数字信号处理答案解析

合集下载

(完整版)数字信号处理课后答案_史林版_科学出版社

(完整版)数字信号处理课后答案_史林版_科学出版社

第一章 作业题 答案############################################################################### 1.2一个采样周期为T 的采样器,开关导通时间为()0T ττ<<,若采样器的输入信号为()a x t ,求采样器的输出信号()()()a a x t x t p t ∧=的频谱结构。

式中()()01,()0,n p t r t n t r t ττ∞=-∞=-≤≤⎧=⎨⎩∑其他解:实际的采样脉冲信号为:()()n p t r t n τ∞=-∞=-∑其傅里叶级数表达式为:()000()jk tn p t Sa k T eTωωτω∞=-∞=∑采样后的信号可以表示为:()()()ˆa a xt x t p t δ= 因此,对采样后的信号频谱有如下推导:()()()()()()()()()()()()()0000000000000ˆˆsin 1j t a a jk t j t a n jk t j t a k j k ta k ak a k X j x t e dtx t Sa k T e e dtTSa k T x t e e dtTSa k T x t edtTSa k T X j jk Tk T X j jk T kωωωωωωωωτωωτωωτωωτωωωωωω∞--∞∞∞--∞=-∞∞∞--∞=-∞∞∞---∞=-∞∞=-∞∞=-∞Ω=====-=-⎰∑⎰∑⎰∑⎰∑∑%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%% 1.5有一个理想采样系统,对连续时间信号()a x t 进行等间隔T 采样,采样频率8s πΩ=rad/s ,采样后所得采样信号()a x t ∧经理想低通滤波器()G j Ω进行恢复,已知()41/4,,4G j ππ⎧Ω≤⎪Ω=⎨Ω>⎪⎩今有两个输入信号12()cos(2)()cos(5)a a x t t x t t ππ==和,对应的输出信号分别为12()()a a y t y t 和,如题1.5图所示,问12()()a a y t y t 、有没有失真,为什么?题1.5图 理想采样系统与恢复理想低通滤波器解:因为是理想采样系统,因此采样后的信号频谱可以表示为:()()1ˆa a s k X j X j jk T ∞=-∞Ω=Ω-Ω∑8s πΩ=,12πΩ=,25πΩ=,折叠频率为2s Ω,而滤波器对4πΩ≤的信号通过,因此有如下图:结论:1)1()a y t 不失真、2()a y t 失真。

信号处理-习题(答案)

信号处理-习题(答案)

数字信号处理习题解答 第二章 数据采集技术基础2。

1 有一个理想采样系统,其采样角频率Ωs =6π,采样后经理想低通滤波器H a (j Ω)还原,其中⎪⎩⎪⎨⎧≥Ω<Ω=Ωππ30321)(,,j H a 现有两个输入,x 1(t )=cos2πt ,x 2(t )=cos5πt 。

试问输出信号y 1(t ),y 2(t )有无失真?为什么?分析:要想时域采样后能不失真地还原出原信号,则采样角频率Ωs 必须大于等于信号谱最高角频率Ωh 的2倍,即满足Ωs ≥2Ωh 。

解:已知采样角频率Ωs =6π,则由香农采样定理,可得 因为x 1(t )=cos2πt ,而频谱中最高角频率πππ32621=<=Ωh ,所以y 1(t )无失真;因为x 2(t )=cos5πt ,而频谱中最高角频率πππ32652=>=Ωh ,所以y 2(t )失真。

2.2 设模拟信号x (t )=3cos2000πt +5sin6000πt +10cos12000πt ,求:(1) 该信号的最小采样频率;(2) 若采样频率f s =5000Hz ,其采样后的输出信号; 分析:利用信号的采样定理及采样公式来求解.错误!采样定理采样后信号不失真的条件为:信号的采样频率f s 不小于其最高频率f m 的两倍,即f s ≥2f m○,2采样公式)()()(s nT t nT x t x n x s===解:(1)在模拟信号中含有的频率成分是f 1=1000Hz ,f 2=3000Hz,f 3=6000Hz∴信号的最高频率f m =6000Hz由采样定理f s ≥2f m ,得信号的最小采样频率f s =2f m =12kHz (2)由于采样频率f s =5kHz,则采样后的输出信号⎪⎪⎭⎫⎝⎛⎪⎭⎫ ⎝⎛-⎪⎪⎭⎫ ⎝⎛⎪⎭⎫ ⎝⎛=⎪⎪⎭⎫⎝⎛⎪⎭⎫ ⎝⎛+⎪⎪⎭⎫ ⎝⎛⎪⎭⎫ ⎝⎛-⎪⎪⎭⎫ ⎝⎛⎪⎭⎫ ⎝⎛=⎪⎪⎭⎫⎝⎛⎪⎭⎫ ⎝⎛++⎪⎪⎭⎫ ⎝⎛⎪⎭⎫ ⎝⎛-+⎪⎪⎭⎫ ⎝⎛⎪⎭⎫ ⎝⎛=⎪⎪⎭⎫⎝⎛⎪⎭⎫ ⎝⎛+⎪⎪⎭⎫ ⎝⎛⎪⎭⎫ ⎝⎛+⎪⎪⎭⎫ ⎝⎛⎪⎭⎫ ⎝⎛=⎪⎪⎭⎫⎝⎛====n n n n n n n n n n n f n x nT x t x n x s s nT t s522sin 5512cos 13512cos 10522sin 5512cos 35112cos 105212sin 5512cos 3562cos 10532sin 5512cos 3)()()(πππππππππππ 说明:由上式可见,采样后的信号中只出现1kHz 和2kHz 的频率成分,即kHzf f f kHzf f f ss 25000200052150001000512211======,,若由理想内插函数将此采样信号恢复成模拟信号,则恢复后的模拟信号()()t t t f t f t y ππππ4000sin 52000cos 132sin 52cos 13)(21-=-=可见,恢复后的模拟信号y (t ) 不同于原模拟信号x (t ),存在失真,这是由于采样频率不满足采样定理的要求,而产生混叠的结果.第三章 傅里叶分析I. 傅里叶变换概述3。

数字信号处理课后答案

数字信号处理课后答案

k = n0

n
x[ k ]
(B) T {x[n]} =

x[k ]
(C) T {x[ n]} = 0.5
x[ n ]
(D) T {x[n]} = x[− n]
1-5 有一系统输入为 x[n] ,输出为 y[n] ,满足关系 y[n] = ( x[n] ∗ u[n + 2])u[n] ,则系统是(A) (A)线性的 (B)时不变的 (C)因果的 (D)稳定的 解:
(a) T { x[ n ]} = h[ n] + x[ n ], (c) T {x[ n]} = ∑ x[ n − k ]
δ [n] + aδ [n − n0 ] ,单位阶跃响应 s[n] = u[n] + au[n − n0 ] 。
1-15 线性常系数差分方程为 y[n] − y[n − 1] +
y[n] = 0 , n < 0 , 则 y[3] = 0.5 。 解: y[0] = y[ −1] − 0.25 y[ −2] + x[0] = 1 y[1] = y[0] − 0.25 y[ −1] + x[1] = 1 y[2] = y[1] − 0.25 y[0] + x[2] = 0.75 y[3] = y[2] − 0.25 y[1] + x[3] = 0.5
∞ ∞ k =−∞ n '=−∞
解: (a)
n =−∞
∑ y[n] = ∑ ∑ x[k ]h[n − k ] = ∑ x[k ] ∑ h[n − k ] = ∑ x[k ] ∑ h[n ']
n =−∞ k =−∞ k =−∞ n =−∞


数字信号处理(吴镇扬)课后习题答案(比较详细的解答过程)chap6

数字信号处理(吴镇扬)课后习题答案(比较详细的解答过程)chap6
第六章 多采样率信号处理
至今, 至今,我们讨论的信号处理的各种理论与算法 视为恒定值, 都是把抽样频率 f s 视为恒定值,即在一个数字系 统中只有一个采样率。 统中只有一个采样率。 在实际数字信号处理系统中, 在实际数字信号处理系统中,经常会遇到采样 率转换问题。 率转换问题 。 或者要求一个数字系统能工作在 多采样率”状态, “多采样率”状态,或者要求其将采样信号转换 为新的采样率下工作。 为新的采样率下工作。
6.2 信号的插值
如果将 x(n) 的抽样频率 f s 增加 L 倍, w(n), w(n) 即 得 的插值,用符号↑ 表示。插值的方法很多, 是对 x(n) 的插值,用符号↑L 表示。插值的方法很多, 一个简单的方法就是信号抽取的逆处理过程。 一个简单的方法就是信号抽取的逆处理过程。 回想信号抽取前后的傅立叶变换关系
而 X 1 (e ) =
jω n = −∞

∑ x ( n ) p ( n)e
− jωn
1 M −1 j 2πnk / M − jωn = ∑ [ x ( n) ]e ∑e n = −∞ M k =0 1 M −1 = X (e j (ω − 2πk / M ) ) (6.3b (6.3b) ∑ M k =0
信号抽取示意图,M=3, 图6.1.1 信号抽取示意图,M=3,横坐标为抽样点数 原信号; 中间信号; (a)原信号;(b)中间信号;(c)抽取后的信号
显然
X ′(e ) = ∑ x′(n)e
jω n = −∞ ∞ n = −∞ ∞

− j ωn
= ∑ x( Mn)e
n = −∞

− j ωn
= ∑ x1 ( Mn)e − jωn = X 1 (e jω / M ) (6.3a) (6.3a

数字信号处理课后习题答案(全)1-7章

数字信号处理课后习题答案(全)1-7章
=2x(n)+x(n-1)+ x(n-2)
将x(n)的表示式代入上式, 得到 1 y(n)=-2δ(n+2)-δ(n+1)-0.5δ(2n)+2δ(n-1)+δ(n-2)
+4.5δ(n-3)+2δ(n-4)+δ(n-5)
第 1 章 时域离系统的单位脉冲响应h(n)和输入x(n)分别有以下三种情况,
+6δ(n-1)+6δ(n-2)+6δ(n-3)+6δ(n-4)
1
4
(2m 5) (n m) 6 (n m)
m4
m0
第 1 章 时域离散信号和时域离散系统
(3) x1(n)的波形是x(n)的波形右移2位, 再乘以2, 画出图形如题2解图 (二)所示。
(4) x2(n)的波形是x(n)的波形左移2位, 再乘以2, 画出图形如题2解图(三) 所示。
(5)y(n)=x2(n)
(6)y(n)=x(n2)
(7)y(n)=
n
(8)y(n)=x(n)sin(ωxn(m) )
m0
解: (1) 令输入为
输出为
x(n-n0)
y′(n)=x(n-n0)+2x(n-n0-1)+3x(n-n0-2) y(n-n0)=x(n-n0)+2x(n—n0—1)+3(n-n0-2)
第 1 章 时域离散信号和时域离散系统
题2解图(四)
第 1 章 时域离散信号和时域离散系统
3. 判断下面的序列是否是周期的; 若是周期的, 确定其周期。
(1) x(n) Acos 3 πn A是常数
7 8
(2)
j( 1 n )
x(n) e 8

数字信号处理习题解答

数字信号处理习题解答

数字信号处理习题(xítí)解答第1-2章:1. 判断下列(xiàliè)信号是否为周期信号,若是,确定其周期。

若不是,说明(shuōmíng)理由(1)f1(t) = sin2t + cos3t(2)f2(t) = cos2t + sinπt2、判断下列序列是否为周期(zhōuqī)信号,若是,确定其周期。

若不是(bùshi),说明理由(1)f1(k) = sin(3πk/4) + cos(0.5πk)(2)f2(k) = sin(2k)(3)若正弦序列x(n)=cos(3πn /13)是周期的, 则周期是N=3、判断下列信号是否为周期信号,若是,确定其周期; 若不是,说明理由(1)f(k) = sin(πk/4) + cos(0.5πk)(2)f2(k) = sin(3πk/4) + cos(0.5πk)解1、解β1 = π/4 rad,β2 = 0.5π rad 由于2π/ β1 = 8 N1 =8,N2 = 4,故f(k) 为周期序列,其周期为N1和N2的最小公倍数8。

(2)β1 = 3π/4 rad,β2 = 0.5π rad由于2π/ β1 = 8/3 N1 =8, N2 = 4,故f1(k) 为周期序列,其周期为N1和N2的最小公倍数8。

4、画出下列函数的波形(1).(2).解5、画出下列函数的波形x(n)=3δ(n+3)+δ(n+1)-3δ(n-1)+2δ(n-2)6. 离散线性时不变系统单位阶跃响应,则单位响应=?7、已知信号(xìnhào),则奈奎斯特取样(qǔyàng)频率为( 200 )Hz。

8、在已知信号(xìnhào)的最高频率为100Hz(即谱分析范围(fànwéi))时,为了避免频率(pínlǜ)混叠现象,采样频率最少要200 Hz:9. 若信号的最高频率为20KHz,则对该信号取样,为使频谱不混叠,最低取样频率是40KHz10、连续信号:用采样频率采样,写出所得到的信号序列x(n)表达式,求出该序列x(n) 的最小周期解:,11、连续信号:用采样频率100s f Hz = 采样,写出所得到的信号序列x(n)表达式,求出该序列x(n) 的最小周期长度。

数字信号处理(程佩青)课后习题解答(1)

数字信号处理(程佩青)课后习题解答(1)

数字信号处理(程佩青)课后习题解答(1)1. 什么是数字信号处理?数字信号处理(Digital Signal Processing,DSP)是指对数字信号进行滤波、采样、压缩、编码和解码等操作的一种信号处理技术。

数字信号处理通过离散采样将连续时间信号转换为离散时间信号,并利用数学算法对离散时间信号进行处理和分析。

数字信号处理广泛应用于音频处理、图像处理、视频处理、通信系统等领域。

2. 采样定理的原理是什么?采样定理又称为奈奎斯特-香农采样定理(Nyquist-Shannon Sampling Theorem),是指在进行模拟信号的离散化处理时,采样频率必须大于模拟信号中最高频率的两倍。

采样定理的原理是根据信号的频谱特性,将模拟信号转换为离散时间信号时,需要保证采样频率足够高,以避免采样后的信号出现混叠现象,即频域上的重叠造成的信息损失。

根据奈奎斯特-香农采样定理,采样频率必须大于模拟信号中最高频率的2倍,才能完全还原原始信号。

3. 什么是混叠现象?如何避免混叠现象?混叠现象是指在进行模拟信号的采样时,由于采样频率低于模拟信号中的最高频率,导致频域上的重叠,从而造成采样信号中出现与原始信号不一致的频谱。

混叠现象会使得原始信号的高频部分被错误地表示成低频部分,从而损失了原始信号的信息。

为了避免混叠现象,可以采取以下措施:- 提高采样频率:采样频率必须大于模拟信号中最高频率的两倍,以保证信号的频谱不发生重叠。

- 使用低通滤波器:在采样前,先通过低通滤波器将模拟信号中的高频成分滤除,以避免混叠现象。

滤波器的截止频率应该设置为采样频率的一半。

4. 离散时间信号和连续时间信号有哪些区别?离散时间信号和连续时间信号是两种不同的信号表示形式。

离散时间信号是在时间上离散的,通常由序列表示,每个时间点上有对应的取样值。

离散时间信号可以通过采样连续时间信号得到,采样时将连续时间信号在一定时间间隔内进行取样。

连续时间信号是在时间上连续的,可以用数学函数、图像或者波形图来表示,不存在取样点。

数字信号处理习题及答案解析

数字信号处理习题及答案解析

==============================绪论==============================1. A/D 8bit 5V 00000000 0V 00000001 20mV 00000010 40mV 00011101 29mV==================第一章 时域离散时间信号与系统==================1.①写出图示序列的表达式答:3)1.5δ(n 2)2δ(n 1)δ(n 2δ(n)1)δ(n x(n)-+---+++= ②用δ(n) 表示y (n )={2,7,19,28,29,15}2. ①求下列周期)54sin()8sin()4()51cos()3()54sin()2()8sin()1(n n n n n ππππ-②判断下面的序列是否是周期的; 若是周期的, 确定其周期。

(1)A是常数 8ππn 73Acos x(n)⎪⎪⎭⎫ ⎝⎛-= (2))81(j e )(π-=n n x 解: (1) 因为ω=73π, 所以314π2=ω, 这是有理数, 因此是周期序列, 周期T =14。

(2) 因为ω=81, 所以ωπ2=16π, 这是无理数, 因此是非周期序列。

③序列)Acos(nw x(n)0ϕ+=是周期序列的条件是是有理数2π/w 0。

3.加法乘法序列{2,3,2,1}与序列{2,3,5,2,1}相加为__{4,6,7,3,1}__,相乘为___{4,9,10,2} 。

移位翻转:①已知x(n)波形,画出x(-n)的波形图。

②尺度变换:已知x(n)波形,画出x(2n)及x(n/2)波形图。

卷积和:①h(n)*求x(n),其他02n 0n 3,h(n)其他03n 0n/2设x(n) 例、⎩⎨⎧≤≤-=⎩⎨⎧≤≤= }23,4,7,4,23{0,h(n)*答案:x(n)=②已知x (n )={1,2,4,3},h (n )={2,3,5}, 求y (n )=x (n )*h (n )x (m )={1,2,4,3},h (m )={2,3,5},则h (-m )={5,3,2}(Step1:翻转)解得y (n )={2,7,19,28,29,15}③(n)x *(n)x 3),求x(n)u(n u(n)x 2),2δ(n 1)3δ(n δ(n)2、已知x 2121=--=-+-+=}{1,4,6,5,2答案:x(n)=4.如果输入信号为,求下述系统的输出信号。

数字信号处理习题答案及matlab实验详解.pdf

数字信号处理习题答案及matlab实验详解.pdf

Z = 0,0.8361,0.4306 P =1.0000, 0.6000,0.3000
(2)
由于 H (z)
Y (z) X (z)
1
3 1.9
3.8z1 1.08 z1 1.08z2
z 2 0.18z
3
所以系统的差分方程:
y(n) 1.9 y(n 1) 1.08 y(n 2) 0.18 y(n 3) 3x(n) 3.8x(n 1) 1.08x(n 2)
1 2
n
u(n),
x
2
(n)
1 3
n
u
(n)
利用 Z 变换性质求 y(n)的 Z 变换 Y(Z)。
实验 2-1 离散系统的分析的基本理论 实验目的:加深对离散系统基本理论和方法的理解
1 一线性移不变离散时间系统的单位抽样响应为 h(n) (1 0.3n 0.6n )u(n)
(1) 求该系统的转移函数 H (z) ,并画出其零-极点图; (2) 写出该系统的差分方程。
阶跃响应为: y[n] x[n] h[n] x[m]h[n m] h(n m), n m, m 0
m
m0
即 y(0) 0, y(1) 0.25, y(2) 0.5, y(3) 0.75,其余y(n) 1, (n 3)
利用函数 h=impz(b,a,N)和 y=filter(b,a,x)分别绘出冲激和阶跃响应 b=[0,0.25,0.25,0.25,0.25]; a=1; x=ones(1,100); h=impz(b,a,100);y=filter(b,a,x) figure(1) subplot(2,1,1); stem(h,’.’); subplot(2,1,2); plot(y,’.’);

《数字信号处理》第三版答案(非常详细完整)

《数字信号处理》第三版答案(非常详细完整)

答案很详细,考试前或者平时作业的时候可以好好研究,祝各位考试成功!!电子科技大学微电子与固体电子学陈钢教授著数字信号处理课后答案1.2 教材第一章习题解答1. 用单位脉冲序列()n δ及其加权和表示题1图所示的序列。

解:()(4)2(2)(1)2()(1)2(2)4(3) 0.5(4)2(6)x n n n n n n n n n n δδδδδδδδδ=+++-+++-+-+-+-+-2. 给定信号:25,41()6,040,n n x n n +-≤≤-⎧⎪=≤≤⎨⎪⎩其它(1)画出()x n 序列的波形,标上各序列的值;(2)试用延迟单位脉冲序列及其加权和表示()x n 序列; (3)令1()2(2)x n x n =-,试画出1()x n 波形; (4)令2()2(2)x n x n =+,试画出2()x n 波形; (5)令3()2(2)x n x n =-,试画出3()x n 波形。

解:(1)x(n)的波形如题2解图(一)所示。

(2)()3(4)(3)(2)3(1)6() 6(1)6(2)6(3)6(4)x n n n n n n n n n n δδδδδδδδδ=-+-+++++++-+-+-+-(3)1()x n 的波形是x(n)的波形右移2位,在乘以2,画出图形如题2解图(二)所示。

(4)2()x n 的波形是x(n)的波形左移2位,在乘以2,画出图形如题2解图(三)所示。

(5)画3()x n 时,先画x(-n)的波形,然后再右移2位,3()x n 波形如 5. 设系统分别用下面的差分方程描述,()x n 与()y n 分别表示系统输入和输出,判断系统是否是线性非时变的。

(1)()()2(1)3(2)y n x n x n x n =+-+-; (3)0()()y n x n n =-,0n 为整常数; (5)2()()y n x n =; (7)0()()nm y n x m ==∑。

数字信号处理参考答案

数字信号处理参考答案

数字信号处理参考答案《解答题及分析题》一、解释下列名词:(1)DSP: 数字信号处理或者数字信号处理芯片;(2)MIPS: 每秒执行百万条指令 ;(3)MOPS: 每秒执行百万条操作 ;(4)FFT: 快速傅里叶变换 ;(5)MAC 时间: 完成一次乘法和一次加法的时间 ;(6)指令周期:执行一条指令所需要的时间,单位通常为(ns );(7)BOPS:每秒执行十亿次操作;(8)MFLOPS :每秒执行百万次浮点操作;(9)TMS320C54X :TI 公司的54系列定点DSP 芯片;(10)ADSP21XX:AD :公司的21系列定点DSP 芯片;二、已知)()()]([n x n g n x T =判断系统是否为:① 因果系统;② 稳定系统;③ 线性系统;④ 移不变系统解:(1)求解系统的单位取样响应)(n h令)()(n n x δ=,则系统的单位取样响应)()()(n n g n h δ=① 当0<n 时,0)(=n h ,系统为因果系统;②0)(=∑+∞-∞=n n h ,是稳定系统; ③ 设)()()(),()()(2211n g n x n y n g n x n y ==由于)()()()([)(2121n by n ay n bx n ax T n y +=+=,④ 由于)()]([),()()(k n y k n X T k n g k n x k n y -≠---=-而, 因此,系统为移变系统。

其余几个题的判断方法与这个相同,略。

三、画方框图说明DSP 系统的设计步骤。

设计步骤:(1)根据实际问题的要求写出任务书确定设计目标;(2)算法研究并确定系统的性能指标;(3)选择DSP 芯片和外围芯片;(4)完成系统的硬件设计和软件设计;(5)完成系统的硬件仿真和软件调试;(6)系统集成和测试。

四、以TMS320C5402为例,说明一个典型的DSP 实时数字信号处理系统通常有哪些部分组成?画出系统组成的方框图。

信号处理-习题(答案)

信号处理-习题(答案)

页脚内容1数字信号处理习题解答 第二章 数据采集技术基础2.1 有一个理想采样系统,其采样角频率Ωs =6π,采样后经理想低通滤波器H a (j Ω)还原,其中⎪⎩⎪⎨⎧≥Ω<Ω=Ωππ30321)(,,j H a 现有两个输入,x 1(t )=cos2πt ,x 2(t )=cos5πt 。

试问输出信号y 1(t ),y 2(t )有无失真?为什么? 分析:要想时域采样后能不失真地还原出原信号,则采样角频率Ωs 必须大于等于信号谱最高角频率Ωh 的2倍,即满足Ωs ≥2Ωh 。

解:已知采样角频率Ωs =6π,则由香农采样定理,可得 因为x 1(t )=cos2πt ,而频谱中最高角频率πππ32621=<=Ωh ,所以y 1(t )无失真; 因为x 2(t )=cos5πt ,而频谱中最高角频率πππ32652=>=Ωh ,所以y 2(t )失真。

2.2 设模拟信号x (t )=3cos2000πt +5sin6000πt +10cos12000πt ,求:(1) 该信号的最小采样频率;(2) 若采样频率f s =5000Hz ,其采样后的输出信号;分析:利用信号的采样定理及采样公式来求解。

○1采样定理 采样后信号不失真的条件为:信号的采样频率f s 不小于其最高频率f m 的两倍,即页脚内容2f s ≥2f m○2采样公式 )()()(s nT t nT x t x n x s===解:(1)在模拟信号中含有的频率成分是f 1=1000Hz ,f 2=3000Hz ,f 3=6000Hz∴信号的最高频率f m =6000Hz由采样定理f s ≥2f m ,得信号的最小采样频率f s =2f m =12kHz (2)由于采样频率f s =5kHz ,则采样后的输出信号⎪⎪⎭⎫ ⎝⎛⎪⎭⎫ ⎝⎛-⎪⎪⎭⎫ ⎝⎛⎪⎭⎫ ⎝⎛=⎪⎪⎭⎫ ⎝⎛⎪⎭⎫ ⎝⎛+⎪⎪⎭⎫ ⎝⎛⎪⎭⎫ ⎝⎛-⎪⎪⎭⎫ ⎝⎛⎪⎭⎫ ⎝⎛=⎪⎪⎭⎫ ⎝⎛⎪⎭⎫ ⎝⎛++⎪⎪⎭⎫ ⎝⎛⎪⎭⎫ ⎝⎛-+⎪⎪⎭⎫ ⎝⎛⎪⎭⎫ ⎝⎛=⎪⎪⎭⎫⎝⎛⎪⎭⎫ ⎝⎛+⎪⎪⎭⎫ ⎝⎛⎪⎭⎫ ⎝⎛+⎪⎪⎭⎫ ⎝⎛⎪⎭⎫ ⎝⎛=⎪⎪⎭⎫⎝⎛====n n n n n n n n n n n f n x nT x t x n x s s nT t s522sin 5512cos 13512cos 10522sin 5512cos 35112cos 105212sin 5512cos 3562cos 10532sin 5512cos 3)()()(πππππππππππ 说明:由上式可见,采样后的信号中只出现1kHz 和2kHz 的频率成分,即kHzf f f kHzf f f ss 25000200052150001000512211======,,页脚内容3若由理想内插函数将此采样信号恢复成模拟信号,则恢复后的模拟信号()()t t t f t f t y ππππ4000sin 52000cos 132sin 52cos 13)(21-=-=可见,恢复后的模拟信号y (t ) 不同于原模拟信号x (t ),存在失真,这是由于采样频率不满足采样定理的要求,而产生混叠的结果。

数字信号处理课后答案+第6章(第三版)

数字信号处理课后答案+第6章(第三版)
2
比较分子各项系数可知, A1、 A2应满足方程:
A1 A 2 1 A1 s 2 A 2 s1 a
解之得, A1=1/2, A2=1/2, 所以
H a (s) 1/ 2 s ( a jb ) 1/ 2 s ( a jb )
套用教材(6.3.4)式, 得到
(2) H a ( s )
Ha(s)的极点为
b (s a) b
2 2
s1=-a+jb,
s2=-a-jb
将Ha(s)部分分式展开:
j H a (s) j
2 2 s ( a jb ) s ( a jb )
套用教材(6.3.4)式, 得到
j H (z) 2 1 e
H a (s) H a ( p) |
p s
c

c
5 4 2 3
5 3 2 4 5
s 3 .2 3 6 1 c s 5 .2 3 6 1 c s 5 .2 3 6 1 c s 3 .2 3 6 1 c s c
对分母因式形式, 则有
H a (s) H a ( p) |
式中 Ωc=2πfc=2π×20×103=4π×104 rad/s
4. 已知模拟滤波器的系统函数Ha(s)如下: (1)
H a (s) sa (s a) b
2 2
(2)
H a (s)
b (s a) b
2 2
式中a、 b为常数, 设Ha(s)因果稳定, 试采用脉冲响应不变 法将其转换成数字滤波器H(z)。
H (z)
1 e
k 1
2
Ak
skT
z
1

数字信号处理课后答案 第2章高西全

数字信号处理课后答案 第2章高西全
1 y (n) = A[e jϕ e jω0 n H (e jω0 ) + e − jϕ e − jω0 n H (e − jω0 )] 2 1 = A e jϕ e jω 0 n H ( e jω 0 ) e j θ ( ω 0 ) + e − jϕ e − jω 0 n H ( e − jω 0 ) e jθ ( − ω 0 ) 2
( −1) n x( n) = 2
n = −3
(4) 因为傅里叶变换的实部对应序列的共轭对称部分, 即
Re [ X (e jω )] =
n = −∞


x e ( n ) e − j ωn
1 xe (n) = ( x(n) + x(− n)) 2
按照上式画出xe(n)的波形如题5解图所示。
题5解图
2. 已知

n = −∞


x( n′)e − j2ωn′ = X (e j2ω )
| ω |< ω0
1, X (e ) = 0,
ω0 <| ω | ≤ π
求X(ejω)的傅里叶反变换x(n)。
解:
1 x ( n) = 2π
∫ωe

0
ω0
jωn
sin ω0 n dω = πn
3. 线性时不变系统的频率响应(频率响应函数) H(ejω)=|H(ejω)|ejθ(ω), 如果单位脉冲响应h(n)为实序列, 试 证明输入x(n)=A cos(ω0n+ϕ)的稳态响应为



x(n′)e − jω ( n + n0 ) = e − jωn0 X (e jω )

n = −∞
∑ x ( n )e

《数字信号处理(第四版)》部分课后习题解答

《数字信号处理(第四版)》部分课后习题解答

《数字信号处理(第四版)》部分课后习题解答一、简答题1. 什么是数字信号处理?数字信号处理(DSP)是指对数字信号进行处理和分析的一种技术。

它使用数学和算法处理模拟信号,从而实现信号的采样、量化、编码、存储和重构等过程。

DSP广泛应用于通信、音频处理、图像处理和控制系统中。

2. 数字信号处理的主要特点有哪些?•数字信号处理能够处理和分析具有广泛频谱范围的信号。

•数字信号处理能够实现高精度的信号处理和复杂的算法运算。

•数字信号处理能够实现信号的存储、传输和复原等功能。

•数字信号处理可以利用计算机等处理硬件进行实时处理和系统集成。

3. 数字信号处理的基本原理是什么?数字信号处理的基本原理是将连续时间的模拟信号转换成离散时间的数字信号,然后通过一系列的算法对数字信号进行处理和分析。

该过程主要涉及信号的采样、量化和编码等环节。

4. 什么是离散时间信号?离散时间信号是指信号的取样点在时间上呈现离散的情况。

在离散时间信号中,只能在离散时间点上获取信号的取样值,而无法观测到连续时间上的信号变化。

5. 描述离散时间信号的功率和能量的计算方法。

对于离散时间信号,其功率和能量的计算方法如下:•功率:对于离散时间信号x(n),其功率可以通过求平方和的平均值来计算,即功率P = lim(T->∞) [1/T *∑|x(n)|^2],其中T表示信号x(n)的观测时间。

•能量:对于离散时间信号x(n),其能量可以通过求平方和来计算,即能量E = ∑|x(n)|^2。

二、计算题1. 设有一个离散时间周期序列x(n) = [2, 3, -1, 4, 0, -2],求其周期N。

由于x(n)是一个周期序列,我们可以通过观察序列来确定其周期。

根据观察x(n)的取值,我们可以发现序列在n=1和n=5两个位置上取得了相同的数值。

因此,序列x(n)的周期为N = 5 - 1 = 4。

2. 设有一个信号x(t) = 2sin(3t + π/4),请将其离散化为离散时间信号x(n)。

数字信号处理习题和答案解析

数字信号处理习题和答案解析

. WORD 格式整理. .习题及答案4一、填空题(每空1分, 共10分)1.序列()sin(3/5)x n n π=的周期为 。

2.线性时不变系统的性质有 律、 律、 律。

3.对4()()x n R n =的Z 变换为 ,其收敛域为 。

4.抽样序列的Z 变换与离散傅里叶变换DFT 的关系为 。

5.序列x(n)=(1,-2,0,3;n=0,1,2,3), 圆周左移2位得到的序列为 。

6.设LTI 系统输入为x(n) ,系统单位序列响应为h(n),则系统零状态输出y(n)= 。

7.因果序列x(n),在Z →∞时,X(Z)= 。

二、单项选择题(每题2分, 共20分)1.δ(n)的Z 变换是 ( )A.1 B.δ(ω) C.2πδ(ω) D.2π2.序列x 1(n )的长度为4,序列x 2(n )的长度为3,则它们线性卷积的长度是 ( )A. 3 B. 4 C. 6 D. 73.LTI 系统,输入x (n )时,输出y (n );输入为3x (n-2),输出为 ( ) A. y (n-2) B.3y (n-2) C.3y (n ) D.y (n )4.下面描述中最适合离散傅立叶变换DFT 的是 ( )A.时域为离散序列,频域为连续信号B.时域为离散周期序列,频域也为离散周期序列C.时域为离散无限长序列,频域为连续周期信号D.时域为离散有限长序列,频域也为离散有限长序列5.若一模拟信号为带限,且对其抽样满足奈奎斯特条件,理想条件下将抽样信号通过 即可完全不失真恢复原信号 ( )A.理想低通滤波器 B.理想高通滤波器 C.理想带通滤波器 D.理想带阻滤波器 6.下列哪一个系统是因果系统 ( )A.y(n)=x (n+2) B. y(n)= cos(n+1)x (n) C. y(n)=x (2n) D.y(n)=x (- n)7.一个线性时不变离散系统稳定的充要条件是其系统函数的收敛域包括 ( ) A. 实轴 B.原点 C.单位圆 D.虚轴8.已知序列Z 变换的收敛域为|z |>2,则该序列为 ( )A.有限长序列 B.无限长序列 C.反因果序列 D.因果序列9.若序列的长度为M,要能够由频域抽样信号X(k)恢复原序列,而不发生时域混叠现象,则频域抽样点数N需满足的条件是 ( ) A.N≥M B.N≤M C.N≤2M D.N≥2M10.设因果稳定的LTI系统的单位抽样响应h(n),在n<0时,h(n)= ( ) A.0 B.∞ C. -∞ D.1三、判断题(每题1分, 共10分)1.序列的傅立叶变换是频率ω的周期函数,周期是2π。

数字信号处理习题答案作者杨毅明习题解答

数字信号处理习题答案作者杨毅明习题解答
将公式(11.18)中的 n 替换为 n-1,得到系统在 n-1 时刻的输出
(11.18)
如果原来的单位脉冲响应乘上一个绝对值小于 1 的指数序列,则新的系统可以成为稳定 系统。例如:
h(n)
=
0.7 n
π sin(
n)u(n)
2
(11.12)
5
它的绝对值小于等于 0.7n,根据等比数列前 N 项之和=a1(1-rN)/(1-r),a1 是数列的首项,r 是公比,N 是数列的项的个数,单位脉冲响应(11.12)的绝对值之和
h(n) = 2(−0.5)n u(n)
(11.16)
17. (1)语言法
观察公式(2.104),h(n)是指数序列。根据因果性,y(n)的第 1 个非 0 值是输入 3x(n)产生 的,因为 h(n)是指数序列,所以后面的 y(n)是先前的 y(n-1)的 0.6 倍产生的,分析得到该 系统的差分方程是
5. 因为语文成绩的等级是离散的自变量,计算比例和表示比例时都是使用有限长的数字, 所以统计是数字信号处理。
6. 环境的温度变化是非常缓慢的,观察这种变化时没必要连续进行,记录这种温度没必要 也不可能百分之百准确,还是用数字信号处理的方法好。
7. 放大电信号的幅度是最简单的信号处理,选择功率放大器就可以增大声音的传播距离。 功率放大器是模拟电路,它是最简单的模拟信号处理电路。
天数=要求的单词量÷平均每天记忆的单词量=1 万÷平均每天记忆的单词量,达到阅读 英语书籍需要的年数=需要的学习天数÷365 天。 12. 选择数字方式较好,理由是:用数字方式记录的信号容易反复地查找、观察、分析和比 较,就像使用 CD 机查找一首歌或反复播放一首歌;地震信号的观测是每天 24 小时连续 不停的,模拟方式使用热敏纸记录或磁带记录,消耗材料较多。

数字信号处理第三版丛玉良课后答案

数字信号处理第三版丛玉良课后答案

数字信号处理第三版丛玉良课后答案数字信号处理课程是一门面向大学的,面向社会需求的职业技能课程。

它能够帮助学生们更加了解自身的技能,让他们能够在社会中找到一份好工作。

为了帮助更多想要提升自己职业技能的学生,北京在线教育中心推出了数字信号处理课程,欢迎广大学员们前来听课学习。

选择 A+即可。

对电路进行控制的信号只有()条可以通过控制方式实现。

数字信号通信协议是通过通信技术来实现通信网络之间通信的协议标准。

其中有()条需要处理的信息:数字、模拟,数字和电信号传输需要选择对数对其发送或接收信息数据进行高速处理的数字或者模拟协议.通过比较不同形式的数据传输方式产生符合要求的电信号传送方式,在保证性能安全、性能可靠、环境友好等方面都具有明显地优势和广阔的发展前景而决定采用其中一种类型为数字化传输方式.其中就包括()条可以通过控制方式实现"多模式"、"滤波器"、"采样速度和延时.通过比较多形式的数据采集方式,不仅可以选择特定形式(如多通道)的速率,还可以选择各种不同类型(如滤波器、中继器等)所对应的频率资源,对特定范围内信号数量进行优化处理,从而实现"多模式实时信息传输".1.数字信号处理的基本过程是利用()、()或()信号对电路进行控制,生成符合要求的电信号传输题干中对于输入与输出的组合,最常用的处理方法为().(C)。

A.数字电路的组成 B.采样方式 C.编码方式 D.输入输出的互耦【解析】采用数字、模拟或者是光纤数据流为传输介质,根据信号特性分为“多模式”和“低时延”两种方式。

不同的模式对应着不同程度地降低了系统内部误差产生的概率,使系统性能更加可靠。

【解析】通过比较不同形式的数据传输技术产生符合要求的电信号传送方式,在保证性能安全、性能可靠、环境友好等方面都具有明显地优势和广阔的发展前景.其中包括()A.数字信号存储形式 B:脉冲型 C:同步型 D:非同步型 E:混合数字 D:模拟/数字转换方式和随机模拟/随机数字等“多模式是指将不同模式之间进行比较,从而形成符合要求的电信号传送系统。

  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

1-1画出下列序列的示意图(1)(2)(3)(1)(2)(3)1-2已知序列x(n)的图形如图1.41,试画出下列序列的示意图。

图1.41信号x(n)的波形(1)(2)(3) (4)(5)(6)(修正:n=4处的值为0,不是3)(修正:应该再向右移4个采样点)1-3判断下列序列是否满足周期性,若满足求其基本周期(1)解:非周期序列;(2)解:为周期序列,基本周期N=5;(3)解:,,取为周期序列,基本周期。

(4)解:其中,为常数,取,,取则为周期序列,基本周期N=40。

1-4判断下列系统是否为线性的?是否为移不变的?(1)非线性移不变系统(2) 非线性移变系统(修正:线性移变系统)(3) 非线性移不变系统(4) 线性移不变系统(5) 线性移不变系统(修正:线性移变系统)1-5判断下列系统是否为因果的?是否为稳定的?(1) ,其中因果非稳定系统(2) 非因果稳定系统(3) 非因果稳定系统(4) 非因果非稳定系统(5) 因果稳定系统1-6已知线性移不变系统的输入为x(n),系统的单位脉冲响应为h(n),试求系统的输出y(n)及其示意图(1)(2)(3)解:(1)(2)(3)1-7若采样信号m(t)的采样频率fs=1500Hz,下列信号经m(t)采样后哪些信号不失真?(1)(2)(3)解:(1)采样不失真(2)采样不失真(3),采样失真1-8已知,采样信号的采样周期为。

(1) 的截止模拟角频率是多少?(2)将进行A/D采样后,的数字角频率与的模拟角频率的关系如何?(3)若,求的数字截止角频率。

解:(1)(2)(3)1-9计算下列序列的Z变换,并标明收敛域。

(1) (2)(3) (4)(5)解:(1)(2)(3)(4) ,,收敛域不存在(5)1-10利用Z变换性质求下列序列的Z变换。

(1)(2)(3)(4)解:(1) ,(2) ,(3),(4) ,1-11利用Z变换性质求下列序列的卷积和。

(1)(2)(3)(4)(5)(6)解:(1) ,,,,(2),,,(3), ,,(4) ,,(5) ,,,(6) ,,,1-12利用的自相关序列定义为,试用的Z变换来表示的Z变换。

解:1-13求序列的单边Z变换X(Z). 解:所以:1-14试求下列函数的逆Z变换(1)(2)(3)(4) ,整个Z平面(除z=0点)(5)(6)解:(1)(2) ,(3)(4)(5)(6)1-15已知因果序列的Z变换如下,试求该序列的初值及终值。

(1)(2)(3)解:(1),(2),(3),1-16若存在一离散时间系统的系统函数,根据下面的收敛域,求系统的单位脉冲响应,并判断系统是否因果?是否稳定?(1) ,(2) , (3)解:(1) ,,因果不稳定系统(2) ,,非因果稳定系统(3) ,,非因果非稳定系统1-17一个因果系统由下面的差分方程描述(1)求系统函数及其收敛域;(2)求系统的单位脉冲响应。

解:(1),(2)1-18若当时;时,其中N为整数。

试证明:(1),其中,(2),收敛域证明:(1) 令,则其中,(2) ,1-19一系统的系统方程及初时条件分别如下:,(1)试求零输入响应,零状态响应,全响应;(2)画出系统的模拟框图解:(1)零输入响应,,得,则零状态响应,,则(2)系统模拟框图1-20若线性移不变离散系统的单位阶跃响应,(1)求系统函数和单位脉冲响应;(2)使系统的零状态,求输入序列;(3)若已知激励,求系统的稳态响应。

解:(1)激励信号为阶跃信号,,(2)若系统零状态响应则(3)若,则从可以判断出稳定分量为:1-21设连续时间函数的拉普拉斯变换为,现对以周期T进行抽样得到离散时间函数,试证明的Z变换满足:证明:,则当时1-22设序列的自相关序列定义为,设。

试证明:当为的一个极点时,是的极点。

证明:,故当为的一个极点时,也是的极点。

1-23研究一个具有如下系统函数的线性移不变因果系统,其中为常数。

(1)求使系统稳定的的取值范围;(2)在Z平面上用图解法证明系统是一个全通系统。

解:(1) ,若系统稳定则,极点,零点(2) ,系统为全通系统1-24一离散系统如图,其中为单位延时单位,为激励,为响应。

(1)求系统的差分方程;(2)写出系统转移函数并画出平面极点分布图;(3)求系统单位脉冲响应(4)保持不变,画出节省了一个延时单元的系统模拟图。

解:(1)(2) (修正:此题有错,两个极点位于(3)系统的单位脉冲响应(修正:随上小题答案而改变,是两个复序列信号之和)(4)(修正:此图错误,乘系数应该为0.5,输出端y(n)应该在两个延迟器D之间)1-25线性移不变离散时间系统的差分方程为(1)求系统函数;(2)画出系统的一种模拟框图;(3)求使系统稳定的A的取值范围。

解:(1)系统函数(2)(此图非直接形式,是转置形式)(3)若使系统稳定,系统极点,则(修正:要根据系统是否为因果系统分别考虑,非因果系统下极点应该位于单位圆外)2-1解:,2-2证明:根据线性移不变系统的频率响应特性:当一个LSI系统的输入信号是一个复正弦信号时,该系统的输出也是一个复正弦信号,与输入信号相比多了系数 .信号==2-3解: (1)令(2)图见电子版(3)当系统是线性移不变系统时,若输入信号为实正弦信号,输出信号也是一个具有相同频率的正弦信号,但该信号的幅度和相位都发生了变化.表达式如下:系统函数为,输入信号,输出信号当时,2-4解: (1) 零点极点(2)(4)图见电子版2-5解: 系统是LSI系统,,其中2-6证明:(1) ,(1的离散时间傅立叶变换为)即,则(2)令(3) ,当且仅当时有值(4)2-7解:2-8 解:,,,区间的幅度谱:区间内三种采样频率下的幅度谱2-9解:2-10解:首先观察四种情况都满足Nyquist采样定理,因此,采样后的信号的频谱将是原连续信号频谱以为周期的延拓。

(1)(2)(3)(4)22-11证明:2-12解:(1)对差分方程求Z变换得:(即为矩形窗的幅度谱)(2)图见电子版(3)2-15(1)载波信号为1处信号(2)2-13证明:(1)设(2)(3)由式(1)(2)(3),令上式中原题得证。

2-14证明:2-18解:对差分方程求Z变换全通系统为常数,即也为常数。

可对求导,其导数应为0。

即:或题中要求取2-19 解:(1)(2)(3)当输入信号是实正弦信号,为系统输出(5)当时,。

不是因果系统(6)2-20解:设取样器的输出为设压缩器的输出为由b图中两系统等效可列出如下等式:等式两边约简可得:2-1解:,2-2证明:根据线性移不变系统的频率响应特性:当一个LSI系统的输入信号是一个复正弦信号时,该系统的输出也是一个复正弦信号,与输入信号相比多了系数 .信号==2-3解: (1)令(2)图见电子版(3)当系统是线性移不变系统时,若输入信号为实正弦信号,输出信号也是一个具有相同频率的正弦信号,但该信号的幅度和相位都发生了变化.表达式如下:系统函数为,输入信号,输出信号当时,2-4解: (1) 零点极点(2)(4)图见电子版2-5解: 系统是LSI系统,,其中2-6证明:(1) ,(1的离散时间傅立叶变换为)即,则(2)令(3) ,当且仅当时有值(4)2-7解:2-8 解:,,,区间的幅度谱:区间内三种采样频率下的幅度谱2-9解:2-10解:首先观察四种情况都满足Nyquist采样定理,因此,采样后的信号的频谱将是原连续信号频谱以为周期的延拓。

(1)(2)(3)(4)22-11证明:2-12解:(1)对差分方程求Z变换得:(即为矩形窗的幅度谱)(2)图见电子版(3)2-15(1)载波信号为1处信号(2)2-13证明:(1)设(2)(3)由式(1)(2)(3),令上式中原题得证。

2-14证明:2-18解:对差分方程求Z变换全通系统为常数,即也为常数。

可对求导,其导数应为0。

即:或题中要求取2-19 解:(1)(2)(3)当输入信号是实正弦信号,为系统输出(5)当时,。

不是因果系统(6)2-20解:设取样器的输出为设压缩器的输出为由b图中两系统等效可列出如下等式:等式两边约简可得:3-1解:(1)(2)(3)补零后:不变;变化,变的更加逼近(4)不能3-2解:(1)令循环卷积其余(2)其余其余(3)其余(4)补一个零后的循环卷积其余3-3解:,即可分辨出两个频率分量本题中的两个频率分量不能分辨3-4解:对它取共轭:与比较,可知:1,只须将的DFT变换求共轭变换得; 2,将直接fft程序的输入信号值,得到;3,最后再对输出结果取一次共轭变换,并乘以常数,即可求出IFFT变换的的值。

3-5解:可以;证明:设其中是在单位圆上的Z变换,与的关系如下:是在频域上的N点的采样,与的关系如下:相当于是在单位圆上的Z变换的N点采样。

3-6解:,,图见电子版3-7解:,,,,图见电子版3-8解:。

相关文档
最新文档