初二数学实数及二次根式专项练习题136

合集下载

八年级初二数学二次根式练习题含答案

八年级初二数学二次根式练习题含答案
(2)
=
=
=
∵ ,

=
=

∵ , ,
∴ .
【点睛】
本题考查了二次根式的运算,解题的关键是理解题中给出的公式,灵活运用二次根式的运算性质进行运算.
23.先阅读下列解答过程,然后再解答:
形如 的化简,只要我们找到两个正数 ,使 , ,使得 , ,那么便有:
例如:化简
解:首先把 化为 ,这里 ,由于 ,即: , ,
【答案】(1)4 ;(2)10
【分析】
(1)先计算出a+b、a-b的值,然后将所求的式子因式分解后利用整体代入思想代入数值进行计算即可;
(2)先计算ab的值,然后将所求的式子通分,分子进行变形后利用整体代入思想代入相关数值进行计算即可.
【详解】
(1)∵a= + ,b= - ,
∴a+b= + + ﹣ =2 ,
A.m>﹣2B.m>﹣2且m≠1C.m≥﹣2D.m≥﹣2且m≠1
10.下列计算正确的是( )
A. B. C. D.
二、填空题
11.已知 ,则 ________.
12.已知a=﹣ ,则代数式a3+5a2﹣4a﹣6的值为_____.
13.已知 可写成 的形式( 为正整数),则 ______.
14.若 ,则 ______.
15.把 根号外的因式移到根号内,得_____________.
16.若 的整数部分为 ,小数部分为 ,则 的值是___.
17.化简二次根式 的结果是_____.
18.已知:x= ,则 可用含x的有理系数三次多项式来表示为: =_____.
19.把 的根号外的因式移到根号内等于?
20.最简二次根式 与 是同类二次根式,则 =________.

人教版初二数学8年级下册 第16章(二次根式)经典好题专题训练(含答案)

人教版初二数学8年级下册 第16章(二次根式)经典好题专题训练(含答案)

人教版八年级数学下册第16章二次根式经典好题专题训练(附答案)1.下列二次根式中,能与合并的是( )A.B.C.D.2.下列等式正确的是( )A.=3B.=﹣3C.=3D.=﹣3 3.已知a=+2,b=﹣2,则a2+b2的值为( )A.4B.14C.D.14+44.式子在实数范围内有意义,则x的取值范围是( )A.x≤1B.x<1C.x>1D.x≥1 5.若,,则x与y关系是( )A.xy=1B.x>y C.x<y D.x=y6.+()2的值为( )A.0B.2a﹣4C.4﹣2a D.2a﹣4或4﹣2a7.设,,则a、b的大小关系是( )A.a=b B.a>b C.a<b D.a+b=08.若x=2﹣5,则x2+10x﹣2的值为( )A.10+1B.10C.﹣13D.19.若代数式有意义,则x的取值范围是( )A.x>且x≠3B.x≥C.x≥且x≠3D.x≤且x≠﹣310.若实数x、y满足:y=++,则xy= .11.若有意义,则x的取值范围为 .12.若x=+1,y=﹣1,则的值为 .13.计算的结果是 .14.计算(﹣)×的结果为 .15.已知a+b=﹣8,ab=6,则的值为 .16.已知实数a满足+|2020﹣a|=a,则a﹣20202= .17.化简﹣()2的结果是 .18.已知y=+﹣,则x2021•y2020= .19.若x=3+,y=3﹣,则x2+2xy+y2= .20.如果=,则a的取值范围是 .21.当b<0时,化简= .22.计算:(1)2•÷5;(2).23.24.已知x=.(1)求代数式x+;(2)求(7﹣4)x2+(2﹣)x+的值.25.先化简,再求值:(+)﹣(+),其中x=,y=27.26.解答下列各题.(1)已知:y=﹣﹣2019,求x+y的平方根.(2)已知一个正数x的两个平方根分别是a+2和a+5,求这个数x.27.已知.(1)求代数式m2+4m+4的值;(2)求代数式m3+m2﹣3m+2020的值.28.已知关于x、y的二元一次方程组,它的解是正数.(1)求m的取值范围;(2)化简:.参考答案1.解:A、不能与合并,本选项不合题意;B、==2,不能与合并,本选项不合题意;C、==2,不能与合并,本选项不合题意;D、==2,能与合并,本选项符合题意;故选:D.2.解:A、()2=3,本选项计算正确;B、=3,故本选项计算错误;C、==3,故本选项计算错误;D、(﹣)2=3,故本选项计算错误;故选:A.3.解:∵a=+2,b=﹣2,∴a+b=(+2+﹣2)=2,ab=(+2)(﹣2)=﹣1,∴a2+b2=(a+b)2﹣2ab=(2)2﹣2×(﹣1)=14,故选:B.4.解:∵式子在实数范围内有意义,∴≥0,∴1﹣x>0,∴x的取值范围是x<1.故选:B.5.解:∵==2+,,∴x=y.故选:D.6.解:要使有意义,必须2﹣a≥0,解得,a≤2,则原式=2﹣a+2﹣a=4﹣2a,故选:C.7.解:a=(﹣)2=3,b==3,则a=b,故选:A.8.解:x2+10x﹣2=x2+10x+25﹣27=(x+5)2﹣27,当x=2﹣5时,原式=(2﹣5+5)2﹣27=28﹣27=1,故选:D.9.解:由题意得,3x﹣2≥0,x﹣3≠0,解得,x≥且x≠3,故选:C.10.解:由题意得,x﹣4≥0,4﹣x≥0,解得,x=4,则y=,∴xy=4×=2,故答案为:2.11.解:由题意得:1﹣2x≥0,且x+1≠0,解得:x≤且x≠﹣1,故答案为:x≤且x≠﹣1.12.解:∵x=+1,y=﹣1,∴x+y=(+1)+(﹣1)=2,则====,故答案为:.13.解:﹣4=3﹣2=,故答案为:.14.解:(﹣)×=×﹣×=4﹣=3.故答案为:3.15.解:∵a+b=﹣8,ab=6,∴a<0,b<0,∴+=﹣﹣=﹣×=﹣×()=,故答案为:.16.解:要使有意义,则a﹣2021≥0,解得,a≥2021,∴+a﹣2020=a,∴=2020,∴a=20202+2021,∴a﹣20202=2021,故答案为:2021.17.解:要使有意义,则1﹣x≥0,解得,x≤1,则﹣()2=﹣(1﹣x)=2﹣x﹣1+x=1,故答案为:1.18.解:由题意得,x﹣2≥0,2﹣x≥0,解得,x=2,则y=﹣,∴x2021•y2020=x•x2020•y2020=2×(﹣×2)2020=2,故答案为:2.19.解:x+y=3++3﹣=6,∴x2+2xy+y2=(x+y)2=62=36,故答案为:36.20.解:∵=,∴a﹣5≥0,且6﹣a≥0,∴5≤a≤6,则a的取值范围是5≤a≤6.故答案为:5≤a≤6.21.解:当b<0时,==﹣b.故答案为:﹣b .22.解:(1)原式=4••=;(2)原式=(6×﹣5×)(×2﹣)=(3﹣)(﹣)=3﹣6﹣+=﹣.23.解:原式=5+(24﹣3)﹣(27﹣6+2)=5+21﹣29+6=6﹣3.24.解:(1)x ===2+,则=2﹣,∴x +=2++2﹣=4;(2)(7﹣4)x 2+(2﹣)x +=(7﹣4)(2+)2+(2﹣)(2+)+=(7﹣4)(7+4)+(2﹣)(2+)+=49﹣48+4﹣3+=2+.25.解:原式=6x ×+×y ﹣4y ×﹣6=6+3﹣4﹣6=﹣,当x =,y =27时,原式=﹣=﹣=﹣3.26.解:(1)由题意得,x ﹣2020≥0,2020﹣x ≥0,解得,x =2020,则y =﹣2019,∴x +y =2020﹣2019=1,∵1的平方根是±1,∴x +y 的平方根±1;(2)由题意得,a +2+a +5=0,解得,a =﹣,则a +2=﹣+2=﹣,∴x=(﹣)2=.27.解:(1)m2+4m+4=(m+2)2,当m=﹣1时,原式=(﹣1+2)2=(+1)2=3+2;(2)∵m=﹣1,∴m+1=,∴m3+m2﹣3m+2020=m3+2m2+m﹣m2﹣4m+2020=m(m+1)2﹣m2﹣4m+2020=2m﹣m2﹣4m+2020=﹣m2﹣2m﹣1+2021=﹣(m+1)2+2021=﹣2+2021=2019.28.解:(1)解关于x、y的二元一次方程组,得,∵方程组的解是一对正数,∴,解得;(2),当时,m﹣2<0,m+1>0,m﹣1<0,∴=2﹣m﹣(m+1)﹣(1﹣m)=2﹣m﹣m﹣1﹣1+m=﹣m;当时,m﹣2<0,m+1>0,m﹣1≥0,∴=2﹣m﹣(m+1)﹣(m﹣1)=2﹣m﹣m﹣1﹣m+1=2﹣3m.。

初二数学二次根式的意义练习题

初二数学二次根式的意义练习题

初二数学二次根式的意义练习题练习题一:简化根式1. 化简 $\sqrt{8}$2. 化简 $\sqrt{27}$3. 化简 $\sqrt{50}$4. 化简 $\sqrt{72}$5. 化简 $\sqrt{98}$练习题二:分解因式1. 将 $12\sqrt{3}$ 分解成最简形式的乘积。

2. 将 $16\sqrt{5}$ 分解成最简形式的乘积。

3. 将 $20\sqrt{7}$ 分解成最简形式的乘积。

4. 将 $18\sqrt{12}$ 分解成最简形式的乘积。

5. 将 $9\sqrt{15}$ 分解成最简形式的乘积。

练习题三:计算值1. 求解 $\sqrt{16}$2. 求解 $\sqrt{36}$3. 求解 $\sqrt{81}$4. 求解 $\sqrt{121}$5. 求解 $\sqrt{169}$练习题四:计算混合根式1. 计算 $\sqrt{25} + \sqrt{9}$2. 计算 $\sqrt{16} + \sqrt{4}$3. 计算 $\sqrt{81} + \sqrt{64}$4. 计算 $2\sqrt{20} + \sqrt{5}$5. 计算 $3\sqrt{12} - 2\sqrt{27}$练习题五:解方程1. 解方程 $x^2 = 9$2. 解方程 $2x^2 = 18$3. 解方程 $3x^2 = 27$4. 解方程 $4x^2 = 64$5. 解方程 $5x^2 = 45$练习题六:应用问题1. 一个正方形花坛的边长为 $x$,其中一条边上有一条长为$\sqrt{10}$ 的路,这条路的宽度为 $1$ 米。

求花坛的面积。

2. 一个矩形地块的长和宽分别是 $\sqrt{12}$ 米和 $\sqrt{18}$ 米,现在要在地块上找出一个最大的正方形区域,不超过地块的范围。

这个最大正方形区域的面积是多少平方米?3. 一个圆形花圃的半径是 $\frac{\sqrt{8}}{2}$ 米,围绕花圃的外面修建了一条宽度为 $\frac{\sqrt{2}}{2}$ 米的小道。

(完整)八年级二次根式综合练习题及答案解析.docx

(完整)八年级二次根式综合练习题及答案解析.docx

填空题1. 使式子x 4 有意义的条件是。

【答案】x≥4【分析】二次根号内的数必须大于等于零,所以x-4≥ 0,解得x≥ 4 2. 当__________时,x 2 1 2 x 有意义。

【答案】 -2≤x≤12【分析】 x+2≥ 0, 1-2x≥ 0 解得 x≥- 2, x≤1123. 若m有意义,则 m 的取值范围是。

m 1【答案】 m≤0且m≠﹣1【分析】﹣ m≥0 解得 m≤ 0,因为分母不能为零,所以m+1≠ 0 解得 m≠﹣ 14.当 x __________ 时, 1 x 2 是二次根式。

【答案】 x 为任意实数【分析】﹙1- x﹚2是恒大于等于0 的,不论 x 的取值,都恒大于等于0,所以 x 为任意实数5.在实数范围内分解因式: x49 __________, x2 2 2x 2__________ 。

【答案】﹙x 2+ 3﹚﹙ x+3﹚﹙ x-3﹚,﹙ x- 2 ﹚2【分析】运用两次平方差公式:x 4- 9=﹙ x 2+ 3﹚﹙ x 2-3﹚=﹙ x 2+ 3﹚﹙ x+ 3 ﹚﹙x - 3 ﹚,运用完全平方差公式:x 2- 2 2 x+ 2=﹙ x- 2 ﹚26.若 4 x22x ,则 x 的取值范围是。

【答案】 x≥0【分析】二次根式开根号以后得到的数是正数,所以2x≥ 0,解得 x≥07.已知x22 x ,则x的取值范围是。

2【答案】 x≤2【分析】二次根式开根号以后得到的数是正数,所以2- x≥0,解得 x≤ 2 8.化简: x2 2 x 1 x p 1的结果是。

【答案】 1-x【分析】x2 2 x 1 =(x1)22,因为 x 1 ≥0,x<1所以结果为1-x9.当1x p5时,x2x 5 _____________ 。

1【答案】 4【分析】因为 x≥1 所以x 1 2= x 1,因为x<5所以x-5的绝对值为5-x,x- 1+5- x= 410.把 a1的根号外的因式移到根号内等于。

京改版八年级数学上册第十一章实数和二次根式专题测评练习题(含答案详解)

京改版八年级数学上册第十一章实数和二次根式专题测评练习题(含答案详解)

八年级数学上册第十一章实数和二次根式专题测评考试时间:90分钟;命题人:数学教研组考生注意:1、本卷分第I卷(选择题)和第Ⅱ卷(非选择题)两部分,满分100分,考试时间90分钟2、答卷前,考生务必用0.5毫米黑色签字笔将自己的姓名、班级填写在试卷规定位置上3、答案必须写在试卷各个题目指定区域内相应的位置,如需改动,先划掉原来的答案,然后再写上新的答案;不准使用涂改液、胶带纸、修正带,不按以上要求作答的答案无效。

第I卷(选择题 30分)一、单选题(10小题,每小题3分,共计30分)1、在下列各数中是无理数的有()-43π,3.1415926,2.010101(相邻两个0之间有1个1),0.11176.0102030405060732A.3个B.4个C.5个D.6个2、计算:÷=()A.4 B.5 C.6 D.83、有下列说法:①无理数是无限小数,无限小数是无理数;②无理数包括正无理数、0和负无理数.其中正确的有()A.0个B.1个C.2个D.3个4、下列说法中,正确的是( )A.无理数包括正无理数、零和负无理数B.无限小数都是无理数C .正实数包括正有理数和正无理数D .实数可以分为正实数和负实数两类5在实数范围内有意义,则x 的取值范围为( ) A .x >0 B .x ≥0 C .x ≠0 D .x ≥0且x ≠162的绝对值是( )A .2B 2CD .17、下列计算正确的是( )A 3+=B 1=C 4=D .2(3=-8、下列二次根式中能与)A B C D9、下列实数:3,0,12,0.35,其中最小的实数是( )A .3B .0C .D .0.35 10、下列说法中正确的有( )个. ① 负数没有平方根,但负数有立方根.②49的平方根是23,827的立方根是23. ③如果23(2)x =- ,那么x =-2. ④算术平方根等于立方根的数只有1.A .1B .2C .3D .4第Ⅱ卷(非选择题 70分)二、填空题(5小题,每小题4分,共计20分)1的结果是________.2、已知2215a a +=,则1a a +的值是_____________.3、在实数7.5-415π,22⎛ ⎝⎭中,设有a 个有理数,b =________.4、已知实数1,42π-________个.5、当0x >= _________________. 三、解答题(5小题,每小题10分,共计50分)1、阅读下面的文字,解答问题.,而无理数是无限不循环小数,,于,你同意小明的表示方法吗?事实上,小明的表示方法是有道理的,1,•将这个数减去其整数部分,差就是小数部分.请解答:已知其中x 是整数,且0<y<1,求x-y 的相反数.2、计算:()()201π3-+-3、已知a b 的小数部分,|c |,求a -b +c 的值.4、我们知道,任意一个有理数与无理数的和为无理数,任意一个不为零的有理数与一个无理数的积为无理数,而零与无理数的积为零.由此可得:如果0mx n +=,其中m 、n 为有理数,x 为无理数,那么m=0且n=0.(1)如果(230a b -+=,其中a 、b 为有理数,那么a= ,b= ;(2)如果((219a b -=,其中a 、b 为有理数,求2a b -的平方根;(3)若x ,y 是有理数,满足()(3219x y y --=+x y -的算术平方根.(1)(2)(2--参考答案-一、单选题1、B【解析】【分析】根据无理数是无限不循小数,可得答案.【详解】3π,76.0102030405060732故选:B.【考点】本题考查了无理数,无理数是无限不循环小数,有理数是有限小数或无限循环小数.2、C【解析】【分析】先根据二次根式的性质化简括号内的式子,再进行减法运算,最后进行除法运算即可.【详解】原式6===.【考点】本题考查了二次根式的混合运算,利用二次根式的性质化简是解题的关键.3、A【解析】【分析】根据无理数、分数的概念判断.【详解】解:无限不循环小数是无理数,∴①错误.0是有理数,∴②错误.=是有理数,42∴③错误.π也是无理数,不含根号,∴④错误.3是一个无理数,不是分数,3∴⑤错误.故选:A.【考点】本题考查实数的概念,掌握无理数是无限不循环小数是求解本题的关键.4、C【分析】根据实数的概念即可判断【详解】解:(A)无理数包括正无理数和负无理数,故A错误;(B)无限循环小数是有理数,无限不循环小数是无理数,故B错误;(D)实数可分为正实数,零,负实数,故D错误;故选C.【考点】本题考查实数的概念,解题关键是正确理解实数的概念,本题属于基础题型.5、D【解析】【详解】解:根据分式有意义的条件和二次根式有意义的条件,可知x-1≠0,x≥0,解得x≥0且x≠1.故选D.6、A【解析】【分析】根据差的绝对值是大数减小数,可得答案.【详解】2的绝对值是2故选:A.【考点】本题主要考查了绝对值化简,准确分析计算是解题的关键.7、C【解析】【分析】根据二次根式的性质和二次根式的运算法则分别判断.【详解】解:ABC4==,故选项正确;D、2=,故选项错误;(3故选:C.【考点】本题考查了二次根式的混合运算:先把二次根式化为最简二次根式,然后合并同类二次根式即可.在二次根式的混合运算中,如能结合题目特点,灵活运用二次根式的性质,选择恰当的解题途径,往往能事半功倍.8、B【解析】【分析】先化简选项中各二次根式,然后找出被开方数为3的二次根式即可.【详解】A,不能与B能与CD3不能与故选B.【考点】本题主要考查的是同类二次根式的定义,掌握同类二次根式的定义是解题的关键.9、C【解析】【分析】正实数都大于0,负实数都小于0,正实数大于一切负实数,两个负实数绝对值大的反而小,据此判断即可.【详解】解:根据实数比较大小的方法,可得<3,<0<0.35<12,故选:C.【考点】本题考查了实数大小比较的方法,要熟练掌握,解答此题的关键是要明确:正实数>0>负实数,两个负实数绝对值大的反而小.10、A【解析】【分析】根据平方根、立方根、乘方的定义以及性质逐一进行分析判断即可.【详解】① 负数没有平方根,但负数有立方根,正确;②49的平方根是23±,827的立方根是23,故②错误;③任何实数的平方都不可能为负数,故③错误;④算术平方根等于立方根的数有0、1,故④错误,所以正确的有1个,故选A.【考点】本题考查了平方根、立方根,熟练掌握平方根及立方根的定义是解题的关键.二、填空题1、2【解析】【分析】利用二次根式的乘除法则运算.【详解】解:原式=33+=4233+=2.故答案是:2.【考点】此题主要考查了二次根式的混合运算,正确化简二次根式是解题关键.2、【解析】【分析】 由条件2215a a +=,先求出21()a a+的值,再根据平方根的定义即可求出1a a +的值. 【详解】 解:∵2215a a +=, ∴2221(1)27a aa a +++==,∴1a a+=故答案为:【考点】本题主要考查了完全平方公式的变形求值以及平方根,熟悉完全平方公式的结构特点及平方根的定义是解题的关键.3、2【解析】【分析】由题意先根据有理数和无理数的定义得出a 、b【详解】解:7.5-,45=-,212=⎝⎭共有4个有理数,即4a =,15π共有2个无理数,即2b =,2=.故答案为:2.【考点】本题考查有理数和无理数的定义以及算术平方根的运算,熟练掌握相关定义与运算法则是解题的关键.4、3【解析】【分析】根据无理数就是无限不循环小数逐一进行判断即可得出答案.【详解】5=,无理数有4π,共3个,故答案为:3.【考点】本题主要考查无理数,掌握无理数的概念是解题的关键.5、94【解析】【分析】先根据二次根式的定义和除法的性质可得0y >,再根据二次根式的性质化简,然后计算二次根式的除法即可得.【详解】 由二次根式的定义得:2500x y y x⎧≥⎪⎨≥⎪⎩, 0x , 0y ∴≥, 又除法运算的除数不能为0,0y ∴≠,0y ∴>,35xy =3xy =49=故答案为:94【考点】本题考查了二次根式的定义与除法运算,熟练掌握二次根式的运算法则是解题关键.三、解答题1【解析】【分析】本题主要考查了无理数的公式能力,解题关键是估算无理数的整数部分和小数部分. 根据题意的方xy的值;再由相反数的求法,易得答案.【详解】2,∴1+10<∴11<12,∴x=11,,x-y=11-∴x-y2【解析】【分析】按照绝对值的性质、乘方、零指数幂、二次根式的运算法则计算.【详解】解:原式112=-=【考点】本题考查绝对值的性质、乘方、零指数幂、二次根式的运算法则,比较基础.3、4或4-【解析】【分析】的范围,确定a,b的值,再代入代数式即可解答.【详解】3,∴a=2,b2,∵|c|∴c当c a-b+c=4;当c a-b+c=4-故答案为:4或4-.【考点】本题考查代数式的求值,涉及无理数的估算和绝对值.估算无理数的取值范围是本题的关键.4、(1)2,-3;(2)±3;(3)【解析】【分析】(1)根据题意可得:a-2=0,b+3=0,从而可得解;(2)把已知等式进行整理可得)290a b a b --+=,从而得2a -b =9,a +b =0,从而可求得a ,b 的值,再代入运算即可;(3)将已知等式整理为379x y -=+,从而得3x -7y =9,y =3,从而可求得x ,y 的值,再代入运算即可.【详解】解:(1)由题意得:a -2=0,b +3=0,解得:a =2,b =-3,故答案为:2,-3;(2)∵((219a b -=,∴)290a b a b --+=,∴2a -b -9=0,a +b =0,解得:a =3,b =-3,∴2a b -=9,∴2a b -的平方根为±3;(3)∵()(3219x y y --=+,∴379x y -=+∴3x -7y =9,y =3,∴x =10,∴x y -=10-3=7,∴x y -的算术平方根为【考点】本题主要考查实数的运算,解答的关键是理解清楚题意,得出相应的等式.5、(2)29﹣【解析】【分析】(1)先把各二次根式化简为最简二次根式,然后合并即可;(2)利用完全平方公式和平方差公式计算.(1)解:原式263=⨯⨯==(2)解:原式((22222⎡⎤=-⨯--⎢⎥⎣⎦=12﹣18﹣(6﹣5)=30﹣ 1=29﹣【考点】本题考查了二次根式的混合运算:先把各二次根式化简为最简二次根式,然后进行二次根式的乘除运算,再合并即可.。

八年级初二数学二次根式练习题及答案

八年级初二数学二次根式练习题及答案
阅读理解:
﹣1;


应用计算:(1) 的值;
(2) (n为正整数)的值.
归纳拓展:(3) 的值.
【答案】应用计算:(1) ;(2) ;归纳拓展:(3)9.
【分析】
由阅读部分分析发现式子的分子、分母都乘以分母的有理化因式,为此(1)乘以 分母利用平方差公式计算即可,(2)乘以 分母利用平方差公式计算即可,(3)根据分母的特点各项分子分母乘以各分母的有理化因式,分母用公式计算化去分母,分子合并同类项二次根式即可.
【答案】(1) ;(2)4
【分析】
(1)先利用二次根式的乘法法则和绝对值的意义计算,再进行回头运算即可;
(2)先根据二次根式有意义的条件确定b的值,再根据非负数的和的意义确定a,c的值,然后再计算代数式的值即可.
【详解】
解:(1)
(2)由题意可知: ,
解得
由此可化简原式得,


【点睛】
可不是考查了二次根式的混合运算以及二次根式的化简求值,熟练掌握运算法则和运算顺序是解答此题的关键.
正方形的面积也为4.边长为
周长为:
∴长方形的周长大于正方形的周长.
【参考答案】***试卷处理标记,请不要删除
一、选择题
1.A
解析:A
【解析】
B. = ;C. = ; D. .故选A.
2.C
解析:C
【详解】
, ,
所以 = ,
故选:C.
【点睛】
对于形如 的式子,改变其中两个字母的位置后,并不改变代数式的值,通常将具有这个特点的代数式称为轮换对称式,如 , , 等,轮换对称式都可以用 , 来表示,所以求轮换对称式的值,一般是先将式子用 , 来表示,然后再整体代入计算.

北师版八年级数学上册第2章 实数 2.7.2 二次根式的运算 同步练习题

北师版八年级数学上册第2章   实数   2.7.2 二次根式的运算   同步练习题

北师版八年级上册第2章实数2.7.2二次根式的运算同步练习一.选择题(共10小题,3*10=30)1.下面计算正确的是( )A.3÷3=3 3 B.27÷3=3C.2÷3=32 D.4÷2= 22.计算:32-2=( )A.3 B. 2C.2 2 D.4 23.下列各式成立的是( )A.2×3=23B.25×35=6 5C.53×42=20 6 D.43×32=7 54.计算(10+3)2(10-3)的结果是( )A.10-3B.10+3C.3 D.-35.已知n是一个正整数,135n是整数,则n的最小值是( ) A.3B.5C.15D.256.下列根式中,不能与3合并的是( )A.13 B.13C.23 D.127.有一个面积为8的正方形和一个面积为2的正方形(如图),可以说明下列等式成立的是( )A.2=8B.8=2C.2=28D.8=2 28. 若m<0,n>0,把代数式m n中的m移进根号内的结果是( )A.m2nB.-m2nC.-m2n D.|m2n|9.化简(2-1)(2+1)2等于( )A.2-1B.2+1C.1- 2 D.-1- 210.若x=m-n,y=m+n,则xy的值是( )A.2m B.2nC.m+n D.m-n二.填空题(共8小题,3*8=24)11.计算:3×27=____.12.已知两个因数的积是46,其中一个因数是3,则另一个因数是________.13. 计算:(2+1)·(2-1)=____.14. 计算:8-2=_____.15.计算:3÷3×13=____.16.若一个三角形的三边长分别为8 cm,12 cm,18 cm,则三角形的周长是________cm.17. 计算:(1-2)2+18的值是_____________.18.若最简二次根式2x+1和4x-3能合并,则x=____.三.解答题(共7小题,46分)19. (6分) 计算:(1)23×12;(2)18a·2a (a≥0).20.(6分) 某零件设计图纸上有一直角三角形,面积为1014 cm 2,一条直角边长为47 cm ,求另一条直角边的长及斜边上的高.21.(6分) 计算 (1)-56214;(2)-6×533.22.(6分) 已知a=2+3,b=2-3,试求ab-ba的值.23.(6分) 计算:(1)(4+6)(6-4);(2)(3-2)2·(5+26).24.(8分) 已知x=1-2,y=1+2,求x2+y2-xy-2x+2y的值.25.(8分)细心观察图中的一系列直角三角形,认真分析下列各式,然后解答问题.OA12=(1)2+12=2,S1=1 2;OA22=(2)2+12=3,S2=2 2;OA32=(3)2+12=4,S3=3 2;…(1)请用含有n(n为正整数)的等式表示上述变化规律;(2)推算出OA10的长;(3)求出S12+S22+…+S102的值.参考答案1-5BCCBC 6-10 CDCBD11. 9 12. 4 213. 1 14. 215. 1 16. 52+2 3 17. 42-118. 219. 解:(1)原式=2 3×23=2 2 (2)原式=18×2a 2=6a20. 解:设另一条直角边为xcm ,则S △=12×47x 即27x=1014解得x=5 2斜边长=(47)2+(52)2=92cm∴斜边上的高=2S △ 92 = 2014 92=2097 cm 21. 解:(1)原式=-12×5614= -12×2= -1 (2)原式=-6×533= - 3033= -1310 22. 解:∵a +b =4,a -b =23,ab =1,∴原式=a 2-b 2ab =(a -b )(a +b )ab =4×231=8 3 23. 解:(1)原式=(6+4)(6-4)=(6)2-42= 6- 16= -10(2)原式=(5-26)·(5+26)=52-(26)2=25-24=124. 解:当x =1-2,y =1+2时,原式=(1-2)2+(1+2)2-(1-2)(1+2)-2(1-2)+2(1+2)=7+4 2.25. 解:(1)OA n 2=(n)2+1=n +1,S n =n 2.(2)∵OA102=10+1=11 ∴OA10=11.(3) S12+S22+…+S102=(12)2+(22)2+…+(102)2=14×(1+2+…+10)=554.。

2022-2023学年八年级数学上册实数 二次根式的四则运算 同步练习题( 教师版)

2022-2023学年八年级数学上册实数  二次根式的四则运算  同步练习题( 教师版)

北师大版八年级数学上册第二章 实数 2.7.2 二次根式的四则运算同步练习题一、选择题1.若最简二次根式2x +1和4x -3能合并,则x 的值为(C)A .-12B.34C .2D .52.如图,将△ABC 放在正方形网格图中(图中每个小正方形的边长均为1),点A ,B ,C 恰好在网格图中的格点上,那么△ABC 中BC 边上的高是(A)A.102B.104C.105D.53.下列说法正确的有(D) ①(210-5)÷5=22-1;②5+2与5-2互为倒数;③22-3与22+3互为负倒数;④若a +b 与a -b 互为倒数,则一定有a =b +1.A .1个B .2个C .3个D .4个4.下列根式中,不能与3合并的是(C)A.13B.13C.23D.125.在算式(-22)□(-22)的□中填上运算符号,使结果最大,这个运算符号是(D)A.加号B.减号C.乘号D.除号二、填空题6.计算65-1015的结果是45.7.化简:15×6÷10=3.8.计算:(5+2)2 019(2-5)2 020=5-2.9.若(1+2)2=a+b2(a,b为有理数),则a+b=5.10.若ab>0,a+b<0,则下列各式:①ab=a·b;②b a ·ab=1;③ab÷ab=-b;④ab·ab=a.其中正确的是②③(填序号).10.对于任意两个正数m,n,定义运算*为:m*n=⎩⎨⎧m -n (m ≥n ),m +n (m <n ).计算(8※3)×(18※27)的结果为3+36.11.某小区内有一块正方形空地,物业计划利用这块空地修建居民休闲区,具体规划如图所示,其中A ,B 为活动区域,剩余两个正方形区域为绿化区域,面积分别是270 m2和120 m2,则A ,B 两个活动区域的总面积为360m2.12.若[x]表示不超过x 的最大整数(如:[1.3]=1,[-214]=-3等等),则[12-1×2]+[13-2×3]+[14-3×4]+…+[12 020- 2 019×2 020]=2_019.三、 解答题 13.计算:(1)24-18×13; 解:原式=26- 6= 6.(2)12-613+248;解:原式=23-6×13+2×4 3=23-23+8 3 =8 3.(3)(48+1232)÷27;解:原式=4827+1232×127=4333+12×26=43+212.(4)(6-215)×3-612;解:原式=6×3-215×3-3 2=32-65-32=-6 5.(5)1327a3-a23a+3aa 3-a4108a.解:原式=13·3a3a -a2·3a a +3a ·3a 3-a4·63a=a 3a -a 3a +a 3a -3a 23a=-a23a.14.已知长方形的两条边长分别是23+2和23-2,试求长方形的面积和对角线的长.解:S =(23+2)(23-2)=(23)2-(2)2=12-2=10.对角线长l =(23+2)2+(23-2)2=12+46+2+12-46+2=28=27.15.已知x =3-12,y =3+12,求下列各式的值: (1)x2-xy +y2; (2)y x +xy+2. 解:(1)因为x =3-12,y =3+12. 所以x +y =3,xy =12.所以x2-xy +y2=(x +y)2-3xy=(3)2-3×12=32. (2)y x +x y +2=(x +y )2-2xy xy +2 =(x +y )2xy=(3)212 =6.16.已知:x1=15+2,x2=15-2.求:(1)x1+x2和x1x2的值;(2)x21-x1x2+x22的值.解:(1)因为x1=15+2=5-2,x2=15-2=5+2,所以x1+x2=5-2+5+2=25,x1x2=(5-2)(5+2)=1.(2)x21-x1x2+x22=(x1+x2)2-3x1x2 =20-3=17.17.小明在解决问题:已知a =12+3,求2a2-8a +1的值,他是这样分析与解答的:因为a =12+3=2-3(2+3)(2-3)=2-3,所以a -2=-3.所以(a -2)2=3,即a2-4a +4=3. 所以a2-4a =-1.所以2a2-8a +1=2(a2-4a)+1=2×(-1)+1=-1. 请你根据小明的分析过程,解决如下问题:(1)计算:12+1+13+2+14+3+ (1100)99;(2)若a =12-1,求4a2-8a +1的值. 解:(1)原式=(2-1)+(3-2)+(4-3)+…+(100-99)=100-1=10-1=9.(2)因为a=12-1=2+1(2-1)(2+1)=2+1,所以a-1= 2.所以(a-1)2=2,即a2-2a+1=2.所以a2-2a=1.所以4a2-8a+1=4(a2-2a)+1=4×1+1=5.。

北师大版数学八年级上册第二章实数第七节《二次根式》课时练习

北师大版数学八年级上册第二章实数第七节《二次根式》课时练习

北师大版数学八年级上册第二章实数第七节《二次根式》课时练习学校:___________姓名:___________班级:___________考号:___________一、单选题1.下列各式一定是二次根式的是( )AB C D2.若2<a <3 ) A .5﹣2aB .1﹣2aC .2a ﹣1D .2a ﹣53.若A ==( ) A .24a + B .22a + C .()222a + D .()224a + 4.若a ≤1,则√(1−a)3化简后为( )A .(a −1)√a −1B .(1−a)√a −1C .(a −1)√1−aD .(1−a)√1−a5=x 的取值范围是( ) A .x ≠2B .x ≥0C .x ≥2D .x >26 ) A .0 B .42a -C .24a -D .24a -或42a -7.下列各式不是最简二次根式的是( )A .√a 2+1B .√2x +1C .√2b 4D .√0.1y8.对于所有实数a ,b ,下列等式总能成立的是( )A .2a b =+B 22a b =+C a b =+D a b =+9( )A .它是一个非负数B .它是一个无理数C .它是最简二次根式D .它的最小值为3二、填空题10.计算:的结果是________11a ,那么a 的取值范围是__________123,那么x 的值是____________13.若a =,b =a b 、两数的关系是____________14.当x___________有意义.1520y -=,则x y +=_________.16.当___________.1711m +有意义,则m 的取值范围是___________________18.代数式3-_________19.当x ________.20.把三、解答题21.若y =,求2x y +的值. 22.21++a 的最小值是多少?此时a 的取值是多少?23.计算:2√12+3√113−√513−23√48. 24.有意义,求m 的取值范围?参考答案1.C【分析】根据二次根式的概念和性质,逐一判断.【详解】解:A 、二次根式无意义,故A 错误;B 、是三次根式,故B 错误;C 、被开方数是正数,故C 正确;D 、当b=0或a 、b 异号时,根式无意义,故D 错误.故选C .【点睛】a≥0)叫二次根式.性质:二次根式中的被开方数必须是非负数,否则二次根式无意义.当二次根式在分母上时还要考虑分母不等于零,此时被开方数大于0.2.D【分析】根据二次根式的性质解答即可.【详解】解:,∵2<a <3,∴2a -<0,3a ->0,=a ﹣2﹣(3﹣a )=a ﹣2﹣3+a =2a ﹣5,故选D .【点睛】此题考查二次根式的性质,关键是根据二次根式的性质解答.3.A【解析】()224A a ==+ 24a ==+.故选A .4.D 【解析】【分析】将(1﹣a )3化为(1﹣a )2•(1﹣a ),利用二次根式的性质进行计算即可.【详解】若a ≤1,有1﹣a ≥0;则√(1−a )3=√(1−a )2(1−a )=(1﹣a )√1−a .故选D .【点睛】本题考查了二次根式的意义与化简.二次根式√a 2规律总结:当a ≥0时,√a 2=a ;当a ≤0时,√a 2=−a .5.D【分析】根据被开方数为非负数,且分式的分母不能为0,列不等式组求出x 的取值范围即可.【详解】 由题意可得:020x x ≥⎧⎨-⎩>,解得:x >2. 故选D .【点睛】二次根式的被开方数是非负数,分母不为0,是本题确定取值范围的主要依据. 6.D【解析】a =的性质进行化简.原式=2112a a -+-,当2a -1≥0时,原式=2a -1+2a -1=4a -2;当2a -1≤0时,原式=1-2a+1-2a=2-4a .综合以上情况可得:原式=2-4a 或4a -2.考点:二次根式的性质7.D【解析】试题分析:最简二次根式的被开方数不能含有能开方的数字,不能含有分数,不能有偶数次幂.考点:最简二次根式8.B【详解】解:A 、错误,∵2=+a bB 、正确,因为a 2+b 2≥0a 2+b 2;CD =|a +b |,其结果a+b 的符号不能确定.故选B .9.B【解析】解:二次根式开方是一个非负数,故A 正确;29x +不能开方,故C 正确;当0x =时29x +有最小值9.故D 正确.故选B .10.2【解析】解: 3==. 11.a≤0【解析】解:0≥,即0a -≥,解得:0a ≤.故答案为0a ≤.12.3或-3【解析】解: 3x ==,解得:x =±3,故答案为:±3.13.a b =【解析】解:a==所以a=b.故答案为:a=b.14.≥1 3【解析】解:根据二次根式的定义可知,3x-1≥0,解得:13x≥.故答案为13≥.15.1【解析】解:,2y-≥0,∴x+1=0,y-2=0,解得:x= -1,y=2,∴x+y=1.故答案为1.点睛:几个非负数的和为0,则每一个非负数都等于0.16.-2≤x≤1 2【解析】解:x+2≥0,1-2x≥0解得x≥-2,x≤12,∴-2≤x≤12.故答案为-2≤x≤12.点睛:二次根式有意义的条件是:被开方数≥0.17.:m≤0且m≠﹣1【分析】代数式有意义,要求各项都要有意义,被开方数为非负数,分母不为零.【详解】由题意得:-m≥0且m+1≠0,∴m≤0且m≠-1.故答案是:m≤0且m≠-1.18.-3【解析】0,0,∴-33,∴最大值为-3,故答案为-3.19.为任意实数【解析】解:﹙1-x﹚2是恒大于等于0的,不论x的取值,都恒大于等于0,所以x为任意实数.故答案为为任意实数.20.【解析】解:通过a≤0,,所以.故答案为:.点睛:此题主要考查了二次根式的性质应用,正确判断二次根式的整体符号是解题关键.21.4【解析】试题分析:根据被开方数是非负数,可以得到x2-4=0,再根据分母不能为0确定出x的值,从而得到y的值,代入即可.试题解析:因为被开方数为非负数,所以x2-4≥0, 4-x2≥0,x-=,解得x=2或x=—2,所以240当x=—2时,分母x+2=0,所以x=—2(舍去),当x=2时,y=0,所以2x+y=4.22.2 -1.【解析】≥,从而2a的最小值是2;因为负+1+a+≥,从而求出a的取值范围.数没有算术平方根,所以10a+1的算数平方根是非负的,所以当a+1的算术平方根加2时最小值为2,此时a+1=0,即a=-1.23.2【解析】原式=4√3+2√3-43√3-83√3=6√3-4√3=2√324.m≤3【解析】试题分析:根据被开方数为非负数,列不等式即可求得.试题解析:因为被开方数应该为非负的,所以3—m≥0,所以m≤3.【点睛】本题主要考查了算术平方根的被开方数是非负数这一知识点,解决此类问题的关键就是要记住被开方数是非负数.。

初中八年级下册数学二次根式练习题及答案

初中八年级下册数学二次根式练习题及答案

初中数学八年级下册二次根式练习题____班 姓名__________ 分数__________一、选择题(每小题3分,共30分)1.若m -3为二次根式,则m 的取值为 ( )A .m≤3B .m <3C .m≥3D .m >32.下列式子中二次根式的个数有 ( )⑴31;⑵3-;⑶12+-x ;⑷38;⑸231)(-;⑹)(11>-x x ;⑺322++x x .A .2个B .3个C .4个D .5个3.当22-+a a 有意义时,a 的取值范围是 ( )A .a≥2B .a >2C .a≠2D .a≠-24.下列计算正确的是 ( ) ①69494=-⋅-=--))((;②69494=⋅=--))((; ③145454522=-⋅+=-;④145452222=-=-;A .1个B .2个C .3个D .4个5.化简二次根式352⨯-)(得 ( )A .35-B .35C .35±D .306.对于二次根式92+x ,以下说法不正确的是 ( )A .它是一个正数B .是一个无理数C .是最简二次根式D .它的最小值是37.把ab a123分母有理化后得 ( )A .b 4B .b 2C .b 21D . b b28.y b x a +的有理化因式是 ( )A .y x +B .y x -C .y b x a -D .y b x a +9.下列二次根式中,最简二次根式是 ( )A .23aB .31C .153D .14310.计算:ab ab b a 1⋅÷等于 ( )A .ab ab 21B .ab ab 1C .ab b 1D .ab b二、填空题(每小题3分,共分)11.当x___________时,x 31-是二次根式.12.当x___________时,x 43-在实数范围内有意义.13.比较大小:23-______32-.14.=⋅b a a b 182____________;=-222425__________.15.计算:=⋅b a 10253___________.16.计算:2216a cb =_________________.17.当a=3时,则=+215a ___________.18.若x x x x --=--3232成立,则x 满足_____________________.三、解答题(46分)19.(8分)把下列各式写成平方差的形式,再分解因式:⑴52-x ; ⑵742-a ;⑶15162-y ; ⑷2223y x -.20.(12分)计算: ⑴))((36163--⋅-; ⑵63312⋅⋅;⑶)(102132531-⋅⋅; ⑷z y x 10010101⋅⋅-.21.(12分)计算: ⑴20245-; ⑵14425081010⨯⨯..; ⑶521312321⨯÷; ⑷)(b a b b a1223÷⋅.22.(8分)把下列各式化成最简二次根式: ⑴27121352722-; ⑵b a c abc 4322-.23.(6分)已知:2420-=x ,求221x x +的值.初中数学二次根式拓展提高综合题一、单选题(共8道,每道12分)1.设a,b,c都是实数,且满足,则的值为()A.-5B.11C.5D.32.若,则的值为()A. B. C. D.3.化简的值为()A.1B.2C.3D.44.已知,化简:结果为()A.aB.bC.2b-aD.a-2b5.在如图所示的数轴上,点B和点C关于点A对称,A、B两点对应的实数分别是和-1,则点C所对应的实数是()A. B.C. D.6.比较大小:()A.大于B.小于C.等于D.无法判断7.化简的结果是()A. B.C. D.8.若,则代数式=()A.2013B.2012C.-2013D.-2012参考答案一、选择题1.A ;2.C ;3.B ;4.A ;5.B ;6.B ;7.D ;8.C ;9.D ;10.A .二、填空题11.≤31;12.≤43;13.<;14.31,7;15.ab 230;16.a c b 4;17.23;18.2≤x <3.三、解答题19.⑴))((55-+x x ;⑵))((7272-+a a ;⑶))((154154-+y y ; ⑷))((y x y x 2323-+;20.⑴324-;⑵2;⑶34-;⑷xyz 10;21.⑴43-;⑵203;⑶1;⑷43;22.⑴33;⑵ bc a c 242-;23.18.拓展提高综合题答案一、单选题(共8道,每道12分)1 答案:A试题难度:三颗星 知识点:二次根式的双重非负性2 答案:D试题难度:三颗星 知识点:二次根式的双重非负性3 答案:D试题难度:三颗星 知识点:二次根式的双重非负性4 答案:A试题难度:三颗星 知识点:二次根式的化简求值5 答案:C试题难度:三颗星 知识点:数轴表示无理数6 答案:B试题难度:三颗星 知识点:比较大小7 答案:A试题难度:三颗星 知识点:完全平方式的应用8 答案:C试题难度:三颗星 知识点:完全平方公式的运用。

二次根式练习题50道(含答案)

二次根式练习题50道(含答案)

二次根式 50 题(含解析)1.计算:2.先分解因式,再求值:b2-2b+1-a2,其中a=-3,b=+4.3.已知,求代数式(x+1)2-4(x+1)+4的值.4.先化简,再求值:.5.(1)计算:;(2)化简,求值:,其中x=-1.6.先化简、再求值:+,其中x=,y=.7.计算:(1)(-2)2+3×(-2)-()-2;(2)已知x=-1,求x2+3x-1的值.8.先化简,再求值:,其中.9.已知a=2+,b=2-,试求的值.10.先化简,再求值:,其中a=+1,b=.11.先化简,再求值:,其中,.12.先化简,再求值:,其中a=-1.13.先化简,再求值:(x+1)2-2x+1,其中x=.14.化简,将代入求值.15.已知:x=+1,y=-1,求下列各式的值.(1)x2+2xy+y2;(2)x2-y2.16.先化简,再求值:,其中.17.先化简,再求值:,其中.18.求代数式的值:,其中x=2+.19.已知a为实数,求代数式的值.20.已知:a=-1,求的值.21.已知x=1+,求代数式的值.22.先化简,再求值:,其中x=1+,y=1-.23.有这样一道题:计算-x2(x>2)的值,其中x=1005,某同学把“x=1 005”错抄成“x=1 050”,但他的计算结果是正确的,请回答这是怎么回事?试说明理由.24.已知:x=,y=-1,求x2+2y2-xy的值.25.已知实数x、y、a满足:,试问长度分别为x、y、a的三条线段能否组成一个三角形?如果能,请求出该三角形的面积;如果不能,请说明理由.26.我国古代数学家秦九韶在《数书九章》中记述了“三斜求积术”,即已知三角形的三边长,求它的面积.用现代式子表示即为:…①(其中a、b、c为三角形的三边长,s为面积).而另一个文明古国古希腊也有求三角形面积的海伦公式:s=…②(其中p=.)(1)若已知三角形的三边长分别为5,7,8,试分别运用公式①和公式②,计算该三角形的面积s;(2)你能否由公式①推导出公式②?请试试.27.(1)计算28.(2)解不等式组.29.已知a=+2,b=-2,则的值为()30.已知a=2,则代数式的值等于()31.已知x=,则代数式的值为()32.已知x=,则•(1+)的值是()33.若,则的值为()34.已知,则的值为()35.如果最简二次根式与是同类二次根式,则a=.36.若最简根式与是同类二次根式,则ab=.37.计算:①= ;②=.38.化简-= .39.化简-的结果是.40.计算:= .41.计算:+=.42.化简:= .43.化简:-+=.44.计算:= .45.先化简-(-),再求得它的近似值为(精确到0.01,≈1.414,≈1.732).46.化简:的结果为.47.计算:= .48.化简:= .49.化简:+(5-)=.50.计算:= .解析:1.解:原式=2+(2+)-(7+4)=--5.2.当a=-3,b=+4时,原式=×(+6)=3+6.3.解:原式=(x+1-2)2=(x-1)2,当时,原式==3.4.解:原式=-===.当时,=.5.解:(1)原式=4--4+2=;(2)原式===x+1,当x=-1时,原式=.6.解:原式=-===x-y,当x=,y=时,(2)方法一:当x=-1时,x2+3x-1=(-1)2+3(-1)-1=2-2+1+3-3-1=-1;方法二:因为x=-1,所以x+1=,所以(x+1)2=()2即x2+2x+1=2,所以x2+2x=1所以x2+3x-1=x2+2x+x-1=1+x-1=-1.8.解:原式====-x-4,当时,原式===.9.解:∵a=2+,b=2-,∴a+b=4,a-b=2,ab=1.而=,∴===8.10.原式==,∵∴.11.解:===,把,代入上式,得原式=.12.解:====;当a=-1时,原式====-(-1)=1.13.解:原式=x2+2x+1-2x+1=x2+2;当.14.解:原式=•=x-3;当x=3-,原式=3--3=.15.解:(1)当x=+1,y=-1时,原式=(x+y)2=(+1+-1)2=12;(2)当x=+1,y=-1时,原式=(x+y)(x-y)=(+1+-1)(+1-+1)=4.16.解:===x-2;当时,原式=.17.解:原式=a2-3-a2+6a=6a-3,当a=时,原式=6+3-3=6.18.解:原式=+=+=;当x=2+时,原式==.19.解:∵-a2≥0∴a2≤0而a2≥0∴a=0∴原式=.20.解:原式=,当a=-1时,原式=.21.解:原式=-==,当x=1+时,原式=.22.解:原式===;当x=1+,y=1-时,原式=.23.解:原式==+-x2=-x2=-2.∵化简结果与x的值无关,∴该同学虽然抄错了x的值,计算结果却是正确的.24.解:当时,x2+2y2-xy==.25.解:根据二次根式的意义,得,解得x+y=8,∴+=0,根据非负数的意义,得解得x=3,y=5,a=4,∴可以组成三角形,且为直角三角形,面积为6.26.解:(1)S=,=;P=(5+7+8)=10,又S=;(2)=(-)=,=(c+a-b)(c-a+b)(a+b+c)(a+b-c),=(2p-2a)(2p-2b)•2p•(2p-2c),=p(p-a)(p-b)(p-c),∴=.(说明:若在整个推导过程中,始终带根号运算当然也正确)27.解:27.(1)原式=3--+1=3--+1=+1;28.(2)由①得x+1>3-x,即x>1;由②得4x+16<3x+18,即x<2;不等式组的解集为1<x<2.29.解:原式=====5.30.解:当a=2时,=2-=2-=2-3-2=-3.31.解:=.32.当x=时,=-1,∴原式=1-()=2-.33.解:原式==•-•=a-b,34.解:∵a==,b==,∴==5.35.解:∵最简二次根式与是同类二次根式,∴3a-8=17-2a,解得:a=5.36.解:∵最简根式与是同类二次根式,∴,解得:,∴ab=1.37.解:①×===4;②-=2-=.38.解:原式=2-3=-.39.解:原式=2-=.故答案为:.40.解:原式=3-4+=0.41.解:原式=2+=3.42.解:原式=4-=3.43.(2010•聊城)化简:-+=.44.解:原式=2-=.45.解:原式=-(-)=-(-)=-+=3≈3×1.732≈5.196≈5.2046.解:原式=-20=-14.47.解:原式=2-3=-.48.解:=5.49.解:原式=+5-=5.50.解:原式=2-+=2.。

八年级数学-二次根式练习题(含解析)

八年级数学-二次根式练习题(含解析)

八年级数学-二次根式练习题(含解析)一.选择题(共15小题)1.二次根式在实数范围内有意义,则x的取值范围是()A.x<1 B.x≥﹣1 C.x≠2 D.x≥﹣1且x≠22.若式子在实数范围内有意义,则x的取值范围是()A.x≥0 B.x≥1 C.x>1 D.x>03.若在实数范围内有意义,则x的取值范围是()A.x>﹣B.x>﹣且x≠0 C.x≥﹣D.x≥﹣且x≠04.式子+有意义的条件是()A.x≥0 B.x≤0 C.x≠﹣2 D.x≤0且x≠﹣25.若有意义,则x满足条件是()A.x≥﹣3且x≠1 B.x>﹣3且x≠1 C.x≥1 D.x≥﹣36.已知y=++2,则x y的值为()A.9 B.8 C.2 D.37.在式子中,二次根式有()A.2个B.3个C.4个D.5个8.下列各式中,一定是二次根式的有()①②③④⑤A.2个B.3个C.4个D.5个9.已知n是正整数,是整数,n的最小值为()A.21 B.22 C.23 D.2410.已知,则=()A.B.C.D.﹣11.若二次根式在实数范围内有意义,则x的取值范围在数轴上表示正确的是()A.B.C.D.12.如果y=,则2x﹣y的平方根是()A.﹣7 B.1 C.7 D.±113.若是二次根式,则下列说法正确的是()A.x≥0 B.x≥0且y>0C.x、y同号D.x≥0,y>0或x≤0,y<014.若,则a的取值范围是()A.a>0 B.a≥1 C.0<a<1 D.0<a≤115.使下列式子有意义的实数x的取值都满足x≥1的式子的是()A.B.C.+D.二.填空题(共10小题)16.若实数a,b满足,则a﹣b的平方根是.17.当x时,在实数范围内有意义.18.若在实数范围内有意义,则x的取值范围是.19.若|2017﹣m|+=m,则m﹣20172=.20.使代数式有意义的整数x的和是.21.观察与思考:形如的根式叫做复合二次根式,把变成=叫复合二次根式的化简,请化简=.22.若代数式﹣(x﹣2)0+(x﹣3)﹣2有意义,则x的取值范围是.23.设x,y为实数,且,则点(x,y)在第象限.24.代数式﹣3﹣的最大值为,若有意义,则=.25.当a时,无意义;有意义的条件是.三.解答题(共15小题)26.已知+=b+8.(1)求a、b的值;(2)求a2﹣b2的平方根和a+2b的立方根.27.(1)若++y=16,求﹣的值(2)若a,b互为相反数,c,d互为倒数,m的绝对值为2,求+m﹣cd的值28.若y=++x3,求10x+2y的平方根.29.已知n=﹣6,求的值.30.若b=+﹣a+10.(1)求ab及a+b的值;(2)若a、b满足x,试求x的值.31.(1)已知y=+x+3,求的值.(2)比较大小:3与2.32.已知x,y为实数,y=,求xy的平方根.33.若x,y为实数,且y=++.求﹣的值.34.已知a,b分别为等腰三角形的两条边长,且a•b满足b=4++3,求此三角形的周长.35.若a,b是一等腰三角形的两边长,且满足等式,试求此等腰三角形的周长.36.(1)已知a+3与2a﹣15是一个正数的平方根,求a的值;(2)已知x,y为实数,且y=﹣+4,求的值.37.(1)计算:(﹣)﹣1﹣|﹣3|﹣20160+()2;(2)解方程:4(x﹣1)2﹣1=24;(3)已知y=++3,则xy的算术平方根.38.请认真阅读下列这道例题的解法,并完成后面两问的作答:例:已知y=+2018,求的值.解:由,解得:x=2017,∴y=2018.∴.请继续完成下列两个问题:(1)若x、y为实数,且y>+2,化简:;(2)若y•=y+2,求的值.39.若a,b为实数,且,求.40.已知a、b、c为一个等腰三角形的三条边长,并且a、b满足b=2,求此等腰三角形周长.参考答案与试题解析一.选择题(共15小题)1.【分析】直接利用二次根式的定义得出x的取值范围进而得出答案.【解答】解:∵二次根式在实数范围内有意义,∴x+1≥0,解得:x≥﹣1.故选:B.2.【分析】根据被开方数是非负数、除数不等于0,确定x的取值范围.【解答】解:由题意,可得x﹣1>0,所以x>1故选:C.3.【分析】根据二次根式被开方数是非负数列出不等式,解不等式得到答案.【解答】解:由题意得,2x+5≥0,解得,x≥﹣,故选:C.4.【分析】根据被开方数大于等于0,分母不等于0列式进行计算即可得解.【解答】解:根据题意得﹣x≥0且x+2≠0,解得x≤0且x≠﹣2.故选:D.5.【分析】直接利用二次根式有意义的条件分析得出答案.【解答】解:∵有意义,∴x满足条件是:x+3≥0,且x﹣1≠0,解得:x≥﹣3且x≠1.故选:A.6.【分析】直接利用二次根式有意义的条件得出x的值,进而求出y的值,即可得出答案, 【解答】解:∵y=++2,∴x﹣3=3﹣x=0,解得:x=3,则y=2,则x y=32=9.故选:A.7.【分析】根据二次根式的定义对各数分析判断即可得解.【解答】解:根据二次根式的定义,y=﹣2时,y+1=﹣2+1=﹣1,所以二次根式有(x>0),,(x<0),,共4个.故选:C.8.【分析】利用二次根式定义判断即可.【解答】解:①是二次根式;②,当a≥0时是二次根式;③是二次根式;④是二次根式;⑤,当x≤0时是二次根式,故选:B.9.【分析】如果一个根式是整数,则被开方数是完全平方数,首先把化简,然后求n的最小值.【解答】解:∵189=32×21,∴=3,∴要使是整数,n的最小正整数为21.故选:A.10.【分析】根据二次根式有意义的条件求出x,根据题意求出y,分母有理化化简即可.【解答】解:由题意得,x2﹣2≥0,2﹣x2≥0,∴x2=2,解得,x=±,当x=时,无意义,当x=﹣时,2=2y,解得,y=,∴==+,故选:C.11.【分析】直接利用二次根式有意义的条件结合数轴得出答案.【解答】解:二次根式在实数范围内有意义,则2x﹣6≥0,解得:x≥3,则x的取值范围在数轴上表示为:.故选:A.12.【分析】直接利用二次根式有意义的条件分析得出答案.【解答】解:由题意可得:x2﹣4=0,x+2≠0,解得:x=2,故y=3,则2x﹣y=1,故2x﹣y的平方根是:±1.故选:D.13.【分析】二次根式中的被开方数必须是非负数.【解答】解:依题意有≥0且y≠0,即≥0且y≠0.所以x≥0,y>0或x≤0,y<0.故选:D.14.【分析】直接利用二次根式有意义的条件得出答案.【解答】解:∵,∴,解得:0<a≤1.故选:D.15.【分析】根据分式有意义的条件以及二次根式有意义的条件即可求出答案【解答】解:(A)由,可得:x≤0且x≠﹣1,故x≥1时,无意义,故不选A,(B)由x+1>0,可得:x>﹣1,此时有意义,不都满足x≥1,故不选B;(C)由可得:﹣1≤x≤1,故C不选;(D)解得:x>1,满足x≥1,故选D故选:D.二.填空题(共10小题)16.【分析】直接利用二次根式有意义的条件进而分析得出答案.【解答】解:∵和有意义,则a=5,故b=﹣4,则===3,∴a﹣b的平方根是:±3.故答案为:±3.17.【分析】根据二次根式有意义的条件、分式有意义的条件列出不等式,解不等式得到答案.【解答】解:由题意得,x+1≥0,|x|﹣2≠0,解得,x≥﹣1且x≠2,故答案为:≥﹣1且x≠2.18.【分析】根据被开方数大于等于0,分母不等于0列不等式求解即可.【解答】解:由题意得,﹣>0,解得x<﹣3.故答案为:x<﹣3.19.【分析】根据二次根式的性质求出m≥2018,再化简绝对值,根据平方运算,可得答案.【解答】解:∵|2017﹣m|+=m,∴m﹣2018≥0,m≥2018,由题意,得m﹣2017+=m.化简,得=2017,平方,得m﹣2018=20172,m﹣20172=2018.故答案为:201820.【分析】直接利用二次根式的性质得出不等式组求出答案.【解答】解:使代数式有意义,则,解得:﹣4<x≤,则整数x有:﹣3,﹣2,﹣1,0,故整数x的和是:﹣3﹣2﹣1=﹣6.故答案为:﹣6.21.【分析】直接利用完全平方公式将原式变形进而得出答案.【解答】解:==﹣.故答案为:﹣.22.【分析】直接利用二次根式有意义的条件以及零指数幂的性质和负指数幂的性质分别判断得出答案.【解答】解:∵代数式﹣(x﹣2)0+(x﹣3)﹣2有意义,∴x+1≥0,且x﹣1≠0,x﹣2≠0,x﹣3≠0,解得:x≥﹣1且x≠1,x≠2,x≠3.故答案为:x≥﹣1且x≠1,x≠2,x≠3.23.【分析】直接利用二次根式有意义的条件得出x的值,进而得出y的值,再利用点的坐标特点得出答案.【解答】解:由题意可得:,解得:x=5,故y=﹣4,则点(x,y)为(5,﹣4)在第四象限.故答案为:四.24.【分析】根据算术平方根具有非负性可得当=0时,代数式﹣3﹣有最大值,进而可得代数式﹣3﹣的最大值为﹣3;再根据二次根式被开方数为非负数可得x=0,进而可得答案.【解答】解:∵≥0,∴当=0时,代数式﹣3﹣有最大值,∴代数式﹣3﹣的最大值为﹣3;∵有意义,∴,解得:x=0,则=1,故答案为:﹣3;1.25.【分析】根据二次根式成立的条件:被开方数是非负数;无意义:被开方数小于0,列不等式可得结论.【解答】解:3a﹣2<0,a<,由有意义得:,解得,当a时,无意义;有意义的条件是:x≤2且x≠﹣8,故答案为:a,x≤2且x≠﹣8.三.解答题(共15小题)26.【分析】(1)关键二次根式有意义的条件即可求解;(2)将(1)中求得的值代入即可求解.【解答】解:(1)由题意得a﹣17≥0,且17﹣a≥0,得a﹣17=0,解得a=17,把a=17代入等式,得b+8=0,解得b=﹣8.答:a、b的值分别为17、﹣8.(2)由(1)得a=17,b=﹣8,±=±=±15,===1.答:a2﹣b2的平方根为±15,a+2b的立方根为1.27.【分析】(1)根据二次根式的被开方数是非负数;(2)根据相反数、倒数的定义以及绝对值得到:a+b=0,cd=1,m=±2,代入求值即可.【解答】解:(1)由题意,得解得x=8.所以y=16所以原式=﹣=2﹣4=﹣2.(2)∵a,b互为相反数,c,d互为倒数,m的绝对值为2,∴a+b=0,cd=1,m=±2,∴=+m﹣1=m﹣1.当m=2时,原式=1.当m=﹣2时,原式=﹣2﹣1=﹣3.综上所述,+m﹣cd的值是1或﹣3.28.【分析】根据二次根式有意义的条件可得x=2,进而可得y的值,然后计算出10x+2y的值,再求平方根.【解答】解:由题意得:,解得:x=2,则y=8,10x+2y=20+16=36,平方根为±6.29.【分析】直接利用二次根式的性质得出m,n的值,进而化简得出答案.【解答】解:∵与有意义,∴m=2019,则n=﹣6,故==45.30.【分析】(1)直接利用二次根式有意义的条件得出ab,a+b的值;(2)利用已知结合完全平方公式计算得出答案.【解答】解:(1)∵b=+﹣a+10,∴ab=10,b=﹣a+10,则a+b=10;(2)∵a、b满足x,∴x2=,∴x2===8,∴x=±2.31.【分析】(1)直接利用二次根式有意义的条件分析得出x,y的值,进而答案;(2)直接将二次根式变形进而比较即可.【解答】解:(1)∵y=+x+3,∴x=3,故y=6,∴==3;(2)∵3=,2=,∴>,即3>2.32.【分析】根据被开方数是非负数且分母不等于零,可得x,y的值,根据开平方,可得答案.【解答】解:由题意,得,,且x﹣2≠0解得x=﹣2,y=﹣xy=,xy的平方根是.33.【分析】根据二次根式的被开方数是非负数求得x的值,进而得到y的值,代入求值即可.【解答】解:依题意得:x=,则y=,所以==,==2,所以﹣=﹣=﹣=.34.【分析】根据题意求出a、b的值,根据三角形的三边关系确定三角形的边长,求出此三角形的周长.【解答】解:由题意得,3a﹣6≥0,2﹣a≥0,解得,a≥2,a≤2,则a=2,则b=4,∵2+2=4,∴2、2、4不能组成三角形,∴此三角形的周长为2+4+4=10.35.【分析】根据被开方数大于等于0列式求出a,再求出b,然后分a是腰长与底边两种情况讨论.【解答】解:根据题意得,3a﹣6≥0且2﹣a≥0,解得a≥2且a≤2,所以a=2,b=4,①a=2是腰长时,三角形的三边分别为2、2、4,∵2+2=4,∴不能组成三角形,②a=2是底边时,三角形的三边分别为2、4、4,能组成三角形,周长=2+4+4=10,所以此等腰三角形的周长为10.36.【分析】(1)直接利用平方根的定义分析得出答案;(2)利用二次根式有意义的条件分析得出答案.【解答】解:(1)根据平方根的性质得,a+3+2a﹣15=0,解得:a=4,答:a的值为4;(2)满足二次根式与有意义,则,解得:x=9,∴y=4,∴=+=5.37.【分析】(1)直接利用负指数幂的性质以及零指数幂的性质和绝对值的性质分别化简得出答案;(2)利用直接开平方法解方程得出答案;(3)直接利用二次根式的性质分析得出x,y的值进而得出答案.【解答】解:(1)(﹣)﹣1﹣|﹣3|﹣20160+()2=﹣4﹣3﹣1+2=﹣6;(2)∵4(x﹣1)2﹣1=24,∴(x﹣1)2=,∴x﹣1=±,解得:x1=,x2=﹣;(3)∵y=++3,∴,解得:x=4,∴y=3,则xy=12,故12的算术平方根为:2.38.【分析】根据题意给出的方法即可求出答案.【解答】解:(1)由,解得:x=3,∴y>2.∴;(2)由:,解得:x=1.y=﹣2.∴.39.【分析】根据被开方数是非负数且分母不等于零,可得答案.【解答】解:由题意,得a2﹣1=0,且a+1≠0,解得a=1,b=.﹣=﹣3.40.【分析】由二次根式有意义的条件可得,解不等式可得a的值,进而可得b的值,然后再分两种情况进行计算即可.【解答】解:由题意得:,解得:a=3,则b=5,若c=a=3,此时周长为11,若c=b=5,此时周长为13.。

中考数学复习《实数与二次根式及其运算》经典题型及测试题(含答案)

中考数学复习《实数与二次根式及其运算》经典题型及测试题(含答案)

中考数学复习《实数与二次根式及其运算》经典题型及测试题(含答案)命题点分类集训命题点1 实数的相关概念【命题规律】1.实数的相关概念是实数部分的常考知识点,考查内容有:①相反数、绝对值、倒数;②负数、有理数和无理数;③平方根、算术平方根、立方根;2.相反数、绝对值、倒数考查频次较高,一般以-10 到 10之间的数设题;3.题位常设置在选择题和填空题中第1个,选择题较多 1. 下列各数中,-3的倒数是( )A. -13B. 13 C. -3 D. 3A 【解析】∵-3×(-13)=1,∴-3的倒数为-13.2.-6的绝对值是( )A. -6B. 6C. 16D. -16B 【解析】∵-6小于0,∴-6的绝对值为-(-6)=6. 3.-12016的倒数的绝对值是( )A. -2016B. 12016C. 2016D. -12016C 【解析】-12016的倒数是-2016,-2016的绝对值是2016.4.四个数-3,0,1,2,其中负数是( ) A. -3 B. 0 C. 1 D. 2 A 【解析】正数前面添上负号就是负数,∴-3是负数.5.下列实数中的无理数是( )A. 0.7B. 12C. πD. -8C 【解析】0.7是有限小数,是有理数;12是分数;π是无理数;-8是负整数.6. 4的平方根是( )A. ±2B. -2C. 2D. ±12A 【解析】∵(±2)2=4,∴4的平方根是±2. 7. (-2)2的平方根是( )A. 2B. -2C. ±2D. 2 C 【解析】∵(-2)2=4,∴4的平方根是±2.8.冰箱冷藏室的温度零上5 ℃,记作+5 ℃,保鲜室的温度零下7 ℃,记作( ) A. 7 ℃ B. -7 ℃ C. 2 ℃ D. -12 ℃B 【解析】零上记为正数,则零下记为负数,零上5℃记为+5℃,则零下7℃记为-7℃.9. 38=________. 2 【解析】38=323=2.10. |-0.3|的相反数等于________.-0.3 【解析】|-0.3|=0.3,而0.3的相反数是-0.3. 命题点2 科学记数法【命题规律】1.考查内容与形式:①大数科学记数法(数字一般在万位以上,或带单位万、亿),②小数科学记数法(绝对值大于0小于1的数);2.设题材料:大数科学记数法的设题一般以当下时事热点新闻、当地人文、财政等信息为主;小数科学记数法设题一般以细胞、花粉的直径等为主;3.选择和填空均有考查,以选择题居多,在做题时,可直接用a 的取值(1≤a <10)排除选项正误.【命题预测】科学记数法既可以准确方便地表示日常生活中遇到的一些极大或极小的数,同时也很好地体现了时下热点信息11.大家翘首以盼的长株潭城际铁路将于2016年年底通车,通车后,从长沙到株洲只需24分钟,从长沙到湘潭只需25分钟,这条铁路线全长95500米,则数据95500用科学记数法表示为( ) A. 0.955×105B. 9.55×105C. 9.55×104D. 9.5×104C 【解析】将一个大数表示成a ×10n 的形式,其中1≤a <10,故a =9.55,n 等于原数的整数位数减1,所以n =5-1=4,故数字95500用科学记数法表示为9.55×104.12.宁波栎社国际机场三期扩建工程建设总投资84.5亿元,其中84.5亿元用科学记数法表示为( ) A. 0.845×1010元 B. 84.5×108元 C. 8.45×109元 D. 8.45×1010元 C 【解析】1亿=108,84.5亿=84.5×108=8.45×109,故本题选C.13.人体中红细胞的直径约为0.0000077 m ,将数0.0000077用科学记数法表示为( ) A. 77×10-5B. 0.77×10-7C. 7.7×10-6D. 7.7×10-7C 【解析】将一小数表示为a ×10-n 的形式,其中1≤a <10,n 等于原数左起第一位非零数字前所有零的个数(含小数点前的零),则0.0000077用科学记数法表示为:7.7×10-6 .14. 2015年7月,第四十五届“世界超级计算机500强排行榜”榜单发布,我国国防科技大学研制的“天河二号”以每秒3386×1013次的浮点运算速度第五次蝉联冠军,若将3386×1013用科学记数法表示成a ×10n 的形式,则n 的值是________.16 【解析】科学记数法的表示形式为a ×10n ,其中1≤a <10,∴3386×1013=3.386×1016,则n =16. 命题点3 实数的大小比较【命题规律】常考形式:1.①下列各数中最大(小)的是;②下列各数中,比a 大(小)的是;③比较a 和b 的大小;2.选择、填空均有考查,近年选择居多;3.以第①种形式为主.【命题预测】实数的大小比较仍会考查,是命题的方向,尤其以“下列各数中最大(小)的是”和“比a 大(小)的是”的形式命题的值得关注. 15.下列实数中小于0的数是( )A. 2016B. -2016C. 2016D. 12016B16.在实数-13,-2,0,3中,最小的实数是( )A. -2B. 0C. -13D. 3A 【解析】正数大于0,0大于负数,两个负数比较大小,绝对值大的反而小,所以-2<-13<0<3,故答案为A.17.下列四个数中,最大的数是( )A. -2B. 13C. 0D. 6D 【解析】四个数中选择最大的数可直接在正数中选,比较13<6,故最大的数为6.18.实数a ,b 在数轴上的对应点的位置如图所示.把-a ,-b ,0按照从小到大的顺序排列,正确的是( ) A .-a <0<-b B .0<-a <-b C .-b <0<-a D .0<-b <-aC 【解析】由数轴可知:a <0<b, ∴-a >0>-b ,即 -b <0<-a . 19.比较大小:-2________-3.(选填>,=或<)> 【解析】∵负数比较大小,绝对值大的反而小,∴-2>-3. 命题点4 二次根式及其运算【命题规律】1.考查内容:①二次根式有意义的条件;②二次根式的简单运算;③二次根式的估值;2.二次根式有意义的条件常与分式化简求值结合,在分式化简后为字母取值的计算中涉及.【命题预测】二次根式及其运算仍会考查,尤其是实数运算或分式化简求值中涉及到的,值得我们关注 20.若二次根式a -2有意义,则a 的取值范围是( ) A. a ≥2 B. a ≤2 C. a >2 D. a ≠2 A21.实数2的值在( )A. 0和1之间B. 1和2之间C. 2和3之间D. 3和4之间 B 【解析】∵1=1<2<4=2,∴1<2<2,故选B. 22.下列计算正确的是( ) A. 12=2 3 B.32=32C. -x 3=x -xD. x 2=x A 【解析】逐项分析如下:选项 逐项分析 正误 A 12=4×3=23 √ B 32=32=62≠32 错 C ∵-x 3≥0,∴x ≤0,-x 3=x 2·-x =-x-x ≠x-x错 Dx 2=|x |≠x错23. (3-7)(3+7)+2(2-2). 解:原式=9-7+22-2=2 2.命题点5 实数的运算【命题规律】1.考查内容:①有理数加减乘除的简单运算;②实数的混合运算;2.实数混合运算一般涉及:①零次幂,②负整数指数幂(含-1次幂);③ -1的奇偶次幂;④去绝对值号;⑤开平方;⑥二次根式运算;⑦特殊角的三角函数值;3.选择题和填空题中常以两项运算考查为主,解答题常考查三项或四项的混合运算.【命题预测】实数的运算是常考内容,尤其是混合运算,体现了实数部分知识的综合,是重要的命题点.24.计算:(-12)×2( )A. -1B. 1C. 4D. -4 A 【解析】(-12)×2=-(12×2)=-1.25.如图是加工零件的尺寸要求,现有下列直径尺寸的产品(单位:mm),其中不合格的是( )A. 45.02B.44.9C.44.98D.45.01B 【解析】加工零件的尺寸要求, 45+0.03-0.04意思是合格产品的直径最大不超过45+0.03,最小不低于45-0.04,从而确定合格产品的范围,进而得出结果.由题意得:合格尺寸的范围为44.96≤≤45.03,∴可判断出B 选项的尺寸不合格. 26.计算:|38-4|-(12)-2=________.-2 【解析】原式=|2-4|-4=2-4=-2. 27.计算:55-(2-5)0+(12)-2.解:原式=5-1+4=5+3.28.计算:(-1)3+|-12|-(-32)0×(-23).解:原式=-1+12-1×(-23)=-12+23=16.29.计算:|-3|-(2016+sin30°)0-(-12)-1.解:原式=3-1+2 =2+2 =4.30.计算:(12)-1+(sin60°-1)0-2cos30°+|3-1|.解:原式=2+1-2×32+3-1 =2+1-3+3-1 =2.31.计算:2-2-2cos60°+|-12|+(π-3.14)0.解:原式=14-2×12+23+1=14-1+23+1 =14+2 3.中考冲刺集训一、选择题1. 化简|-2|得( )A. 2B. -2C. +2D. 122.-2的相反数是( ) A. 2 B. -22C. - 2D. -2 3.检验4个工件,其中超过标准质量的克数记作正数,不足标准质量的克数记作负数,从轻重的角度看,最接近标准的工件是( )A. -2B. -3C. 3D. 5 4.下列四个选项中,计算结果最大的是( )A. (-6)0B. |-6|C. -6D. 165. 38的算术平方根是( )A. 2B. ±2C. 2D. ± 2 6. ±2是4的( )A. 平方根B. 相反数C. 绝对值D. 算术平方根7.据市统计局调查数据显示,我市目前常住人口约为4470000人.数据“4470000”用科学记数法可表示为( )A. 4.47×106B. 4.47×107C. 0.447×107D. 447×1048. 下列实数中,有理数是( )A. 8B. 34 C. π2D. 0.10100100019. 世界上最小的开花结果植物是澳大利亚的出水浮萍,这种植物的果实像一个微小的无花果,质量只有0.000000076克.将数0.000000076用科学记数法表示为( )A. 7.6×10-9B. 7.6×10-8C. 7.6×109D. 7.6×10810. 实数a ,b 在数轴上对应点的位置如图所示,化简|a |+(a -b )2的结果是( ) A. -2a +b B. 2a -b C . -b D.b 11. 下面实数比较大小正确的是( )A. 3>7B. 3> 2C. 0<-2D. 22<3 12. 下列计算正确的是( )A. x 2+3x 2=4x 4B. x 2y ·2x 3=2x 6y C. (6x 3y 2)÷(3x )=2x 2D. (-3x )2=9x 213. 下列运算正确的是( )A. (a -3)2=a 2-9B. a 2·a 4=a 8C. 9=±3D. 3-8=-214. 13世纪数学家斐波那契的《计算书》中有这样一个问题:“在罗马有7位老妇人,每人赶着7头毛驴,每头驴驮着7只口袋,每只口袋里装着7个面包,每个面包附有7把餐刀,每把餐刀有7只刀鞘”,则刀鞘数为( )A. 42B. 49C. 76D. 77二、填空题15.实数-27的立方根是________.16.数轴上表示-2的点与原点的距离是________. 17.计算:|1-3|-12=________. 18.计算:3-8+(13)-2+(π-1)0=________.19.若两个连续整数x 、y 满足x <5+1<y ,则x +y 的值是________. 20.超市决定招聘广告策划人员一名,某应聘者三项素质测试的成绩如下表:测试项目 创新能力 综合知识 语言表达 测试成绩(分)708092将创新能力、综合知识和语言表达三项测试成绩按5∶3∶2的比例计入总成绩,则该应聘者的总成绩是________分.21.按照如图所示的操作步骤,若输入的值为3,则输出的值为________.三、解答题22.计算:(12)-2+|3-2|+3tan30°.23.计算:(-3)2-(15)-1-8×2+(-2)0.24.计算:(-1)2016+2sin60°-|-3|+π0.25.计算:8-(-2016)0+|-3|-4cos45°.26.计算:2sin30°+3-1+(2-1)0- 4.27.计算:|3-2|+(2015-1)0+2sin45°-2cos30°+(12015)-1.答案及解析:1. A2. A3. A 【解析】最接近标准的工件是绝对值最小的数,-2的绝对值是2,-3和3的绝对值是3,5的绝对值是5,所以最接近的是-2.4. B 【解析】A.(-6)0=1,B.|-6|=6,D.16≈0.17, ∵6>1>0.17>-6,∴|-6|的计算结果最大.5. C6. A 【解析】∵(±2)2=4,∴±2是4的平方根.7. A 【解析】把一个大数用科学记数法表示为a ×10n 的形式,其中1≤a <10,故a =4.47,n 等于原数的整数位数减1,即n =7-1=6,∴4470000=4.47×106.8. D9. B 【解析】把一个小数用科学记数法表示成a ×10-n 的形式,1≤a <10,故a =7.6,n 为小数点向右移动的位数,n=8,所以0.000000076=7.6×10-8,故选B.10. A【解析】由数轴可知,a<0,b>0,所以a-b<0,所以||a+(a-b)2=-a+||a-b=-a -(a-b)=-a-a+b=-2a+b.11. B【解析】∵3<7,选项A错误;比较两个正数的算术平方根,被开方数越大,这个数的算术平方根就越大,∵3>2,∴3>2,选项B正确;负数小于0,所以0>-2,选项C错误;∵22=4 ,4>3,∴22>3,选项D错误.故选B.12. D13. D【解析】A.(a-3)2=a2-6a+9,故错误;B.a2·a4=a6,故错误;C.9=3,故错误;D.3-8=-2,故正确.14. C【解析】根据题意,得7×7×7×7×7×7=76,故选C.15. -3【解析】∵(-3)3=-27,∴-27的立方根为-3.16. 2【解析】数轴上的点到原点的距离即为该数的绝对值,|-2|=2.17. -3-1【解析】原式=3-1-23=-3-1.18. 8【解析】原式=-2+9+1=8.19. 7【解析】∵4<5<9,∴2<5<3,∴3<5+1<4,∴满足x<5+1<y的两个连续整数x、y 分别是3和4.∴x+y的值是7.20. 77.4【解析】5+3+2=10,70×510+80×310+92×210=35+24+18.4=77.4.21. 55【解析】将3代入程序框图,先计算其平方为9,比10小,按程序操作:加上2,等于11,再乘以5,得55.22. 解:原式=4+2-3+3×3 3=6-3+ 3=6.23. 解:原式=9-5-4+1 =1.24. 解:原式=1+2×32-3+1=1+3-3+1 =2.25. 解:原式=22-1+3-4×2 2=22-1+3-2 2 =2.26. 解:原式=2×12+13+1-2=1+13+1-2=13. 27. 解:原式=3-2+1+2×22-2×32+2015 =3-2+1+2-3+2015 =2016.。

初中数学《实数与二次根式运算》专项练习(含答案)

初中数学《实数与二次根式运算》专项练习(含答案)

实数与根式运算姓名:__________班级:__________考号:__________一 、选择题(本大题共11小题)1.下列说法正确的是( )① 正数都有平方根;② 负数都有平方根,③ 正数都有立方根;④ 负数都有立方根;A .1个B .2个C .3个D .4个2.若01b <<则2b ,b ,1b 这四个数有下列关系( )A. 2b <b <<1bB. 2b <<1b <bC. 1b <<b <2b <1b <2b <b3.有下列说法:(1)无理数就是开方开不尽的数;(2)无理数是无限不循环小数;(3)无理数包括正无理数、零、负无理数;(4)无理数都可以用数轴上的点来表示.其中正确的说法的个数是( )A . 1B . 2C . 3D .44.计算:下列三个命题:①若α,β是互不相等的无理数,则αβαβ+-是无理数;②若α,β是互不相等的无理数,则αβαβ-+是无理数;③若α,β其中正确命题的个数是( )A . 0B .1C .2D .35.有一个数值转换器原理如图所示,则当输入x 为36时,输出的y 是( )A .6 BC.6.下列实数中,最小的数是( )A .-2 B. 0 D .17.下列运算中不正确的是( )A .=.3C1=- D.48.一个自然数的算术平方根为a ,则和这个自然数相邻的下一个自然数是( ).A .1a +B .21a + C . 22a + D)A .81B .3±C .3D .3-10.下列实数中,最小的数是( )A .-2 B. 0 D .111.下列命题中,真命题是( )A .22022的平方根是2022B .64-的平方根是8±C6± D .若22a b ==二 、填空题(本大题共6小题)12.输出y输入x的相反数是________;的倒数是________;35-的绝对值是________.14.如果a b a b -= .15.3.141π-=______;=-|2332|______.16.17.设a a 的值是 .三 、解答题(本大题共10小题)(1)18.21 (2)34(3)12011+19.求下列各式中x 的值.(1)29x =; (2)22500x -=(3)21(51)303x --= (4)2(100.2)0.64x -=20.已知A =是3n m -+的算术平方根,2m B -=7m n +的立方根,求B +A 的平方根.21.已知2x -的平方根是±2,27x y ++的立方根是3,求22x y +的平方根.22.如果3a b -+23.已知2b =,求11a b+的平方根.24.(1)填表:(2)由上你发现了什么规律?用语言叙述这个规律.(3) 根据你发现的规律填空:①1.442=,= ; ②7.696,= .25.若11a b ++=,求23a b c +-的值.26.已知实数a,满足0a =,求11a a -++的值.27.若a 为217-的整数部分,1-b 是9的平方根,且a b b a -=-||,求b a +的算术平方根.实数与根式运算答案解析一 、选择题1.C2.A3.C4.A ;①1)1)1)]123+-=+=是有理数;13==是有理数; 0=是有理数.5.B6.A7.B8.B9.B10.A11.D二 、填空题12.-=0,<∴<.13.14.6-.15.-3.141π;16.<;22666612==<<+=, 236123==,∴<. 17.503;201222503.503a =⨯⨯∴=.三、解答题18.(1)2121)211=-=-=-;(2)34341=+=;(3)12011+1201211+=∴(1)1-;(2)1;(3)1.19.本题考察的是平方根,正数的平方根有两个,且互为相反数.(1)3x=±;(2)225,5x x==±;(3)221(51)3,(51)9,513,5133x x x x-=-=-=±=+;或513x=-,解得45x=或25x=-.(4)100.20.8,0.2100.8,0.210.8x x x-=±=±=或0.29.2x=解得54x=或x=46.20.由题可知3233m nm n-=⎧⎨-+=⎩,解得63mn=⎧⎨=⎩,A∴=,3B==,∴=21.2(2)±,6x∴=;3,8y∴=,10=±.22.有题可知30220a ba b-+=⎧⎨+-=⎩解得4353ab⎧=-⎪⎪⎨⎪=⎪⎩3=.23.由题可知940490aa-≥⎧⎨-≥⎩,49a∴=,b=2,==24.(1)0.01; 0.1; 1; 10; 100.(2)当被开方数(大于0)扩大(或缩小)3n 倍,它的立方根相应地扩大(或缩小)n 倍(3) ①14.42; 0.01442; ②0.7696.25.原式可变为(1)10a b -++,2(1)10,1,1,1a b a b c -+++=∴==-= 2312(1)314a b c ∴+-=+--⨯=-.26.0a ,0a a a ∴++=,20a a +=,0a ∴=,112a a -++=27.161725,45,223,2a <<∴<∴<<∴=,14b b -==或2b =-.又a b b a -=-,b a ∴≥,2,4a b ∴==,==。

初二数学二次根式的运算试题

初二数学二次根式的运算试题

初二数学二次根式的运算试题1.+-=_______;【答案】0【解析】先化简二次根式,再合并同类二次根式.+-【考点】本题考查的是二次根式的加减法点评:化简二次根式要注意观察被开方数,若被开方数为分式形式,要注意分母有理化;若被开方数是整式或整数形式,要用分解因式来化简.2. 3+4-=_______;【答案】【解析】先化简二次根式,再合并同类二次根式.3+4-【考点】本题考查的是二次根式的加减法点评:化简二次根式要注意观察被开方数,若被开方数为分式形式,要注意分母有理化;若被开方数是整式或整数形式,要用分解因式来化简.3.如果·=,则()A.a≥4B.a≥0C.0≤a≤4D.a为一切实数【答案】A【解析】根据二次根号的数为非负数即可得到结果。

由题意得,解得,故选A.【考点】本题考查的是二次根式有意义的条件点评:解答本题的关键是熟练掌握二次根式有意义的条件:二次根号的数为非负数。

4.计算:(-2)·(-);【答案】4【解析】先根据二次根式的乘法法则去括号,再合并同类二次根式。

(-2)·(-)【考点】本题考查的是二次根式的混合运算点评:解题的关键是熟知二次根式的乘法法则:.5.计算:(-1-)(-+1);【答案】4【解析】根据平方差公式去括号即可。

(-1-)(-+1)【考点】本题考查的是二次根式的混合运算点评:解答本题的关键是熟练掌握平方差公式:6.计算:(3-5)2;【答案】120-30【解析】根据完全平方公式去括号即可得到结果。

(3-5)【考点】本题考查的是二次根式的混合运算点评:解答本题的关键是熟练掌握完全平方公式:7.计算:(2-5)2-(5+2)2.【答案】-40【解析】先根据完全平方公式去括号,再合并同类二次根式即可。

原式【考点】本题考查的是二次根式的混合运算点评:解答本题的关键是熟练掌握完全平方公式:8.求当a=-1时,代数式(a+1)2-(a-)(a+1)的值.【答案】23+【解析】先根据完全平方公式,多项式乘多项式法则去括号,再合并同类项,最后代入求值。

  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

1 ___ π___ _____
— , 3√16 , 8.3 ,— , √1 , 3√-125 , 0
6 30
(1)正数集合{ …};
(2)负数集合{ …};
(3)有理数集合{ …};
(4)无理数集合{ …};
2.求下列各数的平方根和算术平方根。

1
(1) —(2) 36 (3) 1.69 (4) 102
36
3.求下列各数的立方根。

125
(1) ——(2) 0.343 (3) 343 (4) 109
64
4.化简。

___ __ __ ___ √32 ×√9 - 10 ( √10 - 2 )2√125
( √2 + 3 )( √2 - 3 ) √12 ×√6 × 8
__ __ __ __ ___ ( √4 -√9 )2√10 -√21 √81
__ __ __ __ __ __
5√3 -√48 √5 -√18 √28 ×√7 × 8
5.求下列各数的相反数、倒数和绝对值。

___ ____ ___ (1) -5.2 (2) √11 (3) 3π(4) √0.25 (5) 3√125
1 ___ π___ _____ -— , 3√10 , 5.7 ,— , √100 , 3√-64 , 0
2 18
(1)正数集合{ …};
(2)负数集合{ …};
(3)有理数集合{ …};
(4)无理数集合{ …};
2.求下列各数的平方根和算术平方根。

25
(1) —(2) 576 (3) 0.04 (4) 108
36
3.求下列各数的立方根。

27
(1) ——(2) -0.343 (3) 27 (4) 1018
64
4.化简。

___ __ __ ___ √38 ×√7 × 7 ( √7 + 2 )2√128
( √7 + 3 )( √7 - 3 ) √60 ×√3 - 12
__ __ __ __ ___ ( √3 +√7 )2√2 -√40 √252
__ __ __ __ __ __
9√3 +√84 √12 -√40 √84 ×√8 - 17
5.求下列各数的相反数、倒数和绝对值。

___ ____ ___ (1) -1.2 (2) -√26 (3) π(4) √0.49 (5) 3√729
1 ___ π___ _____
— , 3√5 , 0.2 ,— , √4 , 3√-125 , 0
5 25
(1)正数集合{ …};
(2)负数集合{ …};
(3)有理数集合{ …};
(4)无理数集合{ …};
2.求下列各数的平方根和算术平方根。

25
(1) —(2) 81 (3) 3.61 (4) 104
16
3.求下列各数的立方根。

27
(1) ——(2) 0.008 (3) 125 (4) 1015
8
4.化简。

___ __ __ ___ √30 ×√4 + 2 ( √8 - 4 )2√63
( √5 + 10 )( √5 - 10 ) √40 ×√2 - 6
__ __ __ __ ___ ( √2 +√7 )2√8 -√28 √36
__ __ __ __ __ __
9√2 -√12 √8 -√36 √40 ×√8 + 4
5.求下列各数的相反数、倒数和绝对值。

___ ____ ___ (1) -2.9 (2) -√20 (3) -π(4) √0.16 (5) 3√512
6 ___ π___ _____
— , 3√14 , 7.5 ,— , √49 , 3√-1 , 0
5 4
(1)正数集合{ …};
(2)负数集合{ …};
(3)有理数集合{ …};
(4)无理数集合{ …};
2.求下列各数的平方根和算术平方根。

1
(1) —(2) 16 (3) 0.25 (4) 104
49
3.求下列各数的立方根。

27
(1) ——(2) 0.027 (3) -729 (4) 1012
64
4.化简。

___ __ __ ___ √36 ×√3 × 5 ( √7 - 10 )2√112
( √7 + 9 )( √7 - 9 ) √28 ×√5 + 18
__ __ __ __ ___ ( √2 +√8 )2√9 +√24 √50
__ __ __ __ __ __
7√2 +√42 √12 -√40 √52 ×√8 + 10
5.求下列各数的相反数、倒数和绝对值。

___ ____ ___ (1) -8.1 (2) -√25 (3) 5π(4) √0.01 (5) 3√729
4 ___ π___ _____
— , 3√18 , 1 , — , √81 , 3√-8 , 0
5 5
(1)正数集合{ …};
(2)负数集合{ …};
(3)有理数集合{ …};
(4)无理数集合{ …};
2.求下列各数的平方根和算术平方根。

4
(1) —(2) 256 (3) 2.56 (4) 1010
9
3.求下列各数的立方根。

1
(1) ——(2) 0.027 (3) 512 (4) 109
64
4.化简。

___ __ __ ___ √2 ×√6 + 9 ( √4 + 10 )2√90
( √2 + 9 )( √2 - 9 ) √32 ×√5 × 21
__ __ __ __ ___ ( √5 +√7 )2√10 +√24 √9
__ __ __ __ __ __
5√3 -√42 √3 +√18 √88 ×√4 + 19
5.求下列各数的相反数、倒数和绝对值。

___ ____ ___ (1) 0.7 (2) √3 (3) 3π(4) √0.64 (5) 3√27
初二数学实数及二次根式专项练习题。

相关文档
最新文档