2014年春季新版新人教版八年级数学下学期19.2.2、一次函数同步练习1

合集下载

新人教版八年级下《19.2.2一次函数》课时练习含答案

新人教版八年级下《19.2.2一次函数》课时练习含答案

一定是正比例函数,正比例函数一定是一次函数.
3.
下列函数(1)y=3πx;(2)y=8x-6;(3)y=
1 x
;(4)y=
1 2
-8x;(5)y=5
x2
-4x+1
中,是一次
函数的有( )
A.4 个 B.3 个
C.2 个
D.1 个
答案:B
知识点:一次函数的定义
1 解析:解答:(1)y=3πx (2)y=8x-6 (4)y= 2 -8x 是一次函数,因为它们符合一次函数的定
人教版数学八年级下册第 19 章第 2 节第 2 课时一次函数同步检测
一、选择题 1.函数 y=mxm-1+(m-1)是一次函数,则 m 值( )
A.m≠0 B.m=2 C.m=2 或 4 D.m>2
答案:B
知识点:一次函数的定义
解析:解答: 由 y=mxm-1+(m-1)是一次函数,得
m−1=1 且 m≠0,
1 D.直线 y=- 2 x+1 不过第三象限,说法正确,故此选项正确;
故选:D. 分析:根据一次函数的性质 k<0,y 随 x 的增大而减小可得 A 错误;根据一次函数与 y 轴的交点的 坐标为(0,b)可得 B 错误;根据凡是函数图象经过的点必能满足解析式可得 C 错误;根据 k、b
1 的值可判断出 y=- 2 x+1 经过一、二、四象限可得 D 正确.
减小,函数从左到右下降.由于 y=kx+b 与 y 轴交于 (0,b),当 b>0 时,(0,b)在 y 轴的正半轴
上,直线与 y 轴交于正半轴;当 b<0 时,(0,b)在 y 轴的负半轴,直线与 y 轴交于负半轴.
12.若函数 y=-2mx-( m2 -4)的图象经过原点,且 y 随 x 的增大而增大,则( )

人教版初二数学下册19.2.2 一次函数(1) 含答案

人教版初二数学下册19.2.2  一次函数(1) 含答案

19.2.2 一次函数(1)基础闯关全练1.下列函数关系式:①y=-x ;②y=2x+11;③y=x ²+x+1;④y=x1,其中一次函数的个数是 ( )A .1B .2C .3D .42.函数y-(m-2)x+(m+1)是关于x 的一次函数,那么m 的取值范围是( )A .m ≠2B .m ≠-1C .m=-1D .m ≠2且m ≠-13.(2018湖南湘西中考)一次函数y=-2x+3的图象不经过( )A .第一象限B .第二象限C .第三象限D .第四象限4.(2018甘肃酒泉中考)在平面直角坐标系中,一次函数y=kx+b 的图象如图19-2-2-1-1所示,观察图象可得( )A .k >0,b >0B .k >0,b <0C .k <O ,b >0D .k <0,b <05.(2018湖南邵阳一模)一次函数y=kx+2(k 为常数,且k ≠0)的图象如图19-2-2-1-2所示,则k 的可能值为_______.(写出一个即可)能力提升全练1.(2018山东肥城期末)已知一次函数y=kx-m-2x 的图象与y 轴的负半轴相交,且函数值y 随自变量x 的增大而减小,则下列结论正确的是( )A .k <2,m >0B .k <2,m <0C .k >2,m >0D .k >2,m <02.(2018广东深圳中考)把函数y=x 向上平移3个单位长度,下列点在该平移后的直线上的是( )A .(2,2)B .(2,3)C .(2,4)D .(2,5)3.(2018浙江绍兴中考)如图19-2-2-1-3,一个函数的图象由射线BA 、线段BC 、射线CD 组成,其中点A(-1,2),B(1,3),C(2,1),D(6,5),则此函数( )A .当x <1时,y 随x 的增大而增大B .当x <1时,y 随x 的增大而减小C .当x >1时,y 随x 的增大而增大D .当x >1时,y 随x 的增大而减小三年模拟全练一、选择题1.(2018河南洛阳洛宁期中,4,★☆☆)下列函数关系式:①y=-2x+1;②y=x ;③y=2x ²+1;④y=123 x ,其中一次函数有( ) A .1个B .2个C .3个D .4个2.(2018福建龙岩期末,7,★☆☆)关于函数y=-2x+1,下列结论正确的是( )A .图象必经过点(-2,1)B .图象经过第一、二、三象限C .当x >21时,y <0 D. y 随x 的增大而增大3.(2018河北邢台期末.9.★★☆)在如图19-2-2-1-4所示的计算程序中,y 与x 之间的函数关系所对应的图象应为( )A.B.C.D.二、填空题4.(2018上海杨浦三模,12,★☆☆)若一次函数y=(1-2k)·x+k的图象经过第一、二、三象限,则k的取值范围是_______.三、解答题5.(2018陕西商南期末,19,★★☆)已知一次函数y=(3-m)x+m-5.(1)若一次函数的图象过原点,求实数m的值;(2)当一次函数的图象经过第二、三、四象限时,求实数m的取值范围.五年中考全练一、选择题1.(2018湖南湘潭中考,7.★☆☆)若b>0,则一次函数y=-x+b的图象大致是()A.B.C .D .2.(2017浙江温州中考.6.★☆☆)已知点(-1,y ₁),(4,y ₂)在一次函数y=3x-2的图象上,则y ₁,y ₂,0的大小关系是 ( )A .O <y ₁<y ₂B .y ₁<O <y ₂C .y ₁<y ₂<0D .y ₂<O <y ₁二、填空题3.(2018天津中考,16,★☆☆)将直线y=x 向上平移2个单位长度,平移后直线的解析式为_______.4.(2018山东济宁中考.12,★☆☆)在平面直角坐标系中,已知一次函数y=-2x+1的图象经过P ₁(x ₁,y ₁.),P ₂(x ₂,y ₂)两点,若x ₁<x ₂,则y ₁_______y ₂(填“>”“<”或“=”).5.(2018四川宜宾中考,12,★☆☆)已知点A 是直线y=x+1上一点,其横坐标为-21,若点B 与点A 关于y 轴对称,则点B 的坐标为_________.核心素养全练1.已知关于x 的一次函数y=(a+3)x+(b-2).(1)当a 为何值时,y 随x 的增大而减小?(2)当a ,b 为何值时,函数图象与y 轴的交点在x 轴上方?(3)当a ,b 为何值时,函数图象经过第一、三、四象限?(4)当a ,b 为何值时,函数图象经过原点?(5)当a ,b 为何值时,函数的图象与直线y=-3x 平行?2.一次函数y=(m-2)x+m ²-1的图象经过点A(0,3).(1)求m 的值,并写出函数解析式;(2)若(1)中的函数图象与x 轴交于点B ,直线y=(n+2)x+n ²-1也经过点A(0,3),且与x 轴交于点C ,求线段BC 的长.19.2.2一次函数(1)1.B ①y=-x 是一次函数;②y=2x+11是一次函数;③④不符合一次函数的定义,故不是一次函数,故选B .2.A 根据一次函数的定义知,一次项系数不等于0.即m-2≠0.解得m ≠2.3.C ∵k=-2<0,∴一次函数y=-2x+3的图象必过第二、四象限,∴b=3,∴函数图象交y 轴于正半轴,∴函数图象经过第一、二、四象限,不经过第三象限.故选C .4.A 由图象可知,直线从左往右呈上升趋势,故k >0,图象与y 轴的交点在y 轴正半轴上,故b >0.5.答案 -2(答案不唯一)解析 观察图象可知,OB <OA ,k <0.当x=0时,y=kx+2=2,∴OA=2,令OB=1.则点B(1,0),将(1,0)代入y=kx+2,得0=k+2,解得k=-2.1.A 整理得y=(k-2)x-m ,因为函数图象与y 轴负半轴相交,所以-m <0.即m >0,又函数值y 随x 的增大而减小,所以k-2<0.即k <2.故选A .2.D 一次函数的平移规律是“左加右减,上加下减”,故把函数y=x 向上平移3个单位长度后的函数关系式为y=x+3,当x=2时.y=2+3=5.故选D .3.A 由函数图象可知,当x <1时,y 随x 的增大而增大,因此A 正确,B 错误;当1<x <2时,y 随x 的增大而减小,当x >2时,y 随x 的增大而增大,因此C 、D 错误,故选A .一、选择题1.B ①y=-2x+1和②y=x 是一次函数,③④不符合一次函数的定义.故选B .2.C ∵k <0,所以y 随x 的增大而减小,故D 错误;∵k <0,b >0,∴图象经过一、二、四象限,故B 错误;当x=-2时,y=4+1=5,故A 错误.故选C .3.A 由题意得y=-2x+3,所以当x=0时,y=3;当y=0时,x=1.5,即图象经过点(0,3)和点(1.5,0),选项A 符合要求,故选A .二、填空题4.答案0<k <21 解析 ∵一次函数y=(1-2k)x+k 的图象经过第一、二、三象限,∴⎩⎨⎧-,0,021>>k k ∴0<k <21. 三、解答题5.解析(1)∵一次函数图象过原点,∴⎩⎨⎧,0=5-m ,0≠m -3 解得m=5.(2)∵一次函数的图象经过第二、三、四象限,⎩⎨⎧,<<05-m ,0m -3∴3<m <5. 一、选择题1.C 对于一次函数y=kx+b(k ≠0),当k >0时,图象从左到右上升;当k <0时,图象从左到右下降;当b >0时,图象与y 轴的交点在y 轴正半轴;当b=0时,图象与y 轴的交点在原点;当b <0时,图象与y 轴的交点在y 轴负半轴∵-1<0,∴图象从左到右下降,又b >0,∴图象与y 轴的交点在y 轴正半轴,故选C .2.B 解法一:将x=-1代入y=3x-2,得y=-5,∴y ₁=-5;将x=4代入y=3x-2,得y=10,∴y ₂=10,所以y ₁<O <y ₂.故选B .解法二:∵k=3>0,∴y 随x 的增大而增大,易知x=32时,y=0,又-1<32<4,∴y ₁<0<y ₁,故选B .二、填空题3.答案y=x+2解析 由平移规律“左加右减,上加下减”,可知向上平移2个单位长度后,直线的解析式为y=x+2.4.答案 >解析 一次函数y=kx+b 中,当k >0时,y 随x 的增大而增大;当k <0时,y 随x 的增大而减小,因为y=-2x+1中的k=-2<0,所以当x ₁<x ₂时,y ₁>y ₂.5.答案(2121,)解析把x=-21代入y=x+1得y=21,∴点A 的坐标为(-2121,),∵点8和点A 关于y 轴对称,∴点B 的坐标为(2121,). 1.解析(1)由一次函数的性质可知,当a+3<0,即a <-3时,y 随x 的增大而减小.(2)由题意知,当a+3≠0且b-2>0时,即当a ≠-3且b >2时,函数图象与y 轴的交点在x 轴上方.(3)因为函数图象经过第一、三、四象限,所以a+3>0且b-2<0.所以a >-3且b <2,即当a >-3且b <2时,函数图象经过第一、三、四象限.(4)由题意,得a+3≠0且b-2=0,解得a ≠-3且b=2.即当a ≠-3且b=2时,函数图象经过原点.(5)由题意,得a+3=-3且b-2≠0,解得a=-6且b ≠2.所以当a=-6且b ≠2时,函数图象与直线y=-3x 平行.2.解析(1)由题意得m ²-1=3,所以m=±2.又m-2≠0,即m ≠2,所以m=-2,所以y=-4x+3.(2)由题意可得B 点的坐标为(43,0). 因为直线y=(n+2)x+n ²-1经过点A(0,3),所以n ²-1=3,所以n=±2.又n+2≠0.即n ≠-2.所以n=2.所以y=4x+3,所以C 点的坐标为(-43,0).所以BC=2343--43=⎪⎭⎫ ⎝⎛.。

(完整版)人教版八年级下数学19.2一次函数同步练习题

(完整版)人教版八年级下数学19.2一次函数同步练习题

人教版八年级下数学第十九章19.2同步测试带答案、单选题1. 一次函数y=x+i 不经过的象限是( ) A.第一象限B.第二象限2. 下列函数中,是一次函数的是()3.已知一次函数y=kx+b 的图象如图,贝U k 、b 的符号是(5.关于函数y=— 2x + 1,下列结论正确的是(A.图象必经过(一2, 1) C.图象经过第一、二、三象限A. y=-x+2B. y=x+2C. y=x-2D. y=-x-27. 已知一次函数 「-';》-lb .若 随 的增大而增大,则 的取值范围是()A.片VLB. TAIC.^<0D A>08. 下列函数关系中表示一次函数的有( )① y=2x+1 ② y= ③ y= —_ - x ④ s=60t ⑤ y=1-Q6xA. 1 个B.个C.个D. 个A. k >0 , b > 0B. k >0, b v 0 4.直线与y 轴的交点坐标是( )C. k v 0, b >0A. (4, 0)B. (0, 4)C. (- 4, 0)D. k v 0, b v 0D. (0,- 4)6.如图,一次函数图象经过点 A ,且与正比例函数 y=-x 的图象交于点B ,则该一次函数的表达式为( )D.第四象限D)B.随x 的增大而增大 D.当 x > 时,y<0C.第三象限 )9. 已知方程2'--=--- -解是,则直线..与■/ - - v- 4的交点是()A. (1, 0)10. 若函数 y= (a-5) x 1 A. a=5 且 b 工0 C. (-1, -1)a 、b 应满足的条件是(C. a 工5且b 工011. 如果弹簧的长度ycm 与所挂物体的质量x (kg )的关系是一次函数,图象如图所示,那么弹簧不挂物体时的长 度是()12. 在平面直角坐标系中,把直线 y=2x 向左平移1个单位长度,平移后的直线解析式是()B.( 1,3)b+b 是一次函数,则B. a=5且 b=0D. (-1 , 5) ). D. a 工5且 b=0C. 10.5cmD. 11cmA.y=2x+1B.y=2x 1C.y=2x+2D. y=2213.如图,点A 的坐标为(-2, 0),点B 在直线y=x 上运动,当线段 AB 最短时,点B 的坐标为(B. 14.如图,某电信公司提供了 法错误的是((-,-)S 两种方案的移动通。

人教版八年级下册数学 19.2.2 一次函数(1) 同步练习(包含答案)

人教版八年级下册数学 19.2.2 一次函数(1) 同步练习(包含答案)

19.2.2 一次函数(1) 同步练习一、选择题1.下列函数(1)(2)(3)(4)(5),其中是一次函数的是()A. 4个B. 3个C. 2个D. 1个2.下列说法正确的是( )A. 过原点的直线都是正比例函数B. 正比例函数图象经过原点C. y=kx 是正比例函数D. y=3+x 是正比例函数3.当5x =时一次函数2y x k =+和34y kx =-的值相同,那么k 和y 的值分别为()A. 1,11B. -1,9C. 5,11D. 3,34.若函数是一次函数,则m ,n 应满足的条件是( ) A. m≠2且n=0 B. m=2且n=2 C. m≠2且n=2 D. m=2且n=05.已知一次函数y=(k+2)x+k 2﹣4的图象经过原点,则( )A. k=±2B. k=2C. k=﹣2D. 无法确定6.已知等腰三角形的周长为10 cm ,将底边长表示为ycm ,腰长表示为x cm ,则x 、y 的关系式是102y x =-,则其自变垦x 的取值范围是( )A. 0<x <5B. 52<x <5 C. 一切实数 D. x >0 7.已知长方形的周长为30 cm ,一边长为x cm ,与其相邻的另一边长为y cm ,则y 与x 之间的函数解析式为( )A. y =B. y =30-xC. y =30-2xD. y =15-x二、填空题8.方程用含x 的代数式表示y 得____________________。

9.下列函数中:()121y x =+,()121y x=+,()3y x =-,()4(y kx b k b =+、是常数),一次函数有____(填序号).10.若点(1,m )和点(n ,2)都在直线y =x ﹣1上,则m +n 的值为_____.11.若点(),3A m 在一次函数57y x =-的图象上,则m 的值为__________.12.若等腰三角形的周长为50 cm ,底边长为x cm ,一腰长为y cm ,y 与x 的函数解析式为y = (50-x),则变量x 的取值范围是____________.三、解答题13.已知y=(m+1)x 2﹣|m|+n+4(1)当m 、n 取何值时,y 是x 的一次函数?(2)当m 、n 取何值时,y 是x 的正比例函数?14.已知y 与x ﹣3成正比例,且当x=2时,y=﹣3.(1)求y 与x 之间的函数关系式;(2)求当x=1时,y 的值;(3)求当y=﹣6时,x 的值.15.当m ,n 为何值时,是关于x 的一次函数?当m ,n 为何值时,y 是关于x 的正比例函数?16.现有450本图书供给学生阅读,每人9本,求余下的图书数y(本)与学生人数x(人)之间的函数表达式,并求自变量x 的取值范围.17.已知等腰三角形的周长为12cm ,若底边长为y cm ,一腰长为x cm..(1)写出y 与x 的函数关系式;(2)求自变量x 的取值范围.参考答案1.B【解析】(1)是一次函数;(2)是一次函数;(3)是一次函数;(4)是二次函数;(5)是反比例函数.∴一次函数有3个.故选B.点睛:本题考查了一次函数的识别,一般地,形如y=kx+b,(k为常数,k≠0)的函数叫做一次函数,根据定义判断即可2.B【解析】A.y轴是过原点的直线,但不是正比例函数,所以A错误;B.正确;C.当k=0时,不是正比例函数;D.是一次函数.故选B.点睛:本题主要考查了正比例函数和一次函数的性质,正比例函数的图象是一条过原点的直线,但不包括y轴,正比例函数的一般式y=kx中,要注意k≠0,一次函数的一般式是y=kx+b(k≠0).3.A【解析】将x=5代入y=2x+k,得y=k+10,将x=5代入y=3kx-4,得y=15k-4,则k+10=15k-4,解得k=1.则y=k+10=11.故选A.4.C【解析】∵函数y=(m−2)xn−1+n是一次函数,∴,解得.故选:C.5.B 【解析】由题意可得,24020k k -=+≠且,解得k=2,故选B .6.B【解析】由题意得2x +y =10,Q 10-2x >0. ∴x <5;Q y <2x ,102x ∴-<2x, 解得x<52, 所以52<x <5,选B. 7.D【解析】∵矩形的周长是30cm ,∴矩形的一组邻边的和为15cm ,∵一边长为xcm ,另一边长为ycm.∴y=15−x ,故选:D.8.【解析】用含x 的代数式表示y移项得:−5y=−4x+6,系数化为1得:y=;故填:y=9.(1),(3)【解析】根据一次函数的概念,形如y=kx+b (k≠0,k 、b 为常数)的函数,可知(1)(3)是一次函数.故答案为:(1)(2).10.3【解析】解:∵点(1,m )和点(n ,2)都在直线y =x ﹣1上,∴m =1﹣1=0,2=n ﹣1,解得m =0,n =3,∴m +n =3.11.2【解析】∵(),3A m -在一次函数57y x =-,∴357m =-,∴m=2.故答案为:2.12.0<x <25【解析】由题意得:0<x<2y ,∵y=50-x ,即x<50-x ,∴x<25,又∵x>0,∴x 的取值范围是0<x <25.故答案为:0<x <2513.(1)当m=1,n 为任意实数时,这个函数是一次函数;(2)当m=1,n=﹣4时,这个函数是正比例函数.【解析】试题分析:(1)因为一次函数的定义是:形如y kx b =+ (其中k ,b 是常数且k ≠0),所以可得2-|m |=1且m +1≠0,n 为任意实数, ,(2)因为正比例函数的定义是 :形如y kx = (其中k 是常数且k ≠0), 所以可得2-|m |=1且m +1≠0,n +4=0,然后进行计算即可.试题解析:(1)根据一次函数的定义,得:2-|m |=1,解得m =±1,又∵m +1≠0即m ≠-1,∴当m =1,n 为任意实数时,这个函数是一次函数,(2)根据正比例函数的定义,得:2-|m |=1,n +4=0,解得m =±1,n =-4,又∵m +1≠0即m ≠-1,∴当m =1,n =-4时,这个函数是正比例函数.点睛:本题主要考查一次函数的定义和正比例函数的定义,解决本题的关键要熟练掌握一次函数和正比例函数的定义.14.(1)y=3x﹣9;(2)﹣6;(3)x=1.【解析】试题分析:(1)根据y与x-3成正比例,设出一次函数的关系式,再把当x=2时,y=-3代入求出k的值即可;(2))把x=1代入y=3x-9即可求得y的值;(3)把y=-6代入y=3x-9即可求得x的值.解:(1)∵y与x﹣3成正比例,设出一次函数的关系式为:y=k(x﹣3)(k≠0),把当x=2时,y=﹣3代入得:﹣3=k(2﹣3),∴k=3,∴y与x之间的函数关系式为:y=3(x﹣3),故y=3x﹣9.(2)把x=1代入y=3x﹣9得,y=3×1﹣9=﹣6;(3)把y=﹣6代入y=3x﹣9得,﹣6=3x﹣9,解得x=1;15.(1)m≠且n=1;(2)m=-1且n=1【解析】通过一次函数及正比例函数的定义即可得到m,n的取值范围.解:若y=(5m-3)x2-n+(m+n)是关于x的一次函数,则有解得所以当m≠且n=1时,y=(5m-3)x2-n+(m+n)是关于x的一次函数.若y=(5m-3)x2-n+(m+n)是关于x的正比例函数,则有解得所以当m=-1且n=1时,y=(5m-3)x2-n+(m+n)是关于x的正比例函数.16.y=450-9x, 0≤x≤50,且x为整数.【解析】试题分析:由余下的图书数=总图书数-借给学生的图书总数可得出y与x的函数关系,再结合每人9本数即可得到x的最大取值此时即可得到x的取值范围.试题解析:根据题意,得y=450-9x,根据每人9本可得x最多为=50答:剩余图书的本数y(本)和学生人数x(人)之间的函数表达式为y=450-9x,自变量的取值范围为0≤x≤50.17.(1)y与x的函数关系式为:y=12-2x;(2)自变量x的取值范围为3<x<6.【解析】试题分析:(1)底边长=周长-2×腰长;(2)根据三角形三边关系定理:三角形任意两边之和大于第三边来进行解答.试题解析:(1)依题意有:y=12−2x,故y与x的函数关系式为:y=12−2x;(2)依题意有:2{x yx y x>+>,即2122{1220x xx>-->,解得:3<x<6.故自变量x的取值范围为3<x<6.。

人教版八年级数学下册19.2.2一次函数同步测试(包含答案)

人教版八年级数学下册19.2.2一次函数同步测试(包含答案)

19.2.2 一次函数 班级: 姓名:一、单选题1.已知点A (1,y 1),B (-3,y 2)都在直线122y x =-+上,则( )A .y 1< y 2B .y 1= y 2C .y 1>y 2D .不能比较2.已知点(k ,b)为第二象限内的点,则一次函数y kx b =-+的图象大致是( ) A . B . C . D . 3.关于函数21y x =-+,下列结论正确的是( )A .图象必经过点()2,1-B .图象经过第一、二、三象限C .当12x >时,0y <D .y 随x 的增大而增大4.如图,将点P(-2,3)向右平移n 个单位后落在直线y=2x-1上的点P'处,则n 等于()A .4B .5C .6D .75.一次函数y=ax+b 与y=abx 在同一个平面直角坐标系中的图象不可能是( )A .B .C .D .6.正比例函数()0y kx k =≠的函数值y 随x 的增大而增大,则y kx k =-的图象大致是( ) A . B .C .D .7.将直线y =-x +a 的图象向下平移2个单位后经过点A (3,3),则a 的值为( ) A .-2 B .2 C .-4 D .88.正比例函数的图象如图所示,将这条直线向右平移一个单位长度,它所表示函数的解析是( )A .12y x =-+ B .1y x =-+C .22y x =-+D .122y x =-9.将函数y 2x =的图象向下平移3个单位,则得到的图象相应的函数表达式为( ) A .y 2x 3=+B .y 2x 3=-C .y 2x 6=+D .y 2x 6=-二、填空题10.如图,正比例函数y=2x 的图象与一次函数y=-3x+k 的图象相交于点P(1,m),则两条直线与x 轴围成的三角形的面积为_______.11.关于一次函数(0)y kx k k =+≠有如下说法:①当0k >时,y 随x 的增大而减小;②当0k >时,函数图象经过一、 二、三象限;③函数图象一定经过点(1, 0);④将直线(0)y kx k k =+≠向下移动2个单位长度后所得直线表达式为()2)0( y k x k k =-+≠.其中说法正确的序号是__________.12.弹簧的长度ycm 与所挂物体的质量x(kg)的关系是一次函数,图像如图所示,则弹簧不挂物体时的长度是_______.13.将一次函数2y x =-的图象平移,使其经过点(2,3),则所得直线的函数解析式是______. 14.已知A 地在B 地的正南方3km 处,甲、乙两人同时分别从A 、B 两地向正北方向匀速直行,他们与A 地的距离S (km )与所行时间t(h)之间的函数关系如图所示,当他们行驶3h 时,他们之间的距离为______km.15.若点P (-1,y 1)和点Q (-2,y 2)是一次函数y =13-x+b 的图象上的两点,则y 1,y 2的大小关系是___.三、解答题16.如图,在平面直角坐标系中,已知点()5,0A 和点()0,4B .(1)求直线AB 所对应的函数表达式;(2)设直线y x =与直线AB 相交于点C ,求AOC ∆的面积.17.如图,在平面直角坐标系xOy 中,过点(0,4)A 的直线1l 与直线2l :1y x =+相交于点(,2)B m . (1)求直线1l 的表达式;(2)过动点(,0)P n 且垂直于x 轴的直线与1l ,2l 的交点分别为M ,N ,当点M 位于点N 上方时,请直接写出n 的取值范围是 .一、单选题1.对于函数y =2x+1下列结论不正确是( )A .它的图象必过点(1,3)B .它的图象经过一、二、三象限C .当x >12时,y >0 D .y 值随x 值的增大而增大2.一次函数满足,且随的增大而减小,则此函数的图象不经过( ) A .第一象限 B .第二象限C .第三象限D .第四象限 3.已知正比例函数y=kx(k≠0)的函数值y 随x 的增大而减小,则函数y=kx ﹣k 的图象大致是( )A .B .C .D . 4.已知点124,, 2()(),y y -都在直线21y x =-+上,则1y 与2y 的大小关系是( )A .12y y >B .12y y =C .12y y <D .不能确定5.若直线y=kx+b 经过第一、二、四象限,则直线y=bx+k 的图象大致是( )A .B .C .D . 6.已知一次函数y=mx+n ﹣2的图象如图所示,则m 、n 的取值范围是( )A .m >0,n <2B .m >0,n >2C .m <0,n <2D .m <0,n >27.一次函数y kx b =+的图象经过第一、二、四象限,若点()2,A m ,()1,B n -在该一次函数的图象上,则m 、n 的大小关系是( )A .m n <B .m n =C .m n >D .无法判定8.某商店在节日期间开展优惠促销活动:购买原价超过500元的商品,超过500元的部分可以享受打折优惠.若购买商品的实际付款金额y(单位:元)与商品原价x(单位:元)的函数关系的图像如图所示,则超过500元的部分可以享受的优惠是( )A .打六折B .打七折C .打八折D .打九折9.一次函数y =kx -(2-b)的图像如图所示,则k 和b 的取值范围是( )A .k>0,b>2B .k>0,b<2C .k<0,b>2D .k<0,b<2二、填空题 10.已知:如图,在平面直角坐标系xOy 中,一次函数y =34x+3的图象与x 轴和y 轴交于A 、B 两点将△AOB 绕点O 顺时针旋转90°后得到△A′OB′则直线A′B′的解析式是_____.11.已知:一次函数y kx b =+的图像在直角坐标系中如图所示,则kb ______0(填“>”,“<”或“=”)12.把直线112y x =--向y 轴正方向平移4个单位,得到的直线与x 轴的交点坐标为__________. 13.如果直线y=-2x+k 与两坐标轴围成的三角形面积是8,则k 的值为______.14.关于x 的一次函数y=3kx+k-1的图象无论k 怎样变化,总经过一个定点,这个定点的坐标是 .15.一次函数11:24l y x =-+与221:12l y x =--的图象如图所示,1l 交x 轴于点A ,现将直线2l 平移使得其经过点A ,则2l 经过平移后的直线与y 轴的交点坐标为________.16.一次函数23y x =-的图像经过的象限是___________.17.如果()2213m y m x -=-+是一次函数,则m 的值是________________.18.将正比例函数y =﹣3x 的图象向上平移5个单位,得到函数_____的图象.三、解答题19.已知一次函数2y kx k =+-的图象不经过第二象限.(1)求k 的取值范围;(2)当1k =时,判断点()1,3是否在该函数图象上.20.如图,直线y=kx+b 与x 轴、y 轴分别交于点A ,B ,且OA ,OB 的长(OA >OB )是方程x 2-10x+24=0的两个根,P (m ,n )是第一象限内直线y=kx+b 上的一个动点(点P 不与点A ,B 重合).(1)求直线AB 的解析式.(2)C 是x 轴上一点,且OC=2,求△ACP 的面积S 与m 之间的函数关系式;(3)在x 轴上是否有在点Q ,使以A ,B ,Q 为顶点的三角形是等腰三角形?若存在,请直接写出点Q 的坐标;若不存在,请说明理由.21.如图,过A 点的一次函数的图象与正比例函数y =2x 的图象相交于点B .(1)求一次函数的解析式;(2)判断点C(4,-2)是否在该一次函数的图象上,说明理由;(3)若该一次函数的图象与x 轴交于D 点,求△BOD 的面积.参考答案1-5.ADCAD6-9.BDBB10.53 11.②12.10cm13.1y x =+14.1.515.y 1<y 216.(1)4y x 45=-+;(2)AOC 50S 9=V . 17.(1)直线1l 的表达式为24y x =-+;(2)1n <.1-5.CADAA6-9.DACB10.443y x =-+ 11.> 12.(6,0)13.42±.14.(-13,-1). 15.(0,1)16.一、三、四17.-1 ;18.y=-3x+5 19.(1)02k <≤;(2)点()1,3不在该一次函数的图像上.20.(1)y=-23x+4;(2)S=-83m+16或S=-43m+8(0<m <6);(3)存在,130)或130)或(-6,0)或(53,0) 21.(1)y =-x +3;(2)不在,理由略;(3)3。

八年级数学下册19.2.2.1一次函数练习新人教版

八年级数学下册19.2.2.1一次函数练习新人教版

八年级数学下册19.2.2.1 一次函数练习(新版)新人教版编辑整理:尊敬的读者朋友们:这里是精品文档编辑中心,本文档内容是由我和我的同事精心编辑整理后发布的,发布之前我们对文中内容进行仔细校对,但是难免会有疏漏的地方,但是任然希望(八年级数学下册19.2.2.1 一次函数练习(新版)新人教版)的内容能够给您的工作和学习带来便利。

同时也真诚的希望收到您的建议和反馈,这将是我们进步的源泉,前进的动力。

本文可编辑可修改,如果觉得对您有帮助请收藏以便随时查阅,最后祝您生活愉快业绩进步,以下为八年级数学下册19.2.2.1 一次函数练习(新版)新人教版的全部内容。

19.2.2。

1 一次函数一、夯实基础1.关于一次函数y=-2x+1,下列结论中不正确的是( )A .图象经过(1,—1)B .图象与坐标轴围成的三角形面积为C .y 随x 的增大而减小D .当x <时,y >02.在糖水中继续放入糖x (g )、水y(g ),并使糖完全溶解,如果甜度保持不变,那么y 与x 的函数关系一定是( )A .正比例函数B .反比例函数C .图象不经过原点的一次函数D .二次函数3.下列函数中,y 是x 的一次函数的是( )①y=x-6;②y= ;③y= ;④y=7—x .A .①②③B .①③④C .①②③④D .②③④4.如果y=(m-2)232m x -+是一次函数,那么m 的值是( )A .2B .-2C .±2D .±5.一次函数y=mx+n 与y=mnx (mn≠0),在同一平面直角坐标系的图象是( )A .B .C .D .6.下列函数图象不可能是一次函数y=ax-(a —2)图象的是( )A.B.C.D.二、能力提升7.作出函数y=|3x—5|的图象。

8.已知一次函数y=(4—k)x-2k2+32。

(1)k为何值时,它的图象经过原点;(2)k为何值时,它的图象经过点(0,-2);(3)k为何值时,它的图象平行于直线y=—x;(4)k为何值时,y随x的增大而减小.9.画出函数y=-2x+2的图象,结合图象回答下列问题:(1)这个函数中,随着自变量x的增大,函数值y是增大还是减小?它的图象从左到右怎样变化?(2)当x取何值时,y=0?(3)当x取何值时,y<0?三、课外拓展10.翔志琼公司修筑一条公路,开始修筑若干天以后,公司抽调了一部力量去完成其他任务,所以施工速度有所降低。

2014年春季新版新人教版八年级数学下学期19.2.2、一次函数同步练习6

2014年春季新版新人教版八年级数学下学期19.2.2、一次函数同步练习6

19.2.2 一次函数(1)◆回顾归纳形如_________(k,b是常数,k≠0)的函数,叫做一次函数,当b=0时,•它是一个正比例函数,即正比例函数是一种________的一次函数.◆课堂测控测试点一次函数的定义1.水池中有水465m3,每小时排水15m3,排水th后,水池中还有水ym3,y与t•之间的函数关系式是________,它是一个_______函数.2.已知函数y=4x+5,当x=-3时,y=_______;当y=5时,x=_______.3.已知梯形的高是10,下底长比上底长大4,如果设上底长x,则梯形面积y与x•的函数关系式是_________.4.某种优质蚊香一盘长105cm(如图),小海点燃后观察发现每小时缩短10cm.(1)写出蚊香点燃后的长度y(cm)与点燃时间t(h)之间的函数关系式;(2)该盘蚊香可使用多长时间?◆课后测控1.函数y=(m-2)x+5-m是一次函数,则m满足的条件是_______,若此函数是正比例函数,则m的值为_______,此时函数关系式为________.2.一棵树现在高50cm,每个月长高2cm,x月后这棵树的高度为ycm,则y与x的函数关系为_______,这是_________的函数.3.已知y+1与x成正比例,则y是x的________函数.4.甲、乙两地相距520km,一辆汽车以80km/h的速度从甲地开往乙地,行驶th•后停车在途中加水.(1)写出汽车距乙地路程s(km)与行驶时间t(h)之间的函数关系式;(2)你能求出自变量t的取值范围吗?试试看.5.(变式题)某市中学组织学生到距离学校6km的神舟科技馆去参观,学生李伟因事耽误没能乘上学校的专车,于是准备在学校门口改乘出租车去神舟科技馆,出租车的收费标准如下:(1)写出出租车行驶的里程数x(x≥2km)与费用y(元)之间的函数关系式;(2)李伟同学身上仅有9元钱,乘出租车到科技馆的车费够不够?请说明理由.6.小明的爸爸用50万元购进一辆出租车(含经营权).在投入营运后,每一年营运的总收入为18.5万元,而各种费用的总支出为6万元,设该车营运x年后盈利y元.(1)写出y与x之间的函数关系式.(2)问该出租车营运几年后开始盈利?(3)若出租车营运期限为10年,到期时可收回0.5万元,该车在这10年中盈利多少万元?◆拓展创新1.中亚手机专卖店对营业员的工资标准规定如下:(1)写出每月工资总额y(元)与销售手机部数x(部)之间的关系式.(2)营业员小芳本月销售手机30部,她本月的工资总额是多少元?(3)若小芳的月工资总额要达到1200元以上,问她至少要销售手机多少部?2.小明受《乌鸦喝水》故事的启发,•利用水桶和体积相同的小球进行了如下操作:请根据图中给出的信息,解答下列问题:(1)放入一个小球后水桶中水面升高______cm.(2)求放入小球后水桶中水面的高度y(cm)与小球个数x(个)•之间的一次函数关系式(不要求写出自变量的取值范围).(3)水桶中至少放入几个小球时有水溢出?答案:回顾归纳y=kx+b 特殊课堂测控1.y=465-15t 一次 2.-7 03.y=10x+204.(1)y=105-10t(2)蚊香燃尽时,即y=0.由(1)得105-10t=0,即t=10.5,• 所以该盘蚊香可使用10.5h.课后测控1.m≠2 m=5 y=3x 2.y=50+2x 一次 3.一次4.(1)s=520-80t (2)0<t<6.55.(1)y=3+(x-2)×1.40=1.4x+0.2(x≥2);(2)当x=6时,y=1.4×6+0.2=8.6<9,所以李伟的钱够到科技馆的车费. 6.(1)y=(18.5-6)x-50=12.5x-50.(2)由y>0,得12.5x-50>0,解得x>4.所以第4年后开始盈利.(3)当x=10时,y=12.5×10-50=75,75+0.5=75.5,所以这10年中盈利75.5万元.拓展创新1.(1)y=400+15x(x为自然数).(2)当x=30时,y=400+15×30=850(元).(3)400+15x≥1200,x≥5313.所以她至少要销售54部手机. 2.(1)2(2)因为每放入一个小球后,水面升高2cm,所以y=30+2x.(3)由2x+30>49,得x>9.5.即至少放放10个小球时有水溢出.。

人教版数学八年级下册:19.2.2 一次函数 同步练习(附答案)

人教版数学八年级下册:19.2.2 一次函数  同步练习(附答案)

19.2.2 一次函数 第1课时 一次函数的定义1.下列函数中,是一次函数的是( )A .y =1x +2 B .y =x +2C .y =x 2+2D .y =kx 2+b2.下列函数中,是一次函数但不是正比例函数的是( ) A .y =2x B .y =1x +2C .y =12x -23D .y =2x 2-13.下列问题中,变量y 与x 成一次函数关系的是( ) A .路程一定时,时间y 和速度xB .长10米的铁丝折成长为y 米,宽为x 米的长方形C .圆的面积y 与它的半径xD .斜边长为5的直角三角形的两条直角边y 和x4.一个蓄水池有15 m 3的水,以每分钟0.5 m 3的速度向池中注水,蓄水池中的水量Q(m 3)与注水时间t(分钟)之间的函数关系式为( )A .Q =0.5tB .Q =15tC .Q =15+0.5tD .Q =15-0.5t5.已知一次函数y =kx +b ,当x =-2时,y =7;当x =1时,y =-11,求k ,b 的值.6.出下列各题中y 与x 之间的关系式,并判断y 是不是x 的一次函数?如果是,请判断y 是不是x 的正比例函数?(1)某小区的物业费是按房屋面积每平方米0.5元/月来收取的,该小区业主每个月应缴的物业费y(元)与房屋面积x(平方米)之间的关系;(2)地面气温是28 ℃,如果高度每升高1 km ,那么气温会下降5 ℃,气温y(℃)与高度x(km)之间的关系;(3)圆面积S(cm 2)与半径r(cm)之间的关系.7.一根祝寿蜡烛长85 cm ,点燃后每小时缩短5 cm.(1)请写出点燃后蜡烛的长y(cm)与蜡烛燃烧时间t(h)之间的函数关系式; (2)该蜡烛可点燃多长时间?8.关于函数y =kx +b(k ,b 是常数,k ≠0),下列说法正确的有 ( ) ①y 是x 的一次函数; ②y 是x 的正比例函数;③当b =0时,y =kx 是正比例函数; ④只有当b ≠0时,y 才是x 的一次函数.A .1个B .2个C .3个D .4个 9.李大爷要围成一个矩形菜园,菜园的一边利用足够长的墙,用篱笆围成的另外三边总长应恰好为24米,要围成的菜园是如图所示的矩形ABCD ,设BC 边的长为x 米,AB 边的长为y 米,则y 与x 之间的函数关系式是( )A .y =-2x +24(0<x <12)B .y =-12x +12(0<x <24)C .y =2x -24(0<x <12)D .y =12x -12(0<x <24)10.根据图中的程序,当输入数值x 为-2时,输出数值y 为 .11.已知y=(m+1)x2-|m|+n+4.(1)当m,n取何值时,y是x的一次函数?(2)当m,n取何值时,y是x的正比例函数?12.某手机专卖店对营业员的工资标准规定如下:(1)写出每月工资总额y(元)与销售手机部数x(部)之间的关系式;它是一次函数吗?(2)营业员小芳本月销售手机30部,她本月的工资总额是多少元?(3)若小芳的月工资总额要达到3 300元(含3 300元)以上,问她至少要销售多少部手机?13.已知y=y1+y2,y1与x成正比例,y2与x-2成正比例,当x=1时,y=0;当x=-3时,y=4.(1)求y与x的函数关系式,并说明此函数是什么函数;(2)当x=3时,求y的值.第2课时 一次函数的图象与性质1.已知函数y =-2x +3. (1)画出这个函数的图象;(2)写出这个函数的图象与x 轴、y 轴的交点的坐标.2.将直线y =-2x 向上平移1个单位长度,平移后直线的解析式为 . 3.将正比例函数y =-2x 的图象向下平移3个单位长度后所得图象对应的函数解析式是的函数解析式为 .4.在平面直角坐标系中,一次函数y =x +1的图象是( C )A B C D 5.若一次函数y =(k -2)x +1的函数值y 随x 的增大而增大,则( )A .k <2B .k >2C .k >0D .k <0 6.点(-12,m)和点(2,n)在直线y =2x +b 上,则m 与n 的大小关系是 .7.函数y =x -1的图象一定不经过第 象限.8.一次函数y =kx +b 不经过第三象限,则下列正确的是( )A .k<0,b>0B .k<0,b<0C .k<0,b ≤0D .k<0,b ≥0 9.若直线y =kx -6与坐标轴围成的三角形的面积为9,则k = .10.一次函数y =kx -1的图象经过点P ,且y 的值随x 值的增大而增大,则点P 的坐标可以是( )A .(-5,3)B .(1,-3)C .(2,2)D .(5,-1) 11.已知:将直线y =x -1向上平移2个单位长度后得到直线y =kx +b ,则下列关于直线y =kx +b 的说法正确的是( ) A .经过第一、二、四象限 B .与x 轴交于(1,0) C .与y 轴交于(0,1)D .y 随x 的增大而减小12.一次函数y =kx +m 的图象如图所示,若点(0,a),(-2,b),(1,c)都在函数的图象上,则下列判断正确的是( )A .a<b<cB .c<a<bC .a<c<bD .b<a<c 13.若点(a ,b)在一次函数y =2x -3的图象上,则代数式4a -2b -3的值是 .14.如图,在平面直角坐标系中,直线y =-43x +4与x 轴,y 轴分别交于A ,B 两点,点C在第二象限.若BC =OC =OA ,则点C 的坐标为 .15.若一次函数y =(2m -1)x +3-2m 的图象经过第一、二、四象限,则m 的取值范围是 .16.已知关于x 的一次函数y =(2m +1)x +m -3. (1)若函数图象经过原点,求m 的值.(2)若函数的图象平行于直线y =3x -3,求m 的值. (3)当m 取何值时,函数图象与y 轴交点在x 轴下方?17.已知一次函数y =2x +a 与y =-x +b 的图象都经过A(-2,0),且与y 轴分别交于B ,C 两点. (1)求a ,b 的值;(2)画出一次函数y =2x +a 与y =-x +b 的图象; (3)求△ABC 的面积.参考答案:19.2.2 一次函数 第1课时 一次函数的定义1.下列函数中,是一次函数的是( B )A .y =1x +2 B .y =x +2 C .y =x 2+2D .y =kx 2+b2.下列函数中,是一次函数但不是正比例函数的是( C )A .y =2xB .y =1x +2C .y =12x -23D .y =2x 2-13.下列问题中,变量y 与x 成一次函数关系的是( B ) A .路程一定时,时间y 和速度xB .长10米的铁丝折成长为y 米,宽为x 米的长方形C .圆的面积y 与它的半径xD .斜边长为5的直角三角形的两条直角边y 和x4.一个蓄水池有15 m 3的水,以每分钟0.5 m 3的速度向池中注水,蓄水池中的水量Q(m 3)与注水时间t(分钟)之间的函数关系式为( C )A .Q =0.5tB .Q =15tC .Q =15+0.5tD .Q =15-0.5t5.已知一次函数y =kx +b ,当x =-2时,y =7;当x =1时,y =-11,求k ,b 的值. 解:将x =-2,y =7和x =1,y =-11分别代入y =kx +b ,得⎩⎪⎨⎪⎧-2k +b =7,k +b =-11.解得⎩⎪⎨⎪⎧k =-6,b =-5. 6.写出下列各题中y 与x 之间的关系式,并判断y 是不是x 的一次函数?如果是,请判断y 是不是x 的正比例函数?(1)某小区的物业费是按房屋面积每平方米0.5元/月来收取的,该小区业主每个月应缴的物业费y(元)与房屋面积x(平方米)之间的关系;(2)地面气温是28 ℃,如果高度每升高1 km ,那么气温会下降5 ℃,气温y(℃)与高度x(km)之间的关系;(3)圆面积S(cm 2)与半径r(cm)之间的关系.解:(1)y =0.5x ,y 是x 的一次函数,y 也是x 的正比例函数. (2)y =28-5x ,y 是x 的一次函数,但y 不是x 的正比例函数. (3)S =πr 2,S 不是r 的一次函数,S 也不是r 的正比例函数.7.一根祝寿蜡烛长85 cm ,点燃后每小时缩短5 cm.(1)请写出点燃后蜡烛的长y(cm)与蜡烛燃烧时间t(h)之间的函数关系式; (2)该蜡烛可点燃多长时间?解:(1) ∵蜡烛的长等于蜡烛的原长减去燃烧的长度, ∴y =85-5t(0≤t ≤17).(2)∵蜡烛燃尽时蜡烛的长度y =0, ∴85-5t =0,解得t =17. ∴该蜡烛可点燃17小时.8.关于函数y =kx +b(k ,b 是常数,k ≠0),下列说法正确的有 ( B ) ①y 是x 的一次函数; ②y 是x 的正比例函数;③当b =0时,y =kx 是正比例函数; ④只有当b ≠0时,y 才是x 的一次函数.A .1个B .2个C .3个D .4个 9.李大爷要围成一个矩形菜园,菜园的一边利用足够长的墙,用篱笆围成的另外三边总长应恰好为24米,要围成的菜园是如图所示的矩形ABCD ,设BC 边的长为x 米,AB 边的长为y 米,则y 与x 之间的函数关系式是( B )A .y =-2x +24(0<x <12)B .y =-12x +12(0<x <24)C .y =2x -24(0<x <12)D .y =12x -12(0<x <24)10.根据图中的程序,当输入数值x 为-2时,输出数值y 为6.11.已知y =(m +1)x 2-|m|+n +4.(1)当m ,n 取何值时,y 是x 的一次函数? (2)当m ,n 取何值时,y 是x 的正比例函数?解:(1)根据一次函数的定义,有 m +1≠0且2-|m|=1, 解得m =1,∴m =1,n 为任意实数时,y 是x 的一次函数. (2)根据正比例函数的定义,有 m +1≠0且2-|m|=1,n +4=0, 解得m =1,n =-4.∴当m =1,n =-4时,y 是x 的正比例函数. 12.某手机专卖店对营业员的工资标准规定如下:(1)写出每月工资总额y(元)与销售手机部数x(部)之间的关系式;它是一次函数吗? (2)营业员小芳本月销售手机30部,她本月的工资总额是多少元?(3)若小芳的月工资总额要达到3 300元(含3 300元)以上,问她至少要销售多少部手机? 解:(1)y =30x +1 500;是一次函数. (2)当x =30时,y =30×30+1 500=2 400. ∴她本月的工资总额是 2 400元.(3)当y ≥3 300时,30x +1 500≥3 300,x ≥60, ∴她至少要销售60部手机.13.已知y =y 1+y 2,y 1与x 成正比例,y 2与x -2成正比例,当x =1时,y =0;当x =-3时,y =4.(1)求y 与x 的函数关系式,并说明此函数是什么函数; (2)当x =3时,求y 的值.解:(1)设y 1=k 1x ,y 2=k 2(x -2),则y =k 1x +k 2(x -2),依题意,得⎩⎨⎧k 1-k 2=0,-3k 1-5k 2=4, 解得⎩⎨⎧k 1=-12,k 2=-12.∴y =-12x -12(x -2),即y =-x +1.∴y 是x 的一次函数.(2)把x =3代入y =-x +1,得y =-2. ∴当x =3时,y 的值为-2.第2课时 一次函数的图象与性质1.已知函数y =-2x +3. (1)画出这个函数的图象;(2)写出这个函数的图象与x 轴、y 轴的交点的坐标. 解:(1)如图.(2)函数y =-2x +3与x 轴、y 轴的交点的坐标分别是(32,0),(0,3).2.将直线y =-2x 向上平移1个单位长度,平移后直线的解析式为y =-2x +1. 3.将正比例函数y =-2x 的图象向下平移3个单位长度后所得图象对应的函数解析式是的函数解析式为y =-2x -3. 4.C 5.B6.点(-12,m)和点(2,n)在直线y =2x +b 上,则m 与n 的大小关系是m <n .7.函数y =x -1的图象一定不经过第二象限. 8.D9.若直线y =kx -6与坐标轴围成的三角形的面积为9,则k =±2. 10.C 11.C 12.B13.若点(a ,b)在一次函数y =2x -3的图象上,则代数式4a -2b -3的值是3.14.如图,在平面直角坐标系中,直线y =-43x +4与x 轴,y 轴分别交于A ,B 两点,点C在第二象限.若BC =OC =OA ,则点C15.若一次函数y =(2m -1)x +3-2m 的图象经过第一、二、四象限,则m 的取值范围是m <12.16.已知关于x 的一次函数y =(2m +1)x +m -3. (1)若函数图象经过原点,求m 的值.(2)若函数的图象平行于直线y =3x -3,求m 的值. (3)当m 取何值时,函数图象与y 轴交点在x 轴下方? 解:(1)把(0,0)代入y =(2m +1)x +m -3,得m =3. (2)由题意,得2m +1=3,解得m =1.(3)由题意,得⎩⎨⎧2m +1≠0,m -3<0,解得m <3且m ≠-12.17.已知一次函数y =2x +a 与y =-x +b 的图象都经过A(-2,0),且与y 轴分别交于B ,C 两点. (1)求a ,b 的值;(2)画出一次函数y =2x +a 与y =-x +b 的图象; (3)求△ABC 的面积.解:(1)将点A(-2,0)的坐标代入y =2x +a ,得-4+a =0,解得a =4. 将点A(-2,0)的坐标代入y =-x +b ,得2+b =0,解得b =-2. (2)∵两个函数分别为y =2x +4和y =-x -2,∴一次函数y =2x +4的图象与y 轴的交点B 的坐标为(0,4),一次函数y =x -2的图象与y 轴的交点C 的坐标为(0,-2). 函数图象如图.(3)∵B(0,4),C(0,-2),A(-2,0), ∴OA =2,BC =4+2=6. ∴S △ABC =12OA·BC =12×2×6=6.。

19.2.2 一次函数(1) 人教版数学八年级下册同步练习(含解析)

19.2.2 一次函数(1) 人教版数学八年级下册同步练习(含解析)

第十九章 一次函数19.2.2 一次函数(1)基础过关全练知识点1 一次函数的定义1.下列函数关系式中,属于一次函数的是( )A.y =2x -1  B.y =x 2+1C.y =kx +b (k 、b 是常数)D.y =1-2x2.(2022黑龙江哈尔滨期末)当m 为何值时,函数y =(m -3)x 3-|m |+m +2是一次函数( )A.2B.-2C.-2或2D.3知识点2 一次函数的图象与性质3.【教材变式·P92例3变式】下列函数图象中,表示直线y =2x +1的是( )A B C D4.【教材变式·P91思考变式】将直线y =5x 向下平移2个单位长度,所得直线的表达式为( )A.y =5x -2B.y =5x +2C.y =5(x +2)D.y =5(x -2)5.(2020黑龙江牡丹江中考)已知一次函数y =(2m -3)x +3n +1的图象经过第一、二、三象限,则m 、n 的取值是( )A.m >3,n >3B.m >32,n >-13 C.m <32,n <13 D.m >32,n <136.【新独家原创】新定义:[a,b,c]为函数y=ax2+bx+c(a,b,c为实数)的“关联数”.若“关联数”为[m-2,m,-1]的函数为一次函数,对于该一次函数,下列说法正确的是( ) A.它的图象过点(1,0) B.y值随着x值的增大而减小C.它的图象经过第二象限D.当x>1时,y>07.(2022云南八中期末)在一次函数y=(5a2+8)x-3(a为常数)的图象上有A(x1,y1),B(x2,y2),C(x3,y3)三点.若x1<x2<x3,则y1,y2,y3的大小关系为( )A.y1<y2<y3B.y2<y1<y3C.y1<y3<y2D.y3<y2<y18.(2020辽宁丹东中考)已知一次函数y=-2x+b,且b>0,则它的图象不经过第 象限.9.(2021四川眉山中考)一次函数y=(2a+3)x+2的值随x值的增大而减小,则常数a的取值范围是 .10.已知函数y=(2m+1)x+m-3.(1)若函数图象经过原点,求m的值;(2)若该函数的图象与直线y=3x-3平行,求m的值;(3)若这个函数是一次函数,且y随着x的增大而减小,求m的取值范围. 能力提升全练11.(2022湖南邵阳中考,8,★☆☆)在直角坐标系中,已知点,m,点,n是直线y=kx+b(k<0)上的两点,则m,n的大小关系是( )A.m<nB.m>nC.m≥nD.m≤n12.(2022河南信阳期末,8,★☆☆)已知点A(x1,y1),B(x2,y2)在直线y=kx+b(k≠0)上,y随x的增大而增大,且kb>0,则在平面直角坐标系内,它的图象大致是( )A B C D13.(2022浙江绍兴中考,9,★★☆)已知(x1,y1),(x2,y2),(x3,y3)为直线y=-2x+3上的三个点,且x1<x2<x3,则以下判断正确的是( ) A.若x1x2>0,则y1y3>0 B.若x1x3<0,则y1y2>0C.若x2x3>0,则y1y3>0D.若x2x3<0,则y1y2>014.(2020四川凉山州中考,7,★★☆)若一次函数y=(2m+1)x+m-3的图象不经过第二象限,则m的取值范围是( ) A.m>-12B.m<3C.-12<m<3 D.―12<m≤315.(2022安徽芜湖一中期末,12,★☆☆)已知点A(x1,y1),B(x2,y2)在一次函数y=(a-2)x+1的图象上,当x1>x2时,y1<y2,则a的取值范围是 .16.(2022重庆期末,12,★★☆)若关于x的分式方程6xx―1=3+axx―1的解为整数,且一次函数y=(7-a)x+a的图象不经过第四象限,则符合题意的整数a的个数为 .素养探究全练17.【几何直观】在平面直角坐标系xOy中,点P的坐标为(m+1,m-1).(1)试判断点P是否在一次函数y=x-2的图象上,并说明理由;(2)如图,一次函数y=-12x+3的图象与x轴、y轴分别相交于点A、B,若点P在△AOB的内部,求m的取值范围.18.【运算能力】一次函数y=(m-2)x+m2-1的图象经过点A(0,3).(1)求m的值,并写出函数解析式;(2)若函数图象与x轴交于点B,直线y=(n+2)x+n2-1也经过点A(0,3),且与x轴交于点C,求线段BC的长.答案全解全析基础过关全练1.D y =2x -1中,2x 不是整式,不是一次函数,y =x 2+1不是一次函数,y =kx +b (k 、b 是常数)中,当k =0时,不是一次函数,y =1-2x 是一次函数.故选D .2.C 由题意得3-|m |=1且m -3≠0,∴m =±2且m ≠3,∴m 的值为2或-2,故选C .3.B ∵k =2>0,b =1>0,∴直线经过第一、二、三象限.故选B .4.A 将直线y =5x 向下平移2个单位长度,所得直线的表达式为y =5x -2.故选A .5.B ∵一次函数y =(2m -3)x +3n +1的图象经过第一、二、三象限,∴2m ―3>0,3n +1>0,解得m >32,n >-13,故选B .6.D 根据题意可得m -2=0,且m ≠0,解得m =2,所以该一次函数表达式为y =2x -1,把x =1代入y =2x -1得到y =1,故该函数图象经过点(1,1),不经过点(1,0),故选项A 错误;函数y =2x -1中,k =2>0,则y 值随着x 值的增大而增大,故选项B 错误;函数y =2x -1中,k =2>0,b =-1<0,则该函数图象经过第一、三、四象限,故选项C 错误;当x >1时,2x -1>1,即y >1,故y >0正确,故选项D 正确.故选D .7.A 一次函数y =(5a 2+8)x -3(a 为常数)中,5a 2+8>0,∴y随x的增大而增大,∵x1<x2<x3,∴y1<y2<y3,故选A.8.答案 三解析 ∵一次函数y=-2x+b,且b>0,∴它的图象经过第一、二、四象限,不经过第三象限.9.答案 a<-32解析 ∵一次函数y=(2a+3)x+2的值随x值的增大而减小,∴2a+3<0,解得a<-32.10.解析 (1)∵函数y=(2m+1)x+m-3的图象经过原点,∴当x=0时,y=0,即m-3=0,解得m=3.(2)∵函数y=(2m+1)x+m-3的图象与直线y=3x-3平行,∴2m+1=3,且m-3≠-3,解得m=1.(3)∵这个函数是一次函数,且y随着x的增大而减小,∴2m+1<0,解得m<-12.能力提升全练11.A ∵点,m,点,n是直线y=kx+b上的两点,且k<0,∴y随x的增大而减小,∵32>72,∴m<n,故选A.12.A ∵点A(x1,y1),B(x2,y2)在直线y=kx+b(k≠0)上,y随x的增大而增大,且kb>0,∴k>0,b>0,∴直线y=kx+b经过第一、二、三象限,故选A.13.D ∵y=-2x+3中,-2<0,∴y随x的增大而减小,当y=0时,x=1.5,∵(x1,y1),(x2,y2),(x3,y3)为直线y=-2x+3上的三个点,且x1<x2<x3,∴若x1x2>0,则x1,x2同号,但不能确定y1y3的正负,故选项A不符合题意;若x1x3<0,则x1,x3异号,但不能确定y1y2的正负,故选项B不符合题意;若x2x3>0,则x2,x3同号,但不能确定y1y3的正负,故选项C不符合题意;若x2x3<0,则x2,x3异号,则x1,x2同时为负,故y1,y2同时为正,故y1y2>0,故选项D符合题意.故选D.14.D 根据题意得2m+1>0,m―3≤0,解得―12<m≤3.故选D.15.答案 a<2解析 ∵当x1>x2时,y1<y2,∴a-2<0,∴a<2,故答案为a<2.16.答案 3解析 ∵一次函数y=(7-a)x+a的图象不经过第四象限,∴7―a>0,a≥0,解得0≤a<7,由分式方程6xx―1=3+axx―1得x=3a―3,∵分式方程6xx―1=3+axx―1的解为整数,且x≠1,∴整数a=0,2,4,∴符合题意的整数a的个数为3.素养探究全练17.解析 (1)∵当x=m+1时,y=m+1-2=m-1,∴点P(m+1,m-1)在函数y=x-2的图象上.(2)∵函数y=-12x+3的图象与x轴、y轴分别相交于点A、B,∴A (6,0),B (0,3),∵点P 在△AOB 的内部,∴0<m +1<6,0<m -1<3,m -1<-12(m +1)+3,∴1<m <73.18.解析 (1)由题意得m 2-1=3,所以m =±2.又m -2≠0,所以m ≠2,所以m =-2,所以y =-4x +3.(2)由题意可得点B ,0.因为直线y =(n +2)x +n 2-1经过点A (0,3),所以n 2-1=3,所以n =±2.又n +2≠0,所以n ≠-2,所以n =2.所以y =4x +3,所以点C 的坐标为―34,0,所以线段BC 的长为34―=32.。

人教版八年级下册数学 19.2.2 一次函数 同步练习

人教版八年级下册数学 19.2.2 一次函数 同步练习

19.2.2 一次函数 同步练习一、选择题1.在平面直角坐标系中,直线经过( )A. 第一、二、三象限B. 第一、二、四象限C. 第一、三、四象限D. 第二、三、四象限2.一次函数y =3x +6的图象与x 轴的交点是( )A. (0,6)B. (0,-6)C. (2,0)D. (-2,0)3.已知一次函数,若随的增大而减小,则的取值范围是( ) A. B. C. D.4.一次函数y=2x+3的图像可看作由y=2x-4的图像如何平移得到的( )A. 向上平移7个单位B. 向下平移7个单位C. 向左平移7个单位D. 向右平移7个单位5.在同一坐标系中,函数y kx =与2x y k =-的图象大致是( ) A. B. C. D.6.已知正比例函数y=kx(k≠0)的函数值y 随x 的增大而减小,则函数y=kx-k 的图象大致是( )7.已知一次函数y =kx -k ,若y 随x 的增大而增大,则图象经过( )A. 第一、二、三象限B. 第一、三、四象限C. 第一、二、四象限D. 第二、三、四象限8.直线():32l y m x n =-+-(m , n 为常数)的图象如图,化简:︱3m -︱-244n n -+得( )A. 5m n --B. 5C. -1D. 5m n +-9.若一次函数y =(2k -1)x +3的图象经过A (x 1,y 1)和B (x 2,y 2)两点,且当x 1<x 2时,y 1>y 2,则k 的取值范围是( )A. k <0B. k >0C. k <12 D. k >12二、填空题10.一次函数y =3x +4图像经过第____象限,与x 轴的交点为_______,与y 轴的交点为______,将图象再向_____平移______单位长度,则图象经过原点.11.已知是关于x 的一次函数,则m=_________,n=_________. 直线与x 轴的交点坐标是__________,与y 轴的交点坐标是__________. 12.已知点(-5, 1y )和点(-2, 2y )都在直线112y x =-+上,则函数值1y , 2y 的大小关系是___(用“>”或“<”号连接)13.若一次函数的图象经过二、三、四象限,则__________,__________.14.若一次函数y=kx+b (k≠0)的图像不过第四象限,且点M (-4,m )、N (-5,n )都在其图像上,则m 和n 的大小关系是________;15.一次函数y=kx+b (kb <0)图象一定经过第__________ 象限.16.已知y 是x 的函数,在y =(m +2)x +m -3中,y 随x 的增大而减小,图象与y 轴交于负半轴,则m 的取值范围是_______________.三、解答题17.已知一次函数y=(1-2m )x+m-1,若函数y 随x 的增大而减小,并且函数的图象经过二、三、四象限,求m 的取值范围。

人教版数学八年级下册19.2.2 一次函数(1)同步练习(解析版)

人教版数学八年级下册19.2.2  一次函数(1)同步练习(解析版)

19.2.2 一次函数(1)基础闯关全练1.下列函数关系式:①y=-x;②y=2x+11;③y=x²+x+1;④y=x1,其中一次函数的个数是()A.1 B.2 C.3 D.42.函数y-(m-2)x+(m+1)是关于x的一次函数,那么m的取值范围是()A.m≠2 B.m≠-1 C.m=-1 D.m≠2且m≠-13.一次函数y=-2x+3的图象不经过()A.第一象限 B.第二象限 C.第三象限 D.第四象限4.在平面直角坐标系中,一次函数y=kx+b的图象如图19-2-2-1-1所示,观察图象可得()A.k>0,b>0 B.k>0,b<0 C.k<O,b>0 D.k<0,b<0 5.一次函数y=kx+2(k为常数,且k≠0)的图象如图19-2-2-1-2所示,则k的可能值为_______.(写出一个即可)能力提升全练1.已知一次函数y=kx-m-2x的图象与y轴的负半轴相交,且函数值y随自变量x的增大而减小,则下列结论正确的是()A.k<2,m>0 B.k<2,m<0 C.k>2,m>0 D.k>2,m<0 2.把函数y=x向上平移3个单位长度,下列点在该平移后的直线上的是()A.(2,2) B.(2,3) C.(2,4) D.(2,5)3.如图19-2-2-1-3,一个函数的图象由射线BA、线段BC、射线CD组成,其中点A(-1,2),B(1,3),C(2,1),D(6,5),则此函数()A.当x<1时,y随x的增大而增大 B.当x<1时,y随x的增大而减小C.当x>1时,y随x的增大而增大 D.当x>1时,y随x的增大而减小三年模拟全练一、选择题1.下列函数关系式:①y=-2x+1;②y=x;③y=2x²+1;④y=123x,其中一次函数有()A.1个 B.2个 C.3个 D.4个2.关于函数y=-2x+1,下列结论正确的是()A.图象必经过点(-2,1) B.图象经过第一、二、三象限C.当x>21时,y<0 D. y随x的增大而增大3.在如图19-2-2-1-4所示的计算程序中,y与x之间的函数关系所对应的图象应为()A .B .C.D .二、填空题4.若一次函数y=(1-2k)·x+k的图象经过第一、二、三象限,则k的取值范围是_______.三、解答题5.已知一次函数y=(3-m)x+m-5.(1)若一次函数的图象过原点,求实数m的值;(2)当一次函数的图象经过第二、三、四象限时,求实数m的取值范围.五年中考全练一、选择题1.若b>0,则一次函数y=-x+b的图象大致是()A .B .C .D .2.已知点(-1,y₁),(4,y₂)在一次函数y=3x-2的图象上,则y₁,y₂,0的大小关系是 ( )A.O<y₁<y₂B.y₁<O<y₂C.y₁<y₂<0 D.y₂<O<y₁二、填空题3.将直线y=x向上平移2个单位长度,平移后直线的解析式为_______.4.在平面直角坐标系中,已知一次函数y=-2x+1的图象经过P₁(x₁,y₁.),P₂(x₂,y₂)两点,若x₁<x₂,则y₁_______y₂(填“>”“<”或“=”).5.已知点A是直线y=x+1上一点,其横坐标为-21,若点B与点A关于y轴对称,则点B的坐标为_________.核心素养全练1.已知关于x的一次函数y=(a+3)x+(b-2).(1)当a为何值时,y随x的增大而减小?(2)当a,b为何值时,函数图象与y轴的交点在x轴上方?(3)当a,b为何值时,函数图象经过第一、三、四象限?(4)当a,b为何值时,函数图象经过原点?(5)当a,b为何值时,函数的图象与直线y=-3x平行?2.一次函数y=(m-2)x+m²-1的图象经过点A(0,3).(1)求m的值,并写出函数解析式;(2)若(1)中的函数图象与x轴交于点B,直线y=(n+2)x+n²-1也经过点A(0,3),且与x轴交于点C,求线段BC的长.19.2.2一次函数(1)1.B①y=-x是一次函数;②y=2x+11是一次函数;③④不符合一次函数的定义,故不是一次函数,故选B.2.A根据一次函数的定义知,一次项系数不等于0.即m-2≠0.解得m≠2.3.C ∵k=-2<0,∴一次函数y=-2x+3的图象必过第二、四象限,∴b=3,∴函数图象交y轴于正半轴,∴函数图象经过第一、二、四象限,不经过第三象限.故选C.4.A由图象可知,直线从左往右呈上升趋势,故k>0,图象与y轴的交点在y轴正半轴上,故b>0.5.答案 -2(答案不唯一)解析观察图象可知,OB<OA,k<0.当x=0时,y=kx+2=2,∴OA=2,令OB=1.则点B(1,0),将(1,0)代入y=kx+2,得0=k+2,解得k=-2.1.A整理得y=(k-2)x-m,因为函数图象与y轴负半轴相交,所以-m<0.即m>0,又函数值y随x的增大而减小,所以k-2<0.即k<2.故选A.2.D 一次函数的平移规律是“左加右减,上加下减”,故把函数y=x向上平移3个单位长度后的函数关系式为y=x+3,当x=2时.y=2+3=5.故选D .3.A 由函数图象可知,当x <1时,y 随x 的增大而增大,因此A 正确,B 错误;当1<x <2时,y 随x 的增大而减小,当x >2时,y 随x 的增大而增大,因此C 、D 错误,故选A .一、选择题1.B ①y=-2x+1和②y=x 是一次函数,③④不符合一次函数的定义.故选B .2.C ∵k <0,所以y 随x 的增大而减小,故D 错误;∵k <0,b >0,∴图象经过一、二、四象限,故B 错误;当x=-2时,y=4+1=5,故A 错误.故选C .3.A 由题意得y=-2x+3,所以当x=0时,y=3;当y=0时,x=1.5,即图象经过点(0,3)和点(1.5,0),选项A 符合要求,故选A .二、填空题4.答案0<k <21解析 ∵一次函数y=(1-2k)x+k 的图象经过第一、二、三象限,∴⎩⎨⎧-,0,021>>k k ∴0<k<21. 三、解答题5.解析(1)∵一次函数图象过原点, ∴⎩⎨⎧,0=5-m ,0≠m -3解得m=5.(2)∵一次函数的图象经过第二、三、四象限,⎩⎨⎧,<<05-m ,0m -3∴3<m <5. 一、选择题1.C 对于一次函数y=kx+b(k ≠0),当k >0时,图象从左到右上升;当k <0时,图象从左到右下降;当b >0时,图象与y 轴的交点在y 轴正半轴;当b=0时,图象与y轴的交点在原点;当b <0时,图象与y 轴的交点在y 轴负半轴∵-1<0,∴图象从左到右下降,又b >0,∴图象与y 轴的交点在y 轴正半轴,故选C .2.B 解法一:将x=-1代入y=3x-2,得y=-5,∴y ₁=-5;将x=4代入y=3x-2,得y=10,∴y ₂=10,所以y ₁<O <y ₂.故选B .解法二:∵k=3>0,∴y 随x 的增大而增大,易知x=32时,y=0,又-1<32<4,∴y ₁<0<y ₁,故选B .二、填空题 3.答案y=x+2解析 由平移规律“左加右减,上加下减”,可知向上平移2个单位长度后,直线的解析式为y=x+2. 4.答案 >解析 一次函数y=kx+b 中,当k >0时,y 随x 的增大而增大;当k <0时,y 随x 的增大而减小,因为y=-2x+1中的k=-2<0,所以当x ₁<x ₂时,y ₁>y ₂. 5.答案(2121,)解析把x=-21代入y=x+1得y=21,∴点A 的坐标为(-2121,),∵点8和点A 关于y 轴对称,∴点B 的坐标为(2121,).1.解析(1)由一次函数的性质可知,当a+3<0,即a <-3时,y 随x 的增大而减小. (2)由题意知,当a+3≠0且b-2>0时,即当a ≠-3且b >2时,函数图象与y 轴的交点在x 轴上方.(3)因为函数图象经过第一、三、四象限,所以a+3>0且b-2<0.所以a >-3且b <2,即当a >-3且b <2时,函数图象经过第一、三、四象限.(4)由题意,得a+3≠0且b-2=0,解得a ≠-3且b=2.即当a ≠-3且b=2时,函数图象经过原点.(5)由题意,得a+3=-3且b-2≠0,解得a=-6且b ≠2.所以当a=-6且b ≠2时,函数图象与直线y=-3x 平行. 2.解析(1)由题意得m ²-1=3, 所以m=±2. 又m-2≠0,即m ≠2, 所以m=-2,所以y=-4x+3.(2)由题意可得B 点的坐标为(43,0). 因为直线y=(n+2)x+n ²-1经过点A(0,3), 所以n ²-1=3,所以n=±2. 又n+2≠0.即n ≠-2.所以n=2. 所以y=4x+3,所以C 点的坐标为(-43,0).所以BC=2343--43=⎪⎭⎫ ⎝⎛.。

八年级数学下册 19.2 一次函数同步练习(一)(含解析)(

八年级数学下册 19.2 一次函数同步练习(一)(含解析)(

19.2一次函数同步练习(一)一、单项选择题(本大题共有15小题,每小题3分,共45分)1、已知一次函数上有两点和,那么这个一次函数为()A.B.C.D.2、直线的图象如图所示,则方程的解为()A.B.C.D.3、下列式子中,表示是的正比例函数的是()A.B.C.D.4、已知一次函数经过点,则的值是()A.B.C.D.5、一个正比例函数的图象经过点,它的表达式为()A.B.C.D.6、下列函数是一次函数的是()A.B.C.D.7、若与成正比例,当时,;则当时,的值是()A.B.C.D.8、如图,过点的一次函数的图象与正比例函数的图象相交于点,则这个一次函数的解析式是()A.B.C.D.9、一次函数的图象不经过()A. 第一象限B. 第二象限C. 第三象限D. 第四象限10、设正比例函数的图象经过点,且的值随值的增大而减小,则()A.B.C.D.11、已知正比例函数的图象过第二、四象限,则的取值范围是()A.B.C.D.12、已知正比例函数,随的增大而减小,则的取值范围是()A.B.C.D.13、两条直线与在同一直角坐标系中的图象位置可能是()A.B.C.D.14、下列问题中,是正比例函数的是()A. 矩形面积固定,长和宽的关系B. 正方形面积和边长之间的关系C. 三角形的面积一定,底边和底边上的高之间的关系D. 匀速运动中,速度固定时,路程和时间的关系15、函数中,当自变量增加时,函数值就()A. 增加B. 增加C. 减少D. 减少二、填空题(本大题共有5小题,每小题5分,共25分)16、若汽车以千米/时速度匀速行驶,随着时间(时)的变化,汽车的行驶路程也随着变化,则它们之间的关系式为 .17、已知函数,当______时,它是一次函数,当______时,它是正比例函数.18、在正比例函数中,函数的值随的值的增大而增大,则在第______象限.19、已知函数,函数值随的增大而______(填“增大”或“减小”)20、已知函数,当______时,它是一次函数,当______时,它是正比例函数.三、解答题(本大题共有3小题,每小题10分,共30分)21、已知正比例函数,若随的增大而增大,求的取值范围.22、已知是关于的正比例函数,求当时,的值.23、如图,抛物线与直线交于点和.求的值;19.2一次函数同步练习(一) 答案部分一、单项选择题(本大题共有15小题,每小题3分,共45分)1、已知一次函数上有两点和,那么这个一次函数为()A.B.C.D.【答案】C【解析】解:将和代入得,,则,即该一次函数为。

人教版八年级数学下册《19.2 一次函数》 同步练习 包含答案

人教版八年级数学下册《19.2 一次函数》 同步练习  包含答案

19.2 一次函数一.选择题(共10小题)1.若函数y=2x+(﹣3﹣m)是正比例函数,则m的值是()A.﹣3B.1C.﹣7D.32.若y=(m﹣1)x2﹣|m|+3是关于x的一次函数,则m的值为()A.1B.﹣1C.±1D.±23.如果y=(1﹣m)x是正比例函数,且y随x的增大而减小,则m的值为()A.m=﹣B.m=C.m=3D.m=﹣34.直线l1:y=kx+b与直线l2:y=bx+k在同一坐标系中的大致位置是()A.B.C.D.5.将直线y=﹣2x﹣2向上平移2个单位长度,可得直线的解析式为()A.y=2x B.y=﹣2x﹣4C.y=﹣2x D.y=﹣2x+46.已知一次函数y=mx+n的图象经过一、三、四象限,则一次函数y=mnx+m﹣n的图象大致是()A.B.C.D.7.一次函数y=2x﹣3与y轴的交点坐标为()A.(0,﹣3)B.(0,3)C.(,0)D.(﹣,0)8.关于正比例函数y=﹣3x,下列结论正确的是()A.图象不经过原点B.y随x的增大而增大C.图象经过第二、四象限D.当x=时,y=19.在平面直角坐标系中,一次函数y=﹣2x+1的图象经过P1(﹣1,y1),P2(2,y2)两点,则()A.y1>y2B.y1<y2C.y1=y2D.y1≥y210.两个一次函数y1=ax+b与y2=bx+a(a,b为常数,且ab≠0),它们在同一个坐标系中的图象可能是()A.B.C.D.二.填空题(共4小题)11.如果正比例函数y=(k﹣3)x的图象经过第一、三象限,那么k的取值范围是.12.正比例函数的图象是,当k>0时,直线y=kx过第象限,y随x的增大而.13.一次函数y=kx+b的图象如图所示,当y>0时,x的取值范围是.14.如图,将含45°角的直角三角尺放置在平面直角坐标系中,其中A(﹣2,0),B(0,1),则直线BC的函数表达式为.三.解答题15.已知一次函数y=kx+b(k≠0)的图象交x轴于点A(2,0),交y轴于点B,且△AOB 的面积为3,求此一次函数的解析式.16.正比例函数y=kx中,当x增加2时,y增加3,求该正比例函数的解析式.17.对于平面直角坐标系xOy中的图形M,N,给出如下定义:P为图形M上任意一点,Q 为图形N上任意一点,如果P,Q两点间的距离有最小值,那么称这个最小值为图形M,N间的“距离“,记作d(M,N).特别的,当图形M,N有公共点时,记作d(M,N)=0.一次函数y=kx+2的图象为L,L与y轴交点为D,△ABC中,A(0,1),B(﹣1,0),C(1,0).(1)求d(点D,△ABC)=;当k=1时,求d(L,△ABC)=;(2)若d(L,△ABC)=0.直接写出k的取值范围;(3)函数y=x+b的图象记为W,若d(W,△ABC)≤1,求出b的取值范围.18.如图,直线y=x+4与x轴相交于点A,与y轴相交于点B.(1)求△AOB的面积;(2)过B点作直线BC与x轴相交于点C,若△ABC的面积是16,求点C的坐标.19.已知正比例函数y=kx的图象经过点A(2,4),点B(6,0)为x轴正半轴上的一点.(1)求正比例函数的解析式;(2)点P为正比例函数图象上的一个动点,若△ABP为等腰三角形,求点P的坐标.20.在平面直角坐标系xOy中,函数y1=x﹣2的图象与函数y2=的图象在第一象限有一个交点A,且点A的横坐标是6.(1)求m的值;(2)补全表格并以表中各组对应值作为点的坐标,在直角坐标系内描出相应的点,补充画出y2的函数图象;x﹣3﹣2﹣101 1.2 1.523456789 y2﹣1157 5.2 3.52112(3)写出函数y2的一条性质:.(4)已知函数y1与y2的图象在第一象限有且只有一个交点A,若函数y3=x+n与y2的函数图象有三个交点,求n的取值范围.参考答案一.选择题(共10小题)1.A.2.B.3.B.4.C.5.C.6.A.7.A.8.C.9.A.10.B.二.填空题(共4小题)11.k>3.12.一条直线;一、三;增大.13.x<2.14.y=﹣x+1.三.解答题15.解:∵A(2,0),S△AOB=3,∴OB=3,∴B(0,3)或(0,﹣3).①当B(0,3)时,把A(2,0)、B(0,3)代入y=kx+b中得∴,解得:.∴一次函数的解析式为.②当B(0,﹣3)时,把A(2,0)、B(0,﹣3)代入y=kx+b中得,,解得:.∴.综上所述,该函数解析式为y=﹣x+3或y=x﹣3.16.解:∵当x增加2时,y增加3,∴y+3=k(x+2),y+3=kx+2k,∵y=kx,∴3=2k,解得:k=,∴正比例函数解析式为y=x.17.解:(1)一次函数y=kx+2的图象与y轴交点D(0,2),d(点D,△ABC)表示点D到△ABC的最小距离,就是点D到点A的距离,即:AD=2﹣1=1,∴d(点D,△ABC)=1当k=1时,直线y=x+2,此时直线L与AB所在的直线平行,且△ABC和△DOE均是等腰直角三角形,d(L,△ABC)表示直线L到△ABC的最小距离,就是图中的AF,在等腰直角三角形ADF中,AD=1,AF=1×=d(L,△ABC)=故答案为:1,;(2)若d(L,△ABC)=0.说明直线L:y=kx+2与△ABC有公共点,因此有两种情况,即:k>0或k<0,仅有一个公共点时如图所示,即直线L 过B点,或过C点,此时可求出k=2或k=﹣2,根据直线L与△ABC有公共点,∴k≥2或k≤﹣2,答:若d(L,△ABC)=0时.k的取值范围为:k≥2或k≤﹣2.(3)函数y=x+b的图象W与x轴、y轴交点所围成的三角形是等腰直角三角形,并且函数y=x+b的图象与AB平行,当d(W,△ABC)=1时,如图所示:在△AGM中,AG=GM=1,则AM=,OM=1+,M(0,1+);即:b=1+;同理:OQ=OP=1+,Q(0,﹣1﹣),即:b=﹣1﹣,若d(W,△ABC)≤1,即b的值在M、N之间∴﹣1﹣≤b≤1+答:若d(W,△ABC)≤1,b的取值范围为﹣1﹣≤b≤1+.18.解:(1)把x=0代入y=x+4得:y=4,即点B的坐标为:(0,4),把y=0代入y=x+4得:x+4=0,解得:x=﹣6,即点A的坐标为:(﹣6,0),S△AOB==12,即△AOB的面积为12,(2)根据题意得:点B到AC的距离为4,S△ABC==16,解得:AC=8,即点C到点A的距离为8,﹣6﹣8=﹣14,﹣6+8=2,即点C的坐标为:(﹣14,0)或(2,0).19.解:(1)把A(2,4)代入y=kx得2k=4,解得k=2,所以正比例函数的解析式为y=2x;(2)设P(t,2t),AP2=(t﹣2)2+(2t﹣4)2,PB2=(t﹣6)2+(2t)2,AB2=(6﹣2)2+(0﹣4)2=32,当AP=PB时,(t﹣2)2+(2t﹣4)2=(t﹣6)2+(2t)2,解得t=﹣2,此时P点坐标为(﹣2,﹣4);(t﹣2)2+(2t﹣4)2=32,解得t=,此时P点坐标为(,当AP=AB时,)或(,);当PB=AB时,(t﹣6)2+(2t)2=32,解得t1=,t2=2(舍去),此时P点坐标为(,).综上所述,满足条件的P点坐标为(﹣2,﹣4)或(,)或(,)或(,).20.解:(1)在y1=x﹣2中,令x=6,则y=2,即A(6,2),代入y=x+﹣6,可得2=6+﹣6,解得m=12;(2)∵y2=,∴当x=﹣1时,y2=3;当x=5时,y2=;如图所示:(3)由图可得,函数y2的一条性质:当x≤1时,y2随着x的增大而增大;故答案为:当x≤1时,y2随着x的增大而增大;(4)函数y1与y2的图象在第一象限有且只有一个交点A,当n=﹣2时,函数y3=x+n与函数y1=x﹣2的图象重合,此时函数y3=x+n与y2的函数图象有两个交点,当函数y3=x+n的图象经过(1,7)时,函数y3=x+n与y2的函数图象有两个交点,此时,把(1,7)代入y3=x+n,可得n=;∵函数y3=x+n与y2的函数图象有三个交点,∴n的取值范围为﹣2<n<.。

人教版八年级下册 第十九章 一次函数 19.2 一次函数 同步练习(含答案)

人教版八年级下册 第十九章 一次函数 19.2 一次函数   同步练习(含答案)

一次函数同步练习一.选择题(共12小题)1.若函数y=(m-1)x|m|-5是一次函数,则m的值为()A.±1B.-1C.1D.22.关于函数y=-2x+1,下列结论正确的是()A.图象必经过(-2,1)B.y随x的增大而增大C.图象经过第一、二、三象限D.当x>0.5时,y<03.直线y=kx+3经过点A(2,1),则不等式kx+3≥0的解集是()A.x≤3B.x≥3C.x≥-3D.x≤04.坐标平面上,某个一次函数的图形通过(5,0)、(10,-10)两点,判断此函数的图形会通过下列哪一点?()A.B.C.D.5.已知一次函数y=kx+b的图象经过第一、二、三象限,则b的值可以是()A.-2B.-1C.0D.26.设点A(-3,a),B(b,0.5)在同一个正比例函数的图象上,则ab的值为()A.-B.-C.-6D.7.已知一次函数y=kx+b-x的图象与x轴的正半轴相交,且函数值y随自变量x的增大而增大,则k,b的取值情况为()A.k>1,b<0B.k>1,b>0C.k>0,b>0D.k>0,b<0 8.一次函数y=mx+n与y=mnx(mn≠0),在同一平面直角坐标系的图象是()A.B.C.D.9.一次函数y=2x-4的图象与x轴、y轴分别交于A,B两点,O为原点,则△AOB的面积是()A.2B.4C.6D.810.如图,直线与x轴、y轴分别交于点A和点B,点C、D分别为线段AB、OB 的中点,点P为OA上一动点,当PC+PD最小时,点P的坐标为()A.(-3,0)B.(-6,0)C.(-1.5,0)D.(-2.5,0)11.定义:点A(x,y)为平面直角坐标系内的点,若满足x=y,则把点A叫做“平衡点”.例如:M(1,1),N(-2,-2)都是“平衡点”.当-1≤x≤3时,直线y=2x+m上有“平衡点”,则m的取值范围是()A.0≤m≤1B.-3≤m≤1C.-3≤m≤3D.-1≤m≤012.如图,已知直线l:y=2x,分别过x轴上的点A1(1,0)、A2(2,0)、…、A n(n,0),作垂直于x轴的直线交l于点B1、B2、…、B n,将△OA1B1,四边形A1A2B2B1、…、四边形A n-1A n B n B n-1的面积依次记为S1、S2、…、S n,则S n=()A.n2B.2n+1C.2n D.2n-1二.填空题(共5小题)13.若一次函数y=2x+b(b为常数)的图象经过点(b,9),则b= .14.将一次函数y=2x的图象向上平移1个单位,所得图象对应的函数表达式为15.已知某直线经过点A(0,2),且与两坐标轴围成的三角形面积为2.则该直线的一次函数表达式是16.如图,一次函数y1=x+b与一次函数y2=kx+4的图象交于点P(1,3),则关于x的不等式x+b>kx+4的解集是17.正方形A1B1C1O,A2B2C2C1,A3B3C3C2,…按如图所示的方式放置.点A1,A2,A3,…和点C1,C2,C3…分别在直线y=kx+b(k>0)和x轴上,已知点B1(1,1),B2(3,2),则点B3的坐标是,点B n的坐标是三.解答题(共6小题)18.一次函数y=kx+4的图象过点(-1,7).(1)求k的值;(2)判断点(a,-3a+4)是否在该函数图象上,并说明理由.19.如图,在平面直角坐标系中,过点B(6,0)的直线AB与直线OA相交于点A(4,2),动点M沿路线O→A→C运动.(1)求直线AB的解析式.(2)求△OAC的面积.(3)当△OMC的面积是△OAC的面积的时,求出这时点M的坐标.20.如图,直线y=kx+b分别与x轴、y轴交于点A(-2,0),B(0,3);直线y=1-mx分别与x轴交于点C,与直线AB交于点D,已知关于x的不等式kx+b>1-mx的解集是x>(1)分别求出k,b,m的值;(2)求S△ACD.21.如图,直线y=-2x与直线y=kx+b相交于点A(a,2),并且直线y=kx+b经过x轴上点B(2,0)(1)求直线y=kx+b的解析式.(2)求两条直线与y轴围成的三角形面积.(3)直接写出不等式(k+2)x+b≥0的解集.22.如图,在平面直角坐标系中,直线l1:y=x与直线l2:y=kx+b相交于点A,点A的横坐标为4,直线l2交y轴负半轴于点B,且OA=OB.(1)求点B的坐标及直线l2的函数表达式;(2)现将直线l1沿y轴向上平移5个单位长度,交y轴于点C,交直线l2于点D,试求△BCD 的面积.23.如图,在平面直角坐标系中,点A(0,4),B(3,0),连接AB,将△AOB沿过点B 的直线折叠,使点A落在x轴上的点A′处,折痕所在的直线交y轴正半轴于点C,求直线BC的解析式.参考答案1-5:BDACD 6-10:BACBC 11-12:BD13、314、y=2x+115、y=x+2或y=-x+216、x>117、(7,4);(2n-1,2n-1)18、:(1)把x=-1,y=7代入y=kx+4中,可得:7=-k+4,解得:k=-3,(2)把x=a代入y=-3x+4中,可得:y=-3a+4,所以点(a,-3a+4)在该函数图象上.19、:(1)设直线AB的解析式是y=kx+b,根据题意得:,解得:,则直线的解析式是:y=-x+6;(2)在y=-x+6中,令x=0,解得:y=6,S△OAC=×6×4=12;(3)设OA的解析式是y=mx,则4m=2,解得:m=,则直线的解析式是:y=x,△当△OMC的面积是△OAC的面积的时,△M的横坐标是×4=1,在y=x中,当x=1时,y=,则M的坐标是(1,);在y=-x+6中,x=1则y=5,则M的坐标是(1,5).则M的坐标是:M1(1,)或M2(1,5).20、:(1)△直线y=kx+b分别与x轴、y轴交于点A(-2,0),B(0,3),解得:k=,b=3,△关于x的不等式kx+b>1-mx的解集是x>△点D的横坐标为,将将代入y=1-mx,解得:m=1;(2)对于y=1-x,令y=0,得:x=1,△点C的坐标为(1,0),△21、:(1)把A(a,2)代入y=-2x中,得-2a=2,△a=-1,△A(-1,2)把A(-1,2),B(2,0)代入y=kx+b中得,△一次函数的解析式是y=;(2)设直线AB与Y轴交于点C,则C(0,)△S△AOC=;(3)不等式(k+2)x+b≥0可以变形为kx+b≥-2x,结合图象得到解集为:x≥-1.22、:(1)△点A的横坐标为4,△y=×4=3,△点A的坐标是(4,3),△OA=5,△OA=OB,△OB=2OA=10,△点B的坐标是(0,-10),设直线l2的表达式是y=kx+b,则解得,△直线l2的函数表达式是y=;(2)将直线l1沿y轴向上平移5个单位长度得y=x+5,解得交点的横坐标为6,△23、:△A(0,4),B(3,0),△OA=4,OB=3,在Rt△OAB中,AB=5.△△AOB沿过点B的直线折叠,使点A落在x轴上的点A′处,△BA′=BA=5,CA′=CA,△OA′=BA′-OB=5-3=2.设OC=t,则CA=CA′=4-t,在Rt△OA′C中,△OC2+OA′2=CA′2,△t2+22=(4-t)2,解得t=,△C点坐标为(0,),设直线BC的解析式为y=kx+b,把B(3,0)、C(0,)代入得△直线BC的解析式为。

人教版数学八年级下《19.2一次函数》同步练习题(含答案)

人教版数学八年级下《19.2一次函数》同步练习题(含答案)

《19.2一次函数》同步练习题一、选择题(每小题只有一个正确答案)1.下列函数:①y=x ;②y=;③y=;④y=2x+1,其中一次函数的个数是( )A .1B .2C .3D .42.一列快车从甲地开往乙地,一列慢车从乙地开往甲地,两车同时出发,两车离乙地的路程s(千米)与行驶时间t(小时)的关系如图所示,则下列结论中错误的是( )A. 甲、乙两地的路程是400千米B. 慢车行驶速度为60千米/小时C. 相遇时快车行驶了150千米D. 快车出发后4小时到达乙地3.已知一次函数,若随着的增大而减小,则该函数图象经过( )(A )第一、二、三象限 (B )第一、二、四象限(C )第二、三、四象限 (D )第一、三、四象限4.一次函数b kx y +=,当3-≤x ≤1时, y 的取值范围为1≤y ≤9,则k ·b 的值为( )A .14B .6-C .4-或21D .6-或145.若y =x +2﹣3b 是正比例函数,则b 的值是( ).A .0B .32C .-32D .-23 6.下图中表示一次函数n mx y +=与正比例函数mnx y =(m ,n 是常数,且mn ≠0)图像的是( ).7.一次函数y 1=kx+b 与y 2=x+a 的图象如图,则下列结论:①k<0;②a>0:③b>0;④x<2时,kx+b <x+a 中,正确的个数是( )A .1 B.2 C.3 D.4二、填空题8.已知:一次函数y k x b=+的图像平行于直线1y x=-+,且经过点(0,-4),那么这个一次函数的解析式为 .9.已知,一次函数y kx b=+的图像与正比例函数13y x=交于点A,并与y轴交于点(0,4)B-,△AOB的面积为6,则kb=。

10.一次函数y=(-2a-5)x+2中,y随x的增大而减小,则a的取值范围是_________.11.直线y=-2x+m+2和直线y=3x+m-3的交点坐标互为相反数,则m=______。

人教版八年级数学下册19.2.2一次函数(第一课时 一次函数的概念)同步练习题

人教版八年级数学下册19.2.2一次函数(第一课时 一次函数的概念)同步练习题

一次函数 第一课时一. 选择题1.若函数y=(m-1)x∣m∣-5是一次函数,则m 的值为( ) A .±1 B .-1C .1D .2 2.等腰三角形底角与顶角之间的函数关系是( )A .正比例函数B .一次函数C .反比例函数D .二次函数A .1个B .2个C .3个D .4个A .1个B .2个C .3个D .4个 5.嘉嘉买了6支笔花了9元钱,琪琪买了同样售价的x 支笔,还买了单价为5元的三角尺两幅,用y (元)表示琪琪花的总钱数,那么y 与x 之间的关系式应该是( )A . 1.510y x =+B .510y x =+C . 1.55y x =+D .55y x =+A .3B .1C .2D .3或17.一次函数y=(m ﹣2)x n ﹣1+3是关于x 的一次函数,则m ,n 的值为( )A .m≠2,n=2B .m=2,n=2C .m≠2,n=1D .m=2,n=1 8.已知初一(6)班的班费总共为200元,现在要为全班x 个同学每人购买一个笔袋,笔袋单价为2元,则购买后剩余班费y 元与班级人数x 之间的函数关系式为 ( )A .2y x =B .2002y x =-C .2200y x =-D .2002y x =+9.某商场存放处每周的存车量为5000辆次,其中自行车存车费是毎辆一次1元,电动车存车费为每辆一次2元,若自行车存车量为x 辆次,存车的总收入为y 元,则y 与x 之间的关系式是( )A .y =﹣x +10000B .y =﹣2x +5000C .y =x +1000D .y =x +500010.若一次函数y=kx+17的图象经过点(-3,2),则k 的值为( )A .-6B .6C .-5D .5二、填空题11.已知23(2)1m y m x m -=+++是一次函数,则m =__________.12.已知一次函数24y x =+的图象经过点(),8A m ,那么m 的值等于______.13.已知函数y=(k+1)x+k²-1.当k____时, 它是一次函数;当k_______时,它是正比例函数.14.直线36y x =-与坐标轴所围成的三角形的面积是_____.三、解答题15.某种动物的身高()y dm 是其腿长()x dm 的一次函数.当动物的腿长为6dm 时,身高为45.5dm ;当动物的腿长为14dm 时,身高为105.5dm .(1)写出y 与x 之间的关系式;(2)当该动物腿长10dm 时,其身高为多少?16.某地长途汽车客运公规定旅客可随携带一定质量的行李,如果超过规定需要购买行李票,行李票费用y 元是行李质量xkg 的一次函数,如图所示.(1)求y 与x 之间的函数表达式;(2)求旅客最多可免费携带行李的质量是多少?17.已知一次函数24y x =-+.(1)在如图所示平面直角坐标系中,画出该函数的图象;(2)若一次函数24=-+的图象与x轴、y轴分别交于A、B两点,求出A、B两点的坐标;y x(3)求AOB∆的面积;(4)利用图象直接写出:当0y时,x的取值范围.。

新人教版八年级数学下册同步练习19.2.2 一次函数-八年级数学人教版(解析版)

新人教版八年级数学下册同步练习19.2.2 一次函数-八年级数学人教版(解析版)

第十九章 一次函数19.2.2 一次函数一、选择题:在每小题给出的四个选项中,只有一项是符合题目要求的.1.下列函数中,y 是x 的一次函数的是①y =x -6;②y =-3x –1;③y =-0.6x ;④y =7-x .A .①②③B .①③④C .①②③④D .②③④ 【答案】C【解析】根据一次函数的定义,可知是一次函数的有①y =x -6;②y =-3x –1;③y =-0.6x ;④y =7-x ,故选C . 2.如果23(2)2my m x -=-+是一次函数,那么m 的值是 A .2B .-2C .±2D .±1 【答案】B【解析】由题意得:22031m m -≠⎧⎨-=⎩,解得m =-2,故选B . 3.下列说法中正确的是A .一次函数是正比例函数B .正比例函数不是一次函数C .不是正比例函数就不是一次函数D .不是一次函数就不是正比例函数 【答案】D【解析】A .一次函数不一定是正比例函数,故本选项说法错误;B .正比例函数是一次函数,故本选项说法错误;C .不是正比例函数,但有可能是一次函数,故本选项说法错误;C .不是一次函数就不是正比例函数,故本选项说法正确,故选D .4.一次函数y =-2x +1的图象经过A .第一、二、三象限B .第一、二、四象限C .第一、三、四象限D .第二、三、四象限【答案】B【解析】在一次函数y =-2x +1中,k =-2<0,b =1>0,∴一次函数y =-2x +1的图象经过第一、二、四象限,故选B .5.把直线3y x =-+向上平移m 个单位后,与直线24y x =+的交点在第一象限,则m 的取值范围是 A .1<m <7B .3<m <4C .m >1D .m <4【答案】C【解析】直线3y x =-+向上平移m 个单位后可得:3y x m =-++, 联立两直线解析式得:324y x m y x =-++⎧⎨=+⎩,解得132103m x m y -⎧=⎪⎪⎨+⎪=⎪⎩,∴交点坐标为1210()33m m -+,, ∵交点在第一象限,∴10321003m m -⎧>⎪⎪⎨+⎪>⎪⎩,解得m >1,故选C . 6.如果函数y =3x +m 的图象一定经过第二象限,那么m 的取值范围是A .m >0B .m ≥0C .m <0D .m ≤0【答案】A【解析】图象一定经过第二象限,则函数一定与y 轴的正半轴相交,因而0m >,故选A . 7.关于函数y =-x +1,下列结论正确的是A .图象必经过点(-1,1)B .y 随x 的减小而减小C .当x >1时,y <0D .图象经过第二、三、四象限 【答案】C【解析】选项A ,∵当x =-1时,y =2,∴图象不经过点(-1,1),选项A 错误;选项B ,∵k =-1<0,∴y 随x 的增大而减小,选项B 错误;选项C ,∵y 随x 的增大而减小,当x =1时,y =0,∴当x >1时,y <0,选项C 正确;选项D ,∵k =-1<0,b =1>0,∴图象经过第一、二、四象限,选项D 错误.故选C .8.一次函数y =kx +b 的图象如图所示,则k 、b 的值分别为A.k=−12,b=1 B.k=-2,b=1C.k=12,b=1 D.k=2,b=1【答案】B【解析】由图象可知:过点(0,1),(12,0),代入一次函数的解析式得:112bk b=⎧⎪⎨=+⎪⎩,解得:k=−2,b=1,故选B.二、填空题:请将答案填在题中横线上.9.已知一次函数y=(m-3)x-2的图象经过一、三、四象限,则m的取值范围为__________.【答案】m>3【解析】∵y=(m-3)x-2的图象经过一、三、四象限,∴m-3>0,解得m>3.故答案为:m>3.10.点(-1,y1),(2,y2)是直线y=2x+1上的两点,则y1__________y2(填“>”或“=”或“<”).【答案】<【解析】∵k=2>0,y将随,∴y1<y2,故y1与y2的大小关系是:y1<y2,故答案为:<.11.已知一次函数的图象与直线并且经过点(-2,-4),则这个一次函数的解析式为__________.【答案】y=12x-3【解析】∵一次函数的图象与直线y=12x+3平行,∴设一次函数的解析式为y=12x+b.∵一次函数经过点(-2,-4),∴12×(-2)+b=-4,解得b=-3,所以这个一次函数的表达式是:y=1 2x-3.故答案为:y=12x-3.12.若点M(x1,y1)在函数y=kx+b(k≠0)的图象上,当-1≤x1≤2时,-2≤y1≤1,则这条直线的函数解析式为__________.【答案】y=x-1或y=-x【解析】∵点M(x1,y1)在在直线y=kx+b上,-1≤x1≤2时,-2≤y1≤1,∴点(-1,-2)、(2,1)或(-1,1)、(2,-2)都在直线上,则有:221k bk b-+=-⎧⎨+=⎩,或122k bk b-+=⎧⎨+=-⎩,解得11kb=⎧⎨=-⎩或1kb=-⎧⎨=⎩,∴y=x-1或y=-x,故答案为:y=x-1或y=-x.三、解答题:解答应写出文字说明、证明过程或演算步骤.13.已知一次函数经过点A(3,5)和点B(-4,-9).(1)求此一次函数的解析式;(2)若点C(m,2)是该函数上一点,求C点坐标.【解析】(1)设其解析式为y=kx+b(k、b是常数,且k≠0),则5394k bk b=+⎧⎨-=-+⎩,∴k=2,b=−1.∴其解析式为y=2x-1,(2)∵点C(m,2)在y=2x-1上,∴2=2m-1,∴).14.已知一次函数的图象经过点A(2,1),B(-1,-3).()求此一次函数的解析式;()求此一次函数的图象与x轴、y轴的交点坐标;(3)求此一次函数的图象与两坐标轴所围成的三角形面积.【解析】(1)根据一次函数解析式的特点,可得出方程组213 k bk b+=⎧⎨-+=-⎩,解得4353 kb⎧=⎪⎪⎨⎪=-⎪⎩,则得到y=43x-53.(2)根据一次函数的解析式y=43x-53,得到当y=0,x=54;当x=0时,y=-53.所以与x轴的交点坐标(54,0),与y轴的交点坐标(0,-53).(3)在y=43x-53中,令x=0,解得:y=-53,在y=43x-53中,令y=0,解得:x=54.因而此一次函数的图象与两坐标轴所围成的三角形面积是:15525 23424⨯⨯=.15.已知一次函数y=(4-k)x-2k2+32.(1)k为何值时,它的图象经过原点;(2)k为何值时,它的图象经过点(0,-2);(3)k为何值时,它的图象平行于直线y=-x;(4)k为何值时,y随x的增大而减小.【解析】(1)∵一次函数y=(4-k)x-2k2+32的图象经过原点,∴-2k2+32=0,解得:k=±4,∵4-k≠0,∴k=-4.(2)∵一次函数y=(4-k)x-2k2+32的图象经过(0,-2),∴-2k2+32=-2,解得:k.(3)∵一次函数y=(4-k)x-2k2+32的图象平行于直线y=-x,∴4-k=-1,∴k=5.(4)∵一次函数y=(4-k)x-2k2+32中y随x的增大而减小,∴4-k<0,∴k>4.16.已知一次函数图象经过(-4,-9)和(3,5)两点.(1)求一次函数解析式.(2)求图象和坐标轴交点坐标.并画出图象.(3)求图象和坐标轴围成三角形的面积.(4)若点(2,a)在函数图象上,求a的值.【解析】(1)设一次函数解析式为y=kx+b,把点(3,5),(-4,-9)分别代入解析式,则3549 k bk b+=⎧⎨-+=-⎩,解得21 kb=⎧⎨=-⎩,∴一次函数解析式为y=2x-1.(2)当x=0时,y=-1,当y=0时,2x-1=0,解得:x=0.5,∴与坐标轴的交点为A(0,-1)、B(0.5,0),图象如图,(110.25.(4)∵点(2,a)在图象上,∴a=2×2-1=3,∴a=3.。

人教版初中数学八年级下册《19.2 一次函数》同步练习卷(含答案解析

人教版初中数学八年级下册《19.2 一次函数》同步练习卷(含答案解析

人教新版八年级下学期《19.2 一次函数》同步练习卷一.选择题(共22小题)1.下列函数:①y=x;②y=;③y=;④y=2x+1,其中一次函数的个数是()A.1B.2C.3D.42.下列y关于x的函数中,是正比例函数的为()A.y=x2B.y=C.y=D.y=3.若b>0,则一次函数y=﹣x+b的图象大致是()A.B.C.D.4.正比例函数y=x的大致图象是()A.B.C.D.5.一次函数y=﹣x﹣2的图象经过()A.第一、二、三象限B.第一、二、四象限C.第一、三、四象限D.第二、三、四象限6.若一次函数y=(k﹣2)x+1的函数值y随x的增大而增大,则()A.k<2B.k>2C.k>0D.k<07.在平面直角坐标系中,一次函数y=kx+b的图象如图所示,则k和b的取值范围是()A.k>0,b>0B.k>0,b<0C.k<0,b>0D.k<0,b<0 8.如图,直线y=﹣x+3与x轴、y轴分别交于A、B两点,点P是以C(﹣1,0)为圆心,1为半径的圆上一点,连接PA,PB,则△PAB面积的最小值是()A.5B.10C.15D.209.一次函数y=x+2的图象与y轴的交点坐标为()A.(0,2)B.(0,﹣2)C.(2,0)D.(﹣2,0)10.一次函数y=kx﹣1的图象经过点P,且y的值随x值的增大而增大,则点P 的坐标可以为()A.(﹣5,3)B.(1,﹣3)C.(2,2)D.(5,﹣1)11.如图,在矩形AOBC中,A(﹣2,0),B(0,1).若正比例函数y=kx的图象经过点C,则k的值为()A.B.C.﹣2D.212.已知一系列直线y=a k x+b(a k均不相等且不为零,a k同号,k为大于或等于2的整数,b>0)分别与直线y=0相交于一系列点A k,设A k的横坐标为x k,则对于式子(1≤i≤k,1≤j≤k,i≠j),下列一定正确的是()A.大于1B.大于0C.小于﹣1D.小于0 13.已知坐标平面上,一次函数y=3x+a的图形通过点(0,﹣4),其中a为一数,求a的值为何?()A.﹣12B.﹣4C.4D.1214.如图,平面直角坐标系xOy中,点A的坐标为(9,6),AB⊥y轴,垂足为B,点P从原点O出发向x轴正方向运动,同时,点Q从点A出发向点B运动,当点Q到达点B时,点P、Q同时停止运动,若点P与点Q的速度之比为1:2,则下列说法正确的是()A.线段PQ始终经过点(2,3)B.线段PQ始终经过点(3,2)C.线段PQ始终经过点(2,2)D.线段PQ不可能始终经过某一定点15.在平面直角坐标系中,过点(1,2)作直线l,若直线l与两坐标轴围成的三角形面积为4,则满足条件的直线l的条数是()A.5B.4C.3D.216.如图,直线l是一次函数y=kx+b的图象,若点A(3,m)在直线l上,则m 的值是()A.﹣5B.C.D.717.已知:将直线y=x﹣1向上平移2个单位长度后得到直线y=kx+b,则下列关于直线y=kx+b的说法正确的是()A.经过第一、二、四象限B.与x轴交于(1,0)C.与y轴交于(0,1)D.y随x的增大而减小18.若直线l1经过点(0,4),l2经过点(3,2),且l1与l2关于x轴对称,则l1与l2的交点坐标为()A.(﹣2,0)B.(2,0)C.(﹣6,0)D.(6,0)19.把函数y=x向上平移3个单位,下列在该平移后的直线上的点是()A.(2,2)B.(2,3)C.(2,4)D.(2,5)20.将直线y=2x﹣3向右平移2个单位,再向上平移3个单位后,所得的直线的表达式为()A.y=2x﹣4B.y=2x+4C.y=2x+2D.y=2x﹣2 21.直线y=2x向下平移2个单位长度得到的直线是()A.y=2(x+2)B.y=2(x﹣2)C.y=2x﹣2D.y=2x+2 22.一个正比例函数的图象经过(2,﹣1),则它的表达式为()A.y=﹣2x B.y=2x C.D.二.填空题(共24小题)23.写出一个图象经过一,三象限的正比例函数y=kx(k≠0)的解析式(关系式).24.一次函数y=kx﹣2的函数值y随自变量x的增大而减小,则k的取值范围是.25.如图,一次函数y=kx+b的图象与x轴、y轴分别相交于A、B两点,⊙O经过A,B两点,已知AB=2,则的值为.26.已知直线l1:y=(k﹣1)x+k+1和直线l2:y=kx+k+2,其中k为不小于2的自然数.(1)当k=2时,直线l1、l2与x轴围成的三角形的面积S2=;(2)当k=2、3、4,……,2018时,设直线l1、l2与x轴围成的三角形的面积分别为S2,S3,S4,……,S2018,则S2+S3+S4+……+S2018=.27.如图,在平面直角坐标系中,点A1,A2,A3,…和B1,B2,B3,…分别在直线y=x+b和x轴上.△OA1B1,△B1A2B2,△B2A3B3,…都是等腰直角三角形.如果点A1(1,1),那么点A2018的纵坐标是.28.如图,直线l为y=x,过点A1(1,0)作A1B1⊥x轴,与直线l交于点B1,以原点O为圆心,OB1长为半径画圆弧交x轴于点A2;再作A2B2⊥x轴,交直线l于点B2,以原点O为圆心,OB2长为半径画圆弧交x轴于点A3;……,按此作法进行下去,则点A n的坐标为().29.如果一次函数y=kx+3(k是常数,k≠0)的图象经过点(1,0),那么y的值随x的增大而.(填“增大”或“减小”)30.如图,在平面直角坐标系中,点M是直线y=﹣x上的动点,过点M作MN ⊥x轴,交直线y=x于点N,当MN≤8时,设点M的横坐标为m,则m的取值范围为.31.如图,在平面直角坐标系中,直线l为正比例函数y=x的图象,点A1的坐标为(1,0),过点A1作x轴的垂线交直线l于点D1,以A1D1为边作正方形A1B1C1D1;过点C1作直线l的垂线,垂足为A2,交x轴于点B2,以A2B2为边作正方形A2B2C2D2;过点C2作x轴的垂线,垂足为A3,交直线l于点D3,以A3D3为边作正方形A3B3C3D3,…,按此规律操作下所得到的正方形A n B n C n D n的面积是.32.如图,在平面直角坐标系中,点A、B的坐标分别为(1,3)、(n,3),若直线y=2x与线段AB有公共点,则n的值可以为.(写出一个即可)33.如图,在平面直角坐标系中,△P1OA1,△P2A1A2,△P3A2A3,…都是等腰直角三角形,其直角顶点P1(3,3),P2,P3,…均在直线y=﹣x+4上.设△P1OA1,△P2A1A2,△P3A2A3,…的面积分别为S1,S2,S3,…,依据图形所反映的规律,S2018=.34.如图,直线y=﹣x+1与两坐标轴分别交于A,B两点,将线段OA分成n等,过每个分点作x轴的垂线分别交直线份,分点分别为P1,P2,P3,…,P n﹣1AB于点T1,T2,T3,…,T n﹣1,用S1,S2,S3,…,S n﹣1分别表示Rt△T1OP1,Rt△T2P1P2,…,Rt△T n﹣1P n﹣2P n﹣1的面积,则S1+S2+S3+…+S n﹣1=.35.如图,直线y=﹣x+4与x轴、y轴分别交于A,B两点,C是OB的中点,D是AB上一点,四边形OEDC是菱形,则△OAE的面积为.36.如图,在平面直角坐标系中,函数y=x和y=﹣x的图象分别为直线l1,l2,过点A1(1,﹣)作x轴的垂线交11于点A2,过点A2作y轴的垂线交l2于点A3,过点A3作x轴的垂线交l1于点A4,过点A4作y轴的垂线交l2于点A5,…依次进行下去,则点A2018的横坐标为.37.如图,在平面直角坐标系中,点A1的坐标为(1,2),以点O为圆心,以OA1长为半径画弧,交直线y=x于点B1.过B1点作B1A2∥y轴,交直线y=2x 于点A2,以O为圆心,以OA2长为半径画弧,交直线y=x于点B2;过点B2作B2A3∥y轴,交直线y=2x于点A3,以点O为圆心,以OA3长为半径画弧,交直线y=x于点B3;过B3点作B3A4∥y轴,交直线y=2x于点A4,以点O为圆心,以OA4长为半径画弧,交直线y=x于点B4,…按照如此规律进行下去,点B2018的坐标为.38.如图,在等腰Rt△ABO,∠A=90°,点B的坐标为(0,2),若直线l:y=mx+m (m≠0)把△ABO分成面积相等的两部分,则m的值为.39.已知点A是直线y=x+1上一点,其横坐标为﹣,若点B与点A关于y轴对称,则点B的坐标为.40.已知点A(x1,y1)、B(x2,y2)在直线y=kx+b上,且直线经过第一、二、四象限,当x1<x2时,y1与y2的大小关系为.41.正方形A1B1C1O,A2B2C2C1,A3B3C3C2,…按如图的方式放置,点A1,A2,A3…和点C1,C2,C3…分别在直线y=x+1和x轴上,则点B n的坐标为.(n 为正整数)42.在平面直角坐标系中,已知一次函数y=﹣2x+1的图象经过P1(x1,y1)、P2(x2,y2)两点,若x1<x2,则y1y2.(填“>”“<”“=”)43.将直线y=x向上平移2个单位长度,平移后直线的解析式为.44.如图,在平面直角坐标系中,菱形OABC的一个顶点在原点O处,且∠AOC=60°,A点的坐标是(0,4),则直线AC的表达式是.45.如图,在平面直角坐标系xOy中,有一个由六个边长为1的正方形组成的图案,其中点A,B的坐标分别为(3,5),(6,1).若过原点的直线l将这个图案分成面积相等的两部分,则直线l的函数解析式为.46.如图,点A的坐标为(4,2).将点A绕坐标原点O旋转90°后,再向左平移1个单位长度得到点A′,则过点A′的正比例函数的解析式为.三.解答题(共3小题)47.阅读理解题在平面直角坐标系xOy中,点P(x0,y0)到直线Ax+By+C=0(A2+B2≠0)的距离公式为:d=,例如,求点P(1,3)到直线4x+3y﹣3=0的距离.解:由直线4x+3y﹣3=0知:A=4,B=3,C=﹣3所以P(1,3)到直线4x+3y﹣3=0的距离为:d==2根据以上材料,解决下列问题:(1)求点P1(0,0)到直线3x﹣4y﹣5=0的距离.(2)若点P2(1,0)到直线x+y+C=0的距离为,求实数C的值.48.如图,在平面直角坐标系中,直线y=﹣x+3过点A(5,m)且与y轴交于点B,把点A向左平移2个单位,再向上平移4个单位,得到点C.过点C且与y=2x平行的直线交y轴于点D.(1)求直线CD的解析式;(2)直线AB与CD交于点E,将直线CD沿EB方向平移,平移到经过点B的位置结束,求直线CD在平移过程中与x轴交点的横坐标的取值范围.49.如图,在平面直角坐标系中,直线l1:y=x与直线l2交点A的横坐标为2,将直线l1沿y轴向下平移4个单位长度,得到直线l3,直线l3与y轴交于点B,与直线l2交于点C,点C的纵坐标为﹣2.直线l2与y轴交于点D.(1)求直线l2的解析式;(2)求△BDC的面积.人教新版八年级下学期《19.2 一次函数》同步练习卷参考答案与试题解析一.选择题(共22小题)1.下列函数:①y=x;②y=;③y=;④y=2x+1,其中一次函数的个数是()A.1B.2C.3D.4【分析】根据一次函数的定义条件进行逐一分析即可.【解答】解:①y=x是一次函数,故①符合题意;②y=是一次函数,故②符合题意;③y=自变量次数不为1,故不是一次函数,故③不符合题意;④y=2x+1是一次函数,故④符合题意.综上所述,是一次函数的个数有3个,故选:C.【点评】本题主要考查了一次函数的定义,一次函数y=kx+b的定义条件是:k、b为常数,k≠0,自变量次数为1.2.下列y关于x的函数中,是正比例函数的为()A.y=x2B.y=C.y=D.y=【分析】根据正比例函数的定义来判断即可得出答案.【解答】解:A、y是x的二次函数,故A选项错误;B、y是x的反比例函数,故B选项错误;C、y是x的正比例函数,故C选项正确;D、y是x的一次函数,故D选项错误;故选:C.【点评】本题考查了正比例函数的定义:一般地,两个变量x,y之间的关系式可以表示成形如y=kx(k为常数,且k≠0)的函数,那么y就叫做x的正比例函数.3.若b>0,则一次函数y=﹣x+b的图象大致是()A.B.C.D.【分析】根据一次函数的k、b的符号确定其经过的象限即可确定答案.【解答】解:∵一次函数y=﹣x+b中k=﹣1<0,b>0,∴一次函数的图象经过一、二、四象限,故选:C.【点评】主要考查了一次函数的图象性质,要掌握它的性质才能灵活解题.一次函数y=kx+b的图象有四种情况:①当k>0,b>0,函数y=kx+b的图象经过第一、二、三象限;②当k>0,b<0,函数y=kx+b的图象经过第一、三、四象限;③当k<0,b>0时,函数y=kx+b的图象经过第一、二、四象限;④当k<0,b<0时,函数y=kx+b的图象经过第二、三、四象限.4.正比例函数y=x的大致图象是()A.B.C.D.【分析】正比例函数的图象是一条经过原点的直线,且当k>0时,经过一、三象限.【解答】解:因为正比例函数的图象是一条经过原点的直线,且当k>0时,经过一、三象限.故正比例函数y=x的大致图象是C.故选:C.【点评】此题比较简单,主要考查了正比例函数的图象特点:是一条经过原点的直线.5.一次函数y=﹣x﹣2的图象经过()A.第一、二、三象限B.第一、二、四象限C.第一、三、四象限D.第二、三、四象限【分析】根据一次函数y=kx+b(k≠0)中的k、b判定该函数图象所经过的象限.【解答】解:∵﹣1<0,∴一次函数y=﹣x﹣2的图象一定经过第二、四象限;又∵﹣2<0,∴一次函数y=﹣x﹣2的图象与y轴交于负半轴,∴一次函数y=﹣x﹣2的图象经过第二、三、四象限;故选:D.【点评】本题考查了一次函数的性质.一次函数y=kx+b的图象有四种情况:①当k>0,b>0,函数y=kx+b的图象经过第一、二、三象限,y的值随x的值增大而增大;②当k>0,b<0,函数y=kx+b的图象经过第一、三、四象限,y的值随x的值增大而增大;③当k<0,b>0时,函数y=kx+b的图象经过第一、二、四象限,y的值随x的值增大而减小;④当k<0,b<0时,函数y=kx+b的图象经过第二、三、四象限,y的值随x的值增大而减小.6.若一次函数y=(k﹣2)x+1的函数值y随x的增大而增大,则()A.k<2B.k>2C.k>0D.k<0【分析】根据一次函数的性质,可得答案.【解答】解:由题意,得k﹣2>0,解得k>2,故选:B.【点评】本题考查了一次函数的性质,y=kx+b,当k>0时,函数值y随x的增大而增大.7.在平面直角坐标系中,一次函数y=kx+b的图象如图所示,则k和b的取值范围是()A.k>0,b>0B.k>0,b<0C.k<0,b>0D.k<0,b<0【分析】根据一次函数的图象与系数的关系进行解答即可.【解答】解:∵一次函数y=kx+b的图象经过一、二、四象限,∴k<0,b>0.故选:C.【点评】本题考查的是一次函数的图象与系数的关系,即一次函数y=kx+b(k≠0)中,当k<0,b>0时图象在一、二、四象限.8.如图,直线y=﹣x+3与x轴、y轴分别交于A、B两点,点P是以C(﹣1,0)为圆心,1为半径的圆上一点,连接PA,PB,则△PAB面积的最小值是()A.5B.10C.15D.20【分析】作CH⊥AB于H交⊙O于E、F.当点P与E重合时,△PAB的面积最小,求出EH、AB的长即可解决问题【解答】解:作CH⊥AB于H交⊙O于E、F.∵C(﹣1,0),直线AB的解析式为y=﹣x+3,∴直线CH的解析式为y=x+,由解得,∴H(,),∴CH==3,∵A(4,0),B(0,3),∴OA=4,OB=3,AB=5,∴EH=3﹣1=2,当点P与E重合时,△PAB的面积最小,最小值=×5×2=5,故选:A.【点评】本题考查一次函数图象上的点的坐标特征、一次函数的性质、直线与圆的位置关系等知识,解题的关键是学会添加常用辅助线,利用直线与圆的位置关系解决问题,属于中考填空题中的压轴题.9.一次函数y=x+2的图象与y轴的交点坐标为()A.(0,2)B.(0,﹣2)C.(2,0)D.(﹣2,0)【分析】代入x=0求出y值,进而即可得出发一次函数y=x+2的图象与y轴的交点坐标.【解答】解:当x=0时,y=x+2=0+2=2,∴一次函数y=x+2的图象与y轴的交点坐标为(0,2).故选:A.【点评】本题考查了一次函数图象上点的坐标特征,代入x=0求出y值是解题的关键.10.一次函数y=kx﹣1的图象经过点P,且y的值随x值的增大而增大,则点P 的坐标可以为()A.(﹣5,3)B.(1,﹣3)C.(2,2)D.(5,﹣1)【分析】根据函数图象的性质判断系数k>0,则该函数图象经过第一、三象限,由函数图象与y轴交于负半轴,则该函数图象经过第一、三、四象限,由此得到结论.【解答】解:∵一次函数y=kx﹣1的图象的y的值随x值的增大而增大,∴k>0,A、把点(﹣5,3)代入y=kx﹣1得到:k=﹣<0,不符合题意;B、把点(1,﹣3)代入y=kx﹣1得到:k=﹣2<0,不符合题意;C、把点(2,2)代入y=kx﹣1得到:k=>0,符合题意;D、把点(5,﹣1)代入y=kx﹣1得到:k=0,不符合题意;故选:C.【点评】考查了一次函数图象上点的坐标特征,一次函数的性质,根据题意求得k>0是解题的关键.11.如图,在矩形AOBC中,A(﹣2,0),B(0,1).若正比例函数y=kx的图象经过点C,则k的值为()A.B.C.﹣2D.2【分析】根据矩形的性质得出点C的坐标,再将点C坐标代入解析式求解可得.【解答】解:∵A(﹣2,0),B(0,1).∴OA=2、OB=1,∵四边形AOBC是矩形,∴AC=OB=1、BC=OA=2,则点C的坐标为(﹣2,1),将点C(﹣2,1)代入y=kx,得:1=﹣2k,解得:k=﹣,故选:A.【点评】本题主要考查一次函数图象上点的坐标特征,解题的关键是掌握矩形的性质和待定系数法求函数解析式.12.已知一系列直线y=a k x+b(a k均不相等且不为零,a k同号,k为大于或等于2的整数,b>0)分别与直线y=0相交于一系列点A k,设A k的横坐标为x k,则对于式子(1≤i≤k,1≤j≤k,i≠j),下列一定正确的是()A.大于1B.大于0C.小于﹣1D.小于0【分析】利用待定系数法求出x i,x j即可解决问题;【解答】解:由题意x i=﹣,x j=﹣,∴式子=>0,故选:B.【点评】本题考查一次函数图象上点的坐标特征,待定系数法等知识,解题的关键是灵活运用所学知识解决问题,属于中考常考题型.13.已知坐标平面上,一次函数y=3x+a的图形通过点(0,﹣4),其中a为一数,求a的值为何?()A.﹣12B.﹣4C.4D.12【分析】利用待定系数法即可解决问题.【解答】解:∵次函数y=3x+a的图形通过点(0,﹣4),∴﹣4=0×3+a,∴a=﹣4,故选:B.【点评】本题考查一次函数的应用、待定系数法等知识,熟练掌握待定系数法是解题的关键,属于中考基础题.14.如图,平面直角坐标系xOy中,点A的坐标为(9,6),AB⊥y轴,垂足为B,点P从原点O出发向x轴正方向运动,同时,点Q从点A出发向点B运动,当点Q到达点B时,点P、Q同时停止运动,若点P与点Q的速度之比为1:2,则下列说法正确的是()A.线段PQ始终经过点(2,3)B.线段PQ始终经过点(3,2)C.线段PQ始终经过点(2,2)D.线段PQ不可能始终经过某一定点【分析】当OP=t时,点P的坐标为(t,0),点Q的坐标为(9﹣2t,6).设直线PQ的解析式为y=kx+b(k≠0),利用待定系数法求出PQ的解析式即可判断;【解答】解:当OP=t时,点P的坐标为(t,0),点Q的坐标为(9﹣2t,6).设直线PQ的解析式为y=kx+b(k≠0),将P(t,0)、Q(9﹣2t,6)代入y=kx+b,,解得:,∴直线PQ的解析式为y=x+.∵x=3时,y=2,∴直线PQ始终经过(3,2),故选:B.【点评】本题考查一次函数图象上的点的特征、待定系数法等知识,解题的关键是灵活运用所学知识解决问题,属于中考常考题型.15.在平面直角坐标系中,过点(1,2)作直线l,若直线l与两坐标轴围成的三角形面积为4,则满足条件的直线l的条数是()A.5B.4C.3D.2【分析】根据题意可以设出直线l的函数解析式,然后根据题意即可求得k的值,从而可以解答本题.【解答】解:设过点(1,2)的直线l的函数解析式为y=kx+b,2=k+b,得b=2﹣k,∴y=kx+2﹣k,当x=0时,y=2﹣k,当y=0时,x=,令=4,解得,k1=﹣2,k2=6﹣4,k3=6+4,故满足条件的直线l的条数是3条,故选:C.【点评】本题考查一次函数图象上点的坐标特征,解答本题的关键是明确题意,找出所求问题需要的条件,利用一次函数的性质解答.16.如图,直线l是一次函数y=kx+b的图象,若点A(3,m)在直线l上,则m 的值是()A.﹣5B.C.D.7【分析】待定系数法求出直线解析式,再将点A代入求解可得.【解答】解:将(﹣2,0)、(0,1)代入,得:解得:,∴y=x+1,将点A(3,m)代入,得:+1=m,即m=,故选:C.【点评】本题主要考查直线上点的坐标特点,熟练掌握待定系数法求函数解析式是解题的关键.17.已知:将直线y=x﹣1向上平移2个单位长度后得到直线y=kx+b,则下列关于直线y=kx+b的说法正确的是()A.经过第一、二、四象限B.与x轴交于(1,0)C.与y轴交于(0,1)D.y随x的增大而减小【分析】利用一次函数图象的平移规律,左加右减,上加下减,得出即可.【解答】解:将直线y=x﹣1向上平移2个单位长度后得到直线y=x﹣1+2=x+1,A、直线y=x+1经过第一、二、三象限,错误;B、直线y=x+1与x轴交于(﹣1,0),错误;C、直线y=x+1与y轴交于(0,1),正确;D、直线y=x+1,y随x的增大而增大,错误;故选:C.【点评】此题主要考查了一次函数图象与几何变换,正确把握变换规律是解题关键.18.若直线l1经过点(0,4),l2经过点(3,2),且l1与l2关于x轴对称,则l1与l2的交点坐标为()A.(﹣2,0)B.(2,0)C.(﹣6,0)D.(6,0)【分析】根据对称的性质得出两个点关于x轴对称的对称点,再根据待定系数法确定函数关系式,求出一次函数与x轴的交点即可.【解答】解:∵直线l1经过点(0,4),l2经过点(3,2),且l1与l2关于x轴对称,∴两直线相交于x轴上,∵直线l1经过点(0,4),l2经过点(3,2),且l1与l2关于x轴对称,∴直线l1经过点(3,﹣2),l2经过点(0,﹣4),把(0,4)和(3,﹣2)代入直线l1经过的解析式y=kx+b,则,解得:,故直线l1经过的解析式为:y=﹣2x+4,可得l1与l2的交点坐标为l1与l2与x轴的交点,解得:x=2,即l1与l2的交点坐标为(2,0).故选:B.【点评】此题主要考查了待定系数法求一次函数解析式以及坐标与图形的性质,正确得出l1与l2的交点坐标为l1与l2与x轴的交点是解题关键.19.把函数y=x向上平移3个单位,下列在该平移后的直线上的点是()A.(2,2)B.(2,3)C.(2,4)D.(2,5)【分析】根据平移的性质得出解析式,进而解答即可.【解答】解:∵该直线向上平移3的单位,∴平移后所得直线的解析式为:y=x+3;把x=2代入解析式y=x+3=5,故选:D.【点评】本题考查的是一次函数的图象与几何变换,熟知一次函数图象平移的法则是解答此题的关键.20.将直线y=2x﹣3向右平移2个单位,再向上平移3个单位后,所得的直线的表达式为()A.y=2x﹣4B.y=2x+4C.y=2x+2D.y=2x﹣2【分析】根据平移的性质“左加右减,上加下减”,即可找出平移后的直线解析式,此题得解.【解答】解:y=2(x﹣2)﹣3+3=2x﹣4.化简,得y=2x﹣4,故选:A.【点评】本题考查了一次函数图象与几何变换,牢记平移的规则“左加右减,上加下减”是解题的关键.21.直线y=2x向下平移2个单位长度得到的直线是()A.y=2(x+2)B.y=2(x﹣2)C.y=2x﹣2D.y=2x+2【分析】据一次函数图象与几何变换得到直线y=2x向下平移2个单位得到的函数解析式为y=2x﹣2.【解答】解:直线y=2x向下平移2个单位得到的函数解析式为y=2x﹣2.故选:C.【点评】本题考查了一次函数图象与几何变换:一次函数y=kx(k≠0)的图象为直线,当直线平移时k不变,当向上平移m个单位,则平移后直线的解析式为y=kx+m.22.一个正比例函数的图象经过(2,﹣1),则它的表达式为()A.y=﹣2x B.y=2x C.D.【分析】设该正比例函数的解析式为y=kx(k≠0),再把点(2,﹣1)代入求出k的值即可.【解答】解:设该正比例函数的解析式为y=kx(k≠0),∵正比例函数的图象经过点(2,﹣1),∴﹣1=2k,解得k=﹣,∴这个正比例函数的表达式是y=﹣x.故选:C.【点评】本题考查的是待定系数法求正比例函数的解析式,熟知正比例函数图象上点的坐标一定适合此函数的解析式是解答此题的关键.二.填空题(共24小题)23.写出一个图象经过一,三象限的正比例函数y=kx(k≠0)的解析式(关系式)y=2x.【分析】根据正比例函数y=kx的图象经过一,三象限,可得k>0,写一个符合条件的数即可.【解答】解:∵正比例函数y=kx的图象经过一,三象限,∴k>0,取k=2可得函数关系式y=2x.故答案为:y=2x.【点评】此题主要考查了正比例函数的性质,关键是掌握正比例函数图象的性质:它是经过原点的一条直线.当k>0时,图象经过一、三象限,y随x的增大而增大;当k<0时,图象经过二、四象限,y随x的增大而减小.24.一次函数y=kx﹣2的函数值y随自变量x的增大而减小,则k的取值范围是k<0.【分析】根据一次函数的图象与系数的关系,利用一次函数的性质可知:当一次函数的系数小于零时,一次函数的函数值y随着自变量x的增大而减小,即可得到答案.【解答】解:∵一次函数y=kx﹣2,y随x的增大而减小,所以一次函数的系数k<0,故答案为:k<0.【点评】此题主要考查了一次函数图象与系数的关系,正确记忆一次函数的性质是解题关键.25.如图,一次函数y=kx+b的图象与x轴、y轴分别相交于A、B两点,⊙O经过A,B两点,已知AB=2,则的值为﹣.【分析】由图形可知:△OAB是等腰直角三角形,AB=2,可得A,B两点坐标,利用待定系数法可求k和b的值,进而得到答案.【解答】解:由图形可知:△OAB是等腰直角三角形,OA=OB∵AB=2,OA2+OB2=AB2∴OA=OB=∴A点坐标是(,0),B点坐标是(0,)∵一次函数y=kx+b的图象与x轴、y轴分别相交于A、B两点∴将A,B两点坐标代入y=kx+b,得k=﹣1,b=∴=﹣故答案为:﹣【点评】本题主要考查图形的分析运用和待定系数法求解析式,找出A,B两点的坐标对解题是关键之举.26.已知直线l1:y=(k﹣1)x+k+1和直线l2:y=kx+k+2,其中k为不小于2的自然数.(1)当k=2时,直线l1、l2与x轴围成的三角形的面积S2=1;(2)当k=2、3、4,……,2018时,设直线l1、l2与x轴围成的三角形的面积分别为S2,S3,S4,……,S2018,则S2+S3+S4+……+S2018=.【分析】利用一次函数图象上点的坐标特征可求出两直线与x轴的交点坐标,进而可得出两点间的距离,联立两直线解析式成方程组,通过解方程组可求出两直线的交点坐标.(1)代入k=2,可得出d的值,利用三角形的面积公式可求出S2的值;(2)分别代入k=2、3、4、…、2018求出S2、S3、S4、…、S2018值,将其相加即可得出结论.【解答】解:当y=0时,有(k﹣1)x+k+1=0,解得:x=﹣1﹣,∴直线l1与x轴的交点坐标为(﹣1﹣,0),同理,可得出:直线l2与x轴的交点坐标为(﹣1﹣,0),∴两直线与x轴交点间的距离d=﹣1﹣﹣(﹣1﹣)=﹣.联立直线l1、l2成方程组,得:,解得:,∴直线l1、l2的交点坐标为(﹣1,2).(1)当k=2时,d=﹣=1,∴S2=×2d=1.故答案为:1.(2)当k=3时,S3=﹣;当k=4时,S4=﹣;…;S2018=﹣,∴S2+S3+S4+……+S2018=﹣+﹣+﹣+…+﹣,=﹣,=2﹣,=.故答案为:.【点评】本题考查了一次函数图象上点的坐标特征以及规律型中图形的变化类,利用一次函数图象上点的坐标特征求出两直线与x轴交点间的距离是解题的关键.27.如图,在平面直角坐标系中,点A1,A2,A3,…和B1,B2,B3,…分别在直线y=x+b和x轴上.△OA1B1,△B1A2B2,△B2A3B3,…都是等腰直角三角形.如果点A1(1,1),那么点A2018的纵坐标是.【分析】因为每个A点为等腰直角三角形的直角顶点,则每个点A的纵坐标为对应等腰直角三角形的斜边一半.故先设出各点A的纵坐标,可以表示A的横坐标,代入解析式可求点A的纵坐标,规律可求.【解答】解:分别过点A1,A2,A3,…向x轴作垂线,垂足为C1,C2,C3,…∵点A1(1,1)在直线y=x+b上∴代入求得:b=∴y=x+∵△OA1B1为等腰直角三角形∴OB1=2设点A2坐标为(a,b)∵△B1A2B2为等腰直角三角形∴A2C2=B1C2=b∴a=OC2=OB1+B1C2=2+b把A2(2+b,b)代入y=x+解得b=∴OB2=5同理设点A3坐标为(a,b)∵△B2A3B3为等腰直角三角形∴A3C3=B2C3=b∴a=OC3=OB2+B2C3=5+b把A2(5+b,b)代入y=x+解得b=以此类推,发现每个A的纵坐标依次是前一个的倍则A2018的纵坐标是故答案为:【点评】本题为一次函数图象背景下的规律探究题,结合了等腰直角三角形的性质,解答过程中注意对比每个点A的纵坐标变化规律.28.如图,直线l为y=x,过点A1(1,0)作A1B1⊥x轴,与直线l交于点B1,以原点O为圆心,OB1长为半径画圆弧交x轴于点A2;再作A2B2⊥x轴,交直线l于点B2,以原点O为圆心,OB2长为半径画圆弧交x轴于点A3;……,按此作法进行下去,则点A n的坐标为(2n﹣1,0).【分析】依据直线l为y=x,点A1(1,0),A1B1⊥x轴,可得A2(2,0),同理可得,A3(4,0),A4(8,0),…,依据规律可得点A n的坐标为(2n﹣1,0).【解答】解:∵直线l为y=x,点A1(1,0),A1B1⊥x轴,∴当x=1时,y=,即B1(1,),∴tan∠A1OB1=,∴∠A1OB1=60°,∠A1B1O=30°,∴OB1=2OA1=2,∵以原点O为圆心,OB1长为半径画圆弧交x轴于点A2,∴A2(2,0),同理可得,A3(4,0),A4(8,0),…,∴点A n的坐标为(2n﹣1,0),故答案为:2n﹣1,0.【点评】本题主要考查了一次函数图象上点的坐标特征,解题时注意:直线上任意一点的坐标都满足函数关系式y=kx+b.29.如果一次函数y=kx+3(k是常数,k≠0)的图象经过点(1,0),那么y的值随x的增大而减小.(填“增大”或“减小”)【分析】根据点的坐标利用一次函数图象上点的坐标特征可求出k值,再利用一次函数的性质即可得出结论.【解答】解:∵一次函数y=kx+3(k是常数,k≠0)的图象经过点(1,0),∴0=k+3,∴k=﹣3,∴y的值随x的增大而减小.故答案为:减小.【点评】本题考查了一次函数图象上点的坐标特征以及一次函数的性质,牢记“k >0,y随x的增大而增大;k<0,y随x的增大而减小”是解题的关键.30.如图,在平面直角坐标系中,点M是直线y=﹣x上的动点,过点M作MN ⊥x轴,交直线y=x于点N,当MN≤8时,设点M的横坐标为m,则m的取值范围为﹣4≤m≤4.【分析】先确定出M,N的坐标,进而得出MN=|2m|,即可建立不等式,解不等式即可得出结论.【解答】解:∵点M在直线y=﹣x上,∴M(m,﹣m),∵MN⊥x轴,且点N在直线y=x上,∴N(m,m),∴MN=|﹣m﹣m|=|2m|,∵MN≤8,∴|2m|≤8,∴﹣4≤m≤4,故答案为:﹣4≤m≤4.【点评】此题主要考查了一次函数图象上点的坐标特征,解不等式,表示出MN 是解本题的关键.31.如图,在平面直角坐标系中,直线l为正比例函数y=x的图象,点A1的坐标为(1,0),过点A1作x轴的垂线交直线l于点D1,以A1D1为边作正方形A1B1C1D1;过点C1作直线l的垂线,垂足为A2,交x轴于点B2,以A2B2为边作正方形A2B2C2D2;过点C2作x轴的垂线,垂足为A3,交直线l于点D3,以A3D3为边作正方形A3B3C3D3,…,按此规律操作下所得到的正方形A n B n C n D n的面积是()n﹣1.。

  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

19.2.2 一次函数知识库1.若两个变量x 、y 之间的关系式可以表示成y=kx+b (k ,b 为常数,k ≠0)的形式,则称y 是x 的一次函数(x 为自变量,y 是函数).正比例函数y=kx (k ≠0)•是一次函数y=kx+b (k ≠0)特例.2.一次函数y=kx+b (k ≠0)的图象是一条直线,我们只要确定两个点,•再过这两个点作直线就可以作出一次函数的图象,它也称为直线y=kx+b .3.直线y=kx+b (k ≠0)可以看着由直线y=kx (k ≠0)上下平移│b │个单位长度而得到.当b>0时,向上平移;当b<0时,向下平移.4.一次函数y=kx+b (k ≠0)的性质当k>0时,y 的值随x 值的增大而增大;当k<0时,y 的值随x 值的增大而减小.5.用待定系数法求一次函数的解析式的步骤:①设出函数解析式;②根据条件确定解析式中未知的系数;③写出解析式.魔法师例1:如图1,在直角坐标系中,已知点A (6,0),又点B (x ,y )•在第一象限内,且x+y=8,设△AOB 的面积是S .(1)写出S 与x 之间的函数关系式,并求出x•的取值范围;(2)画出图象.(1) (2)分析:先利用面积关系求出S 与y 的关系式,再求出S 与x 的关系式;画图象时要考虑自变量的取值范围.解:∵A 和B 点的坐标分别是(6,0)、(x ,y ),且点B 在第一象限内. ∴S=12·OA ·BC=12·6·y=3y ∵x+y=8 ∴y=8-x ∴S=3(8-x )=24-3x∴所求的函数关系式为:S=-3x+24由03240x x >⎧⎨-+>⎩ 得0<x<8(2)S=-3x+24(0<x<8)的图象如图2所示.第一课时演兵场☆我能选1.下列说法正确的是( )A .正比例函数是一次函数B .一次函数是正比例函数C .正比例函数不是一次函数D .不是正比例函数就不是一次函数2.下列函数中,y 是x 的一次函数的是( )A .y=-3x+5B .y=-3x 2C .y=1xD .3.已知等腰三角形的周长为20cm ,将底边y (cm )表示成腰长x (cm )•的函数关系式是y=20-2x ,则其自变量的取值范围是( )A .0<x<10B .5<x<10C .x>0D .一切实数4.一次函数y=kx+b 满足x=0时,y=-1;x=1时,y=1,则这个一次函数是( •)A .y=2x+1B .y=-2x+1C .y=2x-1D .y=-2x-1☆我能填5.已知函数y=(k-1)x+k 2-1,当k________时,它是一次函数,当k=_______•时,它是正比例函数.6.从甲地向乙地打长途电话,按时间收费,3分钟内收费2.4元,每加1分钟加收1元,若时间t ≥3(分)时,电话费y (元)与t 之间的函数关系式是_________.7.已知A 、B 、C 是一条铁路线(直线)上顺次三个站,A 、B 两站相距100•千米,现有一列火车从B 站出发,以75千米/时的速度向C 站驶去,设x (•时)表示火车行驶的时间,y (千米)表示火车与A 站的距离,则y 与x 的关系式是_________.☆我能答8.某电信公司的一种通话收费标准是:不管通话时间多长,•每部手机每月必须缴月租费50元,另外,每通话1分缴费0.25元.(1)写出每月应缴费用y (元)与通话时间x (分)之间的关系式;(2)某用户本月通话120分钟,他的费用是多少元?•(3)若某用户本月预交了200元,那么该用户本月可以通话多长时间?9.小明用的练习本可在甲、乙两个商店内买到,•已知两个商店的标价都是每个练习本1元,但甲商店的优惠条件是:购买10•本以上,•从第11•本开始按标价的70%卖;乙商店的优惠条件是:从第1本开始就按标价的85%卖.(1)小明要买20个练习本,到哪个商店购买较省钱?(2)写出甲、乙两个商店中,收款y(元)关于购买本数x(本)(x>10)的关系式,它们都是正比例函数吗?(3)小明现有24元钱,最多可买多少个本子?探究园10.我国现行个人工资、薪金所得税征收办法规定:月收入低于800•元的部分不收税;月收入超过800元但低于1300元的部分征收5%•的所得税……如某人月收入1200元,他应该缴个人工资、薪金所得税为(1200-88)×5%=20(元).(1)当月收入大于800元而又小于1300元时,写出应缴所得税y•(元)与月收入x (元)之间的函数关系式.y是x的一次函数吗?(2)某人月收入为1000元,他应缴所得税多少元?(3)如果某人本月缴所得税18元,那么此人本月工资、薪金是多少元?答案:1.A. 2.A 3.B 4.C 5.≠1;-1 6.y=t-0.6(t≥3)7.y=75x+100 8.①y=0.25x+50(x≥0);②80元;③10小时9.①到两个商店一样;②甲店:y=0.7x+3(x>10);乙店:y=0.85x.③到甲店买,最多可买30本.10.①y=0.05(x-800),y是x的一次函数;②当x=1000时y=0.05×(1000-800)=10;③设此人本月的工资、薪金为x元,由题意知其工资、薪金超过800•元而低于1300元.则0.05(x-800)=18,解得x=1160第二课时☆我能选1.下列一次函数中,y随x值的增大而减小的()A.y=2x+1 B.y=3-4x C..y=(5-2)x2.已知一次函数y=mx+│m+1│的图象与y轴交于(0,3),且y随x•值的增大而增大,则m的值为()A.2 B.-4 C.-2或-4 D.2或-43.已知一次函数y=mx-(m-2)过原点,则m的值为()A.m>2 B.m<2 C.m=2 D.不能确定4.下列关系:①面积一定的长方形的长s与宽a;②圆的周长s与半径a;•③正方形的面积s与边长a;④速度一定时行驶的路程s与行驶时间a.其中s是a的正比例函数的有()A.1个 B.2个 C.3个 D.4个☆我能填5.在同一坐标系中,对于函数①y=-x-1,②y=x+1,③y=-x+1,④y=-2(x+1)的图象,通过点(-1,0)的是________,相互平行的是_______,交点在y•轴上的是_____.(填写序号)6.如果一次函数y=(m-3)x+m2-9是正比例函数,则m的值为_________.7.若从5%的盐水y千克中,蒸发x千克水分,制成含盐20%的盐水,则函数y•与自变量x之间的关系是____________.8.函数y=kx+b的图象平行于直线y=-2x,且与y轴交于点(0,3),则k=______,b=_______.☆我能答9.已知点A(a+2,1-a)在函数y=2x-1的图象上,求a的值.10.已知一次函数y=kx+b的图象与x轴交于点A(-6,0),与y轴交于点B•,•若△AOB 的面积是12,且y随x的增大而减小,你能确定这个一次函数的关系式吗?探究园11.对于一次函数y=kx+b,其中b实际是该函数的图象与y轴交点的纵坐标.在画图实践中我们发现当k>0,b>0时,其图象依次经过第三、二、一象限.•请你随意画几个一次函数的图象继续探究:(1)当b_______0时图象与y轴的交点在x轴上方;当b______0时图象与y•轴的交点在x轴下方.(2)当k、b取何值时,图象依次经过第三、四、一象限?第二、一、四象限?•第二、三、四象限?请写出你的探究结论和同伴交流.答案:1.B 2.A 3.C 4.B 5.①②④;①与③;②与③ 6.-37.y=43x 8.-2;3 9.-2310.y=-23x-411.①〉;〈②当k>0,b<0的图象依次经过第三、四、一象限;当k<0,b>0时图象依次经过第二、一、四象限;当k<0,b<0时图象依次经过第二、三、四象限第三课时☆我能选1.一次函数的图象经过点A(-2,-1),且与直线y=2x-3平行,•则此函数的解析式为() A.y=x+1 B.y=2x+3 C.y=2x-1 D.y=-2x-52.已知一次函数y=kx+b,当x=1时,y=2,且它的图象与y•轴交点的纵坐标是3,则此函数的解析式为()A.0≤x≤3 B.-3≤x≤0 C.-3≤x≤ D.不能确定☆我能填4.已知一次函数的图象经过点A(1,4)、B(4,2),•则这个一次函数的解析式为___________.5.如图1,该直线是某个一次函数的图象,•则此函数的解析式为_________.(1) (2)6.已知y-2与x成正比例,且x=2时,y=4,则y与x的函数关系式是_________;当y=3时,x=__________.7.若一次函数y=bx+2的图象经过点A(-1,1),则b=__________.8.如图2,线段AB的解析式为____________.☆我能答9.已知直线m与直线y=2x+1的交点的横坐标为2,与直线y=-x+2•的交点的纵坐标为1,求直线m的函数关系式.10.已知一次函数的图象经过点A(-3,2)、B(1,6).①求此函数的解析式,并画出图象.②求函数图象与坐标轴所围成的三角形面积.11.某一次函数的图象与直线y=6-x交于点A(5,k),且与直线y=2x-3无交点,•求此函数的关系式.探究园14.某移动通讯公司开设两种业务:①写出y、y与x之间的函数关系式;②一个月内市内通话多少跳次时,两种方式的费用相同?③某人估计一个月内通话300跳次,应选择哪种方式合算?答案:1.B 2.C 3.B 4.y=-23x+1435.y=2x+26.y=x+2;1 7.1 8.y=-12x+2(0≤x≤4) 9.y=4x-310.①y=x+5;②12.5 11.y=2x-912.①y1=0.4x+50,y2=0.6x;②x=250;③当x=300时y1=170,y2=180.∴y1<y2,∴选择“全球通”.第四课时☆我能选1.已知点(a,b)、(c,d)都在直线y=2x+1上,且a>c,则b与d的大小关系是( • ) A.b>d B.b=d C.b<d D.b≥d2.已知自变量为x的一次函数y=a(x-b)的图象经过第二、三、四象限,则( • )A.a>0,b<0 B.a<0,b>0 C.a<0,b<0 D.a>0,b>03.如图所示的图象中,不可能是关于x的一次函数y=mx-(m-3)的图象的是()☆我能填4.一条平行于直线y=-3x的直线交x轴于点(2,0),则该直线与y•轴的交点是_________.5.已知一次函数y=kx+b的图象经过点(0,-4),且x=2时y=0,则k=______,b=•_______.☆我能答6.在弹性限度内,弹簧的长度y(cm)是所挂物体的质量x(kg)的一次函数,•当所挂物体的质量为1kg时,弹簧长10cm;当所挂物体的质量为3kg时,弹簧长12cm.写出y 与x之间的函数关系,并求出所挂物体的质量为6kg时弹簧的长度.7.如图,折线ABC是在某市乘出租车所付车费y(元)与行车里程x(km)•之间的函数关系图象.①根据图象,写出当x≥3时该图象的函数关系式;②某人乘坐2.5km,应付多少钱?③某人乘坐13km,应付多少钱?④若某人付车费30.8元,出租车行驶了多少千米?探究园8.A市和B市分别库存某种机器12台和6台,现决定支援给C市10台和D市8台.•已知从A市调运一台机器到C市和D市的运费分别为400元和800元;从B市调运一台机器到C市和D市的运费分别为300元和500元.(1)设B市运往C市机器x台,•求总运费W(元)关于x的函数关系式.(2)若要求总运费不超过9000元,问共有几种调运方案?(3)求出总运费最低的调运方案,最低运费是多少?答案:1.A 2.C 3.C 4.(0,6) 5.2;-4 6.y=x+9;15cm7.①y=75x+145(x≥3);②7元;③21元;④20千米8.①W=200x+8600;②由题意得200x+8600≤9000,∴x≤2.又∵B市可支援外地6台,∴0≤x≤6.综上0≤x≤2,∴x可取0,1,2,∴有三种调运方案;③∵0≤x≤2,且W随x的值增大而增大,当x=0时,W的值最小,•最小值是8600元.此时的调运方案是:B市运往C市0台,运往D市6台;A市运往C市10台,运往D市2台.。

相关文档
最新文档