体系结构名词解释
计算机原理名词解释
1. 虚拟计算机是指由软件实现的机器。
2. 软件兼容是指同一个软件(目标程序)可以不加修改地运行于体系结构相同的各档次的机器,而且所得结果一致。
3. 多功能流水线是指流水线的各段在不同的时间内或在同一时间内,通过不同的连接方式实现不同的处理功能。
4. 全局相关即控制相关是指在流水线的机器中,由于转移指令或中断引起程序执行方向的改变,使得转移指令或中断引起的断点指令与后续指令不能同时在流水线中执行。
5. 并行存储器是指通过设置多个存储器或存储体,使它们并行工作,在一个存储周期内可以访问到多个存储字。
6. 多发射是指在一个时钟周期内能够启动多条指令进入取指阶段。
1. 系列机是指由同一个厂家生产的体系结构相同、组成和实现不同的一系列不同型号的机器。
2. 耦合度是指用来反映多机系统中各机器之间物理连接的紧密程度和交互作用能力的强弱。
3. 非线性流水线是指在流水线各段之间除有串行连接之外,还有反馈回路,数据流经有反馈回路的功能段的次数可以有多次。
4. 局部相关即数据相关是指在流水线的机器中,程序中相近的两条指令要对同一存储单元进行操作时,应有一定的先后次序,否则会导致数据供求关系上的冲突,引发程序执行错误。
5. 存储系统是指两个或两个以上速度、容量和价格各不相同的存储器用硬件或软件或硬件与软件相结合的方法有机地连接起来的一个集合,其对应用程序员是一个透明的存储器,并具有速度高、容量大、价格低的特性。
6. 单发射是指在一个时钟周期内平均至多仅能够启动一条指令进入取指阶段。
计算机体系结构:机器语言程序员所必须了解的机器概念性结构和功能特性。
软件可移植性:软件不修改或少量修改就可由一台机器搬到另一台机器上运行,同一软件可应用于不同的环境。
顺序流动:任务从流水线流出的次序同他们流入流水线的次序一样。
一次重叠:一次重叠执行方式是指在任何时刻,处理机中之多只有一条指令在同时执行。
虚拟通道:两个节点之间的逻辑链,它由节点的片缓冲区,节点间的物理通道以及接受点的片缓冲区组成。
计算机体系结构的基本概念
长春理工大学计算机学院 高培成 gpc@ 2007.9
第一章 计算机体系结构的基本概念
1.1 引 言
1. 计算机性能的高速增长受益于:
电路技术的发展
体系结构技术的发展
2. 体系结构的重要性
3. 基于微处理器的系统
高培成
2/111
第一章 计算机体系结构的基本概念
系统加速比 =
系统性能 改进后 系统性能 改进前
=
总执行时间 改进前 总执行时间 改进后
系统加速比依赖于两个因素:
可改进比例:可改进部分在原系统计算时间中所占的 比例,它总是小于等于1的。 例如: 一个需运行60秒的程序中有20秒的运算 可以加速,那么该比例就是20/60。
1.5 定量分析技术基础
1.2
计算机体系结构的概念
1.2.1 计算机系统中的层次概念
1. 计算机系统=软件+硬件/固件
2. 计算机语言由低级向高级发展
高一级语言的语句相对于低级语言功能更强, 更便于应用,但又都以低级语言为基础。 3. 从计算机语言的角度,把计算机系统按功能划分成 多级层次结构。
高培成
3/111
第 6 级:应用语言虚拟机
高培成
15/111
1.3 计算机体系结构的发展
4.根据当前的计算机应用市场的现状和价格特征, 通常把计算机分为服务器、桌面系统和嵌入式计
算三大领域。
高培成
16/111
1.3 计算机体系结构的发展
5. 新型体系结构的设计 (1) 合理地增加计算机系统中硬件的功能比例, 这种体系结构对操作系统、高级语言甚至应 用软件提供更多更好的支持; (2) 通过多种途径提高计算机体系结构中的并行 性等级,使得凡是能并行计算和处理的问题 都能并行计算和处理,使这种体系结构和组
体系结构名词解释
虚拟存放器中怎样实现虚拟地址到实地址变换(按段式管理, 可画图说明)由用户号找到基址寄存器, 从基址寄存器中读出段表起始地址, 把起始地址与多用户虚地址中段号相加得到段表地址, 把段表中起始地址与段内偏移D相加就能得到主存实地址。
(4分)内偏移d直接拼接起来就得到主存实地址A(2分)Amdahl定律: 一个反应部件速度与系统整体性能关系定律。
系统中对某一部件采取愈加快实施方法所能取得系统性能改善程度, 取决于这种实施方法所占总实施时间百分比。
Amdahl定律: 系统中对某一部件采取某种愈加快实施方法所能取得系统性能改善程度, 取决于这种方法被使用频度, 或所占总实施时间百分比。
即系统加速比为: (见P12 (1-3))单发射: 假如一个处理机在单个时钟周期中只能取出一条指令供实施, 就称为单发射(处理机)寄存器窗口重合: 嵌套两个过程分配使用相邻寄存器窗口中, 有一部分寄存器是重合,有了这种重合后, 过程之间参数传输就不需要实际上数据移动, 能够提升速度和降低访存。
交叉访问存放器: 存放器由N个存放体组成, CPU在一个存放周期中能够访问多个存放体, 所谓交叉, 是指个存放体之间地址是交叉配置。
端接电阻:加速比: 比较基准运行条件下运行时间与改变了运行条件后完成一样任务所需时间之比。
多发射: 在单个时钟周期内能够取出多条指令供实施。
延迟转移: 将转移指令与前一条指令次序对调, 确保了转移指令实施和前一条直流能够正常运行。
延迟转移技术: 重新排列指令实施次序, 将转移指令与其前一条指令次序对调, 即先实施转移指令, 后实施前一条指令。
这么既确保了转移指令实施, 又使其前一条指令得以正常实施。
并行访问存放器: 将存放器字长增加N倍, 在一个存放访问周期就能并行读取N个字。
阻抗匹配先行控制: 先行控制又称为估计控制, 是处理机种实施指令重合实施技术基础。
先行控制技术: 包含指令预处理技术(pre-processing)和缓冲技术(buffering)。
合肥学院计算机体系结构考试考点资料(内部)
一、计算机系统结构概念:程序员所看到的计算机属性,即概念性结构与功能特性。
按照计算机系统的多级层次结构,不同级程序员所看到的计算机具有不同的属性。
Amdahl 提出的系统结构:传统机器语言级程序员所看到的计算机属性。
对于通用寄存器型机器来说,这些属性主要是指:指令系统、数据表示、寻址规则、寄存器定义、中断系统、机器工作状态的定义和切换、存储系统、信息保护。
广义的系统结构定义:指令集结构、组成、硬件计算机系统结构概念的实质:确定计算机系统中软、硬件的界面,界面之上是软件实现的功能,界面之下是硬件和固件实现的功能。
计算机组成:计算机系统结构的逻辑实现。
计算机实现:计算机组成的物理实现。
系统结构设计的三大原则:1.以经常性事件为重点:经常性事件往往比较简单,与不经常发生的事件相比,其实现更容易优化。
2.Amdahl 定律:加快某部件执行速度所能获得的系统性能加速比,受限于该部件的执行时间占系统中总执行时间的百分比。
系统性能加速比:加速比依赖于两个因素:可改进比例、部件加速比3.CPU 性能公式执行一个程序所需的CPU 时间:CPU 时间 = 执行程序所需的时钟周期数×时钟周期时间二、指令集对指令集的基本要求是:完整性、规整性、高效率和兼容性。
通用寄存器结构:寄存器-存储器型(RM 型) (操作数可以来自存储器 )寄存器-寄存器型(RR 型) (所有操作数都是来自通用寄存器组) (也称为load-store 结构,这个名称强调:只有load 指令和store 指令能够访问存储器。
) 存储器-存储器型(MM 型)MIPS 的数据寻址方式:只有立即数寻址和偏移量寻址两种。
立即数字段和偏移量字段都是16位的。
MIPS 的存储器是按字节寻址的,地址为64位。
三、流水线概念:把一个重复的过程分解为若干个子过程,每个子过程由专门的功能部件来实现。
将多个处理过程在时间上错开,依次通过各功能段,这样,每个子过程就可以与其他的子过程并行进行。
计算机体系结构名词解释大全
名词解释:(1)静态流水线——同一时间内,流水线的各段只能按同一种功能的连接方式工作。
(2)分段开采——当向量的长度大于向量寄存器的长度时,必须把长向量分成长度固定的段,然后循环分段处理,每一次循环只处理一个向量段。
(3)计算机体系结构——程序员所看到的计算机的属性,即概念性结构与功能特性(4)时间重叠——在并行性中引入时间因素,即多个处理过程在时间上相互错开,轮流重叠地使用同一套硬件设备的各个部分,以加快硬件周转而赢得速度。
(5)TLB——个专用高速存储器,用于存放近期经常使用的页表项,其内容是页表部分内容的一个副本(6)结构冲突——指某种指令组合因为资源冲突而不能正常执行(7)程序的局部性原理——程序在执行时所访问的地址不是随机的,而是相对簇聚;这种簇聚包括指令和数据两部分。
(8)2:1Cache经验规则——大小为N的直接映象Cache的失效率约等于大小为N /2的两路组相联Cache的实效率。
(9)组相联映象——主存中的每一块可以放置到Cache中唯一的一组中任何一个地方(10)数据相关——当指令在流水线中重叠执行时,流水线有可能改变指令读/写操作的顺序,使得读/写操作顺序不同于它们非流水实现时的顺序,将导致数据相关。
(1)动态流水线——同一时间内,当某些段正在实现某种运算时,另一些段却在实现另一种运算。
(2)透明性——指在计算机技术中,把本来存在的事物或属性,但从某种角度看又好像不存在的特性。
(3)层次结构——计算机系统可以按语言的功能划分为多级层次结构,每一层以不同的语言为特征。
(4)资源共享——是一种软件方法,它使多个任务按一定的时间顺序轮流使用同一套硬件设备。
(5)快表——个专用高速存储器,用于存放近期经常使用的页表项,其内容是页表部分内容的一个副本。
(6)控制相关——指由分支指令引起的相关,它需要根据分支指令的执行结果来确定后续指令是否执行。
(7)存储层次——采用不同的技术实现的存储器,处在离CPU不同距离的层次上,目标是达到离CPU最近的存储器的速度,最远的存储器的容量。
体系结构名词解释
体系结构名词解释体系结构名词解释1. 计算机系统结构:计算机体系结构包括指令集结构、计算机组成和计算机实现三个方面的内容。
2. CISC:CISC是指采用一整套计算机指令进行操作的计算机。
而后又出现了精简指令集计算机,它精简了指令集,只保留了那些常用的指令,这样计算机能以更快的速度执行操作。
3. 定向技术:将计算结果从其产生的地方直接送到真正需要它的地方,而不是从寄存器文件读出使用,它是一种解决数据相关,避免流水线暂停的技术4. 指令级并行:完成一批任务,不使用流水线所用的时间与使用流水线所用的时间之比称为流水线的加速比5. 多级存储层次:采用不同的技术实现的存储器,处在离CPU不同距离的层次上,目标是达到离CPU最近的存储器的速度,最远的存储器的容量6. 系统加速比:对系统中某部分进行改进时,改进后系统性能提高的倍数。
7. RISC:精简指令集计算机8. 动态流水线:同一时间内,当某些段正在实现某种运算时,另一些段却在实现另一种运算。
9. 指令的动态调度:是指在保持数据流和异常行为的情况下,通过硬件对指令执行顺序进行重新安排,以提高流水线的利用率且减少停顿现象。
是由硬件在程序实际运行时实施的。
10:全相联映象:主存中的任一块可以被放置到Cache中任意一个地方。
10. Amdahl定律:加快某部件执行速度所获得的系统性能加速比,受限于该部件在系统中的所占的重要性。
11. 寻址方式:就是寻找操作数或操作数地址的方式12. 静态流水线:在同一段时间内,多功能流水线中的各个功能段只能按照一种固定的方式连接,实现一种固定的功能。
13. 前瞻执行:解决控制相关的方法,它对分支指令的结果进行猜测,然后按这个猜测结果继续取指、流出和执行后续的指令。
只是指令执行的结果不是写回到寄存器或存储器,而是放到一个称为ROB的缓冲器中。
等到相应的指令得到“确认”(即确实是应该执行的)后,才将结果写入寄存器或存储器14. 替换算法:由于主存中的'块比Cache中的块多,所以当要从主存中调一个块到Cache中时,会出现该块所映象到的一组(或一个)Cache块已全部被占用的情况。
重庆大学 系统结构 题库 名词解释
传输时延(Transport latency):它等于"飞行"时间和传输时间之和。它是消息在互连网络上 所花费的时间,但不包括消息进入网络和到达目的结点后从网络接口硬件取出数据所花费的时 间。(9)
16、MPP:基于分布存储的大规模并行处理系统(10)
17、S2MP:是一种共享存储的体系结构,和大规模的消息传递系统相比,它支持简单的编程 模型,系统使用方便,是对 SMP 系统在支持更高扩展能力方面的发展。(10)
18、SMP:SMP 称为共享存储型多处理机(Shared Memory mulptiProcessors), 也称为对称型 多处理机(Symmetry MultiProcessors)(10)
"飞行"时间(Time of flight):消息的第一位信息到达接收方所花费的时间,它包括由于网络 中转发或其它硬件所起的时延(9)
传输时间(Transmission time):消息通过网络的时间,它等于消息长度除以频宽。(9)
频宽(Bandwidth):它是指消息进入网络后,互连网络传输信息的最大速率。它的单位是兆 位/秒,而不用兆字节/秒。
28、虚拟直通(virtual cut through) :目前有一些多计算机系统采用的是虚拟直通的寻径方式 。 虚拟直通的寻径方式的思想是,为了减少时延,没有必要等到整个消息全部缓冲后再作路由选 择,只要接收到用作寻径的消息头部即可判断。 (9)
29、存储转发寻径:存储转发寻径(store and forward) 在存储转发网络中包是信息流的基本单
(3) 顺序流动:一串连续任务在流水线中是一个接一个地在各个功能段中间流过的。从流水线 的输出端看,任务流出流水线的顺序与输入端的任务流入顺序完全相同 ,这种控制方式称为顺 序流动方式
计算机体系结构试题库—名词解释
计算机体系结构试题库名词解释(100题)1.计算机体系结构:计算机体系结构包括指令集结构、计算机组成和计算机实现三个方面的内容。
2.透明性:在计算机技术中,对这种本来是存在的事物或属性,但从某种角度看又好像不存在的概念称为透明性(transparency)。
3.程序访问的局部性原理:程序总是倾向于访问最近刚访问过的信息,或和当前所访问的信息相近的信息,程序对信息的这一访问特性就称之为程序访问的局部性原理。
4.RISC:精简指令集计算机。
5.CPI——指令时钟数(Cycles per Instruction)。
6.Amdahl定律——加快某部件执行速度所获得的系统性能加速比,受限于该部件在系统中的所占的重要性。
7.系列机:在一个厂家内生产的具有相同的指令集结构,但具有不同组成和实现的一系列不同型号的机器。
8.软件兼容:同一个软件可以不加修改地运行于体系结构相同的各档机器,而且它们所获得的结果一样,差别只在于有不同的运行时间。
9.基准程序:选择一组各个方面有代表性的测试程序,组成的一个通用测试程序集合,用以测试计算机系统的性能。
10.合成测试程序:首先对大量的应用程序中的操作进行统计,得到各种操作的比例,再按照这个比例人为制造出的测试程序。
11.Benchmarks:测试程序包,选择一组各个方面有代表性的测试程序,组成的一个通用测试程序集合。
12.核心程序:从真实程序提取出来的用于评价计算机性能的小的关键部分。
13.通用寄存器型机器:指令集结构中存储操作数的存储单元为通用寄存器的机器,称之为通用寄存器型机器。
14.Load/Store型指令集结构:在指令集结构中,除了Load/Store指令访问存储器之外,其它所有指令的操作均是在寄存器之间进行,这种指令集结构称之为Load/Store型指令集结构。
15.虚拟机器:(virtual machine),由软件实现的机器。
16.操作系统虚拟机:直接管理传统机器中软硬件资源的机器抽象,提供了传统机器所没有的某些基本操作和数据结构,如文件系统、虚拟存储系统、多道程序系统和多线程管理等。
体系结构简介
设备 晶体三极管、二极管
物理
电子
体系结构
• 体系结构不确定底层硬件实现 • 同一体系结构的计算机,往往有不同的硬件实现
– 同属IA-32体系结构的Intel处理器和AMD处理器,底层硬件不同
• 在价格、性能和功耗等方面有不同的折中
– 有些处理器擅长高性能计算,有些处理器功耗特别低
微结构
• 微结构在体系结构抽象层之下; • 寄存器、存储器、ALU和其他模块组织
体系结构
体系结构
• 跳跃了几级的抽象 • 体系结构:是程序员所见到的计算机
– 由指令和操作空间来定义 • 不同类型体系结构:
– IA-32,MIPS,SPARC,PowerPC等
应用程序
程序
操作系统 设备驱动
体系结构 指令集、寄存器
微结构 数据通路、控制器
逻辑 加法器、存储器
数字电路 与门、非门
模拟电路 放大滤波器
• 在很多商用系统中得到了广泛的应用。如硅谷图像,任 天堂,及CISCO
• 一旦你学了一种体系结构,再学习其他体系结构就非常 容易了
John Hennessy
• 斯坦福大学校长,自1977年以来在斯坦 福大学任电气工程与计算机科学系教授
• 与大卫·帕特森共同发明了精简指令集 计算机(RISC)
• 于1984年在斯坦福大学提出了MIPS 体 系结构,并且共同创办MIPS计算机系统
成微处理器的方式称为微结构; • 同一体系结构可能不同微结构
应用程序
程序
操作系统 设备驱动
体系结构 指令集、寄存器
微结构 数据通路、控制器
逻辑 加法器、存储器
数字电路 与门、非门
模拟电路 放大滤波器
设备 晶体三极管、二极管
体系结构指的是什么
体系结构指的是什么体系结构包括一组部件以及部件之间的联系,那么你对体系结构了解多少呢?以下是由店铺整理关于什么是体系结构的内容,希望大家喜欢!体系结构的分类1、数据流系统,包括顺序批处理、管道和过滤器;2、调用-返回系统,包括主程序和子程序、面向对象系统、层次结构;3、独立部件,包括通信进程、事件隐式调用;4、虚拟机,包括解释器、规则基系统;5、以数据为中心的系统(库),包括数据库、超文本系统、黑板系统;6、特殊领域风格;例如过程控制、模拟器;7、特殊结构的风格,例如分布式处理、状态转移系统;8、不同风格合成建立的异构结构;9、最初始、最基本的主程序/子程序。
体系结构的出现原由在传统的程序设计领域中,人们使用流程图来表达系统的基本功能和实现的具体逻辑,但是,流程图实际上仅仅是源程序的图形化表示,无法给系统的分析和开发者提供更多的信息,所以没有在实际的系统开发过程中得到广泛的应用。
随着软件系统的规模和复杂性的增加,对软件系统的整体结构(数据和控制的逻辑)进行分析和描述成为大型系统开发的一个不可缺少的重要部分,显然,使用流程图是无法达到这个目标的,我们必须使用新的方法和概念来对系统的整体结构进行把握。
体系结构的开发观点在实际开发过程中,简单的判断某一个具体的应用应该采取何种体系结构是非常困难的,简单的管道、过滤器体系已经非常少见,面向对象的思想已经融合在几乎所有的体系结构之中,而层次化的思想同样也被广泛使用,所以,一个基本的系统分析方法应该是功能和复杂性的分解,也就是说,从横向分解(分模块、子系统),纵向分解中得到系统的基本组件(分类、分层次的功能和对象)。
然后根据问题领域的特性选择系统的行为模式(具体的体系结构)。
体系结构的常见结构严格的层次结构(系统可以清楚的分解成为不同的功能层次,例如基本的图形库,提供不同层次的绘图接口) 这种体系结构适合于系统的功能相对简单,并且可以按照复杂的程度、抽象的程度、和硬件平台的关系等方面的特性加以分层的软件中。
计算机的体系结构
计算机的体系结构随着计算机技术的快速发展,计算机已经成为了我们生活中重要的工具。
而要了解计算机的工作原理和构成,就必须从计算机的体系结构开始了解。
本文将对计算机的体系结构进行全面而深入的介绍。
一、计算机的基本组成部分计算机的体系结构包括了硬件和软件两个方面。
在硬件方面,计算机由中央处理器(CPU)、存储器、输入设备和输出设备等组成。
中央处理器是计算机的核心部件,它负责执行各种指令和控制计算机的运行。
存储器用于存储指令和数据,是计算机的记忆库。
输入设备用于接收用户输入的指令和数据,输出设备用于显示计算机处理结果或将数据输出到外部介质中。
而在软件方面,计算机的体系结构主要包括操作系统和应用软件两类。
操作系统是计算机的控制程序,它协调和管理计算机的各个硬件和软件资源,为用户提供一个友好的操作界面。
而应用软件则是根据用户的需求开发的各种软件程序,如文字处理软件、图形设计软件等等。
二、计算机的层次结构计算机的层次结构可分为五个层次,分别是硬件层、微程序层、指令系统层、操作系统层和用户层。
1. 硬件层:硬件层是计算机的最底层,包括了计算机的物理组件,如中央处理器、存储器和输入输出设备等。
2. 微程序层:微程序层是指计算机中的微指令集,它是用来实现计算机指令的具体执行过程。
3. 指令系统层:指令系统层是计算机的指令集,它定义了计算机可以执行的各种指令和指令的格式。
4. 操作系统层:操作系统层是计算机的控制程序,它负责管理计算机的各项资源和调度各种任务。
5. 用户层:用户层是计算机系统的最高层,用户可以通过各种应用软件来实现自己的需求,如文字处理、电子邮件等。
三、计算机的体系结构类型计算机的体系结构主要分为冯·诺依曼体系结构和哈佛体系结构。
1. 冯·诺依曼体系结构:冯·诺依曼体系结构是现代计算机的基础,它将计算机的运算器、控制器、存储器、输入设备和输出设备五个部分组成一个完整的整体。
管理信息系统名词解释
1. 人机系统:由人和机器构成并依赖于人机之间相互作用而完成一定功能的系统。
2. 系统结构:是指系统内部各组成要素之间的相互联系、相互作用的方式或秩序,即各要素在时间或空间上排列和组合的具体形式。
3. 数据结构:相互之间存在着一种或多种关系的数据元素的集合和该集合中数据元素之间的关系组成。
4. 数据模型:对客观事物及其联系的逻辑组织描述。
5. 制造资源计划:是在物料需求计划上发展出的一种规划方法和辅助软件。
它是以物料需求计划MRP为核心,覆盖企业生产活动所有领域、有效利用资源的生产管理思想和方法的人-机应用系统。
6. 企业资源计划:所谓ERP,就是企业资源计划,它将企业的财务、采购、生产、销售、库存和其它业务功能整合到一个信息管理平台上,从而实现信息数据标准化,系统运行集成化、业务流程合理化、绩效监控动态化、管理改善持续化。
7. 数据处理:把来自科学研究、生产实践和社会经济活动等领域中的原始数据,用一定的设备和手段,按一定的使用要求,加工成另一种形式的数据的过程。
8. 数据文件:把数据按某种数据结构组织起来存放在外部设备上那个,就构成了数据文件。
一般来说,数据文件是为某一目的而形成的同类记录的集合,记录是文件中数据组织的基本单位,由若干个数据项组成,数据项又是数据处理的最小单位。
9. 文件组织:文件的组织是指文件的构造方式。
10. 因特网:由多个计算机网络相互连接而成,而不论采用何种协议与技术的网络。
11. 数据库管理系统:一组对数据库进行管理的软件,通常包括数据定义语言及其编译程序、数据操纵语言及其编译程序以及数据管理例行程序。
12. 记录:在数据库里面,表的"行"称为"记录","列"称为"字段"13. 企业内部网:企业内部网是给企业内的员工们用的,一般的消费者是不可以进入的。
通常企业内部网的资料都是一些关于员工福利,公司最近的培训计划,和一些内部资料的分享。
计算机体系结构术语解释
计算机体系结构术语解释1、计算机高性能发展受益于:(1)电路技术的发展;(2)计算机体系结构技术的发展。
2、层次结构:计算机系统可以按语言的功能划分为多级层次结构,每一层以不同的语言为特征。
第六级:应用语言虚拟机->第五级:高级语言虚拟机->第四级:汇编语言虚拟机->第三级:操作系统虚拟机->第二级:机器语言(传统机器级) ->第一级:微程序机器级。
3、计算机体系结构:程序员所看到的计算机的属性,即概括性结构与功能特性。
4、透明性:在计算机技术中,对本来存在的事物或属性,从某一角度来看又好像不存在的概念称为透明性。
5、Amdahl提出的体系结构是指机器语言级程序员所看见的计算机属性。
6、经典计算机体系结构概念的实质3是计算机系统中软、硬件界面的确定,也就是指令集的设计,该界面之上由软件的功能实现,界面之下由硬件和固件的功能来实现。
7、计算机组织是计算机系统的逻辑实现;计算机实现是计算机系统的物理实现。
8、计算机体系结构、计算机组织、计算机实现的区别和联系?答:一种体系结构可以有多种组成,一种组成可以有多种物理实现,体系结构包括对组织与实现的研究。
9、系列机:是指具有相同的体系结构但具有不同组织和实现的一系列不同型号的机器。
10、软件兼容:即同一个软件可以不加修改地运行于系统结构相同的各机器,而且它们所获得的结果一样,差别只在于运行时间的不同。
11、兼容机:不同厂家生产的、具有相同体系结构的计算机。
12、向后兼容是软件兼容的根本特征,也是系列机的根本特征。
13、当今计算机领域市场可划分为:服务器、桌面系统、嵌入式计算三大领域。
14、摩尔定律:集成电路密度大约每两年翻一番。
15、定量分析技术基础(1)性能的评测:(a)响应时间:从事件开始到结束之间的时间;计算机完成某一任务所花费的全部时间。
(b)流量:单位时间内所完成的工作量。
(c)假定两台计算机x、y;x比y快意思为:对于给定任务,x的响应时间比y少。
计算机体系结构考点
1、填空题1、冯·诺依曼计算机由运算器、存储器、输入输出设备、控制器四部分组成,其中以运算器为中心。
2、大概率事件优先原则:对于大概率事件(最常见的事件),赋予它优先的处理权和资源使用权,以获得全局最优的结果。
3、通用寄存器指令集结构:寄存器-存储器型结构(RM型)、寄存器-寄存器型结构(RR型)。
4、流水线的分类:①按功能:单功能流水线、多功能流水线。
②按连接方式:静态流水线、动态流水线。
③按级别:部件级流水线、处理机级流水线、处理机间流水线。
④按数据表示:标量流水处理机、向量流水处理机。
⑤按是否有反馈回路:线性流水线、非线性流水线。
5、记分牌需要记录的信息分为三部分:指令状态表、功能部件状态表、结果寄存器状态表。
6、三个方面提高Cache的性能:降低失效率、减少失效开销、减少Cache命中时间。
7、Cache和主存的映像规则:直接映像、全相连映像、组相连映像。
8、M/M/m和M/M/1:第一个M表示请求到达间隔时间服从指数分布。
第二个M表示请求服务事件服从指数分布。
1或m表示服务员个数。
9、衡量I/O系统性能的参数:响应时间、可靠性。
10、总线的分类:同步总线、异步总线。
11、I/O总线的连接方法:①将I/O总线连接到存储器总线上。
②将I/O总线直接连接到Cache上。
12、通道的分类:字节多路通道、选择通道、数组多路通道。
13、①在一个处理器写某个数据项之前保证它对该数据项有唯一的访问权叫做写作废。
②当一个处理器写某数据项时,通过广播使其她Cache中所对应的数据项备份进行更新叫做写更新。
14、按照Flynn分类法可以把计算机分为单指令流单数据流(SISD)、单指令流多数据(SIMD)、多指令流单数据流(MISD)、多指令流多数据流(MIMD)。
15、指令设计包括指令格式设计和功能设计。
16、当从存储器向CPU调入一块是,块中往往只有一个字是CPU立刻需要的,这个字称为请求字。
请求字处理技术两种具体方案:尽早重启动、请求字优先。
结构体系
结构体系结构体系是指结构抵抗外部作用的构件组成方式。
在高层建筑中,抵抗水平力是设计的主要矛盾,因此抗侧力结构体系的确定和设计成为结构设计的关键问题。
高层建筑中基本的抗侧力单元是框架、剪力墙、实腹筒(又称井筒)、框筒及支撑由这几种单元可以组成多种结构体系。
1框架结构体系。
由梁、柱构件组成的结构称为框架。
整幢结构都由梁、柱组成就称为框架结构体系(或称纯框架结构)。
2.剪力墙结构体系。
利用建筑物墙体作为承受竖向荷载和抵抗水平荷载的结构,称为剪力墙结构体系。
3.框架-剪力墙结构(框架-筒体结构)体系。
在框架结构中,设置部分剪力墙,使框架和剪力墙两者结合起来,取长补短,共同抵抗水平荷载,这就是框架-剪力墙结构体系。
如果把剪力墙布置成筒体,可称为框架-筒体结构体系。
4.筒中筒结构。
筒体分实腹筒、框筒及桁架筒。
由剪力墙围成的筒体称为实腹筒,在实腹筒墙体上开有规则排列的窗洞形成的开孔筒体称为框筒;筒体四壁由竖杆和斜杆形成的衍架组成则称为衍架筒。
筒中筒结构由上述筒体单元组合,一般心腹筒在内,框筒或桁架筒在外,由内外筒共同抵抗水平力作用。
5.多筒体系——成束筒及巨型框架结构。
由两个以上框筒或其他筒体排列成束状,称为成束筒。
巨形框架是利用筒体作为柱子,在各筒体之间每隔数层用巨型梁相连,这样的筒体和巨型梁即形成巨型框架。
这种多筒结构可更充分发挥结构空向作用,其刚度和强度都有很大提高,可建造层数更多、高度更高的高层建筑。
钢结构的结构体系简述摘录时间:2009-10-30 17:17:54 山东筑鑫(集团)新型建材有限责任公司311、工程基础形式:一般采用钢筋混凝土独立柱基础或筏板基础。
当有地下室时,钢柱可直接延伸至地下室,结构传力途径简捷;结构施工周期短,综合造价降低。
2、钢框架或框架-支撑结构体系1)钢框架或框架-支撑:在钢结构住宅的钢结构体系主要采用钢管混凝土柱、轻型H 型梁框架体系和H型钢T形连接钢柱、轻型H型梁预制钢框架片通过钢梁现场组装的组合框架体系两种钢结构构成的纵横两个方向的多层框架体系类型。
体系结构名词解释
体系结构名词解释
嘿,咱今儿就来唠唠体系结构这个事儿!体系结构啊,就好比是一
个超级大拼图的框架!你想啊,一幅拼图要是没有个框架,那碎片不
就乱成一团啦?体系结构就是给各种元素、组件啥的搭起个架子,让
它们能各就各位,协同工作。
比如说电脑的体系结构,那就是让处理器、内存、硬盘这些硬件,
还有操作系统、软件这些家伙能和谐共处,一起为咱服务呀!这不就
跟一个团队一样嘛,每个人都有自己的职责,组合起来就能干大事儿!这体系结构不就是让一切都有序进行的关键嘛!
再看看建筑的体系结构,那可是决定了房子稳不稳固、好不好看的
重要因素呢!要是结构没设计好,那房子能结实吗?能住得安心吗?
这不就跟人的骨架似的,骨架歪了,人还能站直咯?
还有企业的体系结构呢,各个部门、流程之间的关系,不也得靠合
理的体系结构来梳理清楚呀!不然不就乱套啦?这体系结构多重要啊,咱能小瞧它吗?
反正我觉得啊,体系结构就是那个默默在背后支撑一切的大功臣!
没有它,啥都得乱套!它就像是一个无声的指挥家,让一切都有条不
紊地进行着。
所以啊,可别小看了这体系结构名词,它的作用大着呢!你说是不是?。
计算机系统结构名词解释简答
一.名词解释1.计算机体系结构:程序员所看到的计算机的属性,即概念性结构与功能特性。
2.系列机:在一个厂家内生产的具有相同的体系结构,但具有不同组成和实现的一系列不同型号的机器。
3.透明性现象:在计算机技术中,一种本来存在的事物或属性,但从某种角度看似乎不存在,称之为透明性现象。
因而计算机层次结构各个级上都有它的系统结构。
4.流水线技术:把一个重复的过程分解为若干个子过程,每个子过程由专门的功能部门实现。
将多个处理过程在时间上错开,一次通过各功能段,这样,每个子过程就可以与其它子过程并行进行。
5.指令调度:通过改变指令在程序中的位置,将相关指令之间的距离加大到不小于指令执行延迟,将相关指令转化为无关指令。
指令调度是循环展开的技术基础。
6.请求字优先:调块时,从请求字所在的位置读起。
这样,第一个读出的字便是请求字。
将之立即发送给CPU。
二.简答题1.降低Cache失效率答:强制性失效:增加块大小,预取(本身很少)容量失效:增加容量(抖动现象)冲突失效:提高相联度(理想情况:全相联)2.减少失效开销5.4.1 让读失效优先于写1. Cache中的写缓冲器导致对存储器访问的复杂化2. 解决问题的方法(读失效的处理)◆推迟对读失效的处理(缺点:读失效的开销增加,如50%)◆检查写缓冲器中的内容3. 在写回法Cache中,也可采用写缓冲器5.4.2 子块放置技术1. 为减少标识的位数,可采用增加块大小的方法,但这会增加失效开销,故应采用子块放置技术。
2. 子块放置技术:把Cache块进一步划分为更小的块(子块),并给每个子块赋予一位有效位,用于指明该子块中的数据是否有效。
Cache与下一级存储器之间以子块为单位传送数据。
但标识仍以块为单位。
5.4.3 请求字处理技术1. 请求字从下一级存储器调入Cache的块中,只有一个字是立即需要的。
这个字称为请求字。
2. 应尽早把请求字发送给CPU◆尽早重启动:调块时,从块的起始位置开始读起。
体系结构习题答案
体系结构习题答案1. 什么是计算机体系结构?计算机体系结构是指计算机系统中硬件和软件组件的设计和组织方式,包括指令集、数据路径、控制单元、存储器层次结构等。
2. 冯·诺依曼体系结构的主要特点是什么?冯·诺依曼体系结构的主要特点是:- 程序存储:指令和数据都存储在同一个读写内存中。
- 顺序执行:计算机按照程序存储的顺序执行指令。
- 单处理单元:只有一个中央处理单元(CPU)来执行指令。
3. 什么是流水线技术?流水线技术是一种提高计算机性能的方法,通过将指令执行过程划分为多个阶段,允许多个指令在不同的阶段同时进行,从而实现指令的并行处理。
4. 存储器层次结构的目的是什么?存储器层次结构的目的是为了平衡存储速度和成本,提供从快速但昂贵的缓存到较慢但便宜的主存和辅助存储的连续存储解决方案。
5. 什么是指令级并行性(ILP)?指令级并行性是指在单个指令执行过程中,通过并行执行多个操作来提高性能。
这通常通过流水线、超标量架构或动态调度实现。
6. 什么是数据级并行性(DLP)?数据级并行性是指在执行指令时,对数据进行并行处理,例如使用向量处理器或图形处理器(GPU)来同时处理多个数据元素。
7. 什么是线程级并行性(TLP)?线程级并行性是指通过同时执行多个线程来提高性能,这些线程可以是操作系统级别的线程或用户级别的线程。
8. 什么是多核处理器?多核处理器是一种包含两个或更多独立处理核心的CPU,每个核心可以独立执行指令,从而提高计算能力。
9. 什么是虚拟化技术?虚拟化技术允许多个操作系统和应用程序在同一硬件上运行,通过软件模拟硬件环境,实现资源的高效利用和隔离。
10. 什么是可靠性和可用性?可靠性是指系统在规定条件下和规定时间内执行所需功能的能力。
可用性是指系统在需要时能够提供服务的能力。
请注意,这些习题答案仅提供了一些基本的概念和定义。
在实际的学习和应用中,每个主题都可能需要更深入的探讨和理解。
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
1.1解释下列术语层次机构:按照计算机语言从低级到高级的次序,把计算机系统按功能划分成多级层次结构,每一层以一种不同的语言为特征。
这些层次依次为:微程序机器级,传统机器语言机器级,汇编语言机器级,高级语言机器级,应用语言机器级等。
虚拟机:用软件实现的机器。
翻译:先用转换程序把高一级机器上的程序转换为低一级机器上等效的程序,然后再在这低一级机器上运行,实现程序的功能。
解释:对于高一级机器上的程序中的每一条语句或指令,都是转去执行低一级机器上的一段等效程序。
执行完后,再去高一级机器取下一条语句或指令,再进行解释执行,如此反复,直到解释执行完整个程序。
计算机系统结构:传统机器程序员所看到的计算机属性,即概念性结构与功能特性。
在计算机技术中,把这种本来存在的事物或属性,但从某种角度看又好像不存在的概念称为透明性。
计算机组成:计算机系统结构的逻辑实现,包含物理机器级中的数据流和控制流的组成以及逻辑设计等。
计算机实现:计算机组成的物理实现,包括处理机、主存等部件的物理结构,器件的集成度和速度,模块、插件、底板的划分与连接,信号传输,电源、冷却及整机装配技术等。
系统加速比:对系统中某部分进行改进时,改进后系统性能提高的倍数。
Amdahl定律:当对一个系统中的某个部件进行改进后,所能获得的整个系统性能的提高,受限于该部件的执行时间占总执行时间的百分比。
程序的局部性原理:程序执行时所访问的存储器地址不是随机分布的,而是相对地簇聚。
包括时间局部性和空间局部性。
CPI:每条指令执行的平均时钟周期数。
测试程序套件:由各种不同的真实应用程序构成的一组测试程序,用来测试计算机在各个方面的处理性能。
存储程序计算机:冯·诺依曼结构计算机。
其基本点是指令驱动。
程序预先存放在计算机存储器中,机器一旦启动,就能按照程序指定的逻辑顺序执行这些程序,自动完成由程序所描述的处理工作。
系列机:由同一厂家生产的具有相同系统结构、但具有不同组成和实现的一系列不同型号的计算机。
软件兼容:一个软件可以不经修改或者只需少量修改就可以由一台计算机移植到另一台计算机上运行。
差别只是执行时间的不同。
向上(下)兼容:按某档计算机编制的程序,不加修改就能运行于比它高(低)档的计算机。
向后(前)兼容:按某个时期投入市场的某种型号计算机编制的程序,不加修改地就能运行于在它之后(前)投入市场的计算机。
兼容机:由不同公司厂家生产的具有相同系统结构的计算机。
模拟:用软件的方法在一台现有的计算机(称为宿主机)上实现另一台计算机(称为虚拟机)的指令系统。
仿真:用一台现有计算机(称为宿主机)上的微程序去解释实现另一台计算机(称为目标机)的指令系统。
并行性:计算机系统在同一时刻或者同一时间间隔内进行多种运算或操作。
只要在时间上相互重叠,就存在并行性。
它包括同时性与并发性两种含义。
时间重叠:在并行性概念中引入时间因素,让多个处理过程在时间上相互错开,轮流重叠地使用同一套硬件设备的各个部分,以加快硬件周转而赢得速度。
资源重复:在并行性概念中引入空间因素,以数量取胜。
通过重复设置硬件资源,大幅度地提高计算机系统的性能。
资源共享:这是一种软件方法,它使多个任务按一定时间顺序轮流使用同一套硬件设备。
耦合度:反映多机系统中各计算机之间物理连接的紧密程度和交互作用能力的强弱。
紧密耦合系统:又称直接耦合系统。
在这种系统中,计算机之间的物理连接的频带较高,一般是通过总线或高速开关互连,可以共享主存。
松散耦合系统:又称间接耦合系统,一般是通过通道或通信线路实现计算机之间的互连,可以共享外存设备(磁盘、磁带等)。
计算机之间的相互作用是在文件或数据集一级上进行。
异构型多处理机系统:由多个不同类型、至少担负不同功能的处理机组成,它们按照作业要求的顺序,利用时间重叠原理,依次对它们的多个任务进行加工,各自完成规定的功能动作。
同构型多处理机系统:由多个同类型或至少担负同等功能的处理机组成,它们同时处理同一作业中能并行执行的多个任务。
2.1解释下列术语堆栈型机器:CPU中存储操作数的单元是堆栈的机器。
累加器型机器:CPU中存储操作数的单元是累加器的机器。
通用寄存器型机器:CPU中存储操作数的单元是通用寄存器的机器。
CISC:复杂指令集计算机RISC:精简指令集计算机寻址方式:指令系统中如何形成所要访问的数据的地址。
一般来说,寻址方式可以指明指令中的操作数是一个常数、一个寄存器操作数或者是一个存储器操作数。
数据表示:硬件结构能够识别、指令系统可以直接调用的那些数据结构。
3.1解释下列术语流水线:将一个重复的时序过程,分解成为若干个子过程,而每一个子过程都可有效地在其专用功能段上与其它子过程同时执行。
单功能流水线:指流水线的各段之间的连接固定不变、只能完成一种固定功能的流水线。
多功能流水线:指各段可以进行不同的连接,以实现不同的功能的流水线。
静态流水线:指在同一时间内,多功能流水线中的各段只能按同一种功能的连接方式工作的流水线。
当流水线要切换到另一种功能时,必须等前面的任务都流出流水线之后,才能改变连接。
动态流水线:指在同一时间内,多功能流水线中的各段可以按照不同的方式连接,同时执行多种功能的流水线。
它允许在某些段正在实现某种运算时,另一些段却在实现另一种运算。
部件级流水线:把处理机中的部件进行分段,再把这些部件分段相互连接而成。
它使得运算操作能够按流水方式进行。
这种流水线也称为运算操作流水线。
处理机级流水线:又称指令流水线。
它是把指令的执行过程按照流水方式进行处理,即把一条指令的执行过程分解为若干个子过程,每个子过程在独立的功能部件中执行。
处理机间流水线:又称为宏流水线。
它是把多个处理机串行连接起来,对同一数据流进行处理,每个处理机完成整个任务中的一部分。
前一个处理机的输出结果存入存储器中,作为后一个处理机的输入。
线性流水线:指各段串行连接、没有反馈回路的流水线。
数据通过流水线中的各段时,每一个段最多只流过一次。
非线性流水线:指各段除了有串行的连接外,还有反馈回路的流水线。
顺序流水线:流水线输出端任务流出的顺序与输入端任务流入的顺序完全相同。
乱序流水线:流水线输出端任务流出的顺序与输入端任务流入的顺序可以不同,允许后进入流水线的任务先完成。
这种流水线又称为无序流水线、错序流水线、异步流水线。
吞吐率:在单位时间内流水线所完成的任务数量或输出结果的数量。
流水线的加速比:使用顺序处理方式处理一批任务所用的时间与按流水处理方式处理同一批任务所用的时间之比。
流水线的效率:即流水线设备的利用率,它是指流水线中的设备实际使用时间与整个运行时间的比值。
数据相关:考虑两条指令i和j,i在j的前面,如果下述条件之一成立,则称指令j与指令i数据相关:(1)指令j使用指令i产生的结果;(2)指令j与指令k数据相关,而指令k又与指令i数据相关。
名相关:如果两条指令使用了相同的名,但是它们之间并没有数据流动,则称这两条指令存在名相关。
控制相关:是指由分支指令引起的相关。
它需要根据分支指令的执行结果来确定后面该执行哪个分支上的指令。
反相关:考虑两条指令i和j,i在j的前面,如果指令j所写的名与指令i所读的名相同,则称指令i和j发生了反相关。
输出相关:考虑两条指令i和j,i在j的前面,如果指令j和指令i所写的名相同,则称指令i和j发生了输出相关。
换名技术:名相关的两条指令之间并没有数据的传送,只是使用了相同的名。
可以把其中一条指令所使用的名换成别的,以此来消除名相关。
结构冲突:因硬件资源满足不了指令重叠执行的要求而发生的冲突。
数据冲突:当指令在流水线中重叠执行时,因需要用到前面指令的执行结果而发生的冲突。
控制冲突:流水线遇到分支指令或其它会改变PC值的指令所引起的冲突。
定向:用来解决写后读冲突的。
在发生写后读相关的情况下,在计算结果尚未出来之前,后面等待使用该结果的指令并不见得是马上就要用该结果。
如果能够将该计算结果从其产生的地方直接送到其它指令需要它的地方,那么就可以避免停顿。
写后读冲突:考虑两条指令i和j,且i在j之前进入流水线,指令j用到指令i的计算结果,而且在i将结果写入寄存器之前就去读该寄存器,因而得到的是旧值。
读后写冲突:考虑两条指令i和j,且i在j之前进入流水线,指令j的目的寄存器和指令i的源操作数寄存器相同,而且j在i读取该寄存器之前就先对它进行了写操作,导致i读到的值是错误的。
写后写冲突:考虑两条指令i和j,且i在j之前进入流水线,,指令j和指令i的结果单元(寄存器或存储器单元)相同,而且j在i写入之前就先对该单元进行了写入操作,从而导致写入顺序错误。
这时在结果单元中留下的是i写入的值,而不是j写入的。
链接技术:具有先写后读相关的两条指令,在不出现功能部件冲突和Vi冲突的情况下,可以把功能部件链接起来进行流水处理,以达到加快执行的目的。
分段开采:当向量的长度大于向量寄存器的长度时,必须把长向量分成长度固定的段,然后循环分段处理,每一次循环只处理一个向量段。
半性能向量长度:向量处理机的性能为其最大性能R的一半时所需的向量长度。
向量长度临界值:向量流水方式的处理速度优于标量串行方式的处理速度时所需的向量长度的最小值。
4.1解释下列术语指令级并行:简称ILP。
是指指令之间存在的一种并行性,利用它,计算机可以并行执行两条或两条以上的指令。
指令调度:通过在编译时让编译器重新组织指令顺序或通过硬件在执行时调整指令顺序来消除冲突。
指令的动态调度:是指在保持数据流和异常行为的情况下,通过硬件对指令执行顺序进行重新安排,以提高流水线的利用率且减少停顿现象。
是由硬件在程序实际运行时实施的。
指令的静态调度:是指依靠编译器对代码进行静态调度,以减少相关和冲突。
它不是在程序执行的过程中、而是在编译期间进行代码调度和优化的。
保留站:在采用Tomasulo算法的MIPS处理器浮点部件中,在运算部件的入口设置的用来保存一条已经流出并等待到本功能部件执行的指令(相关信息)。
CDB:公共数据总线。
动态分支预测技术:是用硬件动态地进行分支处理的方法。
在程序运行时,根据分支指令过去的表现来预测其将来的行为。
如果分支行为发生了变化,预测结果也跟着改变。
BHT:分支历史表。
用来记录相关分支指令最近一次或几次的执行情况是成功还是失败,并据此进行预测。
分支目标缓冲:是一种动态分支预测技术。
将执行过的成功分支指令的地址以及预测的分支目标地址记录在一张硬件表中。
在每次取指令的同时,用该指令的地址与表中所有项目的相应字段进行比较,以便尽早知道分支是否成功,尽早知道分支目标地址,达到减少分支开销的目的。
前瞻执行:解决控制相关的方法,它对分支指令的结果进行猜测,然后按这个猜测结果继续取指、流出和执行后续的指令。