离散数学之命题符号化概述.
离散数学第一章命题逻辑知识点总结

数理逻辑部分第1章命题逻辑命题符号化及联结词命题: 判断结果惟一的陈述句命题的真值: 判断的结果真值的取值: 真与假真命题: 真值为真的命题假命题: 真值为假的命题注意: 感叹句、祈使句、疑问句都不是命题,陈述句中的悖论以及判断结果不惟一确定的也不是命题。
简单命题(原子命题):简单陈述句构成的命题复合命题:由简单命题与联结词按一定规则复合而成的命题简单命题符号化用小写英文字母p, q, r, … ,p i,q i,r i (i≥1)表示简单命题用“1”表示真,用“0”表示假例如,令p:是有理数,则p 的真值为 0q:2 + 5 = 7,则q 的真值为 1联结词与复合命题1.否定式与否定联结词“”定义设p为命题,复合命题“非p”(或“p的否定”)称为p的否定式,记作p. 符号称作否定联结词,并规定p为真当且仅当p为假.2.合取式与合取联结词“∧”定义设p,q为二命题,复合命题“p并且q”(或“p与q”)称为p与q 的合取式,记作p∧q. ∧称作合取联结词,并规定 p∧q为真当且仅当p 与q同时为真注意:描述合取式的灵活性与多样性分清简单命题与复合命题例将下列命题符号化.(1) 王晓既用功又聪明.(2) 王晓不仅聪明,而且用功.(3) 王晓虽然聪明,但不用功.(4) 张辉与王丽都是三好生.(5) 张辉与王丽是同学.解令p:王晓用功,q:王晓聪明,则(1) p∧q(2) p∧q(3) p∧q.令r : 张辉是三好学生,s :王丽是三好学生(4) r∧s.(5) 令t : 张辉与王丽是同学,t 是简单命题 .说明:(1)~(4)说明描述合取式的灵活性与多样性.(5) 中“与”联结的是两个名词,整个句子是一个简单命题.3.析取式与析取联结词“∨”定义设p,q为二命题,复合命题“p或q”称作p与q的析取式,记作p∨q. ∨称作析取联结词,并规定p∨q为假当且仅当p与q同时为假.例将下列命题符号化(1) 2或4是素数.(2) 2或3是素数.(3) 4或6是素数.(4) 小元元只能拿一个苹果或一个梨.(5) 王晓红生于1975年或1976年.解令p:2是素数, q:3是素数, r:4是素数, s:6是素数,则 (1), (2), (3) 均为相容或.分别符号化为: p∨r , p∨q, r∨s,它们的真值分别为 1, 1, 0.而 (4), (5) 为排斥或.令t :小元元拿一个苹果,u:小元元拿一个梨,则 (4) 符号化为 (t∧u) ∨(t∧u).令v :王晓红生于1975年,w:王晓红生于1976年,则 (5) 既可符号化为 (v∧w)∨(v∧w), 又可符号化为v∨w , 为什么?4.蕴涵式与蕴涵联结词“”定义设p,q为二命题,复合命题“如果p,则q” 称作p与q的蕴涵式,记作p q,并称p是蕴涵式的前件,q为蕴涵式的后件. 称作蕴涵联结词,并规定,p q为假当且仅当p 为真q 为假.p q 的逻辑关系:q 为p 的必要条件“如果p,则q ” 的不同表述法很多:若p,就q只要p,就qp 仅当q只有q 才p除非q, 才p 或除非q, 否则非p.当p 为假时,p q 为真常出现的错误:不分充分与必要条件5.等价式与等价联结词“”定义设p,q为二命题,复合命题“p当且仅当q”称作p与q的等价式,记作p q. 称作等价联结词.并规定p q为真当且仅当p与q同时为真或同时为假.说明:(1) p q 的逻辑关系:p与q互为充分必要条件(2) p q为真当且仅当p与q同真或同假联结词优先级:( ),, , , ,同级按从左到右的顺序进行以上给出了5个联结词:, , , , ,组成一个联结词集合{, , , , },联结词的优先顺序为:, , , , ; 如果出现的联结词同级,又无括号时,则按从左到右的顺序运算; 若遇有括号时,应该先进行括号中的运算.注意: 本书中使用的括号全为园括号.命题常项命题变项命题公式及分类命题变项与合式公式命题常项:简单命题命题变项:真值不确定的陈述句定义合式公式 (命题公式, 公式) 递归定义如下:(1) 单个命题常项或变项p,q,r,…,p i ,q i ,r i ,…,0,1是合式公式(2) 若A是合式公式,则 (A)也是合式公式(3) 若A, B是合式公式,则(A B), (A B), (A B), (A B)也是合式公式(4) 只有有限次地应用(1)~(3)形成的符号串才是合式公式说明: 元语言与对象语言, 外层括号可以省去合式公式的层次定义(1) 若公式A是单个的命题变项, 则称A为0层公式.(2) 称A是n+1(n≥0)层公式是指下面情况之一:(a) A=B, B是n层公式;(b) A=B C, 其中B,C分别为i层和j层公式,且n=max(i, j);(c) A=B C, 其中B,C的层次及n同(b);(d) A=B C, 其中B,C的层次及n同(b);(e) A=B C, 其中B,C的层次及n同(b).例如公式p 0层p 1层p q 2层(p q)r 3层((p q) r)(r s) 4层公式的赋值定义给公式A中的命题变项p1, p2, … , p n指定一组真值称为对A的一个赋值或解释成真赋值: 使公式为真的赋值成假赋值: 使公式为假的赋值说明:赋值=12…n之间不加标点符号,i=0或1.A中仅出现p1, p2, …, p n,给A赋值12…n是指p1=1, p2=2, …, p n=nA中仅出现p,q, r, …, 给A赋值123…是指p=1,q=2 , r= 3 …含n个变项的公式有2n个赋值.真值表真值表: 公式A在所有赋值下的取值情况列成的表例给出公式的真值表A= (q p) q p的真值表例 B = (p q) q的真值表例C= (p q) r的真值表命题的分类重言式矛盾式可满足式定义设A为一个命题公式(1) 若A无成假赋值,则称A为重言式(也称永真式)(2) 若A无成真赋值,则称A为矛盾式(也称永假式)(3) 若A不是矛盾式,则称A为可满足式注意:重言式是可满足式,但反之不真.上例中A为重言式,B为矛盾式,C为可满足式A= (q p)q p,B =(p q)q,C= (p q)r等值演算等值式定义若等价式A B是重言式,则称A与B等值,记作A B,并称A B是等值式说明:定义中,A,B,均为元语言符号, A或B中可能有哑元出现.例如,在 (p q) ((p q) (r r))中,r为左边公式的哑元.用真值表可验证两个公式是否等值请验证:p(q r) (p q) rp(q r) (p q) r基本等值式双重否定律 : A A等幂律:A A A, A A A交换律: A B B A, A B B A结合律: (A B)C A(B C)(A B)C A(B C)分配律: A(B C)(A B)(A C)A(B C) (A B)(A C)德·摩根律: (A B)A B(A B)A B吸收律: A(A B)A, A(A B)A零律: A11, A00同一律: A0A, A1A排中律: A A1矛盾律: A A0等值演算:由已知的等值式推演出新的等值式的过程置换规则:若A B, 则(B)(A)等值演算的基础:(1) 等值关系的性质:自反、对称、传递(2) 基本的等值式(3) 置换规则应用举例——证明两个公式等值例1 证明p(q r) (p q)r证p(q r)p(q r) (蕴涵等值式,置换规则)(p q)r(结合律,置换规则)(p q)r(德摩根律,置换规则)(p q) r(蕴涵等值式,置换规则)说明:也可以从右边开始演算(请做一遍)因为每一步都用置换规则,故可不写出熟练后,基本等值式也可以不写出应用举例——证明两个公式不等值例2 证明: p(q r) (p q) r用等值演算不能直接证明两个公式不等值,证明两个公式不等值的基本思想是找到一个赋值使一个成真,另一个成假.方法一真值表法(自己证)方法二观察赋值法. 容易看出000, 010等是左边的的成真赋值,是右边的成假赋值.方法三用等值演算先化简两个公式,再观察.应用举例——判断公式类型例3 用等值演算法判断下列公式的类型(1) q(p q)解q(p q)q(p q) (蕴涵等值式)q(p q) (德摩根律)p(q q) (交换律,结合律)p0 (矛盾律)0 (零律)由最后一步可知,该式为矛盾式.(2) (p q)(q p)解 (p q)(q p)(p q)(q p) (蕴涵等值式)(p q)(p q) (交换律)1由最后一步可知,该式为重言式.问:最后一步为什么等值于1?(3) ((p q)(p q))r)解 ((p q)(p q))r)(p(q q))r(分配律)p1r(排中律)p r(同一律)这不是矛盾式,也不是重言式,而是非重言式的可满足式.如101是它的成真赋值,000是它的成假赋值.总结:A为矛盾式当且仅当A0A为重言式当且仅当A1说明:演算步骤不惟一,应尽量使演算短些对偶与范式对偶式与对偶原理定义在仅含有联结词, ∧,∨的命题公式A中,将∨换成∧, ∧换成∨,若A中含有0或1,就将0换成1,1换成0,所得命题公式称为A的对偶式,记为A*.从定义不难看出,(A*)* 还原成A定理设A和A*互为对偶式,p1,p2,…,p n是出现在A和A*中的全部命题变项,将A和A*写成n元函数形式,则 (1) A(p1,p2,…,p n) A* (p1, p2,…, p n) (2) A(p1, p2,…, p n) A* (p1,p2,…,p n) 定理(对偶原理)设A,B为两个命题公式,若A B,则A* B*.析取范式与合取范式文字:命题变项及其否定的总称简单析取式:有限个文字构成的析取式如p, q, p q, p q r, …简单合取式:有限个文字构成的合取式如p, q, p q, p q r, …析取范式:由有限个简单合取式组成的析取式A 1A2Ar, 其中A1,A2,,A r是简单合取式合取范式:由有限个简单析取式组成的合取式A 1A2Ar, 其中A1,A2,,A r是简单析取式范式:析取范式与合取范式的总称公式A的析取范式: 与A等值的析取范式公式A的合取范式: 与A等值的合取范式说明:单个文字既是简单析取式,又是简单合取式p q r, p q r既是析取范式,又是合取范式(为什么?)命题公式的范式定理任何命题公式都存在着与之等值的析取范式与合取范式.求公式A的范式的步骤:(1) 消去A中的, (若存在)(2) 否定联结词的内移或消去(3) 使用分配律对分配(析取范式)对分配(合取范式)公式的范式存在,但不惟一求公式的范式举例例求下列公式的析取范式与合取范式(1) A=(p q)r解 (p q)r(p q)r(消去)p q r(结合律)这既是A的析取范式(由3个简单合取式组成的析取式),又是A的合取范式(由一个简单析取式组成的合取式)(2) B=(p q)r解 (p q)r(p q)r(消去第一个)(p q)r(消去第二个)(p q)r(否定号内移——德摩根律)这一步已为析取范式(两个简单合取式构成)继续: (p q)r(p r)(q r) (对分配律)这一步得到合取范式(由两个简单析取式构成)极小项与极大项定义在含有n个命题变项的简单合取式(简单析取式)中,若每个命题变项均以文字的形式在其中出现且仅出现一次,而且第i(1i n)个文字出现在左起第i位上,称这样的简单合取式(简单析取式)为极小项(极大项).说明:n个命题变项产生2n个极小项和2n个极大项2n个极小项(极大项)均互不等值用m i表示第i个极小项,其中i是该极小项成真赋值的十进制表示. 用M i 表示第i个极大项,其中i是该极大项成假赋值的十进制表示, m i(M i)称为极小项(极大项)的名称.m与M i的关系: m i M i , M i m ii主析取范式与主合取范式主析取范式: 由极小项构成的析取范式主合取范式: 由极大项构成的合取范式例如,n=3, 命题变项为p, q, r时,(p q r)(p q r) m1m3是主析取范式(p q r)(p q r) M1M5 是主合取范式A的主析取范式: 与A等值的主析取范式A的主合取范式: 与A等值的主合取范式.定理任何命题公式都存在着与之等值的主析取范式和主合取范式, 并且是惟一的.用等值演算法求公式的主范式的步骤:(1) 先求析取范式(合取范式)(2) 将不是极小项(极大项)的简单合取式(简单析取式)化成与之等值的若干个极小项的析取(极大项的合取),需要利用同一律(零律)、排中律(矛盾律)、分配律、幂等律等.(3) 极小项(极大项)用名称m i(M i)表示,并按角标从小到大顺序排序.求公式的主范式例求公式A=(p q)r的主析取范式与主合取范式.(1) 求主析取范式(p q)r(p q)r , (析取范式)①(p q)(p q)(r r)(p q r)(p q r)m 6m7,r(p p)(q q)r(p q r)(p q r)(p q r)(p q r)m 1m3m5m7③②, ③代入①并排序,得(p q)r m1m3m5m6m7(主析取范式)(2) 求A的主合取范式(p q)r(p r)(q r) , (合取范式)①p rp(q q)r(p q r)(p q r)M 0M2,②q r(p p)q r(p q r)(p q r)M 0M4③②, ③代入①并排序,得(p q)r M0M2M4 (主合取范式)主范式的用途——与真值表相同(1) 求公式的成真赋值和成假赋值例如 (p q)r m1m3m5m6m7,其成真赋值为001, 011, 101, 110, 111,其余的赋值 000, 010, 100为成假赋值.类似地,由主合取范式也可立即求出成假赋值和成真赋值.(2) 判断公式的类型设A含n个命题变项,则A为重言式A的主析取范式含2n个极小项A的主合取范式为1.A为矛盾式A的主析取范式为0A的主合取范式含2n个极大项A为非重言式的可满足式A的主析取范式中至少含一个且不含全部极小项A的主合取范式中至少含一个且不含全部极大项例某公司要从赵、钱、孙、李、周五名新毕业的大学生中选派一些人出国学习. 选派必须满足以下条件:(1)若赵去,钱也去;(2)李、周两人中至少有一人去;(3)钱、孙两人中有一人去且仅去一人;(4)孙、李两人同去或同不去;(5)若周去,则赵、钱也去.试用主析取范式法分析该公司如何选派他们出国?解此类问题的步骤为:①将简单命题符号化②写出各复合命题③写出由②中复合命题组成的合取式④求③中所得公式的主析取范式解①设p:派赵去,q:派钱去,r:派孙去,s:派李去,u:派周去.② (1) (p q)(2) (s u)(3) ((q r)(q r))(4) ((r s)(r s))(5) (u(p q))③ (1) ~ (5)构成的合取式为A=(p q)(s u)((q r)(q r))((r s)(r s))(u(p q))④ A (p q r s u)(p q r s u)结论:由④可知,A的成真赋值为00110与11001,因而派孙、李去(赵、钱、周不去)或派赵、钱、周去(孙、李不去).A的演算过程如下:A (p q)((q r)(q r))(s u)(u(p q)) ((r s)(r s)) (交换律) B1= (p q)((q r)(q r))((p q r)(p q r)(q r)) (分配律)B2= (s u)(u(p q))((s u)(p q s)(p q u)) (分配律)B 1B2(p q r s u)(p q r s u) (q r s u)(p q r s)(p q r u)再令B3 = ((r s)(r s))得A B1B2B3(p q r s u)(p q r s u)注意:在以上演算中多次用矛盾律要求:自己演算一遍推理理论推理的形式结构推理的形式结构—问题的引入推理举例:(1) 正项级数收敛当且仅当部分和有上界.(2) 若推理: 从前提出发推出结论的思维过程上面(1)是正确的推理,而(2)是错误的推理.证明: 描述推理正确的过程.判断推理是否正确的方法•真值表法•等值演算法判断推理是否正确•主析取范式法•构造证明法证明推理正确说明:当命题变项比较少时,用前3个方法比较方便, 此时采用形式结构“” . 而在构造证明时,采用“前提: , 结论: B”.推理定律与推理规则推理定律——重言蕴涵式构造证明——直接证明法例构造下面推理的证明:若明天是星期一或星期三,我就有课. 若有课,今天必备课. 我今天下午没备课. 所以,明天不是星期一和星期三.解设p:明天是星期一,q:明天是星期三,r:我有课,s:我备课推理的形式结构为例构造下面推理的证明:2是素数或合数. 若2是素数,则是无理数.若是无理数,则4不是素数. 所以,如果4是素数,则2是合数.用附加前提证明法构造证明解设p:2是素数,q:2是合数,r:是无理数,s:4是素数推理的形式结构前提:p∨q, p r, r s结论:s q证明① s附加前提引入②p r前提引入③r s前提引入④p s②③假言三段论⑤p①④拒取式⑥p∨q前提引入⑦q⑤⑥析取三段论请用直接证明法证明之。
离散数学第一章命题逻辑知识点总结

数理逻辑部分第1章命题逻辑1.1 命题符号化及联结词命题: 判断结果惟一的陈述句命题的真值: 判断的结果真值的取值: 真与假真命题: 真值为真的命题假命题: 真值为假的命题注意: 感叹句、祈使句、疑问句都不是命题,陈述句中的悖论以及判断结果不惟一确定的也不是命题。
简单命题(原子命题):简单陈述句构成的命题复合命题:由简单命题与联结词按一定规则复合而成的命题简单命题符号化用小写英文字母p, q, r, … ,p i,q i,r i (i≥1)表示简单命题用“1”表示真,用“0”表示假例如,令p:是有理数,则p 的真值为 0q:2 + 5 = 7,则q 的真值为 1联结词与复合命题1.否定式与否定联结词“⌝”定义设p为命题,复合命题“非p”(或“p的否定”)称为p的否定式,记作⌝p. 符号⌝称作否定联结词,并规定⌝p为真当且仅当p为假.2.合取式与合取联结词“∧”定义设p,q为二命题,复合命题“p并且q”(或“p与q”)称为p与q 的合取式,记作p∧q. ∧称作合取联结词,并规定 p∧q为真当且仅当p 与q同时为真注意:描述合取式的灵活性与多样性分清简单命题与复合命题例将下列命题符号化.(1) 王晓既用功又聪明.(2) 王晓不仅聪明,而且用功.(3) 王晓虽然聪明,但不用功.(4) 张辉与王丽都是三好生.(5) 张辉与王丽是同学.解令p:王晓用功,q:王晓聪明,则(1) p∧q(2) p∧q(3) p∧⌝q.令r : 张辉是三好学生,s :王丽是三好学生(4) r∧s.(5) 令t : 张辉与王丽是同学,t 是简单命题 .说明:(1)~(4)说明描述合取式的灵活性与多样性.(5) 中“与”联结的是两个名词,整个句子是一个简单命题.3.析取式与析取联结词“∨”定义设p,q为二命题,复合命题“p或q”称作p与q的析取式,记作p∨q. ∨称作析取联结词,并规定p∨q为假当且仅当p与q同时为假.例将下列命题符号化(1) 2或4是素数.(2) 2或3是素数.(3) 4或6是素数.(4) 小元元只能拿一个苹果或一个梨.(5) 王晓红生于1975年或1976年.解令p:2是素数, q:3是素数, r:4是素数, s:6是素数,则 (1), (2), (3) 均为相容或.分别符号化为: p∨r , p∨q, r∨s,它们的真值分别为 1, 1, 0.而 (4), (5) 为排斥或.令t :小元元拿一个苹果,u:小元元拿一个梨,则 (4) 符号化为 (t∧⌝u) ∨(⌝t∧u).令v :王晓红生于1975年,w:王晓红生于1976年,则 (5) 既可符号化为 (v∧⌝w)∨(⌝v∧w), 又可符号化为v∨w , 为什么?4.蕴涵式与蕴涵联结词“→”定义设p,q为二命题,复合命题“如果p,则q” 称作p与q的蕴涵式,记作p→q,并称p是蕴涵式的前件,q为蕴涵式的后件. →称作蕴涵联结词,并规定,p→q为假当且仅当p 为真q 为假.p→q 的逻辑关系:q 为p 的必要条件“如果p,则q ” 的不同表述法很多:若p,就q只要p,就qp 仅当q只有q 才p除非q, 才p 或除非q, 否则非p.当p 为假时,p→q 为真常出现的错误:不分充分与必要条件5.等价式与等价联结词“↔”定义设p,q为二命题,复合命题“p当且仅当q”称作p与q的等价式,记作p↔q. ↔称作等价联结词.并规定p↔q为真当且仅当p与q同时为真或同时为假.说明:(1) p↔q 的逻辑关系:p与q互为充分必要条件(2) p↔q为真当且仅当p与q同真或同假联结词优先级:( ),⌝, ∧, ∨, →, ↔同级按从左到右的顺序进行以上给出了5个联结词:⌝, ∧, ∨, →, ↔,组成一个联结词集合{⌝, ∧, ∨, →, ↔},联结词的优先顺序为:⌝, ∧, ∨, →, ↔; 如果出现的联结词同级,又无括号时,则按从左到右的顺序运算; 若遇有括号时,应该先进行括号中的运算.注意: 本书中使用的括号全为园括号.⏹命题常项⏹命题变项1.2 命题公式及分类▪命题变项与合式公式▪命题常项:简单命题▪命题变项:真值不确定的陈述句▪定义合式公式 (命题公式, 公式) 递归定义如下:▪(1) 单个命题常项或变项p,q,r,…,p i ,q i ,r i ,…,0,1▪是合式公式▪(2) 若A是合式公式,则 (⌝A)也是合式公式▪(3) 若A, B是合式公式,则(A∧B), (A∨B), (A→B), (A↔B)也是合式公式▪(4) 只有有限次地应用(1)~(3)形成的符号串才是合式公式▪说明: 元语言与对象语言, 外层括号可以省去合式公式的层次定义(1) 若公式A是单个的命题变项, 则称A为0层公式.(2) 称A是n+1(n≥0)层公式是指下面情况之一:(a) A=⌝B, B是n层公式;(b) A=B∧C, 其中B,C分别为i层和j层公式,且n=max(i, j);(c) A=B∨C, 其中B,C的层次及n同(b);(d) A=B→C, 其中B,C的层次及n同(b);(e) A=B↔C, 其中B,C的层次及n同(b).例如公式p 0层⌝p 1层⌝p→q 2层⌝(p→q)↔r 3层((⌝p∧q) →r)↔(⌝r∨s) 4层▪公式的赋值▪定义给公式A中的命题变项p1, p2, … , p n指定▪一组真值称为对A的一个赋值或解释▪成真赋值: 使公式为真的赋值▪成假赋值: 使公式为假的赋值▪说明:▪赋值α=α1α2…αn之间不加标点符号,αi=0或1.▪A中仅出现p1, p2, …, p n,给A赋值α1α2…αn是▪指p1=α1, p2=α2, …, p n=αn▪A中仅出现p,q, r, …, 给A赋值α1α2α3…是指▪p=α1,q=α2 , r=α3 …▪含n个变项的公式有2n个赋值.▪真值表真值表: 公式A在所有赋值下的取值情况列成的表例给出公式的真值表A= (q→p) ∧q→p的真值表例 B = ⌝ (⌝p∨q) ∧q的真值表例C= (p∨q) →⌝r的真值表命题的分类重言式矛盾式可满足式定义设A为一个命题公式(1) 若A无成假赋值,则称A为重言式(也称永真式)(2) 若A无成真赋值,则称A为矛盾式(也称永假式)(3) 若A不是矛盾式,则称A为可满足式注意:重言式是可满足式,但反之不真.上例中A为重言式,B为矛盾式,C为可满足式A= (q→p)∧q→p,B =⌝(⌝p∨q)∧q,C= (p∨q)→⌝r1.3 等值演算⏹等值式定义若等价式A↔B是重言式,则称A与B等值,记作A⇔B,并称A⇔B是等值式说明:定义中,A,B,⇔均为元语言符号, A或B中可能有哑元出现.例如,在 (p→q) ⇔ ((⌝p∨q)∨ (⌝r∧r))中,r为左边公式的哑元.用真值表可验证两个公式是否等值请验证:p→(q→r) ⇔ (p∧q) →rp→(q→r) (p→q) →r⏹基本等值式双重否定律 : ⌝⌝A⇔A等幂律:A∨A⇔A, A∧A⇔A交换律: A∨B⇔B∨A, A∧B⇔B∧A结合律: (A∨B)∨C⇔A∨(B∨C)(A∧B)∧C⇔A∧(B∧C)分配律: A∨(B∧C)⇔(A∨B)∧(A∨C)A∧(B∨C)⇔ (A∧B)∨(A∧C) 德·摩根律: ⌝(A∨B)⇔⌝A∧⌝B⌝(A∧B)⇔⌝A∨⌝B吸收律: A∨(A∧B)⇔A, A∧(A∨B)⇔A零律: A∨1⇔1, A∧0⇔0同一律: A∨0⇔A, A∧1⇔A排中律: A∨⌝A⇔1矛盾律: A∧⌝A⇔0等值演算:由已知的等值式推演出新的等值式的过程置换规则:若A⇔B, 则Φ(B)⇔Φ(A)等值演算的基础:(1) 等值关系的性质:自反、对称、传递(2) 基本的等值式(3) 置换规则应用举例——证明两个公式等值例1 证明p→(q→r) ⇔ (p∧q)→r证p→(q→r)⇔⌝p∨(⌝q∨r) (蕴涵等值式,置换规则)⇔(⌝p∨⌝q)∨r(结合律,置换规则)⇔⌝(p∧q)∨r(德⋅摩根律,置换规则)⇔(p∧q) →r(蕴涵等值式,置换规则)说明:也可以从右边开始演算(请做一遍)因为每一步都用置换规则,故可不写出熟练后,基本等值式也可以不写出应用举例——证明两个公式不等值例2 证明: p→(q→r) (p→q) →r用等值演算不能直接证明两个公式不等值,证明两个公式不等值的基本思想是找到一个赋值使一个成真,另一个成假.方法一真值表法(自己证)方法二观察赋值法. 容易看出000, 010等是左边的的成真赋值,是右边的成假赋值.方法三用等值演算先化简两个公式,再观察.应用举例——判断公式类型例3 用等值演算法判断下列公式的类型(1) q∧⌝(p→q)解q∧⌝(p→q)⇔q∧⌝(⌝p∨q) (蕴涵等值式)⇔q∧(p∧⌝q) (德⋅摩根律)⇔p∧(q∧⌝q) (交换律,结合律)⇔p∧0 (矛盾律)⇔ 0 (零律)由最后一步可知,该式为矛盾式.(2) (p→q)↔(⌝q→⌝p)解 (p→q)↔(⌝q→⌝p)⇔ (⌝p∨q)↔(q∨⌝p) (蕴涵等值式)⇔ (⌝p∨q)↔(⌝p∨q) (交换律)⇔ 1由最后一步可知,该式为重言式.问:最后一步为什么等值于1?(3) ((p∧q)∨(p∧⌝q))∧r)解 ((p∧q)∨(p∧⌝q))∧r)⇔ (p∧(q∨⌝q))∧r(分配律)⇔p∧1∧r(排中律)⇔p∧r(同一律)这不是矛盾式,也不是重言式,而是非重言式的可满足式.如101是它的成真赋值,000是它的成假赋值.总结:A为矛盾式当且仅当A⇔0A为重言式当且仅当A⇔1说明:演算步骤不惟一,应尽量使演算短些1.5 对偶与范式对偶式与对偶原理定义在仅含有联结词⌝, ∧,∨的命题公式A中,将∨换成∧, ∧换成∨,若A中含有0或1,就将0换成1,1换成0,所得命题公式称为A的对偶式,记为A*.从定义不难看出,(A*)* 还原成A定理设A和A*互为对偶式,p1,p2,…,p n是出现在A和A*中的全部命题变项,将A和A*写成n元函数形式,则 (1) ⌝A(p1,p2,…,p n) ⇔A* (⌝p1, ⌝p2,…, ⌝p n)(2) A(⌝p1, ⌝p2,…, ⌝p n) ⇔⌝A* (p1,p2,…,p n)定理(对偶原理)设A,B为两个命题公式,若A ⇔ B,则A*⇔ B*.析取范式与合取范式文字:命题变项及其否定的总称简单析取式:有限个文字构成的析取式如p, ⌝q, p∨⌝q, p∨q∨r, …简单合取式:有限个文字构成的合取式如p, ⌝q, p∧⌝q, p∧q∧r, …析取范式:由有限个简单合取式组成的析取式A∨A2∨⋯∨A r, 其中A1,A2,⋯,A r是简单合取式1合取范式:由有限个简单析取式组成的合取式A∧A2∧⋯∧A r , 其中A1,A2,⋯,A r是简单析取式1范式:析取范式与合取范式的总称公式A的析取范式: 与A等值的析取范式公式A的合取范式: 与A等值的合取范式说明:单个文字既是简单析取式,又是简单合取式p∧⌝q∧r, ⌝p∨q∨⌝r既是析取范式,又是合取范式(为什么?)命题公式的范式定理任何命题公式都存在着与之等值的析取范式与合取范式.求公式A的范式的步骤:(1) 消去A中的→, ↔(若存在)(2) 否定联结词⌝的内移或消去(3) 使用分配律∧对∨分配(析取范式)∨对∧分配(合取范式)公式的范式存在,但不惟一求公式的范式举例例求下列公式的析取范式与合取范式(1) A=(p→⌝q)∨⌝r解 (p→⌝q)∨⌝r⇔ (⌝p∨⌝q)∨⌝r(消去→)⇔⌝p∨⌝q∨⌝r(结合律)这既是A的析取范式(由3个简单合取式组成的析取式),又是A的合取范式(由一个简单析取式组成的合取式)(2) B=(p→⌝q)→r解 (p→⌝q)→r⇔ (⌝p∨⌝q)→r(消去第一个→)⇔⌝(⌝p∨⌝q)∨r(消去第二个→)⇔ (p∧q)∨r(否定号内移——德⋅摩根律)这一步已为析取范式(两个简单合取式构成)继续: (p∧q)∨r⇔ (p∨r)∧(q∨r) (∨对∧分配律)这一步得到合取范式(由两个简单析取式构成)极小项与极大项定义在含有n个命题变项的简单合取式(简单析取式)中,若每个命题变项均以文字的形式在其中出现且仅出现一次,而且第i(1≤i≤n)个文字出现在左起第i位上,称这样的简单合取式(简单析取式)为极小项(极大项).说明:n个命题变项产生2n个极小项和2n个极大项2n个极小项(极大项)均互不等值用m i表示第i个极小项,其中i是该极小项成真赋值的十进制表示. 用M i表示第i个极大项,其中i是该极大项成假赋值的十进制表示, m i(M i)称为极小项(极大项)的名称.m与M i的关系: ⌝m i ⇔M i , ⌝M i ⇔m ii主析取范式与主合取范式主析取范式: 由极小项构成的析取范式主合取范式: 由极大项构成的合取范式例如,n=3, 命题变项为p, q, r时,(⌝p∧⌝q∧r)∨(⌝p∧q∧r) ⇔m1∨m3是主析取范式(p∨q∨⌝r)∧(⌝p∨q∨⌝r) ⇔M1∧M5 是主合取范式A的主析取范式: 与A等值的主析取范式A的主合取范式: 与A等值的主合取范式.定理任何命题公式都存在着与之等值的主析取范式和主合取范式, 并且是惟一的.用等值演算法求公式的主范式的步骤:(1) 先求析取范式(合取范式)(2) 将不是极小项(极大项)的简单合取式(简单析取式)化成与之等值的若干个极小项的析取(极大项的合取),需要利用同一律(零律)、排中律(矛盾律)、分配律、幂等律等.(3) 极小项(极大项)用名称m i(M i)表示,并按角标从小到大顺序排序.求公式的主范式例求公式A=(p→⌝q)→r的主析取范式与主合取范式.(1) 求主析取范式(p→⌝q)→r⇔ (p∧q)∨r , (析取范式)①(p∧q)⇔ (p∧q)∧(⌝r∨r)⇔ (p∧q∧⌝r)∨(p∧q∧r)⇔m6∨m7 ,r⇔(⌝p∨p)∧(⌝q∨q)∧r⇔(⌝p∧⌝q∧r)∨(⌝p∧q∧r)∨(p∧⌝q∧r)∨(p∧q∧r)⇔m1∨m3∨m5∨m7 ③②, ③代入①并排序,得(p→⌝q)→r⇔m1∨m3∨m5∨m6∨m7(主析取范式)(2) 求A的主合取范式(p→⌝q)→r⇔ (p∨r)∧(q∨r) , (合取范式)①p∨r⇔p∨(q∧⌝q)∨r⇔ (p∨q∨r)∧(p∨⌝q∨r)⇔M0∧M2,②q∨r⇔ (p∧⌝p)∨q∨r⇔ (p∨q∨r)∧(⌝p∨q∨r)⇔M0∧M4 ③②, ③代入①并排序,得(p→⌝q)→r⇔M0∧M2∧M4 (主合取范式)主范式的用途——与真值表相同(1) 求公式的成真赋值和成假赋值例如 (p→⌝q)→r⇔m1∨m3∨m5∨m6∨m7,其成真赋值为001, 011, 101, 110, 111,其余的赋值 000, 010, 100为成假赋值.类似地,由主合取范式也可立即求出成假赋值和成真赋值.(2) 判断公式的类型设A含n个命题变项,则A为重言式⇔A的主析取范式含2n个极小项⇔A的主合取范式为1.A为矛盾式⇔A的主析取范式为0⇔A的主合取范式含2n个极大项A为非重言式的可满足式⇔A的主析取范式中至少含一个且不含全部极小项⇔A的主合取范式中至少含一个且不含全部极大项例某公司要从赵、钱、孙、李、周五名新毕业的大学生中选派一些人出国学习. 选派必须满足以下条件:(1)若赵去,钱也去;(2)李、周两人中至少有一人去;(3)钱、孙两人中有一人去且仅去一人;(4)孙、李两人同去或同不去;(5)若周去,则赵、钱也去.试用主析取范式法分析该公司如何选派他们出国?解此类问题的步骤为:①将简单命题符号化②写出各复合命题③写出由②中复合命题组成的合取式④求③中所得公式的主析取范式解①设p:派赵去,q:派钱去,r:派孙去,s:派李去,u:派周去.② (1) (p→q)(2) (s∨u)(3) ((q∧⌝r)∨(⌝q∧r))(4) ((r∧s)∨(⌝r∧⌝s))(5) (u→(p∧q))③ (1) ~ (5)构成的合取式为A=(p→q)∧(s∨u)∧((q∧⌝r)∨(⌝q∧r))∧((r∧s)∨(⌝r∧⌝s))∧(u→(p∧q))④ A ⇔ (⌝p∧⌝q∧r∧s∧⌝u)∨(p∧q∧⌝r∧⌝s∧u)结论:由④可知,A的成真赋值为00110与11001,因而派孙、李去(赵、钱、周不去)或派赵、钱、周去(孙、李不去).A的演算过程如下:A⇔ (⌝p∨q)∧((q∧⌝r)∨(⌝q∧r))∧(s∨u)∧(⌝u∨(p∧q))∧((r∧s)∨(⌝r∧⌝s)) (交换律) B= (⌝p∨q)∧((q∧⌝r)∨(⌝q∧r))1⇔ ((⌝p∧q∧⌝r)∨(⌝p∧⌝q∧r)∨(q∧⌝r)) (分配律)B= (s∨u)∧(⌝u∨(p∧q))2⇔ ((s∧⌝u)∨(p∧q∧s)∨(p∧q∧u)) (分配律)B∧B2 ⇔ (⌝p∧q∧⌝r∧s∧⌝u)∨(⌝p∧⌝q∧r∧s∧⌝u)1∨(q∧⌝r∧s∧⌝u)∨(p∧q∧⌝r∧s)∨(p∧q∧⌝r∧u) 再令B3 = ((r∧s)∨(⌝r∧⌝s))得A⇔B1∧B2∧B3⇔ (⌝p∧⌝q∧r∧s∧⌝u)∨(p∧q∧⌝r∧⌝s∧u) 注意:在以上演算中多次用矛盾律要求:自己演算一遍1.6 推理理论推理的形式结构推理的形式结构—问题的引入推理举例:(1) 正项级数收敛当且仅当部分和有上界.(2) 若推理: 从前提出发推出结论的思维过程上面(1)是正确的推理,而(2)是错误的推理.证明: 描述推理正确的过程.判断推理是否正确的方法•真值表法•等值演算法判断推理是否正确•主析取范式法•构造证明法证明推理正确说明:当命题变项比较少时,用前3个方法比较方便, 此时采用形式结构“” . 而在构造证明时,采用“前提: , 结论: B”.推理定律与推理规则推理定律——重言蕴涵式构造证明——直接证明法例构造下面推理的证明:若明天是星期一或星期三,我就有课. 若有课,今天必备课. 我今天下午没备课. 所以,明天不是星期一和星期三.解设p:明天是星期一,q:明天是星期三,r:我有课,s:我备课推理的形式结构为例构造下面推理的证明:2是素数或合数. 若2是素数,则是无理数.若是无理数,则4不是素数. 所以,如果4是素数,则2是合数.用附加前提证明法构造证明解设p:2是素数,q:2是合数,r:是无理数,s:4是素数推理的形式结构前提:p∨q, p→r, r→⌝s结论:s→q证明① s附加前提引入②p→r前提引入③r→⌝s前提引入④p→⌝s②③假言三段论⑤⌝p①④拒取式⑥p∨q前提引入⑦q⑤⑥析取三段论请用直接证明法证明之。
离散数学命题符号

离散数学命题符号一、离散数学命题符号的定义在离散数学中,命题是一个陈述句,可以判断为真或为假。
为了准确地表示命题,在离散数学中引入了命题符号。
命题符号主要用于表示命题的逻辑关系,以及对命题的运算。
1. 命题变量和命题符号离散数学中,命题变量被表示为字母,常用的命题变量包括p、q、r等。
命题符号则用来表示对命题变量的操作和运算关系。
常用的命题符号包括逻辑与(∧)、逻辑或(∨)、非(¬)等。
2. 逻辑连接词离散数学中,逻辑连接词用于将多个命题连接起来,形成复合命题。
常见的逻辑连接词有:- 逻辑与(∧):表示两个命题都为真时,复合命题为真;否则为假。
- 逻辑或(∨):表示两个命题至少一个为真时,复合命题为真;否则为假。
- 非(¬):表示对命题的否定。
3. 命题符号的优先级为了保证命题的运算顺序和结果的准确性,在离散数学中,命题符号有一定的优先级。
常见的命题符号优先级从高到低依次为:- ¬(非)- ∧(逻辑与)- ∨(逻辑或)二、离散数学命题符号的应用1. 命题的合取和析取在离散数学中,逻辑与(∧)和逻辑或(∨)的运算被广泛应用于命题的合取和析取。
- 合取:当多个命题同时为真时,可以使用合取运算符(∧)将这些命题合并成为一个复合命题。
例如,当p表示“今天下雨”、q表示“今天天气阴沉”时,合取命题p∧q表示“今天同时下雨并且天气阴沉”。
- 析取:当多个命题至少一个为真时,可以使用析取运算符(∨)将这些命题合并成为一个复合命题。
例如,当p表示“今天下雨”、q表示“今天天气阴沉”时,析取命题p∨q表示“今天下雨或者天气阴沉”。
2. 命题的否定在离散数学中,非(¬)运算符常用于对命题的否定。
如果p为真,则¬p为假;如果p为假,则¬p为真。
例如,若p表示“今天下雨”,则¬p表示“今天不下雨”。
3. 命题的复合运算通过组合使用逻辑连接词和命题符号,可以对多个命题进行复合运算。
命题符号化 举例

命题符号化举例命题符号化是一种将自然语言中的语句转化为符号语言的方法,它可以帮助我们更加准确地表达和理解逻辑命题。
下面我将以一个简单的例子来说明命题符号化的基本原理和应用。
假设我们要表达以下语句:如果今天下雨,那么我就不去打篮球。
我们可以使用命题符号化的方法将其转化为如下形式:p:今天下雨q:我不去打篮球则原语句可以表示为:p→q在这个例子中,p和q分别代表了原语句中的“今天下雨”和“我不去打篮球”,而箭头“→”则表示了“如果……,那么……”这个条件语句的关系。
这样,我们就可以用简洁明了的符号语言来表达原语句的逻辑含义,避免了自然语言中可能存在的歧义和模糊性。
除了简化语言表达之外,命题符号化还可以帮助我们进行逻辑推理和证明。
例如,我们可以利用命题符号化的方法来证明以下命题:如果一个数是偶数,那么它的平方也是偶数。
我们可以将其符号化为:p:一个数是偶数q:它的平方也是偶数则原命题可以表示为:p→q接下来,我们可以利用逻辑推理的方法来证明这个命题的真假。
假设p为真,则存在一个整数k,使得p可以表示为p:2k。
那么,q也可以表示为q:4k^2,即q为真。
因此,当p为真时,q也为真,原命题成立。
通过这个例子,我们可以看到命题符号化的应用不仅仅局限于简化语言表达,还可以帮助我们进行逻辑推理和证明,从而更加深入地理解逻辑命题的本质。
总之,命题符号化是一种非常有用的逻辑工具,它可以帮助我们更加准确地表达和理解逻辑命题,同时也可以帮助我们进行逻辑推理和证明。
在实际应用中,我们可以根据具体情况选择不同的符号化方法,以便更好地适应不同的逻辑问题。
离散数学课件 4.1一阶逻辑命题符号化

第 10 页
四、符号化
例2 在一阶逻辑中将下面命题符号化。
(1)人都爱美。
(2)有人用左手写字。
个体域分别为:
(a) D为人类集合 (b) D为全总个体域
解: (a)设F(x):x爱美,G(x):x用左手写字,则
(1) xF(x) (2) xG(x)
, L(x,y): x与y跑得同样快。 (5) ﹁ x y(F(x) G(y) H(x, y)) (6) ﹁ x y(F(x) F(y) L(x, y))
第 16 页
总结和作业
➢ 小结 ◆ 理解个体词、谓词、量词的含义 ◆ 掌握一阶逻辑命题的符号化
➢ 作业(做书上)
课本63-64页 4(1) (3), 5(1) (3),6 (1) (3) (5)
第1 页
第四章 一阶逻辑基本概念
➢ 命题逻辑的局限性
在命题逻辑中,研究的基本单位是简单命题,对简单 命题不再进行分解,并且不考虑命题之间的内在联系和数 量关系。
➢ 一阶逻辑所研究的内容
为了克服命题逻辑的局限性,将简单命题再细分,分 析出个体词、谓词和量词,以期达到表达出个体与总体的 内在联系和数量关系。 ◆ §4.1一阶逻辑命题符号化 ◆ §4.2一阶逻辑公式及解释 ◆ §5.1一阶逻辑等值式与置换规则 ◆ §5.2一阶逻辑前束范式
第四章 一阶逻辑基本概念
➢ 苏格拉底三段论
◆ 所有的人都是要死的。 ◆ 苏格拉底是人。 ◆ 所以,苏格拉底是要死的。 试证明此推理。 解:令p:所有的人都是要死的,q:苏格拉底是人,r:苏格拉底 是要死的,则 前提:p,q 结论:r 推理的形式结构: p Ù q ® r
离散数学命题符号化课件 21页PPT文档

當麥芽糖商人回去後,糕餅商人也怒氣衝天的跑進來。『今天我都沒賺到錢,把我的錢還 給我!』算命仙停頓了一下,問說:「那麼,是否有碰到來自東方的人呢?」糕餅商搔著頭說 :『沒有耶,只碰到來自南方的人。』「那就對啦,我是說你如果碰到從東方來的人就會賺錢 ,可沒說碰到從南方來的人會賺錢啊。」糕餅商聽這話似乎有理,就回去了。
偽值表清楚的顯示只有在 3 的情形之下才會發生。所以,用「如果 p 就 q」的方法幫人家算命,總會有四分之三機率是準確的。因此,即使 承諾「如果算不準就退錢」,算命仙仍然可能賺到錢。因為,算不準 的機準只有四分之一。小心別上當哦! • 大人常對小孩說:「如果你乖乖,我就給你糖吃。」不知道有沒 有小孩了解,即使不乖,還是可能有糖可吃這件事呢?
离散数学 第一章 命题逻辑
4
• 故事中的算命仙就是巧妙地運用了這種條件命題而賺到錢的。讓我們 來研究一下他是如何辦到的。
• 我們考慮“ P= 碰上來自東方的人,Q= 賺到錢 ”有四種情形會發 生:
1. 碰到來自東方的人,而賺到錢。 2. 碰到來自東方的人,但沒有賺到錢。 3. 沒有碰到來自東方的人,而賺到錢。 4. 沒有碰到來自東方的人,也沒賺到錢。 • 然而,算命仙算不準的情形即是「如果 p 就 q」為偽的情形。上面的真
4. 蕴含“→”
定义1-4 由命题P和Q利用“→”组成的复合命题,称为蕴含式复合
命题,记作“P→Q”(读作“如果P,则Q”)。
当P为真,Q为假时,P→Q为假,否则 P→Q为真。
P
Q
P→Q
0
0
1
0
1
1
1
0
0
离散数学问题详解命题逻辑

第二章 命题逻辑习题2.11.解 ⑴不是述句,所以不是命题。
⑵x 取值不确定,所以不是命题。
⑶问句,不是述句,所以不是命题。
⑷惊叹句,不是述句,所以不是命题。
⑸是命题,真值由具体情况确定。
⑹是命题,真值由具体情况确定。
⑺是真命题。
⑻是悖论,所以不是命题。
⑼是假命题。
2.解 ⑴是复合命题。
设p :他们明天去百货公司;q :他们后天去百货公司。
命题符号化为q p ∨。
⑵是疑问句,所以不是命题。
⑶是悖论,所以不是命题。
⑷是原子命题。
⑸是复合命题。
设p :王海在学习;q :春在学习。
命题符号化为p q 。
⑹是复合命题。
设p :你努力学习;q :你一定能取得优异成绩。
p q 。
⑺不是命题。
⑻不是命题⑼。
是复合命题。
设p :王海是女孩子。
命题符号化为:p 。
3.解 ⑴如果春迟到了,那么他错过考试。
⑵要么春迟到了,要么春错过了考试,要么春通过了考试。
⑶春错过考试当且仅当他迟到了。
⑷如果春迟到了并且错过了考试,那么他没有通过考试。
4.解 ⑴p (q r )。
⑵p q 。
⑶q p 。
⑷q p 。
习题2.21.解 ⑴是1层公式。
⑵不是公式。
⑶一层: pq ,p二层:pq所以,)()(q p q p ↔⌝→∨是3层公式。
⑷不是公式。
⑸(pq )(q ( q r ))是5层公式,这是因为一层:p q ,q ,r 二层:q r 三层:q( qr )四层:(q ( q r ))2.解 ⑴A =(p q )q 是2层公式。
真值表如表2-1所示:pqq p ∨A0 0 0 0 0 1 1 1 1 0 1 0 1111⑵p q p q A →→∧=)(是3层公式。
真值表如表2-2所示:⑶)()(q p r q p A ∨→∧∧=是3层公式。
真值表如表2-3所示:⑷)()()(r q r p q p A ∨∧∨⌝∧∨=是4层公式。
真值表如表2-4所示:3.解 ⑴p q p A ∨⌝∧⌝=)(真值表如表2-5所示:所以其成真赋值为:00,10,11;其成假赋值为01。
离散数学6.命题公式及符号化

若写成(PQ) (P R)时,当P为F,Q为F时,即天没下雨而我没 上街,此时我说的是假话,但是表达式 (PQ) (P R) 的真值却是
“T” ,因为此时(P R)的真值是“T”.
4
二、复合命题的符号化(翻译) 有了命题演算的合式公式的概念,我们可以把自然语言
中的有些语句(复合命题),翻译成数理逻辑中的符号形式. 基本步骤如下:
1)首先要明确给定命题的含义. 2)对于复合命题,找联结词,用联结词断句,分解出各
个原子命题. 3)设原子命题符号,并用逻辑联结词联结原子命题符号,
构成给定命题的符号表达式.
5
例2 说离散数学无用且枯燥无味是不对的. P:离散数学是有用的. Q:离散数学是枯燥无味的. 该命题可写成: (P∧Q). 例3 如果小张与小王都不去,则小李去. P:小张去. Q:小王去. R:小李去. 该命题可写成: (P∧Q)R. 如果小张与小王不都去,则小李去. 该命题可写成: (P∧Q)R, 也可以写成: (P∨QP∧Q, PR, P∨Q∧R,PQ ∨S , (P W) Q); 下面的式子才是合式公式:
(P∧Q),(PR),((P∨Q)∧R). 按照合式公式定义最外层括号必须写. 约定:为方便,最外层括号可以不写,上面的合式
公式可以写成: P∧Q,PR,(P∨Q)∧R.
命题公式及符号化
一、 命题公式
1.定义1-3.1 命题演算的合式公式
合式公式是由命题变元、命题常量、联结词和圆括号按 一定的逻辑关系联结起来的符号串.我们以如下递归的形 式来定义合式公式:
(1)单个命题变元是一个合式公式. (2)若A是合式公式,则┐A也是合式公式. (3)若A,B是合式公式,则(A∧B),(A∨B),(AB),
离散数学总复习-知识点

离散数学总复习第1章命题逻辑一、命题的判断例:1、仁者无敌!2、x+y<23、如果雪是红的,那么地球是月亮的卫星。
4、我正在说谎。
二、命题符号化例:1、蓝色和黄色可以调成绿色。
2、付明和杨进都是运动员。
3、刘易斯是百米游泳冠军或百米跨栏冠军。
4、李飞现在在宿舍或在图书馆。
5、只要天不下雨,我就步行上学校。
6、只有天不下雨,我才步行上学校。
7、并非只要你努力了,就一定成功。
三、主范式1、会等值演算;2、主合取和主析取范式的相互转换。
例:求命题公式P∨Q的主析取范式和主合取范式。
3、根据主范式进行方案的选择例1:某科研所要从3名科研骨干A,B,C中挑选1-2名出国进修,由于工作需要,选派需同时满足条件:(1)若A去,则C同去;(2)只有C不去,B才去;(3)只要C不去,则A或B就可以去。
问有哪些选派方案?例2:甲、乙、丙、丁四人有且仅有两个人参加比赛,下列四个条件均要满足:(1)甲和乙有且只有一人参加;(2)丙参加,则丁必参加;(3)乙和丁至多有一人参加;(4)丁不参加,甲也不会参加。
问哪两个人参加了比赛?四、简单的推理例1:如果明天天气好我们就去爬长城。
明天天气好。
所以我们去爬长城。
例3:课后习题16第2章谓词逻辑一、谓词逻辑中的命题符号化例:1、所有运动员都是强壮的2、并非每个实数都是有理数3、有些实数是有理数二、量词的辖域,约束变元换名、自由变元代替例:1、∀x(P(x)∨∃yR(x,y))→Q(x)2、∀x(P(x,z)∨∃yR(x,y))→Q(x)中量词的辖域,重名情况,改名等三、命题逻辑永真式的任何代换实例必是谓词逻辑的永真式。
同样,命题逻辑永假式的任何代换实例必是谓词逻辑的永假式。
例:1、(∀xP(x)→∃xQ(x))↔(⌝∀xP(x)∨∃xQ(x))2、(∀xP(x)→∃xQ(x))∧(∃xQ(x))→∀zR(z)))→(∀xP(x) →∀zR(z))1-2是永真式(重言式)3、⌝(∀xF(x) ∃yG(y)) ∧ ∃yG(y) 永假式(矛盾式)四、消量词例:个体域D={1,2},对∀x∀y(P(x)→Q(y))消量词五、简单的前束范式会判断即可。
离散数学(高教)概念整理

p 等价 q 当且仅当,同时为真或假。(复合命题“p 当且仅当 q”称作 p 与 q 的等价式)
真值表
命题公式及其赋值 命题常项
原子命题(简单命题)的另一称呼,由于其真值确定
命题变项
真值可以变化的陈述句
合式公式(命题公式)A,B……
命题变项用联结词和圆括号用一定逻辑关系连接起来的符号串,简称公式
简单合取式中的命题变项及它的否定式恰好出现一次,并按照下标拍好,这样的简单合取式 叫做极小项。同理为极大项。 n 个命题变项可以产生 2 的 n 次方个极小项,每个极小项都有且仅有一个成真赋值,这一组 成真赋值(01 组成)转化为对应的十进制数 i,将这个极小项表示为 类似的,极大项为
主析取范式
主合取范式
公式中不含自由出现的个体变项.
解释 I
解释就是对抽象一阶语言的在 I 的具体含义,包括四个部分: ①非空个体域 D1②每一个个体常项在 D1 中的对应③每一个 n 元函数在 D1 上的对应④每一 个谓词符号在 D1 上的对应
永真式(逻辑有效式),永假式,可满足式
同上文。在任何解释下均为真的公式为永真式。这里不存在重言式的说法。
可满足式
命题公式 A 至少存在一个成真赋值
哑元
对公式 A 和 B 进行比较讨论,可知 A 和 B 共含有 n 个命题变项,其中 A 不含有的命题变项 称为 A 的哑元,其取值不影响 A 的值
命题逻辑等值演算 等值式⇔
如果命题 A 和 B 有相同的真值表,则有命题 A↔B 为重言式,这种情况下称 A 与 B 是等值的, 记作 A⇔B
所有简单合取式都是极小项的析取式,这是唯一的主析取范式。同理。
联结词的完备集
n 元真值函数 F
离散数学(一)知识梳理

离散数学(一)知识梳理逻辑和证明部分命题逻辑题型命题符号化问题将自然语言转为符号化逻辑命题用命题变量来表示原子命题用命题联结词来表示连词命题公式的类型判断判断命题公式是否是永真式、矛盾式、可能式利用真值表判断利用已知的公式进行推理判断利用主析取和合取范式判断定理:A为含有n个命题变元的命题公式,若A的主析取范式含有2^n个极小项,则A为重言式,若极小项在0到2^n之间,则为可满足式,若含有0个极小项,则A为矛盾式;若A的主合取范式含有2^n个极大项,则A为矛盾式,若极小项在0到2^n之间,则为可满足式,若含有0个极小项,则A为重言式翻译:一个命题公式化成主范式后,若所有项都分布在主析取范式中(主合取范式为1)则为重言式;若所有项都分布在主合取范式中(主析取范式为0)则为矛盾式;若均有分布,则为可满足式。
【思想来源:真值表法求主范式】一个质析取式是重言式的充要条件是其同时含有某个命题变元及其否定式;一个质合取式是矛盾式的充要条件是其同时含有某个命题变元及其否定式一个析取范式是矛盾式当且仅当它的每项都是矛盾式;一个合取范式是重言式当且仅当它的每项都是重言式求(主)析取或合取范式等值演算法1. 利用条件恒等式消除条件(蕴含和双条件)联结词,化简得到一个范式2. 在缺项的质项中不改变真值地添加所缺项,化简得到一个主范式3. 找出包含所有命题变元排列中剩余项,凑出另一个主范式(思想上类似于真值表法)真值表法1. 画出命题公式真值表2. 根据真值表结果求出主范式主析取范式:真值为1的所有项,每一项按对应01构成极小项主合取范式:真值为0的所有项,每一项按对应01构成极大项形式证明与命题推理利用推理规则构造一个命题公式的序列,证明结论形式证明:命题逻辑的论证是一个命题公式的序列,其中每个公式或者是前提,或者是由它之前的公式作为前提推得的结论,序列的最后一个是待证的结论,这样的论证也称为形式证明。
核心方法把非条件语句全部转为条件语句利用条件的逆否命题和双条件的拆分利用重言式/矛盾式来不改变真值地添项蕴含证明规则:A1,A2, …, An⇒ A → B 等价于A1,A2, …,An,A⇒ B【意义:使用结论的前提时应标为附加前提】(适用:结论为条件语句)反证法:若要证A1,A2, …, An⇒ B,将ØB加入前提,通过证明:A1,A2, …, An, ØB⇒ C, ØC完成证明。
离散数学命题逻辑

离散数学命题逻辑
离散数学是一门研究离散结构和逻辑推理的学科。
在这门学科中,命题逻辑是其中最基础的一部分。
命题逻辑是一种符号系统,用于表示和推理关于命题的真值。
命题是可以判断为真或假的陈述句。
命题逻辑的目标是通过推理规则和运算符来确定一个复合命题的真值。
命题逻辑中的符号包括命题变量、命题常量、逻辑连接词和逻辑运算符。
命题变量是用字母表示的可以代表任意命题的符号,命题常量是具体的命题,例如“今天是晴天”。
逻辑连接词包括“与”、“或”、“非”等。
逻辑运算符包括合取、析取、否定等。
命题逻辑有一些重要的推理规则,例如蕴含规则、假言推理、逆否命题等。
这些推理规则可以用来证明一个复合命题的真值。
在命题逻辑中,还可以使用真值表来确定一个复合命题的真值。
真值表是一种列出所有可能的真值组合并计算复合命题真值的表格。
除了命题逻辑,离散数学中还有谓词逻辑、谓词演算等其他逻辑系统。
这些逻辑系统在表示和推理复杂问题时更为强大和灵活。
离散数学中的命题逻辑在计算机科学、人工智能、密码学等领域有着广泛的应用。
例如,在计算机程序设计中,命题逻辑被用来表示和推理程序的正确性。
在人工智能中,命题逻辑被用来表示和推理关于世界的知识。
在密码学中,命题逻辑被用来分析和构造安全的密码算法。
总而言之,离散数学中的命题逻辑是一种重要的逻辑系统,用于表示和推理关于命题的真值。
它在各个领域都有广泛的应用,是理解和应用离散数学的基础。
离散数学1.命题及其表示法

因而又可以称命题是具有确定真值的陈述句. 判断命题的两个步骤: 1、是否为陈述句; 2、是否有确定的、唯一的真值. 例:判断下列句子是否为命题: (1). 100是自然数. (2). 太阳从西方升起. (3). 3+3=8.
(4). HOW DO YOU DO ?
命题的真值:命题的判断结果.命题的真值只取两 个值.命题可以是真的,或者是假的,但不能同时为真 又为假.
真命题:判断为正确的命题,用T(TRUE)或1表示,用F(FALSE)或0表示, 即真值为假的命题.
(2)方法二: 1)原子命题(基本命题、本原命题):一个命题,不能
(3) “具有确定真值”是指客观上的具有,与我们是否知 道它的真值是两回事.如上例中的“明年的十月一日 是晴天” 和“别的星球上有生物”.
4.命题常量和命题变元
• 命题常量:一个命题标识符如果表示确定的命题,就 成为命题常量.
• 命题变元:如果命题标识符只表示任意命题的位置标 志,就称为命题变元.命题变元不是命题.
命题及其表示法
一、命题(PROPOSITION) 数理逻辑研究的中心问题是推理(INFERENCE),
而推理的前提和结论都是表达判断的陈述句,因而表 达判断的陈述句构成了推理的基本单位.
1.定义: 命题:能够判断真假的陈述句. 例如,雪是白色的.
2是素数.
2.命题的分类 (1)方法一:真命题和假命题.
注意:
(1)一个符号(如P), 它表示的是命题常量还是命题变元, 一般由上下文来确定.
(2)命题变元可以表示任意命题,它不能确定真值,故 命题变元不是命题.这与“变数X不是数”是一样的道理.
(11). 请你关上门! (12). 别的星球上有生物.
离散数学-命题

例2 将下列命题符号化. (1) 王晓既用功又聪明. (2) 王晓不仅聪明,而且用功. (3) 王晓虽然聪明,但不用功. 解: 令 p: 王晓聪明,q:王晓用功,则 (1) p∧q (2) p∧q (3) p∧q.
(4) 张辉与王丽都是三好生. (5) 张辉与王丽是同学. 解: 令 r : 张辉是三好学生,s :王丽是三好学生
(5) 王晓红生于1975年或1976年.
令v :王晓红生于1975年,w:王晓红生于1976年,
则 (5) 可符号化为 (v∧w)∨(v∧w),
又可符号化为 v∨w , 为什么?
(4), (5) 为排斥或.
4.蕴涵式与蕴涵联结词“” 定义 设 p,q 为二命题,复合命题 “如果 p, 则 q” 称作 p 与 q 的蕴涵式,记作 pq,并称 p 是蕴涵式 的前件, q 为蕴涵式的后件 . 称作蕴涵联结词,
练习: 将下列命题符号化:
(1)只要不下雨,我就骑自行车上班。
(2)只有不下雨,我才骑自行车上班。
(3)除非下雨,否则我就骑自行车上班。
(4)如果下雨,我就不骑自行车上班。 解:令p:天下雨,q:我骑自行车上班,则: ( 1) ¬ p→q (2)q→¬ p ( 3) ¬ p→q (4)p→¬ q
1.2.ppt
0, 0. 它们的真值分别为 1, 0,1,
以上给出了5个联结词:, , , , , 组成一个联结词集合{, , , , }, 联结词的优先顺序为:, , , , ; 如果出
现的联结词同级,又无括号时,则按从左到右
的顺序运算; 若遇有括号时,应该先进行括号
中的运算.
注意: 本书中使用的 括号全为圆括号.
离散数学
数理逻辑 集合论 代数结构 图论 组合分析初步 形式语言和自动机初步
第1章1命题符号化及联结词

去。当被问战士回答“否”,则逻辑学家开启另一门从容离去。
分析:如果被问者是诚实战士,他回答“对” 。则另 一 名战士是说谎战士,他回答“是”,那么,这扇门 不是死亡门。
如果被问者是诚实战士,他回答“否”。则另 一名是说谎战士,他回答“不是”,那么,这扇门是 死亡门。
说明:在数理逻辑中,即使p、q没有内在联系, 但仍有意义.
(5)等价式:p,q 为两命题,复合命题“p 当且仅当 q” 称作 p 与 q 的等价式,记作 p q,符号“ ”称作等价 联结词,p q 为真当且仅当 p 与 q 的真值相同。
Байду номын сангаас
p
q p q
0
0
1
0
1
0
1
0
0
1
1
1
例1.6 1)集合A中没有元素当且仅当集合A是空集。 2)当王刚心情愉快时,他唱歌;反之,当 他唱歌时,一定心情愉快。 3)三角形三边相等的充要条件是三个角相等。 4) 2+2=5的充要条件是太阳从西边升起。
罗素将集合分为两类,一类是集合 A 本身是 A 的一个
元素,即 A A;另一类是集合 A 本身不是 A 的一个
元素,即 A A 。构造一个集合 S:S={A|AA},问 S 是
不是它自己的一个元素。即 S S 还是 S S 。
原子命题: 称由简单陈述句构成的命题为简单命题
或原子命题,
命题符号化:用小写英文字母(或带下标)p,q,r,…, pi , qi , ri , ……表示命题,称为命题符号化.用数字 1(或 T)表示真,用 0(或 F)表示假,则任何命题的真值不是 1 就是 0,但决不可能既可以为 1 又可以为 0。
离散数学一阶逻辑命题符号化

一阶逻辑中命题符号化续
例 将下列命题符号化, 并讨论其真值.
11/26
(1) 实数都能写成整数之比; (2)有的素数是偶数; (3) 没有人登上过木星; (4)在美国留学的学生未必都是亚洲人 .
解 (1) 令M(x): x 为实数 ; F(x): x能写成整数之比. 则 x (M(x)→ F(x)) 不是 x (M(x) ∧ F(x)) 假命题 (2) 令M(x): x 为素数; G(x): x为偶数. 则 x (M(x)∧G(x)) 不是 x (M(x) → G(x)) 真命题 (3) 令M(x): x 是人; H(x): x登上过木星. 则 ┐x (M(x)∧H(x)) 真命题 (4) 令F(x): x是在美国留学的学生; G(x): x是亚洲人. 则 ┐x (F(x)→ G(x)) 真命题
解 (1) 设一元谓词F(x): x是素数; 个体常项: a: 2;b: 4. 则命题可符号化: F(b) →F(a). 因为该蕴含式前件为假, 故命题为真. (2) 设二元谓词G(x,y): x大于y. 个体常项: a: 4; b: 5; c: 6. 则命题可符号化为: G(b,a) → G(a,c). 由于G(b,a)为真, 而G(a,c)为假, 故命题为假.
n 元谓词的符号化 ( n ≥ 2 )
例 将下列命题符号化 (1) 兔子比乌龟跑得快; (2) 有的兔子比所有的乌龟跑得快; (3) 并不是所有的兔子都比乌龟跑得快; (4) 不存在跑得同样快的两只兔子. 解 令F(x): x是兔子; G(y): y是乌龟; H(x,y): x比y跑得快; L(x,y): x与 y跑得同样快. 则: (1) 任意一个兔子x : x 比任意一个乌龟跑得快 x (F(x) → y (G(y) →H(x,y)) ); (2) 存在一个兔子 x : x 比任意一个乌龟跑得快 x ( F(x) ∧ y (G(y) →H(x,y)) ); (3) (1)的否定 存在一个兔子 x : 存在一个乌龟 y : x不比y跑得快 x (F(x)∧ y (F(y)∧ ¬ L(x,y)) ).; (4) “存在一个兔子 x : 存在另一个兔子 y : x与y跑得同样快” 的否定 ┐x (F(x)∧ y(F(y)∧ L(x,y)) ).
离散数学部分概念和公式总结(考试专用)

命题:称能判断真假的陈述句为命题。
命题公式:若在复合命题中,p、q、r等不仅可以代表命题常项,还可以代表命题变项,这样的复合命题形式称为命题公式。
命题的赋值:设A为一命题公式,p ,p ,…,p 为出现在A中的所有命题变项。
给p ,p ,…,p 指定一组真值,称为对A的一个赋值或解释。
若指定的一组值使A的值为真,则称成真赋值。
真值表:含n(n≥1)个命题变项的命题公式,共有2^n组赋值。
将命题公式A在所有赋值下的取值情况列成表,称为A的真值表。
命题公式的类型:(1)若A在它的各种赋值下均取值为真,则称A为重言式或永真式。
(2)若A在它的赋值下取值均为假,则称A为矛盾式或永假式。
(3)若A至少存在一组赋值是成真赋值,则A是可满足式。
主析取范式:设命题公式A中含n个命题变项,如果A得析取范式中的简单合取式全是极小项,则称该析取范式为A的主析取范式。
主合取范式:设命题公式A中含n个命题变项,如果A得析取范式中的简单合析式全是极大项,则称该析取范式为A的主析取范式。
命题的等值式:设A、B为两命题公式,若等价式A↔B是重言式,则称A与B是等值的,记作A<=>B。
约束变元和自由变元:在合式公式∀x A和∃x A中,称x为指导变项,称A为相应量词的辖域,x称为约束变元,x的出现称为约束出现,A中其他出现称为自由出现(自由变元)。
一阶逻辑等值式:设A,B是一阶逻辑中任意的两公式,若A↔B为逻辑有效式,则称A与B是等值的,记作A<=>B,称A<=>B为等值式。
前束范式:设A为一谓词公式,若A具有如下形式Q1x1Q2x2Q k…x k B,称A为前束范式。
集合的基本运算:并、交、差、相对补和对称差运算。
笛卡尔积:设A和B为集合,用A中元素为第一元素,用B中元素为第二元素构成有序对组成的集合称为A和B的笛卡尔积,记为A×B。
二元关系:如果一个集合R为空集或者它的元素都是有序对,则称集合R是一个二元关系。
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
命题与真值
命题: 判断结果惟一的陈述句 命题的真值: 判断的结果 真值的取值: 真与假 真命题: 真值为真的命题 假命题: 真值为假的命题
注意: 感叹句、祈使句、疑问句都不是命题 陈述句中的悖论以及判断结果不惟一确定的也不是 命题
7
例 下列句子中那些是命题? (1) 2是无理数. (2) 2 + 5 =8. (3) x + 5 > 3. (4) 你有铅笔吗? (5) 这只兔子跑得真快呀! (6) 请不要讲话! (7) 我正在说谎话.
3
数理逻辑部分
第1章 命题逻辑 第2章 一阶逻辑
4
第1章 命题逻辑
1.1 命题符号化及联结词 1.2 命题公式及分类 1.3 等值演算 1.4 范式 1.5 联结词全功能集 1.6 组合电路 1.7 推理理论
5
1.1 命题符号化及联结词
命题与真值 原子命题 复合命题 命题常项 命题变项 联结词
(4) 2 + 2 = 4 当且仅当 美国位于非洲.
0
(5) 函数 f (x) 在x0 可导的充要条件是它在 x0
连续.
0
20
联结词与复合命题(续)
14
解 令 p:2是素数, q:3是素数, r:4是素数, s:6是素数, 则 (1), (2), (3) 均为相容或. 分别符号化为: p∨r , p∨q, r∨s, 它们的真值分别为 1, 1, 0.
(4), (5) 为排斥或. 令 t :小元元拿一个苹果,u:小元元拿一个梨, 则 (4) 符号化为 (t∧u) ∨(t∧u). 令v :王晓红生于1975年,w:王晓红生于1976年, 则 (5) 既可符号化为 (v∧w)∨(v∧w), 又可 符号化为 v∨w .
离散数学
1
主要内容
数理逻辑 集合论 图论 组合分析初步 代数系统简介 形式语言和自动机初步
2
教材与教学参考书
教材:
耿素云、屈婉玲、张立昂,离散数学(第五 版),清华大学出版社, 2013.
教学参考书:
屈婉玲、耿素云、张立昂,离散数学题解(第 五版),清华大学出版社,2013.
解 令 p:王晓用功,q:王晓聪明,则 (1) p∧q (2) p∧q (3) p∧q.
12
例 (续)
令 r : 张辉是三好学生,s :王丽命题 .
说明: (1)~(4)说明描述合取式的灵活性与多样性. (5) 中“与”联结的是两个名词,整个句子是
例如,令 p: 2 是有理数,则 p 的真值为 0 q:2 + 5 = 7,则 q 的真值为 1
10
联结词与复合命题
1.否定式与否定联结词“”
定义 设p为命题,复合命题 “非p”(或 “p的否定”)称 为p的否定式,记作p. 符号称作否定联结词,并规 定p 为真当且仅当p为假.
2.合取式与合取联结词“∧”
pq pq pq qp qp pq qp qp
注意: pq 与 qp 等值(真值相同)
18
联结词与复合命题(续)
5. 等价式与等价联结词“”
定义 设p,q为二命题,复合命题 “p当且仅当q”称 作p与q的等价式,记作pq. 称作等价联结词. 并规定pq为真当且仅当p与q同时为真或同时为 假.
定义 设p,q为二命题,复合命题“p并且q”(或“p与q”)称 为p与q的合取式,记作p∧q. ∧称作合取联结词,并规 定 p∧q为真当且仅当p与q同时为真 注意:描述合取式的灵活性与多样性
分清简单命题与复合命题
11
例 将下列命题符号化. (1) 王晓既用功又聪明. (2) 王晓不仅聪明,而且用功. (3) 王晓虽然聪明,但不用功. (4) 张辉与王丽都是三好生. (5) 张辉与王丽是同学.
说明: (1) pq 的逻辑关系:p与q互为充分必要条件 (2) pq为真当且仅当p与q同真或同假
19
例
例 求下列复合命题的真值
(1) 2 + 2 = 4 当且仅当 3 + 3 = 6.
1
(2) 2 + 2 = 4 当且仅当 3 是偶数.
0
(3) 2 + 2 = 4 当且仅当 太阳从东方升起. 1
若 p,就 q 只要 p,就 q p 仅当 q 只有 q 才 p 除非 q, 才 p 或 除非 q, 否则非 p. 当 p 为假时,pq 为真 常出现的错误:不分充分与必要条件
17
例 设 p:天冷,q:小王穿羽绒服,
将下列命题符号化 (1) 只要天冷,小王就穿羽绒服. (2) 因为天冷,所以小王穿羽绒服. (3) 若小王不穿羽绒服,则天不冷. (4) 只有天冷,小王才穿羽绒服. (5) 除非天冷,小王才穿羽绒服. (6) 除非小王穿羽绒服,否则天不冷. (7) 如果天不冷,则小王不穿羽绒服. (8) 小王穿羽绒服仅当天冷的时候.
一个简单命题.
13
联结词与复合命题(续)
3.析取式与析取联结词“∨”
定义 设 p,q为二命题,复合命题“p或q”称作p 与q 的析取式,记作p∨q. ∨称作析取联结词, 并规定p∨q为假当且仅当p与q同时为假.
例 将下列命题符号化 (1) 2或4是素数. (2) 2或3是素数. (3) 4或6是素数. (4) 小元元只能拿一个苹果或一个梨. (5) 王晓红生于1975年或1976年.
15
联结词与复合命题(续)
4.蕴涵式与蕴涵联结词“”
定义 设 p,q为二命题,复合命题 “如果p,则q” 称作p与q的蕴涵式,记作pq,并称p是蕴涵式 的前件,q为蕴涵式的后件. 称作蕴涵联结词, 并规定,pq为假当且仅当 p 为真 q 为假.
16
联结词与复合命题(续)
pq 的逻辑关系:q 为 p 的必要条件 “如果 p,则 q ” 的不同表述法很多:
真命题 假命题 真值不确定 疑问句 感叹句 祈使句 悖论
(3)~(7)都不是命题
8
命题的分类
简单命题(原子命题): 简单陈述句构成的命题
复合命题: 由简单命题与联结词按一定规则复合 而成的命题
9
简单命题符号化
用小写英文字母 p, q, r, … ,pi,qi,ri (i≥1)表示 简单命题 用“1”表示真,用“0”表示假