关于x的方程,求解得出x的值,从而得出CF=5,FG=4,CG=3,OG= 根据平行线的判定定理得出,内错角相等,两直线平行得出CF∥OB,根据平行线分线段成比例定理得出C F ∶O B = C G∶ G B = F G ∶G O ,进而可得OB,BG,BH的长,由△BHM∽△BOG,可得 B H ∶O B = B M ∶B G = H M ∶O G,再得出BM,HM,MQ的长,在Rt△HMQ中,根据勾股定理得出QH的长。

中考数学 圆与相似 培优练习(含答案)附答案解析

中考数学 圆与相似 培优练习(含答案)附答案解析

中考数学圆与相似培优练习(含答案)附答案解析一、相似1.已知二次函数y=ax2+bx-2的图象与x轴交于A,B两点,与y轴交于点C,点A的坐标为(4,0),且当x=-2和x=5时二次函数的函数值y相等.(1)求实数a,b的值;(2)如图①,动点E,F同时从A点出发,其中点E以每秒2个单位长度的速度沿AB边向终点B运动,点F以每秒个单位长度的速度沿射线AC方向运动.当点E停止运动时,点F随之停止运动.设运动时间为t秒.连接EF,将△AEF沿EF翻折,使点A落在点D处,得到△DEF.①是否存在某一时刻t,使得△DCF为直角三角形?若存在,求出t的值;若不存在,请说明理由;②设△DEF与△ABC重叠部分的面积为S,求S关于t的函数关系式.【答案】(1)解:由题意得:,解得:a= ,b=(2)解:①由(1)知二次函数为 .∵A(4,0),∴B(﹣1,0),C (0,﹣2),∴OA=4,OB=1,OC=2,∴AB=5,AC= ,BC= ,∴AC2+BC2=25=AB2,∴△ABC为直角三角形,且∠ACB=90°.∵AE=2t,AF= t,∴ .又∵∠EAF=∠CAB,∴△AEF∽△ACB,∴∠AEF=∠ACB=90°,∴△AEF沿EF翻折后,点A落在x轴上点D处;由翻折知,DE=AE,∴AD=2AE=4t,EF= AE=t.假设△DCF为直角三角形,当点F在线段AC上时:ⅰ)若C为直角顶点,则点D与点B重合,如图2,∴AE= AB= t= ÷2= ;ⅱ)若D为直角顶点,如图3.∵∠CDF=90°,∴∠ODC+∠EDF=90°.∵∠EDF=∠EAF,∴∠OBC+∠EAF=90°,∴∠ODC=∠OBC,∴BC=DC.∵OC⊥BD,∴OD=OB=1,∴AD=3,∴AE= ,∴t= ;当点F在AC延长线上时,∠DFC>90°,△DCF为钝角三角形.综上所述,存在时刻t,使得△DCF为直角三角形,t= 或t= .②ⅰ)当0<t≤ 时,重叠部分为△DEF,如图1、图2,∴S= ×2t×t=t2;ⅱ)当<t≤2时,设DF与BC相交于点G,则重叠部分为四边形BEFG,如图4,过点G作GH⊥BE于H,设GH=m,则BH= ,DH=2m,∴DB= .∵DB=AD﹣AB=4t﹣5,∴ =4t﹣5,∴m= (4t﹣5),∴S=S△DEF﹣S△DBG= ×2t×t﹣(4t﹣5)× (4t﹣5)= ;ⅲ)当2<t≤ 时,重叠部分为△BEG,如图5.∵BE=DE﹣DB=2t﹣(4t﹣5)=5﹣2t,GE=2BE=2(5﹣2t),∴S= ×(5﹣2t)×2(5﹣2t)=4t2﹣20t+25.综上所述:.【解析】【分析】(1)根据已知抛物线的图像经过点A,以及当x=-2和x=5时二次函数的函数值y相等两个条件,列出方程组求出待定系数的值即可。

2020-2021备战中考数学培优专题复习圆与相似练习题含答案

2020-2021备战中考数学培优专题复习圆与相似练习题含答案

2020-2021备战中考数学培优专题复习圆与相似练习题含答案一、相似1.已知线段a,b,c满足,且a+2b+c=26.(1)判断a,2b,c,b2是否成比例;(2)若实数x为a,b的比例中项,求x的值.【答案】(1)解:设,则a=3k,b=2k,c=6k,又∵a+2b+c=26,∴3k+2×2k+6k=26,解得k=2,∴a=6,b=4,c=12;∴2b=8,b2=16∵a=6,2b=8,c=12,b2=16∴2bc=96,ab2=6×16=96∴2bc=ab2a,2b,c,b2是成比例的线段。

(2)解:∵x是a、b的比例中项,∴x2=6ab,∴x2=6×4×6,∴x=12.【解析】【分析】(1)设已知比例式的值为k,可得出a=3k,b=2k,c=6k,再代入a+2b+c=26,建立关于k的方程,求出kl的值,再求出2b、b2,然后利用成比例线段的定义,可判断a,2b,c,b2是否成比例。

(2)根据实数x为a,b的比例中项,可得出x2=ab,建立关于x的方程,求出x的值。

2.如图1,经过原点O的抛物线y=ax2+bx(a≠0)与x轴交于另一点A(,0),在第一象限内与直线y=x交于点B(2,t).(1)求这条抛物线的表达式;(2)在第四象限内的抛物线上有一点C,满足以B,O,C为顶点的三角形的面积为2,求点C的坐标;(3)如图2,若点M在这条抛物线上,且∠MBO=∠ABO,在(2)的条件下,是否存在点P,使得△POC∽△MOB?若存在,求出点P的坐标;若不存在,请说明理由.【答案】(1)解:∵B(2,t)在直线y=x上,∴t=2,∴B(2,2),把A、B两点坐标代入抛物线解析式可得,解得,∴抛物线解析式为y=2x2﹣3x(2)解:如图1,过C作CD∥y轴,交x轴于点E,交OB于点D,过B作BF⊥CD于点F,∵点C是抛物线上第四象限的点,∴可设C(t,2t2﹣3t),则E(t,0),D(t,t),∴OE=t,BF=2﹣t,CD=t﹣(2t2﹣3t)=﹣2t2+4t,∴S△OBC=S△CDO+S△CDB= CD•OE+ CD•BF= (﹣2t2+4t)(t+2﹣t)=﹣2t2+4t,∵△OBC的面积为2,∴﹣2t2+4t=2,解得t1=t2=1,∴C(1,﹣1)(3)解:存在.设MB交y轴于点N,如图2,∵B(2,2),∴∠AOB=∠NOB=45°,在△AOB和△NOB中∴△AOB≌△NOB(ASA),∴ON=OA= ,∴N(0,),∴可设直线BN解析式为y=kx+ ,把B点坐标代入可得2=2k+ ,解得k= ,∴直线BN的解析式为y= x+ ,联立直线BN和抛物线解析式可得,解得或,∴M(﹣,),∵C(1,﹣1),∴∠COA=∠AOB=45°,且B(2,2),∴OB=2 ,OC= ,∵△POC∽△MOB,∴ = =2,∠POC=∠BOM,当点P在第一象限时,如图3,过M作MG⊥y轴于点G,过P作PH⊥x轴于点H,∵∠COA=∠BOG=45°,∴∠MOG=∠POH,且∠PHO=∠MGO,∴△MOG∽△POH,∴ = = =2,∵M(﹣,),∴MG= ,OG= ,∴PH= MG= ,OH= OG= ,∴P(,);当点P在第三象限时,如图4,过M作MG⊥y轴于点G,过P作PH⊥y轴于点H,同理可求得PH= MG= ,OH= OG= ,∴P(﹣,);综上可知存在满足条件的点P,其坐标为(,)或(﹣,)【解析】【分析】(1)根据已知抛物线在第一象限内与直线y=x交于点B(2,t),可求出点B的坐标,再将点A、B的坐标分别代入y=ax2+bx,建立二元一次方程组,求出a、b 的值,即可求得答案。

备战中考数学培优专题复习圆与相似练习题及答案

备战中考数学培优专题复习圆与相似练习题及答案

备战中考数学培优专题复习圆与相似练习题及答案一、相似1.在△ABC中,∠ABC=90°.(1)如图1,分别过A、C两点作经过点B的直线的垂线,垂足分别为M、N,求证:△ABM∽△BCN;(2)如图2,P是边BC上一点,∠BAP=∠C,tan∠PAC= ,求tanC的值;(3)如图3,D是边CA延长线上一点,AE=AB,∠DEB=90°,sin∠BAC= ,,直接写出tan∠CEB的值.【答案】(1)解:∵AM⊥MN,CN⊥MN,∴∠AMB=∠BNC=90°,∴∠BAM+∠ABM=90°,∵∠ABC=90°,∴∠ABM+∠CBN=90°,∴∠BAM=∠CBN,∵∠AMB=∠NBC,∴△ABM∽△BCN(2)解:如图2,过点P作PM⊥AP交AC于M,PN⊥AM于N.∵∠BAP+∠1=∠CPM+∠1=90°,∴∠BAP=∠CPM=∠C,∴MP=MC∵tan∠PAC=,设MN=2m,PN=m,根据勾股定理得,PM=,∴tanC=(3)解:在Rt△ABC中,sin∠BAC= = ,过点A作AG⊥BE于G,过点C作CH⊥BE交EB的延长线于H,∵∠DEB=90°,∴CH∥AG∥DE,∴ =同(1)的方法得,△ABG∽△BCH∴,设BG=4m,CH=3m,AG=4n,BH=3n,∵AB=AE,AG⊥BE,∴EG=BG=4m,∴GH=BG+BH=4m+3n,∴,∴n=2m,∴EH=EG+GH=4m+4m+3n=8m+3n=8m+6m=14m,在Rt△CEH中,tan∠BEC= =【解析】【分析】(1)根据垂直的定义得出∠AMB=∠BNC=90°,根据同角的余角相等得出∠BAM=∠CBN,利用两个角对应相等的两个三角形相似得出:△ABM∽△BCN;(2)过点P作PF⊥AP交AC于F,在Rt△AFP中根据正切函数的定义,由tan∠PAC=,同(1)的方法得,△ABP∽△PQF,故,设AB= a,PQ=2a,BP= b,FQ=2b(a>0,b>0),然后判断出△ABP∽△CQF,得从而表示出CQ,进根据线段的和差表示出BC,再判断出△ABP∽△CBA,得出再得出BC,从而列出方程,表示出BC,AB,在Rt△ABC中,根据正切函数的定义得出tanC的值;(3)在Rt△ABC中,利用正弦函数的定义得出:sin∠BAC=,过点A作AG⊥BE于G,过点C作CH⊥BE交EB的延长线于H,根据平行线分线段成比例定理得出,同(1)的方法得,△ABG∽△BCH ,故,设BG=4m,CH=3m,AG=4n,BH=3n,根据等腰三角形的三线合一得出EG=BG=4m,故GH=BG+BH=4m+3n,根据比例式列出方程,求解得出n与m的关系,进而得出EH=EG+GH=4m+4m+3n=8m+3n=8m+6m=14m,在Rt△CEH中根据正切函数的定义得出tan∠BEC的值。

备战中考数学培优(含解析)之圆与相似附详细答案

备战中考数学培优(含解析)之圆与相似附详细答案

备战中考数学培优(含解析)之圆与相似附详细答案一、相似1.如图,在一块长为a(cm),宽为b(cm)(a>b)的矩形黑板的四周,镶上宽为x(cm)的木板,得到一个新的矩形.(1)试用含a,b,x的代数式表示新矩形的长和宽;(2)试判断原矩形的长、宽与新矩形的长、宽是不是比例线段,并说明理由.【答案】(1)解:由原矩形的长、宽分别为a(cm),b(cm),木板宽为x(cm),可得新矩形的长为(a+2x)cm,宽为(b+2x)cm(2)解:假设两个矩形的长与宽是成比例线段,则有,由比例的基本性质,得ab+2bx=ab+2ax,∴2(a-b)x=0.∵a>b,∴a-b≠0,∴x=0,又∵x>0,∴原矩形的长、宽与新矩形的长、宽不是比例线段.【解析】【分析】(1)根据已知,观察图形,可得出新矩形的长和宽。

(2)假设两个矩形的长与宽是成比例线段,列出比例式,再利用比例的性质得出x=0,即可判断。

2.如图,在平面直角坐标系中,O为原点,平行四边形A BCD的边BC在x轴上,D点在y 轴上,C点坐标为(2,0),BC=6,∠BCD=60°,点E是AB上一点,AE=3EB,⊙P过D,O,C三点,抛物线y=ax2+bx+c过点D,B,C三点.(1)请直接写出点B、D的坐标:B(________),D(________);(2)求抛物线的解析式;(3)求证:ED是⊙P的切线;(4)若点M为抛物线的顶点,请直接写出平面上点N的坐标,使得以点B,D,M,N为顶点的四边形为平行四边形.【答案】(1)-4,0;0,2(2)解:将(2,0),B(-4,0),D(0,);三点分别代入y=ax2+bx+c得,解得∴所求抛物线的解析式y=- x2- x+(3)证明:在Rt△OCD中,CD=2OC=4,∵四边形ABCD为平行四边形,∴AB=CD=4,AB∥CD,∠A=∠BCD=60°,AD=BC=6,∵AE=3BE,∴AE=3,∴,∵∴∵四边形ABCD是平行四边形,∴∠DAE=∠DCB=60°,∴△AED∽△COD,∴∠ADE=∠CDO,而∠ADE+∠ODE=90°∴∠CDO+∠ODE=90°,∴CD⊥DE,∵∠DOC=90°,∴CD为⊙P的直径,∴ED是⊙P的切线(4)解:点N的坐标为(-5,)、(3,)、(-3,- )【解析】【解析】解:(1)∵C点坐标为(2,0),∴OC=2 ,∵BC=6 ,∴OB=BC-OC=4 ,∴B(-4,0),∵∠BCD=60°,tan∠BCD= ,∴ ,∴OD=,∴D(0,);(4存在,∵y=−x2−x+=−(x+1)2+∴M(−1,),∵B(−4,0),D(0,),如图,当BM为平行四边形BDMN的对角线时,点D向左平移4个单位,再向下平移个单位得到B,则点M(−1,)向左平移4个单位,再向下平移个单位得到N1(−5,);当DM为平行四边形BDMN的对角线时,点B向右平移3个单位,再向上平移个单位得到D,则点M(−1,)向右平移4个单位,再向上平移个单位得到N2(3,);当BD为平行四边形BDMN的对角线时,点M向右平移1个单位,再向下平移个单位得到D,则点B(−4,0)向右平移1个单位,再向下平移个单位得到N3(−3,−);综上所述,以点B,D,M,N为顶点的四边形为平行四边形时,点N的坐标为(−5,,)或(3,)或(−3,−)【分析】(1)根据点C的坐标,求出OC的长度,进而求出OB的长度,得出B点的坐标。

备战中考数学培优专题复习圆与相似练习题及详细答案

备战中考数学培优专题复习圆与相似练习题及详细答案

备战中考数学培优专题复习圆与相似练习题及详细答案一、相似1.如图,已知抛物线经过点A(﹣1,0),B(4,0),C(0,2)三点,点D与点C关于x轴对称,点P是x轴上的一个动点,设点P的坐标为(m,0),过点P做x轴的垂线l交抛物线于点Q,交直线于点M.(1)求该抛物线所表示的二次函数的表达式;(2)已知点F(0,),当点P在x轴上运动时,试求m为何值时,四边形DMQF是平行四边形?(3)点P在线段AB运动过程中,是否存在点Q,使得以点B、Q、M为顶点的三角形与△BOD相似?若存在,求出点Q的坐标;若不存在,请说明理由.【答案】(1)解:由抛物线过点A(-1,0)、B(4,0)可设解析式为y=a(x+1)(x-4),将点C(0,2)代入,得:-4a=2,解得:a=- ,则抛物线解析式为y=- (x+1)(x-4)=- x2+ x+2(2)解:由题意知点D坐标为(0,-2),设直线BD解析式为y=kx+b,将B(4,0)、D(0,-2)代入,得:,解得:,∴直线BD解析式为y= x-2,∵QM⊥x轴,P(m,0),∴Q(m,- m2+ m+2)、M(m, m-2),则QM=- m2+ m+2-( m-2)=- m2+m+4,∵F(0,)、D(0,-2),∴DF= ,∵QM∥DF,∴当- m2+m+4= 时,四边形DMQF是平行四边形,解得:m=-1或m=3,即m=-1或3时,四边形DMQF是平行四边形。

(3)解:如图所示:∵QM∥DF,∴∠ODB=∠QMB,分以下两种情况:①当∠DOB=∠MBQ=90°时,△DOB∽△MBQ,则,∵∠MBQ=90°,∴∠MBP+∠PBQ=90°,∵∠MPB=∠BPQ=90°,∴∠MBP+∠BMP=90°,∴∠BMP=∠PBQ,∴△MBQ∽△BPQ,∴,即,解得:m1=3、m2=4,当m=4时,点P、Q、M均与点B重合,不能构成三角形,舍去,∴m=3,点Q的坐标为(3,2);②当∠BQM=90°时,此时点Q与点A重合,△BOD∽△BQM′,此时m=-1,点Q的坐标为(-1,0);综上,点Q的坐标为(3,2)或(-1,0)时,以点B、Q、M为顶点的三角形与△BOD相似.【解析】【分析】(1)A(-1,0)、B(4,0)是抛物线与x轴的交点,则可由抛物线的两点式,设解析为y=a(x+1)(x-4),代入C(0,2)即可求得a的值;(2)由QM∥DF且四边形DMQF是平行四边形知QM=DF,由D,F的坐标可求得DF的长度;由P(m,0)可得Q(m,-m2+m+2),而M在直线BD上,由B,D的坐标用待定系数法求出直线BD的解析式,并当=m时,表示出点M的坐标,可用m表示出QM的长度。

备战中考数学培优易错试卷(含解析)之圆与相似及详细答案

备战中考数学培优易错试卷(含解析)之圆与相似及详细答案

备战中考数学培优易错试卷(含解析)之圆与相似及详细答案一、相似1.如图所示,将二次函数y=x2+2x+1的图象沿x轴翻折,然后向右平移1个单位,再向上平移4个单位,得到二次函数y=ax2+bx+c的图象.函数y=x2+2x+1的图象的顶点为点A.函数y=ax2+bx+c的图象的顶点为点B,和x轴的交点为点C,D(点D位于点C的左侧).(1)求函数y=ax2+bx+c的解析式;(2)从点A,C,D三个点中任取两个点和点B构造三角形,求构造的三角形是等腰三角形的概率;(3)若点M是线段BC上的动点,点N是△ABC三边上的动点,是否存在以AM为斜边的Rt△AMN,使△AMN的面积为△ABC面积的?若存在,求tan∠MAN的值;若不存在,请说明理由.【答案】(1)解:y=x2+2x+1=(x+1)2的图象沿x轴翻折,得y=﹣(x+1)2,把y=﹣(x+1)2向右平移1个单位,再向上平移4个单位,得y=﹣x2+4,∴所求的函数y=ax2+bx+c的解析式为y=﹣x2+4(2)解:∵y=x2+2x+1=(x+1)2,∴A(﹣1,0),当y=0时,﹣x2+4=0,解得x=±2,则D(﹣2,0),C(2,0);当x=0时,y=﹣x2+4=4,则B(0,4),从点A,C,D三个点中任取两个点和点B构造三角形的有:△ACB,△ADB,△CDB,∵AC=3,AD=1,CD=4,AB= ,BC=2 ,BD=2 ,∴△BCD为等腰三角形,∴构造的三角形是等腰三角形的概率=(3)解:存在,易得BC的解析是为y=﹣2x+4,S△ABC= AC•OB= ×3×4=6,M点的坐标为(m,﹣2m+4)(0≤m≤2),①当N点在AC上,如图1,∴△AMN的面积为△ABC面积的,∴(m+1)(﹣2m+4)=2,解得m1=0,m2=1,当m=0时,M点的坐标为(0,4),N(0,0),则AN=1,MN=4,∴tan∠MAC= =4;当m=1时,M点的坐标为(1,2),N(1,0),则AN=2,MN=2,∴tan∠MAC= =1;②当N点在BC上,如图2,BC= =2 ,∵BC•AN= AC•BC,解得AN= ,∵S△AMN= AN•MN=2,∴MN= = ,∴∠MAC= ;③当N点在AB上,如图3,作AH⊥BC于H,设AN=t,则BN= ﹣t,由②得AH= ,则BH= ,∵∠NBG=∠HBA,∴△BNM∽△BHA,∴,即,∴MN= ,∵AN•MN=2,即•(﹣t)• =2,整理得3t2﹣3 t+14=0,△=(﹣3 )2﹣4×3×14=﹣15<0,方程没有实数解,∴点N在AB上不符合条件,综上所述,tan∠MAN的值为1或4或【解析】【分析】(1)将y=x2+2x+1配方成顶点式,根据轴对称的性质,可得出翻折后的函数解析式,再根据函数图像平移的规律:上加下减,左加右减,可得出答案。

初三培优圆与相似辅导专题训练及详细答案

初三培优圆与相似辅导专题训练及详细答案

初三培优圆与相似辅导专题训练及详细答案一、相似1.如图,正方形ABCD、等腰Rt△BPQ的顶点P在对角线AC上(点P与A、C不重合),QP与BC交于E,QP延长线与AD交于点F,连接CQ.(1)①求证:AP=CQ;②求证:PA2=AF•AD;(2)若AP:PC=1:3,求tan∠CBQ.【答案】(1)证明:①∵四边形ABCD是正方形,∴AB=CB,∠ABC=90°,∴∠ABP+∠PBC=90°,∵△BPQ是等腰直角三角形,∴BP=BQ,∠PBQ=90°,∴∠PBC+∠CBQ=90°∴∠ABP=∠CBQ,∴△ABP≌△CBQ,∴AP=CQ;②∵四边形ABCD是正方形,∴∠DAC=∠BAC=∠ACB=45°,∵∠PQB=45°,∠CEP=∠QEB,∴∠CBQ=∠CPQ,由①得△ABP≌△CBQ,∠ABP=∠CBQ∵∠CPQ=∠APF,∴∠APF=∠ABP,∴△APF∽△ABP,(本题也可以连接PD,证△APF∽△ADP)(2)证明:由①得△ABP≌△CBQ,∴∠BCQ=∠BAC=45°,∵∠ACB=45°,∴∠PCQ=45°+45°=90°∴tan∠CPQ= ,由①得AP=CQ,又AP:PC=1:3,∴tan∠CPQ= ,由②得∠CBQ=∠CPQ,∴tan∠CBQ=tan∠CPQ= .【解析】【分析】(1)①利用正方形的性质和等腰直角三角形的性质易证△ABP≌△CBQ,可得AP=CQ;②利用正方形的性质可证得∠CBQ=∠CPQ,再由△ABP≌△CBQ可证得∠APF=∠ABP,从而证出△APF∽△ABP,由相似三角形的性质得证;(2)由△ABP≌△CBQ可得∠BCQ=∠BAC=45°,可得∠PCQ=45°+45°=90°,再由三角函数可得tan∠CPQ=,由AP:PC=1:3,AP=CQ,可得tan∠CPQ=,再由∠CBQ=∠CPQ可求出答案.2.如图①,已知直线l1∥l2,线段AB在直线l1上,BC垂直于l1交l2于点C,且AB=BC,P是线段BC上异于两端点的一点,过点P的直线分别交l2,l1于点D,E(点A,E位于点B的两侧,满足BP=BE,连接AP,CE.(1)求证:△ABP≌△CBE.(2)连接AD、BD,BD与AP相交于点F,如图②.①当时,求证:AP⊥BD;②当 (n>1)时,设△PAD的面积为S1,△PCE的面积为S2,求的值.【答案】(1)证明:BC⊥直线l1,∴∠ABP=∠CBE.在△ABP和△CBE中,(2)①证明:如图,延长AP交CE于点H.∵△ABP≌△CBE,∴∠PAB=∠ECB,∴∠PAB+∠AEH=∠ECB+∠AEH=90°,∴∠AHE=90°,∴AP⊥CE.∵,即P为BC的中点,直线l1∥直线l2,∴△CPD∽△BPE,∴,∴DP=EP.∴四边形BDCE是平行四边形,∴CE∥BD.∵AP⊥CE,∴AP⊥BD.②解:∵,∴BC=nBP,∴CP=(n-1)BP.∵CD∥BE,∴△CPD∽△BPE,∴.令S△BPE=S,则S2=(n-1)S,S△PAB=S△BCE=nS,S△PAE=(n+1)S.∵,∴S1=(n+1)(n-1)S,∴.【解析】【分析】(1)由已知条件用边角边即可证得△ABP≌△CBE;(2)①、延长AP交CE于点H,由(1)知△ABP≌△CBE,所以可得∠PAB=∠ECB,而∠∠ECB+∠BEC=,所以可得∠PAB+∠BEC=,即∠AHE=,所以AP⊥CE;已知=2,则点P为BC的中点,所以易证得BE=CD,由有一组对边平行且相等的四边形是平行四边形可得四边形BDCE是平行四边形,由平行四边形的性质可得CE∥BD,再根据平行线的性质即可求得AP⊥BD;②方法与①类似,由已知条件易证得△CPD∽△BPE,则可得对应线段的比相等,然后可将△PAD的面积和△PCE的面积用三角形BPE的面积表示出来,则这两个三角形的比值即可求解。

初三数学圆与相似的专项培优练习题(含答案)附答案解析

初三数学圆与相似的专项培优练习题(含答案)附答案解析

初三数学圆与相似的专项培优练习题(含答案)附答案解析一、相似1.如图,在正方形ABCD中,点E,F分别是边AD,BC的中点,连接DF,过点E作EH⊥DF,垂足为H,EH的延长线交DC于点G.(1)猜想DG与CF的数量关系,并证明你的结论;(2)过点H作MN∥CD,分别交AD,BC于点M,N,若正方形ABCD的边长为10,点P 是MN上一点,求△PDC周长的最小值.【答案】(1)解:结论:CF=2DG.理由:∵四边形ABCD是正方形,∴AD=BC=CD=AB,∠ADC=∠C=90°,∵DE=AE,∴AD=CD=2DE,∵EG⊥DF,∴∠DHG=90°,∴∠CDF+∠DGE=90°,∠DGE+∠DEG=90°,∴∠CDF=∠DEG,∴△DEG∽△CDF,∴ = = ,∴CF=2DG(2)解:作点C关于NM的对称点K,连接DK交MN于点P,连接PC,此时△PDC的周长最短.周长的最小值=CD+PD+PC=CD+PD+PK=CD+DK.由题意:CD=AD=10,ED=AE=5,DG= ,EG= ,DH= = ,∴EH=2DH=2 ,∴HM= =2,∴DM=CN=NK= =1,在Rt△DCK中,DK= = =2 ,∴△PCD的周长的最小值为10+2 .【解析】【分析】(1)结论:CF=2DG.理由如下:根据正方形的性质得出AD=BC=CD=AB,∠ADC=∠C=90°,根据中点的定义得出AD=CD=2DE,根据同角的余角相等得出∠CDF=∠DEG,从而判断出△DEG∽△CDF,根据相似三角形对应边的比等于相似比即可得出结论;(2)作点C关于NM的对称点K,连接DK交MN于点P,连接PC,此时△PDC的周长最短.周长的最小值=CD+PD+PC=CD+PD+PK=CD+DK,由题意得CD=AD=10,ED=AE=5,DG=,EG=,根据面积法求出DH的长,然后可以判断出△DEH相似于△GDH,根据相似三角形对应边的比等于相似比得出EH=2DH=,再根据面积法求出HM的长,根据勾股定理及矩形的性质及对称的性质得出DM=CN=NK= 1,在Rt△DCK中,利用勾股定理算出DK的长,从而得出答案。

2020-2021备战中考数学培优(含解析)之圆与相似含答案

2020-2021备战中考数学培优(含解析)之圆与相似含答案

2020-2021备战中考数学培优(含解析)之圆与相似含答案一、相似1.如图,AB是半圆O的直径,AB=2,射线AM、BN为半圆O的切线.在AM上取一点D,连接BD交半圆于点C,连接AC.过O点作BC的垂线OE,垂足为点E,与BN相交于点F.过D点作半圆O的切线DP,切点为P,与BN相交于点Q.(1)若△ABD≌△BFO,求BQ的长;(2)求证:FQ=BQ【答案】(1)解:∵≌,∴,∵均为半圆切线,∴ .连接 ,则,∴四边形为菱形,∴DQ∥,∵均为半圆切线,∴∥,∴四边形为平行四边形∴,(2)证明:易得∽,∴ = ,∴ .∵是半圆的切线,∴ .过点作于点,则 .在中,,∴,解得:,∴∴【解析】【分析】(1)连接OP,由ΔABD≌ΔBFO可得AD=OB,由切线长定理可得AD=DP,于是易得OP=OA=DA=DP,根据菱形的判定可得四边形DAOP为菱形,则可得DQ∥AB,易得四边形DABQ为平行四边形,根据平行四边形的性质可求解;(2)过Q点作QK⊥AM于点K,由已知易证得ΔABD∽ΔBFO,可得比例式,可得BF与AD的关系,由切线长定理可得AD=DP,QB=QP ,解直角三角形DQK可求得BQ与AD 的关系,则根据FQ=BF−BQ可得FQ与AD的关系,从而结论得证。

2.在等腰直角三角形ABC中,∠ACB=90°,AC=BC,D是AB边上的中点,Rt△EFG的直角顶点E在AB边上移动.(1)如图1,若点D与点E重合且EG⊥AC、DF⊥BC,分别交AC、BC于点M、N,易证EM=EN;如图2,若点D与点E重合,将△EFG绕点D旋转,则线段EM与EN的长度还相等吗?若相等请给出证明,不相等请说明理由;(2)将图1中的Rt△EGF绕点D顺时针旋转角度α(0∘<α<45∘). 如图2,在旋转过程中,当∠MDC=15∘时,连接MN,若AC=BC=2,请求出线段MN的长;(3)图3, 旋转后,若Rt△EGF的顶点E在线段AB上移动(不与点D、B重合),当AB=3AE 时,线段EM与EN的数量关系是________;当AB=m·AE时,线段EM与EN的数量关系是________.【答案】(1)解:EM=EN;原因如下:∵∠ACB=90° AC=BC D是AB边上的中点∴DC=DB ∠ACD=∠B=45°∠CDB=90°∴∠CDF+∠FDB=90°∵∠GDF=90°∴∠GDC+∠CDF=90°∴∠CDM=∠BDN 在△CDM和△BDN中∠MCD=∠B,DC=DB,∠CDM=∠BDN,∴△CDM≌△BDN ∴DM=DN 即EM=EN(2)解:作DP⊥AC于P,则∠CDP=45° CP=DP=AP=1∵∠CDG=15°∴∠MDP=30°∵cos∠MDP=∴DM=, DM=DN,∵△MND为等腰直角三角形∴MN=(3)NE=2ME;EN=(m-1)ME【解析】【解答】解:(3)NE=2ME,EN=(m-1)ME证明:如图3,过点E作EP⊥AB交AC于点P则△AEP为等腰直角三角形,∠PEB=90°∴AE=PE ∵AB=3AE ∴BE=2AE ∴BE=2PE又∵∠MEP+∠PEN=90°∠PEN+∠NEB=90°∴∠MEP=∠NEB又∵∠MPE=∠B=45°∴△PME∽△BNE∴,即EN=2EM由此规律可知,当AB=m·AE时,EN=(m-1)·ME【分析】(1)EM=EN;原因如下:根据等腰直角三角形的性质得出DC=DB ∠ACD=∠B=45°∠CDB=90°根据同角的余角相等得出∠CDM=∠BDN,然后由ASA判断出△CDM≌△BDN 根据全等三角形的对应边相等得出DM=DN 即EM=EN;(2)根据等腰直角三角形的性质得出∠CDP=45°CP=DP=AP=1,根据角的和差得出∠MDP=30°,根据余弦函数的定义及特殊角的三角函数值,由cos∠MDP=得出DM的长,又DM=DN,故△MND为等腰直角三角形,根据等腰直角三角形的性质即可得出MN 的长;(3)NE=2ME,EN=(m-1)ME,如图3,过点E作EP⊥AB交AC于点P,则△AEP为等腰直角三角形,∠PEB=90°,根据同角的余角相等得出∠MEP=∠NEB然后判断出△PME∽△BNE,根据相似三角形对应边成比例即可得出u结论,由此规律可知,当AB=m·AE时,EN=(m-1)·ME3.如图,在Rt△ABC中,,角平分线交BC于O,以OB为半径作⊙O.(1)判定直线AC是否是⊙O的切线,并说明理由;(2)连接AO交⊙O于点E,其延长线交⊙O于点D,,求的值;(3)在(2)的条件下,设的半径为3,求AC的长.【答案】(1)解:AC是⊙O的切线理由:,,作于,是的角平分线,,AC是⊙O的切线(2)解:连接,是⊙O的直径,,即 ..又 (同角) ,∽ ,(3)解:设在和中,由三角函数定义有:得:解之得:即的长为【解析】【分析】(1)利用角平分线的性质:角平分线上的点到角两边的距离相等证得点O到AC的距离为半径长,即可证得AC与圆O相切;(2)先连接BE构造一个可以利用正切值的直角三角形,再证得∠1=∠D,从而证得两个三角形ABE与ABD相似,即可求得两个线段长的比值;(3)也可以应用三角形相似的判定与性质解题,其中AB的长度是利用勾股定理与(2)中AE与AB的比值求得的.4.书籍开本有数学开本指书刊幅面的规格大小.如图①,将一张矩形印刷用纸对折后可以得到2开纸,再对折得到4开纸,以此类推可以得到8开纸、16开纸……若这张矩形印刷用纸的短边长为a.(1)如图②,若将这张矩形印刷用纸ABCD(AB BC)进行折叠,使得BC与AB重合,点C落在点F处,得到折痕BE;展开后,再次折叠该纸,使点A落在E处,此时折痕恰好经过点B,得到折痕BG,求的值.(2)如图③,2开纸BCIH和4开纸AMNH的对角线分别是HC、HM.说明HC⊥HM.(3)将图①中的2开纸、4开纸、8开纸和16开纸按如图④所示的方式摆放,依次连接点A、B、M、I,则四边形ABMI的面积是________.(用含a的代数式表示,直接写出结果)【答案】(1)解:∵四边形ABCD是矩形,∴∠ABC ∠C 90°.∵第一次折叠使点C落在AB上的F处,并使折痕经过点B,∴∠CBE ∠FBE 45°,∴∠CBE ∠CEB 45°,∴BC CE a,BE .∵第二次折叠纸片,使点A落在E处,得到折痕BG,∴AB BE ,∴(2)解:根据题意和(1)中的结论,有AH BH ,.∴.∵四边形ABCD是矩形,∴∠A ∠B 90°,∴△MAH∽△HBC,∴∠AHM ∠BCH.∵∠BCH ∠BHC 90°,∴∠AHM ∠BHC 90°,∴∠MHC 90°,∴HC⊥HM.(3)【解析】【解答】解:(3)如图④,根据题意知(1)中的结论,有BC=AD= a,AF=IG= a,NI=MP= a,OP= a,又∵∠C=∠ADE=90°, ∠BEC=∠AED,∴∆BCE≌∆ADE,∴S ∆BCE=S ∆ADE,同理可得,S ∆AFH=S ∆IGH, S ∆INQ=S ∆MPQ,∴四边形ABMI的面积=S矩形ADOF+S矩形IGON+S梯形BMPC= .【分析】(1)利用矩形的性质及第一次折叠使点C落在AB上的F处,可得出∠CBE=∠FBE=∠CEB=45°,可得出CE=BC,利用勾股定理可用含a的代数式求出BE的长,再根据第二次折叠纸片,使点A落在E处,得到折痕BG,可用含a的代数式表示出AB的长,然后求出AB与BC的比值。

备战中考数学 圆与相似 培优练习(含答案)含答案

备战中考数学 圆与相似 培优练习(含答案)含答案

备战中考数学圆与相似培优练习(含答案)含答案一、相似1.如图所示,△ABC中,AB=AC,∠BAC=90°,AD⊥BC,DE⊥AC,△CDE沿直线BC翻折到△CDF,连结AF交BE、DE、DC分别于点G、H、I.(1)求证:AF⊥BE;(2)求证:AD=3DI.【答案】(1)证明:∵在△ABC中,AB=AC,∠BAC=90°,D是BC的中点,∴AD=BD=CD,∠ACB=45°,∵在△ADC中,AD=DC,DE⊥AC,∴AE=CE,∵△CDE沿直线BC翻折到△CDF,∴△CDE≌△CDF,∴CF=CE,∠DCF=∠ACB=45°,∴CF=AE,∠ACF=∠DCF+∠ACB=90°,在△ABE与△ACF中,,∴△ABE≌△ACF(SAS),∴∠ABE=∠FAC,∵∠BAG+∠CAF=90°,∴∠BAG+∠ABE=90°,∴∠AGB=90°,∴AF⊥BE(2)证明:作IC的中点M,连接EM,由(1)∠DEC=∠ECF=∠CFD=90°∴四边形DECF是正方形,∴EC∥DF,EC=DF,∴∠EAH=∠HFD,AE=DF,在△AEH与△FDH中,∴△AEH≌△FDH(AAS),∴EH=DH,∵∠BAG+∠CAF=90°,∴∠BAG+∠ABE=90°,∴∠AGB=90°,∴AF⊥BE,∵M是IC的中点,E是AC的中点,∴EM∥AI,∴,∴DI=IM,∴CD=DI+IM+MC=3DI,∴AD=3DI【解析】【分析】(1)根据翻折的性质和SAS证明△ABE≌△ACF,利用全等三角形的性质得出∠ABE=∠FAC,再证明∠AGB=90°,可证得结论。

(2)作IC的中点M,结合正方形的性质,可证得∠EAH=∠HFD,AE=DF,利用AAS证明△AEH与△FDH全等,再利用全等三角形的性质和中位线的性质解答即可。

中考数学培优专题复习圆与相似练习题及答案解析

中考数学培优专题复习圆与相似练习题及答案解析

中考数学培优专题复习圆与相似练习题及答案解析一、相似1.如图,在中,,点M是AC的中点,以AB为直径作分别交于点.(1)求证:;(2)填空:若,当时, ________;连接,当的度数为________时,四边形ODME是菱形.【答案】(1)证明:∵∠ABC=90°,AM=MC,∴BM=AM=MC,∴∠A=∠ABM.∵四边形ABED是圆内接四边形,∴∠ADE+∠ABE=180°,又∠ADE+∠MDE=180°,∴∠MDE=∠MBA,同理证明:∠MED=∠A,∴∠MDE=∠MED,∴MD=ME(2)2;【解析】【解答】解:(2)①由(1)可知,∠A=∠MDE,∴DE∥AB,∴ =.∵AD=2DM,∴DM:MA=1:3,∴DE= AB= ×6=2.故答案为:2.②当∠A=60°时,四边形ODME是菱形.理由如下:连接OD、OE.∵OA=OD,∠A=60°,∴△AOD是等边三角形,∴∠AOD=60°.∵DE∥AB,∴∠ODE=∠AOD=60°,∠MDE=∠MED=∠A=60°,∴△ODE,△DEM都是等边三角形,∴OD=OE=EM=DM,∴四边形OEMD是菱形.故答案为:60°.【分析】(1)要证MD=ME,只须证∠MDE=∠MED即可。

根据直角三角形斜边上的中线等于斜边的一半可得BM=AM=MC,则∠A=∠ABM,由圆内接四边形的性质易得∠MED=∠A,∠MDE=∠MBA,所以可得∠MDE=∠MED;(2)①由(1)易证得DE∥AB,可得比例式,结合①中的已知条件即可求解;②当∠A=60°时,四边形ODME是菱形.理由如下:连接OD、OE,由题意易得△ODE,△DEM都是等边三角形,所以可得OD=OE=EM=DM,由菱形的判定即可求解。

2.如图,在Rt△ABC中,,角平分线交BC于O,以OB为半径作⊙O.(1)判定直线AC是否是⊙O的切线,并说明理由;(2)连接AO交⊙O于点E,其延长线交⊙O于点D,,求的值;(3)在(2)的条件下,设的半径为3,求AC的长.【答案】(1)解:AC是⊙O的切线理由:,,作于,是的角平分线,,AC是⊙O的切线(2)解:连接,是⊙O的直径,,即 ..又 (同角) ,∽ ,(3)解:设在和中,由三角函数定义有:得:解之得:即的长为【解析】【分析】(1)利用角平分线的性质:角平分线上的点到角两边的距离相等证得点O到AC的距离为半径长,即可证得AC与圆O相切;(2)先连接BE构造一个可以利用正切值的直角三角形,再证得∠1=∠D,从而证得两个三角形ABE与ABD相似,即可求得两个线段长的比值;(3)也可以应用三角形相似的判定与性质解题,其中AB的长度是利用勾股定理与(2)中AE与AB的比值求得的.3.如图,已知二次函数y=ax2+ x+c的图象与y轴交于点A(0,4),与x轴交于点B、C,点C坐标为(8,0),连接AB、AC.(1)请直接写出二次函数y=ax2+ x+c的表达式;(2)判断△ABC的形状,并说明理由;(3)若点N在x轴上运动,当以点A、N、C为顶点的三角形是等腰三角形时,请直接写出此时点N的坐标;(4)若点N在线段BC上运动(不与点B、C重合),过点N作NM∥AC,交AB于点M,当△AMN面积最大时,求此时点N的坐标.【答案】(1)解:∵A(0,4),∴c=4,,把点C坐标(8,0)代入解析式,得:a=-,∴二次函数表达式为;(2)解:令y=0,则解得,x1=8,x2="-2" ,∴点B的坐标为(-2,0),由已知可得,在Rt△AOB中,AB----2=BO2+AO2=22+42=20,在Rt△AOC中AC----2=AO2+CO2=42+82=80,又∵BC=OB+OC=2+8=10,∴在△ABC中AB----2+ AC----2=20+80=102=BC2,∴△ABC是直角三角形;(3)解:由勾股定理先求出AC,AC= ,①在x轴负半轴,当AC=AN 时,NO=CO=8,∴此时N(-8,0);②在x轴负半轴,当AC=NC时,NC=AC= ,∵CO=8,∴NO= -8,∴此时N(8- ,0);③在x轴正半轴,当AN=CN时,设CN=x,则AN=x,ON=8-x,在Rt△AON中,+ = ,解得:x=5,∴ON=3,∴此时N(3,0);④在x轴正半轴,当AC=NC时,AC=NC= ,∴ON= +8,∴此时N(+8,0);综上所述:满足条件的N点坐标是(-8,0)、(8- ,0)、(3,0)、(8+ ,0);(4)解:设点N的坐标为(n,0),则BN=n+2,过M点作MD⊥x轴于点D,∴MD∥OA,∴△BMD∽△BAO,,∵MN∥AC,∴,∴,∵OA=4,BC=10,BN=n+2,∴MD= (n+2),∵S△AMN= S△ABN- S△BMN==- +5,∵- <0,∴n=3时,S有最大值,∴当△AMN面积最大时,N点坐标为(3,0).【解析】【分析】(1)用待定系数法可求二次函数的解析式;(2)因为抛物线交x轴于B、C两点,令y=0,解关于x的一元二次方程可得点B的坐标,然后计算AB、BC、AC的长,用勾股定理的逆定理即可判断;(3)由(2)可知AC的长,由题意可知有4种情况:①在x轴负半轴,当AC=AN时;②②在x轴负半轴,当AC=NC时;③在x轴正半轴,当AN=CN时;④在x轴正半轴,当AC=NC时;结合已知条件易求解;(4)设点N的坐标为(n,0),则BN=n+2,过M点作MD⊥x轴于点D,由平行于三角形一边的直线和其他两边所构成的三角形与原三角形相似可得△BMD∽△BAO,于是有比例式,根据平行线分线段成比例定理可得,所以,将已知线段代入比例式可将MD用含n的代数式表示出来,根据三角形的构成可得S△AMN= S△ABN- S△BMN=⋅ BN⋅OA−BN⋅MD,将BN、MD代入可得关于n的二次函数,配成顶点式根据二次函数的性质即可求解。

备战中考数学培优(含解析)之圆与相似及答案解析

备战中考数学培优(含解析)之圆与相似及答案解析

备战中考数学培优(含解析)之圆与相似及答案解析一、相似1.如图,抛物线y=﹣x2+bx+c与x轴分别交于点A、B,与y轴交于点C,且OA=1,OB=3,顶点为D,对称轴交x轴于点Q.(1)求抛物线对应的二次函数的表达式;(2)点P是抛物线的对称轴上一点,以点P为圆心的圆经过A、B两点,且与直线CD相切,求点P的坐标;(3)在抛物线的对称轴上是否存在一点M,使得△DCM∽△BQC?如果存在,求出点M 的坐标;如果不存在,请说明理由.【答案】(1)解:∴代入,得解得∴抛物线对应二次函数的表达式为:(2)解:如图,设直线CD切⊙P于点E.连结PE、PA,作点.由得对称轴为直线x=1,∴∴∴为等腰直角三角形.∴∴∴∴为等腰三角形.设∴在中,∴∴整理,得解得,∴点P的坐标为或(3)解:存在点M,使得∽.如图,连结∵∴为等腰直角三角形,∴由(2)可知,∴∴分两种情况.当时,∴,解得.∴∴当时,∴,解得∴∴综上,点M的坐标为或【解析】【分析】(1)用待定系数法即可求解;(2)由(1)中的解析式易求得抛物线的对称轴为直线x=1,顶点D(1,4),点C(0,3),由题意可设点P(1,m),计算易得△DCF为等腰直角三角形,△DEP为等腰三角形,在直角三角形PED和APQ中,用勾股定理可将PE、PA用含m的代数式表示出来,根据PA=PE可列方程求解;(3)由△DCM∽△BQC所得比例式分两种情况:或,根据所得比例式即可求解。

2.Rt△ABC中,∠ACB=90°,AC=3,BC=7,点P是边AC上不与点A、C重合的一点,作PD∥BC交AB边于点D.(1)如图1,将△APD沿直线AB翻折,得到△AP'D,作AE∥PD.求证:AE=ED;(2)将△APD绕点A顺时针旋转,得到△AP'D',点P、D的对应点分别为点P'、D',①如图2,当点D'在△ABC内部时,连接P′C和D'B,求证:△AP'C∽△AD'B;②如果AP:PC=5:1,连接DD',且DD'= AD,那么请直接写出点D'到直线BC的距离.【答案】(1)证明:∵将△APD沿直线AB翻折,得到△AP'D,∴∠ADP'=∠ADP,∵AE∥PD,∴∠EAD=∠ADP,∴∠EAD=∠ADP',∴AE=DE(2)解:①∵DP∥BC,∴△APD∽△ACB,∴,∵旋转,∴AP=AP',AD=AD',∠PAD=∠P'AD',∴∠P'AC=∠D'AB,,∴△AP'C∽△AD'B②若点D'在直线BC下方,如图,过点A作AF⊥DD',过点D'作D'M⊥AC,交AC的延长线于M,∵AP:PC=5:1,∴AP:AC=5:6,∵PD∥BC,∴ = ,∵BC=7,∴PD=,∵旋转,∴AD=AD',且AF⊥DD',∴DF=D'F= D'D,∠ADF=∠AD'F,∵cos∠ADF== = ,∴∠ADF=45°,∴∠AD'F=45°,∴∠D'AD=90°∴∠D'AM+∠PAD=90°,∵D'M⊥AM,∴∠D'AM+∠AD'M=90°,∴∠PAD=∠AD'M,且AD'=AD,∠AMD'=∠APD,∴△AD'M≌△DAP(AAS)∴PD=AM=,∵CM=AM﹣AC=﹣3,∴CM=,∴点D'到直线BC的距离为若点D'在直线BC的上方,如图,过点D'作D'M⊥AC,交CA的延长线于点M,同理可证:△AMD'≌△DPA,∴AM=PD=,∵CM=AC+AM,∴CM=3+ =,∴点D'到直线BC的距离为综上所述:点D'到直线BC的距离为或;【解析】【分析】(1)由折叠的性质和平行线的性质可得∠EAD=∠ADP=∠ADP',即可得AE=DE;(2)①由题意可证△APD∽△ACB,可得,由旋转的性质可得AP=AP',AD=AD',∠PAD=∠P'AD',即∠P'AC=∠D'AB,,则△AP'C∽△AD'B;②分点D'在直线BC的下方和点D'在直线BC的上方两种情况讨论,根据平行线分线段成比例,可求PD=,通过证明△AMD'≌△DPA,可得AM=PD=,即可求点D'到直线BC 的距离.3.在平面直角坐标系中,抛物线经过点,、,,其中、是方程的两根,且,过点的直线与抛物线只有一个公共点(1)求、两点的坐标;(2)求直线的解析式;(3)如图2,点是线段上的动点,若过点作轴的平行线与直线相交于点,与抛物线相交于点,过点作的平行线与直线相交于点,求的长. 【答案】(1)解:∵x1、x2是方程x2-2x-8=0的两根,且x1<x2,∴x1=-2,x2=4,∴A(-2,2),C(4,8)(2)解:①设直线l的解析式为y=kx+b(k≠0),∵A(-2,2)在直线l上,∴2=-2k+b,∴b=2k+2,∴直线l的解析式为y=kx+2k+2①,∵抛物线y= x2②,联立①②化简得,x2-2kx-4k-4=0,∵直线l与抛物线只有一个公共点,∴△=(2k)2-4(-4k-4)=4k2+16k+16=4(k2+4k+4)=4(k+2)2=0,∴k=-2,∴b=2k+2=-2,∴直线l的解析式为y=-2x-2;②平行于y轴的直线和抛物线y= x2只有一个交点,∵直线l过点A(-2,2),∴直线l:x=-2(3)解:由(1)知,A(-2,2),C(4,8),∴直线AC的解析式为y=x+4,设点B(m,m+4),∵C(4.8),∴BC= |m-4|= (4-m)∵过点B作y轴的平行线BE与直线l相交于点E,与抛物线相交于点D,∴D(m, m2),E(m,-2m-2),∴BD=m+4- m2, BE=m+4-(-2m-2)=3m+6,∵DC∥EF,∴△BDC∽△BEF,∴,∴,∴BF=6 .【解析】【分析】(1)解一元二次方程即可得出点A,C坐标;(2)先设出直线l的解析式,再联立抛物线解析式,用△=0,求出k的值,即可得出直线l的解析式;(3)设出点B的坐标,进而求出BC,再表示出点D,E的坐标,进而得出BD,BE,再判断出△BDC∽△BEF得出比例式建立方程即可求出BF.4.已知:如图,在平面直角坐标系中,△ABC是直角三角形,∠ACB=90°,点A,C的坐标分别为A(﹣3,0),C(1,0),BC=AC.(1)在x轴上找一点D,连接DB,使得△ADB与△ABC相似(不包括全等),并求点D的坐标;(2)在(1)的条件下,如P,Q分别是AB和AD上的动点,连接PQ,设AP=DQ=m,问是否存在这样的m,使得△APQ与△ADB相似?如存在,请求出m的值;如不存在,请说明理由.【答案】(1)解:如图1,过点B作BD⊥AB,交x轴于点D,∵∠A=∠A,∠ACB=∠ABD=90°,∴△ABC∽△ADB,∴∠ABC=∠ADB,且∠ACB=∠BCD=90°,∴△ABC∽△BDC,∴∵A(﹣3,0),C(1,0),∴AC=4,∵BC=AC.∴BC=3,∴AB===5,∵,∴,∴CD=,∴AD=AC+CD=4+ =,∴OD=AD﹣AO=,∴点D的坐标为:(,0);(2)解:如图2,当∠APC=∠ABD=90°时,∵∠APC=∠ABD=90°,∠BAD=∠PAQ,∴△APQ∽△ABD,∴,∴∴m=,如图3,当∠AQP=∠ABD=90°时,∵∠AQP=∠ABD=90°,∠PAQ=∠BAD,∴△APQ∽△ADB,∴,∴∴m=;综上所述:当m=或时,△APQ与△ADB相似.【解析】【分析】(1)如图1,过点B作BD⊥AB,交x轴于点D,可证△ABC∽△ADB,可得∠ABC=∠ADB,可证△ABC∽△BDC,可得,可求CD 的长,即可求点D坐标;(2)分两种情况讨论,由相似三角形的性质可求解.5.如图1,在平面直角坐标系中,点O为坐标原点,抛物线y=ax2+bx+5与x轴交于A,点B,与y轴交于点C,过点C作CD⊥y轴交抛物线于点D,过点B作BE⊥x轴,交DC延长线于点E,连接BD,交y轴于点F,直线BD的解析式为y=﹣x+2.(1)写出点E的坐标;抛物线的解析式.(2)如图2,点P在线段EB上从点E向点B以1个单位长度/秒的速度运动,同时,点Q 在线段BD上从点B向点D以个单位长度/秒的速度运动,当一个点到达终点时,另一个点随之停止运动,当t为何值时,△PQB为直角三角形?(3)如图3,过点B的直线BG交抛物线于点G,且tan∠ABG=,点M为直线BG上方抛物线上一点,过点M作MH⊥BG,垂足为H,若HF=MF,请直接写出满足条件的点M 的坐标.【答案】(1)解:将点D(-3,5)点B(2,0)代入y=ax2+bx+5解得∴抛物线解析式为:y=- x2- x+5(2)解:由已知∠QBE=45°,PE=t,PB=5-t,QB= t当∠QPB=90°时,△PQB为直角三角形.∵∠QBE=45°∴QB= PB∴ t=(5−t)解得t=当∠PQB=90°时,△PQB为直角三角形.△BPQ∽△BDE∴BQ•BD=BP•BE∴5(5-t)= t•5解得:t=∴t= 或时,△PQB为直角三角形(3)点M坐标为(﹣4,3)或(0,5).【解析】【解答】(3)由已知tan∠ABG= ,且直线GB过B点则直线GB解析式为:y= x−1延长MF交直线BG于点K∵HF=MF∴∠FMH=∠FHM∵MH⊥BG时∴∠FMH+∠MKH=90°∠FHK+∠FHM=90°∴∠FKH=∠FHK∴HF=KF∴F为MK中点设点M坐标为(x,- x2- x+5)∵F(0,2)∴点K坐标为(-x, x2+ x-1)把K点坐标代入y= x−1解得x1=0,x2=-4,把x=0代入y=- x2- x+5,解得y=5,把x=-4代入y=- x2- x+5解得y=3则点M坐标为(-4,3)或(0,5)【分析】(1)由待定系数法求点坐标及函数关系式;(2)根据题意,△DEB为等腰直角三角形,通过分类讨论∠PQB=90°或∠QPB=90°的情况求出满足条件t值;(3)延长MF交GB于K,由∠MHK=90°,HF=MF可推得HF=FK,即F为MK中点,设出M坐标,利用中点坐标性质,表示K点坐标,代入GB解析式,可求得点M坐标.6.已知二次函数y=ax2+bx+3的图象分别与x轴交于点A(3,0),C(-1,0),与y轴交于点B.点D为二次函数图象的顶点.(1)如图①所示,求此二次函数的关系式:(2)如图②所示,在x轴上取一动点P(m, 0),且1<m<3,过点P作x轴的垂线分别交二次函数图象、线段AD,AB于点Q、F,E,求证:EF=EP;(3)在图①中,若R为y轴上的一个动点,连接AR,则BR+AR的最小值________(直接写出结果).【答案】(1)解:将A(3,0),C(-1,0)代入y=ax2+bx+3,得:,解得:,∴此二次函数的关系式为y=-x2+2x+3(2)证明:∵y=-x2+2x+3=-(x-1)2+4,∴点D的坐标为(1,4).设线段AB所在直线的函数关系式为y=kx+c(k≠0),将A(3,0),C(0,3)代入y=kx+c,得:,解得:,∴线段AB所在直线的函数关系式为y=-x+3.同理,可得出:线段AD所在直线的函数关系式为y=-2x+6.∵点P的坐标为(m,0),∴点E的坐标为(m,-m+3),点F的坐标为(m,-2m+6),∴EP=-m+3,EF=-m+3,∴EF=EP.(3)【解析】【解答】解(3)如图③,连接BC,过点R作RQ⊥BC,垂足为Q.∵OC=1,OB=3,∴BC= .(勾股定理)∵∠CBO=∠CBO,∠BOC=∠BQR=90°,∴△BQR∽△AOB,∴ ,即 ,∴RQ= BR,∴AR+ BR=AR+RQ,∴当A,R,Q共线且垂直AB时,即AR+ BR=AQ时,其值最小.∵∠ACQ=∠BCO,∠BOC=∠AQC,∴△CQA∽△COB,∴ ,即∴AQ= ,∴ BR+CR的最小值为.故答案为:.【分析】(1)根据A,C点的坐标,利用待定系数法可求出二次函数的关系式;(2)利用待定系数法求出线段AB,AD所在直线的函数关系式,用m表示EF,EP的长,可证得结论;(3)连接BC,过点R作RQ⊥BC,垂足为Q,则△BQR∽△AOB,利用相似三角形的性质可得出RQ= BR,结合点到直线之间垂直线段最短可得出当A,R,Q共线且垂直AB时,即AR+ BR=AQ时,其值最小,由∠ACQ=∠BCO,∠BOC=∠AQC可得出△CQA∽△COB,利用相似三角形的性质可求出AQ的值,此题得解.7.已知:如图,BC为⊙O的弦,点A为⊙O上一个动点,△OBC的周长为16.过C作CD∥AB交⊙O于D,BD与AC相交于点P,过点P作PQ∥AB交于Q,设∠A的度数为α.(1)如图1,求∠COB的度数(用含α的式子表示);(2)如图2,若∠ABC=90°时,AB=8,求阴影部分面积(用含α的式子表示);(3)如图1,当PQ=2,求的值.【答案】(1)解:∵∠A的度数为α,∴∠COB=2∠A=2α(2)解:当∠ABC=90°时,AC为⊙O的直径,∵CD∥AB,∴∠DCB=180°﹣90°=90,∴BD为⊙O的直径,∴P与圆心O重合,∵PQ∥AB交于Q,∴OQ⊥BC,∴CQ=BQ,∵AB=8,∴OQ= AB=4,设⊙O的半径为r,∵△OBC的周长为16,∴CQ=8﹣r,∴(8﹣r)2+42=r2,解得r=5,CB=6,∴阴影部分面积=(3)解:∵CD∥AB∥PQ,∴△BPQ∽△BDC,△CPQ∽△CAB,∴,∴,∵PQ=2,∴,∴=2【解析】【分析】(1)根据圆周角定理可得∠COB=2∠A=2α;(2)当∠ABC=90°时,可得点P与圆心O重合,根据△OBC的周长为16以及AB=8,可求得⊙O的半径为5,可得出扇形COB的面积以及△OBC的面积,进而得出阴影部分面积;(3)由CD∥AB∥PQ,可得△BPQ∽△BDC,△CPQ∽△CAB,即,两式子相加可得,即可得出的值.8.已知A(2,0),B(6,0),CB⊥x轴于点B,连接AC画图操作:(1)在y正半轴上求作点P,使得∠APB=∠ACB(尺规作图,保留作图痕迹)(2)在(1)的条件下,①若tan∠APB ,求点P的坐标。

备战中考数学 圆与相似 培优练习(含答案)附答案

备战中考数学 圆与相似 培优练习(含答案)附答案

备战中考数学圆与相似培优练习(含答案)附答案一、相似1.在矩形ABCD中,AB=8,AD=12,M是AD边的中点,P是AB边上的一个动点(不与A、B重合),PM的延长线交射线CD于Q点,MN⊥PQ交射线BC于N点。

(1)若点N在BC之间时,如图:①求证:∠NPQ=∠PQN;②请问是否为定值?若是定值,求出该定值;若不是,请举反例说明;(2)当△PBN与△NCQ的面积相等时,求AP的值.【答案】(1)证明:∵四边形ABCD是矩形,∴∠A=∠ADC=∠ADQ=90°,AB//CD,∴∠APM=∠DQM,∵M是AD边的中点,∴AM=DM,在△APM和△DQM中,,∴△APM≌△DQM(AAS),∴PM=QM,∵MN⊥PQ,∴MN是线段PQ的垂直平分线,∴PN=QN,∴∠NPQ=∠PQN② 是定值理由:如图,过点M作ME⊥BC于点E,∴∠MEN=∠MEB=∠AME=90°,∴四边形ABEM是矩形,∠MEN=∠MAP,∴AB=EM,∵MN⊥PQ,∴∠PMN=90°,∴∠PMN=∠AME,∴∠PMN-∠PME=∠AME-∠PME,∴∠EMN=∠AMP,∴△AMP∽△EMN,∴,∴,∵AD=12,M是AD边的中点,∴AM= AD=6,∵AB=8,∴;(2)解:分点N在BC之间和点N在BC延长线上两种情况(ⅰ)当点N在BC之间时,如图,作BF⊥PN于点F,CG⊥QN于点G,再分别作Rt△PBN和Rt△NCQ的中线BS、CT,∴∠BFS=∠CGT=90°,BS= PN,CT= QN,∵PN=QN,S△PBN=S△NCQ,∴BF=CG,BS=CT在Rt△BFS和Rt△CGT中,,∴Rt△BFS≌Rt△CGT(HL),∴∠BSF=∠CTG,∴∠BNP=∠BSF=∠CTG=∠CQN,在△PBN和△NCQ中,,∴△PBN≌△NCQ(AAS),∴BN=CQ,BP=CN,∵AP=AB-BP=8-CN,又∵CN=BC-BN=12-CQ,∴AP=CQ-4又∵CQ=CD+DQ,DQ=AP,∴AP=4+AP(舍去),∴此种情况不成立;(ⅱ)当点N在BC延长线上时,如图,作BF⊥PN于点F,CG⊥QN于点G,再分别作Rt△PBN和Rt△NCQ的中线BS、CT,同理可得,△PBN≌△NCQ,∴PB=NC,BN=CQ,∵AP=DQ,∵AP+8=DQ+CD=CQ=BC+CN=12+BP,∴AP-BP=4 ①,∵AP+BP=AB=8②,①+②得:2AP=12,∴AP=6.【解析】【分析】(1)①由矩形的性质用角角边易证△APM≌△DQM,可得PM=QM,已知MN⊥PQ,由线段的垂直平分线的定义可得MN是线段PQ的垂直平分线,再根据线段的垂直平分线的性质可得PN=QN,由等边对等角可得∠NPQ=∠PQN;②过点M作ME⊥BC于点E,由矩形的性质跟据有两个角对应相等的两个三角形相似易证△AMP∽△EMN,可得比例式,结合已知条件易求得为定值;(2)根据MN⊥PQ交射线BC于N点可知分两种情况:①当点N在BC之间时,如图,作BF⊥PN于点F,CG⊥QN于点G,再分别作Rt△PBN和Rt△NCQ的中线BS、CT,通过证Rt△BFS≌Rt△CGT和△PBN≌△NCQ可求解;②当点N在BC延长线上时,如图,作BF⊥PN于点F,CG⊥QN于点G,再分别作Rt△PBN和Rt△NCQ的中线BS、CT,通过证△PBN≌△NCQ可求解。

  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

备战中考数学培优专题复习圆与相似练习题含详细答案一、相似1.如图所示,将二次函数y=x2+2x+1的图象沿x轴翻折,然后向右平移1个单位,再向上平移4个单位,得到二次函数y=ax2+bx+c的图象.函数y=x2+2x+1的图象的顶点为点A.函数y=ax2+bx+c的图象的顶点为点B,和x轴的交点为点C,D(点D位于点C的左侧).(1)求函数y=ax2+bx+c的解析式;(2)从点A,C,D三个点中任取两个点和点B构造三角形,求构造的三角形是等腰三角形的概率;(3)若点M是线段BC上的动点,点N是△ABC三边上的动点,是否存在以AM为斜边的Rt△AMN,使△AMN的面积为△ABC面积的?若存在,求tan∠MAN的值;若不存在,请说明理由.【答案】(1)解:y=x2+2x+1=(x+1)2的图象沿x轴翻折,得y=﹣(x+1)2,把y=﹣(x+1)2向右平移1个单位,再向上平移4个单位,得y=﹣x2+4,∴所求的函数y=ax2+bx+c的解析式为y=﹣x2+4(2)解:∵y=x2+2x+1=(x+1)2,∴A(﹣1,0),当y=0时,﹣x2+4=0,解得x=±2,则D(﹣2,0),C(2,0);当x=0时,y=﹣x2+4=4,则B(0,4),从点A,C,D三个点中任取两个点和点B构造三角形的有:△ACB,△ADB,△CDB,∵AC=3,AD=1,CD=4,AB= ,BC=2 ,BD=2 ,∴△BCD为等腰三角形,∴构造的三角形是等腰三角形的概率=(3)解:存在,易得BC的解析是为y=﹣2x+4,S△ABC= AC•OB= ×3×4=6,M点的坐标为(m,﹣2m+4)(0≤m≤2),①当N点在AC上,如图1,∴△AMN的面积为△ABC面积的,∴(m+1)(﹣2m+4)=2,解得m1=0,m2=1,当m=0时,M点的坐标为(0,4),N(0,0),则AN=1,MN=4,∴tan∠MAC= =4;当m=1时,M点的坐标为(1,2),N(1,0),则AN=2,MN=2,∴tan∠MAC= =1;②当N点在BC上,如图2,BC= =2 ,∵BC•AN= AC•BC,解得AN= ,∵S△AMN= AN•MN=2,∴MN= = ,∴∠MAC= ;③当N点在AB上,如图3,作AH⊥BC于H,设AN=t,则BN= ﹣t,由②得AH= ,则BH= ,∵∠NBG=∠HBA,∴△BNM∽△BHA,∴,即,∴MN= ,∵AN•MN=2,即•(﹣t)• =2,整理得3t2﹣3 t+14=0,△=(﹣3 )2﹣4×3×14=﹣15<0,方程没有实数解,∴点N在AB上不符合条件,综上所述,tan∠MAN的值为1或4或【解析】【分析】(1)将y=x2+2x+1配方成顶点式,根据轴对称的性质,可得出翻折后的函数解析式,再根据函数图像平移的规律:上加下减,左加右减,可得出答案。

(2)先求出抛物线y=x2+2x+1的顶点坐标A,与x轴、y轴的交点D、C、B的坐标,可得出从点A,C,D三个点中任取两个点和点B构造三角形的有:△ACB,△ADB,△CDB,再求出它们的各边的长,得出构造的三角形是等腰三角形可能数,利用概率公式求解即可。

(3)利用待定系数法求出直线BC的函数解析式及△ABC的面积、点M的坐标,再分情况讨论:①当N点在AC上,如图1;②当N点在BC上,如图2;③当N点在AB上,如图3。

利用△AMN的面积=△ABC面积的,解直角三角形、相似三角形的判定和性质等相关的知识,就可求出tan∠MAN的值。

2.如图所示,△ABC中,AB=AC,∠BAC=90°,AD⊥BC,DE⊥AC,△CDE沿直线BC翻折到△CDF,连结AF交BE、DE、DC分别于点G、H、I.(1)求证:AF⊥BE;(2)求证:AD=3DI.【答案】(1)证明:∵在△ABC中,AB=AC,∠BAC=90°,D是BC的中点,∴AD=BD=CD,∠ACB=45°,∵在△ADC中,AD=DC,DE⊥AC,∴AE=CE,∵△CDE沿直线BC翻折到△CDF,∴△CDE≌△CDF,∴CF=CE,∠DCF=∠ACB=45°,∴CF=AE,∠ACF=∠DCF+∠ACB=90°,在△ABE与△ACF中,,∴△ABE≌△ACF(SAS),∴∠ABE=∠FAC,∵∠BAG+∠CAF=90°,∴∠BAG+∠ABE=90°,∴∠AGB=90°,∴AF⊥BE(2)证明:作IC的中点M,连接EM,由(1)∠DEC=∠ECF=∠CFD=90°∴四边形DECF是正方形,∴EC∥DF,EC=DF,∴∠EAH=∠HFD,AE=DF,在△AEH与△FDH中,∴△AEH≌△FDH(AAS),∴EH=DH,∵∠BAG+∠CAF=90°,∴∠BAG+∠ABE=90°,∴∠AGB=90°,∴AF⊥BE,∵M是IC的中点,E是AC的中点,∴EM∥AI,∴,∴DI=IM,∴CD=DI+IM+MC=3DI,∴AD=3DI【解析】【分析】(1)根据翻折的性质和SAS证明△ABE≌△ACF,利用全等三角形的性质得出∠ABE=∠FAC,再证明∠AGB=90°,可证得结论。

(2)作IC的中点M,结合正方形的性质,可证得∠EAH=∠HFD,AE=DF,利用AAS证明△AEH与△FDH全等,再利用全等三角形的性质和中位线的性质解答即可。

3.阅读下列材料,完成任务:自相似图形定义:若某个图形可分割为若干个都与它相似的图形,则称这个图形是自相似图形.例如:正方形ABCD中,点E、F、G、H分别是AB、BC、CD、DA边的中点,连接EG,HF交于点O,易知分割成的四个四边形AEOH、EBFO、OFCG、HOGD均为正方形,且与原正方形相似,故正方形是自相似图形.任务:(1)图1中正方形ABCD分割成的四个小正方形中,每个正方形与原正方形的相似比为________;(2)如图2,已知△ABC中,∠ACB=90°,AC=4,BC=3,小明发现△ABC也是“自相似图形”,他的思路是:过点C作CD⊥AB于点D,则CD将△ABC分割成2个与它自己相似的小直角三角形.已知△ACD∽△ABC,则△ACD与△ABC的相似比为________;(3)现有一个矩形ABCD是自相似图形,其中长AD=a,宽AB=b(a>b).请从下列A、B两题中任选一条作答.A:①如图3﹣1,若将矩形ABCD纵向分割成两个全等矩形,且与原矩形都相似,则a=________(用含b的式子表示);②如图3﹣2若将矩形ABCD纵向分割成n个全等矩形,且与原矩形都相似,则a=________(用含n,b的式子表示);B:①如图4﹣1,若将矩形ABCD先纵向分割出2个全等矩形,再将剩余的部分横向分割成3个全等矩形,且分割得到的矩形与原矩形都相似,则a=________(用含b的式子表示);②如图4﹣2,若将矩形ABCD先纵向分割出m个全等矩形,再将剩余的部分横向分割成n 个全等矩形,且分割得到的矩形与原矩形都相似,则a=________(用含m,n,b的式子表示).【答案】(1)(2)(3);;或;或【解析】【解答】(解:(1)∵点H是AD的中点,∴AH= AD,∵正方形AEOH∽正方形ABCD,∴相似比为: == ;故答案为:;( 2 )在Rt△ABC中,AC=4,BC=3,根据勾股定理得,AB=5,∴△ACD与△ABC相似的相似比为:,故答案为:;( 3 )A、①∵矩形ABEF∽矩形FECD,∴AF:AB=AB:AD,即 a:b=b:a,∴a= b;故答案为:②每个小矩形都是全等的,则其边长为b和 a,则b: a=a:b,∴a= b;故答案为:B、①如图2,由①②可知纵向2块矩形全等,横向3块矩形也全等,∴DN= b,Ⅰ、当FM是矩形DFMN的长时,∵矩形FMND∽矩形ABCD,∴FD:DN=AD:AB,即FD: b=a:b,解得FD= a,∴AF=a﹣ a= a,∴AG= = = a,∵矩形GABH∽矩形ABCD,∴AG:AB=AB:AD即 a:b=b:a得:a= b;Ⅱ、当DF是矩形DFMN的长时,∵矩形DFMN∽矩形ABCD,∴FD:DN=AB:AD即FD: b=b:a解得FD= ,∴AF=a﹣ = ,∴AG= = ,∵矩形GABH∽矩形ABCD,∴AG:AB=AB:AD即:b=b:a,得:a= b;故答案为:或;②如图3,由①②可知纵向m块矩形全等,横向n块矩形也全等,∴DN= b,Ⅰ、当FM是矩形DFMN的长时,∵矩形FMND∽矩形ABCD,∴FD:DN=AD:AB,即FD: b=a:b,解得FD= a,∴AF=a﹣ a,∴AG= = = a,∵矩形GABH∽矩形ABCD,∴AG:AB=AB:AD即 a:b=b:a得:a= b;Ⅱ、当DF是矩形DFMN的长时,∵矩形DFMN∽矩形ABCD,∴FD:DN=AB:AD即FD: b=b:a解得FD= ,∴AF=a﹣,∴AG= = ,∵矩形GABH∽矩形ABCD,∴AG:AB=AB:AD即:b=b:a,得:a= b;故答案为: b或 b.【分析】由题意可知,用相似多边形的性质即可求解。

相似多边形的性质是;相似多边形的对应边的比相等。

相似多边形的对应边的比等于相似比。

(1)由题意知,小正方形的边长等于大正方形的边长的一半,所以其相似比为;(2)在直角三角形BC中,由勾股定理易得AB=5,而CD AB,所以用面积法可求得CD=,所以相似比===;(3)A、①由题意可得,解得;②同理可得; ,解得,;B、①最小的矩形的长和宽与大矩形的场和宽的对应方式有两种,所以分两种情况来解:Ⅰ、当FM是矩形DFMN的长时,由题意可得成比例线段,,,解得FD=,则AF的长也可用含a的代数式表示,而AG=GF=AF,再根据矩形GABH∽矩形ABCD,得到相对应的比例式即可求得a=b;Ⅱ、当DF是矩形DFMN的长时,同理可得a=b;②同①中的两种情况类似。

4.如图1,直线l:与x轴交于点A(4,0),与y轴交于点B,点C是线段OA上一动点(0<AC<),以点A为圆心,AC长为半径作⊙A交x轴于另一点D,交线段AB于点E,连结OE并延长交⊙A于点F.(1)求直线l的函数表达式和tan∠BAO的值;(2)如图2,连结CE,当CE=EF时,①求证:△OCE∽△OEA;②求点E的坐标;(3)当点C在线段OA上运动时,求OE·EF的最大值.【答案】(1)解:把A(4,0)代入,得 ×4+b=0,解得b=3,∴直线l的函数表达式为,∴B(0,3),∵AO⊥BO,OA=4,BO=3,∴tan∠BAO= .(2)①证明:如图,连结AF,∵CE=EF,∴∠CAE=∠EAF,又∵AC=AE=AF,∴∠ACE=∠AEF,∴∠OCE=∠OEA,又∵∠COE=∠EOA,∴△OCE∽△OEA.②解:如图,过点E作EH⊥x轴于点H,∵tan∠BAO= ,∴设EH=3x,AH=4x,∴AE=AC=5x,OH=4-4x,∴OC=4-5x,∵△OCE∽△OEA,∴ = ,即OE2=OA·OC,∴(4-4x)2+(3x)2=4(4-5x),解得x1= ,x2=0(不合题意,舍去)∴E(,).(3)解:如图,过点A作AM⊥OF于点M,过点O作ON⊥AB于点N,∵tan∠BAO= ,∴cos∠BAO= ,∴AN=OA·cos∠BAO= ,设AC=AE=r,∴EN= -r,∵ON⊥AB,AM⊥OF,∴∠ONE=∠AME=90°,EM= EF,又∵∠OEN=∠AEM,∴△OEN∽△AEM,∴ = ,即OE· EF=AE·EN,∴OE·EF=2AE·EN=2r·( -r),∴OE·EF=-2r2+ r-2(r- )2+ (0<r<),∴当r= 时,OE·EF有最大值,最大值为 .【解析】【分析】(1)将点A坐标代入直线l解析式即可求出b值从而得直线l的函数表达式,根据锐角三角函数正切定义即可求得答案.(2)①如图,连结AF,根据等腰三角形性质等边对等角可得两组对应角相等,根据相似三角形的判定即可得证.②如图,过点E作EH⊥x轴于点H,根据锐角三角函数正切值即可设EH=3x,AH=4x,从而得出AE、OH、OC,由①中相似三角形的性质可得OE2=OA·OC,代入数值即可得一个关于x的方程,解之即可求出E点坐标.(3)如图,过点A作AM⊥OF于点M,过点O作ON⊥AB于点N,根据锐角三角函数定义可求得AN=OA·cos∠BAO= ,设AC=AE=r,则EN= -r,根据相似三角形判定和性质可知 = ,即OE·EF=-2r2+ r=(0<r<),由二次函数的性质即可求此最大值.5.已知:A、B两点在直线l的同一侧,线段AO,BM均是直线l的垂线段,且BM在AO 的右边,AO=2BM,将BM沿直线l向右平移,在平移过程中,始终保持∠ABP=90°不变,BP边与直线l相交于点P.(1)当P与O重合时(如图2所示),设点C是AO的中点,连接BC.求证:四边形OCBM是正方形;(2)请利用如图1所示的情形,求证: = ;(3)若AO=2 ,且当MO=2PO时,请直接写出AB和PB的长.【答案】(1)解:∵2BM=AO,2CO=AO,∴BM=CO,∵AO∥BM,∴四边形OCBM是平行四边形,∵∠BMO=90°,∴▱OCBM是矩形,∵∠ABP=90°,C是AO的中点,∴OC=BC,∴矩形OCBM是正方形(2)解:连接AP、OB,∵∠ABP=∠AOP=90°,∴A、B、O、P四点共圆,由圆周角定理可知:∠APB=∠AOB,∵AO∥BM,∴∠AOB=∠OBM,∴∠APB=∠OBM,∴△APB∽△OBM,∴(3)解:当点P在O的左侧时,如图所示,过点B作BD⊥AO于点D,易证△PEO∽△BED,∴,易证:四边形DBMO是矩形,∴BD=MO,OD=BM,∴MO=2PO=BD,∴,∵AO=2BM=2 ,∴BM= ,∴OE= ,DE= ,易证△ADB∽△ABE,∴AB2=AD•AE,∵AD=DO=DM= ,∴AE=AD+DE=∴AB= ,由勾股定理可知:BE= ,易证:△PEO∽△PBM,∴,∴PB= ;当点P在O的右侧时,如图所示,过点B作BD⊥OA于点D,∵MO=2PO,∴点P是OM的中点,设PM=x,BD=2x,∵∠AOM=∠ABP=90°,∴A、O、P、B四点共圆,∴四边形AOPB是圆内接四边形,∴∠BPM=∠A,∴△ABD∽△PBM,∴,又易证四边形ODBM是矩形,AO=2BM,∴AD=BM= ,∴,解得:x= ,∴BD=2x=2由勾股定理可知:AB=3 ,BM=3【解析】【分析】(1)根据一组对边平行且相等的四边形是平行四边形得出四边形OCBM 是平行四边形,根据有一个角是直角的平行四边形是矩形得出▱OCBM是矩形,根据直角三角形斜边上的中线等于斜边的一半得出OC=BC,根据有一组邻边相等的矩形是正方形得出结论;(2)连接AP、OB,根据∠ABP=∠AOP=90°,判断出A、B、O、P四点共圆,由圆周角定理可知:∠APB=∠AOB,根据二直线平行内错角相等得出∠AOB=∠OBM,根据等量代换得出∠APB=∠OBM,从而判断出△APB∽△OBM,根据相似三角形对应边成比例得出;(3)当点P在O的左侧时,如图所示,过点B作BD⊥AO于点D,易证△PEO∽△BED,根据相似三角形对应边成比例得出,易证:四边形DBMO是矩形,根据矩形的性质得出BD=MO,OD=BM,故MO=2PO=BD,进而得出BM,OE,DE的长,易证△ADB∽△ABE,根据相似三角形对应边成比例得出AB2=AD•AE,从而得出AE,AB的长,由勾股定理可得BF 的长,易证:△PEO∽△PBM,根据相似三角形对应边成比例得出BE ∶PB=OM ∶PM=2 ∶3 ,根据比例式得出PB的长;当点P在O的右侧时,如图所示,过点B作BD⊥OA于点D,设PM=x,BD=2x,由∠AOM=∠ABP=90°,得出四边形AOPB是圆内接四边形,根据圆内接四边形的性质得出∠BPM=∠A,从而判断出△ABD∽△PBM,根据相似三角形对应边成比例得出 AD ∶BD=PM ∶BM,根据比例式得出x的值,进而得出BD,AB,BP的长。

相关文档
最新文档