[K12配套]三年高考2016_2018高考数学试题分项版解析专题10三角函数图象与性质文含解析60
三年高考(2016-2018)高考数学试题分项版解析 专题04 函数性质与应用 理(含解析)
专题04 函数性质与应用考纲解读明方向1.考查函数的单调区间的求法及单调性的应用,如应用单调性求值域、比较大小或证明不等式,运用定义或导数判断或证明函数的单调性等.2.借助数形结合的思想解题.函数的单调性、周期性、奇偶性的综合性问题是高考热点,应引起足够的重视.3.本节内容在高考中分值为5分左右,属于中档题.命题探究练扩展2018年高考全景展示1.【2018年理数全国卷II】已知是定义域为的奇函数,满足.若,则A. B. 0 C. 2 D. 50【答案】C【解析】分析:先根据奇函数性质以及对称性确定函数周期,再根据周期以及对应函数值求结果.详解:因为是定义域为的奇函数,且,所以,因此,因为,所以,,从而,选C.点睛:函数的奇偶性与周期性相结合的问题多考查求值问题,常利用奇偶性及周期性进行变换,将所求函数值的自变量转化到已知解析式的函数定义域内求解.2.【2018年江苏卷】函数满足,且在区间上,则的值为________.【答案】点睛:(1)求分段函数的函数值,要先确定要求值的自变量属于哪一段区间,然后代入该段的解析式求值,当出现的形式时,应从内到外依次求值.(2)求某条件下自变量的值,先假设所求的值在分段函数定义区间的各段上,然后求出相应自变量的值,切记代入检验,看所求的自变量的值是否满足相应段自变量的取值范围.3.【2018年理新课标I卷】已知函数,则的最小值是_____________.【答案】【解析】分析:首先对函数进行求导,化简求得,从而确定出函数的单调区间,减区间为,增区间为,确定出函数的最小值点,从而求得代入求得函数的最小值.详解:,所以当时函数单调减,当时函数单调增,从而得到函数的减区间为,函数的增区间为,所以当时,函数取得最小值,此时,所以,故答案是.点睛:该题考查的是有关应用导数研究函数的最小值问题,在求解的过程中,需要明确相关的函数的求导公式,需要明白导数的符号与函数的单调性的关系,确定出函数的单调增区间和单调减区间,进而求得函数的最小值点,从而求得相应的三角函数值,代入求得函数的最小值.2017年高考全景展示1.【2017天津,理6】已知奇函数()f x 在R 上是增函数,()()g x xf x =.若2(log 5.1)a g =-,0.8(2)b g =,(3)c g =,则a ,b ,c 的大小关系为( ) (A )a b c << (B )c b a <<(C )b a c <<(D )b c a <<【答案】C【解析】因为()f x 是奇函数且在R 上是增函数,所以在0x >时,()0f x >, 从而()()g x xf x =是R 上的偶函数,且在[0,)+∞上是增函数,22(log 5.1)(log 5.1)a g g =-=,0.822<,又4 5.18<<,则22log 5.13<<,所以即0.8202log 5.13<<<,0.82(2)(log 5.1)(3)g g g <<,所以b a c <<,故选C .【考点】 指数、对数、函数的单调性【名师点睛】比较大小是高考常见题,指数式、对数式的比较大小要结合指数函数、对数函数,借助指数函数和对数函数的图象,利用函数的单调性进行比较大小,特别是灵活利用函数的奇偶性和单调性数形结合不仅能比较大小,还可以解不等式.2.【2017课标3,理15】设函数10()20x x x f x x +≤⎧=⎨>⎩,,,,则满足1()()12f x f x +->的x 的取值范围是_________.【答案】1,4⎛⎫-+∞ ⎪⎝⎭写成分段函数的形式:()())132,021112,0222112,2x x x x g x f x f x x x x -⎧+≤⎪⎪⎪⎛⎫=+-=++<≤⎨ ⎪⎝⎭⎪⎪>⎪⎩,函数()g x 在区间(]11,0,0,,,22⎛⎤⎛⎫-∞+∞ ⎪⎥⎝⎦⎝⎭三段区间内均单调递增,且:)01111,201,12142g -⎛⎫-=++>⨯> ⎪⎝⎭,据此x 的取值范围是:1,4⎛⎫-+∞ ⎪⎝⎭. 【考点】 分段函数;分类讨论的思想【名师点睛】(1)求分段函数的函数值,要先确定要求值的自变量属于哪一段区间,然后代入该段的解析式求值,当出现f (f (a ))的形式时,应从内到外依次求值.(2)当给出函数值求自变量的值时,先假设所求的值在分段函数定义区间的各段上,然后求出相应自变量的值,切记要代入检验,看所求的自变量的值是否满足相应段自变量的取值范围. 3.【2017山东,理15】若函数()x e f x ( 2.71828e =是自然对数的底数)在()f x 的定义域上单调递增,则称函数()f x 具有M 性质.下列函数中所有具有M 性质的函数的序号为 . ①()2x f x -=②()3x f x -=③()3f x x = ④()22f x x =+【答案】①④④()()22x x e f x e x =+,令()()22x g x e x =+,则()()()2222110xx x g x ex e x e x ⎡⎤'=++⋅=++>⎣⎦,∴()()22x x e f x e x =+在R 上单调递增,故()22f x x =+具有M 性质.【考点】1.新定义问题.2.利用导数研究函数的单调性. 【名师点睛】1.本题考查新定义问题,属于创新题,符合新高考的走向.它考查学生的阅读理解能力,接受新思维的能力,考查学生分析问题与解决问题的能力,新定义的概念实质上只是一个载体,解决新问题时,只要通过这个载体把问题转化为我们已经熟悉的知识即可.2.求可导函数单调区间的一般步骤 (1)确定函数f (x )的定义域(定义域优先); (2)求导函数f ′(x );(3)在函数f (x )的定义域内求不等式f ′(x )>0或f ′(x )<0的解集.(4)由f ′(x )>0(f ′(x )<0)的解集确定函数f (x )的单调增(减)区间.若遇不等式中带有参数时,可分类讨论求得单调区间.3.由函数f (x )在(a ,b )上的单调性,求参数范围问题,可转化为f ′(x )≥0(或f ′(x )≤0)恒成立问题,要注意“=”是否可以取到.4.【2017浙江,17】已知α∈R ,函数a a xx x f +-+=|4|)(在区间[1,4]上的最大值是5,则a 的取值范围是___________. 【答案】9(,]2-∞ 【解析】试题分析:[][]41,4,4,5x x x∈+∈,分类讨论: ①.当5a ≥时,()442f x a x a a x x x =--+=--,函数的最大值9245,2a a -=∴=,舍去;②.当4a ≤时,()445f x x a a x x x=+-+=+≤,此时命题成立;③.当45a <<时,(){}max max 4,5f x a a a a =-+-+⎡⎤⎣⎦,则:4545a a a a a a ⎧-+≥-+⎪⎨-+=⎪⎩或:4555a a a a a a ⎧-+<-+⎪⎨-+=⎪⎩,解得:92a =或92a < 综上可得,实数a 的取值范围是9,2⎛⎤-∞ ⎥⎝⎦.【考点】基本不等式、函数最值【名师点睛】本题利用基本不等式,由[][]41,4,4,5x x x∈+∈,通过对解析式中绝对值号的处理,进行有效的分类讨论:①当5a ≥;②4a ≤;③45a <<,问题的难点最要在于对分界点的确认及讨论上,属难题.解题时,应仔细对各个情况进行逐一讨论. 5.【2017江苏,11】已知函数31()2e ex x f x x x =-+-, 其中e 是自然对数的底数. 若2(1)(2)0f a f a -+≤, 则实数a 的取值范围是 . 【答案】1[1,]2-【解析】因为31()2e ()ex x f x x f x x -=-++-=-,所以函数()f x 是奇函数,因为22()32e e 320x x f 'x x x -=-++≥-+≥,所以数()f x 在R 上单调递增, 又21)02()(f f a a +-≤,即2())2(1a a f f ≤-,所以221a a ≤-,即2120a a +-≤, 解得112a -≤≤,故实数a 的取值范围为1[1,]2-. 【考点】利用函数性质解不等式【名师点睛】解函数不等式:首先根据函数的性质把不等式转化为(())(())f g x f h x >的形式,然后根据函数的单调性去掉“f ”,转化为具体的不等式(组),此时要注意()g x 与()h x 的取值应在外层函数的定义域内2016年高考全景展示1.【2016年高考北京理数】已知x ,y R ∈,且0x y >>,则( )A.11x y ->B.sin sin 0x y ->C.11()()022x y -<D.ln ln 0x y +> 【答案】C考点: 函数性质【名师点睛】函数单调性的判断:(1)常用的方法有:定义法、导数法、图象法及复合函数法. (2)两个增(减)函数的和仍为增(减)函数;一个增(减)函数与一个减(增)函数的差是增(减)函数; (3)奇函数在关于原点对称的两个区间上有相同的单调性,偶函数在关于原点对称的两个区间上有相反的单调性.2.【2016高考新课标2理数】已知函数()()f x x ∈R 满足()2()f x f x -=-,若函数1x y x+=与()y f x =图像的交点为1122(,),(,),,(,),m m x y x y x y ⋅⋅⋅则1()miii x y =+=∑( )(A )0 (B )m (C )2m (D )4m 【答案】C 【解析】试题分析:由于()()2f x f x -+=,不妨设()1f x x =+,与函数111x y x x+==+的交点为()()1,2,1,0-,故12122x x y y +++=,故选C. 考点: 函数图象的性质【名师点睛】如果函数()f x ,x D ∀∈,满足x D ∀∈,恒有()()f a x f b x +=-,那么函数的图象有对称轴2a bx +=;如果函数()f x ,x D ∀∈,满足x D ∀∈,恒有()()f a x f b x -=-+,那么函数的图象有对称中心.3. 【2016高考山东理数】已知函数f (x )的定义域为R.当x <0时,3()1f x x =- ;当11x -≤≤ 时,()()f x f x -=-;当12x >时,11()()22f x f x +=- .则f (6)= ( ) (A )−2 (B )−1(C )0(D )2【答案】D考点:1.函数的奇偶性与周期性;2.分段函数.【名师点睛】本题主要考查分段函数的概念、函数的奇偶性与周期性,是高考常考知识内容.本题具备一定难度.解答此类问题,关键在于利用分段函数的概念,发现周期函数特征,进行函数值的转化.本题能较好的考查考生分析问题解决问题的能力、基本计算能力等.4.【2016年高考四川理数】已知函数()f x 是定义在R 上的周期为2的奇函数,当0<x <1时,()4xf x =,则5()(1)2f f -+= . 【答案】-2 【解析】试题分析:因为函数()f x 是定义在R 上周期为2的奇函数,所以(1)(1),(1)(12)(1)f f f f f -=--=-+=,所以(1)(1)f f -=,即(1)0f =,125111()(2)()()422222f f f f -=--=-=-=-=-,所以5()(1)22f f -+=-.考点:函数的奇偶性和周期性.【名师点睛】本题考查函数的奇偶性,周期性,属于基本题,在求值时,只要把5()2f -和(1)f ,利用奇偶性与周期性化为(0,1)上的函数值即可.5.【2015高考新课标1,理13】若函数f (x )=ln(x x 为偶函数,则a = 【答案】1【解析】由题知ln(y x =+是奇函数,所以ln(ln(x x +- =22ln()ln 0a x x a +-==,解得a =1. 【考点定位】函数的奇偶性【名师点睛】本题主要考查已知函数奇偶性求参数值问题,常用特值法,如函数是奇函数,在x =0处有意义,常用f (x )=0,求参数,否则用其他特值,利用特值法可以减少运算.6.【2016高考天津理数】已知f (x )是定义在R 上的偶函数,且在区间(-∞,0)上单调递增.若实数a 足1(2)(a f f ->,则a 的取值范围是______. 【答案】13(,)22考点:利用函数性质解不等式【名师点睛】不等式中的数形结合问题,在解题时既要想形又要以形助数,常见的“以形助数”的方法有: (1)借助数轴,运用数轴的有关概念,解决与绝对值有关的问题,解决数集的交、并、补运算非常有效. (2)借助函数图象性质,利用函数图象分析问题和解决问题是数形结合的基本方法,需注意的问题是准确把握代数式的几何意义实现“数”向“形”的转化。
三年高考(2016-2018)数学(理)真题分项版解析专题1 集合解析版
三年高考(2016-2018)数学(理)专题01 集合考纲解读明方向1.掌握集合的表示方法,能判断元素与集合的“属于”关系、集合与集合之间的包含关系.2.深刻理解、掌握集合的元素,子、交、并、补集的概念.熟练掌握集合的交、并、补的运算和性质.能用韦恩(Venn)图表示集合的关系及运算.3.本部分内容在高考试题中多以选择题或填空题的形式出现,以函数、不等式等知识为载体,以集合语言和符号语言表示为表现形式,考查数学思想方法.4.本节内容在高考中分值约为5分,属中低档题.命题探究练扩展2018年高考全景展示1.【2018年理北京卷】已知集合A={x||x|<2},B={–2,0,1,2},则A B= A. {0,1} B. {–1,0,1} C. {–2,0,1,2} D. {–1,0,1,2}【答案】A【解析】,因此A B=,选A.点睛:认清元素的属性,解决集合问题时,认清集合中元素的属性(是点集、数集或其他情形)和化简集合是正确求解的两个先决条件.2.【2018年理新课标I卷】已知集合,则A. B.C. D.【答案】B点睛:该题考查的是有关一元二次不等式的解法以及集合的补集的求解问题,在解题的过程中,需要明确一元二次不等式的解集的形式以及补集中元素的特征,从而求得结果.3.【2018年全国卷Ⅲ理】已知集合,,则A. B. C. D.【答案】C【解析】由集合A得,所以,故答案选C.点睛:本题主要考查交集的运算,属于基础题。
4.【2018年理数全国卷II】已知集合,,,,则中元素的个数为A. 9B. 8C. 5D. 4【答案】A【解析】.,当时,;当时,;当时,;所以共有9个,选A.点睛:本题考查集合与元素关系,点与圆位置关系,考查学生对概念理解与识别.5.【2018年理数天津卷】设全集为R,集合,,则A. B. C. D.【答案】B【解析】由题意可得:,结合交集的定义可得:.本题选择B选项.点睛:本题主要考查交集的运算法则,补集的运算法则等知识,意在考查学生的转化能力和计算求解能力.6.【2018年江苏卷】已知集合,,那么________.【答案】{1,8}【解析】由题设和交集的定义可知:.点睛:本题考查交集及其运算,考查基础知识,难度较小.2017年高考全景展示1.【2017课标1,理1】1},则()A .{|0}AB x x =<B .A B =RC .{|1}A B x x =>D .A B =∅【答案】A 【解析】由31x <可得033x <,则0x <,即{|0}B x x =<,所以{|1}{|0}{|0}A B x x x x x x =<<=<,{|1}{|0}{|1}A B x x x x x x =<<=<,故选A.【考点】集合的运算,指数运算性质.【名师点睛】集合的交、并、补运算问题,应先把集合化简再计算,常常借助数轴或韦恩图进行处理.2.【2017课标II ,理】设集合{}1,2,4A =,{}240x x x m B =-+=.若{}1A B =,则B =( )A.{}1,3-B.{}1,0C.{}1,3D.{}1,5【答案】C【考点】 交集运算,元素与集合的关系【名师点睛】集合中元素的三个特性中的互异性对解题影响较大,特别是含有字母的集合,在求出字母的值后,要注意检验集合中的元素是否满足互异性.两个防范:一是不要忽视元素的互异性;二是保证运算的准确性.3.【2017课标3,理1】已知集合A ={}22(,)1x y x y +=│,B ={}(,)x y y x =│,则A B 中元素的个数为( )A .3B .2C .1D .0【答案】B【考点】 交集运算;集合中的表示方法.【名师点睛】求集合的基本运算时,要认清集合元素的属性(是点集、数集或其他情形)和化简集合,这是正确求解集合运算的两个先决条件.集合中元素的三个特性中的互异性对解题影响较大,特别是含有字母的集合,在求出字母的值后,要注意检验集合中的元素是否满足互异性.4.【2017北京,理1】若集合A ={x |–2<x <1},B={x |x <–1或x >3},则AB =( )(A ){x |–2<x <–1} (B ){x |–2<x <3}(C ){x |–1<x <1} (D ){x |1<x <3}【答案】A 【解析】利用数轴可知{}21A B x x =-<<-,故选A.【考点】集合的运算【名师点睛】集合分为有限集合和无限集合,若集合个数比较少时可以用列举法表示,若集合是无限集合就用描述法表示,注意代表元素是什么,集合的交、并、补运算问题,应先把集合化简再计算,常常借助数轴或韦恩图进行处理.5.【2017浙江,1】已知}11|{<<-=x x P ,}20{<<=x Q ,则=Q P ( )A .)2,1(-B .)1,0(C .)0,1(-D .)2,1( 【答案】A【解析】利用数轴,取Q P ,所有元素,得=Q P )2,1(-.【考点】集合运算【名师点睛】对于集合的交、并、补运算问题,应先把集合化简再计算,常常借助数轴或韦恩图处理.6.【2017天津,理1】设集合{1,2,6},{2,4},{|15}A B C x x ===∈-≤≤R ,则()A B C =( )(A ){2} (B ){1,2,4} (C ){1,2,4,6} (D ){|15}x x ∈-≤≤R【答案】B【解析】(){1246}[15]{124}A B C =-=,,,,,, ,选B.【考点】 集合的运算【名师点睛】集合的交、并、补运算问题,应先把集合化简再计算,常常借助数轴或韦恩图进行处理.7.【2017江苏,1】已知集合{1,2}A =,2{,3}B a a =+,若{1}A B =则实数a 的值为 .【答案】1【解析】由题意1B ∈,显然233a +≥,所以1a =,此时234a +=,满足题意,故答案为1.【考点】元素的互异性【名师点睛】(1)认清元素的属性,解决集合问题时,认清集合中元素的属性(是点集、数集或其他情形)和化简集合是正确求解的两个先决条件.(2)注意元素的互异性.在解决含参数的集合问题时,要注意检验集合中元素的互异性,否则很可能会因为不满足“互异性”而导致解题错误.(3)防范空集.在解决有关,A B A B=∅⊆等集合问题时,往往忽略空集的情况,一定先考虑∅是否成立,以防漏解. 2016年高考全景展示1.【2016课标1,理1】设集合2430A x x x =-+< ,{}230x x ->,则A B = ( ) (A )33,2⎛⎫-- ⎪⎝⎭ (B )33,2⎛⎫- ⎪⎝⎭ (C )31,2⎛⎫ ⎪⎝⎭ (D )3,32⎛⎫ ⎪⎝⎭ 【答案】D考点:集合的交集运算【名师点睛】集合是每年中的必考题,一般以基础题形式出现,属得分题.解决此类问题一般要把参与运算的集合化为最简形式再进行运算,如果是不等式解集、函数定义域及值域有关数集之间的运算,常借助数轴进行运算.2.【2016新课标3理数】设集合{}{}|(2)(3)0,|0S x x x T x x =--≥=> ,则S T =( )(A) [2,3] (B)(-∞ ,2]U [3,+∞) (C) [3,+∞) (D)(0,2]U[3,+∞)【答案】D【技巧点拨】研究集合的关系,处理集合的交、并、补的运算问题,常用韦恩图、数轴等几何工具辅助解题.一般地,对离散的数集、抽象的集合间的关系及运算,可借助韦恩图,而对连续的集合间的运算及关系,可借助数轴的直观性,进行合理转化.3.【2016新课标2理数】已知集合{1,}A =2,3,{|(1)(2)0,}B x x x x =+-<∈Z ,则A B =( )(A ){1} (B ){12}, (C ){0123},,, (D ){10123}-,,,, 【答案】C【解析】试题分析:集合B {x |1x 2,x Z}{0,1}=-<<∈=,而A {1,2,3}=,所以A B {0,1,2,3}=,故选C.考点: 集合的运算.【名师点睛】集合的交、并、补运算问题,应先把集合化简在计算,常常借助数轴或韦恩图处理.4. 【2016山东理数】设集合2{|2,},{|10},x A y y x B x x ==∈=-<R 则A B =( )(A )(1,1)-(B )(0,1) (C )(1,)-+∞ (D )(0,)+∞【答案】C【解析】 试题分析:}0|{>=y y A ,}11|{<<-=x x B ,则A B =∞(-1,+),选C. 考点:1.指数函数的性质;2.解不等式;3.及集合的运算.【名师点睛】本题主要考查集合的并集、补集,是一道基础题目.从历年题目看,集合的基本运算,是必考考点,也是考生必定得分的题目之一.本题与求函数值域、解不等式等相结合,增大了考查的覆盖面.5.【2016浙江理数】已知集合{}{}213,4,P x x Q x x =∈≤≤=∈≥R R 则()P Q ⋃=R ð( )A .[2,3]B .( -2,3 ]C .[1,2)D .(,2][1,)-∞-⋃+∞【答案】B【解析】 试题分析:根据补集的运算得{}[](]24(2,2),()(2,2)1,32,3=<=-∴=-=-R R Q x x P Q 痧.故选B .考点:1、一元二次不等式;2、集合的并集、补集.【易错点睛】解一元二次不等式时,2x 的系数一定要保证为正数,若2x 的系数是负数,一定要化为正数,否则很容易出错.6.【2016年北京理数】已知集合{|||2}A x x =<,{1,0,1,2,3}B =-,则A B =( )A.{0,1}B.{0,1,2}C.{1,0,1}-D.{1,0,1,2}-【答案】C【解析】由}22|{<<-=x x A ,得}1,0,1{-=B A ,故选C.考点:集合交集.【名师点睛】1.首先要弄清构成集合的元素是什么(即元素的意义),是数集还是点集,如集合)}|)y=,)},(yx=三者是不同的.yf{(xyf{x|(yfx=,)}|{x(2.集合中的元素具有三性——确定性、互异性、无序性,特别是互异性,在判断集合中元素的个数时,以及在含参的集合运算中,常因忽视互异性,疏于检验而出错.3.数形结合常使集合间的运算更简捷、直观.对离散的数集间的运算或抽象集合间的运算,可借助Venn图实施,对连续的数集间的运算,常利用数轴进行,对点集间的运算,则通过坐标平面内的图形求解,这在本质上是数形结合思想的体现和运用.4.空集是不含任何元素的集合,在未明确说明一个集合非空的情况下,要考虑集合为空集的可能.另外,不可忽视空集是任何元素的子集.7.【2016年四川理数】设集合{|22}=-≤≤,Z为整数集,则A ZA x x中元素的个数是()(A)3 (B)4 (C)5 (D)6【答案】C【解析】由题意,{2,1,0,1,2}A Z=--,故其中的元素个数为5,选C.考点:集合中交集的运算.【名师点睛】集合的概念及运算一直是的热点,几乎是每年必考内容,属于容易题.一般是结合不等式,函数的定义域值域考查,解题的关键是结合韦恩图或数轴解答.8.【2016天津理数】已知集合{1,2,3,4},{|32},,则A B===-∈A B y y x x A=()(A){1}(B){4}(C){1,3}(D){1,4}【答案】D【解析】试题分析:{1,4,7,10},A B{1,4}.B==选D.考点:集合运算【名师点睛】本题重点考查集合的运算,容易出错的地方是审错题意,误求并集,属于基本题,难点系数较小.一要注意培养良好的答题习惯,避免出现粗心错误,二是明确集合交集的考查立足于元素互异性,做到不重不漏.9.【2016江苏卷】已知集合则____________.【答案】{}1,2-【解析】试题分析:{1,2,3,6}{|23}{1,2}A B x x =--<<=-考点:集合运算【名师点睛】本题重点考查集合的运算,容易出错的地方是审错题意,属于基本题,难点系数较小.一要注意培养良好的答题习惯,避免出现粗心错误,二是明确江苏对于集合题的考查立足于列举法,强调对集合运算有关概念及法则的理解{1,2,3,6},{|23},A B x x =-=-<<=A B。
三年高考2016_2018高考数学试题分项版解析专题01集合理含解析word格式
专题01 集合考纲解读明方向分析解读1.掌握集合的表示方法,能判断元素与集合的“属于”关系、集合与集合之间的包含关系.2.深刻理解、掌握集合的元素,子、交、并、补集的概念.熟练掌握集合的交、并、补的运算和性质.能用韦恩(Venn)图表示集合的关系及运算.3.本部分内容在高考试题中多以选择题或填空题的形式出现,以函数、不等式等知识为载体,以集合语言和符号语言表示为表现形式,考查数学思想方法.4.本节内容在高考中分值约为5分,属中低档题.命题探究练扩展2018年高考全景展示1.【2018年理北京卷】已知集合A={x||x|<2},B={–2,0,1,2},则A B=A. {0,1}B. {–1,0,1}C. {–2,0,1,2}D. {–1,0,1,2}【答案】A【解析】因此A B=,选A.点睛:认清元素的属性,解决集合问题时,认清集合中元素的属性(是点集、数集或其他情形)和化简集合是正确求解的两个先决条件.2.【2018年理新课标I卷】已知集合,则A. B.C. D.【答案】B程中,需要明确一元二次不等式的解集的形式以及补集中元素的特征,从而求得结果.3.【2018年全国卷Ⅲ理】已知集合,,则A. B. C. D.【答案】C【解析】由集合A得,所以,故答案选C.点睛:本题主要考查交集的运算,属于基础题。
4.【2018年理数全国卷II】已知集合,则中元素的个数为A. 9B. 8C. 5D. 4【答案】A【解析】.,当时,;当时,;当时,;所以共有9个,选A.点睛:本题考查集合与元素关系,点与圆位置关系,考查学生对概念理解与识别. 5.【2018年理数天津卷】设全集为R,集合,,则A. B. C. D.【答案】B【解析】由题意可得:,结合交集的定义可得:.本题选择B 选项.点睛:本题主要考查交集的运算法则,补集的运算法则等知识,意在考查学生的转化能力和计算求解能力.6.【2018年江苏卷】已知集合,,那么________.【答案】{1,8}【解析】由题设和交集的定义可知:.点睛:本题考查交集及其运算,考查基础知识,难度较小.2017年高考全景展示1.【2017课标1,理1】已知集合A={x|x<1},B={x|},则()A.B.C.D.【答案】A【解析】由可得,则,即,所以,,故选A.【考点】集合的运算,指数运算性质.【名师点睛】集合的交、并、补运算问题,应先把集合化简再计算,常常借助数轴或韦恩图进行处理.2.【2017课标II,理】设集合,.若,则()A. B. C. D.【答案】C【考点】交集运算,元素与集合的关系【名师点睛】集合中元素的三个特性中的互异性对解题影响较大,特别是含有字母的集合,在求出字母的值后,要注意检验集合中的元素是否满足互异性.两个防范:一是不要忽视元素的互异性;二是保证运算的准确性.3.【2017课标3,理1】已知集合A=,B=,则A B 中元素的个数为()A.3 B.2 C.1 D.0【答案】B【考点】交集运算;集合中的表示方法.【名师点睛】求集合的基本运算时,要认清集合元素的属性(是点集、数集或其他情形)和化简集合,这是正确求解集合运算的两个先决条件.集合中元素的三个特性中的互异性对解题影响较大,特别是含有字母的集合,在求出字母的值后,要注意检验集合中的元素是否满足互异性.4.【2017北京,理1】若集合A={x|–2<x<1},B={x|x<–1或x>3},则A B=()(A){x|–2<x<–1} (B){x|–2<x<3}(C){x|–1<x<1} (D){x|1<x<3}【答案】A【解析】利用数轴可知,故选A.【考点】集合的运算【名师点睛】集合分为有限集合和无限集合,若集合个数比较少时可以用列举法表示,若集合是无限集合就用描述法表示,注意代表元素是什么,集合的交、并、补运算问题,应先把集合化简再计算,常常借助数轴或韦恩图进行处理.5.【2017浙江,1】已知,,则()A.B.C.D.【答案】A【解析】利用数轴,取所有元素,得.【考点】集合运算【名师点睛】对于集合的交、并、补运算问题,应先把集合化简再计算,常常借助数轴或韦恩图处理.6.【2017天津,理1】设集合,则()(A)(B)(C)(D)【答案】【解析】 ,选B【考点】集合的运算【名师点睛】集合的交、并、补运算问题,应先把集合化简再计算,常常借助数轴或韦恩图进行处理.7.【2017江苏,1】已知集合,,若则实数的值为 .【答案】1【解析】由题意,显然,所以,此时,满足题意,故答案为1.【考点】元素的互异性【名师点睛】(1)认清元素的属性,解决集合问题时,认清集合中元素的属性(是点集、数集或其他情形)和化简集合是正确求解的两个先决条件.(2)注意元素的互异性.在解决含参数的集合问题时,要注意检验集合中元素的互异性,否则很可能会因为不满足“互异性”而导致解题错误.(3)防范空集.在解决有关等集合问题时,往往忽略空集的情况,一定先考虑是否成立,以防漏解.2016年高考全景展示1.【2016课标1,理1】设集合 ,,则()(A)(B)(C)(D)【答案】D考点:集合的交集运算【名师点睛】集合是每年中的必考题,一般以基础题形式出现,属得分题.解决此类问题一般要把参与运算的集合化为最简形式再进行运算,如果是不等式解集、函数定义域及值域有关数集之间的运算,常借助数轴进行运算.2.【2016新课标3理数】设集合,则()(A) [2,3] (B)(-,2] [3,+) (C) [3,+) (D)(0,2] [3,+)【答案】D【技巧点拨】研究集合的关系,处理集合的交、并、补的运算问题,常用韦恩图、数轴等几何工具辅助解题.一般地,对离散的数集、抽象的集合间的关系及运算,可借助韦恩图,而对连续的集合间的运算及关系,可借助数轴的直观性,进行合理转化.3.【2016新课标2理数】已知集合,,则()(A)(B)(C)(D)【答案】C【解析】试题分析:集合,而,所以,故选C.考点:集合的运算.【名师点睛】集合的交、并、补运算问题,应先把集合化简在计算,常常借助数轴或韦恩图处理.4. 【2016山东理数】设集合则=()(A)(B)(C)(D)【答案】C【解析】试题分析:,,则,选C.考点:1.指数函数的性质;2.解不等式;3.及集合的运算.【名师点睛】本题主要考查集合的并集、补集,是一道基础题目.从历年题目看,集合的基本运算,是必考考点,也是考生必定得分的题目之一.本题与求函数值域、解不等式等相结合,增大了考查的覆盖面.5.【2016浙江理数】已知集合则()A.[2,3] B.( -2,3 ] C.[1,2) D.【答案】B【解析】试题分析:根据补集的运算得.故选B.考点:1、一元二次不等式;2、集合的并集、补集.【易错点睛】解一元二次不等式时,的系数一定要保证为正数,若的系数是负数,一定要化为正数,否则很容易出错.6.【2016年北京理数】已知集合,,则()A. B. C. D.【答案】C【解析】由,得,故选C.考点:集合交集.【名师点睛】1.首先要弄清构成集合的元素是什么(即元素的意义),是数集还是点集,如集合,,三者是不同的.2.集合中的元素具有三性——确定性、互异性、无序性,特别是互异性,在判断集合中元素的个数时,以及在含参的集合运算中,常因忽视互异性,疏于检验而出错.3.数形结合常使集合间的运算更简捷、直观.对离散的数集间的运算或抽象集合间的运算,可借助Venn图实施,对连续的数集间的运算,常利用数轴进行,对点集间的运算,则通过坐标平面内的图形求解,这在本质上是数形结合思想的体现和运用.4.空集是不含任何元素的集合,在未明确说明一个集合非空的情况下,要考虑集合为空集的可能.另外,不可忽视空集是任何元素的子集.7.【2016年四川理数】设集合,Z为整数集,则中元素的个数是()(A)3 (B)4 (C)5 (D)6【答案】C【解析】由题意,,故其中的元素个数为5,选C.考点:集合中交集的运算.【名师点睛】集合的概念及运算一直是的热点,几乎是每年必考内容,属于容易题.一般是结合不等式,函数的定义域值域考查,解题的关键是结合韦恩图或数轴解答.8.【2016天津理数】已知集合则=()(A)(B)(C)(D)【答案】D【解析】试题分析:选D.考点:集合运算【名师点睛】本题重点考查集合的运算,容易出错的地方是审错题意,误求并集,属于基本题,难点系数较小.一要注意培养良好的答题习惯,避免出现粗心错误,二是明确集合交集的考查立足于元素互异性,做到不重不漏.9.【2016江苏卷】已知集合则____________. 【答案】【解析】试题分析:考点:集合运算【名师点睛】本题重点考查集合的运算,容易出错的地方是审错题意,属于基本题,难点系数较小.一要注意培养良好的答题习惯,避免出现粗心错误,二是明确江苏对于集合题的考查立足于列举法,强调对集合运算有关概念及法则的理解。
【K12教育学习资料】三年高考2016_2018高考数学试题分项版解析专题09三角恒等变换与求值文含
专题09 三角恒等变换与求值 文考纲解读明方向分析解读:1.掌握两角和与差的正弦、余弦、正切公式及二倍角的正弦、余弦、正切公式,了解它们的内在联系.2.备考时,应做到灵活掌握各公式的正用、逆用、变形用等.3.三角恒等变换是三角变换的工具,主要考查利用两角和与差的三角公式、二倍角公式进行三角函数的化简与求值,可单独考查,也可与三角函数的知识综合考查,分值为5分或12分,为中低档题.分析解读1.了解任意角、弧度制的概念,能正确进行弧度与角度的互化.2.会判断三角函数值的符号;理解任意角三角函数(正弦、余弦、正切)的定义.3.能利用单位圆中的三角函数线推导出±α,π±α的正弦、余弦、正切的诱导公式,会用三角函数线解决相关问题.4.理解同角三角函数的基本关系式:sin2x+cos2x=1,=tan x,全面系统地掌握知识的来龙去脉,熟悉各知识点之间的联系.5.本节内容在高考中一般融入三角函数求值、化简中,不能单独考查.2018年高考全景展示1.【2018年文北京卷】在平面坐标系中,是圆上的四段弧(如图),点P在其中一段上,角以O y始边,OP为终边,若,则P所在的圆弧是A. B. C. D.【答案】CA选项:当点在上时,,,故A选项错误;B选项:当点在上时,,,,故B选项错误;C选项:当点在上时,,,,故C选项正确;D选项:点在上且在第三象限,,故D选项错误.综上,故选C.点睛:此题考查三角函数的定义,解题的关键是能够利用数形结合思想,作出图形,找到所对应的三角函数线进行比较.2.【2018年全国卷Ⅲ文】函数的最小正周期为A. B. C. D.【答案】C【解析】分析:将函数进行化简即可点睛:本题主要考查三角函数的化简和最小正周期公式,属于中档题3.【2018年新课标I卷文】已知角的顶点为坐标原点,始边与轴的非负半轴重合,终边上有两点,,且,则A. B. C. D.【答案】B【解析】分析:首先根据两点都在角的终边上,得到,利用,利用倍角公式以及余弦函数的定义式,求得,从而得到,再结合,从而得到,从而确定选项. 详解:根据题的条件,可知三点共线,从而得到,因为,解得,即,所以,故选B.点睛:该题考查的是有关角的终边上点的纵坐标的差值的问题,涉及到的知识点有共线的点的坐标的关系,余弦的倍角公式,余弦函数的定义式,根据题中的条件,得到相应的等量关系式,从而求得结果.4.【2018年全国卷II文】已知,则__________.【答案】【解析】分析:利用两角差的正切公式展开,解方程可得.详解:,解方程得.点睛:本题主要考查学生对于两角和差公式的掌握情况,属于简单题型,解决此类问题的核心是要公式记忆准确,特殊角的三角函数值运算准确.【2018年浙江卷】已知角α的顶点与原点O重合,始边与x轴的非负半轴重合,它的终边过点P().5.(Ⅰ)求sin(α+π)的值;(Ⅱ)若角β满足sin(α+β)=,求cosβ的值.【答案】(Ⅰ) , (Ⅱ)或【解析】分析:(Ⅰ)先根据三角函数定义得,再根据诱导公式得结果,(Ⅱ)先根据三角函数定义得,再根据同角三角函数关系得,最后根据,利用两角差的余弦公式求结果.点睛:三角函数求值的两种类型:(1)给角求值:关键是正确选用公式,以便把非特殊角的三角函数转化为特殊角的三角函数.(2)给值求值:关键是找出已知式与待求式之间的联系及函数的差异.①一般可以适当变换已知式,求得另外函数式的值,以备应用;②变换待求式,便于将已知式求得的函数值代入,从而达到解题的目的.6.【2018年文北京卷】已知函数.(Ⅰ)求的最小正周期;(Ⅱ)若在区间上的最大值为,求的最小值.【答案】(Ⅰ)(Ⅱ)【解析】分析:(1)将化简整理成的形式,利用公式可求最小正周期;(2)根据,可求的范围,结合函数图像的性质,可得参数的取值范围.点睛:本题主要考查三角函数的有关知识,解题时要注意利用二倍角公式及辅助角公式将函数化简,化简时要注意特殊角三角函数值记忆的准确性,及公式中符号的正负.7.【2018年江苏卷】已知为锐角,,.(1)求的值;(2)求的值.【答案】(1)(2)【解析】分析:先根据同角三角函数关系得,再根据二倍角余弦公式得结果;(2)先根据二倍角正切公式得,再利用两角差的正切公式得结果.详解:解:(1)因为,,所以.因为,所以,因此,.(2)因为为锐角,所以.又因为,所以,因此.因为,所以,因此,.点睛:应用三角公式解决问题的三个变换角度(1)变角:目的是沟通题设条件与结论中所涉及的角,其手法通常是“配凑”.(2)变名:通过变换函数名称达到减少函数种类的目的,其手法通常有“切化弦”、“升幂与降幂”等.(3)变式:根据式子的结构特征进行变形,使其更贴近某个公式或某个期待的目标,其手法通常有:“常值代换”、“逆用变用公式”、“通分约分”、“分解与组合”、“配方与平方”等.2017年高考全景展示1.【2017课标3,文6】函数1ππ()sin()cos()536f x x x =++-的最大值为( ) A .65B .1C .35D .15【答案】A【考点】三角函数性质【名师点睛】三角恒等变换的综合应用主要是将三角变换与三角函数的性质相结合,通过变换把函数化为sin()y A x B ωϕ=++的形式再借助三角函数图象研究性质,解题时注意观察角、函数名、结构等特征.2.【2017课标3,文4】已知4sin cos 3αα-=,则sin 2α=( ) A .79-B .29-C .29D .79【答案】A【解析】()2sin cos 17sin 22sin cos 19ααααα--===-- .所以选A.【考点】二倍角正弦公式【名师点睛】应用三角公式解决问题的三个变换角度(1)变角:目的是沟通题设条件与结论中所涉及的角,其手法通常是“配凑”.(2)变名:通过变换函数名称达到减少函数种类的目的,其手法通常有“切化弦”、“升幂与降幂”等. (3)变式:根据式子的结构特征进行变形,使其更贴近某个公式或某个期待的目标,其手法通常有:“常值代换”、“逆用变用公式”、“通分约分”、“分解与组合”、“配方与平方”等. 3. 【2017山东,文4】已知3cos 4x =,则cos2x = A.14-B.14C.18-D.18【答案】D 【解析】试题分析:由3cos 4x =得2231cos22cos 12148x x ⎛⎫=-=⨯-= ⎪⎝⎭,故选D.【考点】二倍角公式【名师点睛】(1)三角函数式的化简与求值要遵循“三看”原则,一看角,二看名,三看式子结构与特征.(2)三角函数式化简与求值要注意观察条件中角之间的联系(和、差、倍、互余、互补等),寻找式子和三角函数公式之间的共同点.4.【2017江苏,5】 若π1tan(),46α-= 则tan α= .【答案】75【考点】两角和正切公式【名师点睛】三角函数求值的三种类型(1)给角求值:关键是正确选用公式,以便把非特殊角的三角函数转化为特殊角的三角函数. (2)给值求值:关键是找出已知式与待求式之间的联系及函数的差异. ①一般可以适当变换已知式,求得另外函数式的值,以备应用; ②变换待求式,便于将已知式求得的函数值代入,从而达到解题的目的.(3)给值求角:实质是转化为“给值求值”,先求角的某一函数值,再求角的范围,确定角. 5.【2017课标1,文15】已知π(0)2a ∈,,tan α=2,则πcos ()4α-=__________.【解析】试题分析:由tan 2α=得sin 2cos αα=又22sin cos 1αα+=所以21cos 5α=因为(0,)2πα∈所以cos αα==因为cos()cos cossin sin444πππααα-=+所以cos()4πα-==【考点】三角函数求值【名师点睛】三角函数求值的三种类型(1)给角求值:关键是正确选用公式,以便把非特殊角的三角函数转化为特殊角的三角函数. (2)给值求值:关键是找出已知式与待求式之间的联系及函数的差异. ①一般可以适当变换已知式,求得另外函数式的值,以备应用; ②变换待求式,便于将已知式求得的函数值代入,从而达到解题的目的.(3)给值求角:实质是转化为“给值求值”,先求角的某一函数值,再求角的范围,确定角.6.【2017北京,文16】已知函数())2sin cos 3f x x -x x π=-.(I )f (x )的最小正周期; (II )求证:当[,]44x ππ∈-时,()12f x ≥-. 【答案】(Ⅰ)π ;(Ⅱ)详见解析. 【解析】试题分析:(Ⅰ)首先根据两角差的余弦公式化简,再根据辅助角公式化简为()sin 23f x x π⎛⎫=+ ⎪⎝⎭,根据公式2T πω=求周期;(Ⅱ)当,44x ππ⎡⎤∈-⎢⎥⎣⎦时,先求23x π+的范围再求函数的最小值.(Ⅱ)因为ππ44x -≤≤, 所以ππ5π2636x -≤+≤. 所以ππ1sin(2)sin()362x +≥-=-. 所以当ππ[,]44x ∈-时,1()2f x ≥-.【考点】1.三角函数的性质;2.三角恒等变换.【名师点睛】本题考查三角函数式的恒等变形及三角函数的图象与性质,本题属于基础题,要求准确应用降幂公式和辅助角公式进行变形,化为标准的()sin y A x ωϕ=+的形式,借助正弦函数的性质去求函数的周期、最值等,但要注意函数的定义域,求最值要给出自变量的取值.2016年高考全景展示1.【2016高考新课标2文数】函数π()cos 26cos()2f x x x =+-的最大值为( ) (A )4 (B )5 (C )6(D )7【答案】B 【解析】考点: 正弦函数的性质、二次函数的性质. 【名师点睛】求解本题易出现的错误是认为当3sin 2x =时,函数23112(sin )22y x =--+取得最大值. 2.[2016高考新课标Ⅲ文数]若tan 13θ= ,则cos 2θ=( ) (A )45-(B )15- (C )15 (D )45【答案】D 【解析】试题分析:2222222211()cos sin 1tan 43cos 21cos sin 1tan 51()3θθθθθθθ---====+++. 考点:1、同角三角函数间的基本关系;2、二倍角.【方法点拨】三角函数求值:①“给角求值”将非特殊角向特殊角转化,通过相消或相约消去非特殊角,进而求出三角函数值;②“给值求值”关键是目标明确,建立已知和所求之间的联系. 3.【2016高考新课标1文数】已知θ是第四象限角,且sin(θ+π4)=35,则tan(θ–π4)= . 【答案】43- 【解析】试题分析:由题意sin sin 442θθπππ⎡⎤⎛⎫⎛⎫+=-+ ⎪ ⎪⎢⎥⎝⎭⎝⎭⎣⎦3cos 45θπ⎛⎫=-= ⎪⎝⎭, 因为2222k k θ3ππ+<<π+π()k ∈Z ,所以722444k k θ5ππππ+<-<π+()k ∈Z , 从而4sin 45θπ⎛⎫-=- ⎪⎝⎭,因此4tan 43θπ⎛⎫-=- ⎪⎝⎭.故填43-. 考点:三角变换4.【2016高考浙江文数】已知22cos sin 2sin()(0)x x A x b A ωϕ+=++>,则A =______,b =______.1. 【解析】考点:三角恒等变换.【思路点睛】解答本题时先用降幂公式化简2cos x ,再用辅助角公式化简cos 2sin 21x x ++,进而对照()sin x b ωϕA ++可得A 和b .5.【2016高考四川文科】0750sin = . 【答案】12【解析】试题分析:由三角函数诱导公式1sin 750sin(72030)sin 302︒=︒+︒=︒=. 考点:三角函数诱导公式【名师点睛】本题也可以看作是一个来自于课本的题,直接利用课本公式解题,这告诉我们一定要立足于课本.有许多三角函数的求值问题一般都是通过三角函数的公式把函数化为特殊角的三角函数值而求解. 6.【2016高考北京文数】(本小题13分)已知函数)0(2cos cos sin 2)(>+=ωωωωx x x x f 的最小正周期为π. (1)求ω的值;(2)求)(x f 的单调递增区间. 【答案】(Ⅰ)1ω=(Ⅱ)3,88k k ππππ⎡⎤-+⎢⎥⎣⎦(k ∈Z ). 【解析】试题分析:(Ⅰ)运用两角和的正弦公式对)(x f 化简整理,由周期公式求ω的值; (Ⅱ)根据函数x y sin =的单调递增区间对应求解即可.中小学资料考点:两角和的正弦公式、周期公式、三角函数的单调性.【名师点睛】三角函数的单调性:1.三角函数单调区间的确定,一般先将函数式化为基本三角函数标准式,然后通过同解变形或利用数形结合方法求解.关于复合函数的单调性的求法;2利用三角函数的单调性比较两个同名三角函数值的大小,必须先看两角是否同属于这一函数的同一单调区间内,不属于的,可先化至同一单调区间内.若不是同名三角函数,则应考虑化为同名三角函数或用差值法(例如与0比较,与1比较等)求解.学习永无止境。
三年高考高考化学试题分项版解析专题10物质结构(推断)(含解析)
专题10 物质结构(推断)1.【2016年高考江苏卷】短周期主族元素X、Y、Z、W原子序数依次增大,X原子的最外层有6个电子,Y是迄今发现的非金属性最强的元素,在周期表中Z位于IA族,W与X属于同一主族。
下列说法正确的是()A.元素X、W的简单阴离子具有相同的电子层结构B.由Y、Z两种元素组成的化合物是离子化合物C.W的简单气态氢化物的热稳定性比Y的强D.原子半径:r(X)<r(Y)<r(Z)<r(W)【答案】B【解析】【考点定位】本题主要是考查元素推断、元素周期律的应用等【名师点晴】正确推断出元素是解答的关键,注意元素周期律的灵活应用。
“位—构—性”推断的核心是“结构”,即根据结构首先判断其在元素周期表中的位置,然后根据元素性质的相似性和递变性预测其可能的性质;也可以根据其具有的性质确定其在周期表中的位置,进而推断出其结构。
该题难度不大。
2.【2016年高考新课标Ⅰ卷】短周期元素W、X、Y、Z的原子序数依次增加。
m、p、r是由这些元素组成的二元化合物,n是元素Z的单质,通常为黄绿色气体,q的水溶液具有漂白性,0.01 mol·L–1r溶液的pH为2,s通常是难溶于水的混合物。
上述物质的转化关系如图所示。
下列说法正确的是()A.原子半径的大小W<X<YB.元素的非金属性Z>X>YC.Y的氢化物常温常压下为液态D.X的最高价氧化物的水化物为强酸【答案】C【解析】试题分析:短周期元素W、X、Y、Z的原子序数依次增加。
m、p、r是由这些元素组成的二元化合物,n是元素Z的单质,通常为黄绿色气体,则Z是氯元素,n是Cl2;0.01 mol·L–1 r溶液的pH为2,说明r是一元强酸,Cl2与两种元素组成的化合物反应会产生两种化合物,其中一种r是HCl,另一种物质q的水溶液具有漂白性,则说明W是H元素;m是H2O,q是HClO;两种元素组成的化合物p与Cl2光照反应产生HCl,同时产生s,s通常是难溶于水的混合物,根据转化关系图可知p是甲烷,则s可能是CH3Cl、CH2Cl2、CHCl3、CCl4中的几种物质。
三年高考2016_2018高考数学试题分项版解析专题09三角恒等变换与求值理含解析57
专题09三角恒等变换与求值考纲解读明方向★★★分析解读:1.掌握两角和与差的正弦、余弦、正切公式及二倍角的正弦、余弦、正切公式,了解它们的内在联系.2.备考时,应做到灵活掌握各公式的正用、逆用、变形用等.3.三角恒等变换是三角变换的工具,主要考查利用两角和与差的三角公式、二倍角公式进行三角函数的化简与求值,可单独考查,也可与三角函数的知识综合考查,分值为5分或12分,为中低档题.分析解读1.了解任意角、弧度制的概念,能正确进行弧度与角度的互化.2.会判断三角函数值的符号;理解任意角三角函数(正弦、余弦、正切)的定义.3.能利用单位圆中的三角函数线推导出±α,π±α的正弦、余弦、正切的诱导公式,会用三角函数线解决相关问题.4.理解同角三角函数的基本关系式:sin2x+cos2x=1,=tan x,全面系统地掌握知识的来龙去脉,熟悉各知识点之间的联系.5.本节内容在高考中一般融入三角函数求值、化简中,不能单独考查.2018年高考全景展示1.【2018年理数全国卷II】已知,,则__________.【答案】点睛:三角函数求值的三种类型(1)给角求值:关键是正确选用公式,以便把非特殊角的三角函数转化为特殊角的三角函数.(2)给值求值:关键是找出已知式与待求式之间的联系及函数的差异.①一般可以适当变换已知式,求得另外函数式的值,以备应用;②变换待求式,便于将已知式求得的函数值代入,从而达到解题的目的.(3)给值求角:实质是转化为“给值求值”,先求角的某一函数值,再求角的范围,确定角.【2018年浙江卷】已知角α的顶点与原点O重合,始边与x轴的非负半轴重合,它的终边过点P().2.(Ⅰ)求sin(α+π)的值;(Ⅱ)若角β满足sin(α+β)=,求cosβ的值.【答案】(Ⅰ) , (Ⅱ)或【解析】分析:(Ⅰ)先根据三角函数定义得,再根据诱导公式得结果,(Ⅱ)先根据三角函数定义得,再根据同角三角函数关系得,最后根据,利用两角差的余弦公式求结果.详解:(Ⅰ)由角的终边过点得,所以.(Ⅱ)由角的终边过点得,由得.由得,所以或.点睛:三角函数求值的两种类型:(1)给角求值:关键是正确选用公式,以便把非特殊角的三角函数转化为特殊角的三角函数.(2)给值求值:关键是找出已知式与待求式之间的联系及函数的差异.①一般可以适当变换已知式,求得另外函数式的值,以备应用;②变换待求式,便于将已知式求得的函数值代入,从而达到解题的目的. 3.【2018年江苏卷】已知为锐角,,.(1)求的值;(2)求的值.【答案】(1)(2)(2)因为为锐角,所以.又因为,所以,因此.因为,所以,因此,.点睛:应用三角公式解决问题的三个变换角度(1)变角:目的是沟通题设条件与结论中所涉及的角,其手法通常是“配凑”.(2)变名:通过变换函数名称达到减少函数种类的目的,其手法通常有“切化弦”、“升幂与降幂”等. (3)变式:根据式子的结构特征进行变形,使其更贴近某个公式或某个期待的目标,其手法通常有:“常值代换”、“逆用变用公式”、“通分约分”、“分解与组合”、“配方与平方”等.2017年高考全景展示1.【2017课标II ,理14】函数()23sin 4f x x x =-(0,2x π⎡⎤∈⎢⎥⎣⎦)的最大值是 。
【配套K12】[学习]三年高考(2016-2018)高考数学试题分项版解析 专题04 函数性质与应用
专题04 函数性质与应用文考纲解读明方向分析解读1.考查函数的单调区间的求法及单调性的应用,如应用单调性求值域、比较大小或证明不等式,运用定义或导数判断或证明函数的单调性等.2.借助数形结合的思想解题.函数的单调性、周期性、奇偶性的综合性问题是高考热点,应引起足够的重视.3.本节内容在高考中分值为5分左右,属于中档题.命题探究练扩展2018年高考全景展示1.【2018年全国卷Ⅲ文】下列函数中,其图像与函数的图像关于直线对称的是A. B.C.D.【答案】B【解析】分析:确定函数过定点(1,0)关于x=1对称点,代入选项验证即可。
详解:函数过定点(1,0),(1,0)关于x=1对称的点还是(1,0),只有过此点。
故选项B 正确.点睛:本题主要考查函数的对称性和函数的图像,属于中档题。
2.【2018年全国卷Ⅲ文】已知函数,,则________.【答案】点睛:本题主要考查函数的性质,由函数解析式,计算发现和关键,属于中档题。
2017年高考全景展示1.【2017天津,文6】已知奇函数()f x 在R 上是增函数.若0.8221(log ),(log 4.1),(2)5a fb fc f =-==,则,,a b c 的大小关系为(A )a b c <<(B )b a c <<(C )c b a <<(D )c a b << 【答案】C 【解析】试题分析:由题意:()221log log 55a f f ⎛⎫=-= ⎪⎝⎭,且:0.822log 5log 4.12,122>><<, 据此:0.822log 5log 4.12>>,结合函数的单调性有:()()()0.822log 5log 4.12f f f >>,即,a b c c b a >><<,本题选择C 选项. 【考点】1.指数,对数;2.函数性质的应用【名师点睛】本题主要考查函数的奇偶性与指数、对数的运算问题,属于基础题型,首先根据奇函数的性质和对数运算法则,()2log 5a f =,再比较0.822log 5,log 4.1,2比较大小. 2.【2017课标1,文9】已知函数()ln ln(2)f x x x =+-,则A .在(0,2)单调递增B .()f x 在(0,2)单调递减C .y =()f x 的图像关于直线x =1对称D .y =()f x 的图像关于点(1,0)对称【答案】C 【解析】【考点】函数性质【名师点睛】如果函数()f x ,x D ∀∈,满足x D ∀∈,恒有()()f a x f b x +=-,那么函数的图象有对称轴2a bx +=;如果函数()f x ,x D ∀∈,满足x D ∀∈,恒有()()f a x f b x -=-+,那么函数()f x 的图象有对称中心(,0)2a b+. 3.【2017山东,文10】若函数()e xf x (e=2.71828,是自然对数的底数)在()f x 的定义域上单调递增,则称函数()f x 具有M 性质,下列函数中具有M 性质的是A . ()2xf x -= B. ()2f x x = C. ()3xf x -= D. ()cos f x x =【答案】A【解析】由A,令()e 2x x g x -=⋅,11'()e (22ln )e 2(1ln )022xxx x x g x ---=+=+>,则()g x 在R 上单调递增,()f x 具有M 性质,故选A. 【考点】导数的应用【名师点睛】(1)确定函数单调区间的步骤:① 确定函数f (x )的定义域;②求f ′(x );③解不等式f ′(x )>0,解集在定义域内的部分为单调递增区间;④解不等式f ′(x )<0,解集在定义域内的部分为单调递减区间. (2)根据函数单调性确定参数范围的方法:①利用集合间的包含关系处理:y =f (x )在(a ,b )上单调,则区间(a ,b )是相应单调区间的子集.②转化为不等式的恒成立问题,即“若函数单调递增,则f ′(x )≥0;若函数单调递减,则f ′(x )≤0”来求解.4.【2017课标II ,文14】已知函数()f x 是定义在R 上的奇函数,当(,0)x ∈-∞时,32()2f x x x =+, 则(2)f = ________. 【答案】12【解析】(2)(2)[2(8)4]12f f =--=-⨯-+= 【考点】函数奇偶性【名师点睛】(1)已知函数的奇偶性求函数值或解析式,首先抓住奇偶性讨论函数在各个区间上的解析式,或充分利用奇偶性得出关于()f x 的方程,从而可得()f x 的值或解析式.(2)已知函数的奇偶性求参数,一般采用待定系数法求解,根据()()0f x f x ±-=得到关于待求参数的恒等式,由系数的对等性得参数的值或方程(组),进而得出参数的值.5.【2017山东,文14】已知f (x )是定义在R 上的偶函数,且f (x +4)=f (x -2).若当[3,0]x ∈- 时,()6x f x -=,则f (919)= . 【答案】6 【解析】【考点】函数奇偶性与周期性【名师点睛】与函数奇偶性有关问题的解决方法①已知函数的奇偶性,求函数值将待求值利用奇偶性转化为已知区间上的函数值求解. ②已知函数的奇偶性求解析式将待求区间上的自变量,转化到已知区间上,再利用奇偶性求出,或充分利用奇偶性构造关于f (x )的方程(组),从而得到f (x )的解析式.③已知函数的奇偶性,求函数解析式中参数的值常常利用待定系数法:利用f (x )±f (-x )=0得到关于待求参数的恒等式,由系数的对等性得参数的值或方程求解.④应用奇偶性画图象和判断单调性利用奇偶性可画出另一对称区间上的图象及判断另一区间上的单调性.2016年高考全景展示1.【2016高考北京文数】下列函数中,在区间(1,1)- 上为减函数的是( ) A.11y x=- B.cos y x = C.ln(1)y x =+ D.2x y -= 【答案】D 【解析】试题分析:由12()2xx y -==在R 上单调递减可知D 符合题意,故选D. 考点:函数单调性【名师点睛】函数单调性的判断:(1)常用的方法有:定义法、导数法、图象法及复合函数法. (2)两个增(减)函数的和仍为增(减)函数;一个增(减)函数与一个减(增)函数的差是增(减)函数; (3)奇函数在关于原点对称的两个区间上有相同的单调性,偶函数在关于原点对称的两个区间上有相反的单调性.2.【2016高考上海文科】设()f x 、()g x 、()h x 是定义域为R 的三个函数,对于命题:①若()()f x g x +、()()f x h x +、()()g x h x +均为增函数,则()f x 、()g x 、()h x 中至少有一个增函数;②若()()f x g x +、()()f x h x +、()()g x h x +均是以T 为周期的函数,则()f x 、()g x 、()h x 均是以T 为周期的函数,下列判断正确的是( )A 、①和②均为真命题B 、①和②均为假命题C 、①为真命题,②为假命题D 、①为假命题,②为真命题【答案】D【解析】故选D.考点:1.抽象函数;2.函数的单调性;3.函数的周期性.【名师点睛】本题主要考查抽象函数下函数的单调性与周期性,是高考常考知识内容.本题具备一定难度.解答此类问题,关键在于灵活选择方法,如结合选项应用“排除法”,通过举反例应用“排除法”等. 本题能较好的考查考生分析问题解决问题的能力、基本计算能力等.3.【2016高考山东文数】若函数()y f x =的图象上存在两点,使得函数的图象在这两点处的切线互相垂直,则称()y f x =具有T 性质.下列函数中具有T 性质的是( ) (A )sin y x =(B )ln y x =(C )e x y =(D )3y x =【答案】A 【解析】考点:1.导数的计算;2.导数的几何意义.【名师点睛】本题主要考查导数的计算、导数的几何意义及两直线的位置关系,本题给出常见的三角函数、指数函数、对数函数、幂函数,突出了高考命题注重基础的原则.解答本题,关键在于将直线的位置关系与直线的斜率、切点处的导数值相联系,使问题加以转化,利用特殊化思想解题,降低难度.本题能较好的考查考生分析问题解决问题的能力、基本计算能力及转化与化归思想的应用等.4.【2016高考山东文数】已知函数f(x )的定义域为R.当x <0时,f(x )=x 3-1;当-1≤x ≤1时,f(-x )= —f(x );当x >12时,f(x +12)=f(x —12).则f(6)= ( ) (A )-2 (B )-1 (C )0 (D )2 【答案】D 【解析】 试题分析: 当12x >时,11()()22f x f x +=-,所以当12x >时,函数()f x 是周期为1的周期函数,所以(6)(1)f f =,又因为当11x -≤≤时,()()f x f x -=-,所以()3(1)(1)112f f ⎡⎤=--=---=⎣⎦,故选D.考点:1.函数的奇偶性与周期性;2.分段函数.【名师点睛】本题主要考查分段函数的概念、函数的奇偶性与周期性,是高考常考知识内容.本题具备一定难度.解答此类问题,关键在于利用分段函数的概念,发现周期函数特征,进行函数值的转化.本题能较好的考查考生分析问题解决问题的能力、基本计算能力等.5. 【2016高考四川文科】已知函数()f x 是定义在R 上的周期为2的奇函数,当0<x <1时,()4xf x =,则5()(1)2f f -+= . 【答案】-2 【解析】考点:1.函数的奇偶性;2.函数的周期性.【名师点睛】本题考查函数的奇偶性与周期性.属于基础题,在涉及函数求值问题中,可利用周期性()()f x f x T =+,化函数值的自变量到已知区间或相邻区间,如果是相邻区间再利用奇偶性转化到已知区间上,再由函数式求值即可.。
三年高考(2016-2018)数学(理科)专题11解三角形
三年高考(2016-2018)数学(理科)专题11解三角形考纲解读明方向分析解读1.利用正弦定理、余弦定理解三角形或者求解平面几何图形中有关量的问题,需要综合应用两个定理及三角形有关知识.2.正弦定理和余弦定理的应用比较广泛,也比较灵活,在高考中常与面积或取值范围结合进行考查.3.会利用数学建模思想,结合三角形的知识,解决生产实践中的相关问题.2018年高考全景展示1.【2018年理数全国卷II】在中,,,,则A. B. C. D.【答案】A【解析】分析:先根据二倍角余弦公式求cosC,再根据余弦定理求AB.详解:因为所以,选A.点睛:解三角形问题,多为边和角的求值问题,这就需要根据正、余弦定理结合已知条件灵活转化边和角之间的关系,从而达到解决问题的目的.2.【2018年浙江卷】在△ABC中,角A,B,C所对的边分别为a,b,c.若a=,b=2,A=60°,则sin B=___________,c=___________.【答案】 3点睛:解三角形问题,多为边和角的求值问题,这就需要根据正、余弦定理结合已知条件灵活转化为边和角之间的关系,从而达到解决问题的目的.3.【2018年全国卷Ⅲ理】的内角的对边分别为,,,若的面积为,则A. B. C. D.【答案】C【解析】分析:利用面积公式和余弦定理进行计算可得。
详解:由题可知,所以,由余弦定理,所以,,,故选C.点睛:本题主要考查解三角形,考查了三角形的面积公式和余弦定理。
4.【2018年江苏卷】在中,角所对的边分别为,,的平分线交于点D,且,则的最小值为________.【答案】9【解析】分析:先根据三角形面积公式得条件、再利用基本不等式求最值.详解:由题意可知,,由角平分线性质和三角形面积公式得,化简得,因此当且仅当时取等号,则的最小值为.点睛:在利用基本不等式求最值时,要特别注意“拆、拼、凑”等技巧,使其满足基本不等式中“正”(即条件要求中字母为正数)、“定”(不等式的另一边必须为定值)、“等”(等号取得的条件)的条件才能应用,否则会出现错误.5.【2018年理数天津卷】在中,内角A,B,C所对的边分别为a,b,c.已知. (I)求角B的大小;(II)设a=2,c=3,求b和的值.【答案】(Ⅰ);(Ⅱ),.【解析】分析:(Ⅰ)由题意结合正弦定理边化角结合同角三角函数基本关系可得,则B=.(Ⅱ)在△ABC中,由余弦定理可得b=.结合二倍角公式和两角差的正弦公式可得详解:(Ⅰ)在△ABC中,由正弦定理,可得,又由,得,即,可得.又因为,可得B=.点睛:在处理三角形中的边角关系时,一般全部化为角的关系,或全部化为边的关系.题中若出现边的一次式一般采用到正弦定理,出现边的二次式一般采用到余弦定理.应用正、余弦定理时,注意公式变式的应用.解决三角形问题时,注意角的限制范围.6.【2018年理北京卷】在△ABC中,a=7,b=8,cos B= –.(Ⅰ)求∠A;(Ⅱ)求AC边上的高.【答案】(1) ∠A=(2) AC边上的高为【解析】分析:(1)先根据平方关系求sinB,再根据正弦定理求sinA,即得∠A;(2)根据三角形面积公式两种表示形式列方程,再利用诱导公式以及两角和正弦公式求,解得AC 边上的高.详解:解:(Ⅰ)在△ABC中,∵cos B=–,∴B∈(,π),∴sin B=.由正弦定理得=,∴sin A=.∵B∈(,π),∴A∈(0,),∴∠A=.(Ⅱ)在△ABC中,∵sin C=sin(A+B)=sin A cos B+sin B cos A==.如图所示,在△ABC中,∵sin C=,∴h==,∴AC边上的高为.点睛:解三角形问题,多为边和角的求值问题,这就需要根据正、余弦定理结合已知条件灵活转化边和角之间的关系,从而达到解决问题的目的.7.【2018年理新课标I卷】在平面四边形中,,,,. (1)求;(2)若,求.【答案】(1) .(2).【解析】分析:(1)根据正弦定理可以得到,根据题设条件,求得,结合角的范围,利用同角三角函数关系式,求得;(2)根据题设条件以及第一问的结论可以求得,之后在中,用余弦定理得到所满足的关系,从而求得结果.详解:(1)在中,由正弦定理得.由题设知,,所以.由题设知,,所以.(2)由题设及(1)知,.在中,由余弦定理得.所以.点睛:该题考查的是有关解三角形的问题,涉及到的知识点有正弦定理、同角三角函数关系式、诱导公式以及余弦定理,在解题的过程中,需要时刻关注题的条件,以及开方时对于正负号的取舍要从题的条件中寻找角的范围所满足的关系,从而正确求得结果.2017年高考全景展示1.【2017山东,理9】在中,角,,的对边分别为,,.若为锐角三角形,且满足,则下列等式成立的是(A)(B)(C)(D)【答案】A【解析】试题分析:所以,选A.【考点】1.三角函数的和差角公式2.正弦定理.【名师点睛】本题较为容易,关键是要利用两角和差的三角函数公式进行恒等变形. 首先用两角和的正弦公式转化为含有,,的式子,用正弦定理将角转化为边,得到.解答三角形中的问题时,三角形内角和定理是经常用到的一个隐含条件,不容忽视.2.【2017浙江,14】已知△ABC,AB=AC=4,BC=2.点D为AB延长线上一点,BD=2,连结CD,则△BDC的面积是______,cos∠BDC=_______.【答案】【解析】试题分析:取BC中点E,DC中点F,由题意:,△ABE中,,,.又,,综上可得,△BCD面积为,.【考点】解三角形【名师点睛】利用正、余弦定理解决实际问题的一般思路:(1)实际问题经抽象概括后,已知量与未知量全部集中在一个三角形中,可以利用正弦定理或余弦定理求解;(2)实际问题经抽象概括后,已知量与未知量涉及两个或两个以上三角形,这时需作出这些三角形,先解够条件的三角形,再逐步解其他三角形,有时需要设出未知量,从几个三角形中列出方程(组),解方程(组)得出所要的解.3.【2017课标1,理17】△ABC的内角A,B,C的对边分别为a,b,c,已知△ABC的面积为(1)求sin B sin C;(2)若6cos B cos C=1,a=3,求△ABC的周长.【解析】试题分析:(1)由三角形面积公式建立等式,再利用正弦定理将边化成角,从而得出的值;(2)由和计算出,从而求出角,根据题设和余弦定理可以求出和的值,从而求出的周长为.试题解析:(1)由题设得,即.由正弦定理得.故.【考点】三角函数及其变换.【名师点睛】在处理解三角形问题时,要注意抓住题目所给的条件,当题设中给定三角形的面积,可以使用面积公式建立等式,再将所有边的关系转化为角的关系,有时需将角的关系转化为边的关系;解三角形问题常见的一种考题是“已知一条边的长度和它所对的角,求面积或周长的取值范围”或者“已知一条边的长度和它所对的角,再有另外一个条件,求面积或周长的值”,这类问题通法思路是:全部转化为角的关系,建立函数关系式,如,从而求出范围,或利用余弦定理以及基本不等式求范围;求具体的值直接利用余弦定理和给定条件即可.4.【2017课标II,理17】的内角所对的边分别为,已知,(1)求;(2)若,的面积为,求。
三年高考2016_2018高考数学试题分项版解析专题09三角恒等变换与求值理含解析word格式
专题09三角恒等变换与求值考纲解读明方向★分析解读:1.掌握两角和与差的正弦、余弦、正切公式及二倍角的正弦、余弦、正切公式,了解它们的内在联系.2.备考时,应做到灵活掌握各公式的正用、逆用、变形用等.3.三角恒等变换是三角变换的工具,主要考查利用两角和与差的三角公式、二倍角公式进行三角函数的化简与求值,可单独考查,也可与三角函数的知识综合考查,分值为5分或12分,为中低档题.★★分析解读1.了解任意角、弧度制的概念,能正确进行弧度与角度的互化.2.会判断三角函数值的符号;理解任意角三角函数(正弦、余弦、正切)的定义.3.能利用单位圆中的三角函数线推导出±α,π±α的正弦、余弦、正切的诱导公式,会用三角函数线解决相关问题.4.理解同角三角函数的基本关系式:sin2x+cos2x=1,=tan x,全面系统地掌握知识的来龙去脉,熟悉各知识点之间的联系.5.本节内容在高考中一般融入三角函数求值、化简中,不能单独考查.2018年高考全景展示1.【2018年理数全国卷II】已知,,则__________.【答案】点睛:三角函数求值的三种类型(1)给角求值:关键是正确选用公式,以便把非特殊角的三角函数转化为特殊角的三角函数.(2)给值求值:关键是找出已知式与待求式之间的联系及函数的差异.①一般可以适当变换已知式,求得另外函数式的值,以备应用;②变换待求式,便于将已知式求得的函数值代入,从而达到解题的目的.(3)给值求角:实质是转化为“给值求值”,先求角的某一函数值,再求角的范围,确定角.2.【2018年浙江卷】已知角α的顶点与原点O重合,始边与x轴的非负半轴重合,它的终边过点P().(Ⅰ)求sin(α+π)的值;(Ⅱ)若角β满足sin(α+β)=,求cosβ的值.【答案】(Ⅰ) , (Ⅱ)或【解析】分析:(Ⅰ)先根据三角函数定义得,再根据诱导公式得结果,(Ⅱ)先根据三角函数定义得,再根据同角三角函数关系得,最后根据,利用两角差的余弦公式求结果.详解:(Ⅰ)由角的终边过点得,所以.(Ⅱ)由角的终边过点得,由得.由得,所以或. 点睛:三角函数求值的两种类型:(1)给角求值:关键是正确选用公式,以便把非特殊角的三角函数转化为特殊角的三角函数.(2)给值求值:关键是找出已知式与待求式之间的联系及函数的差异.①一般可以适当变换已知式,求得另外函数式的值,以备应用;②变换待求式,便于将已知式求得的函数值代入,从而达到解题的目的.3.【2018年江苏卷】已知为锐角,,.(1)求的值;(2)求的值.【答案】(1)(2)(2)因为为锐角,所以.又因为,所以,因此.因为,所以,因此,.点睛:应用三角公式解决问题的三个变换角度(1)变角:目的是沟通题设条件与结论中所涉及的角,其手法通常是“配凑”.(2)变名:通过变换函数名称达到减少函数种类的目的,其手法通常有“切化弦”、“升幂与降幂”等.(3)变式:根据式子的结构特征进行变形,使其更贴近某个公式或某个期待的目标,其手法通常有:“常值代换”、“逆用变用公式”、“通分约分”、“分解与组合”、“配方与平方”等.2017年高考全景展示1.【2017课标II,理14】函数()的最大值是。
三年高考(2016-2018)高考数学试题分项版解析 专题09 三角恒等变换与求值 理(含解析)
专题09三角恒等变换与求值考纲解读明方向★★★分析解读:1.掌握两角和与差的正弦、余弦、正切公式及二倍角的正弦、余弦、正切公式,了解它们的内在联系.2.备考时,应做到灵活掌握各公式的正用、逆用、变形用等.3.三角恒等变换是三角变换的工具,主要考查利用两角和与差的三角公式、二倍角公式进行三角函数的化简与求值,可单独考查,也可与三角函数的知识综合考查,分值为5分或12分,为中低档题.分析解读1.了解任意角、弧度制的概念,能正确进行弧度与角度的互化.2.会判断三角函数值的符号;理解任意角三角函数(正弦、余弦、正切)的定义.3.能利用单位圆中的三角函数线推导出±α,π±α的正弦、余弦、正切的诱导公式,会用三角函数线解决相关问题.4.理解同角三角函数的基本关系式:sin2x+cos2x=1,=tan x,全面系统地掌握知识的来龙去脉,熟悉各知识点之间的联系.5.本节内容在高考中一般融入三角函数求值、化简中,不能单独考查.2018年高考全景展示1.【2018年理数全国卷II】已知,,则__________.【答案】点睛:三角函数求值的三种类型(1)给角求值:关键是正确选用公式,以便把非特殊角的三角函数转化为特殊角的三角函数.(2)给值求值:关键是找出已知式与待求式之间的联系及函数的差异.①一般可以适当变换已知式,求得另外函数式的值,以备应用;②变换待求式,便于将已知式求得的函数值代入,从而达到解题的目的.(3)给值求角:实质是转化为“给值求值”,先求角的某一函数值,再求角的范围,确定角.【2018年浙江卷】已知角α的顶点与原点O重合,始边与x轴的非负半轴重合,它的终边过点P().2.(Ⅰ)求sin(α+π)的值;(Ⅱ)若角β满足sin(α+β)=,求cosβ的值.【答案】(Ⅰ) , (Ⅱ)或【解析】分析:(Ⅰ)先根据三角函数定义得,再根据诱导公式得结果,(Ⅱ)先根据三角函数定义得,再根据同角三角函数关系得,最后根据,利用两角差的余弦公式求结果.详解:(Ⅰ)由角的终边过点得,所以.(Ⅱ)由角的终边过点得,由得.由得,所以或.点睛:三角函数求值的两种类型:(1)给角求值:关键是正确选用公式,以便把非特殊角的三角函数转化为特殊角的三角函数.(2)给值求值:关键是找出已知式与待求式之间的联系及函数的差异.①一般可以适当变换已知式,求得另外函数式的值,以备应用;②变换待求式,便于将已知式求得的函数值代入,从而达到解题的目的. 3.【2018年江苏卷】已知为锐角,,.(1)求的值;(2)求的值.【答案】(1)(2)(2)因为为锐角,所以.又因为,所以,因此.因为,所以,因此,.点睛:应用三角公式解决问题的三个变换角度(1)变角:目的是沟通题设条件与结论中所涉及的角,其手法通常是“配凑”.(2)变名:通过变换函数名称达到减少函数种类的目的,其手法通常有“切化弦”、“升幂与降幂”等. (3)变式:根据式子的结构特征进行变形,使其更贴近某个公式或某个期待的目标,其手法通常有:“常值代换”、“逆用变用公式”、“通分约分”、“分解与组合”、“配方与平方”等.2017年高考全景展示1.【2017课标II ,理14】函数()23sin 4f x x x =-(0,2x π⎡⎤∈⎢⎥⎣⎦)的最大值是 。
配套K12三年高考(2016-2018)高考数学试题分项版解析 专题23 立体几何中的角 理(含解析
专题23 立体几何中的角2018年高考全景展示1.【2018年浙江卷】已知四棱锥S−ABCD的底面是正方形,侧棱长均相等,E是线段AB上的点(不含端点),设SE与BC所成的角为θ1,SE与平面ABCD所成的角为θ2,二面角S−AB−C的平面角为θ3,则A. θ1≤θ2≤θ3B. θ3≤θ2≤θ1C. θ1≤θ3≤θ2D. θ2≤θ3≤θ1【答案】D【解析】分析:分别作出线线角、线面角以及二面角,再构造直角三角形,根据边的大小关系确定角的大小关系.详解:设O为正方形ABCD的中心,M为AB中点,过E作BC的平行线EF,交CD于F,过O作ON垂直EF于N,连接SO,SN,OM,则SO垂直于底面ABCD,OM垂直于AB,因此从而因为,所以即,选D.点睛:线线角找平行,线面角找垂直,面面角找垂面.2.【2018年理数全国卷II】在长方体中,,,则异面直线与所成角的余弦值为A. B. C. D.【答案】C点睛:利用法向量求解空间线面角的关键在于“四破”:第一,破“建系关”,构建恰当的空间直角坐标系;第二,破“求坐标关”,准确求解相关点的坐标;第三,破“求法向量关”,求出平面的法向量;第四,破“应用公式关”.3.【2018年浙江卷】如图,已知多面体ABCA1B1C1,A1A,B1B,C1C均垂直于平面ABC,∠ABC=120°,A1A=4,C1C=1,AB=BC=B1B=2.(Ⅰ)证明:AB1⊥平面A1B1C1;(Ⅱ)求直线AC1与平面ABB1所成的角的正弦值.【答案】(Ⅰ)见解析(Ⅱ)详解:方法一:(Ⅰ)由得,所以.故.由,得,由得,由,得,所以,故.因此平面.(Ⅱ)如图,过点作,交直线于点,连结.由平面得平面平面,由得平面,所以是与平面所成的角.由得,所以,故.因此,直线与平面所成的角的正弦值是.方法二:(Ⅰ)如图,以AC的中点O为原点,分别以射线OB,OC为x,y轴的正半轴,建立空间直角坐标系O-xyz.由题意知各点坐标如下:因此由得.由得.所以平面.(Ⅱ)设直线与平面所成的角为.由(Ⅰ)可知设平面的法向量.由即可取.所以.因此,直线与平面所成的角的正弦值是.点睛:利用法向量求解空间线面角的关键在于“四破”:第一,破“建系关”,构建恰当的空间直角坐标系;第二,破“求坐标关”,准确求解相关点的坐标;第三,破“求法向量关”,求出平面的法向量;第四,破“应用公式关”.2017年高考全景展示1.【2017课标II ,理10】已知直三棱柱111C C AB -A B 中,C 120∠AB =,2AB =,1C CC 1B ==,则异面直线1AB 与1C B 所成角的余弦值为( )A .2 B C D .3 【答案】C【考点】 异面直线所成的角;余弦定理;补形的应用【名师点睛】平移线段法是求异面直线所成角的常用方法,其基本思路是通过平移直线,把异面问题化归为共面问题来解决,具体步骤如下:①平移:平移异面直线中的一条或两条,作出异面直线所成的角; ②认定:证明作出的角就是所求异面直线所成的角; ③计算:求该角的值,常利用解三角形; ④取舍:由异面直线所成的角的取值范围是0,2π⎛⎤⎥⎝⎦,当所作的角为钝角时,应取它的补角作为两条异面直线所成的角。
三年高考(2016-2018)高考数学试题分项版解析 专题09 三角恒等变换与求值 理(含解析)
专题09三角恒等变换与求值考纲解读明方向考点内容解读要求高考示例常考题型预测热度1。
两角和与差的三角函数公式(1)两角和与差的三角函数公式①会用向量的数量积推导出两角差的余弦公式;②能利用两角差的余弦公式导出两角差的正弦、正切公式;③能利用两角差的余弦公式导出两角和的正弦、余弦、正切公式,导出二倍角的正弦、余弦、正切公式,了解它们的内在联系。
(2)简单的三角恒等变换能运用上述公式进行简单的恒等变换(包括导出积化和差、和差化积、半角公式,但对这三组公式不要求记忆)掌握2017江苏,5;2016江苏,15;2015课标Ⅰ,2;2014课标Ⅱ,14选择题填空题解答题★★★2.二倍角公式掌握2016浙江,10;2016课标全国Ⅱ,9;2016四川,11选择题填空题解答题★★★分析解读:1.掌握两角和与差的正弦、余弦、正切公式及二倍角的正弦、余弦、正切公式,了解它们的内在联系.2.备考时,应做到灵活掌握各公式的正用、逆用、变形用等.3.三角恒等变换是三角变换的工具,主要考查利用两角和与差的三角公式、二倍角公式进行三角函数的化简与求值,可单独考查,也可与三角函数的知识综合考查,分值为5分或12分,为中低档题。
考点内容解读要求高考示例常考题型预测热度三角函数的概念、同角三角函数的基本关系式和诱导公式①了解任意角的概念和弧度制的概念;②能进行弧度与角度的互化;③理解任意角三角函数(正弦、余弦、正切)的定义;④理解同角三角函数的基本关系式:sin2x+cos2x=1,=tan x;⑤能利用单位圆中的三角函数线推导出±α,π±α的正弦、余弦、正切的诱导公式理解2017北京,12;2016课标全国Ⅲ,5;2015广东,16;2014四川,13;2014大纲全国,3选择题填空题★★★分析解读1。
了解任意角、弧度制的概念,能正确进行弧度与角度的互化。
2.会判断三角函数值的符号;理解任意角三角函数(正弦、余弦、正切)的定义。
配套K12三年高考2016_2018高考数学试题分项版解析专题10三角函数图象与性质理含解析59
专题10三角函数图象与性质考纲解读明方向分析解读 三角函数的图象和性质一直是高考中的热点,往往结合三角公式进行化简和变形来研究函数的单调性、奇偶性、对称性及最值问题,且常以解答题的形式考查,其考查内容及形式仍是近几年高考对该部分内容考查的重点.分值为10~12分,属于中低档题.2018年高考全景展示1.【2018年理天津卷】将函数的图象向右平移个单位长度,所得图象对应的函数A. 在区间上单调递增B. 在区间上单调递减C. 在区间上单调递增D. 在区间上单调递减【答案】A【解析】分析:由题意首先求得平移之后的函数解析式,然后确定函数的单调区间即可. 详解:由函数图象平移变换的性质可知:将的图象向右平移个单位长度之后的解析式为:.则函数的单调递增区间满足:,即,令可得一个单调递增区间为:.函数的单调递减区间满足:,即,令可得一个单调递减区间为:.本题选择A 选项.点睛:本题主要考查三角函数的平移变换,三角函数的单调区间的判断等知识,意在考查学生的转化能力和计算求解能力.2.【2018年理北京卷】设函数f(x)=,若对任意的实数x都成立,则ω的最小值为__________.【答案】点睛:函数的性质(1).(2)周期(3)由求对称轴,最大值对应自变量满足,最小值对应自变量满足,(4)由求增区间; 由求减区间. 3.【2018年江苏卷】已知函数的图象关于直线对称,则的值是________.【答案】【解析】分析:由对称轴得,再根据限制范围求结果.详解:由题意可得,所以,因为,所以点睛:函数(A>0,ω>0)的性质:(1);(2)最小正周期;(3)由求对称轴;(4)由求增区间; 由求减区间.4.【2018年全国卷Ⅲ理】函数在的零点个数为________.【答案】点睛:本题主要考查三角函数的性质和函数的零点,属于基础题。
2017年高考全景展示1.【2017课标1,理9】已知曲线C 1:y =cos x ,C 2:y =sin (2x +2π3),则下面结论正确的是 A .把C 1上各点的横坐标伸长到原来的2倍,纵坐标不变,再把得到的曲线向右平移π6个单位长度,得到曲线C 2B .把C 1上各点的横坐标伸长到原来的2倍,纵坐标不变,再把得到的曲线向左平移π12个单位长度,得到曲线C 2C .把C 1上各点的横坐标缩短到原来的12倍,纵坐标不变,再把得到的曲线向右平移π6个单位长度,得到曲线C 2D .把C 1上各点的横坐标缩短到原来的12倍,纵坐标不变,再把得到的曲线向左平移π12个单位长度,得到曲线C 2【答案】D 【解析】试题分析:因为12,C C 函数名不同,所以先将2C 利用诱导公式转化成与1C 相同的函数名,则222:sin(2)cos(2)cos(2)3326C y x x x ππππ=+=+-=+,则由1C 上各点的横坐标缩短到原来的12倍变为sin 2y x =,再将曲线向左平移12π个单位得到2C ,故选D.【考点】三角函数图像变换.【名师点睛】对于三角函数图像变换问题,首先要将不同名函数转换成同名函数,利用诱导公式,需要重点记住sin cos(),cos sin()22ππαααα=-=+;另外,在进行图像变换时,提倡先平移后伸缩,而先伸缩后平移在考试中经常出现,无论哪种变换,记住每一个变换总是对变量x 而言.2.【2017课标3,理6】设函数f (x )=cos (x +3π),则下列结论错误的是 A .f (x )的一个周期为−2π B .y =f (x )的图像关于直线x =83π对称 C .f (x +π)的一个零点为x =6π D .f (x )在(2π,π)单调递减 【答案】D 【解析】试题分析:函数的最小正周期为221T ππ== ,则函数的周期为()2T k k Z π=∈ ,取1k =- ,可得函数()f x 的一个周期为2π- ,选项A 正确; 函数的对称轴为()3x k k Z ππ+=∈ ,即:()3x k k Z ππ=-∈ ,取3k = 可得y =f (x )的图像关于直线x =83π对称,选项B 正确; ()cos cos 33f x x x ππππ⎡⎤⎛⎫⎛⎫+=++=-+ ⎪ ⎪⎢⎥⎝⎭⎝⎭⎣⎦,函数的零点满足()32x k k Z πππ+=+∈ ,即()6x k k Z ππ=+∈ ,取0k = 可得f (x +π)的一个零点为x =6π,选项C 正确;当,2x ππ⎛⎫∈⎪⎝⎭时,54,363x πππ⎛⎫+∈ ⎪⎝⎭ ,函数在该区间内不单调,选项D 错误;故选D .【考点】 函数()cos y A x ωϕ=+ 的性质【名师点睛】(1)求最小正周期时可先把所给三角函数式化为y =Asin (ωx +φ)或y =Acos (ω x +φ)的形式,则最小正周期为2T πω=;奇偶性的判断关键是解析式是否为y =Asin ωx 或y =Acos ωx +b 的形式.(2)求f (x )=Asin (ωx +φ)(ω≠0)的对称轴,只需令()2x k k Z πωϕπ+=+∈,求x ;求f (x )的对称中心的横坐标,只需令ωx +φ=k π(k ∈Z )即可.3.【2017天津,理7】设函数()2sin()f x x ωϕ=+,x ∈R ,其中0ω>,||ϕ<π.若5()28f π=,()08f 11π=,且()f x 的最小正周期大于2π,则(A )23ω=,12ϕπ= (B )23ω=,12ϕ11π=- (C )13ω=,24ϕ11π=- (D )13ω=,24ϕ7π=【答案】A【考点】求三角函数的解析式【名师点睛】有关sin()y A x ωϕ=+问题,一种为提供函数图象求解析式或某参数的范围,一般先根据图象的最高点或最低点确定A ,再根据周期或12周期或14周期求出ω,最后再利用最高点或最低点坐标满足解析式,求出满足条件的ϕ值,另一种时根据题目用文字形容的函数图象特点,如对称轴或曲线经过的点的坐标,根据题意自己画出图象,再寻求待定的参变量,题型很活,求ω或ϕ的值或最值或范围等. 4.【2017山东,理16】设函数()sin()sin()62f x x x ππωω=-+-,其中03ω<<.已知()06f π=.(Ⅰ)求ω;(Ⅱ)将函数()y f x =的图象上各点的横坐标伸长为原来的2倍(纵坐标不变),再将得到的图象向左平移4π个单位,得到函数()y g x =的图象,求()g x 在3[,]44ππ-上的最小值. 【答案】(Ⅰ)2ω=.(Ⅱ)得最小值32-.【解析】试题分析:(Ⅰ)利用两角和与差的三角函数化简得到()y f x =)3x πω=-由题设知()06f π=及03ω<<可得.(Ⅱ)由(Ⅰ)得())3f x x π=-从而()))4312g x x x πππ=+-=-.根据3[,]44x ππ∈-得到2[,]1233x πππ-∈-,进一步求最小值.试题解析:(Ⅰ)因为()sin()sin()62f x x x ππωω=-+-,所以1()cos cos 22f x x x x ωωω=--3cos 22x x ωω=-13(sin cos )22x x ωω=-)3x πω=-由题设知()06f π=,所以63k ωπππ-=,k Z ∈.故62k ω=+,k Z ∈,又03ω<<,所以2ω=.(Ⅱ)由(Ⅰ)得())3f x x π=-所以()))4312g x x x πππ=+-=-.因为3[,]44x ππ∈-, 所以2[,]1233x πππ-∈-,当123x ππ-=-,即4x π=-时,()g x 取得最小值32-.【考点】1.两角和与差的三角函数.2.三角函数图象的变换与性质.【名师点睛】此类题目是三角函数问题中的典型题目,可谓相当经典.解答本题,关键在于能利用三角公式化简函数、进一步讨论函数的性质,本题易错点在于一是图象的变换与解析式的对应,二是忽视设定角的范围.难度不大,能较好的考查考生的基本运算求解能力及复杂式子的变形能力等.2016年高考全景展示1.【2016高考新课标2理数】若将函数2sin 2y x =的图像向左平移12π个单位长度,则平移后图象的对称轴为( )(A )()26k x k Z ππ=-∈ (B )()26k x k Z ππ=+∈ (C )()212k x k Z ππ=-∈ (D )()212k x k Z ππ=+∈【答案】B 【解析】试题分析:由题意,将函数2sin 2y x =的图像向左平移12π个单位得2sin 2()2sin(2)126y x x ππ=+=+,则平移后函数的对称轴为2,62x k k Z πππ+=+∈,即,62k x k Z ππ=+∈,故选B. 考点: 三角函数的图象变换与对称性.【名师点睛】平移变换和伸缩变换都是针对x 而言,即x 本身加减多少值,而不是依赖于ωx 加减多少值.2.【2016高考新课标1卷】已知函数()sin()(0),24f x x+x ππωϕωϕ=>≤=-,为()f x 的零点,4x π=为()y f x =图像的对称轴,且()f x 在51836ππ⎛⎫⎪⎝⎭,单调,则ω的最大值为( )(A )11 (B )9 (C )7 (D )5 【答案】B考点:三角函数的性质【名师点睛】本题将三角函数单调性与对称性结合在一起进行考查,叙述方式新颖,是一道考查能力的好题.注意本题解法中用到的两个结论:①()()()sin 0,0f x A x A ωϕω=+≠≠的单调区间长度是半个周期;②若()()()sin 0,0f x A x A ωϕω=+≠≠的图像关于直线0x x = 对称,则()0f x A = 或()0f x A =-. 3.【2016年高考四川理数】为了得到函数πsin(2)3y x =-的图象,只需把函数sin 2y x =的图象上所有的点( )(A )向左平行移动π3个单位长度 (B )向右平行移动π3个单位长度 (C )向左平行移动π6个单位长度 (D )向右平行移动π6个单位长度【答案】D 【解析】试题分析:由题意,为了得到函数sin(2)sin[2()]36y x x ππ=-=-,只需把函数sin 2y x =的图像上所有点向右移6π个单位,故选D. 考点:三角函数图像的平移.【名师点睛】本题考查三角函数的图象平移,在函数()sin()f x A ωx φ=+的图象平移变换中要注意人“ω”的影响,变换有两种顺序:一种y sin x =的图象向左平移φ个单位得sin()y x φ=+,再把横坐标变为原来的1ω倍,纵坐标不变,得sin()y ωx φ=+的图象,另一种是把y sin x =的图象横坐标变为原来的1ω倍,纵坐标不变,得sin y ωx =的图象,向左平移φω个单位得sin()y ωx φ=+的图象. 4.【2016高考浙江理数】设函数2()sin sin f x x b x c =++,则()f x 的最小正周期( ) A .与b 有关,且与c 有关 B .与b 有关,但与c 无关 C .与b 无关,且与c 无关 D .与b 无关,但与c 有关 【答案】B 【解析】试题分析:21cos 2cos 21()sin sin sin sin 222-=++=++=-+++x x f x x b x c b x c b x c ,其中当0=b 时,cos 21()22=-++x f x c ,此时周期是π;当0≠b 时,周期为2π,而c 不影响周期.故选B . 考点:1、降幂公式;2、三角函数的最小正周期.【思路点睛】先利用三角恒等变换(降幂公式)化简函数()f x ,再判断b 和c 的取值是否影响函数()f x 的最小正周期.5.【2016年高考北京理数】将函数sin(2)3y x π=-图象上的点(,)4P t π向左平移s (0s >) 个单位长度得到点'P ,若'P 位于函数sin 2y x =的图象上,则( )A.12t =,s 的最小值为6πB.2t = ,s 的最小值为6πC.12t =,s 的最小值为3πD.t =,s 的最小值为3π【答案】A 【解析】试题分析:由题意得,1sin(2)432t ππ=⋅-=,故此时'P 所对应的点为1(,)122π,此时向左平移-4126πππ=个单位,故选A. 考点:三角函数图象平移【名师点睛】三角函数的图象变换,有两种选择:一是先伸缩再平移,二是先平移再伸缩.特别注意平移变换时,当自变量x 的系数不为1时,要将系数先提出.翻折变换要注意翻折的方向;三角函数名不同的图象变换问题,应先将三角函数名统一,再进行变换6.【2016高考山东理数】函数f (x )=x +cos x )x –sin x )的最小正周期是( )(A )2π(B )π (C )23π(D )2π【答案】B 【解析】试题分析:()2sin 2cos 2sin 2663f x x x x πππ⎛⎫⎛⎫⎛⎫=+⨯+=+ ⎪ ⎪ ⎪⎝⎭⎝⎭⎝⎭,故最小正周期22T ππ==,故选B. 考点:1.和差倍半的三角函数;2.三角函数的图象和性质.【名师点睛】本题主要考查和差倍半的三角函数、三角函数的图象和性质.此类题目是三角函数问题中的典型题目,可谓相当经典.解答本题,关键在于能利用三角公式化简函数、进一步讨论函数的性质,本题较易,能较好的考查考生的基本运算求解能力及复杂式子的变形能力等.7.【2016高考新课标3理数】函数sin y x x =的图像可由函数sin y x x =+的图像至少向 右平移_____________个单位长度得到. 【答案】32π考点:1、三角函数图象的平移变换;2、两角和与差的正弦函数.【误区警示】在进行三角函数图象变换时,提倡“先平移,后伸缩”,但“先伸缩,后平移”也经常出现在题目中,所以也必须熟练掌握,无论是哪种变形,切记每一个变换总是对字母x 而言,即图象变换要看“变量”起多大变化,而不是“角”变化多少.。
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
专题10 三角函数图象与性质文考纲解读明方向分析解读三角函数的图象和性质一直是高考中的热点,往往结合三角公式进行化简和变形来研究函数的单调性、奇偶性、对称性及最值问题,且常以解答题的形式考查,其考查内容及形式仍是近几年高考对该部分内容考查的重点.分值为10~12分,属于中低档题.2018年高考全景展示1.【2018年新课标I卷文】已知函数,则A. 的最小正周期为π,最大值为3B. 的最小正周期为π,最大值为4C. 的最小正周期为,最大值为3D. 的最小正周期为,最大值为4【答案】B【解析】分析:首先利用余弦的倍角公式,对函数解析式进行化简,将解析式化简为,之后应用余弦型函数的性质得到相关的量,从而得到正确选项.点睛:该题考查的是有关化简三角函数解析式,并且通过余弦型函数的相关性质得到函数的性质,在解题的过程中,要注意应用余弦倍角公式将式子降次升角,得到最简结果.2.【2018年天津卷文】将函数的图象向右平移个单位长度,所得图象对应的函数A. 在区间上单调递增B. 在区间上单调递减C. 在区间上单调递增D. 在区间上单调递减【答案】A【解析】分析:首先确定平移之后的对应函数的解析式,然后逐一考查所给的选项是否符合题意即可.点睛:本题主要考查三角函数的平移变换,三角函数的单调区间等知识,意在考查学生的转化能力和计算求解能力.3.【2018年江苏卷】已知函数的图象关于直线对称,则的值是________.【答案】【解析】分析:由对称轴得,再根据限制范围求结果.详解:由题意可得,所以,因为,所以点睛:函数(A>0,ω>0)的性质:(1);(2)最小正周期;(3)由求对称轴;(4)由求增区间; 由求减区间.2017年高考全景展示1.【2017课标II ,文13】函数()2cos sin f x x x =+的最大值为 .【考点】三角函数有界性【名师点睛】通过配角公式把三角函数化为sin()y A x B ωϕ=++的形式再借助三角函数图象研究性质,解题时注意观察角、函数名、结构等特征.一般可利用|sin cos |a x b x + 求最值. 2.【2017课标II ,文3】函数π()sin(2)3f x x =+的最小正周期为 A.4π B.2π C. π D.π2【答案】C 【解析】由题意22T ππ==,故选C. 【考点】正弦函数周期【名师点睛】函数sin()(A 0,0)y A x B ωϕω=++>>的性质 (1)max min =+y A B y A B =-,. (2)周期2.T πω=(3)由 ππ()2x k k ωϕ+=+∈Z 求对称轴 (4)由ππ2π2π()22k x k k ωϕ-+≤+≤+∈Z 求增区间; 由π3π2π2π()22k x k k ωϕ+≤+≤+∈Z 求减区间; 3.【2017天津,文7】设函数()2sin(),f x x x ωϕ=+∈R ,其中0,||πωϕ><.若5π11π()2,()0,88f f ==且()f x 的最小正周期大于2π,则 (A )2π,312ωϕ==(B )211π,312ωϕ==-(C )111π,324ωϕ==-(D )17π,324ωϕ==【答案】A 【解析】试题分析:因为条件给出周期大于2π,1156388844T ππππ-===, 2233T ππωω==⇒=,再根据252238212k k πππϕπϕπ⨯+=+⇒=+ ,因为ϕπ<,所以当0k =时,12πϕ=成立,故选A.【考点】三角函数的性质【名师点睛】本题考查了()sin y A x ωϕ=+的解析式,和三角函数的图象和性质,本题叙述方式新颖,是一道考查能力的好题,本题可以直接求解,也可代入选项,逐一考查所给选项:当58x π=时,2538122πππ⨯+=,满足题意,251138122πππ⨯-=-,不合题意,B 选项错误;151138244πππ⨯-=-,不合题意,C 选项错误;15738242πππ⨯+=,满足题意;当118x π=时,2113812πππ⨯+=,满足题意;111718382424πππ⨯+=,不合题意,D 选项错误.本题选择A 选项.4.【2017山东,文7】函数2cos 2y x x =+ 最小正周期为A.π2 B. 2π3C.πD. 2π 【答案】C 【解析】【考点】三角变换及三角函数的性质【名师点睛】求三角函数周期的方法:①利用周期函数的定义.②利用公式:y =A sin(ωx +φ)和y =A cos(ωx +φ)的最小正周期为2π|ω|,y =tan(ωx +φ)的最小正周期为π|ω|.③对于形如sin cos y a x b x ωω=+的函数,一般先把其化为()y x ωϕ=+的形式再求周期.5.【2017浙江,18】(本题满分14分)已知函数f (x )=sin 2x –cos 2x –x cos x (x ∈R ).(Ⅰ)求)32(πf 的值. (Ⅱ)求)(x f 的最小正周期及单调递增区间.【答案】(Ⅰ)2;(Ⅱ)最小正周期为π,单调递增区间为Z k k k ∈++]32,6[ππππ. 【解析】试题分析:(Ⅰ)由函数概念32cos 32sin 3232cos 32sin )32(22πππππ--=f ,分别计算可得;(Ⅱ)化简函数关系式得)sin(ϕω+=x A y ,结合ωπ2=T 可得周期,利用正弦函数的性质求函数的单调递增区间.【考点】三角函数求值、三角函数的性质【名师点睛】本题主要考查了三角函数的化简,以及函数()ϕω+=x A y sin 的性质,属于基础题,强调基础的重要性,是高考中的常考知识点;对于三角函数解答题中,当涉及到周期,单调性,单调区间以及最值等都属于三角函数的性质,首先都应把它化为三角函数的基本形式即()ϕω+=x A y sin ,然后利用三角函数u A y sin =的性质求解.2016年高考全景展示1. 【2016高考新课标2文数】函数=sin()y A x ωϕ+的部分图像如图所示,则( )(A )2sin(2)6y x π=- (B )2sin(2)3y x π=-(C )2sin(2+)6y x π= (D )2sin(2+)3y x π=【答案】A 【解析】试题分析:由图知,2A =,周期2[()]36T πππ=--=,所以22πωπ==,所以2sin(2)y x ϕ=+, 因为图象过点(,2)3π,所以22sin(2)3πϕ=⨯+,所以2sin()13πϕ+=,所以22(Z)32k k ππϕπ+=+∈,令0k =得,6πϕ=-,所以2sin(2)6y x π=-,故选A.考点: 三角函数图像的性质【名师点睛】根据图像求解析式问题的一般方法是:先根据函数图像的最高点、最低点确定A ,h 的值,函数的周期确定ω的值,再根据函数图像上的一个特殊点确定φ值. 2. 【2016高考天津文数】已知函数)0(21sin 212sin )(2>-+=ωωωx xx f ,R x ∈.若)(x f 在区间)2,(ππ内没有零点,则ω的取值范围是( )(A )]81,0( (B ))1,85[]41,0( (C )]85,0( (D )]85,41[]81,0(【答案】D 【解析】考点:解简单三角方程【名师点睛】对于三角函数来说,常常是先化为y =Asin(ωx +φ)+k 的形式,再利用三角函数的性质求解.三角恒等变换要坚持结构同化原则,即尽可能地化为同角函数、同名函数、同次函数等,其中切化弦也是同化思想的体现;降次是一种三角变换的常用技巧,要灵活运用降次公式.3.【2016高考新课标1文数】若将函数y =2sin (2x +π6)的图像向右平移14个周期后,所得图像对应的函数为( )(A )y =2sin(2x +π4) (B )y =2sin(2x +π3) (C )y =2s in(2x –π4) (D )y =2sin(2x –π3)【答案】D 【解析】试题分析:函数y 2sin(2x )6π=+的周期为π,将函数y 2sin(2x )6π=+的图像向右平移14个周期即4π个单位,所得函数为y 2sin[2(x ))]2sin(2x )463πππ=-+=-,故选D. 考点:三角函数图像的平移【名师点睛】函数图像的平移问题易错点有两个,一是平移方向,注意“左加右减“,二是平移多少个单位是对x 而言的,不用忘记乘以系数.4.[2016高考新课标Ⅲ文数]函数sin cos y x x =的图像可由函数2sin y x =的图像至少向右平移_____________个单位长度得到. 【答案】3π 【解析】考点:1、三角函数图象的平移变换;2、两角差的正弦函数.【误区警示】在进行三角函数图象变换时,提倡“先平移,后伸缩”,但“先伸缩,后平移”也经常出现在题目中,所以也必须熟练掌握,无论是哪种变形,切记每一个变换总是对字母x 而言,即图象变换要看“变量”起多大变化,而不是“角”变化多少. 5.【2016高考山东文数】(本小题满分12分)设2()π)sin (sin cos )f x x x x x =--- .(I )求()f x 得单调递增区间;(II )把()y f x =的图象上所有点的横坐标伸长到原来的2倍(纵坐标不变),再把得到的图象向左平移π3个单位,得到函数()y g x =的图象,求π()6g 的值. 【答案】(I )()f x 的单调递增区间是()5,,1212k k k Z ππππ⎡⎤-+∈⎢⎥⎣⎦(或()5(,)1212k k k Z ππππ-+∈)(∏ 【解析】试题分析:(I )化简()()()2sin sin cos f x x x x x π=---得()2sin 21,3f x x π⎛⎫=-+ ⎪⎝⎭由()222,232k x k k Z πππππ-≤-≤+∈即得()5,1212k x k k Z ππππ-≤≤+∈写出()f x 的单调递增区间(∏)由()f x 2sin 21,3x π⎛⎫=-+ ⎪⎝⎭平移后得()2sin 1.g x x =进一步可得.6g π⎛⎫⎪⎝⎭(∏)由(I )知()f x 2sin 21,3x π⎛⎫=-+ ⎪⎝⎭把()y f x =的图象上所有点的横坐标伸长到原来的2倍(纵坐标不变),得到y =2sin 13x π⎛⎫=-+ ⎪⎝⎭的图象,再把得到的图象向左平移3π个单位,得到y 2sin 1x =+的图象,即()2sin 1.g x x =所以 2sin 166g ππ⎛⎫=+=⎪⎝⎭考点:1.和差倍半的三角函数;2.三角函数的图象和性质;3.三角函数图象的变换.【名师点睛】本题主要考查和差倍半的三角函数、三角函数的图象和性质、三角函数图象的变换.此类题目是三角函数问题中的典型题目,可谓相当经典.解答本题,关键在于能利用三角公式化简函数、进一步讨论函数的性质,利用“左加右减、上加下减”变换原则,得出新的函数解析式并求值.本题较易,能较好的考查考生的基本运算求解能力及复杂式子的变形能力等.。