人教版高中数学必修3 程序框图(第3课时教案
必修3教案1.1.2.程序框图(2、3课时)doc
1.1.2 程序框图(第二、三课时)一、三维目标:1、知识与技能:掌握程序框图的概念;会用通用的图形符号表示算法,掌握算法的三个基本逻辑结构;掌握画程序框图的基本规则,能正确画出程序框图。
2、过程与方法:通过模仿、操作、探索,经历通过设计程序框图表达解决问题的过程;学会灵活、正确地画程序框图。
3、情感态度与价值观:通过本节的学习,使我们对程序框图有一个基本的了解;掌握算法语言的三种基本逻辑结构,明确程序框图的基本要求;认识到学习程序框图是我们学习计算机的一个基本步骤,也是我们学习计算机语言的必经之路。
二、重点与难点:重点是程序框图的基本概念、基本图形符号和3种基本逻辑结构,难点是能综合运用这些知识正确地画出程序框图。
三、学法与教学用具:1、通过上节学习我们知道,算法就是解决问题的步骤,在我们利用计算机解决问题的时候,首先我们要设计计算机程序,在设计计算机程序时我们首先要画出程序运行的流程图,使整个程序的执行过程直观化,使抽象的问题就得十分清晰和具体。
有了这个流程图,再去设计程序就有了依据,从而就可以把整个程序用机器语言表述出来,因此程序框图是我们设计程序的基本和开端。
2、我们在学习这部分内容时,首先要弄清各种图形符号的意义,明确每个图形符号的使用环境,图形符号间的联结方式。
例如“起止框”只能出现在整个流程图的首尾,它表示程序的开始或结束,其他图形符号也是如此,它们都有各自的使用环境和作用,这是我们在学习这部分知识时必须要注意的一个方面。
另外,在我们描述算法或画程序框图时,必须遵循一定的逻辑结构,事实证明,无论如何复杂的问题,我们在设计它们的算法时,只需用顺序结构、条件结构和循环结构这三种基本逻辑就可以了,因此我们必须掌握并正确地运用这三种基本逻辑结构。
3、教学用具:电脑,计算器,图形计算器四、教学设计:1、创设情境:算法可以用自然语言来描述,但为了使算法的程序或步骤表达得更为直观,我们更经常地用图形方式来表示它。
(完整版)人教版高中数学必修3教材全套教案
第一章 算法初步1.1 算法与程序框图 1.1.1 算法的概念授课时间:第 周 年 月 日(星期 )教学分析算法在中学数学课程中是一个新的概念,但没有一个精确化的定义,教科书只对它作了如下描述:“在数学中,算法通常是指按照一定规则解决某一类问题的明确有限的步骤.”为了让学生更好理解这一概念,教科书先从分析一个具体的二元一次方程组的求解过程出发,归纳出了二元一次方程组的求解步骤,这些步骤就构成了解二元一次方程组的算法.教学中,应从学生非常熟悉的例子引出算法,再通过例题加以巩固. 三维目标1.正确理解算法的概念,掌握算法的基本特点.2.通过例题教学,使学生体会设计算法的基本思路.3.通过有趣的实例使学生了解算法这一概念的同时,激发学生学习数学的兴趣. 重点难点教学重点:算法的含义及应用.教学难点:写出解决一类问题的算法.教学过程导入新课思路1(情境导入)一个人带着三只狼和三只羚羊过河,只有一条船,同船可容纳一个人和两只动物,没有人在的时候,如果狼的数量不少于羚羊的数量狼就会吃羚羊.该人如何将动物转移过河?请同学们写出解决问题的步骤,解决这一问题将要用到我们今天学习的内容——算法. 思路2(情境导入)大家都看过赵本山与宋丹丹演的小品吧,宋丹丹说了一个笑话,把大象装进冰箱总共分几步? 答案:分三步,第一步:把冰箱门打开;第二步:把大象装进去;第三步:把冰箱门关上. 上述步骤构成了把大象装进冰箱的算法,今天我们开始学习算法的概念. 思路3(直接导入)算法不仅是数学及其应用的重要组成部分,也是计算机科学的重要基础.在现代社会里,计算机已成为人们日常生活和工作中不可缺少的工具.听音乐、看电影、玩游戏、打字、画卡通画、处理数据,计算机是怎样工作的呢?要想弄清楚这个问题,算法的学习是一个开始. 推进新课 新知探究 提出问题 (1)解二元一次方程组有几种方法?(2)结合教材实例⎩⎨⎧=+-=-)2(,12)1(,12y x y x 总结用加减消元法解二元一次方程组的步骤.(3)结合教材实例⎩⎨⎧=+-=-)2(,12)1(,12y x y x 总结用代入消元法解二元一次方程组的步骤.(4)请写出解一般二元一次方程组的步骤. (5)根据上述实例谈谈你对算法的理解. (6)请同学们总结算法的特征. (7)请思考我们学习算法的意义. 讨论结果:(1)代入消元法和加减消元法. (2)回顾二元一次方程组⎩⎨⎧=+-=-)2(,12)1(,12y x y x 的求解过程,我们可以归纳出以下步骤: 第一步,①+②×2,得5x=1.③ 第二步,解③,得x=51. 第三步,②-①×2,得5y=3.④ 第四步,解④,得y=53. 第五步,得到方程组的解为⎪⎪⎩⎪⎪⎨⎧==.53,51y x(3)用代入消元法解二元一次方程组⎩⎨⎧=+-=-)2(,12)1(,12y x y x 我们可以归纳出以下步骤: 第一步,由①得x=2y -1.③第二步,把③代入②,得2(2y -1)+y=1.④ 第三步,解④得y=53.⑤ 第四步,把⑤代入③,得x=2×53-1=51. 第五步,得到方程组的解为⎪⎪⎩⎪⎪⎨⎧==.53,51y x(4)对于一般的二元一次方程组⎩⎨⎧=+=+)2(,)1(,222111c y b x a c y b x a其中a 1b 2-a 2b 1≠0,可以写出类似的求解步骤: 第一步,①×b 2-②×b 1,得 (a 1b 2-a 2b 1)x=b 2c 1-b 1c 2.③ 第二步,解③,得x=12212112b a b a c b c b --.第三步,②×a 1-①×a 2,得(a 1b 2-a 2b 1)y=a 1c 2-a 2c 1.④ 第四步,解④,得y=12211221b a b a c a c a --.第五步,得到方程组的解为⎪⎪⎩⎪⎪⎨⎧--=--=.,1221122112212112b a b a c a c a y b a b a c b c b x(5)算法的定义:广义的算法是指完成某项工作的方法和步骤,那么我们可以说洗衣机的使用说明书是操作洗衣机的算法,菜谱是做菜的算法等等.在数学中,算法通常是指按照一定规则解决某一类问题的明确有限的步骤. 现在,算法通常可以编成计算机程序,让计算机执行并解决问题.(6)算法的特征:①确定性:算法的每一步都应当做到准确无误、不重不漏.“不重”是指不是可有可无的,甚至无用的步骤,“不漏” 是指缺少哪一步都无法完成任务.②逻辑性:算法从开始的“第一步”直到“最后一步”之间做到环环相扣,分工明确,“前一步”是“后一步”的前提, “后一步”是“前一步”的继续.③有穷性:算法要有明确的开始和结束,当到达终止步骤时所要解决的问题必须有明确的结果,也就是说必须在有限步内完成任务,不能无限制地持续进行. (7)在解决某些问题时,需要设计出一系列可操作或可计算的步骤来解决问题,这些步骤称为解决这些问题的算法.也就是说,算法实际上就是解决问题的一种程序性方法.算法一般是机械的,有时需进行大量重复的计算,它的优点是一种通法,只要按部就班地去做,总能得到结果.因此算法是计算科学的重要基础. 应用示例思路1例1 (1)设计一个算法,判断7是否为质数. (2)设计一个算法,判断35是否为质数. 算法分析:(1)根据质数的定义,可以这样判断:依次用2—6除7,如果它们中有一个能整除7,则7不是质数,否则7是质数. 算法如下:(1)第一步,用2除7,得到余数1.因为余数不为0,所以2不能整除7. 第二步,用3除7,得到余数1.因为余数不为0,所以3不能整除7. 第三步,用4除7,得到余数3.因为余数不为0,所以4不能整除7. 第四步,用5除7,得到余数2.因为余数不为0,所以5不能整除7.第五步,用6除7,得到余数1.因为余数不为0,所以6不能整除7.因此,7是质数.(2)类似地,可写出“判断35是否为质数”的算法:第一步,用2除35,得到余数1.因为余数不为0,所以2不能整除35.第二步,用3除35,得到余数2.因为余数不为0,所以3不能整除35. 第三步,用4除35,得到余数3.因为余数不为0,所以4不能整除35.第四步,用5除35,得到余数0.因为余数为0,所以5能整除35.因此,35不是质数. 变式训练请写出判断n(n>2)是否为质数的算法.分析:对于任意的整数n(n>2),若用i 表示2—(n-1)中的任意整数,则“判断n 是否为质数”的算法包含下面的重复操作:用i 除n,得到余数r.判断余数r 是否为0,若是,则不是质数;否则,将i 的值增加1,再执行同样的操作. 这个操作一直要进行到i 的值等于(n-1)为止. 算法如下:第一步,给定大于2的整数n. 第二步,令i=2.第三步,用i 除n,得到余数r.第四步,判断“r=0”是否成立.若是,则n 不是质数,结束算法;否则,将i 的值增加1,仍用i 表示. 第五步,判断“i >(n-1)”是否成立.若是,则n 是质数,结束算法;否则,返回第三步. 例2 写出用“二分法”求方程x 2-2=0 (x>0)的近似解的算法.分析:令f(x)=x 2-2,则方程x 2-2=0 (x>0)的解就是函数f(x)的零点. “二分法”的基本思想是:把函数f(x)的零点所在的区间[a,b ](满足f(a)·f(b)<0)“一分为二”,得到[a,m ]和[m,b ].根据“f(a)·f(m)<0”是否成立,取出零点所在的区间[a,m ]或[m,b ],仍记为[a,b ].对所得的区间[a,b ]重复上述步骤,直到包含零点的区间[a,b]“足够小”,则[a,b]内的数可以作为方程的近似解.解:第一步,令f(x)=x2-2,给定精确度d.第二步,确定区间[a,b],满足f(a)·f(b)<0.第三步,取区间中点m=2ba.第四步,若f(a)·f(m)<0,则含零点的区间为[a,m];否则,含零点的区间为[m,b].将新得到的含零点的区间仍记为[a,b].第五步,判断[a,b]的长度是否小于d或f(m)是否等于0.若是,则m是方程的近似解;否则,返回第三步.当d=0.005时,按照以上算法,可以得到下表..实际上,上述步骤也是求2的近似值的一个算法.例1 一个人带着三只狼和三只羚羊过河,只有一条船,同船可容纳一个人和两只动物,没有人在的时候,如果狼的数量不少于羚羊的数量就会吃羚羊.该人如何将动物转移过河?请设计算法.分析:任何动物同船不用考虑动物的争斗但需考虑承载的数量,还应考虑到两岸的动物都得保证狼的数量要小于羚羊的数量,故在算法的构造过程中尽可能保证船里面有狼,这样才能使得两岸的羚羊数量占到优势.解:具体算法如下:算法步骤:第一步:人带两只狼过河,并自己返回.第二步:人带一只狼过河,自己返回.第三步:人带两只羚羊过河,并带两只狼返回.第四步:人带一只羊过河,自己返回.第五步:人带两只狼过河.强调:算法是解决某一类问题的精确描述,有些问题使用形式化、程序化的刻画是最恰当的.这就要求我们在写算法时应精练、简练、清晰地表达,要善于分析任何可能出现的情况,体现思维的严密性和完整性.本题型解决问题的算法中某些步骤重复进行多次才能解决,在现实生活中,很多较复杂的情境经常遇到这样的问题,设计算法的时候,如果能够合适地利用某些步骤的重复,不但可以使得问题变得简单,而且可以提高工作效率.知能训练设计算法判断一元二次方程ax2+bx+c=0是否有实数根.解:算法步骤如下:第一步,输入一元二次方程的系数:a,b,c.第二步,计算Δ=b2-4ac的值.第三步,判断Δ≥0是否成立.若Δ≥0成立,输出“方程有实根”;否则输出“方程无实根”,结束算法.强调:用算法解决问题的特点是:具有很好的程序性,是一种通法.并且具有确定性、逻辑性、有穷性.让我们结合例题仔细体会算法的特点.拓展提升中国网通规定:拨打市内电话时,如果不超过3分钟,则收取话费0.22元;如果通话时间超过3分钟,则超出部分按每分钟0.1元收取通话费,不足一分钟按一分钟计算.设通话时间为t (分钟),通话费用y (元),如何设计一个程序,计算通话的费用. 解:算法分析:数学模型实际上为:y 关于t 的分段函数. 关系式如下:y=⎪⎩⎪⎨⎧∉>+-+∈>-+≤<).,3(),1]3([1.022.0),,3(),3(1.022.0),30(,22.0Z t T T Z t t t t 其中[t -3]表示取不大于t -3的整数部分. 算法步骤如下:第一步,输入通话时间t.第二步,如果t≤3,那么y=0.22;否则判断t ∈Z 是否成立,若成立执行 y=0.2+0.1×(t -3);否则执行y=0.2+0.1×([t -3]+1). 第三步,输出通话费用c. 课堂小结(1)正确理解算法这一概念.(2)结合例题掌握算法的特点,能够写出常见问题的算法. 作业课本本节练习1、2.1.1.2 程序框图与算法的基本逻辑结构整体设计授课时间:第周年月日(星期)三维目标1.熟悉各种程序框及流程线的功能和作用.2.通过模仿、操作、探索,经历通过设计程序框图表达解决问题的过程.在具体问题的解决过程中,理解程序框图的三种基本逻辑结构:顺序结构、条件结构、循环结构.3.通过比较体会程序框图的直观性、准确性.重点难点数学重点:程序框图的画法.数学难点:程序框图的画法.教学过程第1课时程序框图及顺序结构导入新课思路1(情境导入)我们都喜欢外出旅游,优美的风景美不胜收,如果迷了路就不好玩了,问路有时还听不明白,真是急死人,有的同学说买张旅游图不就好了吗,所以外出旅游先要准备好旅游图.旅游图看起来直观、准确,本节将探究使算法表达得更加直观、准确的方法.今天我们开始学习程序框图.思路2(直接导入)用自然语言表示的算法步骤有明确的顺序性,但是对于在一定条件下才会被执行的步骤,以及在一定条件下会被重复执行的步骤,自然语言的表示就显得困难,而且不直观、不准确.因此,本节有必要探究使算法表达得更加直观、准确的方法.今天开始学习程序框图.推进新课新知探究提出问题(1)什么是程序框图?(2)说出终端框(起止框)的图形符号与功能.(3)说出输入、输出框的图形符号与功能.(4)说出处理框(执行框)的图形符号与功能.(5)说出判断框的图形符号与功能.(6)说出流程线的图形符号与功能.(7)说出连接点的图形符号与功能.(8)总结几个基本的程序框、流程线和它们表示的功能.(9)什么是顺序结构?讨论结果:(1)程序框图又称流程图,是一种用程序框、流程线及文字说明来表示算法的图形.在程序框图中,一个或几个程序框的组合表示算法中的一个步骤;带有方向箭头的流程线将程序框连接起来,表示算法步骤的执行顺序.(2)椭圆形框:表示程序的开始和结束,称为终端框(起止框).表示开始时只有一个出口;表示结束时只有一个入口.(3)平行四边形框:表示一个算法输入和输出的信息,又称为输入、输出框,它有一个入口和一个出口.(4)矩形框:表示计算、赋值等处理操作,又称为处理框(执行框),它有一个入口和一个出口.(5)菱形框:是用来判断给出的条件是否成立,根据判断结果来决定程序的流向,称为判断框,它有一个入口和两个出口.(6)流程线:表示程序的流向.(7)圆圈:连接点.表示相关两框的连接处,圆圈内的数字相同的含义表示相连接在一起. 图形符号名称 功能终端框(起止框) 表示一个算法的起始和结束 输入、输出框 表示一个算法输入和输出的信息处理框(执行框)赋值、计算判断框判断某一条件是否成立,成立时在出口处标明“是”或“Y”;不成立时标明“否”或“N”流程线连接程序框连接点连接程序框图的两部分. 三种逻辑结构可以用如下程序框图表示:顺序结构 条件结构 循环结构 应用示例例1 请用程序框图表示前面讲过的“判断整数n(n>2)是否为质数”的算法.解:程序框图如下:强调:程序框图是用图形的方式表达算法,使算法的结构更清楚,步骤更直观也更精确.这里只是让同学们初步了解程序框图的特点,感受它的优点,暂不要求掌握它的画法.变式训练观察下面的程序框图,指出该算法解决的问题.解:这是一个累加求和问题,共99项相加,该算法是求100991431321211⨯++⨯+⨯+⨯Λ的值.例2 已知一个三角形三条边的边长分别为a ,b ,c ,利用海伦—秦九韶公式设计一个计算三角形面积的算法,并画出程序框图表示.(已知三角形三边边长分别为a,b,c ,则三角形的面积为S=))()((c p b p a p p ---),其中p=2cb a ++.这个公式被称为海伦—秦九韶公式) 算法分析:这是一个简单的问题,只需先算出p 的值,再将它代入分式,最后输出结果.因此只用顺序结构应能表达出算法.算法步骤如下:第一步,输入三角形三条边的边长a,b,c. 第二步,计算p=2cb a ++. 第三步,计算S=))()((c p b p a p p ---.第四步,输出S. 程序框图如下:强调:很明显,顺序结构是由若干个依次执行的步骤组成的,它是最简单的逻辑结构,它是任何一个算法都离不开的基本结构. 变式训练下图所示的是一个算法的流程图,已知a 1=3,输出的b=7, 求a 2的值. 解:根据题意221a a +=7, ∵a 1=3,∴a 2=11.即a 2的值为11. 知能训练有关专家建议,在未来几年内,中国的通货膨胀率保持在3%左右,这将对我国经济的稳定有利无害.所谓通货膨胀率为3%,指的是每年消费品的价格增长率为3%.在这种情况下,某种品牌的钢琴2004年的价格是10 000元,请用流程图描述这种钢琴今后四年的价格变化情况,并输出四年后的价格. 解:用P 表示钢琴的价格,不难看出如下算法步骤: 2005年P=10 000×(1+3%)=10 300; 2006年P=10 300×(1+3%)=10 609; 2007年P=10 609×(1+3%)=10 927.27; 2008年P=10 927.27×(1+3%)=11 255.09; 年份 2004 2005 2006 2007 2008 钢琴的价格10 00010 30010 60910 927.2711 255.09程序框图如下: 强调:顺序结构只需严格按照传统的解决数学问题的解题思路,将问题解决掉.最后将解题步骤 “细化”就可以.“细化”指的是写出算法步骤、画出程序框图. 拓展提升如上给出的是计算201614121++++Λ的值的一个流程图,其中判断框内应填入的条件是______________.答案:i>10.课堂小结(1)掌握程序框的画法和功能.(2)了解什么是程序框图,知道学习程序框图的意义.(3)掌握顺序结构的应用,并能解决与顺序结构有关的程序框图的画法. 作业习题1.1A 1.第2课时条件结构导入新课思路1(情境导入)我们以前听过这样一个故事,野兽与鸟发生了一场战争,蝙蝠来了,野兽们喊道:你有牙齿是我们一伙的,鸟们喊道:你有翅膀是我们一伙的,蝙蝠一时没了主意.过了一会儿蝙蝠有了一个好办法,如果野兽赢了,就加入野兽这一伙,否则加入另一伙,事实上蝙蝠用了分类讨论思想,在算法和程序框图中也经常用到这一思想方法,今天我们开始学习新的逻辑结构——条件结构.思路2(直接导入)前面我们学习了顺序结构,顺序结构像是一条没有分支的河流,奔流到海不复回,事实上多数河流是有分支的,今天我们开始学习有分支的逻辑结构——条件结构.提出问题(1)举例说明什么是分类讨论思想?(2)什么是条件结构?(3)试用程序框图表示条件结构.(4)指出条件结构的两种形式的区别.讨论结果:(1)例如解不等式ax>8(a≠0),不等式两边需要同除a,需要明确知道a的符号,但条件没有给出,因此需要进行分类讨论,这就是分类讨论思想.(2)在一个算法中,经常会遇到一些条件的判断,算法的流程根据条件是否成立有不同的流向.条件结构就是处理这种过程的结构.(3)用程序框图表示条件结构如下.条件结构:先根据条件作出判断,再决定执行哪一种操作的结构就称为条件结构(或分支结构),如图1所示.执行过程如下:条件成立,则执行A框;不成立,则执行B框.图1 图2注:无论条件是否成立,只能执行A、B之一,不可能两个框都执行.A、B两个框中,可以有一个是空的,即不执行任何操作,如图2.(4)一种是在两个“分支”中均包含算法的步骤,符合条件就执行“步骤A”,否则执行“步骤B”;另一种是在一个“分支”中均包含算法的步骤A,而在另一个“分支”上不包含算法的任何步骤,符合条件就执行“步骤A”,否则执行这个条件结构后的步骤.应用示例例1 任意给定3个正实数,设计一个算法,判断以这3个正实数为三边边长的三角形是否存在,并画出这个算法的程序框图.算法分析:判断以3个任意给定的正实数为三条边边长的三角形是否存在,只需验证这3个数中任意两个数的和是否大于第3个数.这个验证需要用到条件结构.算法步骤如下:第一步,输入3个正实数a,b,c.第二步,判断a+b>c,b+c>a,c+a>b是否同时成立.若是,则存在这样的三角形;否则,不存在这样的三角形.程序框图如右图:强调:根据构成三角形的条件,判断是否满足任意两边之和大于第三边,如果满足则存在这样的三角形,如果不满足则不存在这样的三角形.这种分类讨论思想是高中的重点,在画程序框图时,常常遇到需要讨论的问题,这时要用到条件结构.例2 设计一个求解一元二次方程ax 2+bx+c=0的算法,并画出程序框图表示. 算法分析:我们知道,若判别式Δ=b 2-4ac>0,则原方程有两个不相等的实数根 x 1=ab 2∆+-,x 2=a b 2∆--;若Δ=0,则原方程有两个相等的实数根x 1=x 2=ab2-; 若Δ<0,则原方程没有实数根.也就是说,在求解方程之前,可以先判断判别式的符号,根据判断的结果执行不同的步骤,这个过程可以用条件结构实现.又因为方程的两个根有相同的部分,为了避免重复计算,可以在计算x 1和x 2之前,先计算p=ab2-,q=a 2∆.解决这一问题的算法步骤如下: 第一步,输入3个系数a ,b ,c. 第二步,计算Δ=b 2-4ac.第三步,判断Δ≥0是否成立.若是,则计算p=ab2-,q=a 2∆;否则,输出“方程没有实数根”,结束算法.第四步,判断Δ=0是否成立.若是,则输出x 1=x 2=p ;否则,计算x 1=p+q ,x 2=p-q ,并输出x 1,x 2.程序框图如下:例3 设计算法判断一元二次方程ax 2+bx+c=0是否有实数根,并画出相应的程序框图. 解:算法步骤如下:第一步,输入3个系数:a ,b ,c. 第二步,计算Δ=b 2-4ac.第三步,判断Δ≥0是否成立.若是,则输出“方程有实根”;否则,输出“方程无实根”.结束算法. 相应的程序框图如右:强调:根据一元二次方程的意义,需要计算判别式Δ=b 2-4ac 的值.再分成两种情况处理:(1)当Δ≥0时,一元二次方程有实数根;(2)当Δ<0时,一元二次方程无实数根.该问题实际上是一个分类讨论问题,根据一元二次方程系数的不同情况,最后结果就不同.因而当给出一个一元二次方程时,必须先确定判别式的值,然后再用判别式的值的取值情况确定方程是否有解.该例仅用顺序结构是办不到的,要对判别式的值进行判断,需要用到条件结构.例4 (1)设计算法,求ax+b=0的解,并画出流程图. 解:对于方程ax+b=0来讲,应该分情况讨论方程的解.我们要对一次项系数a 和常数项b 的取值情况进行分类,分类如下: (1)当a≠0时,方程有唯一的实数解是ab -; (2)当a=0,b=0时,全体实数都是方程的解; (3)当a=0,b≠0时,方程无解.联想数学中的分类讨论的处理方式,可得如下算法步骤: 第一步,判断a≠0是否成立.若成立,输出结果“解为ab -”. 第二步,判断a=0,b=0是否同时成立.若成立,输出结果“解集为R ”.第三步,判断a=0,b≠0是否同时成立.若成立,输出结果“方程无解”,结束算法. 程序框图如右:强调:这是条件结构叠加问题,条件结构叠加,程序执行时需依次对“条件1”“条件2”“条件3”……都进行判断,只有遇到能满足的条件才执行该条件对应的操作. 知能训练设计算法,找出输入的三个不相等实数a 、b 、c 中的最大值,并画出流程图. 解:算法步骤:第一步,输入a ,b ,c 的值.第二步,判断a>b 是否成立,若成立,则执行第三步;否则执行第四步.第三步,判断a>c 是否成立,若成立,则输出a ,并结束;否则输出c ,并结束. 第四步,判断b>c 是否成立,若成立,则输出b ,并结束;否则输出c ,并结束. 程序框图如右:例 5 “特快专递”是目前人们经常使用的异地邮寄信函或托运物品的一种快捷方式.某快递公司规定甲、乙两地之间物品的托运费用根据下列方法计算: f=⎩⎨⎧>⨯-+⨯≤).50(,85.0)50(53.050),50(,53.0ωωωω其中f (单位:元)为托运费,ω为托运物品的重量(单位:千克). 试画出计算费用f 的程序框图.分析:这是一个实际问题,根据数学模型可知,求费用f 的计算公式随物品重量ω的变化而有所不同,因此计算时先看物品的重量,在不同的条件下,执行不同的指令,这是条件结构的运用,是二分支条件结构.其中,物品的重量通过输入的方式给出.解:算法程序框图如右图: 拓展提升有一城市,市区为半径为15 km 的圆形区域,近郊区为距中心15—25 km 的范围内的环形地带,距中心25 km 以外的为远郊区,如右图所示.市区地价每公顷100万元,近郊区地价每公顷60万元,远郊区地价为每公顷20万元,输入某一点的坐标为(x,y),求该点的地价.分析:由该点坐标(x ,y),求其与市中心的距离r=22y x +,确定是市区、近郊区,还是远郊区,进而确定地价p .由题意知,p=⎪⎩⎪⎨⎧>≤<≤<.25,20,2515,60,150,100r r r解:程序框图如下: 课堂小结(1)理解两种条件结构的特点和区别.(2)能用学过的两种条件结构解决常见的算法问题. 作业习题1.1A 组3.3课时循环结构授课时间:第周年月日(星期)导入新课思路1(情境导入)我们都想生活在一个优美的环境中,希望看到的是碧水蓝天,大家知道工厂的污水是怎样处理的吗?污水进入处理装置后进行第一次处理,如果达不到排放标准,则需要再进入处理装置进行处理,直到达到排放标准.污水处理装置是一个循环系统,对于处理需要反复操作的事情有很大的优势.我们数学中有很多问题需要反复操作,今天我们学习能够反复操作的逻辑结构——循环结构.思路2(直接导入)前面我们学习了顺序结构,顺序结构像一条没有分支的河流,奔流到海不复回;上一节我们学习了条件结构,条件结构像有分支的河流最后归入大海;事实上很多水系是循环往复的,今天我们开始学习循环往复的逻辑结构——循环结构.提出问题(1)请大家举出一些常见的需要反复计算的例子.(2)什么是循环结构、循环体?(3)试用程序框图表示循环结构.(4)指出两种循环结构的相同点和不同点.讨论结果:(1)例如用二分法求方程的近似解、数列求和等.(2)在一些算法中,经常会出现从某处开始,按照一定的条件反复执行某些步骤的情况,这就是循环结构.反复执行的步骤称为循环体.(3)在一些算法中要求重复执行同一操作的结构称为循环结构.即从算法某处开始,按照一定条件重复执行某一处理的过程.重复执行的处理步骤称为循环体.循环结构有两种形式:当型循环结构和直到型循环结构.1°当型循环结构,如图(1)所示,它的功能是当给定的条件P成立时,执行A框,A框执行完毕后,返回来再判断条件P是否成立,如果仍然成立,返回来再执行A框,如此反复执行A框,直到某一次返回来判断条件P不成立时为止,此时不再执行A框,离开循环结构.继续执行下面的框图.2°直到型循环结构,如图(2)所示,它的功能是先执行重复执行的A框,然后判断给定的条件P是否成立,如果P仍然不成立,则返回来继续执行A框,再判断条件P是否成立.继续重复操作,直到某一次给定的判断条件P 时成立为止,此时不再返回来执行A框,离开循环结构.继续执行下面的框图.见示意图:当型循环结构直到型循环结构(4)两种循环结构的不同点:直到型循环结构是程序先进入循环体,然后对条件进行判断,如果条件不满足,就继续执行循环体,直到条件满足时终止循环.当型循环结构是在每次执行循环体前,先对条件进行判断,当条件满足时,执行循环体,否则终止循环.两种循环结构的相同点: 两种不同形式的循环结构可以看出,循环结构中一定包含条件结构,用于确定何时终止执行循环体.应用示例思路1例1 设计一个计算1+2+……+100的值的算法,并画出程序框图.。
最新人教版高中数学必修3第一章《程序框图》示范教案
示范教案整体设计教学分析教材利用一个实例给出了一些常用的表示算法步骤的图形符号.教学过程中,让学生以了解框图为主要目标.三维目标 了解程序框图的概念,知道程序框图中各图形符号表示特定的含义,提高学生识图能力,培养数形结合的意识.重点难点教学重点:了解程序框图中各图形符号表示特定的含义. 教学难点:画程序框图. 课时安排 1课时教学过程 导入新课思路1(情境导入).我们都喜欢外出旅游,优美的风景美不胜收,如果迷了路就不好玩了,问路有时还听不明白,真是急死人,有的同学说买张旅游图不就好了吗?所以外出旅游先要准备好旅游图.旅游图看起来直观、准确,本节将探究使算法表达得更加直观、准确的方法.今天我们开始学习程序框图.思路2(直接导入).用自然语言表示的算法步骤有明确的顺序性,但是对于在一定条件下才会被执行的步骤,以及在一定条件下会被重复执行的步骤,自然语言的表示就显得困难,而且不直观、不准确.因此,本节有必要探究使算法表达得更加直观、准确的方法.今天开始学习程序框图.推进新课 新知探究 提出问题阅读本节教材后再回答下列问题.(1)什么叫程序框图?(2)说出程序框图中各种图形的含义.(3)画程序框图有什么规则?讨论结果:(1)用一些通用图形符号构成一张表示算法的图称为程序框图,简称框图.例如:用公式法解二元一次方程组⎩⎪⎨⎪⎧a 11x 1+a 12x 2=b 1,a 21x +a 22x 2=b 2的算法可用框图形象地描述如下.由此我们可以看出用框图表示算法直观、形象,容易理解.通常说“一图胜万言”,就是说用框图能够清楚地展现算法的逻辑结构.(2)椭圆形框:表示程序的开始和结束,称为终端框(起、止框).表示开始时只有一个出口;表示结束时只有一个入口.平行四边形框:表示一个算法输入和输出的信息,又称为输入、输出框,它有一个入口和一个出口.矩形框:表示计算、赋值等处理操作,又称为处理框(执行框),它有一个入口和一个出口.菱形框:是用来判断给出的条件是否成立,根据判断结果来决定程序的流向,称为判断框,它有一个入口和两个出口.流程线:―→表示程序的流向.圆圈:○连接点.表示相关两框的连接处,圆圈内的数字相同的含义表示相连接在一起.注意:起、止框是任何流程不可少的,表明程序的开始和结束.输入和输出可用在算法中任何需要输入、输出的位置.例如求解方程组的框图(上图)中,算法开始后第一步需要输入(给定)未知数的系数和常数项,就可把给定的数值写在输入框内,最后要给出运算的结果,把算出的两个未知数的值,写在输出框内.算法中间要处理数据或计算,可分别写在不同的处理框内,例如此例的计算D可写在处理框内.当算法要求你对两个不同的结果进行判断时,例如此题的判断条件为D=0,要写在判断框内.一个算法步骤到另一个算法步骤用流程线连接.如果一个框图需要分开来画,要在断开处画上连接点,并标出连接的号码(如下图).(3)画程序框图的规则为了使大家彼此之间能够读懂各自画出的框图,必须遵守一些共同的规则,下面对一些常用的规则作一简单的介绍.①使用标准的框图的符号.②框图一般按从上到下、从左到右的方向画. ③除判断框外,其他框图符号只有一个进入点和一个退出点.判断框是具有超过一个退出点的唯一符号.④一种判断框是二择一形式的判断,有且仅有两个可能结果;另一种是多分支判断,可能有几种不同的结果.⑤在图形符号内描述的语言要非常简练清楚. 应用示例思路1例 利用梯形的面积公式计算上底为2,下底为4,高为5的梯形的面积,设计出该问题的算法及程序框图.分析:根据梯形的面积公式S =12(a +b)h ,其中a 是上底,b 是下底,h 是高,只要令a=2,b =4,h =5,代入公式即可.解:算法如下:S1 a =2,b =4,h =5;S2 S =12(a +b)h ;S3 输出S.该算法的程序框图如下图所示:点评:画程序框图的步骤:(1)写出算法步骤,即文字语言形式;思路2例设计求一个数x的绝对值的算法,并画出相应的程序框图.分析:根据绝对值的定义,当x≥0时,|x|=x;当x<0时,|x|=-x,该问题实质是一个分段函数,因为分段函数的自变量在不同的范围内所对应的函数关系式不同,因而当给出一个自变量x的值求它对应的函数值时,必须先判断x的范围,然后确定用该范围内的函数关系式计算相应的函数值.算法中要增加判断x的范围的步骤,程序框图中也应相应加入判断框.解:算法如下:S1输入x;S2如果x≥0,那么|x|=x,否则,|x|=-x;S3输出|x|.相应的程序框图如下图所示:点评:必须先根据条件作出判断,然后再决定进行哪一个步骤的问题,在画程序框图时,知能训练1.下列程序框图的功能是________________.答案:求两个实数a,b的和2.下列程序框图的功能是________________.答案:求a,b中的最大值3.下列程序框图的功能是________________.答案:计算1×2×3×4×5的值拓展提升写出一个求满足1×3×5×7×…×n>50 000的最小正整数n的算法,并画出相应的程序框图.解:算法如下:S1S=1;S2i=3;S3S=S×i,i=i+2;S4如果S≤50 000,那么执行第三步;S5i=i-2;S6输出i.程序框图如下图所示:课堂小结本节课学习了:1.程序框图的概念及其图形符号的含义.2.知道画程序框图的规则和步骤.作业本节练习A 1、2.设计感想首先,本节的引入新颖独特,旅游图的故事阐明了学习程序框图的意义.通过丰富有趣的事例让学生了解了什么是程序框图,进而激发学生学习程序框图的兴趣.本节设计题目难度适中,逐步把学生带入知识的殿堂,是一节好的课例.备课资料备选习题1.下列程序框图的功能是__________________________.(其中a,b,c分别是直角三角形的三边,且c是斜边)答案:已知两直角边求直角三角形的斜边2.以下是某次考试中某班15名同学的数学成绩:72,91,58,63,84,88,90,55,61,73,64,77,82,94,60.要求将80分以上的同学的平均分求出来.画出该问题算法的程序框图.解:程序框图如下:。
人教版高中数学必修三 算法案例(进位制)优质教案
第3课时案例3 进位制(一)导入新课情境导入在日常生活中,我们最熟悉、最常用的是十进制,据说这与古人曾以手指计数有关,爱好天文学的古人也曾经采用七进制、十二进制、六十进制,至今我们仍然使用一周七天、一年十二个月、一小时六十分的历法.今天我们来学习一下进位制.(二)推进新课、新知探究、提出问题(1)你都了解哪些进位制?(2)举出常见的进位制.(3)思考非十进制数转换为十进制数的转化方法.(4)思考十进制数转换成非十进制数及非十进制之间的转换方法.活动:先让学生思考或讨论后再回答,经教师提示、点拨,对回答正确的学生及时表扬,对回答不准确的学生提示引导考虑问题的思路.讨论结果:(1)进位制是人们为了计数和运算方便而约定的计数系统,约定满二进一,就是二进制;满十进一,就是十进制;满十二进一,就是十二进制;满六十进一,就是六十进制等等.也就是说:“满几进一”就是几进制,几进制的基数(都是大于1的整数)就是几.(2)在日常生活中,我们最熟悉、最常用的是十进制,据说这与古人曾以手指计数有关,爱好天文学的古人也曾经采用七进制、十二进制、六十进制,至今我们仍然使用一周七天、一年十二个月、一小时六十分的历法.(3)十进制使用0~9十个数字.计数时,几个数字排成一行,从右起,第一位是个位,个位上的数字是几,就表示几个一;第二位是十位,十位上的数字是几,就表示几个十;接着依次是百位、千位、万位……例如:十进制数3 721中的3表示3个千,7表示7个百,2表示2个十,1表示1个一.于是,我们得到下面的式子:3 721=3×103+7×102+2×101+1×100.与十进制类似,其他的进位制也可以按照位置原则计数.由于每一种进位制的基数不同,所用的数字个数也不同.如二进制用0和1两个数字,七进制用0~6七个数字.一般地,若k是一个大于1的整数,那么以k为基数的k进制数可以表示为一串数字连写在一起的形式a n a n-1…a1a0(k)(0<a n<k,0≤a n-1,…,a1,a0<k).其他进位制的数也可以表示成不同位上数字与基数的幂的乘积之和的形式,如110 011(2)=1×25+1×24+0×23+0×22+1×21+1×20,7 342(8)=7×83+3×82+4×81+2×80.非十进制数转换为十进制数比较简单,只要计算下面的式子值即可:a n a n-1…a1a0(k)=a n×k n+a n-1×k n-1+…+a1×k+a0.第一步:从左到右依次取出k进制数a n a n-1…a1a0(k)各位上的数字,乘以相应的k的幂,k的幂从n开始取值,每次递减1,递减到0,即a n×k n,a n-1×k n-1,…,a1×k,a0×k0;第二步:把所得到的乘积加起来,所得的结果就是相应的十进制数.(4)关于进位制的转换,教科书上以十进制和二进制之间的转换为例讲解,并推广到十进制和其他进制之间的转换.这样做的原因是,计算机是以二进制的形式进行存储和计算数据的,而一般我们传输给计算机的数据是十进制数据,因此计算机必须先将十进制数转换为二进制数,再处理,显然运算后首次得到的结果为二进制数,同时计算机又把运算结果由二进制数转换成十进制数输出.1°十进制数转换成非十进制数把十进制数转换为二进制数,教科书上提供了“除2取余法”,我们可以类比得到十进制数转换成k进制数的算法“除k取余法”.2°非十进制之间的转换一个自然的想法是利用十进制作为桥梁.教科书上提供了一个二进制数据与16进制数据之间的互化的方法,也就是先由二进制数转化为十进制数,再由十进制数转化成为16进制数.(三)应用示例思路1例1 把二进制数110 011(2)化为十进制数.解:110 011(2)=1×25+1×24+0×23+0×22+1×21+1×20=1×32+1×16+1×2+1=51.点评:先把二进制数写成不同位上数字与2的幂的乘积之和的形式,再按照十进制的运算规则计算出结果.变式训练设计一个算法,把k进制数a(共有n位)化为十进制数b.算法分析:从例1的计算过程可以看出,计算k进制数a的右数第i位数字a i与k i-1的乘积a i·k i-1,再将其累加,这是一个重复操作的步骤.所以,可以用循环结构来构造算法.算法步骤如下:第一步,输入a,k和n的值.第二步,将b的值初始化为0,i的值初始化为1.第三步,b=b+a i·k i-1,i=i+1.第四步,判断i>n是否成立.若是,则执行第五步;否则,返回第三步.第五步,输出b的值.程序框图如下图:程序:INPUT “a,k,n=”;a,k,nb=0i=1t=a MOD 10DOb=b+t*k^(i-1)a=a\\10t=a MOD 10i=i+1LOOP UNTIL i>nPRINT bEND例2 把89化为二进制数.解:根据二进制数“满二进一”的原则,可以用2连续去除89或所得商,然后取余数.具体计算方法如下:因为89=2×44+1,44=2×22+0,22=2×11+0,11=2×5+1,5=2×2+1,2=2×1+0,1=2×0+1,所以89=2×(2×(2×(2×(2×2+1)+1)+0)+0)+1=2×(2×(2×(2×(22+1)+1)+0)+0)+1=…=1×26+0×25+1×24+1×23+0×22+0×21+1×20=1 011 001(2).这种算法叫做除2取余法,还可以用下面的除法算式表示:把上式中各步所得的余数从下到上排列,得到89=1 011 001(2).上述方法也可以推广为把十进制数化为k进制数的算法,称为除k取余法.变式训练设计一个程序,实现“除k取余法”.算法分析:从例2的计算过程可以看出如下的规律:若十制数a除以k所得商是q0,余数是r0,即a=k·q0+r0,则r0是a的k进制数的右数第1位数.若q0除以k所得的商是q1,余数是r1,即q0=k·q1+r1,则r1是a的k进制数的左数第2位数.……若q n-1除以k所得的商是0,余数是r n,即q n-1=r n,则r n是a的k进制数的左数第1位数.这样,我们可以得到算法步骤如下:第一步,给定十进制正整数a和转化后的数的基数k.第二步,求出a除以k所得的商q,余数r.第三步,把得到的余数依次从右到左排列.第四步,若q≠0,则a=q,返回第二步;否则,输出全部余数r排列得到的k进制数.程序框图如下图:程序:INPUT “a,k=”;a,kb=0i=0DOq=a\\kr=a MOD kb=b+r*10^ii=i+1a=qLOOP UNTIL q=0PRINT bEND思路2例1 将8进制数314 706(8)化为十进制数,并编写出一个实现算法的程序.解:314 706(8)=3×85+1×84+4×83+7×82+0×81+6×80=104 902.所以,化为十进制数是104 902.点评:利用把k进制数转化为十进制数的一般方法就可以把8进制数314 706(8)化为十进制数.例2 把十进制数89化为三进制数,并写出程序语句.解:具体的计算方法如下:89=3×29+2,29=3×9+2,9=3×3+0,3=3×1+0,1=3×0+1,所以:89(10)=10 022(3).点评:根据三进制数满三进一的原则,可以用3连续去除89及其所得的商,然后按倒序的顺序取出余数组成数据即可.(四)知能训练将十进制数34转化为二进制数.分析:把一个十进制数转换成二进制数,用2反复去除这个十进制数,直到商为0,所得余数(从下往上读)就是所求.解:即34(10)=100 010(2)(五)拓展提升把1 234(5)分别转化为十进制数和八进制数.解:1 234(5)=1×53+2×52+3×5+4=194.则1 234(5)=302(8)所以,1 234(5)=194=302(8)点评:本题主要考查进位制以及不同进位制数的互化.五进制数直接利用公式就可以转化为十进制数;五进制数和八进制数之间需要借助于十进制数来转化.(六)课堂小结(1)理解算法与进位制的关系.(2)熟练掌握各种进位制之间转化.(七)作业习题1.3A组3、4.。
高中数学 程序框图、顺序结构教案 新人教版必修3
高中数学程序框图、顺序结构教案新人教版必修3(教师用书独具)●三维目标1.知识与技能(1)了解程序框图的概念,掌握各种框图符号的功能.(2)了解顺序结构的概念,能用程序框图表示顺序结构.2.过程与方法(1)通过学习程序框图的各个符号的功能,培养学生对图形符号语言和数学文字语言的转化能力.(2)学生通过设计程序框图表达解决问题的过程,在具体问题的解决过程中理解流程图的结构.3.情感、态度与价值观学生通过动手用程序框图表示算法,进一步体会算法的基本思想,体会数学表达的准确与简洁,培养学生的数学表达能力和逻辑思维能力.●重点难点重点:各种程序框图功能,以及用程序框图表示顺序结构.难点:对顺序结构的概念的理解和用程序框图表示顺序结构.(教师用书独具)●教学建议学生首次接触程序框图,根据教学内容、教学目标和学生的认知水平,本节课主要采取问题导入式教学,即“创设情境,提出问题——讨论问题,提出方案——交流方案,解决问题——模拟练习,运用问题——归纳总结,完善认识”,通过对问题的探究过程让学生掌握新知识,同时在解决问题的过程中掌握新知识的应用和解题过程,提高学生独立解题的能力.在老师的引导下,充分发挥学生的主观能动性,从问题入手,通过分析问题、交流方案、解决问题、运用问题的探索过程,让学生全程参与到问题的探索中,一方面注重培养学生严谨的逻辑思维能力和语言组织能力,另一方面,通过交流方案提高学生的合作意识,共同来完成教学目标.●教学流程创设情境,提出问题,以问题为切入点开展教学,引发学生思考,调动学生学习的积极性⇒引导学生分析用自然语言描述的算法的优缺点.引入流程图的概念及特征⇒学生阅读教材中的基本框图及功能,结合算法思想主动设计一个简单的框图⇒通过例1的教学让学生进一步认识和理解基本框图的特征及作用 ⇒错误!⇒错误!⇒错误!⇒错误!(见学生用书第4页)课标解读 1.程序框图的作用及其含义.(重点) 2.用程序框图表示算法.(难点)程序框图【问题导思】程序框图的别称是什么?【提示】 程序框图又称为流程图.程序框图是一种用程序框、流程线及文字说明来表示算法的图形.常见的程序框、流程线及各自表示的功能图形符号 名称 功能终端框(起止框) 表示一个算法的起始和结束 输入、输出框 表示一个算法输入和输出的信息处理框(执行框)赋值、计算判断框 判断某一条件是否成立,成立时在出口处标明“是”或“Y”;不成立时标明“否”或“N”流程线连接程序框 ○连接点连接程序框图的两部分顺序结构【问题导思】 已知球的半径为R .1.设计一个算法,求球的表面积和体积. 【提示】 第一步,输入球半径R .第二步,计算S =4πR 2.第三步,计算V =43πR 3.第四步,输出S ,V . 2.上述算法有何特点?【提示】 按照顺序从上到下进行. 3.画出该算法的程序框图. 【提示】1.定义:顺序结构是由若干个依次执行的步骤组成的,这是任何一个算法都离不开的基本结构.2.程序框图表示为:(见学生用书第4页)程序框图的认识和理解下列关于程序框图的说法正确的是( )A.程序框图是描述算法的语言B.程序框图中可以没有输出框,但必须要有输入框给变量赋值C.程序框图虽可以描述算法,但不如用自然语言描述算法直观D.程序框图和流程图不是一个概念【思路探究】根据程序框图概念,逐一验证每个选项是否正确.【自主解答】由于算法设计时要求返回执行的结果,故必须要有输出框,对于变量的赋值则可以通过处理框完成,故算法设计时不一定要用输入框,所以B项是错误的;相对于自然语言,用程序框图描述算法的优点主要就是直观、形象,容易理解,在步骤上表达简单了许多,所以C选项是错误的;程序框图就是流程图,所以D选项也是错误的.故而本题答案选A.【答案】 A1.程序框图主要由程序框和流程线组成,基本的程序框有终端框、输入、输出框、处理框、判断框,其中起止框是任何程序框图不可缺少的,而输入、输出框可以用在算法中任何需要输入、输出的位置.2.大多数框图符号只有一个进入点和一个退出点,判断框是具有超过一个退出点的唯一程序框.下列关于程序框图中图形符号的理解正确的有( ) ①任何一个程序框图必须有起止框.②输入框只能在开始框后,输出框只能放在结束框前. ③长方形框是执行框,可用来对变量赋值,也可用来计算. ④对于一个程序框图来说,判断框内的条件是唯一的. A .1个 B .2个 C .3个 D .4个【解析】 任何一个算法必须有开始和结束,从而必须有起止框,故①正确,输入、输出框可以用在算法中任何需要输入、输出的位置,故②错误.③正确.④判断框内的条件不唯一,④错误.【答案】 B利用顺序结构表示算法 已知直线l :Ax +By +C =0(A 2+B 2≠0),点P (x 0,y 0),设计一个算法计算点P到直线l 的距离,并画出程序框图.【思路探究】 可以利用点到直线的距离公式d =|Ax 0+By 0+C |A 2+B 2,给公式中的字母赋值,再代入计算.【自主解答】 用自然语言描述算法如下: 第一步,输入点P 的横、纵坐标x 0、y 0, 输入直线方程的系数,即常数A 、B 、C . 第二步,计算z 1=Ax 0+By 0+C .第三步,计算z 2=A 2+B 2.第四步,计算d =|z 1|z 2.第五步,输出d . 程序框图:画程序框图的规则:1.使用标准的程序框图的图形符号.2.程序框图一般按照从上到下,从左到右的顺序画. 3.描述语言写在程序框内,语言清晰、简练. 4.各程序框之间用流程线连接.把直线l 改为圆C :(x -a )2+(y -b )2=r 2,写出求点P 0(x 0,y 0)到圆上的点的距离最大值的算法及程序框图.【解】 第一步,输入点P 0的横、纵坐标x 0、y 0,输入圆心C 的横、纵坐标a 、b ,圆的半径r;第二步,计算z1=x0-a2+y0-b2;第三步,计算d=z1+r;第四步,输出d.程序框图:顺序结构在实际中的应用一城市在法定工作时间内,每小时的工资为8元,加班工资为每小时10元,一人一周内工作60小时,其中加班20小时,税率是10%,写出这人一周内净得的工资的算法,并画出算法的程序框图.【思路探究】根据题意,分别写出法定工作时间内的工资、加班工资,然后计算一周内的工资总数,最后计算净得工资.【自主解答】算法步骤如下:第一步,计算法定工作时间内工资a(a=8×(60-20)=320(元)).第二步,计算加班工资b(b=10×20=200(元)).第三步,计算一周内工资总数c(c=a+b=320+200=520(元)).第四步,计算这个人净得的工资数d(d=c×(1-10%)=520×90%=468(元)).第五步,输出d.程序框图如图所示.应用顺序结构表示算法的步骤:1.仔细审题,理清题意,找到解决问题的方法;2.梳理解题步骤;3.用数学语言描述算法,明确输入量、计算过程、输出量;4.用程序框图表示算法过程.银行的三年期定期存款年利率4.25(每100元存款到期平均每年获利4.25元).请你设计一个程序,输入存款数,输出利息与本利和.【解】设存款为a元,据题意三年到期利息b为:a100×4.25×3=0.127 5a元到期本利和p为:a+0.127 5a=1.127 5元.程序框图为:(见学生用书第6页)混淆构成流程图的图形符号及作用已知x=4,y=2,画出计算w=3x+4y的值的流程图.【错解】流程图如图(1)所示:(1) (2)【错因分析】输出框为平行四边形,此题中错用矩形框了.【防范措施】 1.明确各种程序框的作用与功能.2.认真审题独立思考,加强识图能力的培养.【正解】如上图(2).本节主要内容为程序框图及顺序结构1.正确理解程序框图的图形符号及其作用:(1)起止框用“”表示,是任何流程不可少的,表明程序的开始和结束.(2)输入、输出框图用“”表示,可用在算法中任何需要输入、输出的位置,需要输入的字母、符号、数据都填在框内.(3)处理框图用“”表示,算法中处理数据需要的算式、公式等可以分别写在不同的用以处理数据的处理框内,另外,对变量进行赋值时,也用到处理框.(4)当算法要求对两个不同的结果进行判断时,需要将实现判断的条件写在判断框内,判断框用“”表示.(5)一个算法步骤到另一个算法步骤用流程线连接,如果一个程序框图需要分开来画,要在断开处画上连接点,并标出连接的号码(如图所示).2.为了能够读懂画出的程序框图,在画程序框图时,常用规则如下:(1)使用标准的程序框图的图形符号.(2)程序框图一般按照从上到下、从左到右的顺序画.(3)一个完整的程序框图必须有终端框,用于表示一个算法的开始和结束.(4)大多程序框图的图形符号只有一个进入点和一个退出点,判断框是唯一具有超过一个退出点的框图符号.(5)一种判断框是“是”与“否”两分支的判断,而且有且仅有两个结果;另外一种是多分支判断,可能有几种不同的结果.(6)在程序框图的图形符号内,用于描述的语言要简练、清楚.(见学生用书第7页)1.算法的三种基本结构是( )A.顺序结构、流程结构、循环结构B.顺序结构、条件结构、循环结构C.顺序结构、条件结构、嵌套结构D.顺序结构、嵌套结构、流程结构【解析】由算法的特征及结构知B正确.【答案】 B2.程序框图中,具有赋值、计算功能的是( )A.处理框B.输入、输出框C.终端框 D.判断框【解析】在算法框图中处理框具有赋值和计算功能.【答案】 A3.(原创题)阅读程序框图如图1-1-1所示,若输入x=3,则输出y的值为________.图1-1-1【解析】 输入x =3,则a =2×32-1=17,b =a -15=17-15=2,y =a ×b =17×2=34,则输出y 的值为34.【答案】 344.利用梯形的面积公式计算上底为2,下底为4,高为5的梯形的面积,设计出该问题的算法及程序框图.【解】 算法如下:第一步,输入a =2,b =4,h =5.第二步,计算S =12(a +b )h .第三步,输出S .该算法的程序框图如图所示:(见学生用书第81页)一、选择题1.下列算法中,只用顺序结构画不出程序框图的是( ) A .求两个数的积 B .求点到直线的距离 C .解一元二次方程D .已知梯形两底和高求面积【解析】 解一元二次方程需要对判别式作出判断,故不能用顺序结构画出,故选C.【答案】 C2.(2013·临沂高一检测)阅读下面的流程图,若输入的a ,b ,c 分别是35,52,63,则输出的a ,b ,c 分别是( )图1-1-2A .63,35,52B .35,52,63C .63,52,35D .35,63,52【解析】 x =35,a =63,c =52,b =35,选A. 【答案】 A3.画程序框图时,如果一个框图需要分开来画,要在断开处画上( ) A .流程线 B .注释框 C .判断框 D .连接点【解析】 框图要分开画时,要在断开处画上连接点,并在圈中标出连接的号码. 【答案】 D图1-1-34.(2013·日照高一期中)如图1-1-3所示的是一个算法的程序框图,已知a 1=3,输出的b =7,则a 2等于( )A .9B .10C .11D .12【解析】 由题意知该算法是计算a 1+a 22的值,∴3+a 22=7,得a 2=11.故选C.【答案】 C图1-1-45.阅读如图1-1-4的程序框图,若输出的结果为6,则①处执行框应填的是( )A .x =1B .x =2C .b =1D .b =2【解析】 若b =6,则a =7,∴x 3-1=7,∴x =2.【答案】 B二、填空题6.(2013·潍坊高一检测)执行如图1-1-5程序框图后的结果为________.图1-1-5【解析】 S =42+24=2.5. 【答案】 2.57.给出如下算法:第一步,若a >b ,则a 与b 的值互换.第二步,若a >c ,则a 与c 的值互换.第三步,若b >c ,则b 与c 的值互换.第四步,输出a ,b ,c .运行此算法的功能为________.【解析】 由算法的意义知该算法的结果为将a ,b ,c 按从小到大输出.【答案】 将a ,b ,c 从小到大输出8.如图1-1-6是求长方体的体积和表面积的一个程序框图,图中的程序框中应填________.图1-1-6【解析】 根据题意需计算长方体的表面积S =2(ab +bc +ac ).【答案】 S =2(ab +bc +ac )三、解答题9.写出求y =-x 2-2x +3的最大值的算法,画出程序框图.【解】 算法如下:第一步,输入a ,b ,c 的值-1,-2,3.第二步,计算max =4ac -b 24a. 第三步,输出max.程序框图:10.画出求函数y =2x +3图象上任一点到原点的距离的程序框图,写出算法.【解】 算法步骤如下: 第一步,输入横坐标的值x .第二步,计算y =2x +3.第三步,计算d =x 2+y 2.第四步,输出d .程序框图:11.已知一个直角三角形的两条直角边长为a ,b ,求该直角三角形内切圆的面积,试设计求解该问题的算法,并画出程序框图.【解】 算法步骤如下:第一步,输入a ,b .第二步,计算c =a 2+b 2.第三步,计算r =12(a +b -c ). 第四步,计算S =πr 2.第五步,输出面积S .程序框图为:(教师用书独具)已知点P (x ,y ),画出求点P 到直线x +y +2=0的距离的程序框图.【思路探究】 题中直线方程已知,求某点P 到它的距离.设计算法时应先输入点的坐标,再利用点到直线的距离公式求距离,要先写出自然语言的算法,再画程序框图.【自主解答】 用自然语言描述算法:第一步,输入点P 的横坐标x 和纵坐标y .第二步,计算S =|x +y +2|的值.第三步,计算d =S 2的值.第四步,输出d .程序框图:如图所示,该电路由一内阻为r 的电源E 、电阻R 、开关K 及导线组成,其中E =15 V ,r =1欧,R =4欧.当K 闭合时,求流过R 的电流I ,设计算法及流程图. 【解】 算法步骤如下:第一步,E =15,r =1,R =4;第二步,计算R =R +r ;第三步,计算I =E R;第四步,输出I .流程图如图所示.。
人教版高中数学必修三(教案)1.1 算法与程序框图(3课时)
第一课时 1.1.1 算法的概念教学要求:了解算法的含义,体会算法的思想;能够用自然语言叙述算法;掌握正确的算法应满足的要求;会写出解线性方程(组)的算法、判断一个数为质数的算法、用二分法求方程近似根的算法.教学重点:解二元一次方程组等几个典型的的算法设计.教学难点:算法的含义、把自然语言转化为算法语言.教学过程:一、复习准备:1. 提问:我们古代的计算工具?近代计算手段?(算筹与算盘→计算器与计算机,见章头图)2. 提问:①小学四则运算的规则?(先乘除,后加减) ②初中解二元一次方程组的方法?(消元法) ③高中二分法求方程近似解的步骤? (给定精度ε,二分法求方程根近似值步骤如下:A .确定区间[,]a b ,验证()()0f a f b <g ,给定精度ε;B. 求区间(,)a b 的中点1x ;C. 计算1()f x : 若1()0f x =,则1x 就是函数的零点; 若1()()0f a f x <g ,则令1b x =(此时零点01(,)x a x ∈); 若1()()0f x f b <g ,则令1a x =(此时零点01(,)x x b ∈);D. 判断是否达到精度ε;即若||a b ε-<,则得到零点零点值a (或b );否则重复步骤2~4.二、讲授新课:1. 教学算法的含义:① 出示例:写出解二元一次方程组22(1)24(2)x y x y -=⎧⎨+=⎩的具体步骤. 先具体解方程组,学生说解答,教师写解法 → 针对解答过程分析具体步骤,构成其算法第一步:②-①×2,得5y =0 ③; 第二步:解③得y =0; 第三步:将y =0代入①,得x =2.② 理解算法: 12世纪时,指用阿拉伯数字进行算术运算的过程. 现代意义上的算法是可以用计算机来解决的某一类问题的程序或步骤,程序和步骤必须是明确和有效的,且能在有限步完成. 广义的算法是指做某一件事的步骤或程序.算法特点:确定性;有限性;顺序性;正确性;普遍性.举例生活中的算法:菜谱是做菜肴的算法;洗衣机的使用说明书是操作洗衣机的算法;歌谱是一首歌曲的算法;渡河问题.③ 练习:写出解方程组()1111221222(1)0(2)a x b y c a b a b a x b y c +=⎧-≠⎨+=⎩的算法.2. 教学几个典型的算法:① 出示例1:任意给定一个大于1的整数n ,试设计一个程序或步骤对n 是否为质数做出判断.提问:什么叫质数?如何判断一个数是否质数? → 写出算法.分析:此算法是用自然语言的形式描述的. 设计算法要求:写出的算法必须能解决一类问题,并且能够重复使用. 要使算法尽量简单、步骤尽量少. 要保证算法正确,且计算机能够执行.② 出示例2:用二分法设计一个求方程230x -=的近似根的算法.提问:二分法的思想及步骤?如何求方程近似解 →写出算法.③ 练习:举例更多的算法例子; → 对比一般解决问题的过程,讨论算法的主要特征.3. 小结:算法含义与特征;两类算法问题(数值型、非数值型);算法的自然语言表示.三、巩固练习:1. 写出下列算法:解方程x2-2x-3=0;求1×3×5×7×9×11的值2. 有蓝和黑两个墨水瓶,但现在却错把蓝墨水装在了黑墨水瓶中,黑墨水错装在了蓝墨水瓶中,要求将其互换,请你设计算法解决这一问题.3. 根据教材P6 的框图表示,使用程序框表示以上算法.4. 作业:教材P4 1、2题.第二课时 1.1.2 程序框图(一)教学要求:掌握程序框图的概念;会用通用的图形符号表示算法,掌握算法的三个基本逻辑结构. 掌握画程序框图的基本规则,能正确画出程序框图. 通过模仿、操作、探索,经历通过设计程序框图表达解决问题的过程;学会灵活、正确地画程序框图.教学重点:程序框图的基本概念、基本图形符号和3种基本逻辑结构.教学难点:综合运用框图知识正确地画出程序框图教学过程:一、复习准备:1. 写出算法:给定一个正整数n,判定n是否偶数.2. 用二分法设计一个求方程320x-=的近似根的算法.二、讲授新课:1. 教学程序框图的认识:①讨论:如何形象直观的表示算法?→图形方法.教师给出一个流程图(上面1题),学生说说理解的算法步骤.②定义程序框图:程序框图又称流程图,是一种用规定的图形、指向线及文字说明来准确、直观地表示算法的图形.③基本的程序框和它们各自表示的功能:程序框名称功能终端框表示一个算法的起始和结束(起止框)输入、输出框表示一个算法输入和输出的信息处理(执行)框赋值、计算判断框判断一个条件是否成立流程线连接程序框④阅读教材P5的程序框图. →讨论:输入35后,框图的运行流程,讨论:最大的I值.2. 教学算法的基本逻辑结构:①讨论:P5的程序框图,感觉上可以如何大致分块?流程再现出一些什么结构特征?→教师指出:顺序结构、条件结构、循环结构.②试用一般的框图表示三种逻辑结构. (见下图)③出示例3:已知一个三角形的三边分别为4,5,6,利用海伦公式设计一个算法,求出它的面积,并画出算法的程序框图. (学生用自然语言表示算法→师生共写程序框图→讨论:结构特征)④出示例4:任意给定3个正实数,设计一个算法,判断分别以这3个数为三边边长的三角形是否存在.画出这个算法的程序框图. (学生分析算法→写出程序框图→试验结果→讨论结构)⑤出示例5:设计一个计算1+2+3+…+1000的值的算法,并画出程序框图.(学生分析算法→写出程序框图→给出另一种循环结构的框图→对比两种循环结构)3. 小结:程序框图的基本知识;三种基本逻辑结构;画程序框图要注意:流程线的前头;判断框后边的流程线应根据情况标注“是”或“否”;循环结构中要设计合理的计数或累加变量等.三、巩固练习:1.练习:把复习准备题②的算法写成框图. 2. 作业:P12 A组1、2题. 第三课时 1.1.2 程序框图(二)教学要求:更进一步理解算法,掌握算法的三个基本逻辑结构. 掌握画程序框图的基本规则,能正确画出程序框图.学会灵活、正确地画程序框图.教学重点:灵活、正确地画程序框图.教学难点:运用程序框图解决实际问题.教学过程:一、复习准备:1. 说出下列程序框的名称和所实现功能.2. 算法有哪三种逻辑结构?并写出相应框图顺序结构条件结构循环结构程序框图结构说明按照语句的先后顺序,从上而下依次执行这些语句. 不具备控制流程的作用. 是任何一个算法都离不开的基本结构根据某种条件是否满足来选择程序的走向.当条件满足时,运行“是”的分支,不满足时,运行“否”的分支.从某处开始,按照一定的条件,反复执行某一处理步骤的情况. 用来处理一些反复进行操作的问题二、讲授新课:1. 教学程序框图①出示例1:任意给定3个正实数,判断其是否构成三角形,若构成三角形,则根据海伦公式计算其面积. 画出解答此问题算法的程序框图.(学生试写→共同订正→对比教材P7 例3、4 →试验结果)②设计一个计算2+4+6+…+100的值的算法,并画出程序框图.(学生试写→共同订正→对比教材P9 例5 →另一种循环结构)③循环语句的两种类型:当型和直到型.当型循环语句先对条件判断,根据结果决定是否执行循环体;直到型循环语句先执行一次循环体,再对一些条件进行判断,决定是否继续执行循环体. 两种循环语句的语句结构及框图如右.说明:“循环体”是由语句组成的程序段,能够完成一项工作. 注意两种循环语句的区别及循环内部改变循环的条件.④练习:用两种循环结构,写出求100所有正约数的算法程序框图.2. 教学“鸡兔同笼”趣题:①“鸡兔同笼”,我国古代著名数学趣题之一,大约在1500年以前,《孙子算经》中记载了这个有趣的问题,书中描述为:今有雏兔同笼,上有三十五头,下有九十四足,问雏兔各几何?②学生分析其数学解法. (“站立法”,命令所有的兔子都站起来;或用二元一次方程组解答.)③欣赏古代解法:“砍足法”,假如砍去每只鸡、每只兔一半的脚,则“独脚鸡”,“双脚兔”. 则脚的总数47只;与总头数35的差,就是兔子的只数,即47-35=12(只).鸡35-12=23(只).④试用算法的程序框图解答此经典问题. (算法:鸡的头数为x,则兔的头数为35-x,结合循环语句与条件语句,判断鸡兔脚数2x+4(35-x)是否等于94.)三、巩固练习:1. 练习:100个和尚吃100个馒头,大和尚一人吃3个,小和尚3人吃一个,求大、小和尚各多少个?分析其算法,写出程序框图. 2. 作业:教材P12 A 组1题.。
高中数学人教版必修3算法与程序框图教学设计
第十章 统计、统计案例及算法初步
2.三种基本逻辑结构及相应语句
名称
示意图
顺序结构
相应语句 ①输入语句:INPUT “提示内容”;变量 ②输出语句:PRINT “提示内容”;表达
式③赋值语句: 变量=表达式 _________________
名称 条件结构
第十章 统计、统计案例及算法初步
示意图
相应语句
第十章 统计、统计案例及算法初步
考点一 顺序结构与条件结构 (2013·高考课标全国卷Ⅰ)执行如图所示的程序框图,如
果输入的 t∈[-1,3],则输出的 s 属于( A )
A.[-3,4] C.[-4,3]
B.[-5,2] D.[-2,5]
第十章 统计、统计案例及算法初步
[解析] 由程序框图得分段函数 s=34tt,-tt<2,1,t≥1.所以当- 1≤t<1 时,s=3t∈[-3,3);当 1≤t≤3 时,s=4t-t2=-(t -2)2+4,所以此时 3≤s≤4.综上函数的值域为[-3,4],即 输出的 s 属于[-3,4].
第十章 统计、统计案例及算法初步
(2)x=9 时,y=93+2=5,|y-x|=|5-9|=4<1 不成立;x=5,
y=53+2=131,|y-x|=131-5=43<1 不成立;x=131,y=191+ 2=299,|y-x|=299-131=49<1 成立,输出 y=299.
第十章 统计、统计案例及算法初步
(3)由 x2-4x+3≤0,解得 1≤x≤3. 当 x=1 时,满足 1≤x≤3,所以 x=1+1=2,n=0+1=1; 当 x=2 时,满足 1≤x≤3,所以 x=2+1=3,n=1+1=2; 当 x=3 时,满足 1≤x≤3,所以 x=3+1=4,n=2+1=3; 当 x=4 时,不满足 1≤x≤3,所以输出 n=3.
人教版高中数学必修3第一章算法同步-《1.1.2程序框图》教案(3)
程序框图教学内容:程序框图(第1课时)教学目的:1.明白程序框图的组成,程序框的种类.2.掌握算法的基本逻辑结构.3.如何画程序框图,并掌握其中的规则.教学过程:一、复习已有概念,巩固原先基础上课尹始,教师出示灯片:1、算法是指。
2、算法有哪些特征?3、用自然语言表示算法。
学生回答,教师总结:1、算法通常是指可以用计算机来解决的某一类问题的程序或步骤,这些程序或步骤必须是明确的和有效的,而且能够在有限步之内完成。
2、①有限性②明确性③程序性二、直观导入,初步感知概念教师点出算法的难点:比较抽象,难以直观掌握,能否有直观的表示方法呢?例如上一节“判断整数n(n>2)是否为质数”的算法可以用其它形式来表达.图示幻灯:用幻灯介绍程序框图,(1)程序框图的概念程序框图又称流程图,是一种用规定的程序框、流程线及文字说明来准确、直观地表示算法的图形。
一个程序框图包括以下几部分:①表示相应操作的程序框;②带箭头的流程线;③程序框外必要的文字说明。
(2)用图示显示:终止框、输入(输出)框、处理框和判断框重要性:算法可以用自然语言来描述,但为了使算法的程序或步骤表达得更为直观,我们更经常地用图形方式来表达它.辨析练习,掌握四种程序框图1. 流程图的判断框,有一个入口和n个出口,则n的值为()(A)1 (B) 2 (C) 3 (D) 42. 下列图形符号表示输入输出框的是()(A)矩形框 (B) 平行四边形框 (C) 圆角矩形框 (D) 菱形框3.表示“根据给定条件判断”的图形符号框的是()(A)矩形框 (B) 平行四边形框 (C) 圆角矩形框 (D) 菱形框三、引导探究,理解新知1.尽管不同的算法千差万别,但它们都是由三种基本的逻辑结构构成的,这三种逻辑结构就是顺序结构、条件结构、循环结构.下面分别介绍这三种结构.(1)小组研讨,建立表象。
上例中有这三种逻辑结构就是顺序结构、条件结构、循环结构吗?再请小组代表汇报发言。
版高中数学人教版A版必修三教案:1.1.2第3课时循环结构、程序框图的画法正式版
第3课时循环结构、程序框图的画法[学习目标] 1.掌握两种循环结构的程序框图的画法,能进行两种循环结构程序框图间的转化.2.掌握画程序框图的基本规则,能正确画出程序框图.知识点一循环结构的含义1.循环结构的定义在一些算法中,常常会出现从某处开始,依据必定的条件频频履行某些步骤的状况,这就是循环结构.频频履行的步骤称为循环体.2.循环结构的特色(1)重复性:在一个循环结构中,总有一个过程要重复一系列的步骤若干次,并且每次的操作完整同样.(2)判断性:每个循环结构都包含一个判断条件,它决定这个循环的履行与停止.(3)函数性:循环变量在结构循环结构中起了要点作用,包含着函数的思想.知识点二两种循环结构的比较常有的两种循环结构名称直到型循环结构当型循环结构结构图先循环后判断,若不知足条件则执特色行循环体,不然停止循环.知识点三程序框图的画法设计一个算法的程序框图的步骤(1)用自然语言表述算法步骤;先判断后循环,知足条件履行循环体,不然停止循环.(2)确立每一个算法步骤所包含的逻辑结构,并用相应的程序框图表示,获取该步骤的程序框图;(3)将全部步骤的程序框图用流程线连结起来,并加上终端框,获取表示整个算法的程序框图.思虑(1)循环结构的程序框图中必定含有判断框吗?(2)任何一个算法的程序框图中都一定含有三种基本逻辑结构吗?答(1)循环结构的程序框图中必定含有判断框.(2)不必定.但一定含有次序结构.题型一当型循环结构与直到型循环结构例1设计一个计算1+2++100的值的算法,并画出程序框图.解方法一第一步,令i=1,S=0.第二步,若i≤100成立,则履行第三步;不然,输出S,结束算法.第三步,S=S+i.第四步,i=i+1,返回第二步.程序框图:方法二第一步,令i=1,S=0.第二步,S=S+i.第三步,i=i+1.第四步,若i>100不可立,则返回第二步;不然,输出S,结束算法.程序框图:反省与感悟两种循环结构的联系和差别(1)联系:①当型循环结构与直到型循环结构能够互相转变;②循环结构中必定包含条件结构,以保证在适合的时候停止循环;③循环结构只有一个进口和一个出口;④循环结构内不存在死循环,即不存在无停止的循环.(2)差别:直到型循环结构是先履行一次循环体,而后再判断能否连续履行循环体,当型循环结构是先判断能否履行循环体;直到型循环结构是在条件不知足时履行循环体,当型循环结构是在条件知足时履行循环体.要掌握这两种循环结构,一定抓住它们的差别.追踪训练1设计一个算法,求13+23+33++1003的值,并画出程序框图.解算法以下:第一步,使S=0.第二步,使I=1.第三步,使S=S+I3.第四步,使I=I+1.第五步,若I>100,则输出S,算法结束;不然,返回第三步.程序框图以下图:题型二求知足条件的最大(小)整数问题例2写出一个求知足1×3×5×7××n>50000的最小正整数n的算法,并画出相应的程序框图.解算法以下:第一步,S=1.第二步,n=3.第三步,假如S≤50000,那么S=S×n,n=n+2,重复第三步;不然,履行第四步.第四步,n=n-2.第五步,输出n.程序框图以下图:但反省与感悟(1)在使用循环结构时,需适合地设置累加(乘)变量和计数变量,在循环体中要设置循环停止的条件.(2)在最后输出结果时,要防止出现多循环一次或少循环一次的状况.追踪训练2看下边的问题:1+2+3++()>10000,这个问题的答案固然不独一,我们只需确立出知足条件的最小正整数n0,括号内填写的数只需大于或等于n0即可.试写出找寻知足条件的最小正整数n0的算法,并画出相应的程序框图.解方法一第一步,p=0.第二步,i=0.第三步,i=i+1.第四步,p=p+i.第五步,假如p>10000,则输出i;不然履行第六步.第六步,返回第三步,从头履行第三步、第四步、第五步.该算法的程序框图如图方法二第一步,取n的值等于1.①所示.nn+1第二步,计算.第三步,假如nn+1的值大于10000,那么n即为所求;不然,让n的值增添1后转到第二2步重复操作.依据以上的操作步骤,能够画出如图②所示的程序框图.题型三循环结构程序框图的辨别与解读例3如图是为求1~1000的全部偶数的和而设计的一个程序框图,将空白处补上,并指明它是循环结构中的哪一种种类,并画出它的另一种循环结构框图.解∵当i≤1000时开始履行①②两部分,联合循环结构的形式可知,该程序为当型循环结构,又i=2,S=0,且计算2+4+6++1000的值,故①②两处罚别填S=S+i,i=i+2.直到型循环结构以下图.反省与感悟解决此类问题的要点是依据程序框图理解算法的功能.考试考察的要点是程序框图的输出功能、程序框图的增补,以及算法思想和基本的运算能力、逻辑思想能力,题目难度不大,大多能够依据程序框图的流程逐渐运算而获取.追踪训练3履行如图的程序框图,假如输入的a=4,b=6,那么输出的n=()A.3 B.4 C.5 D.6答案B分析第一次循环a=6-4=2,b=6-2=4,a=4+2=6,i=6,n=1;第二次循环a=-6+4=-2,b=4-(-2)=6,a=6-2=4,i=10,n=2;第三次循环a=6-4=2,b=6-2=4,a=4+2=6,i=16,n=3;第四次循环a=4-6=-2,b=4-(-2)=6,a=6-2=4,i=20,n=4,知足题意,结束循环.题型四循环结构的实质应用例4某工厂2016年生产小轿车200万辆,技术改革后估计每年的生产能力都比上一年增添5%,问最早哪一年该厂生产的小轿车数目超出300万辆?写出解决该问题的一个算法,并画出相应的程序框图.解算法以下:第一步,令n=0,a=200,r=0.05.第二步,T=ar(计算年增量).第三步,a=a+T(计算年产量).第四步,假如a≤300,那么n=n+1,返回第二步;不然履行第五步.第五步,N=2016+n.第六步,输出N.程序框图以下图.反省与感悟这是一道算法的实质应用题,解决此类问题的要点是读懂题目,成立适合的模型,找到解决问题的计算公式.在画程序框图时,注意循环结构的选择.追踪训练4相传古代的印度国王要奖励国际象棋的发明者,问他需要什么.发明者说:“陛下,在国际象棋的第一个格子里面放1粒麦子,在第二个格子里面放2粒麦子,第三个格子放4粒麦子.此后每个格子中的麦粒数都是它前一个格子中麦粒数的二倍,以此类推(国际象棋棋盘共有64个格子).请将这些麦子赐给我,我将感谢不尽.”国王想这还不简单,就让人扛了一袋小麦,但不到一会就没了,最后一算结果,全印度一年生产的粮食也不够.国王很奇异,小小的“棋盘”,不足100个格子,这样计算怎么能放这么多麦子?试用程序框图表示一下算法过程.解该问题就是求1+2+22+23+24++263的和.累加变量和计数变量的应用例5画出求知足12+22+32++n2>20152的最小正整数n的程序框图.错解错解剖析累加变量的初始值为1,第一次运算为S=1+12致使错误.一般把计数变量的初始值设为1,累加变量的初始值设为0,本例中S=0,i=1.正解程序框图以下图:A1.以下对于循环结构的说法正确的选项是().循环结构中,判断框内的条件是独一的.判断框中的条件成即刻,要结束循环向下履行C.循环体中要对判断框中的条件变量有所改变才会使循环结构不会出现“死循环”D.循环结构就是无穷循环的结构,履行程序时会永无止境地运转下去答案C分析因为判断框内的条件不独一,故A错;因为当型循环结构中,判断框中的条件成即刻履行循环体,故B错;因为循环结构不是无穷循环的,故C正确,D错.2.阅读以下图的程序框图,运转相应的程序,则输出S的值为()A.2B.4C.6D.8答案B分析借助循环结构进行运算,直至知足条件并输出结果.S=4不知足S≥6,S=2S=2×4=8,n=1+1=2;n=2不知足n>3,S=8知足S≥6,则S=8-6=2,n=2+1=3;n=3不知足n>3,S=2不知足S≥6,则S=2S=2×2=4,n=3+1=4;n=4知足n>3,输出S=4.应选B.3.以下图的程序框图输出的S是126,则①应为()A.n≤5? B.n≤6? C.n≤7?D.n≤8?答案B分析2+22+23+24+25+26=126,所以应填“n≤6?”.4.履行以下图的程序框图,若输入n的值为3,则输出s的值是()A.1B.2C.4D.7答案C分析当i=1时,s=1+1-1=1;当i=2时,s=1+2-1=2;当i=3时,s=2+3-1=4;当i=4时,退出循环,输出s=4;应选C.第4题图第5题图5.如上程序框图,当输入x的值为5时,其输出的结果是________.答案2分析∵x=5>0,∴x=5-3=2,x=2>0,∴x=2-3=-1.y=-1=2.1.(1)循环结构是指在算法中需要重复履行一条或多条指令的控制结构;(2)在循环结构中,往常都有一个起循环计数作用的变量,即计数变量;(3)循环变量、循环体、循环停止条件称为循环结构的三因素.2.画程序框图要注意:(1)使用标准的框图符号;(2)框图一般按从上到下、从左到右的方向画;(3)除判断框外,大部分框图符号只有一个进入点和一个退出点,判断框是拥有超出一个退出点的独一符号;(4)框图中若出现循环结构,必定要分清当型和直到型结构的不一样;(5)在图形符号内描绘的语言要特别精练、清楚.学习不是一时半刻的事情,需要平常累积,需要平常的好学苦练。
人教B版高中数学必修三新课标教案§程序框图
§1.1.2 程序框图 (三个课时)教学目标:1。
掌握程序框图的概念;会用通用的图形符号表示算法,掌握算法的三个基本逻辑结构 2.掌握画程序框图的基本规则,能正确画出程序框图。
3.通过模仿、操作、探索,经历通过设计程序框图表达解决问题的过程;学会灵活、正确地画程序框图。
教学重点:经过模仿、操作、探索,经历通过设计程序框图表达求解问题的过程,重点是程序框图的基本概念、基本图形符号和3种基本逻辑结构教学难点: 难点是能综合运用这些知识正确地画出程序框图。
教学过程引入:算法可以用自然语言来描述,但为了使算法的程序或步骤表达得更为直观,我们更经常地用图形方式来表示它。
程序框图基本概念:(1)程序构图的概念:程序框图又称流程图,是一种用规定的图形、指向线及文字说明来准确、直观地表示算法的图形。
一个程序框图包括以下几部分:表示相应操作的程序框;带箭头的流程线;程序框外必要文字说明。
学习这部分知识的时候,要掌握各个图形的形状、作用及使用规则,画程序框图的规则如下: 1、使用标准的图形符号。
2、框图一般按从上到下、从左到右的方向画。
3、除判断框外,大多数流程图符号只有一个进入点和一个退出点。
判断框具有超过一个退出点的唯一符号。
4、判断框分两大类,一类判断框“是”与“否”两分支的判断,而且有且仅有两个结果;另一类是多分支判断,有几种不同的结果。
5、在图形符号内描述的语言要非常简练清楚。
(3)、算法的三种基本逻辑结构:顺序结构、条件结构、循环结构。
顺序结构:顺序结构是最简单的算法结构,语句与语句之间,框与框之间是按从上到下的顺序进行的,顺序结构在程序框图中的体现就是用流程线将程序框自上而 下地连接起来,按顺序执行算法步骤。
如在示意图中,A 框和B 框是依次执行的,只有在执行完A 框指定的操作后,才能接着执 行B 框所指定的操作。
例3、已知一个三角形的三边分别为2、3、4,利用海伦公式设计一个算法,求出它的面积,并画出算法的程序框图。
人教新课标版数学高一必修三教案 程序框图与算法的基本逻辑结构
1.1.2 程序框图与算法的基本逻辑结构(7)说出连接点的图形符号与功能.(8)总结几个基本的程序框、流程线和它们表示的功能.(9)什么是顺序结构?讨论结果:(1)程序框图又称流程图,是一种用程序框、流程线及文字说明来表示算法的图形.在程序框图中,一个或几个程序框的组合表示算法中的一个步骤;带有方向箭头的流程线将程序框连接起来,表示算法步骤的执行顺序.(2)椭圆形框:表示程序的开始和结束,称为终端框(起止框).表示开始时只有一个出口;表示结束时只有一个入口.(3)平行四边形框:表示一个算法输入和输出的信息,又称为输入、输出框,它有一个入口和一个出口.(4)矩形框:表示计算、赋值等处理操作,又称为处理框(执行框),它有一个入口和一个出口.(5)菱形框:是用来判断给出的条件是否成立,根据判断结果来决定程序的流向,称为判断框,它有一个入口和两个出口.(6)流程线:表示程序的流向.(7)圆圈:连接点.表示相关两框的连接处,圆圈内的数字相同的含义表示相连接在一起.(8)总结如下表.图形符号名称功能终端框(起止框)表示一个算法的起始和结束输入、输出框表示一个算法输入和输出的信息处理框(执行框)赋值、计算判断框判断某一条件是否成立,成立时在出口处标明“是”或“Y”;不成立时标明“否”或“N”流程线连接程序框连接点连接程序框图的两部分(9)很明显,顺序结构是由若干个依次执行的步骤组成的,这是任何一个算法都离不开的基本结构.三种逻辑结构可以用如下程序框图表示:顺序结构条件结构循环结构应用示例例 1 请用程序框图表示前面讲过的“判断整数n(n>2)是否为质数”的算法.解:程序框图如下:点评:程序框图是用图形的方式表达算法,使算法的结构更清楚,步骤更直观也更精确.这里只是让同学们初步了解程序框图的特点,感受它的优点,暂不要求掌握它的画法. 变式训练观察下面的程序框图,指出该算法解决的问题.解:这是一个累加求和问题,共99项相加,该算法是求100991431321211⨯++⨯+⨯+⨯ 的值. 例2 已知一个三角形三条边的边长分别为a ,b ,c ,利用海伦—秦九韶公式设计一个计算三角形面积的算法,并画出程序框图表示.(已知三角形三边边长分别为a,b,c ,则三角形的面积为S=))()((c p b p a p p ---),其中p=2cb a ++.这个公式被称为海伦—秦九韶公式)算法分析:这是一个简单的问题,只需先算出p 的值,再将它代入分式,最后输出结果.因此只用顺序结构应能表达出算法. 算法步骤如下:第一步,输入三角形三条边的边长a,b,c. 第二步,计算p=2cb a ++. 第三步,计算S=))()((c p b p a p p ---.第四步,输出S. 程序框图如下:点评:很明显,顺序结构是由若干个依次执行的步骤组成的,它是最简单的逻辑结构,它是任何一个算法都离不开的基本结构. 变式训练下图所示的是一个算法的流程图,已知a 1=3,输出的b=7,求a 2的值.解:根据题意221a a +=7, ∵a 1=3,∴a 2=11.即a 2的值为11.例3 写出通过尺轨作图确定线段AB 的一个5等分点的程序框图.解:利用我们学过的顺序结构得程序框图如下:点评:这个算法步骤具有一般性,对于任意自然数n,都可以按照这个算法的思想,设计出确定线段的n等分点的步骤,解决问题,通过本题学习可以巩固顺序结构的应用.知能训练有关专家建议,在未来几年内,中国的通货膨胀率保持在3%左右,这将对我国经济的稳定有利无害.所谓通货膨胀率为3%,指的是每年消费品的价格增长率为3%.在这种情况下,某种品牌的钢琴2004年的价格是10 000元,请用流程图描述这种钢琴今后四年的价格变化情况,并输出四年后的价格.解:用P表示钢琴的价格,不难看出如下算法步骤:2005年P=10 000×(1+3%)=10 300;2006年P=10 300×(1+3%)=10 609;2007年P=10 609×(1+3%)=10 927.27;2008年P=10 927.27×(1+3%)=11 255.09;因此,价格的变化情况表为:年份2004 2005 2006 2007 2008钢琴的10 000 10 300 10 609 10 927.27 11 255.09价格程序框图如下:点评:顺序结构只需严格按照传统的解决数学问题的解题思路,将问题解决掉.最后将解题步骤 “细化”就可以.“细化”指的是写出算法步骤、画出程序框图. 拓展提升如下给出的是计算201614121++++ 的值的一个流程图,其中判断框内应填入的条件是______________.答案:i>10. 课堂小结(1)掌握程序框的画法和功能.(2)了解什么是程序框图,知道学习程序框图的意义.(3)掌握顺序结构的应用,并能解决与顺序结构有关的程序框图的画法. 作业习题1.1A 1.第2课时条件结构导入新课(直接导入)前面我们学习了顺序结构,顺序结构像是一条没有分支的河流,奔流到海不复回,事实上多数河流是有分支的,今天我们开始学习有分支的逻辑结构——条件结构.推进新课新知探究提出问题(1)举例说明什么是分类讨论思想?(2)什么是条件结构?(3)试用程序框图表示条件结构.(4)指出条件结构的两种形式的区别.讨论结果:(1)例如解不等式ax>8(a≠0),不等式两边需要同除a,需要明确知道a的符号,但条件没有给出,因此需要进行分类讨论,这就是分类讨论思想. (2)在一个算法中,经常会遇到一些条件的判断,算法的流程根据条件是否成立有不同的流向.条件结构就是处理这种过程的结构.(3)用程序框图表示条件结构如下.条件结构:先根据条件作出判断,再决定执行哪一种操作的结构就称为条件结构(或分支结构),如图1所示.执行过程如下:条件成立,则执行A框;不成立,则执行B框.图1 图2注:无论条件是否成立,只能执行A、B之一,不可能两个框都执行.A、B两个框中,可以有一个是空的,即不执行任何操作,如图2.(4)一种是在两个“分支”中均包含算法的步骤,符合条件就执行“步骤A”,否则执行“步骤B”;另一种是在一个“分支”中均包含算法的步骤A,而在另一个“分支”上不包含算法的任何步骤,符合条件就执行“步骤A”,否则执行这个条件结构后的步骤.应用示例例1 任意给定3个正实数,设计一个算法,判断以这3个正实数为三边边长的三角形是否存在,并画出这个算法的程序框图.算法分析:判断以3个任意给定的正实数为三条边边长的三角形是否存在,只需验证这3个数中任意两个数的和是否大于第3个数.这个验证需要用到条件结构.算法步骤如下:第一步,输入3个正实数a,b,c.第二步,判断a+b>c,b+c>a,c+a>b是否同时成立.若是,则存在这样的三角形;否则,不存在这样的三角形.程序框图如右图:点评:根据构成三角形的条件,判断是否满足任意两边之和大于第三边,如果满足则存在这样的三角形,如果不满足则不存在这样的三角形.这种分类讨论思想是高中的重点,在画程序框图时,常常遇到需要讨论的问题,这时要用到条件结构.例2 设计一个求解一元二次方程ax2+bx+c=0的算法,并画出程序框图例3 设计算法判断一元二次方程ax2+bx+c=0是否有实数根,并画出相应的程序框图.解:算法步骤如下:第一步,输入3个系数:a,b,c.第二步,计算Δ=b2-4ac.第三步,判断Δ≥0是否成立.若是,则输出“方程有实根”;否则,输出“方程无实根”.结束算法.相应的程序框图如右:点评:根据一元二次方程的意义,需要计算判别式Δ=b2-4ac的值.再分成两种情况处理:(1)当Δ≥0时,一元二次方程有实数根;(2)当Δ<0时,一元二次方程无实数根.该问题实际上是一个分类讨论问题,根据一元二次方程系数的不同情况,最后结果就不同.因而当给出一个一元二次方程时,必须先确定判别式的值,然后再用判别式的值的取值情况确定方程是否有解.该例仅用顺序结构是办不到的,要对判别式的值进行判断,需要用到条件结构.例4 (1)设计算法,求ax+b=0的解,并画出流程图.解:对于方程ax+b=0来讲,应该分情况讨论方程的解.我们要对一次项系数a 和常数项b 的取值情况进行分类,分类如下:(1)当a≠0时,方程有唯一的实数解是ab -; (2)当a=0,b=0时,全体实数都是方程的解;(3)当a=0,b≠0时,方程无解.联想数学中的分类讨论的处理方式,可得如下算法步骤:第一步,判断a≠0是否成立.若成立,输出结果“解为ab -”. 第二步,判断a=0,b=0是否同时成立.若成立,输出结果“解集为R ”. 第三步,判断a=0,b≠0是否同时成立.若成立,输出结果“方程无解”,结束算法.程序框图如下:点评:这是条件结构叠加问题,条件结构叠加,程序执行时需依次对“条件1”“条件2”“条件3”……都进行判断,只有遇到能满足的条件才执行该条件对应的操作.知能训练设计算法,找出输入的三个不相等实数a 、b 、c 中的最大值,并画出流程图.解:算法步骤:第一步,输入a ,b ,c 的值.第二步,判断a>b 是否成立,若成立,则执行第三步;否则执行第四步. 第三步,判断a>c 是否成立,若成立,则输出a ,并结束;否则输出c ,并结束.第四步,判断b>c 是否成立,若成立,则输出b ,并结束;否则输出c ,并结束.程序框图如下:点评:条件结构嵌套与条件结构叠加的区别:(1)条件结构叠加,程序执行时需依次对“条件1”“条件2”“条件3”……都进行判断,只有遇到能满足的条件才执行该条件对应的操作.(2)条件结构的嵌套中,“条件2”是“条件1”的一个分支,“条件3”是“条件2”的一个分支……依此类推,这些条件中很多在算法执行过程中根据所处的分支位置不同可能不被执行.(3)条件结构嵌套所涉及的“条件2”“条件3”……是在前面的所有条件依次一个一个的满足“分支条件成立”的情况下才能执行的此操作,是多个条件同时成立的叠加和复合.例 5 “特快专递”是目前人们经常使用的异地邮寄信函或托运物品的一种快捷方式.某快递公司规定甲、乙两地之间物品的托运费用根据下列方法计算:f=⎩⎨⎧>⨯-+⨯≤).50(,85.0)50(53.050),50(,53.0ωωωω其中f(单位:元)为托运费,ω为托运物品的重量(单位:千克).试画出计算费用f的程序框图.分析:这是一个实际问题,根据数学模型可知,求费用f的计算公式随物品重量ω的变化而有所不同,因此计算时先看物品的重量,在不同的条件下,执行不同的指令,这是条件结构的运用,是二分支条件结构.其中,物品的重量通过输入的方式给出.解:算法程序框图如右图:拓展提升有一城市,市区为半径为15 km的圆形区域,近郊区为距中心15—25 km的范围内的环形地带,距中心25 km以外的为远郊区,如右图所示.市区地价每公顷100万元,近郊区地价每公顷60万元,远郊区地价为每公顷20万元,输入某一点的坐标为(x,y),求该点的地价.分析:由该点坐标(x,y),求其与市中心的距离r=22yx+,确定是市区、近郊区,还是远郊区,进而确定地价p.由题意知,p=⎪⎩⎪⎨⎧>≤<≤<.25,20,2515,60,150,100rrr解:程序框图如下:课堂小结(1)理解两种条件结构的特点和区别.(2)能用学过的两种条件结构解决常见的算法问题.作业习题1.1A组3.第3课时循环结构导入新课(直接导入)前面我们学习了顺序结构,顺序结构像一条没有分支的河流,奔流到海不复回;上一节我们学习了条件结构,条件结构像有分支的河流最后归入大海;事实上很多水系是循环往复的,今天我们开始学习循环往复的逻辑结构——循环结构.推进新课新知探究提出问题(1)请大家举出一些常见的需要反复计算的例子.(2)什么是循环结构、循环体?(3)试用程序框图表示循环结构.(4)指出两种循环结构的相同点和不同点.讨论结果:(1)例如用二分法求方程的近似解、数列求和等.(2)在一些算法中,经常会出现从某处开始,按照一定的条件反复执行某些步骤的情况,这就是循环结构.反复执行的步骤称为循环体.(3)在一些算法中要求重复执行同一操作的结构称为循环结构.即从算法某处开始,按照一定条件重复执行某一处理的过程.重复执行的处理步骤称为循环体.循环结构有两种形式:当型循环结构和直到型循环结构.1°当型循环结构,如图(1)所示,它的功能是当给定的条件P成立时,执行A框,A框执行完毕后,返回来再判断条件P是否成立,如果仍然成立,返回来再执行A框,如此反复执行A框,直到某一次返回来判断条件P不成立时为止,此时不再执行A框,离开循环结构.继续执行下面的框图.2°直到型循环结构,如图(2)所示,它的功能是先执行重复执行的A框,然后判断给定的条件P是否成立,如果P仍然不成立,则返回来继续执行A框,再判断条件P是否成立.继续重复操作,直到某一次给定的判断条件P时成立为止,此时不再返回来执行A框,离开循环结构.继续执行下面的框图.见示意图:当型循环结构直到型循环结构(4)两种循环结构的不同点:直到型循环结构是程序先进入循环体,然后对条件进行判断,如果条件不满足,就继续执行循环体,直到条件满足时终止循环.当型循环结构是在每次执行循环体前,先对条件进行判断,当条件满足时,执行循环体,否则终止循环.两种循环结构的相同点: 两种不同形式的循环结构可以看出,循环结构中一定包含条件结构,用于确定何时终止执行循环体.上述程序框图用的是当型循环结构,如果用直到型循环结构表示,则程序框图如下:点评:这是一个典型的用循环结构解决求和的问题,有典型的代表意义,可把它作为一个范例,仔细体会三种逻辑结构在程序框图中的作用,学会画程序框图.变式训练已知有一列数1,,43,32,21+n n ,设计框图实现求该列数前20项的和.分析:该列数中每一项的分母是分子数加1,单独观察分子,恰好是1,2,3,4,…,n ,因此可用循环结构实现,设计数器i ,用i=i+1实现分子,设累加器S ,用S=1++i i S ,可实现累加,注意i 只能加到20.解:程序框图如下:方法一:方法二:点评:在数学计算中,i=i+1不成立,S=S+i只有在i=0时才能成立.在计算机程序中,它们被赋予了其他的功能,不再是数学中的“相等”关系,而是赋值关系.变量i用来作计数器,i=i+1的含义是:将变量i的值加1,然后把计算结果再存贮到变量i中,即计数器i在原值的基础上又增加了1.变量S作为累加器,来计算所求数据之和.如累加器的初值为0,当第一个数据送到变量i中时,累加的动作为S=S+i,即把S的值与变量i 的值相加,结果再送到累加器S中,如此循环,则可实现数的累加求和.例2 某厂2005年的年生产总值为200万元,技术革新后预计以后每年的年生产总值都比上一年增长5%,设计一个程序框图,输出预计年生产总值超过300万元的最早年份.算法分析:先写出解决本例的算法步骤:第一步,输入2005年的年生产总值.第二步,计算下一年的年生产总值.第三步,判断所得的结果是否大于300,若是,则输出该年的年份,算法结束;否则,返回第二步.由于“第二步”是重复操作的步骤,所以本例可以用循环结构来实现.我们按照“确定循环体”“初始化变量”“设定循环控制条件”的顺序来构造循环结构.(1)确定循环体:设a为某年的年生产总值,t为年生产总值的年增长量,n为年份,则循环体为t=0.05a,a=a+t,n=n+1.(2)初始化变量:若将2005年的年生产总值看成计算的起始点,则n 的初始值为2005,a的初始值为200.(3)设定循环控制条件:当“年生产总值超过300万元”时终止循环,所以可通过判断“a>300”是否成立来控制循环.程序框图如下:知能训练由相应的程序框图如右图,补充完整一个计算1+2+3+…+100的值的算法.(用循环结构)第一步,设i的值为_____________.第二步,设sum的值为_____________.点评:(1)如果算法问题里涉及的运算进行了许多次重复的操作,且先后参与运算的数之间有相同的规律,就可引入变量循环参与运算(我们称之为循环变量),应用于循环结构.在循环结构中,要注意根据条件设计合理的计数变量、累加和累乘变量及其个数等,特别要求条件的表述要恰当、精确.(2)累加变量的初始值一般取0,而累乘变量的初始值一般取1.课堂小结(1)熟练掌握两种循环结构的特点及功能.(2)能用两种循环结构画出求和等实际问题的程序框图,进一步理解学习算法的意义.作业习题1.1A组2.第4课时程序框图的画法导入新课(直接导入)前面我们学习了顺序结构、条件结构、循环结构,今天我们系统学习程序框图的画法.推进新课新知探究提出问题(1)请大家回忆顺序结构,并用程序框图表示.(2)请大家回忆条件结构,并用程序框图表示.(2)算法步骤中的“第四步”可以用条件结构来表示(如下图).在这个条件结构中,“否”分支用“a=m”表示含零点的区间为[m,b],并把这个区间仍记成[a,b];“是”分支用“b=m ”表示含零点的区间为[a,m],同样把这个区间仍记成[a,b].(3)算法步骤中的“第五步”包含一个条件结构,这个条件结构与“第三步”“第四步”构成一个循环结构,循环体由“第三步”和“第四步”组成,终止循环的条件是“|a-b|<d或f(m)=0”.在“第五步”中,还包含由循环结构与“输出m”组成的顺序结构(如下图).(4)将各步骤的程序框图连接起来,并画出“开始”与“结束”两个终端框,就得到了表示整个算法的程序框图(如下图).点评:在用自然语言表述一个算法后,可以画出程序框图,用顺序结构、条件结构和循环结构来表示这个算法,这样表示的算法清楚、简练,便于阅读和交流.例 2 相传古代的印度国王要奖赏国际象棋的发明者,问他需要什么.发明者说:陛下,在国际象棋的第一个格子里面放1粒麦子,在第二个格子里面放2粒麦子,第三个格子放4粒麦子,以后每个格子中的麦粒数都是它前一个格子中麦粒数的二倍,依此类推(国际象棋棋盘共有64个格子),请将这些麦子赏给我,我将感激不尽.国王想这还不容易,就让人扛了一袋小麦,但不到一会儿就没了,最后一算结果,全印度一年生产的粮食也不够.国王很奇怪,小小的“棋盘”,不足100个格子,如此计算怎么能放这么多麦子?试用程序框图表示此算法过程.解:将实际问题转化为数学模型,该问题就是要求1+2+4+……+263的和. 程序框图如下:点评:对于开放式探究问题,我们可以建立数学模型(上面的题目可以与等比数列的定义、性质和公式联系起来)和过程模型来分析算法,通过设计算法以及语言的描述选择一些成熟的办法进行处理.例3 乘坐火车时,可以托运货物.从甲地到乙地,规定每张火车客票托运费计算方法是:行李质量不超过50 kg 时按0.25元/kg ;超过50 kg而不超过100 kg 时,其超过部分按0.35元/kg ;超过100 kg 时,其超过部分按0.45元/kg .编写程序,输入行李质量,计算出托运的费用.分析:本题主要考查条件语句及其应用.先解决数学问题,列出托运的费用关于行李质量的函数关系式.设行李质量为x kg ,应付运费为y 元,则运费公式为:y=⎪⎩⎪⎨⎧>-+⨯+⨯≤<-+⨯≤<,100),100(45.05035.05025.0,10050),50(35.05025.0,500,25.0x x x x x x整理得y=⎪⎩⎪⎨⎧>-≤<-≤<.100,1545.0,10050,535.0,500,25.0x x x x x x要计算托运的费用必须对行李质量分类讨论,因此要用条件语句来实现.解:算法分析:第一步,输入行李质量x.第二步,当x≤50时,计算y=0.25x ,否则,执行下一步.第三步,当x≤100,计算y=0.35x -5,否则,计算y=0.45x -15.第四步,输出y .程序框图如下:知能训练5的算法,画出算法的程序设计一个用有理数数幂逼近无理指数幂2框图.解:算法步骤:第一步,给定精确度d,令i=1.第二步,取出2的到小数点后第i位的不足近似值,记为a;取出2的到小数点后第i位的过剩近似值,记为b.第三步,计算m=5b-5a.5的近似值为5a;否则,将i的值增加1,返回第四步,若m<d,则得到2第二步.5的近似值为5a.第五步,得到2程序框图如下:拓展提升求)410(4141414个共++++,画出程序框图.分析:如果采用逐步计算的方法,利用顺序结构来实现,则非常麻烦,由于前后的运算需重复多次相同的运算,所以应采用循环结构,可用循环结构来实现其中的规律.观察原式中的变化的部分及不变项,找出总体的规律是4+x1,要实现这个规律,需设初值x=4.解:程序框图如下:。
人教A版高中数学必修三框图教案
课题:框图习题课教学目的:巩固本章节学习的内容,提高学生解决问题的能力教学过程:1、.结构图一般由构成系统的和表达各要素之间构成.连线通常按照、的方向(方向箭头按照箭头所指的方向)表示要素的或2.在表达逻辑先后关系的结构图中从上至下反映的是要素之间的,从属关系通常是“”形结构,然而有时也经常出现一些“”形结构.在组织结构图中一般都呈“”形结构,这种图直观,易于理解.被应用很多领域.【例1 :某班有50 名学生,现将某科的成绩分为三个等级,80 一100 分为A , 60 一79 分为B , 60 分以下为C ,试设计一程序框图来表示输出每一个学生成绩等级.解析:学生成绩的三个等级由是否小于等于60 分的和是否小于等于79 分这两个条件控制,因此可以将其分为两部分来设计框图,即判断框的选择问题,还应注意将全部学生的相应成绩等级全部显示.答案:依题意设计以下程序框图:启示:该题也可以先用判断条件“是否小于等于79 分”先行判断,再根据“是否小于等于60 分”,从而将成绩分成三个等级.【例2 ]某工厂加工某种零件有三道工序:粗加工、返修加工和精加工.每道工序完成时,都要对产品进行检验.粗加工的合格品进人精加工,不合格品进人返修加工;返修加工的合格品进人精加工,不合格品作为废品处理;精加工的合格品为成品,不合格品为废品.( 1 )用流程图表示这个零件的加工过程.( 2 )一件成品在哪几个环节可导致废品产生.解析:( l )本题是一个工序流程图,分为三道工序:粗加工、返修加工和精加工,在每道工序完成时须检验,即有一个判断环节.( 2 )导致废品出现的环节在于检验工序,即判断是否合格.答案:( l )按照工序要求,可以画出下面的工序流程图:( 2 )产品在返修加工和精加工可导致废品,这两道工序检验不合格则即成废品.而粗加工检验环节,若不合格则可以返修加工.启示:工序流程图是描述工农业生产过程的流程图,是一个动态过程,其中有时常见判断、循环等环节,依具体问题加以分析,主要线索是生产的工序.本题中废品的产生在于返修加工和精加工.最初的粗加工检验,若不合格则加以返修加工,经再检验合格则进入下道工序,不合格才成为废品,应加以明确,这也是符合生产实际情况的.【例3 ]对于《数学·必修3 ) )第一章《算法初步》,画出本章知识结构图.解析:对于《算法初步》这一章来讲,主要有算法与程序框图、基本算法语句和中国古代算法案例三部分,分部分又可再细分,大致可以将本章知识分块加以解决.答案:启示:知识结构图可采用“树”形或“环”形结构,反映各要素间的逻辑先后关系或从属关系一般是从上到下.从左到右顺序画图.本题知识结构图采用从左向右的方向画出,当然出可采用其他方向,或对某部分再加以细分.强化练习:1、北京获得2008 年第29 届奥林匹克运动会主办权.国际奥委会是通过对遴选出的5 个申办城市进行表决而决定主办权的.表决的操作程序是:首先进行第一轮投票,如果一个城市得票超过总票数的一半.那么该城市将获得举办权;如果所有申办城市得票数都不超过总票数的一半,则将得票最少的城市淘汰,然后重复上述过程,直到选出一个中办城市为止.请设计一个算法表述上述过程,并画出程序流程图.2、某大学远程教育学院网上学习流程:( 1 )学生凭录取通知书到当地远程教育中心报到.交费注册.领取网上学习注册码,( 2 )网上选课,课程学习.完成网上平时作业.获得平时作业成绩.( 3 )预约考试,参加期末考试获得期末考试成绩,获得综合成绩,成绩合格获得学分,否则重修.试画出该远程教育学院网上学习流程图.3、对于《数学·必修II》中的“圆与方程”这一章.试画出本章知识结构图.。
高中数学必修三(人教新A版)教案4程序框图的画法
讨论结果:
(1)顺序结构是由若干个依次执行的步骤组成的,这是任何一个算法都离不开的基本结构.框图略.
(2)在一个算法中,经常会遇到一些条件的判断,算法的流程根据条件是否成立有不同的流向.条件结构就是处理这种过程的结构.框图略.
(3)在一些算法中要求重复执行同一操作的结构称为循环结构.即从算法某处开始,按照一定条件重复执行某一处理过程.重复执行的处理步骤称为循环体.
及
方
法
问题与情境及教师活动
学生活动
探究(三):程序框图的阅读与理解
考察下列程序框图:
思考1:怎样理解该程序框图中包含的逻辑
结构?
思考2:该程序框图中的循环结构属于那种
类型?
思考3:该程序框图反映的实际问题是
3;……+263的和
三.随堂练习
P19练习:设计一个用有理指数幂逼近无理指数幂 的算法,画出算法的程序框图
思考4:该算法中哪几个步骤构成循环结构?
这个循环结构用程序框图如何表示?
思考5:根据上述分析,你能画出表示整个算法的程序框图吗?
点评:在用自然语言表述一个算法
后,可以画出程序框图,用
顺序结构、条件结构和循环
结构来表示这个算法,这样
表示的算法清楚、简练,便
于阅读和交流.
3
高中数学必修三课时教案
教
学
过
程
第四步,若 ,则含零点的区间为 ,否则,含零点的区间为 ,将新得到的含零点的区间仍记为 。
第五步,判断 的长度是否小于 ,或 是否等于0.
则 是方程的近似解;否则,返回第三步.
思考2:该算法中哪几个步骤可以用顺序结构来表示?
这个顺序结构的程序框图如何?
人教B版高中数学必修三大连铁路人教B程序框图三教案
学习指导案课时________
(第2题图)
2.某店一个月的收入和支出总共记录了 N 个数据
1a ,2a ,。
N a ,其中收入
记为正数,支出记为负数。
该店用右边的程序框图计算月总收入S 和月净盈利V ,那么在图中空白的判断框和处理框中,应分别填入下列四个选项中的 (A )A >0,V =S -T (B) A <0,V =S -T (C) A >0, V =S +T (D )A <0, V =S +T
3.某篮球队6名主力队员在最近三场比赛中投进的三分球个数如下表所示:
队员i 1 2 3 4 5 6
三分球个数
1a 2a 3a 4a 5a 6a
下图(右)是统计该6名队员在最近三场比赛中投进的三分球总数的程序框图,则图中判断框应填 ,输出的s=
学生总结归纳教师补充
(第3题图) (第4题图) 4.随机抽取某产品n 件,测得其长度分别为12,,,n a a a L ,则图3所示的程序
框图输出的s = ,
5.程序框图(即算法流程图)如图下(左)所示,其输出结果是_______.
6.某算法的程序框如上图(右)所示,则输出量y 与输入量x 满足的关系式是____________________________ .
开始
1a =
21a a =+
100?a >
输出a
结束
是 否。
人教版高中数学高一-必修三教学设计 程序框图⑶
§1.1.2 程序框图⑶
教学要求:掌握程序框图的概念;会用通用的图形符号表示算法,掌握算法的三个基本逻辑结构
(1) 掌握画程序框图的基本规则,能正确画出程序框图。
(2) 通过模仿、操作、探索,经历通过设计程序框图表达解决问题的过程;学会灵活、
正确地画程序框图。
教学重点:经过模仿、操作、探索,经历通过设计程序框图表达求解问题的过程,重点是程序框图的基本概念、基本图形符号和3种基本逻辑结构
教学难点: 难点是能综合运用这些知识正确地画出程序框图。
教学过程:
习题讲解 1. 写出如下程序框图所对应的函数解析式。
2.考察如下程序框图,当输入a 、b 、c 分别为3、7、5时,输出x =___.
3.(海南2007)如果执行下面的程序框图,那么输出的S=(
A.2450
B. 2500
C.2550
D.2652
巩固练习:
1. 练习: P.19
课后作业
教材P12 A 组2题.
教学反思: 是50?k。
【B版】人教课标版高中数学必修三《程序框图》教学教案1-新版
1.1.2程序框图学习目标1.掌握程序框图的概念;会用通用的图形符号表示算法。
2.通过模仿、操作、探索,经历通过设计程序框图表达解决问题的过程;学会灵活、正确地画程序框图。
3.通过本节的学习,使我们对程序框图有一个基本的了解。
重点与难点重点是程序框图的基本概念、基本图形符号。
学习过程一、情景引入1.通过上节学习我们知道,算法就是解决问题的步骤,在我们利用计算机解决问题的时候,首先我们要设计计算机程序,在设计计算机程序时我们首先要画出程序运行的流程图,使整个程序的执行过程直观化,使抽象的问题就得十分清晰和具体。
2.我们在学习这部分内容时,首先要弄清各种图形符号的意义,明确每个图形符号的使用环境,图形符号间的联结方式。
二、新课讲解算法可以用自然语言来描述,但为了使算法的程序或步骤表达得更为直观,我们更经常地用图形方式来表示它。
1.基本概念:(1)起止框图:起止框是任何流程图都不可缺少的,它表明程序的开始和结束,所以一个完整的流程图的首末两端必须是起止框。
(2)输入、输出框: 表示数据的输入或结果的输出,它可用在算法中的任何需要输入、输出的位置。
(3)处理框: 它是采用来赋值、执行计算语句、传送运算结果的图形符号。
图1-1中出现了两个处理框。
第一个处理框的作用是计算11222112D a a a a =-的值,第二个处理框的作用是计算1122212()/x b a b a D =-,2211121()/x b a b a D =-的值。
(4)判断框一般有一个入口和两个出口,有时也有多个出口,它是惟一的具有两个或两个以上出口的符号,在只有两个出口的情形中,通常都分成“是”与“否”(也可用“Y ”与“N ”)两个分支,在图1-1中,通过判断框对D 的值进行判断,若判断框中的式子是D=0,则说明D=0时由标有“是”的分支处理数据;若D≠0,则由标有“否”的分支处理数据。
例1我们要打印x 的绝对值,可以设计如下框图。
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
1.1.2 程序框图(第3课时)
【课程标准】通过模仿、操作、探索,经历通过设计程序框图表达解决问题的过程.在具体问题的解决过程中(如三元一次方程组求解等问题),理解程序框图的三种基本逻辑结构:顺序、条件分支、循环.
【教学目标】1.进一步理解程序框图的概念;
2.掌握运用程序框图表达循环结构的算法;
3.培养学生逻辑思维能力与表达能力.
【教学重点】运用程序框图表达循环结构的算法
【教学难点】循环体的确定,计数变量与累加变量的理解.
【教学过程】
一、回顾练习
引例:设计一个计算1+2+…+100的值的算法.
解:算法1 按照逐一相加的程序进行
第一步:计算1+2,得到3;
第二步:将第一步中的运算结果3与3相加,得到6;
第三步:将第二步中的运算结果6与4相加,得到10;
……
第九十九步:将第九十八步中的运算结果4950与100相加,得到5050.
简化描述:进一步简化:
第一步:sum=0;第一步:sum=0,i=1;
第二步:sum=sum+1;第二步:依次i从1到100,反复做
sum=sum+i;
第三步:sum=sum+2;第三步:输出sum.
第四步:sum=sum+3;
……
第一百步:sum=sum+99;
第一百零一步:sum=sum+100
第一百零二步:输出sum.
根据算法画出程序框图,引入循环结构.
二、循环结构
循环结构:在一些算法中,也经常会出现从某处开始,按照一定条件,反复执行某一处理步骤的情况,这种结构称为循环结构.
循环体:反复执行的处理步骤称为循环体.
计数变量:在循环结构中,通常都有一个起到循环计数作用的变量,这个变量的取值一般都含在执行或终止循环体的条件中.
当型循环:在每次执行循环体前对控制循环条件进行判断,当条件满足时执行循环体,不满足则停止.
直到循环:在执行了一次循环体之后,对控制循环体进行判断,当条件不满足时执行
循环体,满足则停止.
练习1:画出引例直到型循环的程序框图.
当型循环与直到循环的区别:①当型循环可以不执行循环体,直到循环至少执行一次循环体.
②当型循环先判断后执行,直到型循环先执行后判断. ③对同一算法来说,当型循环和直到循环的条件互为反条件.
练习2:1.1.1节例1的算法步骤的程序框图(如图)
说明:①为了减少难点,省去flag 标记;
②解释赋值语句“2=d ”与“1+=d d ”,还有“1-<=n d ;
③简单分析.
练习3:画出100321⨯⨯⨯⨯ 的程序框图.
小结:画循环结构程序框图前:①确定循环变量和初始条件;②确定算法中反复执行的部分,即循环体;③确定循环的转向位置;④确定循环的终止条件.
三、条件结构与循环结构的区别与联系
区别:条件结构通过判断分支,只是执行一次;循环结构通过条件判断可以反复执行. 联系:循环结构是通过条件结构来实现.
例1:(课本第10页的《探究》)画出用二分法求方程022
=-x 的近似根(精确度为0.005)的程序框图,并指出哪些部分构成顺序结构、条件结构和循环结构?
练习4:设计算法,求使2005321>++++n 成立的最小自然数n 的值,画出程序框图. 练习5:输入50个学生的考试成绩,若60分及以上的为及格,设计一个统计及格人数的程序框图.
练习6:指出下列程序框图的运行结果
五、课堂小结
1. 理解循环结构的逻辑,主要用在反复做某项工作的问题中;
2. 理解当型循环与直到循环的逻辑以及区别:
①当型循环可以不执行循环体,直到循环至少执行一次循环体.
②当型循环先判断后执行,直到型循环先执行后判断.
③对同一算法来说,当型循环和直到循环的条件互为反条件.
3. 画循环结构程序框图前:
①确定循环变量和初始条件;
②确定算法中反复执行的部分,即循环体;
③确定循环的转向位置;
④确定循环的终止条件.
4. 条件结构与循环结构的区别与联系:
区别:条件结构通过判断分支,只是执行一次;循环结构通过条件判断可以反复执行. 联系:循环结构是通过条件结构来实现.
七、作业
1. 设计一个算法,计算两个非0实数的加、减、乘、除运算的结果(要求输入两个非0实数,输出运算结果),并画出程序框图.
2. 设计一个算法,判断一个数是偶数还是奇数(要求输入一个整数,输出该数的奇偶性),并画出程序框图.
3. 设计一个算法,计算函数53)(2+-=x x x f 当20,,3,2,1 =x 时的函数值,并画出程序框图.
4. (课本第11页习题1.1A 组第2题)
5. 如果我国工农业产值每年以9%的增长率增长,问几年后我国产值翻一翻,试用程序框图描述其算法.
6.(课本第11页习题1.1B 组第1题)。