第一讲:三视图还原的弱化技巧
完整版三视图还原技巧
核心内容:三视图的长度特征一一“长对齐,宽相等,高平齐”,即正视图和左视图一样高,正视图和俯视图一样长,左视图和俯视图一样宽。
还原三步骤:(1)先画正方体或长方体,在正方体或长方体地面上截取出俯视图形状;(2)依据正视图和左视图有无垂直关系和节点,确定并画出刚刚截取出的俯视图中各节点处垂直拉升的线条(剔除其中无需垂直拉升的节点,不能确定的先垂直拉升),由高平齐确定其长短;(3)将垂直拉升线段的端点和正视图、左视图的节点及俯视图各个节点连线,隐去所有的辅助线条便可得到还原的几何体。
方法展示(1)将如图所示的三视图还原成几何体还原步骤:①依据俯视图,在长方体地面初绘ABCDE如图;②依据正视图和左视图中显示的垂直关系,判断出在节点A、B、C、D处不可能有垂直拉升的线条,而在E处必有垂直拉升的线条ES由正视图和侧视图中高度,确定点S的位置;如图I③将点S 与点ABCD 分别连接,隐去所有的辅助线条,便可得到还原的几何体SABCD 如图所示:o5/ VDR的(左)觇阁 匸)现图 厂1例题2: —个多面体的三视图如图所示,则该多面体的表面积为()经典题型:例题1:若某几何体的三视图,如图所示,则此几何体的体积等于()cm3 解答:(24)答案:21+ .. 3计算过程:S=2x2X6-y X 1X1 >x6 + y xV2 x72 X^yX2= 21+^3步骤如下:第一步:在正方体底面初绘制ABCDEFMN如图;第二步:依据正视图和左视图中显示的垂直关系,判断出节点 E F、M、N处不可能有垂直拉升的线条,而在点A、B、C、D处皆有垂直拉升的线条,由正视图和左视图中高度及节点确定点G,G',B',D',E',F'地位置如图;第三步:由三视图中线条的虚实,将点G与点E、F分别连接,将G'与点E'、F 分别连接,隐去所有的辅助线便可得到还原的几何体,如图所示。
论三视图还原的方法和技巧
论三视图还原的方法和技巧论三视图还原的方法和技巧摘要:高考数学试题中出现一类由已知三视图求几何体相关量的题型,其目的是考查学生的识图及空间想象能力。
而对于空间想象能力弱的学生来说,处理三视图还原的问题非常棘手。
为了帮助学生更好地掌握三视图还原成实物图,从简单几何体出发总结了一些常见几何体三视图还原的规律和方法。
关键词:三视图还原;简单几何体;组合体;外轮廓线;长方体;直三棱柱中图分类号:TH126 文献标识码:A 文章编号:1671-5551(2016)30-0124-02高考数学试题中出现一类由已知三视图求几何体相关量的题型,其目的是考查考生的识图及空间想象能力。
要求考生识别三视图所表示的几何体模型,利用斜二测画法画出直观图,并能准确地计算出几何体的相关量。
对于空间想象能力稍差的考生来说,处理这类问题非常棘手。
难点就在于三视图的还原,紧接着是三视图中给出的数量和点线位置关系与实物图中的数量和点线面位置关系如何对应。
纵观近几年的高考试题,三视图考查的主要是一些常见阿德简单几何体和简单组合体。
为了帮助学生更好地掌握三视图还原成实物图,本文从简单几何体出发总结了一些常见几何体三视图还原的规律和方法。
1 简单几何体的三视图还原规律“万变不离其宗”,要掌握组合体的三视图还原首先就要搞清楚简单第二,三视图中轮廓线内部的实线和虚线在原来的几何体中是怎样切割形成的。
下面针对上述两个问题进行论述,总结切割式组合体还原实物图的方法和技巧。
该方法的具体过程如下:2.1 首先要确定是由哪种简单几何体切割形成的“万变不离其宗”,我们仍然可以沿用简单几何体三视图还原规律来确定。
但需要注意的是,关注三视图的外轮廓线即可,其内部细节暂时不要细究。
有时可适当将切割体的三视图补成我们熟悉的简单几何体三视图形式。
2.2 对照三视图,在确定好的简单几何体上确定好切割的切入点,以及线和面这一步骤中涉及到对应的点,线,面是从哪里切,如何切得问题,我们可以通过三视图的绘制方法逆向来推理。
三视图还原几何体的方法
三视图还原——xyz 定位法一、首先要掌握简单几何体的三视图。
正方体、长方体、三棱柱、四棱柱、三棱锥、四棱锥、圆柱、圆锥、圆台和球的三视图分别是什么要熟悉掌握。
二、掌握简单组合体的组合形式。
简单组合体主要有拼接和挖去两种形式。
三、三视图之间的关系。
几何体的长:正视图、俯视图的长;几何体的宽:俯视图的高、侧视图的长;几何体的高:正视图、侧视图的高。
(口诀:主俯定长,俯左定宽,主左定高)(下面)左视左侧(后面)正视左侧(左面)正视右侧(右面)左视右侧(前面)(下面)四、清楚三视图各个线段说表示几何体位置,如上图所表示。
五、由三视图画出直观图的步骤和思考方法。
1、组合类题型,往往很简单,基本可以通过简单想象直接还原;2、有两个视角为三角形,为椎体特征。
选择底面还原(求体积可不用还原);3、凡是想不出来的,可用xyz 坐标定位法还原。
前面俯视左侧(左面)【类型一】:(三线交汇)例2:【类型二】:例3:连接这五个点的四棱锥,不满足俯视图。
而顶点又必须在这五点交点中,所以当点数超过4个,可能不需要全部连接,则这些点有所取舍。
第一法:俯视图看到的面不可以为上面四个点构成的整个四边形,而是中间有一条折痕,故只能说左半边三角形乡下折。
即舍弃前面左上方的点。
故得,第二:唯一法:正视图看,已标记下面的点必不可少;从俯视图看,上面有3个点必不可少;故只能舍弃前面左上方的点。
第三:口诀:实线两端的点保留,虚线两端的点待定。
从俯视图一看,便知道答案了。
取舍关键:墙角点是取舍的备选。
练习【类型三】:(八点齐飞,直观图不唯一)例4此题八点齐飞,通过类型二中的第三取舍法,我们很容易就能还原出来。
答案:然而,我们发现这个三视图也可以看成,是上图中的三棱锥与另外一个三棱锥组合而成。
如下图所示:M为顶点的三棱锥(四种)与上图的组合。
同理,还有其他两种形式,此处就不一一画图了。
由此得出,上题中的三视图至少有5种不同的直观图。
【三视图题目几点技巧】1,部分椎体求体积,直接用公式(可以不还原)2,斜二测画法与原图面积比例为定值(可以不还原)3,三视图中,和视线垂直的线段,长度不变。
三视图复原技巧
当物体某部分被其他部分遮挡时,需要在视图中进行相应的处理,如使用虚线表示被遮挡部分的轮廓。
处理遮挡关系
在复原三视图时,应注意细节部分的处理,如倒角、圆角、螺纹等。这些细节部分对于准确表达物体形状至关重要。
注意细节处理
在三视图中,各视图之间的比例关系应保持以确定长方体的宽度。
根据三个视图的信息,可以绘制出长方体的三维图。
主视图通常显示圆柱体的一个端面,呈现为一个圆。通过主视图可以确定圆的直径。
确定主视图
确定俯视图
确定左视图
绘制三维图
俯视图也显示圆柱体的上面,呈现为一个圆。这个圆应该与主视图的圆大小和位置一致。
左视图显示圆柱体的侧面,呈现为一个矩形。矩形的长度应该等于圆的直径,高度等于圆柱体的高度。
主视图
从物体的正面看去的视图,反映物体的主要形状和特征。
俯视图
从物体的上面看去的视图,反映物体的水平投影和上下位置关系。
左视图
从物体的左侧看去的视图,反映物体的左侧形状和左右位置关系。
02
CHAPTER
三视图复原步骤
仔细分析三视图中的每一个视图,理解其表达的空间形状和位置关系。
注意视图中的图线、符号等细节信息,特别是虚线和实线的含义。
根据三个视图的信息,可以绘制出圆柱体的三维图。
确定主视图
主视图通常显示圆锥体的一个侧面,呈现为一个等腰三角形。通过主视图可以确定圆锥体的高度和底面的直径。
确定俯视图
俯视图显示圆锥体的底面,呈现为一个圆。这个圆应该与主视图中三角形的底边大小和位置一致。
确定左视图
左视图也显示圆锥体的一个侧面,呈现为一个直角三角形。直角三角形的直角边应该等于圆的直径,斜边等于圆锥体的母线长。
由三视图还原几何体的方法及技巧
由三视图还原几何体的方法及技巧
通过三视图来还原几何体是许多机械设计中常用的一种方式,它
主要是将物体的三个视图分别表示为侧视、正面视图和俯视图,从而
获得物体的整体结构。
还原几何体是建立任何零部件的基础,因此学
会还原几何体的方法十分重要,这里就给大家介绍一下三视图还原几
何体的方法及技巧。
首先,需要根据所提供的三视图,在平面上画出它们的几何图形,包括侧视图正面视图和俯视图。
其次,我们需要确定几何图形的轴心,将侧视图图形看作中心轴,而正面视图图形和俯视图图形则作为各轴
的切面。
再次,把几何图形的各个边长统称为参数,将其加以记录,
以备后用。
最后,以中轴为旋转轴,将正面视图和俯视图旋转,将它
们的角度根据参数的记录,按照实际角度旋转,即可获得物体的三维
图形,从而完成几何体的还原。
通过以上步骤,我们可以轻松地还原几何体,它不仅能获得物体
的三维图形,还能按照实际角度,对物体进行设计。
当然,三视图还
原几何体也有其局限性,例如,它不能精确的反映物体的真实形状,
因此在使用时,应该谨慎考虑,以免出现设计上的错误。
总之,在机械设计中,三视图还原几何体是常用的一种方式,熟
练掌握这一技术对于我们来说非常重要,希望以上介绍能为大家在机
械设计中提供一定的帮助。
三视图还原技巧
三视图还原技巧在制图和设计领域中,三视图还原技巧是一个非常重要的概念。
三视图是指通过正面图、侧面图和俯视图来完整、准确地呈现一个物体的三个视角。
这种视图呈现方式有助于我们更好地理解和表达物体的尺寸、形状和细节。
为了实现三视图的精确还原,我们需要掌握一些技巧和方法。
下面将介绍几种常用的三视图还原技巧,帮助你更好地完成这项任务。
1. 添加参考线和尺寸标注:在绘制三视图时,参考线和尺寸标注是非常重要的辅助工具。
通过添加参考线,我们可以确保不同视图之间的元素位置和比例一致。
而尺寸标注可以更清晰地传达物体的尺寸信息,使得三视图更加准确可靠。
2. 考虑投影和透视效果:三视图是通过正交投影来绘制的,因此在还原时要注意将物体的原始形状与投影的不同之处加以区分。
某些元素在不同视图中可能会有细微的变化,这是由于透视效果造成的。
在绘制过程中,我们应该根据这些变化来进行调整,以实现更真实、精确的三视图还原。
3. 注意比例和对称:在绘制三视图时,比例和对称是非常重要的考虑因素。
正确地绘制物体的比例能够保证各个视图之间的一致性和准确性。
而对称性则能够使得三视图更加美观和易于理解。
因此,在进行绘制时要特别关注物体的比例关系和对称性,避免出现错误或者不协调的情况。
4. 使用适当的图形工具和软件:在进行三视图还原时,选择适当的绘图工具和软件是非常重要的。
使用专业的CAD软件可以极大地提高效率和准确性。
这些软件通常提供各种辅助工具和功能,使得三视图的制作更加灵活、方便。
当然,熟练掌握绘图工具的使用也是至关重要的。
总结起来,三视图还原技巧是制图和设计中不可或缺的一部分。
通过掌握适当的技巧和方法,我们可以更好地完成三视图的制作,使其更加准确、美观和易于理解。
相信通过不断的练习和实践,你会成为一名出色的三视图绘制者。
如何解决三视图问题,争对无空间想象力的人而言?
如何解决三视图问题,争对无空间想象力的人而言?
首先,你需要先掌握正向的技能,就是通过直观图画出三视图,不然你再去学什么技巧都是没有意义的。
毕竟对于空间想象能力本来就不怎么样的学生而言,直接去做还原三视图这种逆向的操作是存在难度的。
其次才去学习三视图还原。
最后才是考试上面的方法和技巧。
一、先掌握简单几何体的三视图
正方体
长方体
正棱柱
正棱锥
圆柱
圆锥
圆台
球
二、简单组合体的三视图
三、根据三视图结合投影知识进行还原
四、对于三视图还原比较实用的方法可以利用长方体或者正方体进行切割得到几何体或者判断顶点位置的方法去还原。
五、注意:有的三视图还原答案不唯一,具体例子可以详见另一条问答内容。
由三视图复原几何体方法整理
研究成果总结
三视图复原几何体方法分类
本文总结了基于线框模型、表面模型、体素模型等多种三 视图复原几何体的方法,并对各种方法的优缺点进行了分 析比较。
三视图数据获取与处理
本文介绍了三视图数据的获取方式,包括从CAD模型、激 光扫描、结构光等获取方法,并详细阐述了三视图数据的 预处理方法,如去噪、配准等。
三视图复原几何体实验验证
本文通过大量实验验证了所提出的三视图复原几何体方法 的可行性和有效性,并与其他方法进行了比较,证明了本 文方法的优越性。
未来研究方向展望
深度学习在三视图复原几何体中的应用:随着深 度学习技术的不断发展,未来可以探索将深度学 习应用于三视图复原几何体中,以提高复原精度 和效率。
视图间对应关系不明确问题
特征匹配
01
通过提取不同视图间的共有特征,并进行匹配,以建立视图间
的对应关系。
几何约束
02
利用几何体本身的几何约束条件,如平行、垂直、相等等,来
辅助确定视图间的对应关系。
优化算法
03
采用优化算法对不同视图间的对应关系进行调整和优化,以得
到更准确的结果。
复杂几何体复原困难问题
长方体与球的组合体
根据三视图中的轮廓线和尺寸标注, 可以确定长方体和球的尺寸以及它们 之间的位置关系,从而复原出整个组 合体。
特殊几何体实例
斜二测画法下的几何体
在斜二测画法下,几何体的三视图可能呈现出特殊的形状。通过分析这些形状 和尺寸标注,可以逐步推导出原几何体的形状和大小。
含有虚线的三视图
当三视图中含有虚线时,通常表示原几何体中存在被遮挡的部分。通过分析虚 线的位置和长度,可以推断出被遮挡部分的形状和大小,进而复原出整个几何 体。
三视图还原几何体技巧
三视图还原几何体技巧是一门技术,通过查看三个视图,即正视图、侧视图和俯视图,以便从这三个图形中重建几何体。
这是一项重要的技术,可以帮助我们更加清楚地理解和
掌握几何体的特征和性质。
要用三视图还原几何体,首先要掌握这三种视图的特点:正视图是几何体的正面,侧视图是几何体的侧面,俯视图是几何体的俯视图。
在查看三视图的同时,要注意观察他们的长度、深度和宽度的比例,以及三视图之间的关系。
其次,要善于利用现有的几何体属性,如立方体的面、边和角,来判断几何体的形状。
比如,如果正视图和侧视图都是相互垂直的,而且正视图和俯视图都是正方形,可以根据这些特征判断几何体可能是立方体。
最后,要注意观察几何体的位置关系,比如几何体的每一面是否平行,是否有相互垂
直的面,边和角是否平行等。
这些特征可以帮助我们更准确地重建几何体。
总之,要想用三视图还原几何体,除了掌握这三种视图的特点外,还要善于利用几何
体的属性和位置关系,以此来判断几何体的形状。
用这种方法,可以使我们更加准确地还
原几何体。
克服中学数学三视图难题的九个窍门
克服中学数学三视图难题的九个窍门数学是一门重要而又有趣的学科,它不仅是我们学习科学和技术的基础,也是培养我们思维逻辑能力的重要途径之一。
在数学学习中,中学生经常会遇到各种难题,其中数学三视图问题是一个令人头疼的难题。
本文将给大家介绍克服中学数学三视图难题的九个窍门。
1. 控制思维:克服三视图难题的第一步是要控制好自己的思维。
在解题过程中,我们需要对题目进行细致的分析,理清思路,将问题转化为简单易懂的形式。
同时,我们还需运用逻辑推理,合理排除一些无关信息,减轻解题的复杂程度。
2. 观察细节:克服三视图难题的关键在于观察。
我们需要仔细观察图形的细节,例如线段的长度、角度的大小、形状的特点等等。
通过仔细观察,我们可以发现一些隐藏在题目中的关键信息,从而更好地理解和解决问题。
3. 运用标记:当我们在解题过程中遇到一些困难和疑惑时,可以尝试使用标记的方法来辅助解题。
例如,我们可以在图形上标记出一些重要的线段或角度,以帮助我们更好地掌握图形的结构和特点。
标记可以帮助我们减少遗漏和错误,提高解题的准确性。
4. 建立数学模型:为了更好地理解和解决三视图难题,我们可以尝试建立数学模型。
通过将图形映射到数学坐标系中,我们可以用数值具体地描述和分析图形的特征和变化。
数学模型可以帮助我们理清思路,准确分析问题,找到解题的有效方法。
5. 利用推理:在解决三视图难题时,我们往往需要进行逻辑推理。
通过观察和分析,我们可以找到一些规律和性质,从而进行合理的推理和推导。
推理可以帮助我们更好地理解问题,发现解题的线索,提高解题的效率和准确性。
6. 刻意练习:克服三视图难题需要通过刻意练习来提高自己的解题能力。
我们可以多做一些相关的练习题,尝试不同的解题方法和思路。
通过反复练习,我们可以熟悉题目的要求和解题的思路,提高解题的速度和准确性。
7. 寻求帮助:当我们遇到难以解决的三视图难题时,我们可以寻求他人的帮助。
可以向老师、同学或家长请教,听取他们的建议和经验。
三视图复原技巧
三视图复原技巧
三视图还原口诀是长对正、高平齐、宽相等。
1、长对正:主视图与俯视图的长对正。
2、高平齐:主视图与左视图的高平齐。
3、宽相等:俯视图与左视图的宽必须相等。
三视图的相关概念
空间几何体的三视图指主视图、左视图、俯视图。
三视图的排列规则是俯视图放在主视图的下方,长度与主视图一样,左视图放在主视图的右面,高度与主视图一样,宽度与俯视图的宽度一样。
三视图的主视图、俯视图、左视图分别是从正前方、正上方、正左侧观察同一个几何体,画出空间几何体的图形。
三视图还原几何体技巧:
(1)由几何体的三视图还原几何体的形状.要熟悉柱、锥、台、球的三视图,明确三视图的形成原理,结合空间想象将三视图还原为实物图.
(2)由几何体的直观图求三视图.注意正视图、侧视图和俯视图的观察方向,注意看到的部分用实线,不能看到的部分用虚线表示.(3)由几何体的部分视图画出剩余的部分视图.先根据已知的一部分三视图,还原、推测直观图的可能形式,然后再找其剩下部分三视图
的可能形式.当然作为选择题,也可将选项逐项代入,再看看给出的部分三视图是否符合.
(4)有很多“三视图”的问题,可以看成由长方体(或正方体)切割而截成的,大家可以由长方体或正方体图形来思考用什么线段或截面截成的。
三视图还原技巧
三视图还原技巧在进行产品设计时,三视图是非常重要的一环。
通过三视图,我们可以清晰地看到产品的外观、结构和比例,从而更好地完成设计工作。
然而,有时候在进行三视图绘制时会遇到一些困难,特别是在对称性较强或者复杂的产品。
那么,在这种情况下,我们需要掌握一些三视图还原技巧,来帮助我们更好地完成设计工作。
首先,我们可以通过建立基准线的方式来辅助进行三视图绘制。
基准线可以帮助我们确定产品的主要参考点,从而更好地控制比例和尺寸。
在绘制三视图时,我们可以先确定产品的主要轮廓,然后根据基准线的位置来进行细节的绘制,这样可以更好地确保产品的对称性和整体性。
其次,对称性是进行三视图绘制时需要特别注意的一个方面。
许多产品都具有一定的对称性,而且对称轴通常是产品的重要参考线。
因此,在进行三视图绘制时,我们可以先确定产品的对称轴,然后根据对称轴来进行细节的绘制。
这样不仅可以提高绘图效率,还可以确保产品在各个视图中的对称性和一致性。
另外,还原技巧可以通过透视图来辅助进行三视图绘制。
透视图是一种能够更好地展示产品立体感和形态的视图方式,通过透视图我们可以更好地理解产品的结构和外形。
因此,在进行三视图绘制时,我们可以先通过透视图来观察产品的整体形态,然后再根据不同视角来进行细节的绘制。
这样可以帮助我们更好地还原产品的外观和结构。
总之,三视图还原技巧对于产品设计是非常重要的。
通过建立基准线、注重对称性和利用透视图等技巧,我们可以更好地完成三视图绘制工作,从而提高设计效率和质量。
希望以上内容能够帮助您更好地掌握三视图还原技巧,为产品设计工作提供帮助。
高考数学中三视图还原空间几何体的解题技巧
高考数学中三视图还原空间几何体的解题技巧考纲解读与命题趋势探究空间立体几何的三视图是高中数学新课程的新增内容之一,也是近几年全国各地高考的热点内容,考纲不仅要求学生掌握『画空间几何体的三视图』还要求掌握它的逆过程,前者比较容易掌握,后者对空间想象力较弱的同学来说往往无从下手,特别是复杂一点的问题更是怎么也想象不出来。
Mr.Yang总结了一个简单可行的方法,虽不能解决所有三视图还原的问题,但对高中阶段的大部分问题都可解决,这里呈现出来,以期抛砖引玉,也请同行斧正。
一、简单几何体的三视图还原规律复杂的几何体是由简单几何体组合而成的,简单几何的分类:柱体(圆柱和棱柱);椎体(圆锥和棱锥);台体(圆台和棱台);球体.要掌握复杂几何体的三视图还原,先要搞清楚简单几何体的三视图还原规律,一般情况下简单几何体的三视图还原有如下规律:1. 三视图中如果其中两个视图是矩形(不要管内部的细节,只要外轮廓线为矩形就称该视图为矩形)那么该空间几何体为柱体.当第三个试图为圆时,该空间几何体为圆柱,否则为棱柱.2. 三视图中如果其中两个视图是三角形(不要管内部的细节,只要外轮廓线为矩形就称该视图为三角形)那么该空间几何体为锥体,当第三个试图为圆时,该空间几何体为圆锥,否则为棱锥.3. 三视图中如果其中两个视图是梯形(不要管内部的细节,只要外轮廓线为矩形就称该视图为梯形)那么该空间几何体为台体.当第三个试图两个同心圆时,该空间几何体为圆台,否则为棱台.球体的三视图很简单,这里就不加论述.以上规律简单好记,按照以上规律解决简单的三视图还原都不在话下,下面举例说明.例1:(2013年全国高考陕西卷理科试题)若某空间几何体的三视图如下,求其体积 .例2:(2012年全国高考江西卷理科试题)若某空间几何体的三视图如下,求其体积()例3:(2014年全国高辽宁卷理科试题)若某空间几何体的三视图如下求其体积()二、叠加式组合体的三视图还原方法组合体的组合形式可分为三种:叠加式、切割式、综合式.切割式与综合式在高中阶段见到的不是很多,这里只对高中阶段出现较多的叠加式组合体的三视图还原方法进行论述.既然组合体是由简单几何体组合而成的,那么就可以“化整为零”,把组合体的三视图划分为一个个简单几何体的三视图,再分别根据这些简单几何体的三视图按照上面论述的简单几何体三视图的还原规律把它们还原成简单几何体,再“积零为整',把这些简单几何体组合在一起就得了组合体的三视图.这样就将复杂的三视图问题转化成最基本的简单几何体的三视图还原问题来解决了,大大降低了对空间想象能力的要求,这一方法的难点在于如何把组合体的三视图划分为一个个简单几何体的三试图,该方法的具体过程如下:1. 分线框.一般从主视图入手,将主视图划分成一个个线框(一般是封闭的线框,但有时也可不完全封闭),这些线框就是组成组合体的一个个简单几何体的主视图.2. 对投影.在俯视图和左视图上把主视图中每个线框对应的投影找出来,主要是根据“长对正,高平齐,宽相等”和'三视图所反映的组合体各部分的方位”来找.3. 识形体.根据每一部分的三视图,逐个想象出每一部分所对应的几何体4. 合起来,想整体. 每一部分的形状确定后,再根据各部分的相对位置关系组合成整个组合体的形状.下面看该方法在高考题中的运用.例4 :(2015年全国高考天津卷试题)一个几何体的三视图如图4所示,则该几何体的体积为 .解析:如图4所示,第一步:分线框. 将主视图分为上面一个直角梯形与下面一个矩形两个线框.第二步:对投影. 这里只须用长对正,高平齐就可找到相对应的投影,如图5和图6中的加粗部分相对应.第三步:识形体. 由简单几何体三视图的还原规律知图5中加粗的三个视图对应的几何体为底面为直角梯形的直四棱柱. 图6中加粗的三个视图对应的几何体为长方体.第四步:合起来,想整体.由主视图知该组合体是一个底面为直角梯形的直四棱柱叠放在一个长方体上面组合而成的,如图7所示,进一步易求几何体体积为30.如果不用此方法,此题对很多同学来说都是一道较难想象的题,但用了以上方法后就可以化整为零,化难为易,将复杂的三视图还原问题转化为基本的简单几何体的三视图还原问题,大大降低了难度.例5 :(2015年全国高考山东卷试题)一个几何体的三视图如下图所示,则该几何体的体积为 .解析:如图下所示,第一步:分线框. 将主视图分为上面一个等腰三角形,下面一个正方形两个线框.第二步:对投影. 利用高平齐知主视图中的三角形与左视图中的三角形相对应,主视图中的正方形与左视图中的正方形相对应,利用长对正知主视图中的三角形与俯视图中的圆和正方形都是对正的,那到底哪一个与它相对应呢?这还要结合三视图所反应的各部分的方位来判断. 主视图中三角形在上,正方形在下,这说明原几何体中三角形所对应的简单几何体在正方形所对应的简单几何体的上面.在俯视图中正方形在圆的里面而且是用实线画的,所以俯视图中正方形所对应的简单几何体在圆所对应的简单几何体的上面.因此主视图中的三角形与俯视图中的正方形相对应,主视图中的正方形与俯视图中的圆相对应,第三步:识形体.由简单几何体三视图的还原规律知两部分所对应的几何体分别为正四棱锥和圆柱. 第四步,合起来想整体,由主视图知该组合体是上面一个正四棱锥下面一个圆柱组合而成的.进一步易求答案为C.。
(经典)高考数学三视图还原方法归纳
高考数学三视图还原方法归纳方法一:还原三步曲核心容:三视图的长度特征——“长对齐,宽相等,高平齐”,即正视图和左视图一样高,正视图和俯视图一样长,左视图和俯视图一样宽。
还原三步骤:(1)先画体或长方体,在体或长方体地面上截取出俯视图形状;(2)依据正视图和左视图有无垂直关系和节点,确定并画出刚刚截取出的俯视图中各节点处垂直拉升的线条(剔除其中无需垂直拉升的节点,不能确定的先垂直拉升),由高平齐确定其长短;(3)将垂直拉升线段的端点和正视图、左视图的节点及俯视图各个节点连线,隐去所有的辅助线条便可得到还原的几何体。
方法展示(1)将如图所示的三视图还原成几何体。
还原步骤:①依据俯视图,在长方体地面初绘ABCDE如图;②依据正视图和左视图中显示的垂直关系,判断出在节点A、B、C、D处不可能有垂直拉升的线条,而在E处必有垂直拉升的线条ES,由正视图和侧视图中高度,确定点S的位置;如图③将点S与点ABCD分别连接,隐去所有的辅助线条,便可得到还原的几何体S-ABCD如图所示:经典题型:例题1:若某几何体的三视图,如图所示,则此几何体的体积等于()cm³。
解答:(24)例题2:一个多面体的三视图如图所示,则该多面体的表面积为()答案:21+3计算过程:步骤如下:第一步:在体底面初绘制ABCDEFMN 如图;第二步:依据正视图和左视图中显示的垂直关系,判断出节点E 、F 、M 、N 处不可能有垂直拉升的线条,而在点A 、B 、C 、D 处皆有垂直拉升的线条,由正视图和左视图中高度及节点确定点''''',,,,,F E D B G G 地位置如图;第三步:由三视图中线条的虚实,将点G 与点E 、F 分别连接,将'G 与点'E 、'F 分别连接,隐去所有的辅助线便可得到还原的几何体,如图所示。
例题3:如图所示,网格纸上小形的边长为4,粗实线画出的是某多面体的三视图,则该多面体的各条棱中,最长的棱的长度是( )答案:(6)还原图形方法一:若由主视图引发,具体步骤如下:(1)依据主视图,在长方体后侧面初绘ABCM如图:(2)依据俯视图和左视图中显示的垂直关系,判断出在节点A、B、C出不可能有垂直向前拉升的线条,而在M出必有垂直向前拉升的线条MD,由俯视图和侧视图中长度,确定点D的位置如图:(3)将点D与A、B、C分别连接,隐去所有的辅助线条便可得到还原的几何体D—ABC如图所示:2,解:置于棱长为4个单位的体中研究,该几何体为四面体D—ABC,且AB=BC=4,AC=24,DB=DC=5可得DA=6.故最长的棱长为6.方法2若由左视图引发,具体步骤如下:(1)依据左视图,在长方体右侧面初绘BCD如图:(2)依据正视图和俯视图中显示的垂直关系,判断出在节点C、D处不可能有垂直向前拉升的线条,而在B处,必有垂直向左拉升的线条BA,由俯视图和左视图的长度,确定点A的位置,如图:(3)将点A与点B、C、D分别连接,隐去所有的辅助线条便可得到还原的几何体D—ABC如图:方法3:由三视图可知,原几何体的长、宽、高均为4,所以我们可以用一个体做载体还原:(1)根据正视图,在体中画出正视图上的四个顶点的原象所在的线段,用红线表示。
三视图还原技巧
焦点内容:之五兆芳芳创作三视图的长度特征——“长对齐,宽相等,高平齐”,即正视图和左视图一样高,正视图和仰望图一样长,左视图和仰望图一样宽.复原三步调:(1)先画正方体或长方体,在正方体或长方体地面上截取出仰望图形状;(2)依据正视图和左视图有无垂直关系和节点,确定并画出方才截取出的仰望图中各节点处垂直拉升的线条(剔除其中无需垂直拉升的节点,不克不及确定的先垂直拉升),由高平齐确定其长短;(3)将垂直拉升线段的端点和正视图、左视图的节点及仰望图各个节点连线,隐去所有的帮助线条便可得到复原的几何体.办法展示(1)将如图所示的三视图复原成几何体.复原步调:①依据仰望图,在长方体地面初绘ABCDE如图;②依据正视图和左视图中显示的垂直关系,判断出在节点A、B、C、D处不成能有垂直拉升的线条,而在E处必有垂直拉升的线条ES,由正视图和侧视图中高度,确定点S的位置;如图③将点S与点ABCD辨别连接,隐去所有的帮助线条,便可得到复原的几何体S-ABCD如图所示:经典题型:例题1:若某几何体的三视图,如图所示,则此几何体的体积等于()cm³.解答:(24)例题2:一个多面体的三视图如图所示,则该多面体的概略积为()答案:21+3计较进程:步调如下:第一步:在正方体底面初绘制ABCDEFMN如图;第二步:依据正视图和左视图中显示的垂直关系,判断出节点E、F、M、N处不成能有垂直拉升的线条,而在点A、B、C、D处皆有垂直拉升的线条,由正视图和左视图中高度及节点确定点'','''BGG地位置如图;D,,,,FE第三步:由三视图中线条的虚实,将点G与点E、F辨别连接,将'G与点'E、'F辨别连接,隐去所有的帮助线便可得到复原的几何体,如图所示.例题3:如图所示,网格纸上小正方形的边长为4,粗实线画出的是某多面体的三视图,则该多面体的各条棱中,最长的棱的长度是()答案:(6)复原图形办法一:若由主视图引发,具体步调如下:(1)依据主视图,在长方体后正面初绘ABCM如图:(2)依据仰望图和左视图中显示的垂直关系,判断出在节点A、B、C出不成能有垂直向前拉升的线条,而在M出必有垂直向前拉升的线条MD,由仰望图和侧视图中长度,确定点D的位置如图:(3)将点D与A、B、C辨别连接,隐去所有的帮助线条便可得到复原的几何体D—ABC如图所示:解:置于棱长为4个单位的正方体中研究,该几何体为四面体D—ABC,且AB=BC=4,AC=24,DB=DC=52,可得DA=6.故最长的棱长为6.办法2若由左视图引发,具体步调如下:(1)依据左视图,在长方体右正面初绘BCD如图:(2)依据正视图和仰望图中显示的垂直关系,判断出在节点C、D处不成能有垂直向前拉升的线条,而在B处,必有垂直向左拉升的线条BA,由仰望图和左视图的长度,确定点A的位置,如图:(3)将点A与点B、C、D辨别连接,隐去所有的帮助线条便可得到复原的几何体D—ABC如图:办法3:由三视图可知,原几何体的长、宽、高均为4,所以我们可以用一个正方体做载体复原:(1)按照正视图,在正方体中画出正视图上的四个顶点的原象所在的线段,用红线暗示.如图,也就是说正视图的四个顶点肯定是由原图中红线上的点投影而成;(2)左视图有三个顶点,画出它们的原象所在的线段,用蓝线暗示,如图;(3)仰望图有三个顶点,画出它们的原象所在的线段,用绿线暗示,如图;(4)三种颜色的公共点(一定要三种颜色公共交点)即为几何体的顶点,连接各顶点即为原几何体,如图.然后计较出最长的棱.课后习题:1、某四棱台的三视图如图所示,则该四棱台的体积是( )A.4B.314C.316 答案:B2、某几何体的三视图,如图所示,则此几何体的概略积是( )cm²答案:D。
三视图还原技巧
三视图还原技巧
三视图还原技巧是指将一个三维物体的形状、大小、位置等信息通过三个相互垂直的视图(俯视图、前视图和左视图)来表达的技巧。
下面是一些三视图还原技巧:
1. 了解三视图的基本概念:俯视图是从物体的上方看下去,前视图是从物体的正面看,左视图是从物体的左侧看。
三视图的比例必须相同,才能正确表达物体的形状和大小。
2. 确定物体的主轴:物体的主轴是指物体的最长轴线,通常是物体的长度或高度。
在三视图中,主轴通常与前视图的竖直方向相同。
3. 从主轴开始绘制:在三视图中,从主轴开始绘制可以保证三视图的比例正确,并且可以更容易地确定物体的位置和大小。
4. 确定物体的对称性:许多物体都具有对称性,例如圆柱体、立方体等。
在绘制三视图时,可以利用物体的对称性来简化绘图过程。
5. 确定物体的重心:物体的重心是物体的质心,是物体平衡的中心。
在三视图中,可以通过确定物体的重心来确定物体的位置和方向。
6. 绘制物体的细节:在绘制三视图时,需要注意物体的细节,例如物体的边缘、凹凸等。
这些细节可以通过在三视图中添加细节线来表达。
7. 使用投影线和标注:在三视图中,可以使用投影线和标注来表达物体的深度和尺寸。
投影线是从物体的边缘向外延伸的线,标注是用数字或符号来表示物体的尺寸。
总之,三视图还原技巧需要掌握一定的绘图技能和空间想象能力,通过不断的实践和学习,可以逐渐提高三视图还原的能力。
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
第一讲三视图
类型一:基本空间几何体的三视图
三棱锥的常见三视图
1. 三角形+三角形+三角形(此类三视图一定是三棱锥)
2. 三角形+三角形+四边形(既有虚线又有实线的四投影点四边形)
3. 三角形+四边形+四边形
4.四边形+四边形+四边形
四棱锥的常见三视图
1. 三角形+三角形+四边形(只有实线或虚线的四投影点四边形或五投影点四边形)
2. 三角形+四边形+四边形
3. 有一面为五边形(有实线和虚线的五投影点五边形)
3
3
1
2
2
正视图侧视图
俯视图
正视侧视
俯视
1
2
2
1
2
1. 某几何体的三视图如图所示,若图中小正方形的边长为1,则该几何体的体积是( )
A
.323 B .64
3
C .16
D .13
2. 某几何体的三视图如图所示,则该几何体中,面积最大的侧面的面积为
(A )
(B )
(C ) (D )
3. 某三棱锥的三视图如图所示,则该三棱锥的四个面中,最大面的面积为_________.
4. 某几何体的三视图如图所示,记A 为此几何体所有棱的长度构成的集合,则
A .3A ∈
B .5A ∈
C. 26A ∈ D .43A ∈
2
2
526
2
3
类型二:基本组合体、切割体的三视图 旋转体
1. 某几何体的三视图如图所示,则该几何体的体积为( )
A .168π+
B .88π+
C .1616π+
D .816π+
2.
一个几何体的三视图如图所示,该几何体从上到下由四个简单几何体组成,其体积分别记为1V ,2V ,3V ,4V ,上面两个简单几何体均为旋转体,下面两个简单几何体均为多面体,则有( ) A .1243V V V V <<< B .1324V V V V <<< C .2134V V V V <<<
D .2314V V V V <<<
3. 某几何体的三视图如图所示,若图中小正方形的边长均为1,则该几何体的体积是( )
A .321633π+
B .328
33π+ C .8163π+ D .16
163
π+
4. (16年全国一卷)如图,某几何体的三视图是三个半径相等的圆及每个圆中两条相
互垂直的半径.
若该几何体的体积是
283
π
,则它的表面积是( ) A . 17π B. 18π C. 20π D. 28π
5. 一个几何体的三视图如图所示,该几何体的表面积为( )
A .π-24
B .π324- C. π+24 D .π224-
多面体
1. 某几何体的三视图如图所示,则该几何体的体积为( )
A . 7
B .
C. D .
2. 若某几何体的三视图(单位:cm)如图所示,则此几何体的体积等于________2cm .
2153236
474
3 2
3
3
正视图
侧视图
俯视图
(第12题图)
3. 若某几何体的三视图(单位:cm)均为边长为1的正方形,如下图所示,则此几何体的
体积等于________2cm .
4. 一个长方体被一个平面截去一部分后,所剩几何体的三视图如图所示,则该几何体
的体积为( )
A .36
B .48 C. 64 D .7
5.
一个正方体被一个平面截去一部分后,剩余部分的三视图如下图,则截去部分体积与
剩余部分体积的比值为( )
6. 某几何体的三视图如图所示,则该几何体的体积为
1
A.8
1B.
71C.61D.
5。