高等数学中常用的初等数学知识(第一章)
高等数学(上册)重要知识点
一章 函数与极限1. 集合与函数 1.1 集合的概念具有某种特定性质的事物的的全体。
全体非负整数(自然数)构成的集合{0,1,2,3......}记为N 。
全体正整数构成的集合{1,2,3....}记为 。
全体整数构成的集合{....-1,0,1,2....}(记为Z). 全体实数构成的集合R. 1.2基本初等函数和初等函数 反对幂指三是基本初等函数.将基本初等函数经过有限次的四则运算和有限次的复合运算所得到的 且能用一个式子表示的函数称为初等函数. 1.3极坐标与直角坐标系的关系θρθρsin cos {==y x )0(tan {22≠=+=x x y yx θρ1.4几种特殊性质的函数 (1)有界函数F(x)在x 上有界的充分必要条件为:存在常数M>0,使得| f(x) | ≦ M,对任意x 属于X.这时称风f(x)在x 上有一个界. (2)奇偶函数F (x)=f(-x),称为偶函数. F (-x)=-f(x),称为奇函数. (3)周期函数f(x+L)=f(x)恒成立,称f(x)为周期函数.L 为f(x)的最小正周期.2.极限2.1数列极限的定义设有数列{a n },若存在常数a ,对任意给定的ε>0,总存在正整数N ,当n>N 时,恒有| a n -a |<ε成立,则数列{a n }以a 为极限。
记作:aann =∞→lim , 或 a a n→(∞→a ).此时称数列}{a n 收敛于常数a ,或简称数列收敛.反之数列}{a n 没有极限,或称它为发散.2.2数列极限的性质(1)(极限的唯一性)如果数列}{a n 收敛,那么它的极限必唯一.(2)(有界性)收敛数列必定有界.(3)(保号性)设有数列}{a n ,}{b n 分别收敛于a,b,并且b>a,那么存在正整数 N ,当n>N 时,恒有b n >a n . (4) 设有数列}{a n ,}{b n 分别收敛于a,b,并且存在正整数N,当n>N时,恒有b n ≥an,那么a b ≥(5)数列}收敛于a 的充分必要条件是它的任何一个子集数列都收敛于a. 2.3函数极限(1)设函数f(x)在的某去心邻域有定义.若存在常数A,使对任给的ε>0,总存在δ>0,当0<|x-x 0|<δ时,恒有 |f(x)-A|<ε恒成立,则称当x x →0时,f(x)以A 为极限.记作:)(limx f x x →=A或A x f →)(,当x x 0→.(2)函数极限的性质1.(唯一性)如果存在,那么极限是唯一的。
高等数学知识点
第1章 集合与函数小结一、函数的概念1.函数()y f x =的定义域()D f 及其求法.2.函数的两个基本要素:定义域和对应法则.3.分段函数:一个函数在其定义域的不同子集上用不同的表达式来表示,即一个函数由两个或两个以上的式子表示.4.熟练掌握绝对值函数:,0,,<0x x y x x x ≥⎧==⎨-⎩的定义、图像及性质二、函数的奇偶性、单调性、周期性和有界性三、复合函数5.由函数()y f u =与()u g x =复合而成的复合函数()()y f g x =的概念.(难点:复合函数分解为若干个简单函数,与后续章节的复合函数求导、微分、积分的联系)四、基本初等函数和初等函数6.五种基本初等函数:幂函数、指数函数、对数函数、三角函数、反三角函数(以sin y arc x =,cos y arc x =为主)的性质及其图形. (加强点:幂函数的根式、分式转换;指数、对数的运算性质 )7.初等函数:由常数和基本初等函数经过有限次四则运算和有限次复合而构成,并能用一个解析式表示的函数. 五、常用经济函数第二章 极限与连续 知识点归纳一、极限的概念 1.极限的定义(1)lim n n x A →∞=. (2)()lim x f x A →∞= 、()lim x f x A →+∞=、()lim x f x A →-∞= (3)()0lim x x f x A →= 、左极限()()000lim x x f x f x A -→-==、右极限()()000lim x xf x f x A +→+== 2.极限的基本性质(1)唯一性:若()lim f x A =(或lim n n x A →∞=),()lim f x B =(或lim n n x B →∞=)则A B =. (2)有界性:收敛数列必有界.(3)保号性:若函数极限为正(或负),则在极限变化某过程中函数也为正(或负). (4)()lim x f x A →∞=⇔()()lim lim x x f x f x A →+∞→-∞==.(5)()0lim x xf x A →=⇔()()0lim lim x x x x f x f x A -+→→==.二、无穷小量1. 无穷小(量):0)(lim )(=⇔x f x f2. 无穷大(量):3. 无穷小与无穷大的关系(课本53页例3、55页例9,57页的引理2)4. 两个无穷小的比较5. 重要的等价无穷小当0x →时,sin ~x x ,tan ~x x ,211cos ~2x x -,1~x e x -,()ln 1~x x +1~2x-, (1)1~a x x α+-(α∈R ). 三、求极限的方法 1. 利用极限的四则运算 例1:求下列极限2213252175763221121(1)lim;(2)lim();;(3)lim;123211421(4)lim(5)lim;(6)lim;116216210(7)lim;31321(8)lim;(9)lim21n n xx x xxx xn n n xn n x xx xx x x xx xx xx xx x→∞→∞→→→-→∞→∞→∞→∞-+++--+-+-+⎛⎫-⎪+-+-⎝⎭-++--++--2. 利用函数的连续性求极限(代入法).3. 两个重要极限和变量替换法并用(1)sinlim1xxx→=,()0sin()lim1()u xu xu x→=.(2) 1lim(1)nnen→∞+=,1lim(1)xxex→∞+=,1lim(1)ettt→+=.例2:求下列极限()1000023(1)lim1;(2)lim1;(3)lim12;1sin3sin3(4)lim;(5)lim;(6)lim;1tan71111(7)lim sin;(8)lim sin;(9)lim sin;(10)lim sinn xxn x xxx x xx x x xxn xx x xx x xx x x xx x x x →∞→∞→→∞→→→∞→→∞→⎛⎫⎛⎫---⎪ ⎪⎝⎭⎝⎭-⎛⎫⎪+⎝⎭4. 利用无穷小的重要性质和等价无穷小代换(1)无穷小的重要性质:有界变量与无穷小的乘积是一个无穷小.(2)等价无穷小代换例3:求下列极限223000200tan71cos4tan sin(1)lim;(2)lim(3)lim;sin221cos1cos(4)lim(5)limln(1)1x x xxx xx x x xx x xx xxe→→→→→----+-四、函数连续性 1. 函数连续的概念(1)若()()00lim x xf x f x →=,称()f x 在点0x 处连续. (2)若()()00lim x xf x f x -→=,称函数()f x 在点0x 左连续; 若()()00lim x xf x f x +→=,称()f x 在点0x 右连续. ()f x 在点0x 连续⇔()f x 在点0x 左连续且右连续.(3)若()f x 在(),a b 内每一点都连续,称函数()f x 在(),a b 内连续. (4)若()f x 在(),a b 内连续,在x a =右连续,在x b =左连续,称()f x 在[],a b 上连续.2. 初等函数的连续性重要结论: 基本初等函数在其定义域内都是连续的。
高等数学第一章《函数与极限》
第一章 函数与极限一、内容提要(一)主要定义【定义 1.1】 函数 设数集,D R ⊂如果存在一个法则,使得对D 中每个元素x ,按法则f ,在Y 中有唯一确定的元素y 与之对应,则称:f D R →为定义在D 上的函数,记作(),y f x x D =∈.x 称为自变量,y 称为因变量,D 称为定义域.【定义1.2】 数列极限 给定数列{}x n 及常数a ,若对任意0ε>,总存在正整数N ,使得当n N >时,恒有x a n -<ε成立,则称数列{}x n 收敛于a ,记为a x n n =∞→lim .【定义1.3】 函数极限(1)对于任意0ε>,存在()0δε>,当δ<-<00x x 时,恒有()ε<-A x f .则称A 为()f x 当0x x →时的极限,记为A x f x x =→)(lim 0.(2) 对于任意0ε>,存在0X >,当x X >时,恒有f x A ()-<ε.则称A 为()f x 当x →∞时的极限,记为lim ()x f x A →∞=.(3)单侧极限左(右)极限 任意0ε>,存在()0δε>,使得当000(0)x x x x δδ-<-<<-<时,恒有()ε<-A x f .则称当00()x x x x -+→→时)(x f 有左(右)极限A ,记为00lim ()(lim ())x x x x f x A f x A -+→→== 或00(0)((0))f x A f x A -=+=.单边无穷极限 任意0ε>,存在0X >,使得当x X >(x X <-)时, 恒有f x A ()-<ε, 则lim ()x f x A →+∞=(lim ()x f x A →-∞=) .【定义1.4 】 无穷小、无穷大 若函数()f x 当0x x →(或x →∞)时的极限为零(|()|f x 无限增大),那么称函数()f x 为当0x x →(或x →∞)时的无穷小(无穷大).【定义1.5】 等价无穷小 若lim 0,lim 0,lim 1βαβα===,则α与β是等价的无穷小.【定义 1.6】 连续 若)(x f y =在点0x 附近有定义,且)()(lim 00x f x f x x =→,称()y f x =在点0x 处连续.否则0x 为()f x 的间断点.(二)主要定理【定理1.1】极限运算法则 若a x u =)(lim , b x v =)(lim ,则 (1)()lim u v ±存在,()lim lim lim u v u v a b ±=±=±且; (2)()lim u v ⋅存在,()lim lim lim u v u v a b ⋅=⋅=⋅且; (3)当0≠b 时, limu v 存在,lim lim lim u u a v v b==且 推论 ⑴ lim lim Cu C u Ca ==; ⑵ ()lim lim nnnu u a ==. 【定理1.2】极限存在的充要条件⇔=→A x f x x )(lim 0lim ()x x f x -→=0lim ()x x f x A +→=.lim ()x f x A →∞=⇔lim ()x f x →-∞=lim ()x f x A →+∞=【定理1.3】极限存在准则 (1) 单调有界数列必有极限(2) 夹逼准则: 设数列{}n x 、{}n y 及{}n z 满足① n n n y x z ≤≤, ② lim =lim n n n n y z a →∞→∞=,则lim n n x →∞存在,且lim n n x a →∞=.【定理1.4】极限与无穷小的关系 若lim (),f x A =则(),f x A α=+其中lim 0.α=【定理1.5】两个重要极限 1sin lim0=→x x x ,e x xx =⎪⎭⎫⎝⎛+∞→11lim .【定理1.6】 初等函数的连续性 初等函数在其定义区间内连续. 【定理1.7】闭区间上连续函数的性质(1)最值定理 闭区间上连续函数在该区间上一定有最大值M 和最小值m . (2)有界定理 闭区间上连续函数一定在该区间上有界.(3)介值定理 闭区间上连续函数必可取介于最大值M 与最小值m 之间的任何值. (4)零点存在定理 设函数()x f 在[]b a ,上连续,()a f ()0<⋅b f ,则至少存在一个ξ∈()b a ,,使 ()0f ξ=.二、典型题解析函数两要素:定义域,对应关系定义域:使表达式有意义的自变量的全体,方法为解不等式 对应关系:主要方法用变量替换(一)填空题【例1.1】 函数23arccos2xy x =+的定义域是 . 解 由arccos y u =的定义域知11u -≤≤,从而23112xx -≤≤+, 即 (][][),21,12,-∞--+∞.【例1.2】 设()()()2sin ,1f x x f x xφ==-,则函数()x φ的定义域为 .解 由已知()()2sin[()]1fx x xφφ==-,所以()2sin(1)x arc x φ=-,则2111,x -≤-≤即x ≤.【例1.3】设1()(0,1),()([...()])1n n f x x x f x f f f x x =≠≠=+次,试求()n f x 解 由()1xf x x =-,则21()[()]11xx f x f f x x x x -===--,显然复合两次变回原来的形式,所以,2(),211n x n k f x x n k x =⎧⎪=⎨=+⎪-⎩(二)选择题【例 1.9】设函数()f x 在(),-∞+∞上连续,又0a >且1a ≠,则函数()()()sin 2sgn sin F x f x x =-是 [ ](A) 偶函数 (B) 奇函数 (C) 非奇非偶函数 (D) 奇偶函数. 解 因为()()sgn sin sgn sin x x -=-⎡⎤⎣⎦,所以()sgn sin x 为奇函数.而()sin 2f x -为偶函数,故()()sin 2sgn sin f x x -⋅为奇函数,故选 B .【例 1.10】设()f x 是偶函数,当[]0,1x ∈时,()2f x x x =-,则当[]1,0x ∈-时,()f x = [ ](A) 2x x -+(B) 2x x + (C) 2x x - (D) 2x x --.解 因为()()f x f x -=,取[]1,0x ∈-,则[0,1]x -∈,所以()()()22f x x x x x -=---=--, 故选 D .(三)非客观题 1.函数及其性质【例1.16】 求函数()lg(1lg )f x x =-的定义域. 解 要使()f x 有意义,x 应满足0,1lg 0x x >⎧⎨->⎩ 即010x <<,所以()f x 的定义域为 (0,10).【例1.17】 设函数()f x 的定义域是[0,1],试求()f x a ++()f x a -的定义域(0a >).解 由()f x 的定义域是[0,1],则0101x a x a ≤+≤⎧⎨≤-≤⎩,故1a x a ≤≤-,则当1a a =-时,即12a =时,函数的定义域为12x =; 当1a a ->时,即12a <时,函数的定义域为[],1a a -; 当1a a -<时,即12a >时,函数的定义域为空集. 【例1.18】设()2,x f x e =()()1f x x ϕ=-并且()0x ϕ≥,求()x ϕ及其定义域.解 因为()()2[()]1,x fx e x φϕ==-且()0x ϕ≥,故()x ϕ=,为使此式有意义,ln(1)0x -≥,所以函数()x ϕ的定义域为{}0x x ≤.【例1.19】 设()2422x xf x x ++=-,求()2f x -.解( 法一)配方法 ()2(2)422(2)2x f x x +-+=-++,所以()24224.x xf x x --=-+解(法二) 变量代换法 令2x t =-,代入得()2422t f t t -=-+,即()2422xf x x -=-+,则()24224xxf x x --=-+.【例1.20】 设()22,01,12x x f x x x ≤≤⎧=⎨<≤⎩,()ln g x x =,求()f g x ⎡⎤⎣⎦. 解 ()[]ln f g x f x =⎡⎤⎣⎦ 22ln ,0ln 1ln ,1ln 2x x x x ≤≤⎧=⎨<≤⎩[]()()222ln ,1,0, ln , ,0,x x e x x e e ⎧∈+∞⎪=⎨⎡⎤∈+∞⎪⎣⎦⎩[]222ln ,1,ln , ,x x e x x e e ⎧∈⎪=⎨⎡⎤∈⎪⎣⎦⎩【例1.21】 设()1,10,1x x x ϕ⎧≤⎪=⎨>⎪⎩,()22,12,1x x x x ψ⎧-≤⎪=⎨>⎪⎩,求 ()x ϕϕ⎡⎤⎣⎦,()x ϕψ⎡⎤⎣⎦. 解 ⑴ 当(),x ∈-∞+∞时,()01x ϕ≤≤ ,所以 ()()1,,x x ϕϕ≡∈-∞+∞⎡⎤⎣⎦.⑵ 因为 ()()()1,10,1x x x ψϕψψ⎧≤⎪=⎡⎤⎨⎣⎦>⎪⎩, 且 ()()1,12,1x x x x ψψ⎧==⎪⎨<≤≠⎪⎩ 1,故 ()1,10,1x x x ϕψ⎧=⎪=⎡⎤⎨⎣⎦≠⎪⎩. 【例1.22】 求函数()2312,1,121216,2x x f x x x x x ⎧-<-⎪=-≤≤⎨⎪->⎩的反函数.解 当21121,x y x <- -<-时,=则x =, 当312=8,x y x -≤≤ ≤≤时,-1则x =当212168,x y x > =->时, 则16,12y x +=所以()f x 的反函数为 ()111816,812x y f x x x x -⎧<-⎪⎪⎪==-≤≤⎨⎪+⎪>⎪⎩.【例 1.23】设()f x 在(,)-∞+∞上有定义,且对任意,(,)x y ∈-∞+∞有()()f x f y x y -<-,讨论()()F x f x x =+在(,)-∞+∞上的单调性.解 任取12,(,)x x ∈-∞+∞,不妨设21x x >,则由条件有()()()()21212121f x f x f x f x x x x x -<-<-=-,所以()()1221f x f x x x -<-,则可变形为()()1122f x x f x x +<+,即()()12F x F x <,故()F x 在(,)-∞+∞上单调增加.【例1.24】 求c 的一个值,使()sin()()sin()0b c b c a c a c ++-++=,这里b a >,且均为常数.解 令()sin f x x x =,则()f x 是一个偶函数,则有[]()()f b c f b c +=-+要使()(),()f b c f a c a b +=+≠成立,则有1()()()2a cbc c a b +=-+⇒=-+.极限与连续:不定式,等价关系,特殊极限 极限待定系数的确定原理 连续待定系数确定的原理【例1.4】 设2lim 8xx x a x a →∞+⎛⎫= ⎪-⎝⎭,则a = . 解 因为 233lim lim lim 1x x xx x x x a x a a a x a x a x a →∞→∞→∞+-+⎛⎫⎛⎫⎛⎫==+ ⎪ ⎪ ⎪---⎝⎭⎝⎭⎝⎭3333lim 1x a axa x aa x a e x a --→∞⎛⎫=+= ⎪-⎝⎭再由3ln83ln 28ln 2aee e a ===⇒=.【例1.5】(2004数三)若()0sin lim cos 5x x xx b e a→-=-,则a = ,b = .解 因()0sin limcos 5x x xx b e a→-=-,而()0limsin cos 0x x x b →-=,则0lim 0x x e a →-=, 所以1a =,又0x →时,sin ,1x xx e x -,则()()000sin limcos lim cos limcos51x x x x x x x b x b x b x e →→→-=-=-=-,154b b -=⇒=-. 【例 1.6】 已知当0x →时,123(1)1ax +-与1cos x -是等价无穷小,则常数a = .解 由1230(1)1lim1,1cos x ax x→+-=-而1222ln(1)3112ln(1)2333220000(1)112limlim limlim1cos 1cos 32ax ax ax x x x x ax e a xx x x ++→→→→+--====--,故3.2a = 【例1.7】 (2004数二)设()()21lim1n n x f x nx →∞-=+,则()f x 的间断点为x = .解 ()()()22111limlim ,0110,0n n n x n x x f x xnx nx x →∞→∞⎧--=⋅=≠⎪=⎨++⎪=⎩而 ()001lim lim(0)x x f x f x→→===∞≠,故()f x 的间断点(无穷)为0x =.【例1.8】 设()1sin , 02, 0x x f x x a x ⎧≠⎪=⎨⎪=⎩,在0x =处连续,则a = . 解 要使()f x 在0x =处连续,应有()()0lim 0,x f x f a →==而()0001sin1122lim lim sin lim 222x x x xx f x x x →→→===, 所以12a =.(二)选择题 【例1.11】()1, 10,01x x f x x x --<≤⎧=⎨<≤⎩ ,则()0lim x f x →= [ ](A) -1 (B) 0 (C) 不存在 (D) 1. 解 ()0lim lim 0x x f x x →+→+==, ()()0lim lim 11x x f x x →-→-=-=-.因为()()0lim lim x x f x f x →+→-≠,所以()0lim x f x →不存在,故选 C.【例1.12】 下列结论正确的是 [ ] (A) 若1lim1n n na a +→∞=,则lim n n a →∞存在;(B) 若lim n n a A →∞=,则11lim lim1lim n n n n nn n a a A a a A ++→+∞→∞→∞===; (C) 若lim n n a A →∞=,若lim n n b B →∞=,则()lim n bB n n a A →+∞=;(D) 若数列{}2n a 收敛且()2210n n a a n --→→∞,则数列{}n a 收敛.解 (A)不正确,反例{}n a n =,(B)不正确,因为只有当lim 0n n a →∞≠时,才能运用除法法则:11lim lim lim n n n n nn n a a a a ++→+∞→∞→∞= ,(C)不正确,只有0A ≠时,()lim n b B n n a A →+∞=成立.故选 D.注意无穷大与有界量的乘积关系 【例1.13】 当0x →时,变量211sin x x是 [ ] (A) 无穷小; (C) 有界的,但不是无穷小量; (B) 无穷大; (D) 无界的,但不是无穷大量. 解 M ∀,1,22n x n ππ∃=+只要,2M n π⎡⎤>⎢⎥⎣⎦则()2,2n f x n M ππ=+> 所以211sin x x 无界.再令 12x k π=,()0,1,2,k =±±,则()20lim lim(2)x k f x k π→→∞=⋅ sin 20k π≡,故()lim x f x →∞≠∞.故选 D.趋向无穷大主要是最高次项 趋向无穷小主要是最低次项【例1.14】 当0x →时,下列4个无穷小关于x 的阶最高的是 [ ](A) 24x x + (B)1 (C)sin 1xx- (D)-解 242200lim lim(1)1x x x x x x→→+=+=,所以24x x +是x 的2阶无穷小. 当0x →111sin 22x x ,故(B )是x 的同阶无穷小. 311000sin 11sin 6lim lim lim k k k x x x x x x xx x xx ++→→→---==,要使极限存在2k =,故(C )是x 的2阶无穷小.0x x →→= 3001sin (1cos )1lim lim 24cos k k x x x x x x xx →→-==, 同理(D )是x 的3阶无穷小.故选D.指数函数的极限要注意方向【例1.15】(2005数二)设函数()111xx f x e-=-,则 [ ](A) 0x =,1x =都是()f x 的第一类间断点; (B) 0x =,1x =都是()f x 的第二类间断点;(C) 0x =是()f x 的第一类间断点,1x =是()f x 的第二类间断点; (D) 0x =是()f x 的第二类间断点,1x =是()f x 的第一类间断点. 解 因为()0lim x f x →=∞,则0x =是()f x 的第二类间断点;而()()11111111lim lim 0,lim lim 111xx x xx x x x f x f x ee++--→→→→--====---, 所以1x =是()f x 的第一类(跳跃)间断点,故选 D. (三)非客观题 求极限的各种方法(1) 用N ε-定义证明数列极限定义证明的关键是利用n x A ε-<倒推找正整数N (与ε有关),这个过程常常是通过不等式适当放大来实现.【例1.25】求证lim1n n→∞=. 证明 对0ε∀>,1ε-<成立,则需1-n n =n a n n +-<a nε=<只要1an n ⎡⎤>+⎢⎥⎣⎦,取1a N n ⎡⎤=+⎢⎥⎣⎦,当n N >时,1ε<.证毕. 【例1.26】 设常数1,a >用N ε-定义证明lim 0!nn a n →∞=. 证明 对0ε∀>,要使0!na n ε-<成立,则需[]0!1[]([]1)[]1n a n a a a a a aa k n a a n a ε-⎛⎫⋅⋅⋅⋅-=<⋅< ⎪⋅⋅+⋅⋅+⎝⎭,(其中1[]a ak a ⋅⋅=⋅⋅)只要lg []lg[]1k n a a a ε>++,为保证0,N >取lg max 1,[]lg []1k N a a a ε⎧⎫⎡⎤⎪⎪⎢⎥⎪⎪⎢⎥=+⎨⎬⎢⎥⎪⎪⎢⎥+⎪⎪⎣⎦⎩⎭,当n N >时,有 0!na n ε-<,证毕. (2)通过代数变形求数列极限 逐项平方差【例1.27】求极限2421111lim(1)(1)(1)(1)2222nn →∞++++解 2421111lim(1)(1)(1)(1)2222n n →∞++++=2111(1)(1)(1)222lim n →∞-++2n 1(1+)211-22(1)12lim(1)22n n +→∞=-=平方差公式【例1.28】求极限lim )n n n →∞.解lim )nn n →∞n =limn →∞=limn =12=. 等比求和【例1.29】 求极限221112333lim 111555nn n →∞+++++++. 解 由等比数列的求和公式2(1)1n nq q q q q q-+++=-将数列变形,则221113211113213333lim lim 11111155551515n n n n n n →∞→∞-+⨯++++-=+++-⨯-112123lim 11145n x n →∞⎛⎫+- ⎪⎝⎭=⎛⎫- ⎪⎝⎭1221014+==. 分项求和【例1.30】 求[]31lim(21)2(23)3(25)n n n n n n →∞-+-+-++.解 []31lim (21)2(23)3(25)n n n n n n →∞-+-+-++()311lim 221nn k k n k n →∞==-+∑()23111lim 212n nn k k n k k n →∞==⎡⎤=+-⎢⎥⎣⎦∑∑()()()()32111211lim 226n n n n n n n n →∞++++⎡⎤=-⎢⎥⎣⎦()()312111lim63n n n n n →∞++==.拆分原理【例1.31】 求极限2111lim()31541n n →∞+++-.解 因为()()1111212122121n n n n ⎛⎫=-⎪-+-+⎝⎭,则 2111lim()31541n n →∞+++-111111lim [(1)()()]23352121n n n →∞=-+-++--+ 111lim (1)2212n n →∞=-=+. 求和后拆分【例1.32】 求极限111lim(1)1212312n n→∞+++++++++.解 111lim(1)1212312n n→∞+++++++++(由等差数列的前n 项和公式)222lim 12334(1)n n n →∞⎡⎤=++++⎢⎥⨯⨯+⎣⎦ (逐项拆分) 111111lim 12()23341n n n →∞⎡⎤=+-+-++-⎢⎥+⎣⎦2lim 221n n →∞⎛⎫=-= ⎪+⎝⎭(3)利用夹逼准则求数列极限 【例1.33】求lim n解 11111n n ≤+<+,而1lim(1)1n n→∞+=,∴ 由夹逼准则得 lim 1n →∞=. 掌握扩大和缩小的一般方法 【例1.34】 求22212lim()12n nn n n n n n n →∞+++++++++. 解212n n n n +++++2221212nn n n n n n n<+++++++++2121n n n +++<++ 且 2121lim,2n n n n n →∞+++=++ 2121lim 21n n n n →∞+++=++, 由夹逼准则得 22212lim()12n nn n n n n n n →∞+++++++++=12. 【例1.35】 求极限226n nn →∞++.解≤≤,则2221nnnk k k===≤≤且 22111limlim 3nnn nk k →∞→∞====,由夹逼准则得原式21lim3nn k→∞===.以下两题了解一下即可 【例1.36】 证明 1;1(0)n n a ==>证明 1) 1n h =+,则22(1)(1)(1)122n nn n n n n n n n n n h nh h h h --=+=+++>,即 0n h <<由夹逼准则 lim 0,n n h →∞=从而lim(1) 1.n n n h →∞=+=2)当1a >时,0<<由夹逼准则1n =;当01a <<,令11b a=>,则lim lim 1n n →∞→∞==,从而1(0).n a =>注 【例1.36】的结果以后直接作为结论使用. 【例1.37】 求极限nk n a ++.(12,,,0k a a a >,k N ∈)解 记{}12max ,,,k aa a a =,则nk a≤++≤.且,n n n a a a ==⋅=,由夹逼准则得{}12max ,,,nk k n a a a a a ++==.(4)利用单调有界准则求数列极限给出前后项的关系,证明其单调,有界,设出极限解方程数列单调性一般采用证明110,1,nn n n x x x x ---≥≥或函数的单调性;数列的有界性方法比较灵活.【例1.38】 求lim n n a a a a →∞++++个根号.解 设n x a =++,则12x x ==…,n x =,从而 1n nx x -<,数列{}n x 单调增加;又n x =,21n nx a x -=+,111n n n n x a x x x -=+<+=,数列有上界,故{}n x 有极限.不妨设lim n n x A →∞=,将21n n x ax -=+两边取极限,有2A a A =+,故12A ±=【例1.39】 求33n .(共有n 个根号)解 设33n x =,显然1n n x x ->,{}nx单调增加;且1n x x =2x =3n x <,{}n x 有上界,所以数列极限存在.不妨设lim n n x A →∞=,将213n n x x -=两边取极限,有23A A =,则()3,0A A ==舍.【例1.40】 设2110,0,,1,2,2n n nx aa x x n x ++>>==,证明数列{}n x 收敛,并求极限.解 2102nn n na x x x x +--=≤,数列{}n x 单调递减;且21122n n n n n x a a x x x x +⎛⎫+==+ ⎪⎝⎭≥=,{}n x 有界,所以数列{}n x 收敛.令lim n n x A →∞=,对212n n nx a x x ++=两边取极限,有12a A A A ⎛⎫=+ ⎪⎝⎭,则A =. (5)利用无穷小的性质求数列极限 【例1.41】 求下列极限(1)(2)题的方法化为指数形式常用,(3)要说明无穷小乘有界量为无穷小 (1) lim 1)(0)n n a →∞-> (2)1121lim (33)n n n n +→∞- (3)2lim 1n nn →∞+解 (1)当1ln 11ln a nn e a n→∞-时, ,则 1ln lim 1)lim (1)a nn n n n e→∞→∞-=-1lim ln ln n n a a n→∞=⋅=(2)当n →∞时, 1ln 331nn-(n+1)(n+1),则11112211lim (33)lim3(31)nnn n n n n n ++→∞→∞-=-(n+1)121ln 3lim 3lim ln 3n n n n n+→∞→∞⋅=⋅=(n+1)(3)因为0n →∞=,而sin 1n ≤,由于无穷小与有界函数的乘积仍为无穷小,所以2lim 01n nn →∞=+ 注 limsin n n →∞不存在,故不能写成lim sin 0n n n n →∞→∞→∞=⋅=. 综合题了解一下即可【例1.42】 求())()22211131lim arctan !22311n n nn n n n →∞⎡⎤⎛⎫+⨯-+++⎢⎥ ⎪ ⎪⨯--⎢⎥⎝⎭⎣⎦. 解()arctan !2n π≤,()221=()2limarctan !0n n →∞∴=,有界量乘无穷小()1111lim lim 112231n n n n n →∞→∞⎡⎤⎛⎫+++=-=⎢⎥ ⎪⨯-⎝⎭⎣⎦,拆分求和2231lim 31n n n →∞+=-, 则 ()2211131lim 322311n n n n n →∞⎡⎤++++=⎢⎥⨯--⎣⎦ )()222131lim arctan !lim 1lim 1n n x n n n n n →∞→∞→∞+⎛⎫⎡⎤-- ⎪⎢⎥⎣⎦-⎝⎭故原式= 033=-=-.两极限都存在用四则运算法则注利用函数极限求数列极限见第三章;利用定积分定义求数列极限见第六章; 利用级数收敛的性质求极限见第十一章. 3.函数的极限(1)用εδ-定义或X ε-定义证明极限用εδ-定义证明函数极限关键是用倒推法适当放缩找到0x x -与ε的关系,确定()δε;而X ε-定义证明函数极限关键是用倒推法适当放缩找到x 与ε的关系,确定()X ε.【例1.43】 证明 22lim 4x x →= 此题典型要搞清楚自变量的约束范围的确定证明 对于0ε∀>,不妨设21,x -<则222225,x x x +≤+<-++< 要使242252x x x x ε-=+⋅-<⋅-<,只要取min{1,}5εδ=,当02x δ<-<时,有24x ε-<.证毕.注 函数在0x 的极限只与函数在0(,)U x δ的定义有关,与函数的整个定义范围无关.因此上例作了假设2 1.x -<也可假设122x -<等. 【例1.44】 用X ε-定义证明:232lim .33x x x →∞+=证明 对于0ε∀>,要使2322321333x x x x x xε++--==<,只要1.x ε>故取11,X ε=+当x X >时,均有23233x x ε+-<,即232lim .33x x x →∞+=(2)用极限存在的充要条件研讨极限 含有,xxe e-的表达式x →∞的极限;含有[]11,,,xxe e x x -的表达式0x →的极限;分段函数在分段点的极限,一般来说用极限存在的充要条件讨论.注意指数函数的极限,一般要考虑两边趋势【例1.45】 讨论极限 lim x xx xx e e e e --→∞-+.解 221lim lim 11x x x xx x x x e e e e e e --→-∞→-∞--==-++; 221lim lim 11x x xx x x x x e e e e e e--→+∞→+∞--==++. 所以 lim x xx xx e e e e --→∞-+不存在.【例1.46】 求1402sin lim 1x x x e x x e →⎡⎤+⎢⎥+⎢⎥+⎢⎥⎣⎦. 解 1402sin lim 1x x x e x x e +→⎡⎤+⎢⎥+⎢⎥⎢⎥+⎣⎦43402sin lim 0111x xx xe e x x e +--→-⎡⎤+⎢⎥=+=+=⎢⎥⎢⎥+⎣⎦; 1402sin lim 2111x x x e x x e -→⎡⎤+⎢⎥-=-=⎢⎥⎢⎥+⎣⎦; 所以 1402sin lim 1x x x e x x e →⎡⎤+⎢⎥+⎢⎥+⎢⎥⎣⎦1=. 【例1.47】 []x 表示不超过x 的最大整数,试确定常数a 的值,使[]210ln(1)lim ln(1)x x x e a x e →⎧⎫+⎪⎪+⎨⎬⎪⎪+⎩⎭存在,并求出此极限.解 由[]x 的定义知,[][]0lim 1,lim 0,x x x x -+→→=-=故所给极限应分左、右极限讨论. []22211110000ln(1)ln(1)lim lim lim lim .ln(1)ln(1)x x x x x x x x x x xe e e a x a a e a a e e e ----→→→→⎧⎫++⎪⎪+=-=-=-=-⎨⎬⎪⎪++⎩⎭[]222211110002ln(1)ln(1)ln (1)lim lim 0lim 01ln(1)ln (1)ln(1)x xxxx x x x x x xe e e e x a x e e e e x+++--→→→--⎧⎫+++⋅+⎪⎪+=+=+⎨⎬⎪⎪+⋅+++⎩⎭212ln(1)lim 21ln(1)xx xe e +-→-++==++.所以,当2a =-时所给极限存在,且此时极限为2.【例1.48】设21,1,()23, 1.x f x x x x ⎧≥⎪=⎨⎪+<⎩试求点1x =处的极限.解 211(10)lim ()lim(23)5x x f f x x --→→-==+=; 111(10)lim ()lim 1x x f f x x++→→+===; 即(10)(10)f f -≠+,1lim ()x f x →∴不存在.(3)通过代数变形求函数极限 【例1.49】求下列极限(1)22232lim 2x x x x x →-+++- (2)422123lim 32x x x x x →+--+ (3)11lim ,()1n x x n Z x +→-∈- 解 (1)原式222(1)(2)(1)(2)limlim (1)(1)(1)(11)x x x x x x x x x x →-→-++++==-+--++211lim.13x x x →-+==-(2)原式22211(1)(3)(1)(3)limlim 8.(2)(1)2x x x x x x x x x →→-+++===---- (3)原式121(1)(1)lim1n n x x x x x x --→-++++=- (提零因子)121lim(1)n n x xx x n --→=++++=.注 分子分母都为0必有共同的0因子① 因为分母极限为零,所以不能直接用计算法则; ② 当0x x →时,0x x ≠. 【例1.50】求下列极限注意多项式商的三种形式的规律0x x x a →∞→→,,,最高项,最低项,零因子(1)247lim 52x x x x x →∞-+++ (2)()()()3020504192lim 61x x x x →∞++- (3) 3225lim 34x x x x →∞-++解(1)原式234341170lim 0.5211x x x x x x→∞-+==++(2)原式3020501249lim 16x x x x →∞⎛⎫⎛⎫++ ⎪ ⎪⎝⎭⎝⎭=⎛⎫- ⎪⎝⎭1030205049263⋅⎛⎫== ⎪⎝⎭. (3)3225lim 34x x x x →∞-=∞++ (因为2334lim 025x x x x →∞++=-) 注 x →∞时有理函数求极限,分子、分母同时除以x 的最高幂次.即抓“大头”.综合题也可直接用结论 0101101,lim0,,m m m n n x n a n m b a x a x a n m b x b x b n m --→∞⎧=⎪⎪+++⎪=>⎨+++⎪∞<⎪⎪⎩. 【例1.51】求下列极限了解共轭因式,尤其是N 方差公式 (1))0lim 0x aa +→>. (2)0x → (3)limx解 ⑴原式0lim x a+→=limx a+→=lim x a+→==⑵ 原式=2x x →x →=32=⑶ 原式2limx=2123lim 1x --==.(4)利用两个重要极限求极限利用0sin lim 1x x x →=,1lim 1nn e n →∞⎡⎤+=⎢⎥⎣⎦求极限,则有0sin 1lim 1,lim(1)e →→∞=+=(此两式中的形式必须相同).【例1.52】 求下列极限 (1)201cos limx xx →-)(2)22sin sin lim x a x a x a→--(3)31lim sin ln(1)sin ln(1)x x x x→∞⎡⎤+-+⎢⎥⎣⎦解 (1)原式22200212sin sin1222limlim 2()2x x x xx x →→==.(2)原式()()sin sin sin sin limx ax a x a x a→-+=-()2limsin cos sin sin 22x a x a x a x a x a →-+=+-()sin2limcos sin sin 22x a x ax a x a x a →-+=⋅+-1cos 2sin sin 2a a a =⨯⨯=. (3)3lim sin ln(1)x x x →∞+ 3sin ln(1)33lim ln(1)0 limln(1)3ln(1)x x x x x x x→∞→∞++=⋅++ 33333lim ln 1ln lim[(1)]3x x x x x x⋅→∞→∞⎛⎫=+=+= ⎪⎝⎭同理 1lim sin ln(1)1x x x→∞+=,所以 31lim sin ln(1)sin ln(1)x x x x →∞⎡⎤+-+⎢⎥⎣⎦312=-=.【例1.53】 求下列极限 趋向常数的极限通常会做变量替换 (1)1lim(1)tan2x xx π→- (2)22sin lim1x xx ππ→- 解 (1)令1,t x =-则 原式02lim tan()lim cotlimlim222tan22t t t t ttt tt t ttππππππ→→→→=⋅-=⋅===(2) 令,x t π=-则原式2222200002sin()sin sin lim lim lim lim .()2(2)221t t t t t t t t t t t t t ππππππππππ→→→→-====----- 【例1.54】 求下列极限(1)32lim 22xx x x →∞-⎛⎫ ⎪-⎝⎭ (2)cot 0lim tan 4xx x π→⎡⎤⎛⎫- ⎪⎢⎥⎝⎭⎣⎦解 (1)原式1222111lim 1lim 11222222x xx x x x x --→∞→∞⎡⎤⎛⎫⎛⎫⎛⎫=+=+⋅+⎢⎥ ⎪ ⎪ ⎪---⎝⎭⎝⎭⎝⎭⎢⎥⎣⎦1e e =⋅=(2)原式11tan t 001tan 1t lim()lim()1tan 1t x x t x x →→--==++122t 102t lim(1)1tt t t +-⋅-+→-=++02lim1122t02tlim(1)1t t ttt e →-++--→⎡⎤-=+=⎢⎥+⎣⎦.注 1∞型极限的计算还可用如下简化公式:设(),(),u u x v v x ==且lim 1,lim u v ==∞,则lim(1)lim .u vvu e-=(因为 (1)1lim(1)1lim lim [1(1)]u vu vvu u u e---⎧⎫⎪⎪=+-=⎨⎬⎪⎪⎩⎭)和ln lim lim .v v uu e=【例1.55】 求下列极限 (1)lim hx kx ax b ax c +→∞+⎛⎫⎪+⎝⎭(2)1sin sin 20cos lim cos 2x xx x x →⎛⎫⎪⎝⎭解 (1) 原式=()()lim 1lim x x ax b b c hx k hx k ax c ax c e e→∞→∞+-⎛⎫⎛⎫-++ ⎪ ⎪++⎝⎭⎝⎭=()b c hae-=(2) 原式22000cos 1cos cos 211cos cos 2lim 1lim limcos 2sin sin 2cos 2cos 222x x x x x x x xxx xx xxx eee→→→--⎛⎫⎛⎫-⋅⎪⎪⎝⎭⎝⎭===2222220011(2)1cos 21cos 322lim []lim []22224x x x x x xx x x xeee →→----===.(5)利用函数的连续性求极限① 设()f x 在x a =连续,按定义则有 lim ()()x af x f a →=.因此对连续函数求极限就是用代入法求函数值.② 一切初等函数在它的定义域上连续.因此,若()f x 是初等函数,a 属于它的定义域,则lim ()()x af x f a →=.③ 设lim ()x ag x A →=,若补充地定义()g a A =,则()g x 在x a =连续.若又有()y f u =在u A =连续,则由复合函数的连续性得 lim (())(lim ())()x ax af g x f g x f A →→==.【例1.56】 求下列极限(1)3225lim243x x x x →+++ (2)3x →解 利用函数的连续性得 (1)332252251lim243224233x x x x →+⨯+==++⨯+⨯+,(2)x →==(6)利用无穷小的性质求极限常用的几个重要等价无穷小代换(当0→x 时)有: sin arcsin tan arctan 1ln(1)x xx x x xe x -+x cos 1-~22x , 1-xa ~)0(ln >a a x , )1(log x +α~ln x a.1)1(-+αx ~x α(α为任意实数), 3tan sin ,2x x x -3sin .6x x x - 利用等价无穷小代换时,通常代换的是整个分子、分母或分子、分母的因子. 【例1.57】求下列极限(1)201lim sin 3x x e x →- (2)cos 0lim sin x x e e x x →- (3)0x →解 (1)当0x →时,212,sin 33xex x x -,∴200122limlim sin 333x x x e x x x →→-==. (2)当0x →时,1cos 0x -→,1cos 11cos xex -∴--.原式cos 1cos 1cos cos 22000(1)(1)lim lim lim x x x xx x x e e e e x x--→→→--==⋅20(1cos )1lim2x x x→-==(因为当210,1cos 2x x x →-). (3)原式0x →=0x x →→=012x →=201112lim 1222x xx x →==⋅.【例1.58】 已知()0ln 1sin lim 231x x f x x →⎡⎤+⎢⎥⎣⎦=-,求()20lim x f x x →. 解 由()0lim 310x x →-=及()0ln 1sin lim 231x x f x x →⎡⎤+⎢⎥⎣⎦=-,必有()0limln 10sin x f x x →⎡⎤+=⎢⎥⎣⎦, 所以 ()ln 1sin f x x ⎡⎤+⎢⎥⎣⎦~()sin f x xln3311x x e -=-~ln 3x 原式()0sin lim ln 3x f x x x →=()201lim ln 3sin x f x x x x →=⋅ ()201lim ln 3x f x x→==2,则 ()2lim2ln 3x f x x→=.【例1.59】 求 30sin tan limsin x x xx→- 解 原式33001sin (1)sin (cos 1)cos limlim sin cos sin x x x x x x x x x →→--==⋅23001()1lim lim cos 22x x x x x x→→⋅-=⋅=-⋅.注 3300sin tan limlim 0.sin sin x x x x x xx x→→--≠= 【例1.60】 求 213sin 2sin lim x x xx x→∞+解 213sin 2sin lim x x xx x→∞+=13sin 1lim2lim sin 1x x x x x x→∞→∞+, 1sin1lim1;lim 0,sin 1,1x x x x x x→∞→∞==≤ 则1lim sin 0x x x →∞=, ∴原式=303+=.(7)利用其它方法求极限① 利用导数定义求极限(见第二章) 利用导数定义=')(0x f 00)()(limx x x f x f x x --→可以将某些求极限问题转化为求导数;② 利用罗必达法则(详见第三章); ③ 利用微分中值定理(详见第三章); 【例1.61】 设()()00,0f f '=存在,求()limx f x x→. 解 因为()()00,0f f '=存在,所以()0limx f x x →()()()00lim 0x f x f f x→-'== *【例1.62】 求lim x→+∞解 令()f t =,显然当0x >时,()f t 在[,1]x x +上满足拉格朗日中值定理,所以有,()()()()f b f a f b a ξ'-=⋅-.所以,原式=cos ξ 其中1x x ξ≤≤+故lim lim cos 0x ξξ→+∞→+∞==4.函数的连续性(1)函数的连续性与间断点的讨论【例1.63】 设()2,0sin ,0a bx x f x bx x x⎧+≤⎪=⎨>⎪⎩在点0x =处连续,求常数a b 与的关系.解 ()00sin sin lim lim lim x x x bx bx f x b b x bx+++→→→==⋅= ()()200lim lim x x f x a bx a --→→=+=. 因为函数在点0x =连续,所以()0lim x f x +→b =()0lim x f x a -→==,故a b =. *【例1.64】 设()2122lim 1n n n x ax bxf x x +→∞++=+,当,a b 取何值时,()f x 在(),-∞+∞处连续.解 ()2,1,11,121,12a bx x x x ab f x x a b x ⎧+ <⎪>⎪⎪--=⎨=-⎪⎪++⎪=⎩,由于()f x 在()()(),1,1,1,1-∞--+∞上为初等函数,所以是连续的,只要选取适当的,a b ,使()f x 在1x =±处连续即可. 即11lim ()lim ()(1)x x f x f x f -+→→==; ()()()11lim lim 1x x f x f x f -+→-→-==-. 得 1011a b a a b b +==⎧⎧⇒⎨⎨-=-=⎩⎩. 【例1.65】 研究函数(),111,11x x f x x x -≤≤⎧=⎨<->⎩或的连续性,并画出函数的图形.解 ()f x 在(),1-∞-与()1,-+∞内连续, 在1x =-处间断,但右连续,因为在1x =-处,()()11lim lim 11x x f x x f ++→-→-==-=-,但()11lim lim 11x x f x --→-→-==,即()()11lim lim x x f x f x +-→-→-≠.【例1.66】 指出函数22132x y x x -=-+的间断点,说明这些间断点的类型.解 ()22132x f x x x -=-+在1x =、2x =点没有定义,故1x =、2x =是函数的间断点.因为 ()()()()2211111lim lim3212x x x x x x x x x →→-+-=-+--11lim 22x x x →+==--,所以1x =为第一类可去间断点.因为2lim x y →=∞,所以2x =为第二类无穷间断点.【例1.67】 讨论函数()221lim 1nnn x f x x →∞-=+的连续性,若有间断点,判别其类型.解 ()22 11lim0 1 1 1nnn x x x f x x x x x →∞⎧->⎪-===⎨+⎪<⎩, ()11lim lim 1x x f x x ++→→=-=-,()11lim lim 1x x f x x --→→==,()()11lim lim x x f x f x +-→→≠; ()11lim lim 1x x f x x ++→-→-==-,()11lim lim 1x x f x x --→-→-=-=,()()11lim lim x x f x f x +-→-→-≠.故 1x =±为第一类跳跃间断点.(2)闭区间上连续函数的性质【例1.68】 证明方程3910x x --=恰有三个实根. 证明 令()391f x x x =--,则()f x 在[]3,4-上连续,且()()310,290,f f -=-<-=> ()()010,4270f f =-<=>所以()f x 在()()()3,2,2,0,0,4---各区间内至少有一个零点,即方程3910x x --=至少有三个实根. 又它是一元三次方程,最多有三个实根.证毕【例1.69】 若n 为奇数,证明方程110n n n x a x a -+++=至少有一个实根.证 令()11n n n f x x a x a -=+++,则()1(1)nnn a a f x x xx=+++, 于是 lim (),lim ()x x f x f x →-∞→+∞=-∞=+∞,故存在1,x 使()10f x A =>;存在2,x 使()20f x B =<.所以()f x 在[]12,x x 至少有一个零点,即方程至少有一个实根.【例1.70】 设()f x 在[],a b 上连续,且()(),f a a f b b <>,试证:在(),a b 内至少有一点ξ,使得()fξξ=.证 令()()F x f x x =-,()F x 在[],a b 连续,且()0,()0,F a F b <>由介值定理得在(),a b 内至少存在一点ξ,使得()0F ξ=,即()fξξ=.【例1.71】 设()f x 在[]0,2a ()0a >上连续,且()()02f f a =,求证存在()0,a ξ∈,使()()ff a ξξ=+.证 构造辅助函数()()()g x f x a f x =+-,则()()()00g fa f =-,()()()2g a f a f a =-()()0f a f =--⎡⎤⎣⎦()0g =-,即()0g 与()g a 符号相反,由零点存在定理知存在()0,a ξ∈,使()0g ξ=,即()()ff a ξξ=+.【例1.72】 设()f x 在[],a b 上连续,且a c d b <<<,证明:在[],a b 内至少存在一点ξ,使得()()()()pf c qf d p q f ξ+=+,其中,p q 为任意正常数.证()f x 在[],a b 上连续,∴ ()f x 在[],a b 上有最大值M 和最小值m ,则()m f x M ≤≤.由于,[,]c d a b ∈,且,0p q >,于是有(),()pm pf c pM qm qf d qM ≤≤≤≤.⇒ ()()()()p q m pf c qf d p q M +≤+≤+, ⇒()()pf c qf d m M p q+≤≤+.由介值定理,在[],a b 内至少存在一点ξ,使得()()()pf c qf d f p qξ+=+,即()()()()pf c qf d p q f ξ+=+ 5.综合杂例【例1.73】 已知lim 2003,(1)ab bn n n n →∞=--求常数,a b 的值.解 lim lim lim 11(1)[1(1)](1)1aaa bbb n n n b b b n n n n n n n n-→∞→∞→∞-==------ 1lim lim 1a b a b n n n n bb n--+→∞→∞-==- 为使极限为2003,故10,a b -+=且12003,b =所以12002,.20032003b a ==- 【例1.74】 已知221lim2,sin(1)x x ax bx →++=-求常数,a b 的值. 解 由221lim 2,sin(1)x x ax bx →++=-则分子的极限必为0,即21lim()0x x ax b →++=, 从而 10a b ++=;另一方面,当1x →时,22sin(1)1x x --,因此2222221111lim lim 10lim sin(1)11x x x x ax b x ax b x ax a a b x x x →→→+++++--=++=--- 1(1)(1)lim2(1)(1)x x x a x x →-++==-+,从而11211a ++=+,即2,a =又10a b ++=, 得 3.b =【例1.75】已知lim ())0,x ax b →+∞+=求常数,a b 的值.解lim ())lim ())0,x x bax b x a x→+∞→+∞-+=+=而lim ,x x →+∞=∞要使原式极限为0,则lim()0,x ba x→+∞-+=所以 1.a =1lim )lim )lim.2x x x b ax x →+∞→+∞=-===【例1.76】 若 30sin 6()lim 0,x x xf x x →+=求206()lim .x f x x→+ 解 因为30sin 6()lim0,x x xf x x→+=由极限存在与无穷小的关系,得 3sin 6()0,x xf x x α+=+其中0lim 0.x α→=从而 2236()6sin 6,f x xx x x α+=-+ 所以 32233300006()6sin 66sin 6(6)lim lim()lim lim 366x x x x f x x x x x x x x x xα→→→→+-=-+=== 【例1.77】 已知0()lim4,1cos x f x x →=-求10()lim 1.xx f x x →⎛⎫+ ⎪⎝⎭解 因为200()2()limlim 4,1cos x x f x f x x x→→==-则20()lim 2x f x x →=.从而 221()()lim()200()()lim 1lim 1x x f x f x xf x x x x x f x f x e e x x →⋅→→⎛⎫⎛⎫+=+== ⎪ ⎪⎝⎭⎝⎭注 此题也可用极限存在与无穷小的关系求解.【例1.78】 当0x →x 的几阶无穷小量. 解3255x-=则203limx xx→→==∴x 的23阶无穷小.三、综合测试题。
高等数学知识点第一章函数
第一章函数一、实数集合关于邻域:设a为某个正数,称开区间(x0-a,x0+a)为点x0的邻域。
记作U(x0,a)。
称x0为该邻域的中心,a为该邻域的半径。
A、点x0的空心邻域即(x0-a,x0+a){x0}或U(x0,a)B、点x0的左邻域(x0-a,x0] 空心左邻域(x0-a,x0)C、点x0的右邻域[x0,x0+a)空心右邻域(x0,x0+a)二、函数关系A、一个函数的两个基本要素圈①定义域记作D(f)或D.②对应规则记作 fB、绝对值函数y=|x| 去绝对值符号的方法,分类讨论C、符号函数y=sgnx ①x>0时y=1 ②x=0时y=0 ③x<0时y=-1D、取整函数y=[x]=n n≤x<n+1 n=0,±1,±2…..[x]表示不超过x的最大整数,称为x的整数部分[2.6]=2 [π]=3 [-2.8]=-3取整函数的图像E、函数的自然定义域:即定义域一般需要注意:分式的分母不为零,对负数不能开偶次方根,对数的真数必须为正。
三、函数的基本特性A、单调性证明函数的单调性:任取x1、x2∈D且x1<x2.,求解f(x1)与f(x2)的大小关系。
由此函数单调性得证。
B、有界性:若存在常数M>0,使得对任意的x∈D,恒有|f(x)|≤M,则称函数f(x)在D上有界,否则则称无界。
(判断函数是否有界一般为求解函数的值域)①有上界:f(x)≤M ②有下界:f(x)≥MC、奇偶性奇函数:任意x∈D,恒有f(-x)=-f(x)偶函数:任意x∈D,恒有f(-x)=f(x)非奇非偶:不是奇函数也不是偶函数判断函数奇偶性一般先判断定义域是否关于原点对称,如果不对称则一定为非奇非偶函数;若对称则求f(-x)的表达式,观察是否可以化成f(x)或f(-x)的形式,由此判断D、周期性f(x)在D上有定义,存在常数T>0,使对任意的x∈D,恒有x+T∈D,且f(x+T)=f(x)成立,则称f(x)为周期函数。
高数第一章 函数与极限
第一章函数与极限初等数学的研究对象基本上是不变的量,而高等数学的研究对象则是变动的量,所谓函数关系就是变量之间的依赖关系,极限方法是研究变量的一种基本方法,本章将介绍映射、函数、极限和函数的连续性等基本概念,以及它们的一些性质。
一、本章主要内容:1、数列极限的定义,函数极限的定义,函数的左右极限。
2. 极限的性质,函数的极限与其左右极限的关系,极限的唯一性,局部有界性,保号性。
3. 无穷小和无穷大的概念、性质极其运算、无穷小的比较。
4.极限的四则运算、复合运算、等价无穷小代换。
5.极限存在的两个准则与两个重要极限,(1)单调有限准则,重要极限(2)夹逼准则,重要极限6.函数的连续性概念和间断点的类型7.闭区间上连续函数的性质:最大(小)值定理、有界性定理、零点定理、介值定理。
二、内容提要框图三本章重点1. 正确理解函数与复合函数的概念,掌握基本初等函数的性质及图象.2. 建立极限概念与理解ε-N方法, 函数极限的概念与ε-δ方法3. 无穷小的概念与性质4. 单调有界法则与两个重要极限及其应用5. 初等函数的连续性及其应用四本章难点1. 反函数概念,由实际问题建立函数关系式与求分段的复合函数的关系式.2. ε-N, ε-δ极限定义证明法3. 理解无穷小,无穷小与任意小、充分小、很小的数的区别4. 两个重要极限公式,分清各公式的特点及适用时机.5. 闭区间上连续函数的几条性质.第一节映射与函数学习指导1.教学目的读者应理解集合、映射的概念;理解函数概念,了解函数的有界性、单调性、奇偶性和周期性,了解反函数概念。
2.基本练习会求函数的定义域,会求函数的反函数。
会判断函数的有界性、单调性、奇偶性和周期性;熟练掌握基本初等函数的图形和性质。
会把复合函数分解成基本初等函数的组合。
3.应注意的事项本节内容大多数中学阶段已经学过,此处为了教学方便,将中学阶段的内容加以归纳,扩充,提高。
学生可根据自己的知识结构进行复习、有重点地学习,对教材上的练习题,先阅读题目,再适当选做部分练习题。
高数重要知识点
高等数学上册重要知识点 第一章 函数与极限一。
函数的概念1 两个无穷小的比较设0)(lim ,0)(lim ==x g x f 且l x g x f =)()(lim(1)l = 0,称f (x )是比g (x )高阶的无穷小,记以f (x ) = 0[)(x g ],称g(x)是比f (x)低阶的无穷小.(2)l ≠ 0,称f (x )与g (x )是同阶无穷小.(3)l = 1,称f (x )与g (x )是等价无穷小,记以f (x ) ~ g (x )2 常见的等价无穷小 当x →0时sin x ~ x ,tan x ~ x ,x arcsin ~ x ,x arccos ~ x1− cos x ~ 2/2^x , x e −1 ~ x ,)1ln(x + ~ x ,1)1(-+αx ~ x α二 求极限的方法1.两个准则准则1.单调有界数列极限一定存在 准则2.(夹逼定理)设g (x ) ≤ f (x ) ≤ h (x ) 放缩求极限若A x h A x g ==)(lim ,)(lim ,则A x f =)(lim2.两个重要公式公式11sin lim0=→x xx 公式2e x x x =+→/10)1(lim3.用无穷小重要性质和等价无穷小代换 4.★用泰勒公式当x 0→时,有以下公式,可当做等价无穷小更深层次)()!12()1(...!5!3sin )(!...!3!2112125332++++-+++-=++++++=n n nn nxx o n x x x x x x o n x x x x e )(!2)1(...!4!21cos 2242n n n x o n x x x x +-+++-=)()1(...32)1ln(132n nn x o nx x x x x +-++-=++ )(!))1()...(1(...!2)1(1)1(2n n x o x n n x x x +---++-++=+ααααααα)(12)1(...53arctan 1212153+++++-+-+-=n n n x o n x x x x x 5.洛必达法则定理1 设函数)(x f 、)(x F 满足下列条件:(1)0)(lim 0=→x f x x ,0)(lim 0=→x F x x ;(2))(x f 与)(x F 在0x(3))()(lim 0x F x f x x ''→存在(或为无穷大)这个定理说明:当)()(lim 0x F x f x x ''→存在时,)(lim 0x F x x →也存在且等于)()(lim 0x F x f x x ''→;当)()(lim0x F x f x x ''→为无穷大时,)()(lim 0x F x f x x →也是无穷大. 这种在一定条件下通过分子分母分别求导再求极限来确定未定式的极限值的方法称为洛必达(H L 'ospital )法则。
高等数学第一章函数极限和连续讲义
第一章函数、极限和连续【考试要求】一、函数1.理解函数的概念:函数的定义,函数的表示法,分段函数.2.理解和掌握函数的简单性质:有界性,单调性,奇偶性,周期性.3.了解反函数:反函数的定义,反函数的图像.4.掌握函数的四则运算与复合运算.5.理解和掌握基本初等函数:幂函数,指数函数,对数函数,三角函数,反三角函数.6.了解初等函数的概念.二、极限1.理解数列极限的概念:数列,数列极限的定义.2.了解数列极限的性质:唯一性,有界性,四则运算定理,夹逼定理,单调有界数列,极限存在定理,掌握极限的四则运算法则.3.理解函数极限的概念:函数在一点处极限的定义,左右极限及其与极限的关系,x趋于无穷(x→∞,x→+∞,x→-∞)时函数的极限.4.掌握函数极限的定理:唯一性定理,夹逼定理,四则运算定理.5.理解无穷小量和无穷大量:无穷小量与无穷大量的定义,无穷小量与无穷大量的关系,无穷小量与无穷大量的性质,两个无穷小量阶的比较.6.熟练掌握用两个重要极限求极限的方法.7.熟练掌握分段函数求极限的方法.三、连续1.理解函数连续的概念:函数在一点连续的定义,左连续和右连续,函数在一点连续的充分必要条件,函数的间断点及其分类.2.掌握函数在一点处连续的性质:连续函数的四则运算,复合函数的连续性,反函数的连续性,会求函数的间断点及确定其类型.3.掌握闭区间上连续函数的性质:有界性定理,最大值和最小值定理,介值定理(包括零点定理),会运用介值定理推证一些简单命题.4.理解初等函数在其定义区间上连续,并会利用连续性求极限. 5.熟练掌握分段函数连续性的判定方法.【考试内容】一、函数(一)函数的概念1.函数的定义:设数集D R ⊂,则称映射:f D R →为定义在D 上的函数,通常简记为()yf x =,x D ∈,其中x 称为自变量,y 称为因变量,D 称为定义域.说明:表示函数的记号是可以任意选取的,除了常用的f外,还可以用其他的英文字母或希腊字母,如“g ”、“F ”、“ϕ”等,相应的,函数可记作()y g x =,()y F x =,()y x ϕ=等.有时还直接用因变量的记号来表示函数,即把函数记作()y y x =,这一点应特别注意.2.函数的解析(公式)表示法 (1)函数的显式表示法(显函数):()yf x =形式的函数,即等号左端是因变量的符号,而右端是含有自变量的式子,如2cos xy xe x =-,13sin ln x x e y x e x-=++等.(2)函数的隐式表示法(隐函数):函数的对应法则由方程(,)0F x y =所确定,即如果方程(,)0F x y =确定了一个函数关系()y f x =,则称()y f x =是由方程(,)0F x y =所确定的隐函数形式.说明:把一个隐函数化成显函数,叫做隐函数的显化.例如从方程310x y +-=解出31y x =-,就把隐函数化成了显函数.但并非所有的隐函数都能显化,隐函数的显化有时是非常困难的,甚至是不可能的.(3)分段函数:如果函数的对应法则是由几个解析式表示的,则称之为分段函数,如1,0()1,0x x f x x x +≥⎧=⎨-<⎩ 是由两个解析式表示的定义域为(,)-∞+∞的一个函数.(4)由参数方程确定的函数:如果自变量x 与因变量y 的关系是通过第三个变量t 联系起来 ()()x t y t ϕφ=⎧⎨=⎩ (t 为参变量),则称这种函数关系为参数方程所确定的函数.例如:参数方程 2cos 2sin x t y t=⎧⎨=⎩ 表示的图形即为圆心在原点,半径为4的圆.(二)函数的几种特性1.有界性设函数()f x 的定义域为D ,数集X D ⊂,如果存在正数M,使得()f x M≤对任一x X ∈都成立,则称函数()f x 在X 上有界.如果这样的M不存在,就称函数()f x 在X 上无界.说明:我们这里只讨论有界无界的问题而不区分上界和下界,并且,由上述定义不难看出,如果正数M 是函数()f x 的一个界,则比M大的数都是函数()f x 的界.2.单调性 设函数()f x 的定义域为D ,区间I D ∈.如果对于区间I 上任意两点1x 及2x ,当12x x <时,恒有12()()f x f x <,则称函数()f x 在区间I 上是单调增加的;如果对于区间I 上任意两点1x 及2x ,当12x x <时,恒有12()()f x f x >,则称函数()f x 在区间I 上是单调减少的.单调增加和单调减少的函数统称为单调函数. 3.奇偶性 设函数()f x 的定义域D 关于原点对称.如果对于任一x D ∈,()()f x f x -=恒成立,则称()f x 为偶函数.如果对于任一x D ∈,()()f x f x -=-恒成立,则称()f x 为奇函数.例如:()cos f x x =、2()f x x =都是偶函数,()s i n f x x =、()arctan f x x =是奇函数,而()sin cos f x x x =+则为非奇非偶函数.偶函数的图形关于y 轴对称,而奇函数的图形关于原点对称.说明:两个偶函数的和是偶函数,两个奇函数的和是奇函数;两个偶函数的乘积是偶函数,两个奇函数的乘积是偶函数,偶函数与奇函数的乘积是奇函数.其余结论读者可自行论证. 4.周期性设函数()f x 的定义域为D .如果存在一个正数l ,使得对于任一x D ∈有()x l D ±∈,且()()f x l f x +=恒成立,则称()f x 为周期函数,l 称为()f x 的周期,通常我们说周期函数的周期是指最小正周期.例如:函数sin x 、cos x 都是以2π为周期的周期函数,函数tan x 是以π为周期的周期函数.(三)函数的运算1.和差积商运算 设函数()f x ,()g x 的定义域依次为1D ,2D ,12D D D φ=≠,则我们可以定义这两个函数的下列运算: (1)和(差)f g ±:()()()()f g x f x g x ±=±,x D ∈;(2)积f g ⋅:()()()()f g x f x g x ⋅=⋅,x D ∈;(3)商f g :()()()f f x x g g x ⎛⎫= ⎪⎝⎭,\{()0,}x D x g x x D ∈=∈. 2.反函数(函数的逆运算)对于给定的y 是x 的函数()y f x =,若将y 当作自变量而x 当作因变量,则由关系式()y f x =所确定的函数()x y ϕ=称为函数()f x 的反函数,记为1()y f x -=,()f x 叫做直接函数.若直接函数()yf x =的定义域为D ,值域为M ,则反函数1()y f x -=的定义域为M ,值域为D .且直接函数的图像与反函数的图像关于直线y x =对称.3.复合函数(函数的复合运算)设函数()y f u =的定义域为fD ,函数()ug x =的定义域为g D ,且其值域g f R D ⊂,则由下式确定的函数[()]y f g x =,g x D ∈称为由函数()u g x =与函数()y f u =构成的复合函数,它的定义域为g D ,变量u 称为中间变量.说明:g 与f能构成复合函数的条件是函数g 的值域g R 必须含在函数f的定义域fD 内,即gf R D ⊂,否则不能构成复合函数.此外,复合函数可以由多个函数复合而成.(四)基本初等函数与初等函数1.基本初等函数 幂函数:yx μ=(R μ∈是常数); 指数函数:x y a =(0a >且1a ≠);对数函数:log a y x =(0a >且1a ≠,特别当a e =时记为ln y x =);三角函数:sin yx =,cos y x =,tan y x =,cot y x =,sec y x =,csc y x =;反三角函数:arcsin y x =,arccos y x =,arctan y x =,cot y arc x =.以上五类函数统称为基本初等函数.说明:反三角函数是学习和复习的难点,因此这里重点给出三角函数和反三角函数的关系,这对于后边学习极限、渐近线及导数等知识是非常有帮助的,请大家牢记. (1)反正弦函数arcsin yx =:是由正弦函数sin y x =在区间[,]22ππ-上的一段定义的反函数,故其定义域为[1,1]-,值域为[,]22ππ-. (2)反余弦函数arccos y x =:是由余弦函数cos y x =在区间[0,]π上的一段定义的反函数,故其定义域为[1,1]-,值域为[0,]π. (3)反正切函数arctan yx =:是由正切函数tan y x =在区间(,)22ππ-上的一段定义的反函数,故其定义域为(,)-∞+∞,值域为(,)22ππ-. (4)反余切函数cot yarc x =:是由余切函数cot y x =在区间(0,)π上的一段定义的反函数,故其定义域为(,)-∞+∞,值域为(0,)π. 2.初等函数由常数和基本初等函数经过有限次的四则运算和有限次的函数复合步骤所构成并可用一个式子表示的函数,称为初等函数.例如:22sin cos y x x =,22y x =-,2ln(1)y x x =++,2arccos(1)y x =-等都是初等函数.在本课程中所讨论的函数绝大多数都是初等函数.二、极限(一)数列的极限1.数列极限的定义:设{}n x 为一数列,如果存在常数A ,对于任意给定的正数ε(不论它多么小),总存在正整数N ,使得当n N >时,不等式n x A ε-<都成立,那么就称常数A 是数列{}n x 的极限,或者称数列{}n x 收敛于A ,记为lim n n x A →∞=或n x A →(n →∞).如果不存在这样的常数A ,就说数列{}n x 没有极限,或者说数列{}n x 是发散的,习惯上也说lim n n x →∞不存在.说明:数列极限中自变量n 的趋向只有一种,即n →∞,虽然含义表示正无穷,但不要写做n→+∞,注意与函数极限的区别.2.收敛数列的性质性质(1):(极限的唯一性)如果数列{}n x 收敛,那么它的极限唯一.性质(2):(收敛数列的有界性)如果数列{}n x 收敛,那么数列{}n x 一定有界. 说明:对于数列{}n x ,如果存在正数M ,使得对一切n ,都有n x M ≤,则称数列{}n x 是有界的,否则称数列{}n x 是无界的. 性质(3):(收敛数列的保号性)如果lim nn x A →∞=,且0A >(或者0A <),那么存在正整数N ,当n N >时,都有0n x >(或0n x <). (二)函数的极限1.函数极限的定义 (1)0xx →时函数的极限:设函数()f x 在点0x 的某个去心邻域内有定义.如果存在常数A ,对于任意给定的正数ε(不论它多么小),总存在正数δ,使得当x 满足不等式00x x δ<-<时,对应的函数值()f x 都满足不等式()f x A ε-<,那么常数A就叫做函数()f x 当0x x →时的极限,记作0lim ()x x f x A →=或()f x A →(当0x x →).说明:函数的左极限lim ()x x f x A -→=或0()f x A -=;右极限0lim ()x x f x A +→=或0()f x A +=;左极限与右极限统称单侧极限.函数()f x 当0x x →时极限存在的充要条件是左右极限都存在并且相等,即00()()f x f x -+=.(2)x →∞时函数的极限:设函数()f x 当x大于某一正数时有定义.如果存在常数A ,对于任意给定的正数ε(不论它多么小),总存在正数X ,使得当x 满足不等式x X >时,对应的函数值()f x 都满足不等式()f x A ε-<,那么常数A 就叫做函数()f x 当x →∞时的极限,记作lim ()x f x A →∞=或()f x A →(当x →∞).说明:此定义包含lim ()x f x A →+∞=和lim ()x f x A →-∞=两种情况.2.函数极限的性质(以0xx →为例)性质(1):(函数极限的唯一性)如果0lim ()x x f x →存在,那么这极限唯一.性质(2):(函数极限的局部有界性)如果0lim ()x x f x A →=,那么存在常数0M >和0δ>,使得当00x x δ<-<时,有()f x M ≤.性质(3):(函数极限的局部保号性)如果0lim()x x f x A →=,且0A >(或0A <),那么存在常数0δ>,使得当00x x δ<-<时,有()0f x >(或()0f x <). (三)极限运算法则1.如果0lim()x x f x A →=,0lim ()x x g x B →=,则有(1)0lim[()()]lim ()lim ()x x x x x x f x g x f x g x A B →→→±=±=±; (2)0lim[()()]lim ()lim ()x x x x x x fx g x f x g x A B →→→⋅=⋅=⋅;(3)000lim ()()lim()lim ()x x x x x x f x f x A g x g x B→→→==,其中0B ≠; (4)0lim[()]lim ()x x x x cfx c f x →→=,其中c 为常数;(5)0lim[()][lim ()]n n x x x x fx f x →→=,其中n 为正整数.2.设有数列{}n x 和{}n y ,如果lim nn x A →∞=,lim n n y B →∞=,则有(1)lim()nn n x y A B →∞±=±; (2)lim()nn n x y A B →∞⋅=⋅;(3)lim n n nx Ay B →∞=,其中0n y ≠(1,2,n =)且0B ≠.3.如果()()x x ϕψ≥,而0lim ()x x x A ϕ→=,0lim ()x x x B ψ→=,则A B ≥.4.复合函数的极限运算法则:设函数[()]y f g x =是由函数()u g x =与函数()y f u =复合而成,[()]f g x 在点0x 的某去心邻域内有定义,若00lim ()x x g x u →=,0lim ()u u f u A→=,且存在00δ>,当00(,)x U x δ∈时,有()g x u ≠,则lim [()]lim ()x x u u f g x f u A →→==.说明:本法则以0xx →为例,其他趋向下亦成立.(四)极限存在准则1.准则I 如果数列{}n x 、{}n y 及{}n z 满足下列条件: (1)从某项起,即0n N ∃∈,当0n n >时,有n n n y x z ≤≤,(2)lim nn y A →∞=,lim n n z A →∞=,那么数列{}n x 的极限存在,且lim nn x A →∞=.准则I ' 如果函数()f x 、()g x 及()h x 满足下列条件:(1)当0(,)x U x r ∈(或x M >)时,()()()g x f x h x ≤≤,(2)0()lim ()x x x g x A →→∞=,0()lim ()x x x h x A →→∞=,那么0()lim ()x x x f x →→∞存在,且等于A .说明:准则I 及准则I '称为夹逼准则.2.准则II 单调有界数列必有极限.准则II ' 单调有界函数必有极限.(函数有界一般是指在某个邻域内有界)(五)两个重要极限1.0sin lim1x xx→=,可引申为()0sin ()lim1()x x x ϕϕϕ→=,式中不管自变量x 是哪种趋向,只要在此趋向下()0x ϕ→即可(()0x ϕ+→或()0x ϕ-→时亦成立).2.10lim(1)xx x e →+= 或 1lim(1)x x e x→∞+=,可引申为1()()0lim (1())x x x e ϕϕϕ→+=(()0x ϕ+→或()0x ϕ-→时亦成立)或()()1lim (1)()x x ex ϕϕϕ→∞+=(()x ϕ→+∞或()x ϕ→-∞时亦成立). 说明:数列亦有第二种极限形式,即1lim(1)nn e n→∞+=.两个重要极限是考试的必考内容,请大家务必好好掌握.(六)无穷小和无穷大1.定义(1)无穷小的定义:如果函数()f x 当0x x →(或x →∞)时的极限为零,那么称函数()f x 为当0x x →(或x →∞)时的无穷小量(简称无穷小).特别地,以零为极限的数列{}n x 称为n→∞时的无穷小.说明:以后我们再提到无穷小时,把数列{}n x 当作特殊的函数来看待,故所谓的无穷小本质上就是函数,并且一定是在自变量x 的某一趋向下才有意义. (2)无穷大的定义:如果在自变量的某一变化过程中,函数()f x 的绝对值无限增大,则称函数()f x 为自变量在此变化过程中的无穷大量(简称无穷大).说明:在自变量的同一变化过程中,如果()f x 为无穷大,则1()f x 为无穷小;反之,如果()f x 为无穷小且()0f x ≠,则1()f x 为无穷大. 2.无穷小的比较设α,β均为自变量同一趋向下的无穷小,且0α≠,(1)如果lim0βα=,则称β是比α高阶的无穷小,记作()o βα=; (2)如果lim βα=∞,则称β是比α低阶的无穷小;(3)如果lim0c βα=≠,则称β与α是同阶无穷小; (4)如果lim 1βα=,则称β与α是等价无穷小,记作~αβ;(5)如果lim0k c βα=≠,0k >,则称β是关于α的k 阶无穷小. 3.无穷小的性质(1)有限个无穷小的和是无穷小. (2)常数与无穷小的乘积是无穷小. (3)有限个无穷小的乘积是无穷小. (4)有界函数与无穷小的乘积是无穷小.(5)求两个无穷小之比的极限时,分子及分母都可用等价无穷小来替换,即设α,β,α',β'均为自变量同一趋向下的无穷小,且~αα',~ββ',limβα''存在,则lim lim ββαα'='(lim 表示自变量的任一趋向下的极限,以后文中出现此符号时均为此意,不再解释).说明:等价无穷小非常重要,故将常用的等价无穷小列举如下,请大家务必牢记.0x →时sin ~x x ,可引申为()0x ϕ→时,sin ()~()x x ϕϕ; 0x →时tan ~x x ,可引申为()0x ϕ→时,tan ()~()x x ϕϕ;0x →时sin ~arc x x ,可引申为()0x ϕ→时,sin ()~()arc x x ϕϕ; 0x →时211cos ~2x x -,可引申为()0x ϕ→时,211cos ()~()2x x ϕϕ-;0x →时111~n x x n +-,可引申为()0x ϕ→时,11()1~()n x x nϕϕ+-;0x →时1~x e x -,可引申为()0x ϕ→时,()1~()x e x ϕϕ-;0x →时ln(1)~x x +,可引申为()0x ϕ→时,ln(1())~()x x ϕϕ+.三、连续(一)连续的概念1.连续的定义连续性定义(1):设函数()f x 在点0x 的某一邻域内有定义,如果000lim lim[()()]0x x y f x x f x ∆→∆→∆=+∆-=,则称函数()yf x =在点0x 连续(即自变量的变化量趋于零时函数值的变化量也趋于零). 连续性定义(2):设函数()f x 在点0x 的某一邻域内有定义,如果00lim ()()x x f x f x →=,则称函数()yf x =在点0x 连续.2.左连续、右连续及区间连续 (1)左连续:lim ()x x f x -→存在且等于0()f x ,即00()()f x f x -=;(2)右连续::lim ()x x f x +→存在且等于0()f x ,即00()()f x f x +=;(3)区间连续:若函数()f x 在区间每一点都连续,则称()f x 为该区间上的连续函数,或者说函数()f x 在该区间上连续.如果区间包括端点,则函数()f x 在右端点连续是指左连续,()f x 在左端点连续是指右连续.说明:一切初等函数在其定义区间内都是连续的.(二)函数的间断点1.定义:设函数()f x 在点0x 的某去心邻域内有定义,如果函数有下列三种情形之一:(1)在0xx =处没有定义;(2)虽在0x x =处有定义,但0lim ()x x f x →不存在;(3)虽在0x x =处有定义,且0lim ()x x f x →存在,但00lim ()()x x f x f x →≠,则函数()f x 在点0x 为不连续,而点0x 称为函数()f x 的不连续点或间断点.2.分类:(1)第一类间断点:如果0x 是函数()f x 的间断点,但左极限0()f x -和右极限0()f x +都存在,那么0x 称为函数()f x 的第一类间断点.00()()f x f x -+=时称0x 为可去间断点,00()()f x f x -+≠时称0x 为跳跃间断点.(2)第二类间断点:不是第一类间断点的任何间断点,称为第二类间断点.常见的第二类间断点有无穷间断点和振荡间断点.(三)闭区间上连续函数的性质1.有界性与最值定理:在闭区间[,]a b 上连续的函数在该区间上有界且一定能取得它的最大值和最小值. 2.零点定理:设函数()f x 在闭区间[,]a b 上连续,且()f a 与()f b 异号(即()()0f a f b ⋅<),那么在开区间(,)a b 内至少有一点ξ,使得()0f ξ=. 3.介值定理:设函数()f x 在闭区间[,]a b 上连续,且在这区间的端点取不同的函数值()f a A =及()f b B =,那么对于A 与B 之间的任意一个数C ,在开区间(,)a b 内至少有一点ξ,使得()f C ξ=(a b ξ<<).【典型例题】【例1-1】求复合函数. 1.设()12xf x x =-,求[()]f f x . 解:求[()]f f x 就是用()f x 代替x 然后化简,得12[()]122141212xx xx f f x x x x x x -===----⋅-. 2.设2,01()3,12x x f x x x ⎧≤≤=⎨<≤⎩ ,()xg x e =,求[()]f g x .解:当01xe ≤≤即0x ≤时,22[()]()x xfg x e e ==, 当12xe <≤即0ln 2x <≤时,[()]3xfg x e =,故2,0[()]3,0ln 2x x e x f g x e x ⎧≤=⎨<≤⎩ .【例1-2】求函数的定义域. 1.()arcsin(21)ln(1)f x x x =-+-.解:由arcsin(21)x -可得1211x -≤-≤,即01x ≤≤;由arcsin(21)x -可得arcsin(21)0x -≥,即0211x ≤-≤,112x ≤≤;由l n (1)x -可得10x->,即1x <,故原函数的定义域为三部分的交集,即1[,1)2. 2.21()arccos(2)2x f x x x x -=+---. 解:由1x -可得10x -≥,即1x ≥;由220x x --≠即(1)(2)0x x +-≠可得1x ≠-且2x ≠;由arccos(2)x -可得121x -≤-≤,13x ≤≤,故原函数的定义域为三部分的交集,即为[1,2)(2,3].【例1-3】判断函数的奇偶性. 1.设()f x 和()g x 为任意函数,定义域均为(,)-∞+∞,试判定下列函数的奇偶性. (1)()()()()f x f x g x g x +-++-解:由奇偶性的判定可知,()()f x f x +-与()()g x g x +-均为偶函数,故其和亦为偶函数. (2)()()()()f x f x g x g x --++-解:由奇偶性的判定可知,()()f x f x --为奇函数,()()g x g x +-为偶函数,故其和为非奇非偶函数. 2.判定函数2()ln(1)f x x x =++的奇偶性.解:因2()ln(()1)f x x x -=-+-+2ln(1)x x =-++21ln 1x x=++2ln(1)()x x f x =-++=-,故原函数为奇函数.【例1-4】计算下列极限.1.22212lim()n nn n n→∞+++.解:当n →∞时,此题是无限个无穷小之和,不能直接求极限,先变形化简再计算:222221(1)121212lim()lim lim 2n n n n n n n n n n n n →∞→∞→∞+++++++===. 2.222111lim()12n n n n n→∞++++++. 解:因22222111121nn n n n n n nn <+++<+++++,并且2l i m1n nn n→∞=+,2lim 11n nn →∞=+,故原极限值为1.(夹逼准则)3.222lim(1)nn n n→∞++.解:22(22)222222222222lim(1)lim(1)lim(1)n n n n n n n n n n n n e n n n n+⋅+→∞→∞→∞++++=+=+=.4.23lim()21nn n n →∞-+.解:21424212344lim()lim(1)lim(1)212121n nn n n n n n n e n n n +-⋅--+→∞→∞→∞---=+=+=+++. 【例1-5】计算下列极限. 1.sin limx xx→∞.解:当x →∞时,1x为无穷小,sin x 虽没有极限但却是有界函数,故根据无穷小与有界函数的乘积仍为无穷小,可得sin lim0x xx→∞=.说明:本极限与01lim sin x x x →意义是一样的.2.21lim 1n x x x x nx →+++--.解:2211111lim lim 11n n x x x x x n x x x x x →→+++--+-++-=--2121lim[1(1)(1)(1)]n n x x x x x x x --→=+++++++++++(1)1232n n n +=++++=. 说明:此题也可用洛必达法则(见第三章)求解,过程如下:2111(1)lim lim(12)12n n x x x x x n n n x nx x -→→+++-+=+++=-.3.0sin(1)lim 3x x e x→-.解:因当0x →时,sin(1)~1xx ee --,1~x e x -,故 00sin(1)11limlim 333x x x x e e x x →→--==. 说明:本题可以使用洛必达法则求解如下:00sin(1)cos(1)1lim lim 333x x x x x e e e x →→--⋅==. 4.sin 0limsin x x x e e x x→--.解:sin sin sin 00(1)lim lim 1sin sin x x x x x x x e e e e x x x x-→→--==--(0x →时,sin ~sin x x e x x --).5.23lim()2xx x x→∞++. 解:2(2)2222311lim()lim(1)lim(1)222x x x x xx x x x e x x x+⋅+→∞→∞→∞+=+=+=+++. 6.11lim(sincos )x x x x→∞+. 解:111(sin cos 1)11sin cos 11111lim(sin cos )lim[1(sin cos 1)]x x x x x xx x x x x x⋅+-+-→∞→∞+=++-211111sin cos 1sincos 12limlim lim 1lim 111110x x x x x x x x x xx xxe e e e e →∞→∞→∞→∞-+--+++=====.【例1-6】已知()f x 是多项式,且32()2lim 2x f x x x →∞-=,0()lim 3x f x x→=,求()f x . 解:利用前一极限式可令32()22f x x x ax b =+++,再利用后一极限式,得 00()3lim lim()x x f x ba x x→→==+,则 3a =,0b =,故32()223f x x x x =++.【例1-7】当0x →时,比较下列无穷小的阶. 1.2x 比1cos x -.解:因 22002limlim 211cos 2x x x x x x →→==-,故2x 与1cos x -是同阶无穷小. 2.2x 比11x +-.解:因 220limlim 01112x x x x x x→→==+-,故2x 是比11x +-高阶的无穷小. 3.11x x +--比x .解:因 0011(11)(11)lim lim (11)x x x x x x x x x x x x →→+--+--++-=++-2lim 1(11)x x x x x →==++-,故11x x +--与x 是等价无穷小. 4.2x 比tan sin x x -.解:因 2220002cos limlim lim 1tan sin sin (1cos )2x x x x x x x x x x x x x →→→===∞--⋅, 故2x 是比tan sin x x -低阶的无穷小. 说明:本题中的四个题目均可用洛必达法则求解. 【例1-8】讨论下列分段函数在指定点处的连续性.1.2,01()1,11,1x x f x x x x ⎧≤<⎪==⎨⎪+>⎩在1x =处的连续性. 解:因(1)1f =,11(1)lim ()lim 22x x f f x x ---→→===, 11(1)lim ()lim(1)2x x f f x x +++→→==+=,从而1lim ()2(1)x f x f →=≠,故函数在1x =处不连续.2.1,0()ln(1),0x e x f x x x ⎧⎪<=⎨⎪+≥⎩ 在0x =处的连续性.解:因(0)0f =,1(0)lim ()lim 0xx x f f x e ---→→===,(0)lim ()lim ln(1)0x x f f x x +++→→==+=,从而0lim ()0(0)x f x f →==,故函数在0x =处连续.【例1-9】当常数a 为何值时,函数2,0()ln(1),0x a x f x x x x-≤⎧⎪=⎨+>⎪⎩ 在0x =处连续?解:因(0)f a =-,0(0)lim ()lim(2)x x f f x x a a ---→→==-=-,10000ln(1)1(0)lim ()lim lim ln(1)lim ln(1)1xx x x x x f f x x x xx +++++→→→→+===+=+=,故由连续性可得,(0)(0)(0)f f f -+==,即1a -=,故1a =-.【例1-10】求下列函数的间断点并判断其类型. 1.1()xf x e= .解:所给函数在0x =处无定义,故0x =是间断点.又1lim x x e +→=+∞,10lim 0xx e -→=,故0x=是()f x 的第二类间断点.2.()sin xf x x= .解:所给函数在x k π=(0,1,2,k =±±)处无定义,故0x =、x k π=(1,2,k=±±)是间断点.又0lim1sin x xx→=,故0x =是第一类间断点,且是可去间断点;lim sin x k xxπ→=∞,故x k π=是第二类间断点,且是无穷间断点.3.111()1xxe f x e -=+ .解:所给函数在0x=处无定义,故0x =是间断点.又111(0)lim 11xx xe f e ++→-==+,111(0)lim 11xx xe f e --→-==-+,故0x =是()f x 的第一类间断点且是跳跃间断点.4.1arctan ,0()0,0x f x xx ⎧≠⎪=⎨⎪=⎩ . 解:该题是分段函数的连续性问题,因0x ≠时1arctanx 是初等函数,故1arctan x在0x ≠时是连续的,所以该题主要考虑分界点0x =处的连续性.由1(0)lim arctan 2x f x π++→==,01(0)lim arctan 2x f x π--→==-,可知0x =是()f x 的第一类间断点且是跳跃间断点.【例1-11】证明方程32410x x -+=在区间(0,1)内至少有一个根.证:函数32()41f x x x =-+在闭区间[0,1]上连续,又(0)10f =>,(1)20f =-<,根据零点定理,在(0,1)内至少有一点ξ,使得()0f ξ=,即32410ξξ-+= (01ξ<<),该等式说明方程32410x x -+=在区间(0,1)内至少有一个根是ξ.【例1-12】证明方程21xx ⋅=至少有一个小于1的正根.证:由题意,函数()21x f x x =⋅-在区间[0,1]上连续,又(0)10f =-<,(1)10f =>,根据零点定理,在(0,1)内至少有一点ξ,使得()0f ξ=,即210ξξ⋅-= (01ξ<<),该等式说明方程21x x ⋅=在区间(0,1)内至少有一个小于1的正根ξ.【历年真题】一、选择题1.(2010年,1分)函数211arccos 2x y x +=--的定义域是( )(A )[3,1]- (B )[3,1]-- (C )[3,1)-- (D )[1,1]-解:因 2101112x x ⎧-≥⎪⎨+-≤≤⎪⎩,故 11212x x -≤≤⎧⎨-≤+≤⎩ , 1131x x -≤≤⎧⎨-≤≤⎩ ,所以 11x -≤≤,故选(D ). 2.(2010年,1分)极限0sin3lim x xx→等于( )(A )0 (B )1 (C )13(D )3 解:00sin33limlim 3x x x xx x→→==,故选(D ). 3.(2009年,1分)极限(1)limnn n n→∞+-=( ) (A )1 (B )0 (C )∞ (D )不存在解:(1)(1)(1)lim lim[1]1lim 101n n n n n n n n n n→∞→∞→∞+---=+=+=+=,故选(A ).4.(2009年,1分)若1,0()0,01,0x x f x x x x -<⎧⎪==⎨⎪+>⎩,则0lim ()x f x →=( )(A )1- (B )0 (C )1 (D )不存在解:因00lim ()lim(1)1x x f x x --→→=-=-,0lim ()lim(1)1x x f x x ++→→=+=,lim ()lim ()x x f x f x -+→→≠,故0lim ()x f x →不存在,选(D ). 5.(2009年,1分)2x π=是函数tan xy x=的( ) (A )连续点 (B )可去间断点 (C )跳跃间断点 (D )第二类间断点解:因 2lim 0tan x x x π→=,故2x π=是函数tan xy x =的可去间断点,选(B ). 6.(2008年,3分)设1()sinf x x x= ,则lim ()x f x →∞等于( )(A )0 (B )不存在 (C )∞ (D )1解:1sin1lim ()lim sin lim11x x x x f x x x x→∞→∞→∞===,故选(D ).7.(2008年,3分)当0x →时,23x 是2sinx 的( )(A )高阶无穷小 (B )同阶无穷小,但不等价 (C )低阶无穷小 (D )等价无穷小解:因 22220033lim lim 3sin x x x x x x→→==,故选(B ).8.(2007年,3分)当0x →时,tan 2x 是( )(A )比sin3x 高阶的无穷小 (B )比sin3x 低阶的无穷小 (C )与sin3x 同阶的无穷小 (D )与sin3x 等价的无穷小解:因0tan 222limlim sin333x x x x x x →→==,故选(C ). 9.(2006年,2分)设()sin f x x = ,,0(),0x x g x x x ππ-≤⎧=⎨+>⎩ ,则[()]f g x =( )(A )sin x (B )cos x (C )sin x - (D )cos x - 解:当0x ≤时,[()]()sin()sin()sin f g x f x x x x πππ=-=-=--=-;当0x>时,[()]()sin()sin f g x f x x x ππ=+=+=-,故选(C ). 10.(2005年,3分)设120lim(1)xx mx e →-=,则m =( )(A )12- (B )2 (C )2- (D )12解:由11()20lim(1)lim[1()]m m xmxx x mx mx e e ⋅---→→-=+-==,得2m =-,选(C ).11.(2005年,3分)设1xy e-=是无穷大,则x 的变化过程是( )(A )0x+→ (B )0x -→ (C )x →+∞ (D )x →-∞解:0x +→时,1x →+∞,1x-→-∞,10x e -→;0x -→时,1x →-∞,1x-→+∞,1x e -→+∞;故选(B ). 二、填空题1.(2010年,2分)若函数21,1(),1x x f x x a x -+≤⎧=⎨->⎩ 在1x =处连续,则a = .解:11lim()lim(21)1x x f x x --→→=-+=-,11lim ()lim()1x x f x x a a ++→→=-=-,因()f x 在点1x =处连续,故11lim ()lim ()x x f x f x -+→→=,即11a -=-,2a =. 2.(2010年,2分)0x =是函数1()cos f x x x=的第 类间断点.解:因1lim ()lim cos0x x f x x x→→==,故0x =是函数()f x 的第一类间断点.3.(2009年,2分)设1,1()0,11,1x f x x x ⎧<⎪==⎨⎪->⎩,()x g x e =,则[(l n 2)]g f = .解:因0ln 21<<,故 (ln 2)1f =,所以 1[(ln 2)](1)g f g e e ===.4.(2009年,2分)1sin y x=在0x =处是第 类间断点.解:因0x →时,1x→∞,1sin x 没有极限,故 0x = 是第二类间断点.5.(2008年,4分)函数ln arcsin yx x =+的定义域为 .解:由题意,011x x >⎧⎨-≤≤⎩ ,故原函数的定义域为 (0,1].6.(2008年,4分)设数列n x 有界,且lim 0n n y →∞=,则lim n n n x y →∞= .解:数列可看作特殊的函数,因数列n x 有界,数列n y 为无穷小,所以根据无穷小与有界函数的乘积仍然是无穷小可得,lim 0n nn x y →∞=.7.(2008年,4分)函数31y x =+的反函数为 .解:由31yx =+可得,31y x =+,31x y =-,故反函数为 31y x =-.8.(2007年,4分)函数21arcsin 3x y -=的定义域为 .解:由21113x --≤≤得,3213x -≤-≤,即12x -≤≤,所以定义域为[1,2]-. 9.(2007年,4分)21lim()xx x x→∞-= .解:22(2)2111lim()lim(1)lim(1)x x x x x x x e x x x-⋅--→∞→∞→∞---=+=+=.10.(2006年,2分)若函数2121212(),0()12,0x x x f x xx a x +⎧->⎪=⎨+⎪-≤⎩在0x =处连续,则a = .解:0lim()lim(2)x x f x x a a --→→=-=-,22211221(3)3322000123lim ()lim()lim(1)11x x x x x x xx f x e xx+++++⋅---→→→--==+=++, 因()f x 在0x =处连续,故0lim ()lim ()x x f x f x -+→→=,即3a e --=,故3a e -=-. 三、计算题1.(2010年,5分)求极限lim xx x c x c →∞+⎛⎫⎪-⎝⎭,其中c 为常数.解:22222lim lim 1lim 1x c cxxxc x cc x x x x c c c e x c x c x c -⋅-→∞→∞→∞+⎛⎫⎛⎫⎛⎫=+=+=⎪ ⎪ ⎪---⎝⎭⎝⎭⎝⎭.2.(2010年,5分)求极限3tan limx x xx→-. 解:22322000tan sec 1tan 1lim lim lim 333x x x x x x x x x x →→→--===. 说明:此题也可多次使用洛必达法则,解法如下:232000tan sec 12sec sec tan 1lim lim lim 363x x x x x x x x x x x x →→→--⋅===. 3.(2009年,5分)求极限 3113lim 11x x x →⎛⎫- ⎪--⎝⎭ . 解:此题为“∞-∞”型的极限,解法如下:23321111313(1)(2)lim lim lim 1111(1)(1)x x x x x x x x x x x x x →→→++--+⎛⎫-===- ⎪----++⎝⎭. 4.(2009年,5分)求极限 0limsin x x x e e x-→- .解:002limlim 2sin cos 1x x x x x x e e e e x x --→→-+===.5.(2008年,5分)求极限 2sin 2lim cos()x xx ππ→- .解:22sin 22cos2limlim 2cos()sin()(1)x x x x x x ππππ→→==----⋅-.6.(2007年,5分)求极限011lim()1x x x e →-- . 解:20000111111lim()lim lim lim 1(1)22x x x x x x x x x e x e x e x e x e x x →→→→------====--. 说明:0x →时,1~xex -.7.(2006年,4分)求极限 011limcot ()sin x x x x→- .解:2300011cos (sin )sin limcot ()lim lim sin sin x x x x x x x xx x x x x x→→→---== 2220011cos 12lim lim 336x x xx x x →→-===.8.(2006年,4分)设1cos 20()sin xf x t dt -=⎰,56()56x xg x =+,求0()lim()x f x g x →. 解:因0x →时,1cos 20()sin 0xf x t dt -=→⎰,56()056x xg x =+→,且1cos 220()(sin )sin sin(1cos )xf x t dt x x -''==-⎰,45()g x x x '=+,故 2245450000()()sin sin(1cos )(1cos )lim lim lim lim ()()x x x x f x f x x x x x g x g x x x x x →→→→'--==='++224454500011()124lim lim lim 041x x x x x x x x x x x x x→→→⋅====+++.9.(2005年,5分)求极限111lim()1ln x x x→-- .解: 1111111ln 1lim()lim lim 11ln (1)ln ln x x x x x xx x x x x x x→→→--+-==---+11111limlim ln 1ln 112x x x x x x x →→--===-+-++.。
高等数学 第一章
函数 y f ( x )
反函数 x ( y )
W
W
o
D
x
o
D
x
三、复合函数
1、复合函数
设 y u, u 1 x ,
2
y 1 x
2
定义 设函数 y f ( u) 的定义域为 D f , 而函数
u ( x ) 的值域为 Z , 若 Z D , 则称函数 f y f [( x )] 为 x 的复合函数.
一、 函数的有界性
f ( x) 2 x 1,
三、 函数的周期性 四、 函数凹凸性
x0
.
1.函数的有界性 y
M y=f(x)
y
M
o
有界 -M
x X
o
-M
x0
X
无界
x
设函数 f ( x ) 在区域 有界: X D, M 0, 则称
上有定义, x X 使得 f ( x ) M ;
第一章
函数
第一节 函数的定义
一、 基本概念 二、 函数概念
一、函数概念
1 函数定义 定义:设 x和 y是两个变量, D 是一个给定 的数集. 如果对于每个数 x D , 变量 y 按 照一定法则,总有确定的数值与之对应, 则称 y 是 x 的函数, 记作 y f ( x ) . 数集D叫 做这个函数的定义域. x叫做自变量, y 叫做因变量. f 叫做函数关系. 单值函数: 自变量在定义域内任取一个 数值时, 对应的函数值总是只有一个的 函数. 否则叫多值函数.
中心
a 的 去心邻域:
a
a
a
半径
x
o
0 U (a ) { x 0 x a },
高等数学知识点
高等数学知识点高等数学知识点在日复一日的学习中,大家最熟悉的就是知识点吧?知识点有时候特指教科书上或考试的知识。
哪些知识点能够真正帮助到我们呢?下面是小编为大家收集的高等数学知识点,供大家参考借鉴,希望可以帮助到有需要的朋友。
高等数学知识点1第一章:函数与极限1.理解函数的概念,掌握函数的表示方法。
2.会建立简单应用问题中的函数关系式。
3.了解函数的奇偶性、单调性、周期性、和有界性。
4.掌握基本初等函数的性质及图形。
5.理解复合函数及分段函数的有关概念,了解反函数及隐函数的概念。
6.理解函数连续性的概念(含左连续和右连续)会判别函数间断点的类型。
7.理解极限的概念,理解函数左极限与右极限的概念,以及极限存在与左右极限间的关系。
8.掌握极限存在的两个准则,并会利用它们求极限,掌握利用两个重要极限求极限的方法。
9.掌握极限性质及四则运算法则。
10.理解无穷孝无穷大的概念,掌握无穷小的比较方法,会用等价无穷小求极限。
第二章:导数与微分1.理解导数与微分的概念,理解导数与微分的关系,理解导数的几何意义,会求平面曲线的切线方程和法线方程,了解导数的物理意义,会用导数描写一些物理量,理解函数的可导性与连续性之间的关系。
2.掌握导数的四则运算法则和复合函数的求导法则,掌握初等函数的求导公式,了解微分的四则运算法则和一阶微分形式的不变性,会求初等函数的微分。
3.会求隐函数和参数方程所确定的函数以及反函数的导数。
4.会求分段函数的导数,了解高阶导数的概念,会求简单函数的高阶导数。
第三章:微分中值定理与导数的应用1.熟练运用微分中值定理证明简单命题。
2.熟练运用罗比达法则和泰勒公式求极限和证明命题。
3.了解函数图形的作图步骤。
了解方程求近似解的两种方法:二分法、切线法。
4.会求函数单调区间、凸凹区间、极值、拐点以及渐进线、曲率。
第四章:不定积分1.理解原函数和不定积分的概念,掌握不定积分的基本公式和性质。
2.会求有理函数、三角函数、有理式和简单无理函数的不定积分3.掌握不定积分的分步积分法。
(完整版)高等数学基础知识点归纳
(完整版)⾼等数学基础知识点归纳第⼀讲函数,极限,连续性1、集合的概念⼀般地我们把研究对象统称为元素,把⼀些元素组成的总体叫集合(简称集)。
集合具有确定性(给定集合的元素必须是确定的)和互异性(给定集合中的元素是互不相同的)。
⽐如“⾝材较⾼的⼈”不能构成集合,因为它的元素不是确定的。
⑴、全体⾮负整数组成的集合叫做⾮负整数集(或⾃然数集)。
记作N⑵、所有正整数组成的集合叫做正整数集,记作N+。
⑶、全体整数组成的集合叫做整数集,记作Z。
⑷、全体有理数组成的集合叫做有理数集,记作Q。
⑸、全体实数组成的集合叫做实数集,记作R。
集合的表⽰⽅法⑴、列举法:把集合的元素⼀⼀列举出来,并⽤“{}”括起来表⽰集合⑵、描述法:⽤集合所有元素的共同特征来表⽰集合集合间的基本关系⑴、⼦集:⼀般地,对于两个集合A、B,如果集合A 中的任意⼀个元素都是集合B 的元素,我们就说A、B 有包含关系,称集合A 为集合B 的⼦集,记作A ?B。
⑵、相等:如何集合A 是集合B 的⼦集,且集合B 是集合A 的⼦集,此时集合A 中的元素与集合B 中的元素完全⼀样,因此集合A 与集合B 相等,记作A=B。
⑶、真⼦集:如何集合A 是集合B 的⼦集,但存在⼀个元素属于B 但不属于A,我们称集合A 是集合B 的真⼦集,记作A 。
⑷、空集:我们把不含任何元素的集合叫做空集。
记作,并规定,空集是任何集合的⼦集。
⑸、由上述集合之间的基本关系,可以得到下⾯的结论:①、任何⼀个集合是它本⾝的⼦集。
②、对于集合A、B、C,如果A 是B 的⼦集,B 是C 的⼦集,则A 是C 的⼦集。
③、我们可以把相等的集合叫做“等集”,这样的话⼦集包括“真⼦集”和“等集”。
集合的基本运算⑴、并集:⼀般地,由所有属于集合A 或属于集合B 的元素组成的集合称为A 与B 的并集。
记作A∪B。
(在求并集时,它们的公共元素在并集中只能出现⼀次。
)即A∪B={x|x∈A,或x∈B}。
⑵、交集:⼀般地,由所有属于集合A 且属于集合B 的元素组成的集合称为A 与B 的交集。
高等数学第一章
连续
桥梁
第一节 函数
一、基本概念
1.集合: 具有某种特定性质的事物的总体.
组成这个集合的事物称为该集合的元素. 通常用大写字母表示集合 用小写字母表示集合的元素.
没有任何元素的集合称为空集,记作
表示 M 中排除 0 与负数的集 . M
注: M 为数集
* 表示 M 中排除 0 的集 ; M
一、基本概念——集合的表示法
则称函数f ( x )在X上有界.否则称无界.
y M y=f(x) o -M x 有界 X y
M
o
-M
x0
X
无界
x
注:有界性和定义区间有关.
二、函数——性质 2.函数的单调性:
设函数 f ( x )的定义域为 D, 区间I D, x1 , x2 I , 当 x1 x2
若 f ( x1 ) f ( x2 ) , 称 f ( x) 为 I 上的 单调增函数 ; 若 f ( x1 ) f ( x2 ) , 称 f ( x) 为 I 上的 单调减函数 .
二、函数——举例
例 A,B两地间的汽车运输,旅客携带行李按下列标准支付 运费:不超过10公斤的不收行李费;超过10公斤而不超过30 公斤的,每公斤收运费0.50元;超过30公斤而不不超过100 公斤的,每公斤收运费0.80元。试列出运输行李的运费y与行 李的重量x之间的函数关系式,写出其定义域,并求出所带行 李分别为18公斤和60公斤的甲、乙两旅客各应支付多少运费?
)2 解: f ( 1 2
1 2
2
1 1 , 0 t 1 t 1 f (t ) 2 t 1 , t 定义域 D [0 , )
值 域 f ( D ) [0 , )
《高等数学》笔记-知识归纳整理
- 1 -第一章 函数与极限第一节 函数1.区间(interval):介于某两个实数之间的全体实数构成区间.这两个实数叫做区间的端点..,,b a R b a <∈∀且}{b x a x <<开区间),(b a 记作}{b x a x ≤≤闭区间],[b a 记作ox a bo xab}{b x a x <≤}{b x a x ≤<左闭右开区间左开右闭区间),[b a 记作],(b a 记作}{),[x a x a ≤=+∞}{),(b x x b <=-∞o x aoxb注:两端点间的距离称为区间的长度.无穷区间2 邻域.0,>δδ且是两个实数与设a ,叫做这邻域的中心点a .叫做这邻域的半径δ.}{),(δδδ+<<-=a x a x a U xaδ-a δ+a δδ,}{邻域的称为点数集δδa a x x <-记作二、函数的概念1.函数的定义函——信函单值对应多值函数不是函数自变量因变量对应法则(())x )(0x f f xyDW------函数的定义域D 和函数的对应规律f 函数的值域称为派生要素。
2. 函数的两个要素w={y │y=f(x), x ∈D}xaδ- a δ+ a δδ,邻域 的去心的 点 δa) , ( δ a U记作 .}0{),(δδ<-<=a x x a U知识归纳整理- 2 -❖定义域的求法❖在实际问题中,定义域由实际问题的具体条件来确定。
(即使实际问题故意义的取值范围)。
如时光、长度、分量必须大等于0 。
❖对于数学式子表达的函数,如果给出了取值范围就不必再求。
否则,则是使解析式故意义的x的集合(使对应的函数值唯一确定)。
1. 在分式中,分母应不为0;2. 在偶次根式中,被开方数不能为负数;3. 在对数式中,真数不能为0和负数;▪ 4. 在反三角函数式中,要符合反三角函数的定义域;▪ 5. 若函数表达式中含有分式、根式、对数式、反三角函数式等,则应取各部分定义域的交集。
高数重要知识点汇总
简变形成 “0 ”或“ ”型才能运用该法则 ;
0
(2)只要条件具备 ,可以连续应用洛必达法则 ;
(3)洛必达法则的条件是充分的 ,但不必要 .因此 ,在该法则失效时并不
能断定原极限不存在 .
7 .利用导数定义求极限
参考 .资料
..
..
..
..
基本公式 lim f (x0 x0
x) f (x0) x
6 可微与可导的关系 f (x)在 x0处可微 ? f (x)在 x0 处可导 。
7 求n 阶导数 (n ≥ 2,正整数 )
先求出 y′, y′,…′… ,总结出规律性 , 然后写出 y(n), 最后用归纳法证明 。 有一些
常用的初等函数的 n 阶导数公式
( 1) y e x, y (n) ex
( 2) y a x , y (n) a x (ln a)n
,称为皮亚诺余项 对常用的初等函数如 ex ,sin x,cos x,ln(1+ x)和 (1 x) (α 为实常数 )等的 n阶 泰勒公式都要熟记 。 定理 2(拉格朗日余项的 n 阶泰勒公式 ) 设 f (x)在包含 0 x 的区间 (a,b )内有 n +1 阶导数 ,在 [a,b ]上有 n阶连续导数 ,则对 x
3!
n!
x5 ... ( 1)n x 2n 1
5!
(2n 1)!
o( x2 n 1)
x2 cos x 1
x4
... ( 1)n x 2n
o( x2n)
2! 4!
2 n!
ln(1 x)
x
x2
x3 ...
( 1)n 1 x n
o( xn )
23
n
(1 x) 1 x ( 1) x2 ... ( 1)...( (n 1)) xn o( xn)
《高等数学》第一章函数与极限第一节 函数
4 x 5,
4
5
6
x
5) . 因此,函数的定义域为 D [4,
14
第1 章 函数与极限
1.1 函数
3. 单值函数与多值函数
若自变量在定义域内任取一个数值时,对应的 函数值总是只有一个,这种函数称为单值函数,否 则称为多值函数.
例如,x y a .
2 2 2
y a x
( 0,1)
当 0<a<1 时,函数单调减少
28
第1 章 函数与极限
1.1 函数
3. 对数函数
y loga x (a 0, a 1)
y log a x
对数函数是指数函数 y = ax 的反函数 定义域为(0, +) 图形通过(1, 0)点 当 a>1 时, 函数单调增加 当 0<a<1 时, 函数单调减少
则称 f ( x ) 在I 上有上界, M 为 f ( x ) 的一个上界.
若I D, 数m, x I , 总有 f ( x) m 成立,
则称 f ( x) 在I 上有下界, m为 f ( x ) 的一个下界.
如果 f ( x ) 在 I 上既有上界, 又有下界, 则称函数 f ( x ) 在 I 上有界.
32
第1 章 函数与极限
1.1 函数
5. 反三角函数
y
反正弦函数
y arcsin x
-1
p
2
定义域为[-1, 1]
p p 值域为 , 2 2
O
1 x
p
2
函数单调增加,奇函数,是有界函数
33
第1 章 函数与极限
1.1 函数
高等数学第一章第二章总结
高等数学第一章第二章总结1 第一章:绪论第一章是高等数学的绪论,其中介绍了数学的定义、作用、历史及其发展等。
在第一章中,数学是定量和定性研究物质及其结构、关系及运动规律的科学。
它由实数、整数、有理数、分数和平面几何等基本概念组成,用各种计算、逻辑推理及分析等方法来描述客观的现象或思想的抽象模型,从而得出准确的结果。
另外,数学涉及到它在科学、技术、社会、文化等方面的应用,它是社会发展的基础。
数学发展史从古代有算术、代数、几何等学科,逐渐发展至近代以及现代,学科不断壮大,研究的领域越来越广泛,涉及到人类生活的方方面。
2 第二章:初等数学第二章主要介绍初等数学,包括数论、向量运算、数列和统计等。
数论是计算数值的研究,它涉及到质数分解、最大公约数、最小公倍数、随机数等概念,数论在正文、加密等方面有广泛的应用。
向量运算是向量和向量、向量和物体之间的运算关系,它包括线性组合、内积、外积等,向量运算在物理、声学、飞行、机器人等领域有着重要的用途。
数列是按数次递增或递减的数值序列,它包括等差数列和等比数列,比如阶乘及斐波那契数列,它们能够描述物理几何尺寸及次序关系,有着极为广泛的应用。
最后,统计是从测量、计数、比较等不同数据中抽象出的概念,它包括平均数、标准差、概率分布等,是综合应用概率论、数理逻辑及数学知识。
统计学主要用来分析和预测人们的意见、举措等,对于改进社会的规划、预防未来的决策都有着重要意义。
综上所述,第一章绪论介绍了数学的定义、作用、历史及其发展,第二章介绍了初等数学,包括数论、向量运算、数列和统计等,它们都是数学学科中非常重要的知识。
(完整版)高数上册知识点
高等数学上册知识点第一章 函数与极限 (一) 函数1、 函数定义及性质(有界性、单调性、奇偶性、周期性);2、 反函数、复合函数、函数的运算;3、 初等函数:幂函数、指数函数、对数函数、三角函数、反三角函数、双曲函数、反双曲函数; 4、 函数的连续性与间断点;函数)(x f 在0x 连续 )()(lim 00x f x f xx =→第一类:左右极限均存在。
间断点 可去间断点、跳跃间断点 第二类:左右极限、至少有一个不存在。
无穷间断点、振荡间断点5、 闭区间上连续函数的性质:有界性与最大值最小值定理、零点定理、介值定理及其推论。
(二) 极限 1、 定义 1) 数列极限εε<->∀N ∈∃>∀⇔=∞→a x N n N a x n n n , , ,0lim2) 函数极限εδδε<-<-<∀>∃>∀⇔=→A x f x x x A x f x x )( 0 , ,0 ,0)(lim 00时,当左极限:)(lim )(00x f x f x x -→-= 右极限:)(lim )(00x f x f xx +→+= )()( )(lim 000+-→=⇔=x f x f A x f x x 存在2、 极限存在准则 1) 夹逼准则: 1))(0n n z x y n n n ≥≤≤2)a z y n n n n ==→∞→∞lim lim a x n n =∞→lim2) 单调有界准则:单调有界数列必有极限。
3、 无穷小(大)量1) 定义:若0lim =α则称为无穷小量;若∞=αlim 则称为无穷大量。
2) 无穷小的阶:高阶无穷小、同阶无穷小、等价无穷小、k 阶无穷小 Th1 )(~ααββαo +=⇔;Th2 αβαβαβββαα''=''''lim lim lim ,~,~存在,则(无穷小代换) 4、 求极限的方法 1) 单调有界准则; 2) 夹逼准则;3) 极限运算准则及函数连续性; 4) 两个重要极限:a) 1sin lim 0=→xx x b)e x x xx xx =+=++∞→→)11(lim )1(lim 10 5) 无穷小代换:(0→x ) a)x x x x x arctan ~arcsin ~tan ~sin ~b) 221~cos 1x x -c) x e x ~1- (a x a x ln ~1-) d) x x ~)1ln(+ (ax x a ln ~)1(log +)e) x x αα~1)1(-+第二章 导数与微分 (一) 导数1、 定义:000)()(lim )(0x x x f x f x f x x --='→ 左导数:000)()(lim )(0x x x f x f x f x x --='-→-右导数:000)()(lim )(0x x x f x f x f x x --='+→+ 函数)(x f 在0x 点可导)()(00x f x f +-'='⇔2、 几何意义:)(0x f '为曲线)(x f y =在点())(,00x f x 处的切线的斜率。
高等数学各章知识要点及典型例题与习题详细精解
第一章 函数、极限、连续第1节 函数★基本内容学习一 基本概念和性质1函数的定义设有两个变量x 和y ,变量x 的变域为D ,如果对于D 中的每一个x 值,按照一定的法则,变量y 有一个确定的值与之对应,则称变量y 为变量x 的函数,记作:()y f x =。
2函数概念的两要素①定义域:自变量x 的变化范围②对应关系:给定x 值,求y 值的方法。
3函数的三种表示方法①显式:形如()y f x =的称作显式,它最直观,也是初等函数一般采用的形式。
②隐式:有时有些关系用显式无法完全表达,这时要用到隐式,形如(,)0F x y =,如椭圆函数22221x y a b+=。
③参数式:形如平抛运动的轨迹方程212x vt y gt =⎧⎪⎨=⎪⎩称作参数式。
参数式将两个变量的问题转化为一个变量的问题,从而使很多难以处理的问题简化。
4函数的四个基本性质①奇偶性:设函数()f x 在对称区间X 上有定义,如果对于x X ∀∈恒有()()f x f x =- (或)()()f x f x =--,则称()f x 为偶函数(或()f x 奇函数)。
注:偶函数()f x 图形关于y 轴对称,奇函数()f x 的图形关于坐标原点对称。
②有界性:设函数()f x 在区间X 上有定义,如果0M ∃>,使得对一切x X ∈,恒有:()f x M ≤,则称()f x 在区间X 上有界;若不存在这样的0M >,则称()f x 在区间X 上无界.注:函数()f x 有无界是相对于某个区间而言的。
③周期性:设函数()f x 在区间X 上有定义,若存在一个与x 无关的正数T ,使对任一x X ∈,恒有()()f x T f x += 则称()f x 是以T 为周期的周期函数,把满足上式的最小正数T 称为函数()f x 的周期。
④单调性:设函数()f x 在区间X 上有定义,如果对1212,,x x X x x ∀∈<,恒有:()()12f x f x ≤(或()()12f x f x ≥)则称()f x 在区间X上是单调增加(或单调减少)的;如果对于1212,,x x X x x ∀∈<,恒有:()()12f x f x < (或()()12f x f x >)则称()f x 在区间X上是严格单调增加(或严格单调减少)的。
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
第一章 函数、极限与连续
第一节 函数及其特性 (一)集合的概念
一般地我们把研究对象统称为元素,把一些元素组成的总体叫集合(简称集)。
我们通常用大字拉丁字母A 、B 、C 、……表示集合,用小写拉丁字母a 、b 、c ……表示集合中的元素。
如果a 是集合A 中的元素,就说a 属于A ,记作:a ∈A ,否则就说a 不属于A ,记作:a ∉A 。
⑴、全体非负整数组成的集合叫做非负整数集(或自然数集)。
记作 N ⑵、所有正整数组成的集合叫做正整数集。
记作N+或N+。
⑶、全体整数组成的集合叫做整数集。
记作Z 。
⑷、全体有理数组成的集合叫做有理数集。
记作Q 。
⑸、全体实数组成的集合叫做实数集。
记作R 。
集合的表示方法
⑴、列举法:把集合的元素一一列举出来,并用“{}”括起来表示集合 ⑵、描述法:用集合所有元素的共同特征来表示集合。
集合中元素的个数 有限集:我们把含有有限个元素的集合叫做有限集,含有无限个元素的集合叫做无限集。
(二)常量与变量
⑴、变量的定义:我们在观察某一现象的过程时,常常会遇到各种不同的量,其中有的量在过程中不起变化,我们把其称之为常量;有的量在过程中是变化的,也就是可以取不同的数值,我们则把其称之为变量。
⑵、变量的表示:如果变量的变化是连续的,则常用区间来表示其变化范围。
在数轴上来说,区间是指介于某两点之间的线段上点的全体。
区间的名称 区间的满足的不等式 区间的记号 区间在数轴上的表示。
闭区间 a ≤x ≤b [a ,b] 开区间 a <x <b (a ,b )
半开区间 a <x ≤b 或a ≤x <b (a ,b]或[a ,b )
以上我们所述的都是有限区间,除此之外,还有无限区间:
[a ,+∞):表示不小于a 的实数的全体,也可记为:a ≤x <+∞; (-∞,b):表示小于b 的实数的全体,也可记为:-∞<x <b ; (-∞,+∞):表示全体实数,也可记为:-∞<x <+∞ 注:其中-∞和+∞,分别读作"负无穷大"和"正无穷大",它们不是数,仅仅是记号。
⑶、邻域:00000{}(, (,) )-----x x x x x U x x δδδδδ=-<-+=一维
以为中心,以为半径的邻域
0000000{}(, )(, )------x 0(,)x x x x x x x U x δδδδδ=-<=-⋃+<以为中心,以为半径的空心邻域
00(),()U x U x -----0x 的某个邻域、某个空心邻域
第二节 初等函数
(一) 基本初等函数及其图像
,0.,0.x y x y x y a αααα=>=<=和log ,0,1a y x a a =>≠。
sin y x =和cos y x =。
tan ;cot ;arcsin ;arccos ;arctan ;cot .y x y x y x y x y x y arc x ======
易见cot arctan 2
arc x x π
+=
,同理arcsin cos 2
x arc x π
+=。
1.幂函数.0y x αα=>时,x α在()0,;0α+∞<时,x α在()
0,+∞。
移项性质:
()1
,0,0.x y x y x y α
α=⇔=>>
2.指数函数.1x y a a =>时,x a 在(),-∞+∞;01a <<时,x a 在()
,-∞+∞。
移项性质:()log .,0;x a a y x y x R y =⇔=∈>
抵消性质:()log ,log ,,0.a y x a a y a x x R y ==∈>
3.对数函数log .1a y x a =>时,log a x 在(),-∞+∞单调增加;01a <<时,log a x 在(),-∞+∞单调减少。
4.三角函数(1)sin y x = (2)cos y x =(3)tan y x = (4)cot y x =。
5.反三角函数:()()()()1arcsin ,2arccos ,3arctan ,4cot .y x y x y x y arc x ==== 移项性质与抵消性质: (1)当,12
x y π
≤
≤时:sin arcsin ;arcsin(sin );sin(arcsin ).x y x y x x y y =⇔===
(2)当0,1x y π≤≤≤时:
cos arccos ;arccos(cos );cos(arccos ).x y x y x x y y =⇔===
(3)当,2
x y R π
<
∈时:tan arctan ;arctan(tan );tan(arctan ).x y x y x x y y =⇔===
(4)当0,x y R π<<∈时:
cot arccot ;arccot(cot );cot(arccot ).x y x y x x y y =⇔===
几个不太熟悉的函数图像 正切函数 x y tan =,2π
π+
≠k x ,k Z ∈,),(+∞-∞∈y ,
余切函数 x y cot =,πk x ≠,k Z ∈,),(+∞-∞∈y ;
(5) 反三角函数
反正弦函数 x y arcsin =, ]1,1[-∈x ,]2,2[π
π-
∈y ,
反余弦函数 x y arccos =,]1,1[-∈x ,],0[π∈y ,
反正切函数 x y arctan =,),(+∞-∞∈x ,)2,2(π
π-
∈y ,
反余切函数 x y cot arc =,),(+∞-∞∈x ,),0(π∈y .
正割函数,定义域,值域为,为无界
函数,周期
的偶函数,图形如图1-1-10。
图 1-1-10
(5)余割函数,定义域,值域为,
为无界函数,周期
在定义域为奇函数,图形如图1-1-11。
图 1-1-11
(二)、运算
1、加、减、乘、除
2、对数、指数
(1)m
n n m a a =(0,,a m n N *>∈,且1n >).
(2)1
m n m n
a a -=(0,,a m n N *>∈,且1n >).
(1)(0,,)r s r s a a a a r s Q +⋅=>∈.
(2)()(0,,)r s rs a a a r s Q =>∈.
(3)()(0,0,)r r r ab a b a b r
Q =>>∈.
注:若a >0,p 是一个无理数,则a p 表示一个确定的实数.上述有理指数幂的运算性质,对于无理数指数幂都适用.
log b a N b a N =⇔=(0,1,0)a a N >≠>.
log log log m a m N
N a
= (0a >,且1a ≠,0m >,且1m ≠, 0N >).
推论 log log m n a a n
b b m
=(0a >,且1a >,,0m n >,且1m ≠,1n ≠, 0N >).
若a >0,a ≠1,M >0,N >0,则 (1)log ()log log a a a MN M N =+;
(2)log log log a a a M
M N N
=-;
(3)log log ()n a a M n M n R =∈.
第三节 数列的极限
1、常见数列求和
2、等差数列、等比数列
第四节 函数的极限 因式分解(代数等式)。