小升初几何重点考查内容(五大模型——三角形等积变形、共角模型)

合集下载

小升初奥赛几何五大模型

小升初奥赛几何五大模型

几何五大模型一、五大模型简介(1)等积变换①、等底等高的两个三角形面积相等②、两个三角形高相等,面积之比等于底之比,如图1③、两个三角形底相等,面积在之比等于高之比,如图2④、在一组平行线之间的等积变形,如图3图1 图2 图3例、如图,三角形ABC的面积是24,D、E、F分别是BC、AC、AD的中点,求三角形DEF的面积。

解:S△ADC=12S△ABC=12×24=12S△ADE=12S△ADC=12×12=6;S△DEF=12S△ADE=12×6=3(2)鸟头(共角)定理模型①、两个三角形中有一个角相等或互补,这两个三角形叫共角三角形;②、共角三角形的面积之比等于对应角(相等角或互补角)两夹边的乘积之比。

如图下图三角形ABC中,D、E分别是AB、AC上或AB、AC延长线上的点S△ABC S△ADE =AB×AC AD×AE例、如图在ΔABC中,D在BA的延长线上,E在AC上,且AB:AD=5:2,AE:EC=3:2,△ADE的面积为12平方厘米,求ΔABC 的面积。

解:由题意知:S△ABCS△ADE =AB×ACAD×AE=52×53=256∴S△ABC=256×S△ADE=256×12=50(平方厘米)(3)蝴蝶模型1、梯形中比例关系(“梯形蝴蝶定理”)①S2=S4(梯形两翼相等)②S1:S3:S2:S4=a2:b2:ab:ab③梯形S对应的分数为(a+b)2例、如图,梯形ABCD,AB与CD平行,对角线AC、BD交于点O,已知△AOB、△BOC的面积分别为25平方厘米、35平方厘米,求梯形ABCD的面积。

解:S△AOB:S△BOC=25:35=5:7S△AOB:S△DOC=AB2:DC2=52:72=25:49∴S△DOC=49又S△AOD=S△BOC=35∴S ABCD=25+35+35+49=144(平方厘米)2、任意四边形中的比例关系(“蝴蝶定理”):①S1:S2=S4:S3或S1×S3=S2×S4②AO:OC=S1:S4=S2:S3=(S1+S2):(S4+S3)例、如图,四边形ABCD的对角线AC、BD交于点O,如果三角形ABD的面积等于三角形BCD面积的1/3,且AO=2,求OC解:AO:OC=S△ABD:S△BCD=1:3OC=2×3=6(4)相似模型1、相似三角形:形状相同,大小不相等的两个三角形相似;2、寻找相似模型的大前提是平行线:平行于三角形一边的直线和其他两边或两边延长线相交,所构成的三角形与原三角形相似。

小学数学几何必考五大模型

小学数学几何必考五大模型

五、燕尾定理(共边定理、燕尾模型和风筝模型) 在三角形ABC中,AD,BE,CF相交于同一点O,那


上述定理给出了一个新的转化面积比与线段比的手段,因为和 的形状很象燕子的尾巴,所以这个定理被称为燕尾定理.该定理在许 多几何题目中都有着广泛的运用,它的特殊性在于,它可以存在于任 何一个三角形之中,为三角形中的三角形面积对应底边之间提供互相 联系的途径.
h
11
解法二:特殊点法.找H的特殊点,把H点与D点重合,那么 图形就这可样变阴成影右部图分:的面积就是
△DEF的面积, 根据鸟头定理,则有:
h
12
【巩固】
h
13
h
14
h
15
h
16
h
17
h
18
h
19
h
20
h
21
h
22
h
23
h
24
h
25
h
26
h
27
h
28
h
29
h
30
h
3
二、鸟头定理
两个三角形中有一个角相等或互补,这两个三角形叫做共
角三角形.
A
D
共角三角形的面积比等于对应角(相等角或互补角)两夹边
A 的乘积之比.D
E E
B
C
图⑴BΒιβλιοθήκη C图 (2)如图在
中,D、E分别是AB、AC上的点如图
⑴(或D在BA的延长线上,E在AC上),则
h
4
三、蝴蝶定理 任意四边形中的比例关系(“蝴蝶定理”): ① S1 : S2 = S4 : S3 或者 S1 ×S3 =S2 × S4 ② AO : OC = (S1 + S2 ) : ( S4 +S3 ) 蝴蝶定理为我们提供了解决不规则四边形的面积问题的 一个途径. 通过构造模型,一方面可以使不规则四边形的面积关系 与四边形内的三角形相联系;另一方面,也可以得到与面积 对应的对角线的比例关系. 梯形中比例关系(“梯形蝴蝶定理”):

小升初奥数几何的五大模型知识点

小升初奥数几何的五大模型知识点

小升初奥数几何的五大模型知识点让学生体会到数学源于生活、用于生活的同时,更应该让学生体会到数学高于生活,体会到数学可以带动社会的发展,带动生活质量的提高,这样更能激发学生学好数学。

以下是无忧考网整理的相关资料,希望对您有所帮助。

【篇一】等积模型①等底等高的两个三角形面积相等;②两个三角形高相等,面积比等于它们的底之比;两个三角形底相等,面积比等于它们的高之比;③夹在一组平行线之间的等积变形,如右图;反之,如果,则可知直线AB平行于CD.④等底等高的两个平行四边形面积相等(长方形和正方形可以看作特殊的平行四边形);⑤三角形面积等于与它等底等高的平行四边形面积的一半;⑥两个平行四边形高相等,面积比等于它们的底之比;两个平行四边形底相等,面积比等于它们的高之比.【篇二】鸟头定理两个三角形中有一个角相等或互补,这两个三角形叫做共角三角形.共角三角形的面积比等于对应角(相等角或互补角)两夹边的乘积之比.在中,D、E分别是AB、AC上的点如图⑴(或D在BA的延长线上,E在AC上)蝴蝶定理任意四边形中的比例关系(“蝴蝶定理”):①或者②蝴蝶定理为我们提供了解决不规则四边形的面积问题的一个途径.通过构造模型,一方面可以使不规则四边形的面积关系与四边形内的三角形相联系;另一方面,也可以得到与面积对应的对角线的比例关系.梯形中比例关系(“梯形蝴蝶定理”)【篇三】相似模型(一)金字塔模型(二)沙漏模型所谓的相似三角形,就是形状相同,大小不同的三角形(只要其形状不改变,不论大小怎样改变它们都相似),与相似三角形相关的常用的性质及定理如下:⑴相似三角形的一切对应线段的长度成比例,并且这个比例等于它们的相似比;⑵相似三角形的面积比等于它们相似比的平方;⑶连接三角形两边中点的线段叫做三角形的中位线.三角形中位线定理:三角形的中位线长等于它所对应的底边长的一半.相似三角形模型,给我们提供了三角形之间的边与面积关系相互转化的工具.在小学奥数里,出现最多的情况是因为两条平行线而出现的相似三角形.燕尾定理在三角形ABC中,AD,BE,CF相交于同一点O,那么上述定理给出了一个新的转化面积比与线段比的手段,因为和的形状很象燕子的尾巴,所以这个定理被称为燕尾定理.该定理在许多几何题目中都有着广泛的运用,它的特殊性在于,它可以存在于任何一个三角形之中,为三角形中的三角形面积对应底边之间提供互相联系的途径。

小学奥数之几何五大模型

小学奥数之几何五大模型

一、等积变换模型⑴等底等高的两个三角形面积相等;其它常见的面积相等的情况⑵两个三角形高相等,面积比等于它们的底之比; 两个三角形底相等,面积比等于它们的高之比。

如上图12::S S a b =⑶夹在一组平行线之间的等积变形,如下图ACD BCD S S =△△;反之,如果ACD BCD S S =△△,则可知直线AB 平行于CD 。

⑷正方形的面积等于对角线长度平方的一半;⑸三角形面积等于与它等底等高的平行四边形面积的一半;五大模型1S 2S二、鸟头定理(共角定理)模型两个三角形中有一个角相等或互补,这两个三角形叫做共角三角形。

共角三角形的面积比等于对应角(相等角或互补角)两夹边的乘积之比。

如图,在ABC △中,,D E 分别是,AB AC 上的点(如图1)或D 在BA 的延长线上,E 在AC 上(如图2),则:():()ABC ADE S S AB AC AD AE =⨯⨯△△图1 图2三、蝴蝶定理模型任意四边形中的比例关系(“蝴蝶定理”):①1243::S S S S =或者1324S S S S ⨯=⨯②()()1243::AO OC S S S S =++蝴蝶定理为我们提供了解决不规则四边形的面积问题的一个途径.通过构造模型,一方面可以使不规则四边形的面积关系与四边形内的三角形相联系;另一方面,也可以得到与面积对应的对角线的比例关系。

梯形中比例关系(“梯形蝴蝶定理”)①2213::S S a b =②221324::::::S S S S a b ab ab =; ③梯形S 的对应份数为()2a b +。

四、相似模型相似三角形性质:金字塔模型 沙漏模型 ①AD AE DE AFAB AC BC AG===; ②22::ADE ABC S S AF AG =△△。

所谓的相似三角形,就是形状相同,大小不同的三角形(只要其形状不改变,不论大小怎样改变它们都相似),与相似三角形相关的常用的性质及定理如下:⑴相似三角形的一切对应线段的长度成比例,并且这个比例等于它们的相似比; ⑵相似三角形的面积比等于它们相似比的平方。

小升初平面几何常考五大模型

小升初平面几何常考五大模型

一、等积变换模型1、等底等高的两个三角形面积相等。

2、两个三角形高相等,面积比等于它们的底之比。

3、两个三角形底相等,面积比等于它的的高之比。

二、共角定理模型两个三角形中有一个角相等或互补,这两个三角形叫做共角三角形。

共角三角形的面积比等到于对应角(相等角或互补角)两夹边的乘积之比。

三、蝴蝶定理模型(说明:任意四边形与四边形、长方形、梯形,连接对角线所成四部的比例关系是一样的。

)四、相似三角形模型相似三角形:是形状相同,但大小不同的三角形叫相似三角形。

相似三角形的一切对应线段的长度成比例,并且这个比例等于它们的相似比。

相似三角形的面积比等于它们相似比的平方。

五、燕尾定理模型正方形ABCD、正方形BEFG和正方形RKPF的位置如图所示,点G在线段DK上,正方形BEFG的边长为4,则△DEK的面积为由题知DC/GP=GC/PK,即DC/(DC-4)=(4+PK)/PK,令DC=a,PK=c,则a=4+c,则S△DEK=a^2+16+c*(4-c)/2+c^2-ac-a(4+a)/2=a^2/2+c^2/2-ac-2a+2c+16=(c+4)^2/2+c^2/2-c( c+4)-2(c+4)+2c+16=16。

1、图17是一个正方形地板砖示意图,在大正方形ABCD中AA1=AA2=BB1=BB2=CC1=CC2=DD1=D D2,中间小正方形 EFGH的面积是16平方厘米,四块蓝色的三角形的面积总和是72平方厘米,那么大正方形ABCD的面积是多少平方厘米?分析与解连AC和BD两条大正方形的对角线,它们相交于O,然后将三角形AOB放在D PC处(如图18和图19)。

已知小正方形EFGH的面积是16平方厘米,所以小正方形EFGH的边长是4厘米。

又知道四个蓝色的三角形的面积总和是72平方厘米,所以两个蓝色三角形的面积是72÷2=36平方厘米,即图19的正方形OCPD中的小正方形的面积是36平方厘米,那么这个正方形的边长就是6厘米。

小升初数学几何五大模型-纯wordA4幅面小边距适合打印编辑-

小升初数学几何五大模型-纯wordA4幅面小边距适合打印编辑-

小学奥数几何五大模型一、五大模型简介(1)等积变换模型1、等底等高的两个三角形面积相等;2、两个三角形高相等,面积之比等于底之比,如图①所示,S1:S2=a:b;3、两个三角形底相等,面积在之比等于高之比,如图②所示,S1:S2=a:b;4、在一组平行线之间的等积变形,如图③AB//CD则S△ACD=S△BCD;反之, S△ACD=S△BCD,则直线AB//CD。

例、如图,三角形ABC的面积是24,D、E、F分别是BC、AC、AD的中点,求三角形DEF 的面积。

(2)鸟头(共角)定理模型1、两个三角形中有一个角相等或互补,这两个三角形叫共角三角形;2、共角三角形的面积之比等于对应角(相等角或互补角)两夹边的乘积之比。

如图下图三角形ABC中,D、E分别是AB、AC上或AB、AC延长线上的点S△ABC:S△ADE=(AB×AC):(AD×AE)我们现在以互补为例来简单证明一下共角定理!如图连接BE,根据等积变化模型知,S△ADE:S△ABE=AD:AB、S△ABE:S△CBE=AE:CE,所以S△ABE:S△ABC=S△ABE:(S△ABE+S△CBE)=AE:AC,因此S△ADE:S△ABC=(S△ADE:S△ABE)×(S△ABE:S△ABC)=(AD:AB)×(AE:AC)。

例、如图在ΔABC中,D在BA的延长线上,E在AC上,且AB:AD=5:2,AE:EC=3:2,△ADE的面积为12平方厘米,求ΔABC的面积。

(3)蝴蝶模型1、梯形中比例关系(“梯形蝴蝶定理”)例、如图,梯形ABCD,AB与CD平行,对角线AC、BD交于点O,已知△AOB、△BOC 的面积分别为25平方厘米、35平方厘米,求梯形ABCD的面积。

、任意四边形中的比例关系(“蝴蝶定理”):例、如图,四边形ABCD的对角线AC、BD 交于点O,如果三角形ABD的面积等于三角形BCD面积的1/3,且AO=2、DO=3,求CO的长度是DO长度的几倍。

小升初平面几何常考五大模型知识分享

小升初平面几何常考五大模型知识分享

一、等积变换模型1、等底等高的两个三角形面积相等。

2、两个三角形高相等,面积比等于它们的底之比。

3、两个三角形底相等,面积比等于它的的高之比。

二、共角定理模型两个三角形中有一个角相等或互补,这两个三角形叫做共角三角形。

共角三角形的面积比等到于对应角(相等角或互补角)两夹边的乘积之比。

三、蝴蝶定理模型(说明:任意四边形与四边形、长方形、梯形,连接对角线所成四部的比例关系是一样的。

)四、相似三角形模型相似三角形:是形状相同,但大小不同的三角形叫相似三角形。

相似三角形的一切对应线段的长度成比例,并且这个比例等于它们的相似比。

相似三角形的面积比等于它们相似比的平方。

五、燕尾定理模型正方形ABCD、正方形BEFG和正方形RKPF的位置如图所示,点G在线段DK上,正方形BEFG的边长为4,则△DEK的面积为由题知DC/GP=GC/PK,即DC/(DC-4)=(4+PK)/PK,令DC=a,PK=c,则a=4+c,则S△DEK=a^2+16+c*(4-c)/2+c^2-ac-a(4+a)/2=a^2/2+c^2/2-ac-2a+2c+16=(c+4)^2/2+c^2/2 -c(c+4)-2(c+4)+2c+16=16。

1、图17是一个正方形地板砖示意图,在大正方形ABCD中AA1=AA2=BB1=BB2=CC1=CC2=DD1=D D2,中间小正方形 EFGH的面积是16平方厘米,四块蓝色的三角形的面积总和是72平方厘米,那么大正方形ABCD的面积是多少平方厘米?分析与解连AC和BD两条大正方形的对角线,它们相交于O,然后将三角形AOB放在D PC处(如图18和图19)。

已知小正方形EFGH的面积是16平方厘米,所以小正方形EFGH的边长是4厘米。

又知道四个蓝色的三角形的面积总和是72平方厘米,所以两个蓝色三角形的面积是72÷2=36平方厘米,即图19的正方形OCPD中的小正方形的面积是36平方厘米,那么这个正方形的边长就是6厘米。

小升初-数学-几何-五大几何模型

小升初-数学-几何-五大几何模型

一、等积模型DC BA①等底等高的两个三角形面积相等;②两个三角形高相等,面积比等于它们的底之比; 两个三角形底相等,面积比等于它们的高之比; ③夹在一组平行线之间的等积变形,如右图ACDBCD S S =△△;反之,如果ACD BCD S S =△△,则可知直线AB 平行于CD .④等底等高的两个平行四边形面积相等(长方形和正方形可以看作特殊的平行四边形); ⑤三角形面积等于与它等底等高的平行四边形面积的一半;⑥两个平行四边形高相等,面积比等于它们的底之比;两个平行四边形底相等,面积比等于它们的高之比.二、共角定理(鸟头定理)两个三角形中有一个角相等或互补,这两个三角形叫做共角三角形. 共角三角形的面积比等于对应角(相等角或互补角)两夹边的乘积之比.:():()ABC ADE S S AB AC AD AE =⨯⨯△△知识框架五大几何模型(1)(2)(3)(4)三、蝴蝶定理任意四边形中的比例关系(“蝴蝶定理”):① 1243::S S S S =或者1324S S S S ⨯=⨯②()()1243::AO OC S S S S =++蝴蝶定理为我们提供了解决不规则四边形的面积问题的一个途径.通过构造模型,一方面可以使不规则四边形的面积关系与四边形内的三角形相联系;另一方面,也可以得到与面积对应的对角线的比例关系.S 4S 3S 2S 1O DCBA梯形中比例关系(“梯形蝴蝶定理”): ①2213::S S a b =②221324::::::S S S S a b ab ab =; ③ S 的对应份数为()2a b +.④A BCDO ba S 3S 2S 1S 4四、相似模型(一)金字塔模型 (二) 沙漏模型GF E ABCDA B CDEFG①AD AE DE AFAB AC BC AG===;②22:ADE ABC S S AF AG =△△:.所谓的相似三角形,就是形状相同,大小不同的三角形(只要其形状不改变,不论大小怎样改变它们都相似),与相似三角形相关的常用的性质及定理如下:⑴相似三角形的一切对应线段的长度成比例,并且这个比例等于它们的相似比; ⑵相似三角形的面积比等于它们相似比的平方; ⑶连接三角形两边中点的线段叫做三角形的中位线.三角形中位线定理:三角形的中位线长等于它所对应的底边长的一半. 相似三角形模型,给我们提供了三角形之间的边与面积关系相互转化的工具. 在小学奥数里,出现最多的情况是因为两条平行线而出现的相似三角形.五、共边定理(燕尾定理)有一条公共边的三角形叫做共边三角形。

小升初-数学-几何-五大几何模型

小升初-数学-几何-五大几何模型

高之比.① 12:S S 蝴蝶定理为我们提供了解决不规则四边形的面积问题的一个途径.通过构造模型,一方面可以使不规则四边形的面积关系与四边形内的三角形相联系;另一方面,也可以得到与面积对应的对角线的比例关系.梯形中比例关系(“梯形蝴蝶定理”): ①2213::S S a b =②221324::::::S S S S a b ab ab =; 知识框架五大几何模型③ S 的对应份数为()2a b +. 四、相似模型(一)金字塔模型(二)沙漏模型 ①AD AE DE AFAB AC BC AG===; ②22:ADE ABC S S AF AG =△△:.所谓的相似三角形,就是形状相同,大小不同的三角形(只要其形状不改变,不论大小怎样改变它们都相似),与相似三角形相关的常用的性质及定理如下:【例 1】 米?【巩固】 如图,四边形ABCD 和EFGH 都是平行四边形,四边形ABCD 的面积是16,:3:1BG GC =,则四边形EFGH 的面积=________.【例 2】 已知三角形ABC 的面积为a ,:2:1AF FC =,E 是BD 的中点,且EF ∥BC ,交CD 于G ,求阴影部分的面积.【巩固】图中ABCD 是边长为12cm 的正方形,从G 到正方形顶点C 、D 连成一个三角形,已知这个三角形在AB 上截得的EF 长度为4cm ,那么三角形GDC 的面积是多少?例题精讲【例 3】 如图,O 是矩形一条对角线的中点,图中已经标出两个三角形的面积为3和4,那么阴影部分的一块直角三角形的面积是多少?【巩固】 ABCD 是平行四边形,面积为72平方厘米,E 、F 分别为AB 、BC 的中点,则图中阴影部分的面积为平方厘米.二、蝴蝶模型【例 4】 如图所示,长方形ABCD 内的阴影部分的面积之和为70,AB=8,AD=15四边形EFGO 的面积为______.【巩固】 如图5所示,矩形ABCD 的面积是24平方厘米,、三角形ADM 与三角形BCN 的面积之【例 5】 【巩固】 27.那么【例 6】 【巩固】 CD ,DA()m n +的【例 7】 ,那么平【巩固】 ,6B 分别是正六边形各边的中点;那么图中阴影六边形的面积是平方厘米.【例 8】 已知四边形ABCD ,CHFG 为正方形,:1:8S S =乙甲,a 与b 是两个正方形的边长,求:?a b = 【巩固】 如图,三角形ABC 的面积是1,BD DE EC ==,CF FG GA ==,三角形ABC 被分成9部分,请写出这9部分的面积各是多少?【例 9】 如右图,面积为1的ABC △中,::1:2:1BD DE EC =,::1:2:1CF FG GA =,::1:2:1AH HI IB =,求阴影部分面积.【巩固】 如图,ABC ∆的面积为1,点D 、E 是BC 边的三等分点,点F 、G 是AC 边的三等分点,那么四边形JKIH 的面积是多少?【例 10】 如图,面积为l 的三角形ABC 中,D 、E 、F 、G 、H 、I 分别是AB 、BC 、CA 的三等分点,求阴影部分面积.【巩固】 如图,面积为l 的三角形ABC 中,D 、E 、F 、G 、H 、I 分别是AB 、BC 、CA 的三等分点,求中心六边形面积.【随练1】BF 、MGQA 的【随练2】【作业1】【作业2】6【作业3】BC 的中【作业4】【作业5】、CD 、DA 的重点,如果左图中阴影部分与右图中阴影部分的面积之比是最简分数mn,那么,m +n 的值等于__________。

小升初数学几何五大几何模型

小升初数学几何五大几何模型

一、等积模型DC BA①等底等高的两个三角形面积相等;②两个三角形高相等,面积比等于它们的底之比; 两个三角形底相等,面积比等于它们的高之比; ③夹在一组平行线之间的等积变形,如右图ACDBCD S S =△△;反之,如果ACD BCD S S =△△,则可知直线AB 平行于CD .④等底等高的两个平行四边形面积相等(长方形和正方形可以看作特殊的平行四边形); ⑤三角形面积等于与它等底等高的平行四边形面积的一半;⑥两个平行四边形高相等,面积比等于它们的底之比;两个平行四边形底相等,面积比等于它们的高之比.二、共角定理(鸟头定理)两个三角形中有一个角相等或互补,这两个三角形叫做共角三角形. 共角三角形的面积比等于对应角(相等角或互补角)两夹边的乘积之比.:():()ABC ADE S S AB AC AD AE =⨯⨯△△知识框架五大几何模型(1)(2)(3)(4)三、蝴蝶定理任意四边形中的比例关系(“蝴蝶定理”):① 1243::S S S S =或者1324S S S S ⨯=⨯②()()1243::AO OC S S S S =++蝴蝶定理为我们提供了解决不规则四边形的面积问题的一个途径.通过构造模型,一方面可以使不规则四边形的面积关系与四边形内的三角形相联系;另一方面,也可以得到与面积对应的对角线的比例关系.S 4S 3S 2S 1O DCBA梯形中比例关系(“梯形蝴蝶定理”): ①2213::S S a b =②221324::::::S S S S a b ab ab =; ③ S 的对应份数为()2a b +.④A BCDO ba S 3S 2S 1S 4四、相似模型(一)金字塔模型 (二) 沙漏模型GF E ABCDA B CDEFG①AD AE DE AFAB AC BC AG===;②22:ADE ABC S S AF AG =△△:.所谓的相似三角形,就是形状相同,大小不同的三角形(只要其形状不改变,不论大小怎样改变它们都相似),与相似三角形相关的常用的性质及定理如下:⑴相似三角形的一切对应线段的长度成比例,并且这个比例等于它们的相似比; ⑵相似三角形的面积比等于它们相似比的平方; ⑶连接三角形两边中点的线段叫做三角形的中位线.三角形中位线定理:三角形的中位线长等于它所对应的底边长的一半. 相似三角形模型,给我们提供了三角形之间的边与面积关系相互转化的工具. 在小学奥数里,出现最多的情况是因为两条平行线而出现的相似三角形.五、共边定理(燕尾定理)有一条公共边的三角形叫做共边三角形。

六年级数学【小升初】三角形五大模型

六年级数学【小升初】三角形五大模型

三角形五大模型模型一:等积模型①等底等高的两个三角形面积相等;②两个三角形高相等,面积比等于它们的底之比;两个三角形底相等,面积比等于它们的高之比;如图12::S S a b =; ③夹在一组平行线之间的等积变形,如图ACD BCD S S =△△;反之,如果ACD BCD S S =△△,则可知直平行于CD ;④等底等高的两个平行四边形面积相等(长方形和正方形可以看作特殊的平行四边形); ⑤三角形面积等于与它等底等高的平行四边形面积的一半;⑥两个平行四边形高相等,面积比等于它们的底之比;两个平行四边形底相等,面积比等于它们的高之比。

模型二:等分点结论(“鸟头定理”) 如图,三角形AED 占三角形ABC 面积的23×14=16模型三:任意四边形中的比例关系 (“蝴蝶定理”) ① S 1︰S 2=S 4︰S 3 或者S 1×S 3=S 2×S 4 ② ②AO ︰OC=(S 1+S 2)︰(S 4+S 3)梯形中比例关系(“梯形蝴蝶定理”) ① S 1︰S 3=a 2︰b2②S 1︰S 3︰S 2︰S 4= a 2︰b 2︰ab ︰ab ③S 的对应份数为(a+b )2模型四:相似三角形性质D CBAbs 2s 1S 4S 3s 2s 1O DCBA S 4S 3s 2s 1ba如何判断相似(1)相似的基本概念:两个三角形对应边城比例,对应角相等。

(2)判断相似的方法:①两个三角形若有两个角对应相等则这两个三角形相似;②两个三角形若有两条边对应成比例,且这两组对应边所夹的角相等则两个三角形相似。

①a b c h A B C H === ② S 1︰S 2=a 2︰A 2模型五:燕尾定理S △ABG :S △AGC =S △BGE :S △GEC =BE :EC ; S △BGA :S △BGC =S △AGF :S △GFC =AF :FC ; S △AGC :S △BCG =S △ADG :S △DGB =AD :DB ;【重点难点解析】1. 模型一与其他知识混杂的各种复杂变形2. 在纷繁复杂的图形中如何辨识“鸟头” 【考点挖掘】1. 三角形面积等高成比2. “鸟头定理”3. “蝴蝶定理”【例1】(难度等级 ※)如图,长方形ABCD 的面积是56平方厘米,点E 、F 、G 分别是长方形ABCD 边上的中点,H 为AD 边上的任意一点,求阴影部分的面积。

小升初几何重点考查内容————(五大模型——三角形等积变形、共角模型)

小升初几何重点考查内容————(五大模型——三角形等积变形、共角模型)

小升初几何重点考查内容————(五大模型——三角形等积变形、共角模型)-CAL-FENGHAI.-(YICAI)-Company One1小升初几何重点考查内容(★★★)已知三角形DEF 的面积为 18,AD∶BD=2∶3,AE∶CE=1∶2,BF∶CF=3∶2,则三角形ABC 的面积为如图,已知三角形 ABC 面积为 1,延长 AB 至 D ,使 BD =AB ;延长 BC 至 E ,使 CE =2BC ; 延长 CA 至 F ,使 AF =3AC ,求三角形 DEF 的面积。

(★★★★)如图将四边形 ABCD 四条边 AB 、CB 、CD 、AD 分别延长两倍至点 E 、F 、G 、H ,若四边形ABCD 的面积为 5cm ,则四边形 EFGH 的面积是多少(★★★)图中三角形 ABC 的面积是 180 平方厘米,D 是 BC 的中点,AD 的长是 AE 长的 3 倍,EF 的长是 BF 长的 3 倍。

那么三角形 AEF 的面积是多少平方厘米(★★★★)如图,大长方形由面积是 12 平方厘米、24 平方厘米、36 平方厘米、48 平方厘米的四个小长方形组合而成。

求阴影部分的面积。

(★★★)(2009 年“学而思杯”六年级) 如图 BC =45,AC =21,△ABC 被分成 9 个面积相等的小三角形,那么 DI +FK =。

在线测试题温馨提示:请在线作答,以便及时反馈孩子的薄弱环节。

1.★★★★设 AD 1 AB , BE 1 BC , FC 1AC , 如果三角形 DEF 的面积为19 平方厘米,345那么三角形 ABC 的面积是多少平方厘米 A . B . C . D .(★★★★★)FESG2. ★★★如下图,将三角形 ABC 的 BA 边延长 1 倍到 D ,CB 的边延长 2 倍到 E ,AC 边延长 1 倍到 F 。

如果三角形 ABC 的面积等于 1,那么三角形 DEF 的面积是多少 A .10 B .8 C .9 D .113. ★★★★★如图,把四边形 ABCD 的各边都延长 3倍,得到一个新四边形EFGH,如果ABCD 的面积是 6,则 EFGH 的面积是()A .130B .145C .160D .1504. ★★★★如图, D 是 BC 的中点,AD 的长是 AE 长的 3 倍,EF 的长是 BF 长的 3倍. 三角形 AEF 的面积是 18 平方厘米,三角形 ABC 的面积是( )平方厘米 A .144 B .168 C .72 D .1005. ★★图中的 E 、F 、G 分别是正方形 ABCD 三条边的三等分点,如果正方形的边长是12 ,那么阴影部分的面积是( ) A .50 B .48C .56D .456.★★★如图, S 1 , BC 5BD , AC 4EC , DG GS SE , AFFG 。

小学数学几何必考五大模型

小学数学几何必考五大模型
1
2021/7/1
2
在学习小学数学的时候,几何模型算是比较新颖的一个模块,学生们熟 练掌握五大面积模型,并掌握五大面积模型的各种变形,
今天就为大家推荐一篇小学数学几何五大模型的内容。
2021/7/1
3 一、等积模型
A
B
①等底等高的两个三角形面积相等;
②两个三角形高相等,面积比等于它们的底之比; 两个三角形底相等,面积比等于它们的高之比;
2021/7/1
9 【巩固】如图所示,正方形ABCD的边长为8厘米,长方形EBGF的长BG为10厘米,那 么长方形的宽为几厘米?
【解析】本题主要是让学生会运用等底等高的两个平行四边形面积相等(长方形和正方形可 以看作特殊的平行四边形).三角形面积等于与它等底等高的平行四边形面积的一半.
2021/7/1
2021/7/1
6 四、相似模型
(一)金字塔模型
(二) 沙漏模型
所谓的相似三角形,就是形状相同,大小不同的三角形(只要其形状不改变,不论大小怎样改变它
们都相似),与相似三角形相关的常用的性质及定理如下:
⑴相似三角形的一切对应线段的长度成比例,并且这个比例等于它们的相似比;
⑵相似三角形的面积比等于它们相似比的平方;
2021/7/1
8 典型例题
【例1】如图,正方形ABCD的边长为6,AE= 1.5,CF= 2.长方形EFGH的面积为

H
H
A
D
A
D
E
E
G
G
B FC
B FC
【解析】连接DE,DF,则长方形EFGH的面积是三角形DEF面积的二倍. 三角形DEF的面积等于正方形的面积减去三个三角形的面积, ,所以长方形EFGH面积为33.

【推荐】小升初复习重难点一几何五大模型

【推荐】小升初复习重难点一几何五大模型

几何五大模型一、五大模型简介(1)等积变换模型1、等底等高的两个三角形面积相等;2、两个三角形高相等,面积之比等于底之比,如图①所示,S[sub]1[/sub]:S[sub]2[/sub]=a:b;3、两个三角形底相等,面积在之比等于高之比,如图②所示,S[sub]1[/sub]:S[sub]2[/sub]=a:b;4、在一组平行线之间的等积变形,如图③所示,S[sub]△ACD[/sub]=S[sub]△BCD[/sub];反之,如果S[sub]△ACD[/sub]=S[sub]△BCD[/sub],则可知直线AB平行于CD。

例、如图,三角形ABC的面积是24,D、E、F分别是BC、AC、AD的中点,求三角形DEF的面积。

(2)鸟头(共角)定理模型1、两个三角形中有一个角相等或互补,这两个三角形叫共角三角形;2、共角三角形的面积之比等于对应角(相等角或互补角)两夹边的乘积之比。

如图下图三角形ABC中,D、E分别是AB、AC上或AB、AC延长线上的点则有:S[sub]△ABC[/sub]:S[sub]△ADE[/sub]=(AB×AC):(AD×AE)我们现在以互补为例来简单证明一下共角定理!如图连接BE,根据等积变化模型知,S[sub]△ADE[/sub]:S[sub]△ABE[/sub]=AD:AB、S[sub]△ABE[/sub]:S[sub]△CBE[/sub]=AE:CE,所以S[sub]△ABE[/sub]:S[sub]△ABC[/sub]=S[sub]△ABE[/sub]:(S[sub]△ABE[/sub]+S[sub]△CBE[/sub])=AE:AC,因此S[sub]△AD E[/sub]:S[sub]△ABC[/sub]=(S[sub]△ADE[/sub]:S[sub]△ABE[/sub])×(S[sub]△ABE[/sub]:S[sub]△ABC[/sub])=(AD:AB)×(AE:AC)。

  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

(★★★)
已知三角形DEF 的面积为18,AD ∶BD =2∶3,AE ∶CE =1∶2,BF ∶CF =3∶2,则三角形ABC 的面积为?
(★★★)
如图,已知三角形ABC面积为1,延长AB至D,使BD=AB;延长BC至E,使CE=2BC;延长CA至F,使AF=3AC,求三角形DEF的面积。

(★★★★)
如图将四边形ABCD四条边AB、CB、CD、AD分别延长两倍至点E、F、G、H,若四边形ABCD的面积为5cm2,则四边形EFGH的面积是多少?
(★★★)
图中三角形ABC的面积是180平方厘米,D是BC的中点,AD的长是AE长的3倍,EF的长是BF长的3倍。

那么三角形AEF的面积是多少平方厘米
(★★★★)
如图,大长方形由面积是12平方厘米、24平方厘米、36平方厘米、48平方厘米的四个小长方形组合而成。

求阴影部分的面积。

(★★★★★)
(2009年“学而思杯”六年级)
如图BC=45,AC=21,△ABC被分成9个面积相等的小三角形,那么DI+FK=_____。

在线测试题
温馨提示:请在线作答,以便及时反馈孩子的薄弱环节。

1.★★★★设
111
,,,
345
AD AB BE BC FC AC
===如果三角形DEF的面积为19平方厘米,
那么三角形ABC的面积是多少平方厘米?
A.46.7 B.45.3 C.45.6 D.46.5
F
E
D
C
B
A
2.★★★如下图,将三角形ABC 的BA 边延长1倍到D ,CB 的边延长2倍到E ,AC 边延长1倍到F 。

如果三角形ABC 的面积等于1,那么三角形DEF 的面积是多少? A .10 B .8 C .9 D .11
E
F
D
C
B
A
3.★★★★★如图,把四边形ABCD 的各边都延长3倍,得到一个新四边形EFGH ,如果ABCD 的面积是6,则EFGH 的面积是( )? A .130 B .145 C .160 D .
150
4.★★★★如图, D 是BC 的中点,AD 的长是AE 长的3倍,EF 的长是BF 长的3倍.三角形AEF 的面积是18平方厘米,三角形ABC 的面积是( )平方厘米? A .144 B .168 C .72 D .
100
5.★★图中的E 、F 、G 分别是正方形ABCD 三条边的三等分点,如果正方形的边长是12,那么阴影部分的面积是( ) A .50 B .48 C .56 D .
45
E
G
C B
6.★★★如图,1ABC S =△,5BC BD =,4AC EC =,DG GS SE ==,AF FG =。

三角形FGS 的面积是( )。

A .413
B .25
C .23
D .
1
10 S
G
F E D
C B
A。

相关文档
最新文档