数字信号处理答案

合集下载

数字信号处理习题与答案

数字信号处理习题与答案

==============================绪论==============================1. A/D 8bit 5V00000000 0V 00000001 20mV 00000010 40mV 00011101 29mV==================第一章 时域离散时间信号与系统==================1.①写出图示序列的表达式答:3)1.5δ(n 2)2δ(n 1)δ(n 2δ(n)1)δ(n x(n)-+---+++= ②用δ(n) 表示y (n )={2,7,19,28,29,15}2. ①求下列周期)54sin()8sin()4()51cos()3()54sin()2()8sin()1(n n n n n ππππ-②判断下面的序列是否是周期的; 若是周期的, 确定其周期。

(1)A是常数 8ππn 73Acos x(n)⎪⎪⎭⎫ ⎝⎛-= (2))81(j e )(π-=n n x 解: (1) 因为ω=73π, 所以314π2=ω, 这是有理数, 因此是周期序列, 周期T =14。

(2) 因为ω=81, 所以ωπ2=16π, 这是无理数, 因此是非周期序列。

③序列)Acos(nw x(n)0ϕ+=是周期序列的条件是是有理数2π/w 0。

3.加法乘法序列{2,3,2,1}与序列{2,3,5,2,1}相加为__{4,6,7,3,1}__,相乘为___{4,9,10,2} 。

移位翻转:①已知x(n)波形,画出x(-n)的波形图。

②尺度变换:已知x(n)波形,画出x(2n)及x(n/2)波形图。

卷积和:①h(n)*求x(n),其他02n 0n 3,h(n)其他03n 0n/2设x(n) 例、⎩⎨⎧≤≤-=⎩⎨⎧≤≤=}23,4,7,4,23{0,h(n)*答案:x(n)=②已知x (n )={1,2,4,3},h (n )={2,3,5}, 求y (n )=x (n )*h (n )x (m )={1,2,4,3},h (m )={2,3,5},则h (-m )={5,3,2}(Step1:翻转)解得y (n )={2,7,19,28,29,15}③(n)x *(n)x 3),求x(n)u(n u(n)x 2),2δ(n 1)3δ(n δ(n)2、已知x 2121=--=-+-+=}{1,4,6,5,2答案:x(n)=4. 如果输入信号为,求下述系统的输出信号。

(完整版)数字信号处理课后答案_史林版_科学出版社

(完整版)数字信号处理课后答案_史林版_科学出版社

第一章 作业题 答案############################################################################### 1.2一个采样周期为T 的采样器,开关导通时间为()0T ττ<<,若采样器的输入信号为()a x t ,求采样器的输出信号()()()a a x t x t p t ∧=的频谱结构。

式中()()01,()0,n p t r t n t r t ττ∞=-∞=-≤≤⎧=⎨⎩∑其他解:实际的采样脉冲信号为:()()n p t r t n τ∞=-∞=-∑其傅里叶级数表达式为:()000()jk tn p t Sa k T eTωωτω∞=-∞=∑采样后的信号可以表示为:()()()ˆa a xt x t p t δ= 因此,对采样后的信号频谱有如下推导:()()()()()()()()()()()()()0000000000000ˆˆsin 1j t a a jk t j t a n jk t j t a k j k ta k ak a k X j x t e dtx t Sa k T e e dtTSa k T x t e e dtTSa k T x t edtTSa k T X j jk Tk T X j jk T kωωωωωωωωτωωτωωτωωτωωωωωω∞--∞∞∞--∞=-∞∞∞--∞=-∞∞∞---∞=-∞∞=-∞∞=-∞Ω=====-=-⎰∑⎰∑⎰∑⎰∑∑%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%% 1.5有一个理想采样系统,对连续时间信号()a x t 进行等间隔T 采样,采样频率8s πΩ=rad/s ,采样后所得采样信号()a x t ∧经理想低通滤波器()G j Ω进行恢复,已知()41/4,,4G j ππ⎧Ω≤⎪Ω=⎨Ω>⎪⎩今有两个输入信号12()cos(2)()cos(5)a a x t t x t t ππ==和,对应的输出信号分别为12()()a a y t y t 和,如题1.5图所示,问12()()a a y t y t 、有没有失真,为什么?题1.5图 理想采样系统与恢复理想低通滤波器解:因为是理想采样系统,因此采样后的信号频谱可以表示为:()()1ˆa a s k X j X j jk T ∞=-∞Ω=Ω-Ω∑8s πΩ=,12πΩ=,25πΩ=,折叠频率为2s Ω,而滤波器对4πΩ≤的信号通过,因此有如下图:结论:1)1()a y t 不失真、2()a y t 失真。

《数字信号处理》试题库答案

《数字信号处理》试题库答案

一.填空题1、一线性时不变系统,输入为x(n)时,输出为y(n);则输入为2x(n)时,输出为2y(n) ;输入为x(n-3)时,输出为y(n-3) 。

2、从奈奎斯特采样定理得出,要使实信号采样后能够不失真还原,采样频率fs与信号最高频率f max关系为:fs>=2f max。

3、已知一个长度为N的序列x(n),它的离散时间傅立叶变换为X(e jw),它的N点离散傅立叶变换X (K)是关于X(e jw)的N 点等间隔采样。

4、有限长序列x(n)的8点DFT为X(K),则X(K)= 。

5、用脉冲响应不变法进行IIR数字滤波器的设计,它的主要缺点是频谱的交叠所产生的混叠现象。

6.若数字滤波器的单位脉冲响应h(n)是奇对称的,长度为N,则它的对称中心是(N-1)/2 。

7、用窗函数法设计FIR数字滤波器时,加矩形窗比加三角窗时,所设计出的滤波器的过渡带比较窄,阻带衰减比较小。

8、无限长单位冲激响应(IIR)滤波器的结构上有反馈环路,因此是递归型结构。

9、若正弦序列x(n)=sin(30nπ/120)是周期的,则周期是N= 8 。

10、用窗函数法设计FIR数字滤波器时,过渡带的宽度不但与窗的类型有关,还与窗的采样点数有关11.DFT与DFS有密切关系,因为有限长序列可以看成周期序列的主值区间截断,而周期序列可以看成有限长序列的周期延拓。

12.对长度为N的序列x(n)圆周移位m位得到的序列用x m(n)表示,其数学表达式为x m(n)=x((n-m))N R N(n)。

13.对按时间抽取的基2-FFT流图进行转置,并将输入变输出,输出变输入即可得到按频率抽取的基2-FFT流图。

14.线性移不变系统的性质有交换率、结合率和分配律。

15.用DFT近似分析模拟信号的频谱时,可能出现的问题有混叠失真、泄漏、栅栏效应和频率分辨率。

16.无限长单位冲激响应滤波器的基本结构有直接Ⅰ型,直接Ⅱ型,串联型和并联型四种。

数字信号处理复习资料(答案)

数字信号处理复习资料(答案)

一、 填空题1、 对模拟信号(一维信号,是时间的函数)进行采样后,就是 离散 信号,再进行幅度量化后就是 数字 信号。

2、若线性时不变系统是有因果性,则该系统的单位取样响应序列h(n)应满足的充分必要条件是 当n<0时,h(n)=0 。

3、序列)(n x 的N 点DFT 是)(n x 的Z 变换在 单位圆 的N 点等间隔采样。

4、)()(5241n R x n R x ==,只有当循环卷积长度L ≥8 时,二者的循环卷积等于线性卷积。

5、已知系统的单位抽样响应为h(n),则系统稳定的充要条件是()n h n ∞=-∞<∞∑6、巴特沃思低通滤波器的幅频特性与阶次N 有关,当N 越大时,通带内越_平坦______,过渡带越_窄___。

7、用来计算N =16点DFT ,直接计算需要__(N 2)16*16=256_ __次复乘法,采用基2FFT 算法,需要__(N/2 )×log 2N =8×4=32_____ 次复乘法。

8、无限长单位冲激响应(IIR )滤波器的基本结构有直接Ⅰ型,直接Ⅱ型,_级联型____和 _并联型__四种。

9、IIR 系统的系统函数为)(z H ,分别用直接型,级联型,并联型结构实现,其中 并联型 的运算速度最高。

10、数字信号处理的三种基本运算是: 延时、乘法、加法11、两个有限长序列和长度分别是和,在做线性卷积后结果长度是__N 1+N 2-1_____。

12、N=2M 点基2FFT ,共有__ M 列蝶形,每列有__ N/2 个蝶形。

13、线性相位FIR 滤波器的零点分布特点是 互为倒数的共轭对14、数字信号处理的三种基本运算是: 延时、乘法、加法15、在利用窗函数法设计FIR 滤波器时,窗函数的窗谱性能指标中最重要的是___过渡带宽___与__阻带最小衰减__。

16、_脉冲响应不变法_设计IIR 滤波器不会产生畸变。

17、用窗口法设计FIR 滤波器时影响滤波器幅频特性质量的主要原因是主瓣使数字滤波器存在过渡带,旁瓣使数字滤波器存在波动,减少阻带衰减。

数字信号处理课后习题答案完整版

数字信号处理课后习题答案完整版

数字信号处理课后习题答案HEN system office room 【HEN16H-HENS2AHENS8Q8-HENH1688】数字信号处理(姚天任江太辉)第三版课后习题答案第二章判断下列序列是否是周期序列。

若是,请确定它的最小周期。

(1)x(n)=Acos(685ππ+n )(2)x(n)=)8(π-ne j(3)x(n)=Asin(343ππ+n )解 (1)对照正弦型序列的一般公式x(n)=Acos(ϕω+n ),得出=ω85π。

因此5162=ωπ是有理数,所以是周期序列。

最小周期等于N=)5(16516取k k =。

(2)对照复指数序列的一般公式x(n)=exp[ωσj +]n,得出81=ω。

因此πωπ162=是无理数,所以不是周期序列。

(3)对照正弦型序列的一般公式x(n)=Acos(ϕω+n ),又x(n)=Asin(343ππ+n )=Acos(-2π343ππ-n )=Acos(6143-n π),得出=ω43π。

因此382=ωπ是有理数,所以是周期序列。

最小周期等于N=)3(838取k k =在图中,x(n)和h(n)分别是线性非移变系统的输入和单位取样响应。

计算并列的x(n)和h(n)的线性卷积以得到系统的输出y(n),并画出y(n)的图形。

解 利用线性卷积公式y(n)=∑∞-∞=-k k n h k x )()(按照折叠、移位、相乘、相加、的作图方法,计算y(n)的每一个取样值。

(a) y(0)=x(O)h(0)=1y(l)=x(O)h(1)+x(1)h(O)=3y(n)=x(O)h(n)+x(1)h(n-1)+x(2)h(n-2)=4,n ≥2 (b) x(n)=2δ(n)-δ(n-1)h(n)=-δ(n)+2δ(n-1)+ δ(n-2)y(n)=-2δ(n)+5δ(n-1)= δ(n-3) (c) y(n)=∑∞-∞=--k kn k n u k u a)()(=∑∞-∞=-k kn a=aa n --+111u(n) 计算线性线性卷积 (1) y(n)=u(n)*u(n) (2) y(n)=λn u(n)*u(n)解:(1) y(n)=∑∞-∞=-k k n u k u )()(=∑∞=-0)()(k k n u k u =(n+1),n ≥0即y(n)=(n+1)u(n) (2) y(n)=∑∞-∞=-k k k n u k u )()(λ=∑∞=-0)()(k kk n u k u λ=λλ--+111n ,n ≥0即y(n)=λλ--+111n u(n)图所示的是单位取样响应分别为h 1(n)和h 2(n)的两个线性非移变系统的级联,已知x(n)=u(n), h 1(n)=δ(n)-δ(n-4), h 2(n)=a n u(n),|a|<1,求系统的输出y(n). 解 ω(n)=x(n)*h 1(n) =∑∞-∞=k k u )([δ(n-k)-δ(n-k-4)]=u(n)-u(n-4)y(n)=ω(n)*h 2(n) =∑∞-∞=k kk u a )([u(n-k)-u(n-k-4)]=∑∞-=3n k ka,n ≥3已知一个线性非移变系统的单位取样响应为h(n)=a n -u(-n),0<a<1 用直接计算线性卷积的方法,求系统的单位阶跃响应。

(完整word版)数字信号处理习题及答案

(完整word版)数字信号处理习题及答案

==============================绪论==============================1。

A/D 8bit 5V 00000000 0V 00000001 20mV 00000010 40mV 00011101 29mV==================第一章 时域离散时间信号与系统==================1。

①写出图示序列的表达式答:3)1.5δ(n 2)2δ(n 1)δ(n 2δ(n)1)δ(n x(n)-+---+++= ②用(n ) 表示y (n )={2,7,19,28,29,15}2. ①求下列周期)54sin()8sin()4()51cos()3()54sin()2()8sin()1(n n n n n ππππ-②判断下面的序列是否是周期的; 若是周期的, 确定其周期。

(1)A是常数 8ππn 73Acos x(n)⎪⎪⎭⎫ ⎝⎛-= (2))81(j e )(π-=n n x 解: (1) 因为ω=73π, 所以314π2=ω, 这是有理数, 因此是周期序列, 周期T =14。

(2) 因为ω=81, 所以ωπ2=16π, 这是无理数, 因此是非周期序列。

③序列)Acos(nw x(n)0ϕ+=是周期序列的条件是是有理数2π/w 0。

3.加法 乘法序列{2,3,2,1}与序列{2,3,5,2,1}相加为__{4,6,7,3,1}__,相乘为___{4,9,10,2} 。

移位翻转:①已知x(n)波形,画出x(—n )的波形图。

②尺度变换:已知x(n)波形,画出x (2n )及x(n/2)波形图.卷积和:①h(n)*求x(n),其他2n 0n 3,h(n)其他3n 0n/2设x(n) 例、⎩⎨⎧≤≤-=⎩⎨⎧≤≤=}23,4,7,4,23{0,h(n)*答案:x(n)=②已知x (n )={1,2,4,3},h (n )={2,3,5}, 求y (n )=x (n )*h (n )x (m )={1,2,4,3},h (m )={2,3,5},则h (—m )={5,3,2}(Step1:翻转)解得y (n )={2,7,19,28,29,15}③(n)x *(n)x 3),求x(n)u(n u(n)x 2),2δ(n 1)3δ(n δ(n)2、已知x 2121=--=-+-+=}{1,4,6,5,2答案:x(n)=4. 如果输入信号为,求下述系统的输出信号。

数字信号处理试题及答案

数字信号处理试题及答案

数字信号处理试题及答案一、选择题1. 数字信号处理中的离散傅里叶变换(DFT)是傅里叶变换的______。

A. 连续形式B. 离散形式C. 快速算法D. 近似计算答案:B2. 在数字信号处理中,若信号是周期的,则其傅里叶变换是______。

A. 周期的B. 非周期的C. 连续的D. 离散的答案:A二、填空题1. 数字信号处理中,______是将模拟信号转换为数字信号的过程。

答案:采样2. 快速傅里叶变换(FFT)是一种高效的______算法。

答案:DFT三、简答题1. 简述数字滤波器的基本原理。

答案:数字滤波器的基本原理是根据信号的频率特性,通过数学运算对信号进行滤波处理。

它通常包括低通滤波器、高通滤波器、带通滤波器和带阻滤波器等类型,用于选择性地保留或抑制信号中的某些频率成分。

2. 解释什么是窗函数,并说明其在信号处理中的作用。

答案:窗函数是一种数学函数,用于对信号进行加权,以减少信号在离散化过程中的不连续性带来的影响。

在信号处理中,窗函数用于平滑信号的开始和结束部分,减少频谱泄露效应,提高频谱分析的准确性。

四、计算题1. 给定一个信号 x[n] = {1, 2, 3, 4},计算其 DFT X[k]。

答案:首先,根据 DFT 的定义,计算 X[k] 的每个分量:X[0] = 1 + 2 + 3 + 4 = 10X[1] = 1 - 2 + 3 - 4 = -2X[2] = 1 + 2 - 3 - 4 = -4X[3] = 1 - 2 - 3 + 4 = 0因此,X[k] = {10, -2, -4, 0}。

2. 已知一个低通滤波器的截止频率为0.3π rad/sample,设计一个简单的理想低通滤波器。

答案:理想低通滤波器的频率响应为:H(ω) = { 1, |ω| ≤ 0.3π{ 0, |ω| > 0.3π }五、论述题1. 论述数字信号处理在现代通信系统中的应用及其重要性。

答案:数字信号处理在现代通信系统中扮演着至关重要的角色。

数字信号处理课后习题答案(全)1-7章

数字信号处理课后习题答案(全)1-7章

x(n)=-δ(n+2)+δ(n-1)+2δ(n-3)
h(n)=2δ(n)+δ(n-1)+ δ(n-2)
由于
x(n)*δ(n)=x(n)
1
x(n)*Aδ(n-k)=Ax(n-k)
2

第 1 章 时域离散信号和时域离散系统
y(n)=x(n)*h(n)
=x(n)*[2δ(n)+δ(n-1)+ δ(n-2) 1 2
(5) 系统是因果系统, 因为系统的输出不取决于x(n)的未来值。 如果
|x(n)|≤M, 则|y(n)|=|ex(n)|≤e|x(n)|≤eM,
7. 设线性时不变系统的单位脉冲响应h(n)和输入序列x(n)如题7图所示,
要求画出y(n)输出的波形。
解: 解法(一)采用列表法。
y(n)=x(n)*h(n)=
0≤m≤3
-4≤m≤n
非零区间如下:
第 1 章 时域离散信号和时域离散系统
根据非零区间, 将n分成四种情况求解: ① n<0时, y(n)=0
② 0≤n≤3时, y(n)= ③ 4≤n≤7时, y(n)= ④ n>7时, y(n)=0
1=n+1
n
1=8-m n0
3
mn4
第 1 章 时域离散信号和时域离散系统
第 1 章 时域离散信号和时域离散系统
(3) 这是一个延时器, 延时器是线性非时变系统, 下面证明。 令输入为
输出为
x(n-n1)
y′(n)=x(n-n1-n0) y(n-n1)=x(n-n1-n0)=y′(n) 故延时器是非时变系统。 由于
T[ax1(n)+bx2(n)]=ax1(n-n0)+bx2(n-n0) =aT[x1(n)]+bT[x2(n)]

数字信号处理习题答案

数字信号处理习题答案

y(n)=(2-0.5n)R5(n)+31×0.5nu(n-5)
第1章 时域离散信号与时域离散系统
13. 有一连续信号xa(t)=cos(2πft+j), 式中, f=20 Hz, j=π/2
(1) 求出xa(t)
(2) 用采样间隔T=0.02 s对xa(t)进行采样, 试写出采样信号xˆa (t)
y(n)的波形如题8解图(2)所示
题8解图(2)
第1章 时域离散信号与时域离散系统
(3) y(n)=x(n)*h(n)

=
R5(m)0.5n-mu(n-m)
m

=0.5n R5(m)0.5-mu(n-m)
m
y(n)对于m 的非零区间为
0≤m≤4, m≤n
① n<0时, y(n)=0 ② 0≤n≤4时,
y(n)

n
0.5n 0.5m
m0

1 0.5n1 1 0.51
=-(1-0.5-n-1)0.5n=2-0.5n
第1章 时域离散信号与时域离散系统
③ n≥5时
y(n)

4
0.5n 0.5m
m0

1 0.55 1 0.51
0.5n

31 0.5n
最后写成统一表达式:
式中 s 2πfs 800π rad/s
第2章 时域离散信号和系统的频域分析



X (e j ) x(n)e jn 2 cos(0nT )e jn 2 cos(0n)e jn
n
n
n

[e j0n e j0n ]e jn
(2) 写出 xˆa (t) 和x(n)的表达式;

数字信号处理课后习题答案

数字信号处理课后习题答案

(修正:此题有错,
(3)系统的单位脉冲响应 而改变,是两个复序列信号之和)
(4)
(修正: 随上小题答案
(修正:此图错误,乘系数应该为 0.5,输出端 y(n)应该在两个延迟器 D 之间)
1-25 线性移不变离散时间系统的差分方程为
(1)求系统函数 ; (2)画出系统的一种模拟框图; (3)求使系统稳定的 A 的取值范围。 解:(1)
(2)
(3)
解:(1)
(2)
(3)
1-7 若采样信号 m(t)的采样频率 fs=1500Hz,下列信号经 m(t)采样后哪些信号不 失真? (1) (2) (3) 解:
(1)
采样不失真
(2)
采样不失真
(3)

采样失真
1-8 已知
,采样信号 的采样周期为 。
(1) 的截止模拟角频率 是多少?
(2)将 进行 A/D 采样后, 如何?
(3)最小阻带衰减 5-4
由分式(5.39)根据 A 计算 ,如下: 由表 5.1 根据过度带宽度 计算窗口:
单位脉冲响应如下:
单位脉冲响应如下:
其中 为凯泽窗。 5-5 答:减小窗口的长度 N,则滤波器的过度带增加,但最小阻带衰减保持不变。 5-6:图 5.30 中的滤波器包括了三类理想滤波器,包括了低通,带通和高通,其响应的单位
(1)

(2)
1-18 若当 时
;时
(1)
,其中
(2) 证明:
,收敛域
,其中 N 为整数。试证明: ,
(1) 令 其中
,则 ,
(2)
,
1-19 一系统的系统方程及初时条件分别如下: ,
(1)试求零输入响应 ,零状态响应 ,全响应 ; (2)画出系统的模拟框图 解: (1)零输入响应

数字信号处理简答题答案

数字信号处理简答题答案

数字信号处理简答题答案一、选择题1.某系统y(k)=kx(k),则该系统()。

a.线性时变b.线性非时变c.非线性非时变d.非线性时变2.因果平衡系统的系统函数h(z)的发散域就是()。

a.z?0.9b.z?1.1c.z?1.1d.z?0.93.x(k)?3sin(0.5?k)的周期()。

a.4b.3c.2d.14.以下序列中为共轭等距序列的就是()a.x(k)=x*(-k)b.x(k)=x*(k)c.x(k)=-x*(-k)d.x(k)=-x*(k)5.n?1024点的idft,须要复数相加次数约()。

a.1024b.1000c.10000d.10000006.重叠保留法输入段的长度为n?n1?n2?1,h(k)(长为n1),每一输出段的前(点就是要去掉的部分,把各相邻段流下来的点衔接起来,就构成了最终的输出。

a.n?1b.n1?1c.n2?1d.n1?n2?17.线性相位fir滤波器的单位脉冲响应偶对称表达式为()。

a.h(k)?h(n?1?k)b.h(k)?h(n?1)c.h(k)?h(n?k)d.h(k)?h(k?n)8.线性增益fir滤波器与相同阶数的iir滤波器较之,可以节省一半左右的()。

a.加法器b.乘法器c.乘法器和加法器d.延后器9.窗函数的主瓣宽度越小,用其设计的线性相位fir滤波器的()。

a.过渡带越窄b.过渡带越宽c.过渡带内外波动越大d.过渡带内外波动越大10.某系统y(k)?g(k)x(k),g(k)存有界,则该系统()。

a.因果平衡b.非因果平衡c.因果不平衡d.非因果不平衡11.序列x(k)??aku(?k?1),在x(z)的发散域为()。

a.z?ab.z?ac.z?ad.z?a12.关于序列x(k)的dtftx(ej?),下列说法正确的是()。

a.非周期连续函数b.非周期离散函数c.周期连续函数,周期为2?d.周期线性函数,周期为2?13.w18?()。

a.22(1?j)b.22(1?j)c.22(?1?j)d.22(?1?j)14.一有限长序列x(k)的dft为x(m),则x(k)可表达为()。

数字信号处理试题及答案

数字信号处理试题及答案

数字信号处理试题及答案1. 试题1.1 选择题1. 设x(n)为长度为N的实序列,其中0≤n≤N-1。

要将其进行离散傅立叶变换(DFT),DFT的结果为X(k),其中0≤k≤N-1。

以下哪个式子为正确的傅立叶变换公式?A. X(k) = ∑[x(n) * exp(-j2πkn/N)],0≤k≤N-1B. X(k) = ∑[x(n) * exp(-j2πnk/N)],0≤k≤N-1C. X(k) = ∑[x(n) * exp(-jπkn/N)],0≤k≤N-1D. X(k) = ∑[x(n) * exp(-jπnk/N)],0≤k≤N-12. 在基于FFT算法的离散傅立叶变换中,当序列长度N为2的整数幂时,计算复杂度为:A. O(N^2)B. O(NlogN)C. O(logN)D. O(N)3. 对于一个由N个采样值组成的序列,它的z变换被定义为下式:X(z) = ∑[x(n) * z^(-n)],其中n取0至N-1以下哪个选项正确表示该序列的z变换?A. X(z) = X(z)e^(-i2π/N)B. X(z) = X(z)e^(-iπ/N)C. X(z) = X(z^-1)e^(-i2π/N)D. X(z) = X(z^-1)e^(-iπ/N)1.2 简答题1. 请简要说明数字信号处理(DSP)的基本概念和应用领域。

2. 解释频率抽样定理(Nyquist定理)。

3. 在数字滤波器设计中,有两种常见的滤波器类型:FIR和IIR滤波器。

请解释它们的区别,并举例说明各自应用的情况。

2. 答案1.1 选择题答案1. B2. B3. D1.2 简答题答案1. 数字信号处理(DSP)是一种利用数字计算机或数字信号处理器对信号进行采样、量化、处理和重建的技术。

它可以应用于音频处理、图像处理、通信系统、雷达系统等领域。

DSP可以实现信号的滤波、变换、编码、解码、增强等功能。

2. 频率抽样定理(Nyquist定理)指出,为了正确地恢复一个连续时间信号,我们需要对其进行采样,并且采样频率要大于信号中最高频率的两倍。

数字信号处理答案

数字信号处理答案

1-1画出下列序列的示意图(1)(2)(3)(1)(2)(3)1-2已知序列x(n)的图形如图1.41,试画出下列序列的示意图。

图1。

41信号x(n)的波形(1)(2)(3)(4)(5)(6)(修正:n=4处的值为0,不是3) (修正:应该再向右移4个采样点)1-3判断下列序列是否满足周期性,若满足求其基本周期(1)解:非周期序列;(2)解:为周期序列,基本周期N=5;(3)解:,,取为周期序列,基本周期。

(4)解:其中,为常数,取,,取则为周期序列,基本周期N=40。

1—4判断下列系统是否为线性的?是否为移不变的?(1)非线性移不变系统(2)非线性移变系统(修正:线性移变系统)(3)非线性移不变系统(4)线性移不变系统(5)线性移不变系统(修正:线性移变系统)1—5判断下列系统是否为因果的?是否为稳定的?(1),其中因果非稳定系统(2)非因果稳定系统(3)非因果稳定系统(4)非因果非稳定系统(5)因果稳定系统1-6已知线性移不变系统的输入为x(n),系统的单位脉冲响应为h(n),试求系统的输出y(n)及其示意图(1)(2)(3)解:(1)(2)(3)1—7若采样信号m(t)的采样频率fs=1500Hz,下列信号经m(t)采样后哪些信号不失真?(1)(2)(3)解:(1)采样不失真(2)采样不失真(3),采样失真1-8已知,采样信号的采样周期为。

(1)的截止模拟角频率是多少?(2)将进行A/D采样后,的数字角频率与的模拟角频率的关系如何?(3)若,求的数字截止角频率。

解:(1)(2)(3)1—9计算下列序列的Z变换,并标明收敛域。

(1)(2)(3)(4)(5)解:(1)(2)(3)(4),,收敛域不存在(5)1-10利用Z变换性质求下列序列的Z变换.(1)(2)(3)(4)解:(1),(2),(3),(4),1—11利用Z变换性质求下列序列的卷积和。

(1)(2)(3)(4)(5)(6)解:(1),,,,(2),,,(3), ,,(4),,(5),,,(6),,,1—12利用的自相关序列定义为,试用的Z变换来表示的Z变换。

数字信号处理答案 唐向宏

数字信号处理答案 唐向宏
(3) (4) x(n)=xa(nT)=2cos(100πn+π/2) N=1 1-17:(c):{-2 5 0 -1}B1B 1-22:(1)线性 (2)线性 (3)线性 1-23:(1)时变 (2)时变 (3)时不变 1-24:(1)非因果 (2)非因果 (3)因果(n0>0);非因果(n0<0) 1-25:(1)稳定 (2)稳定 (3)稳定 1-26:(1)因果不稳定 (2)非因果稳定 1-27:y(n)=x(n)*h1(n)*[h1(n)+h2(n)]
疯狂猜图答案疯狂猜歌答案疯狂猜图所有答案大写数字一到十大地数字影院疯狂猜图品牌答案数字大写疯狂猜成语答案看图猜成语答案罗马数字
“数字信号处理”课程 习题答案
第一章 1-3:(1) 非周期 (2)周期 N=10 (3)周期 N=2 1-11:N4=N0+N2 N5=N1+N3 1-13:(1)能恢复原始信号 (2)不能 (3)能 1-14:(1) T=0.02s (2)fs=100
h((-m))7 -1 1 1 -1 -1 -1 -1
0
h((1-m))7 -1 -1 1 1 -1 -1 -1
4
h((2-m))7 -1 -1 -1 1 1 -1 -1
-2
h((3-m))7 -1 -1 -1 -1 1 1 -1
-10
h((4-m))7 -1 -1 -1 -1 -1 1 1
-10
h((5-m))7 1 -1 -1 -1 -1 -1 1
(2) (3) (4)
10. 已知两个有限长序列:x(n)={1, 2, 3, 4, 0, 0, 0}0,h(n)={-1, -1, -1, -1, -1, 1, 1}0。
求x(n)⑦h(n)。 m 01

数字信号处理答案 唐向宏

数字信号处理答案 唐向宏

第二章 2-1:(1)
(3) 或者
(6) 2-4:(1)
(3) 2-5: 2-9:(1) 2-12:
(2) (3)
2-16:
第三章 3-1:(1)
(3) (5) 3-4:
3-8:(1) (2)
3-10:
3-11:
3-17: 3-19 已知有限长序列, , N=10 试求(1);(2);(3); 解:, **** ,
**** 1) 2) 3) 3-20:(1) ;(2) 解: 同理可得 3-24:已知x(n)和y(n)为实有限长序列,若, ,试求以下两种情况的,以及 和: (1);(2) 解:的实部傅里叶变换对应于共轭对称分量,虚部的傅里叶变换对应于 共轭反对称分量。 (1) (2)
3-25:解:记 r(n)长度为20,圆周卷积与线性卷积关系 只有在如上周期延拓序列中无混叠的点才满足r(n)=rl(n) 所以 3-26:(1)
(2) (3) (4)
10. 已知两个有限长序列:x(n)={1, 2, 3, 4, 0, 0, 0}0,h(n)={-1, -1, -1, -1, -1, 1, 1}0。
求x(n)⑦h(n)。 m 01
23 4 5 6
f(n)= x(n)⑦h(n)
x(m) 1 2 3 4 0 0 0
h(m) -1 -1 -1 -1 -1 1 1
“数字信号处理”课程 习题答案
第一章 1-3:(1) 非周期 (2)周期 N=10 (3)周期 N=2 1-11:N4=N0+N2 N5=N1+N3 1-13:(1)能恢复原始信号 (2)不能 (3)能 1-14:(1) T=0.02s (2)fs=100
(3) (4) x(n)=xa(nT)=2cos(100πn+π/2) N=1 1-17:(c):{-2 5 0 -1}B1B 1-22:(1)线性 (2)线性 (3)线性 1-23:(1)时变 (2)时变 (3)时不变 1-24:(1)非因果 (2)非因果 (3)因果(n0>0);非因果(n0<0) 1-25:(1)稳定 (2)稳定 (3)稳定 1-26:(1)因果不稳定 (2)非因果稳定 1-27:y(n)=x(n)*h1(n)*[h1(n)+h2(n)]

数字信号处理习题集(附答案)

数字信号处理习题集(附答案)

第一章数字信号处理概述简答题:1.在A/D变换之前和D/A变换之后都要让信号通过一个低通滤波器,它们分别起什么作用?答:在A/D变化之前为了限制信号的最高频率,使其满足当采样频率一定时,采样频率应大于等于信号最高频率2倍的条件。

此滤波器亦称为“抗混叠”滤波器.在D/A变换之后为了滤除高频延拓谱,以便把抽样保持的阶梯形输出波平滑化,故又称之为“平滑”滤波器.判断说明题:2.模拟信号也可以与数字信号一样在计算机上进行数字信号处理,自己要增加一道采样的工序就可以了。

( )答:错.需要增加采样和量化两道工序。

3.一个模拟信号处理系统总可以转换成功能相同的数字系统,然后基于数字信号处理理论,对信号进行等效的数字处理.( ) 答:受采样频率、有限字长效应的约束,与模拟信号处理系统完全等效的数字系统未必一定能找到。

因此数字信号处理系统的分析方法是先对抽样信号及系统进行分析,再考虑幅度量化及实现过程中有限字长所造成的影响。

故离散时间信号和系统理论是数字信号处理的理论基础.第二章 离散时间信号与系统分析基础一、连续时间信号取样与取样定理计算题:1.过滤限带的模拟数据时,常采用数字滤波器,如图所示,图中T 表示采样周期(假设T 足够小,足以防止混叠效应),把从)()(t y t x 到的整个系统等效为一个模拟滤波器.(a ) 如果kHz rad n h 101,8)(=π截止于,求整个系统的截止频率. (b)对于kHz T 201=,重复(a )的计算.解 (a )因为当0)(8=≥ωπωj e H rad 时,在数 — 模变换中)(1)(1)(Tj X Tj X Te Y a a j ωω=Ω=所以)(n h 得截止频率8πω=c 对应于模拟信号的角频率c Ω为8π=ΩT c因此 Hz Tf c c 6251612==Ω=π 由于最后一级的低通滤波器的截止频率为Tπ,因此对T8π没有影响,故整个系统的截止频率由)(ωj e H 决定,是625Hz 。

数字信号处理习题答案作者杨毅明习题解答

数字信号处理习题答案作者杨毅明习题解答
将公式(11.18)中的 n 替换为 n-1,得到系统在 n-1 时刻的输出
(11.18)
如果原来的单位脉冲响应乘上一个绝对值小于 1 的指数序列,则新的系统可以成为稳定 系统。例如:
h(n)
=
0.7 n
π sin(
n)u(n)
2
(11.12)
5
它的绝对值小于等于 0.7n,根据等比数列前 N 项之和=a1(1-rN)/(1-r),a1 是数列的首项,r 是公比,N 是数列的项的个数,单位脉冲响应(11.12)的绝对值之和
h(n) = 2(−0.5)n u(n)
(11.16)
17. (1)语言法
观察公式(2.104),h(n)是指数序列。根据因果性,y(n)的第 1 个非 0 值是输入 3x(n)产生 的,因为 h(n)是指数序列,所以后面的 y(n)是先前的 y(n-1)的 0.6 倍产生的,分析得到该 系统的差分方程是
5. 因为语文成绩的等级是离散的自变量,计算比例和表示比例时都是使用有限长的数字, 所以统计是数字信号处理。
6. 环境的温度变化是非常缓慢的,观察这种变化时没必要连续进行,记录这种温度没必要 也不可能百分之百准确,还是用数字信号处理的方法好。
7. 放大电信号的幅度是最简单的信号处理,选择功率放大器就可以增大声音的传播距离。 功率放大器是模拟电路,它是最简单的模拟信号处理电路。
天数=要求的单词量÷平均每天记忆的单词量=1 万÷平均每天记忆的单词量,达到阅读 英语书籍需要的年数=需要的学习天数÷365 天。 12. 选择数字方式较好,理由是:用数字方式记录的信号容易反复地查找、观察、分析和比 较,就像使用 CD 机查找一首歌或反复播放一首歌;地震信号的观测是每天 24 小时连续 不停的,模拟方式使用热敏纸记录或磁带记录,消耗材料较多。

数字信号处理习题及答案完整版

数字信号处理习题及答案完整版

数字信号处理习题及答案HEN system office room 【HEN16H-HENS2AHENS8Q8-HENH1688】==============================绪论============================== 1. A/D 8bit 5V 00000000 0V 00000001 20mV 00000010 40mV 00011101 29mV==================第一章 时域离散时间信号与系统================== 1.①写出图示序列的表达式答:3)1.5δ(n 2)2δ(n 1)δ(n 2δ(n)1)δ(n x(n)-+---+++= ②用(n) 表示y (n )={2,7,19,28,29,15} 2. ①求下列周期②判断下面的序列是否是周期的; 若是周期的, 确定其周期。

(1)A是常数 8ππn 73Acos x(n)⎪⎪⎭⎫ ⎝⎛-= (2))81(j e )(π-=n n x 解: (1) 因为ω=73π, 所以314π2=ω, 这是有理数, 因此是周期序列, 周期T =14。

(2) 因为ω=81, 所以ωπ2=16π, 这是无理数, 因此是非周期序列。

③序列)Acos(nw x(n)0ϕ+=是周期序列的条件是是有理数2π/w 0。

3.加法乘法序列{2,3,2,1}与序列{2,3,5,2,1}相加为__{4,6,7,3,1}__,相乘为___{4,9,10,2} 。

移位翻转:①已知x(n)波形,画出x(-n)的波形图。

②尺度变换:已知x(n)波形,画出x(2n)及x(n/2)波形图。

卷积和:①h(n)*求x(n),其他2n 0n 3,h(n)其他3n 0n/2设x(n) 例、⎩⎨⎧≤≤-=⎩⎨⎧≤≤=②已知x (n )={1,2,4,3},h (n )={2,3,5}, 求y (n )=x (n )*h (n )x (m )={1,2,4,3},h (m )={2,3,5},则h (-m )={5,3,2}(Step1:翻转)解得y (n )={2,7,19,28,29,15} ③(n)x *(n)x 3),求x(n)u(n u(n)x 2),2δ(n 1)3δ(n δ(n)2、已知x 2121=--=-+-+=4. 如果输入信号为,求下述系统的输出信号。

数字信号处理课后习题答案 全全全

数字信号处理课后习题答案   全全全
1 0.5
1
1 >
. . z
z
(3) , | | 0.5
1 0.5
1
1 <
. . z
z
(4)
, | | 0
1 0.5
1 (0.5 )
1
1 10
>
.
.
.
.
z
z
z
1.8 (1) ) , 0
1
( ) (1 2
1 3 3
3.014 2.91 1.755 0.3195
0.3318 0.9954 0.9954 0.3318
1 0.9658 0.5827 0.1060
z z z
z z z
z z z
z z z
. . .
. . .
. . .
. . .
. + .
=
= . . +
= . . . +
..
.
..
. π
2.13
0,1,2, , 1
( ) ( )
= .
=
k N
Y rk X k
..
2.14
Y(k) = X ((k)) R (k) k = 0,1, ,rN .1 N rN ..
2.15 (1) x(n) a R (n) N
= n y(n) b R (n) N
= n
(2) x(n) =δ (n) y(n) = Nδ (n)
2.16 ( )
1
1 a R N
a N
n
. N
  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

1-1画出下列序列的示意图(1)(2)(3)(1)(2)(3)1-2已知序列x(n)的图形如图1.41,试画出下列序列的示意图。

图1.41信号x(n)的波形(1)(2)(3)(4)(5)(6)(修正:n=4处的值为0,不是3)(修正:应该再向右移4个采样点)1-3判断下列序列是否满足周期性,若满足求其基本周期(1)解:非周期序列;(2)解:为周期序列,基本周期N=5;(3)解:,,取为周期序列,基本周期。

(4)解:其中,为常数,取,,取则为周期序列,基本周期N=40。

1-4判断下列系统是否为线性的?是否为移不变的?(1)非线性移不变系统(2)非线性移变系统(修正:线性移变系统)(3)非线性移不变系统(4)线性移不变系统(5)线性移不变系统(修正:线性移变系统)1-5判断下列系统是否为因果的?是否为稳定的?(1),其中因果非稳定系统(2)非因果稳定系统(3)非因果稳定系统(4)非因果非稳定系统(5)因果稳定系统1-6已知线性移不变系统的输入为x(n),系统的单位脉冲响应为h(n),试求系统的输出y(n)及其示意图(1)(2)(3)解:(1)(2)(3)1-7若采样信号m(t)的采样频率fs=1500Hz,下列信号经m(t)采样后哪些信号不失真?(1)(2)(3)解:(1)采样不失真(2)采样不失真(3),采样失真1-8已知,采样信号的采样周期为。

(1)的截止模拟角频率是多少?(2)将进行A/D采样后,的数字角频率与的模拟角频率的关系如何?(3)若,求的数字截止角频率。

解:(1)(2)(3)1-9计算下列序列的Z变换,并标明收敛域。

(1)(2)(3)(4)(5)解:(1)(2)(3)(4),,收敛域不存在(5)1-10利用Z变换性质求下列序列的Z变换。

(1)(2)(3)(4)解:(1),(2),(3),(4),1-11利用Z变换性质求下列序列的卷积和。

(1)(2)(3)(4)(5)(6)解:(1),,,,(2),,,(3), ,,(4),,(5),,,(6),,,1-12利用的自相关序列定义为,试用的Z变换来表示的Z变换。

解:1-13求序列的单边Z变换X(Z).解:所以:1-14试求下列函数的逆Z变换(1)(2)(3)(4),整个Z平面(除z=0点)(5)(6)解:(1)(2),(3)(4)(5)(6)1-15已知因果序列的Z变换如下,试求该序列的初值及终值。

(1)(2)(3)解:(1),(2),(3),1-16若存在一离散时间系统的系统函数,根据下面的收敛域,求系统的单位脉冲响应,并判断系统是否因果?是否稳定?(1) ,(2) , (3)解:(1) ,,因果不稳定系统(2) ,,非因果稳定系统(3) ,,非因果非稳定系统1-17一个因果系统由下面的差分方程描述(1)求系统函数及其收敛域;(2)求系统的单位脉冲响应。

解:(1),(2)1-18若当时;时,其中N为整数。

试证明:(1),其中,(2),收敛域证明:(1) 令,则其中,(2) ,1-19一系统的系统方程及初时条件分别如下:,(1)试求零输入响应,零状态响应,全响应;(2)画出系统的模拟框图解:(1)零输入响应,,得,则零状态响应,,则(2)系统模拟框图1-20若线性移不变离散系统的单位阶跃响应,(1)求系统函数和单位脉冲响应;(2)使系统的零状态,求输入序列;(3)若已知激励,求系统的稳态响应。

解:(1)激励信号为阶跃信号,,(2)若系统零状态响应则(3)若,则从可以判断出稳定分量为:1-21设连续时间函数的拉普拉斯变换为,现对以周期T进行抽样得到离散时间函数,试证明的Z变换满足:证明:,则当时1-22设序列的自相关序列定义为,设。

试证明:当为的一个极点时,是的极点。

证明:,故当为的一个极点时,也是的极点。

1-23研究一个具有如下系统函数的线性移不变因果系统,其中为常数。

(1)求使系统稳定的的取值范围;(2)在Z平面上用图解法证明系统是一个全通系统。

解:(1) ,若系统稳定则,极点,零点(2) ,系统为全通系统1-24一离散系统如图,其中为单位延时单位,为激励,为响应。

(1)求系统的差分方程;(2)写出系统转移函数并画出平面极点分布图;(3)求系统单位脉冲响应(4)保持不变,画出节省了一个延时单元的系统模拟图。

解:(1)(2) (修正:此题有错,两个极点位于0.5±j0.5 )(3)系统的单位脉冲响应(修正:随上小题答案而改变,是两个复序列信号之和)(4)(修正:此图错误,乘系数应该为0.5,输出端y(n)应该在两个延迟器D之间)1-25线性移不变离散时间系统的差分方程为(1)求系统函数;(2)画出系统的一种模拟框图;(3)求使系统稳定的A的取值范围。

解:(1)系统函数(2)(此图非直接形式,是转置形式)(3)若使系统稳定,系统极点,则(修正:要根据系统是否为因果系统分别考虑,非因果系统下极点应该位于单位圆外)2-1解:,2-2证明:根据线性移不变系统的频率响应特性:当一个LSI系统的输入信号是一个复正弦信号时,该系统的输出也是一个复正弦信号,与输入信号相比多了系数 .信号==2-3解: (1)令(2)图见电子版(3)当系统是线性移不变系统时,若输入信号为实正弦信号,输出信号也是一个具有相同频率的正弦信号,但该信号的幅度和相位都发生了变化.表达式如下:系统函数为,输入信号,输出信号当时,2-4解: (1) 零点极点(2)(4)图见电子版2-5解: 系统是LSI系统,, 其中2-6证明:(1) ,(1的离散时间傅立叶变换为)即,则(2)令(3) ,当且仅当时有值(4)2-7解:2-8 解:,,,区间的幅度谱:区间内三种采样频率下的幅度谱2-9解:2-10解:首先观察四种情况都满足Nyquist采样定理,因此,采样后的信号的频谱将是原连续信号频谱以为周期的延拓。

(1)(2)(3)(4)22-11证明:2-12解:(1)对差分方程求Z变换得:(即为矩形窗的幅度谱)(2)图见电子版(3)2-15(1)载波信号为1处信号(2)2-13证明:(1)设(2)(3)由式(1)(2)(3),令上式中原题得证。

2-14证明:2-18解:对差分方程求Z变换全通系统为常数,即也为常数。

可对求导,其导数应为0。

即:或题中要求取2-19 解:(1)(2)(3)当输入信号是实正弦信号,为系统输出(5)当时,。

不是因果系统(6)2-20解:设取样器的输出为设压缩器的输出为由b图中两系统等效可列出如下等式:等式两边约简可得:2-1解:,2-2证明:根据线性移不变系统的频率响应特性:当一个LSI系统的输入信号是一个复正弦信号时,该系统的输出也是一个复正弦信号,与输入信号相比多了系数 .信号==2-3解: (1)令(2)图见电子版(3)当系统是线性移不变系统时,若输入信号为实正弦信号,输出信号也是一个具有相同频率的正弦信号,但该信号的幅度和相位都发生了变化.表达式如下:系统函数为,输入信号,输出信号当时,2-4解: (1) 零点极点(2)(4)图见电子版2-5解: 系统是LSI系统,, 其中2-6证明:(1) ,(1的离散时间傅立叶变换为)即,则(2)令(3) ,当且仅当时有值(4)2-7解:2-8 解:,,,区间的幅度谱:区间内三种采样频率下的幅度谱2-9解:2-10解:首先观察四种情况都满足Nyquist采样定理,因此,采样后的信号的频谱将是原连续信号频谱以为周期的延拓。

(1)(2)(3)(4)22-11证明:2-12解:(1)对差分方程求Z变换得:(即为矩形窗的幅度谱)(2)图见电子版(3)2-15(1)载波信号为1处信号(2)2-13证明:(1)设(2)(3)由式(1)(2)(3),令上式中原题得证。

2-14证明:2-18解:对差分方程求Z变换全通系统为常数,即也为常数。

可对求导,其导数应为0。

即:或题中要求取2-19 解:(1)(2)(3)当输入信号是实正弦信号,为系统输出(5)当时,。

不是因果系统(6)2-20解:设取样器的输出为设压缩器的输出为由b图中两系统等效可列出如下等式:等式两边约简可得:3-1解:(1)(2)(3)补零后:不变;变化,变的更加逼近(4)不能3-2解:(1)令循环卷积其余(2)其余其余(3)其余(4)补一个零后的循环卷积其余3-3解:,即可分辨出两个频率分量本题中的两个频率分量不能分辨3-4解:对它取共轭:与比较,可知:1,只须将的DFT变换求共轭变换得;2,将直接fft程序的输入信号值,得到;3,最后再对输出结果取一次共轭变换,并乘以常数,即可求出IFFT变换的的值。

3-5解:可以;证明:设其中是在单位圆上的Z变换,与的关系如下:是在频域上的N点的采样,与的关系如下:相当于是在单位圆上的Z变换的N点采样。

3-6解:,,图见电子版3-7解:,,,,图见电子版3-8解:。

相关文档
最新文档