中考数学复习专题“全等三角形“经典题型17例解析
全等三角形经典题型50题(含答案)
全等三角形证明经典50题(含答案)1.已知:AB=4 , AC=2 , D 是BC 中点,AD 是整数,求 AD延长AD 至U E,使DE=AD, 则三角形ADC 全等于三角形EBD即 BE=AC=2 在三角形 ABE 中,AB-BE<AE<AB+BE 即:10-2<2AD<10+2 4<AD<6 又AD 是整数,则AD=512.已知:D 是 AB 中点,/ ACB=90 °,求证: CD - AB2为BC=ED,CF=DF, / BCF= / EDF 。
所以 三角形BCF 全等于三角形 EDF (边角边)。
所以BF=EF, / CBF= / DEF 。
连接 BE 。
在三角形 BEF 中,BF=EF 。
所以 / EBF= / BEF 。
/ ABE= / AEB 。
所以 AB=AE 。
在三角形 ABF 和 / ABF= / ABE+ / EBF= / AEB+ / BEF= / AEF 。
所以/ C= / D , F 是 CD 中点,求证:/ 1 = / 2证明:连接BF 和EF 。
因又因为 / ABC= / AED 。
所以 三角形 AEF 中, AB=AE,BF=EF, 三角形ABF 和三角形AEF 全等。
所以 / BAF= / EAF ( / 仁/ 2)。
A3因为 EB = EF ,CE = CE , 所以△ CEBCEF 所以/ B = / CFE 因为/ B +/ D = 180° / CFE + / CFA = 180° 所以/ D = / CFA 因为 AC 平分/ BAD 所以/ DAC = / FAC 又因为 AC = AC 所以△ ADC 也厶AFC ( SAS ) 所以AD = AF 所以AE = AF + FE = AD + BE12.如图,四边形 ABCD 中,AB // DC ,BE 、CE 分别平分/ ABC 、/ BCD ,且点 E 在AD 上。
全等三角形经典题型50题带问题详解
全等三角形证明经典50题(含答案)1. 已知:AB=4,AC=2,D 是BC 中点,AD 是整数,求AD延长AD 到E,使DE=AD,则三角形ADC 全等于三角形EBD即BE=AC=2 在三角形ABE 中,AB-BE<AE<AB+BE 即:10-2<2AD<10+2 4<AD<6 又AD 是整数,则AD=52. 已知:D 是AB 中点,∠ACB=90°,求证:12CD AB从D 做辅助线3. 已知:BC=DE ,∠B=∠E ,∠C=∠D ,F 是CD 中点,求证:∠1=∠2证明:连接BF 和EF 。
因为 BC=ED,CF=DF,∠BCF=∠EDF 。
所以 三角形BCF 全等于三角形EDF(边角边)。
所以 BF=EF,∠CBF=∠DEF 。
连接BE 。
在三角形BEF 中,BF=EF 。
所以 ∠EBF=∠BEF 。
又因为 ∠ABC=∠AED 。
所以 ∠ABE=∠AEB 。
所以 AB=AE 。
在三角形ABF 和三角形AEF 中,AB=AE,BF=EF,∠ABF=∠ABE+∠EBF=∠AEB+∠BEF=∠AEF 。
所以 三角形ABF 和三角形AEF 全等。
所以 ∠BAF=∠EAF (∠1=∠2)。
ADBC4. 已知:∠1=∠2,CD=DE ,EF//AB ,求证:EF=AC证明:过E 点,作EG//AC ,交AD 延长线于G 则∠DEG=∠DCA ,∠DGE=∠2又∵CD=DE ∴⊿ADC ≌⊿GDE (AAS )∴EG=AC ∵EF//AB ∴∠DFE=∠1∵∠1=∠2∴∠DFE=∠DGE ∴EF=EG ∴EF=AC5. 已知:AD 平分∠BAC ,AC=AB+BD ,求证:∠B=2∠C证明:在AC 上截取AE=AB ,连接ED ∵AD 平分∠BAC ∴∠EAD=∠BAD 又∵AE=AB ,AD=AD ∴⊿AED ≌⊿ABD (SAS )∴∠AED=∠B ,DE=DB ∵AC=AB+BD AC=AE+CE ∴CE=DE ∴∠C=∠EDC ∵∠AED=∠C+∠EDC=2∠C ∴∠B=2∠C6. 已知:AC 平分∠BAD ,CE ⊥AB ,∠B+∠D=180°,求证:AE=AD+BE证明: 在AE 上取F ,使EF =EB ,连接CF 因为CE ⊥AB 所以∠CEB =∠CEF =90° 因为EB =EF ,CE =CE , 所以△CEB ≌△CEF 所以∠B =∠CFE 因为∠B +∠D =180°,∠CFE +∠CFA =180° 所以∠D =∠CFA 因为AC 平分∠BAD 所以∠DAC =∠FAC 又因为AC =AC 所以△ADC ≌△AFC (SAS ) 所以AD =AF 所以AE =AF +FE =AD +BE12. 如图,四边形ABCD 中,AB ∥DC ,BE 、CE 分别平分∠ABC 、∠BCD ,且点E 在AD 上。
中考数学专题复习全等三角形(公共角模型)
中考数学专题复习全等三角形(公共角模型)学校:___________姓名:___________班级:___________考号:___________评卷人得分 一、解答题1.在ABC 中,∠BAC =90°,AB AC =,点D 为直线BC 上一动点(点D 不与B ,C 重合),以AD 为直角边在AD 右侧作等腰直角三角形ADE (90DAE ∠=︒,AD AE =),连接CE . (1)如图1,当点D 在线段BC 上时,猜想:BC 与CE 的位置关系,并说明理由; (2)如图2,当点D 在线段CB 的延长线上时,(1)题的结论是否仍然成立?说明理由;(3)如图3,当点D 在线段BC 的延长线上时,结论(1)题的结论是否仍然成立?不需要说明理由.2.在四边形ABCD 中,∠DAB +∠DCB =180°,AC 平分∠DAB .(1)如图1,求证:BC =CD ;(2)如图2,连接BD 交AC 于点E ,若∠ADB =90°,AE =2DE ,求∠ABD 的度数; (3)如图3,在(2)的条件下,过点C 作CH ∠AB 于点H ,∠BCH 沿BC 翻折,点H 的对应点为点F ,点G 在线段AB 上,连接FG ,若∠CGF =30°,S △CHG =9,求线段CG 的长.3.如图1,在等腰直角三角形ABC中,AB=AC,∠BAC=90°,点E,F分别为AB,AC的中点,H为线段EF上一动点(不与点E,F重合),过点A作AG∠AH且AG=AH,连接GC,HB.(1)证明:AHB∠AGC;(2)如图2,连接GF,HG,HG交AF于点Q.∠证明:在点H的运动过程中,总有∠HFG=90°;∠当AQG为等腰三角形时,求∠AHE的度数.4.如图,我们把对角线互相垂直的四边形叫做“垂美四边形”.(1)性质探究:如图1.己知四边形ABCD中,AC∠BD.垂足为O,求证:AB2+CD2=AD2+BC2;(2)解决问题:已知AB=52.BC=42,分别以∠ABC的边BC和AB向外作等腰Rt∠BCE和等腰Rt∠ABD;∠如图2,当∠ACB=90°,连接DE,求DE的长;∠如图3.当∠ACB≠90°,点G、H分别是AD、AC中点,连接GH.若GH=26,则S△ABC=.5.已知,∠ABC是边长为4cm的等边三角形,点P,Q分别从顶点A,B同时出发,沿线段AB,BC运动,且它们的速度均为1cm/s.当点P到达点B时,P、Q两点停止运动.设点P的运动时间为t(s).(1)如图1,连接AQ、CP,相交于点M,则点P,Q在运动的过程中,∠CMQ会变化吗?若变化,则说明理由;若不变,请求出它的度数.(2)如图2,当t为何值时,∠PBQ是直角三角形?(3)如图3,若点P、Q在运动到终点后继续在射线AB、BC上运动,直线AQ、CP 交点为M,请直接写出∠CMQ度数.6.(1)如图(1)点P是正方形ABCD的边CD上一点(点P与点C,D不重合),点E在BC的延长线上,且CE=CP,连接BP,DE.求证:∠BCP∠∠DCE;(2)直线EP交AD于F,连接BF,FC.点G是FC与BP的交点.∠若CD=2PC时,求证:BP∠CF;∠若CD=n•PC(n是大于1的实数)时,记∠BPF的面积为S1,∠DPE的面积为S2.求证:S1=(n+1)S2.参考答案:1.(1)BC ∠CE ,见解析;(2)成立,见解析;(3)成立【解析】【分析】(1)先证∠2=∠3,再证∠ABD ∠∠ACE (SAS ),得出∠4=∠5,求出∠4=∠6=45°,∠5=45°即可;(2)先证∠2=∠3,再证∠ABD ∠∠ACE (SAS ),得出∠ABD =∠ACE ,求出∠ABC =∠ACB =45°,得出∠ABD =∠ACE =135°即可;(3)先证∠BAD =∠CAE ,再证∠ABD ∠∠ACE (SAS ),得出∠ABD =∠ACE ,再求∠ABC =∠ACB =45°,得出∠ABD =∠ACE =45°.【详解】解:(1)BC 与CE 的位置关系是BC ∠CE ,理由是:∠∠BAC =∠DAE =90°,∠∠BAC -∠1=∠DAE -∠1,即∠2=∠3,在△ABD 和△ACE 中,23AB AC AD AE =⎧⎪∠=∠⎨⎪=⎩,∠△ABD ∠△ACE (SAS ),∠∠4=∠5,∠∠BAC =90°,AB =AC ,∠∠4=∠6=45°,∠∠5=45°,∠∠BCE =∠5+∠6=45°+45°=90°,即BC ∠CE ;(2)成立.理由是:∠∠BAC =∠DAE =90°,∠∠BAC-∠1=∠DAE-∠1,即∠2=∠3,在△ABD 和△ACE 中,23AB AC AD AE =⎧⎪∠=∠⎨⎪=⎩,∠△ABD ∠△ACE (SAS ),∠∠ABD =∠ACE ,∠∠BAC =90°,AB =AC ,∠∠ABC =∠ACB =45°,∠∠ABD =∠ACE =135°,∠∠BCE =∠ACE -∠ACB =135°-45°=90°,即BC ∠CE ;(3)成立∠∠BAC =∠DAE =90°,∠∠BAC +∠CAD =∠DAE +∠CAD ,即∠BAD=∠CAE,在△ABD和△ACE中,AB ACBAD CAEAD AE=⎧⎪∠=∠⎨⎪=⎩,∠∠ABD∠∠ACE(SAS),∠∠ABD=∠ACE,∠∠BAC=90°,AB=AC,∠∠ABC=∠ACB=45°,∠∠ABD=∠ACE=45°,∠∠BCE=∠ACE+∠ACB=45°+45°=90°.【点睛】本题考查图形变换中结论问题,等腰直角三角形性质,三角形全等判定与性质,角的和差运用,直线位置关系,掌握等腰直角三角形性质,三角形全等判定与性质,角的和差运用,直线位置关系垂直的证法是解题关键.2.(1)证明见解析;(2)30ABD∠=;(3)CG=6【解析】【分析】(1)过点C作CP∠AB于点P,作CQ∠AD的延长线于点Q,证明∠CQD∠∠CPB,即可得到答案;(2)延长ED,让MD=ED,∠AME是等边三角形,然后利用等边三角形的性质和角平分线的定义即可求得答案;(3)延长GC,过点F作FK∠GC的延长线于点K,过点H作HL∠GF于点L,连接HF,通过证明∠CFK∠∠HFL,得到FK=FL,又有直角三角形中30所对的直角边是斜边的一半,求得FK=12GF,根据等腰三角形的三线合一,进一步求得∠FGH=15,从求得到∠GCH=45,然后在直角三角形中利用勾股定理求解即可得答案.【详解】解:(1)过点C作CP∠AB于点P,作CQ∠AD的延长线于点Q,如下图:∠AC平分∠DAB,CP∠AB,CQ∠AD∠CQ=CP在四边形APCQ中,∠APC=∠AQC=90∠∠QAP+∠PCQ=180又∠∠DAB+∠DCB=180°∠∠PCQ=∠DCB∠∠QCD+∠DCP=∠DCP+∠PCB∠∠QCD=∠PCB又∠∠CQD=∠CPB=90∠∠CQD∠∠CPB(ASA)∠CD=CB(2)延长ED,让MD=ED,如下图:∠∠ADB=90°∠AD∠ME又∠MD=ED∠AM=AE,ME=2DE又∠AE=2DE∠ME=AE=AM∠∠AME是等边三角形∠60AED∠=又∠∠ADE=90°∠30DAE∠=∠AC平分∠DAB∠30EAB DAE∠=∠=又∠AED EAB ABD∠=∠+∠∠30ABD∠=(3)延长GC,过点F作FK∠GC的延长线于点K,过点H作HL∠GF于点L,连接HF,如下图:∠在Rt CHB中,90,60CHB CBH ABD CBD∠=∠=∠+∠=∠∠HCB=30又∠折叠∠CH=CF, ∠HCB=∠FCB=30∠∠HCF=60∠∠CHF是等边三角形∠∠CFH=∠CHF=60,CF=HF又∠在Rt GFK△中,∠CGF=30,∠GKF=90∠∠GFK=60∠∠CFH=∠GFK∠∠CFK +∠CFG =∠CFG +∠HFL ∠∠CFK =∠HFL又∠∠CKF =∠LHF =90,CF =HF∠∠CFK ∠∠HFL∠FK =FL又∠在Rt GFK △中,∠CGF =30∠FK =12GF∠FL =12GF∠GL =FL又∠HL ∠GF∠HG =HF∠∠FGH =∠GFH又∠∠CHF =60,∠CHB =90∠∠FHB =∠CHB -∠CHF =30∠∠FGH =15∠∠CGH =∠CGF +∠FGH =45又∠∠CHG =90∠∠GCH =45∠GH =CH ,∠GCH 是等腰直角三角形又∠9CHG S =△∠192GH CH ⋅= ∠2218GH CH ==在Rt CHG 中,由勾股定理得:22236CG GH CH =+=∠CG >0∠CG =6【点睛】本题考查全等三角形的性质和判定,含30︒的直角三角形性质,等边三角形的性质和判定,直角三角形的勾股定理等知识点,能够熟练利用化归的思想和数形结合的思想去解题,是本题的重点.3.(1)见解析;(2)∠见解析;∠当∠AQG为等腰三角形时,∠AHE的度数为67.5°或90°.【解析】【分析】(1)根据SAS可证明∠AHB∠∠AGC;(2)∠证明∠AEH∠∠AFG(SAS),可得∠AFG=∠AEH=45°,从而根据两角的和可得结论;∠分两种情况:i)如图3,AQ=QG时,ii)如图4,当AG=QG时,分别根据等腰三角形的性质可得结论.【详解】(1)证明:如图1,由旋转得:AH=AG,∠HAG=90°,∠∠BAC=90°,∠∠BAH=∠CAG,∠AB=AC,∠∠ABH∠∠ACG(SAS);(2)∠证明:如图2,在等腰直角三角形ABC中,∠BAC=90°,∠∠ABC=∠ACB=45°,∠点E,F分别为AB,AC的中点,∠EF是∠ABC的中位线,∠EF∠BC,AE=12AB,AF=12AC,∠AE=AF,∠AEF=∠ABC=45°,∠AFE=∠ACB=45°,∠∠EAH=∠F AG,AH=AG,∠∠AEH∠∠AFG(SAS),∠∠AFG=∠AEH=45°,∠∠HFG=45°+45°=90°;∠分两种情况:i)如图3,AQ=QG时,∠AQ=QG,∠∠QAG=∠AGQ,∠AG∠AH且AG=AH,∠∠AHG=∠AGH=45°,∠∠AHG=∠AGH=∠HAQ=∠QAG=45°,∠∠EAH=∠F AH=45°,∠AE=AF,AH=AH,∠∠AEH∠∠AFH(SAS),∠∠AHE=∠AHF,∠∠AHE+∠AHF=180°,∠∠AHE=∠AHF=90°;ii)如图4,当AG=QG时,∠GAQ=∠AQG,∠∠AEH=∠AGQ=45°,∠∠GAQ=∠AQG=180452︒-︒=67.5°,∠∠EAQ=∠HAG=90°,∠∠EAH=∠GAQ=67.5°,∠∠AHE=∠AQG=67.5°;∠H为线段EF上一动点(不与点E,F重合),∠不存在AG=AQ的情况.综上,当∠AQG为等腰三角形时,∠AHE的度数为67.5°或90°.【点睛】本题是三角形的综合题,考查了旋转的性质,等腰直角三角形的性质和判定,等腰三角形的性质和判定,也考查了全等三角形的判定与性质,第二问要注意分类讨论,不要丢解.4.(1)见解析;(2)∠146;∠7 2【解析】【分析】(1)根据AC∠BD可以得到,AOB =∠COD=90°即可得到AB²=AO²+OB²,CD²=DO²+OC²即AB²+CD²=AO²+OB²+DO²+OC² 同理可以得到AD²+BC²=AO²+OB²+DO²+OC² 即可得到答案;(2)连DC、AE相交于点F,先证明∠ABE ∠∠DBC得到∠CDB=∠BAE 从而证得AE∠CD 再利用勾股定理和(1)中的结论求解即可得到答案;(3)连DC、AE相交于点F,作CP∠BD交DB延长线于点P,BP²+CP²=BC²=(42)²=32,DP²+PC²=DC²=(46)²=96,(DP²+PC²)-(BP²+CP²)=96-32=64,DP²-BP²=64从而求出BP=7210,再证明AB∠PC则S△ABC=12AB×BP.【详解】解:(1)证明:∠AC∠BD∠,AOB=90°在Rt∠AOB中AB²=AO²+OB²∠,COD=90°在Rt∠COD中CD² =DO²+OC²∠AB²+CD²=AO²+OB²+DO²+OC²同理AD²+BC²=AO²+OB²+DO²+OC² ∠ AB2+CD2=AD2+BC ²(2)∠解:连DC、AE相交于点F ∠Rt∠BCE和Rt∠ABD是等腰三角形∠BE=BC AB=BD∠CBE=∠ABD=90°∠∠ABE=∠DBC=90°+∠ABC∠∠ABE ∠∠DBC∠∠CDB=∠BAE∠∠ABD=90°∠∠CDB+∠CDA+∠DAB=90°∠∠BAE+∠CDA+∠DAB=90°∠∠AFD=90°∠AE∠CD∠AB=52,BC=42∠ACB=90° ∠AC=2232AB BC-=∠AB=52,BD=52∠ABD=90°∠AD=2210AB BD+=∠BC=42,BE=42∠CBE=90°∠CE=228BC BE+=由(1)中结论AD²+EC²=AC²+DE²∠(10)²+(8)²=(32)²+DE²∠DE=146∠连DC、AE相交于点F∠点G、H分别是AD、AC中点,GH=26∠ DC=2GH =46作CP∠BD交DB延长线于点PBP²+CP²=BC²=(42)²=32DP²+PC²=DC²=(46)²=96∠(DP²+PC²)-(BP²+CP²)=96-32=64∠DP²-BP²=64∠(BD+BP)²-BP²=64∠(52+BP)²-BP²=64∠BP=7210∠∠PBA=90°,∠P=90°,∠∠PBA+∠P=90°+90°=180°则S △ABC =12AB ×BP =12×52×772=102【点睛】本题主要考查了四边形的综合问题,等腰直角三角形的性质,全等三角形的性质与判定,勾股定理,垂直的定义,解题的关键在于能够熟练掌握相关知识进行求解.5.(1)不变,60°;(2)43或83;(3)120°. 【解析】【分析】(1)通过证∠ABQ ∠∠CAP 得到∠BAQ =∠ACP ,所以由三角形外角定理得到∠CMQ =∠ACP +∠CAM =∠BAQ +∠CAM =∠BAC =60°;(2)需要分类讨论:分∠PQB =90°和∠BPQ =90°两种情况;(3)通过证∠ABQ ∠∠CAP 得到∠BAQ =∠ACP ,所以由三角形外角定理得到∠CMQ =∠BAQ +∠APC =∠ACP +∠APC =180°-∠BAC =120°.【详解】(1)不变.在∠ABQ 与∠CAP 中,∠60AB AC B CAP AP BQ =⎧⎪∠=∠=︒⎨⎪=⎩,∠∠ABQ ∠∠CAP (SAS ),∠∠BAQ =∠ACP ,∠∠CMQ =∠ACP +∠CAM =∠BAQ +∠CAM =∠BAC =60°;(2)设时间为t ,则AP =BQ =t ,PB =4-t ,∠当∠PQB =90°时,∠∠B =60°,∠4-t =2t ,43t =; ∠当∠BPQ =90°时,∠∠B =60°,∠BQ =2BP ,∠ t =2(4-t ),t =83; ∠当第43秒或第83秒时,∠PBQ 为直角三角形; (3)在∠ABQ 与∠CAP 中,∠60AB AC B CAP AP BQ =⎧⎪∠=∠=︒⎨⎪=⎩,∠∠ABQ ∠∠CAP (SAS ),∠∠BAQ =∠ACP ,∠∠CMQ =∠BAQ +∠APC =∠ACP +∠APC =180°-∠BAC =120°.【点睛】本题考查了等边三角形的性质,全等三角形的判定与性质,掌握全等三角形的判定与性质是解题的关键.6.(1)证明见解析;(2)∠证明见解析;∠证明见解析.【解析】【分析】(1)由SAS 即可证明∠BCP ∠∠DCE .(2)∠在(1)的基础上,再证明∠BCP ∠∠CDF ,进而得到∠FCD +∠BPC =90°,从而证明BP ⊥CF ;∠设CP =CE =1,则BC =CD =n ,DP =CD -CP =n -1,分别求出S 1与S 2的值,得()()11112S n n =+-,()2112S n =-,所以S 1=(n +1)S 2结论成立. 【详解】证明:(1)∠在∠BCP 与∠DCE 中,90BC CD BCP DCE CP CE =⎧⎪∠=∠=︒⎨⎪=⎩∠∠BCP ∠∠DCE (SAS ).(2)∠∠CP =CE ,∠PCE =90°,∠∠CPE =45°,∠∠FPD =∠CPE =45°,∠∠PFD =45°,∠FD =DP .∠CD =2PC ,∠DP =CP ,∠FD =CP .∠在∠BCP 与∠CDF 中,90BC CD BCP CDF CP FD =⎧⎪∠=∠=︒⎨⎪=⎩∠∠BCP ∠∠CDF (SAS ),∠∠FCD =∠CBP .∠∠CBP +∠BPC =90°,∠∠FCD +∠BPC =90°,∠∠PGC =90°,即BP ⊥CF .∠设CP =CE =1,则BC =CD =n ,DP =CD -CP =n -1 易知∠FDP 为等腰直角三角形,∠FD =DP =n -1.∠()1111222BCDF BCP FDP S S S S BC FD CD BC CP FD DP ∆∆=--=+⋅-⋅-⋅梯形 ()()()()()221111111111122222n n n n n n n n =+-⋅-⋅--=-=+- ()()2111111222S DP CE n n =⋅=-⋅=- ∠S 1=(n +1)S 2.【点睛】本题是几何综合题,考查了正方形的性质、全等三角形的判定与性质、等腰直角三角形、图形的面积等知识点,试题的综合性强,难度较大.。
完整版)全等三角形难题题型归类及解析
完整版)全等三角形难题题型归类及解析1.在三角形ABC中,AD是角BAC的平分线,AE=AC,DE=2cm,BD=3cm,求BC的长度。
为了解决这个问题,我们可以利用角平分线的轴对称性,构造全等三角形ADE和ABC。
因为AE=AC,所以三角形ADE和三角形ABC的两边分别相等,因此它们是全等的。
根据全等三角形的性质,∠DAE=∠CAB,∠AED=∠ACB。
又因为AD是角BAC的平分线,所以∠DAE=∠EAC,因此∠CAB=2∠EAC。
设BC=x,则根据正弦定理可得:3/x=sin(2EAC)/sin(EAC),化简后得到x=6.2.在三角形ABC中,BD是角ABC的平分线,AB=BC,P在BD上,PM⊥AD于M,PN⊥CD于N,求解PM与PN 的关系。
首先,我们可以利用角平分线的性质,构造等腰三角形ABD和CBD。
因为AB=BC,所以三角形ABD和三角形CBD的两边分别相等,因此它们是全等的。
根据全等三角形的性质,∠BDA=∠BDC,∠ADB=∠CDB。
又因为BD是角ABC的平分线,所以∠ADB=∠BDC,因此∠BDA=∠CDB。
因此,三角形APM和三角形CPN是全等的。
因为全等三角形的对应边相等,所以PM=PN。
3.在三角形OAB中,P是角OAB的平分线上的一点,PC⊥OA于C,∠OAP+∠OBP=180°,OC=4cm,求解AO+BO的值。
我们可以利用角平分线的轴对称性,构造全等三角形OAC和OBC。
因为∠OAP+∠OBP=180°,所以∠AOP=∠BOP=90°。
因此,三角形OAP和三角形OBP是直角三角形。
设AO=x,BO=y,则根据勾股定理可得:x^2+PC^2=OP^2,y^2+PC^2=OP^2.又因为OC=4cm,所以PC=2cm。
将PC代入上面的两个式子中,得到x^2+y^2=OP^2-4.又因为三角形OAC和三角形OBC是全等的,所以x=y,因此2x^2=OP^2-4,即OP^2=2x^2+4.因此,AO+BO=2x=2√((OP^2-4)/2)=2√(2x^2)=2√(2y^2)=2√(2x^2+4)/2=2√(OP^2)/2=OP√2=2√6.4.在三角形ABC中,E在边AC上,且∠XXX∠ABC。
中考数学专题17 三角形与全等三角形
温馨提示:
三角形的边、角之间的关系是三角形中重要的性质,在比较角的大小、线段的长短及求角或线段中经常用到。学习时应结合图形,做到熟练、准确地应用。
三角形的角平分线、高、中线均为线段。
(三)全等三角形的概念与性质
1.能够完全重合的两个三角形叫做全等三角形.
【答案】(1)C(2)A(3)C
方法总结:
(1)考查三角形的边或角时,一定要注意三角形形成的条件:两边之和大于第三边,两边之差小于第三边;
(2)在求三角形内角和外角时,要明确所求的角属于哪个三角形的内角和外角,要抓住题目中的等量关系;
类型二全等三角形
(1)如图,已知AC=FE,BC=DE,点A、D、B、F在一条直线上,要使△ABC≌△FDE,还需添加一个条件,这个条件可以是_________________________.
2.三角形的两边之和大于第三边,两边之差小于第三边.
3.三角形中的重要线段
(1)角平分线:三角形的三条角平分线交于一点,这点叫做三角形的内心,它到三角形各边的距离相等.
(2)中线:三角形的三条中线交于一点,这点叫做三角形的重心.
(3)高:三角形的三条高交于一点,这点叫做三角形的垂心.
(4)三边垂直平分线:三角形的三边垂直平分线交于一点,这点叫做三角形的外心,外心到三角形三个顶点距离相等.
1.(2009·温州)下列长度的三条线段能组成三角形的是()
A.1cm,2cm,3.5cmB.4cm,5cm,9cm
C.5cm,8cm,15cmD.6cm,8cm,9cm
解析:计算较小两数的和与最大数比较,大于的组成三角形,否则不能.
答案:D
2.(2008·嘉兴)如图,△ABC中,已知AB=8,BC=6,CA=4,DE是中位线,则DE=()
中考数学备考专题复习 全等三角形(含解析)-人教版初中九年级全册数学试题
全等三角形一、单选题(共12题;共24分)1、下图中,全等的图形有()A、2组B、3组C、4组D、5组2、使两个直角三角形全等的条件是()A、一锐角对应相等B、两锐角对应相等C、一条边对应相等D、两条直角边对应相等3、下列说法错误的是()A、等腰三角形两腰上的中线相等B、等腰三角形两腰上的高线相等C、等腰三角形的中线与高重合D、等腰三角形底边的中线上任一点到两腰的距离相等4、如图,某同学把一块三角形的玻璃打破成了三块,现在他要到玻璃店去配一块完全一样形状的玻璃,那么最省事的办法是带()去配.A、①B、②C、③D、①和②5、长为1的一根绳,恰好可围成两个全等三角形,则其中一个三角形的最长边x 的取值X围为()A、B、C、D、6、已知等腰三角形一腰上的高线等于腰长的一半,那么这个等腰三角形的一个底角等于()A、15°或75°B、15°C、75°D、150°和30°7、如图,x的值可能为()A、10B、9C、7D、68、如图,△A BC中,AB=AC , EB=EC ,则由“SSS”可以判定()A、△ABD≌△ACDB、△ABE≌△ACEC、△BDE≌△CDED、以上答案都不对9、如果线段AB=3cm,BC=1cm,那么A、C两点的距离d的长度为()A、4cmB、2cmC、4cm或2cmD、小于或等于4cm,且大于或等于2cm10、(2016•滨州)如图,△ABC中,D为AB上一点,E为BC上一点,且AC=CD=BD=BE,∠A=50°,则∠CDE的度数为()A、50°B、51°C、51.5°D、52.5°11、(2016•某某)如图,已知∠ABC=∠BAD,添加下列条件还不能判定△ABC≌△BAD的是()A、AC=BDB、∠CAB=∠DBAC、∠C=∠DD、BC=AD12、如图,在△ABC中,∠A=20°,∠ABC与∠ACB的角平分线交于D1,∠ABD1与∠ACD1的角平分线交于点D2,依此类推,∠ABD4与∠ACD4的角平分线交于点D5,则∠BD5C的度数是()A、24°B、25°C、30°D、36°二、填空题(共5题;共6分)13、若△ABC≌△EFG,且∠B=60°,∠FGE-∠E=56°,,则∠A=________度.14、如图,BE,CD是△ABC的高,且BD=EC,判定△BCD≌△CBE的依据是“________”.15、如图,△ABC≌△ADE,∠B=100°,∠BAC=30°,那么∠AED=________°.16、如果△ABC 和△DEF 全等,△DEF 和△GHI 全等,则△ABC 和△GHI________全等,如果△ABC 和△DEF 不全等,△DEF 和△GHI 全等,则△A BC 和△GHI________全等.(填“一定”或“不一定”或“一定不”)17、(2016•某某)如图,在边长为4的正方形ABCD 中,P 是BC 边上一动点(不含B 、C 两点),将△ABP 沿直线AP 翻折,点B 落在点E 处;在CD 上有一点M ,使得将△CMP 沿直线MP 翻折后,点C 落在直线PE 上的点F 处,直线PE 交CD 于点N ,连接MA ,NA .则以下结论中正确的有________(写出所有正确结论的序号) ①△CMP∽△BPA;②四边形AMCB 的面积最大值为10;③当P 为BC 中点时,AE 为线段NP 的中垂线; ④线段AM 的最小值为2;⑤当△ABP≌△ADN 时,BP=4﹣4.三、综合题(共6题;共66分)18、如图,分别以Rt△ABC 的直角边AC 及斜边AB 向外作等边△ACD 及等边△ABE.已知∠BAC=30°,EF⊥AB,垂足为F ,连接DF .(1)试说明AC=EF ;(2)求证:四边形ADFE 是平行四边形.19、已知:如图,在正方形ABCD 中,G 是CD 上一点,延长BC 到E ,使CE=CG ,连接BG 并延长交DE 于F .(1)求证:△BCG≌△DCE;(2)将△DC E 绕点D 顺时针旋转90°得到△DAE′,判断四边形E′BGD 是什么特殊四边形,并说明理由。
全等三角形经典题型50题(含答案解析)
全等三角形证明经典50题(含答案)1. 已知:AB=4,AC=2,D 是BC 中点,AD 是整数,求AD延长AD 到E,使DE=AD,则三角形ADC 全等于三角形EBD即BE=AC=2 在三角形ABE 中,AB-BE<AE<AB+BE 即:10-2<2AD<10+2 4<AD<6 又AD 是整数,则AD=52. 已知:D 是AB 中点,∠ACB=90°,求证:12CD AB3. 已知:BC=DE ,∠B=∠E ,∠C=∠D ,F 是CD 中点,求证:∠1=∠2证明:连接BF 和EF 。
因为 BC=ED,CF=DF,∠BCF=∠EDF 。
所以 三角形BCF 全等于三角形EDF(边角边)。
所以 BF=EF,∠CBF=∠DEF 。
连接BE 。
在三角形BEF 中,BF=EF 。
所以 ∠EBF=∠BEF 。
又因为 ∠ABC=∠AED 。
所以 ∠ABE=∠AEB 。
所以 AB=AE 。
在三角形ABF 和三角形AEF 中,AB=AE,BF=EF,∠ABF=∠ABE+∠EBF=∠AEB+∠BEF=∠AEF 。
所以 三角形ABF和三ADBC角形AEF 全等。
所以 ∠BAF=∠EAF (∠1=∠2)。
4. 已知:∠1=∠2,CD=DE ,EF//AB ,求证:EF=AC证明:过E 点,作EG//AC ,交AD 延长线于G 则∠DEG=∠DCA ,∠DGE=∠2又∵CD=DE ∴⊿ADC ≌⊿GDE (AAS )∴EG=AC ∵EF//AB ∴∠DFE=∠1∵∠1=∠2∴∠DFE=∠DG E ∴EF=EG ∴EF=AC5. 已知:AD 平分∠BAC ,AC=AB+BD ,求证:∠B=2∠C证明:在AC 上截取AE=AB ,连接ED ∵AD 平分∠BAC ∴∠EAD=∠BAD 又∵AE=AB ,AD=AD ∴⊿AED ≌⊿ABD (SAS )∴∠AED=∠B ,DE=DB ∵AC=AB+BDAC=AE+CE ∴CE=DE ∴∠C=∠E DC ∵∠AED=∠C+∠EDC=2∠C ∴∠B=2∠C6. 已知:AC 平分∠BAD ,CE ⊥AB ,∠B+∠D=180°,求证:AE=AD+BE证明: 在AE 上取F ,使EF =EB ,连接CF 因为CE ⊥AB 所以∠CEB =∠CEF =90° 因为EB =EF ,CE =CE , 所以△CEB ≌△CEF 所以∠B =∠CFE 因为∠B +∠D =180°,∠CFE +∠CFA =180° 所以∠D =∠CFA 因为AC 平分∠BAD 所以∠DAC =∠FAC 又因为AC =AC 所以△ADC ≌△AFC (SAS ) 所以AD =AF 所以AE =AF +FE =AD +BE12. 如图,四边形ABCD 中,AB ∥DC ,BE 、CE 分别平分∠ABC 、∠BCD ,且点E 在AD 上。
2019中考数学高频考点剖析专题17平面几何之全等三角形问题—解析卷.doc
备考2019中考数学高频考点剖析专题十七平面几何之全等三角形问题考点扫描☆聚焦中考全等三角形,是每年小考的必考内容么一,考查的知识点包括全等三角形的判定、性质和全等三角形的综合应用两方面,总体来看,难度系数低,以选择填空为主。
涉及到的综合性问题主要体现在和几何图形的综合考查上。
解析题主要以证明为主。
结合2017、2018年全国各地中考的实例,我们从三方面进行全等三角形的探讨:(1)全等三角形的性质;(2)全等三角形的判定;(3)涉及到全等三角形的综合应用.考点剖析☆典型例题頑(2018-黔南州)下列各图中纸b、c为三角形的边长,则甲、乙、丙三个三角形和左侧△ ABC全等的是( )【分析】根据三角形全等的判定方法得出乙和丙与AABC全等,甲与AABC不全等.【解答】解:乙和AABC全等;理由如下:在AABC和图乙的三角形屮,满足三角形全等的判定方法:SAS,所以乙和AABC全等;在AABC和图丙的三角形中,满足三角形全等的判定方法:A AS,所以丙和△ABC全等;不能判定甲与AABC全等;故选:B.例2 (2018-安顺)如图,点D, E分别在线段AB, AC上,CD与BE相交于0点,已知AB二AC,//° wA.ZB=ZCB. AD二AEC. BD二CED. BE二CD【分析】欲使△ ABE^AACD,己知AB=AC,可根据全等三角形判定定理MS、SAS、ASA添加条件,逐一证明即可.【解答】解:TAB二AC, ZA为公共角,A、如添加ZB=ZC,利用ASA即可证明厶ABE^AACD;B、如添AD=AE,利用SAS即可证明厶ABE^AACD;C、如添BD二CE,等量关系可得AD二AE,利用SAS即可证明厶ABE^AACD;D、如添BE二CD,因为SSA,不能证明厶ABE^AACD,所以此选项不能作为添加的条件. 故选:D.硕冋(2018*南充)如图,已知AB二AD, AC二AE, ZBAE^ZDAC.求证:ZC=ZE.【分析】由ZBAE=ZDAC可得到ZBAC=ZDAE,再根据“SAS”可判断△ BAC^ADAE,根据全等的性质即可得到ZC=ZE.【解答】解:TZBAE二ZDAC,・•・ ZBAE - ZCAE二ZDAC - ZCAE,即ZBAC二ZDAE,在ZXABC 和AADE 中,'AB二AD•・・< ZBAC二ZDAE,,AC二AEAAABC^AADE (SAS),AZC=ZE.(2018*哈尔滨)已知:在四边形ABCD屮,对角线AC、BD相交于点E,且AC丄BD,作BF 丄CD,垂足为点F, BF 与AC 交于点C, ZBGE=ZADE.(1) 如图1,求证:AD=CD ;(2) 如图2, BII 是AABE 的中线,若AE 二2DE, DE=EG,在不添加任何辅助线的情况下,请直 接写出图2屮四个三角形,使写出的每个三角形的面积都等于AADE 面积的2倍.【分析】(1)由 AC 丄BD 、BF 丄CD 知 ZADE+ZDAE 二ZCGF+ZGCF,根据 ZBGE=ZADE=ZCGF 得出ZDAE 二ZGCF 即可得;⑵设 DE=a,先得出 AE=2DE=2a> EG 二DE P 、AH 二HE 二a 、CE=AE=2a,据此知 S^DC 二2/二2S MDE , 证厶ADE^ABGE 得BE 二AE 二2°,再分别求出 S AA BE 、 S AACE 、 S ABHG , 从而得出答案.【解答】解:(1) VZBGE=ZADE, ZBGE=ZCGF,・・・ZADE 二 ZCGF,TAC 丄BD 、BF 丄CD,・•・ ZADE+ ZDAE= ZCGF+ ZGCF,•••ZDAE 二 ZGCF,「•AD 二 CD ;(2)设 DE 二a,・・・ S AA DE=-yAE • • 2a • a=a 2,TBH 是Z\ABE 的中线, •: AH=HE=a,TAD 二CD. AC 丄BD,CE=AE=2a,在ZiADE 和ZXBGE 中, "ZAED 二 ZBEG「DE 二 GE ,,ZADE=ZBGEAADc=yAC*DE=y- (2a+2a ) • a =2a.2=2S AADE ;「•△ADE竺△BGE (ASA), /• BE 二AE=2a,・・・S“E二寺AE・BE二+• (2a) *2a=2a2,综上,面积等于ZkADE面积的2倍的三角形有ZXACD、AABE^ ABCE> ABIIG. 考点过关☆专项突破类型一全等三角形的性质1.如图,在下列4个正方形图案中,与左边正方形图案全等的图案是()解析:能够完全重合的两个图形叫做全等形.A、B、D图案均与题干屮的图形不重合,所以不属于全等的图案,C中的图案旋转180。
中考数学复习讲义课件 第4单元 第17讲 全等三角形
6.(2018·衡阳)如图,线段 AC,BD 相交于点 E,AE=DE,BE=CE. (2)当 AB=5 时,求 CD 的长.
解:∵△ABE≌△DCE,∴AB=CD. ∵AB=5,∴CD=5.
7.(2016·衡阳)如图,点 A,C,D,B 四点共线,且 AC=BD,∠A=∠B, ∠ADE=∠BCF,求证:DE=CF. 证明:∵AC=BD,∴AC+CD=BD+CD, 即 AD=BC.
[分析] 过点 M 作 AD 的垂线交 AB 于点 E,根据 ASA 可 证明 △BEM≌△NAM,得出 BM=NM;
证明:过点 M 作 AD 的垂线交 AB 于点 E. ∵∠BAC=90°,AB=AC,AD⊥BC, ∴∠NAB=90°,∠BAD=45°. ∴∠AEM=90°-45°=45°=∠BAD. ∴EM=AM,∠BEM=135°. ∵∠NAB=90°,∠BAD=45°, ∴∠NAD=135°.∴∠BEM=∠NAD.
12.(2021·柳州)如图,有一池塘,要测池塘两端 A,B 的距离,可先在平地 上取一个点 C,从点 C 不经过池塘可以直接到达点 A 和 B,连接 AC 并延 长到点 D,使 CD=CA,连接 BC 并延长到点 E,使 CE=CB,连接 DE, 那么量出 DE 的长就是 A,B 的距离,为什么?请结合解题过程,完成本题 的证明.
[解析] 根据全等三角形的判定方法,可以判断添加各个选项中的条件是否能够判断 △ABC≌△DEF. ∵BF=EC,∴BF+FC=EC+FC.∴BC=EF. 又∠B=∠E, ∴当添加条件 AB=DE 时,△ABC≌△DEF(SAS),故选项 A 不符合题意; 当添加条件∠A=∠D 时,△ABC≌△DEF(AAS),故选项 B 不符合题意; 当添加条件 AC=DF 时,无法判断△ABC≌△DEF,故选项 C 符合题意; 当添加条件 AC∥FD 时,则∠ACB=∠DFE,故△ABC≌△DEF(ASA),故选项 D 不符合题意. 故选 C.
完整版)全等三角形经典例题(含答案)
完整版)全等三角形经典例题(含答案)全等三角形证明题精选1.在四边形ABCD中,AD=BC,BE=DF,AE⊥BD,CF⊥BD,垂足分别为E、F。
证明:△ADE≌△CBF;若AC与BD相交于点O,证明:AO=CO。
2.已知点B,E,C,F在一条直线上,AB=DF,AC=DE,∠A=∠D。
证明:AC∥DE;若BF=13,EC=5,求BC的长。
3.在△ABC中,BD⊥AC于点D,CE⊥AB于点E,AD=AE。
证明:BE=CD。
4.点O是线段AB和线段CD的中点。
证明:△AOD≌△BOC;AD∥BC。
5.点C是AE的中点,∠A=∠ECD,AB=CD。
证明:∠B=∠D。
6.已知△ABC和△DAE,D是AC上一点,AD=AB,DE∥AB,DE=AC。
证明:AE=BC。
7.在△ABE和△DEF中,AB∥CD,E是CD上一点,BE交AD于点F,EF=BF。
证明:AF=DF。
8.点B、E、C、F在同一条直线上,AB=DE,AC=DF,BE=CF。
证明:AB∥DE。
9.在△ABC中,点D是AB上一点,DF交AC于点E,DE=FE,FC∥AB。
证明:AE=CE。
10.点A、C、D、B四点共线,且AC=BD,∠A=∠B,∠ADE=∠BCF。
证明:DE=CF。
11.点A,B,C,D在同一条直线上,CE∥DF,EC=BD,AC=FD。
证明:AE=FB。
12.已知△ABN和△ACM位置如图所示,AB=AC,AD=AE,∠1=∠2.证明:BD=CE;∠M=∠N。
13.在△ABC中,BE⊥AC,CD⊥AB,垂足分别为E,D,BE=CD。
证明:AB=AC。
14.在△ABC和△CED中,AB∥CD,AB=CE,AC=CD。
证明:∠B=∠E。
15.在△ABC中,AD平分∠BAC,且BD=CD,DE⊥AB于点E,DF⊥AC于点F。
证明:AB=AC;若AD=2,∠DAC=30°,求AC的长。
16.已知直角三角形ABC和直角三角形DBF,且它们相似,∠D=28°,求∠GBF的度数。
中考数学专题-三角形及全等三角形-(解析版)
三角形及全等三角形姓名:__________________ 班级:______________ 得分:_________________一、单选题1.(2021·湖南岳阳市·中考真题)下列命题是真命题的是( )A .五边形的内角和是720︒B .三角形的任意两边之和大于第三边C .内错角相等D .三角形的重心是这个三角形的三条角平分线的交点【答案】B【分析】根据相关概念逐项分析即可.【详解】A 、五边形的内角和是540︒,故原命题为假命题,不符合题意;B 、三角形的任意两边之和大于第三边,原命题是真命题,符合题意;C 、两直线平行,内错角相等,故原命题为假命题,不符合题意;D 、三角形的重心是这个三角形的三条中线的交点,故原命题为假命题,不符合题意;故选:B .【点睛】本题考查命题判断,涉及多边形的内角和,三角形的三边关系,平行线的性质,以及三角形的重心等,熟记基本性质和定理是解题关键.2.(2021·山东临沂市·中考真题)如图,在//AB CD 中,40AEC ∠=︒,CB 平分DCE ∠,则ABC ∠的度数为( )A .10︒B .20︒C .30D .40︒【答案】B【分析】 根据平行线的性质得到∠ABC =∠BCD ,再根据角平分线的定义得到∠ABC =∠BCD ,再利用三角形外角的性质计算即可.【详解】解:∠AB ∠CD ,∠∠ABC =∠BCD ,∠CB 平分∠DCE ,∠∠BCE =∠BCD ,∠∠BCE =∠ABC ,∠∠AEC =∠BCE +∠ABC =40°,∠∠ABC =20°,故选B .【点睛】本题考查了平行线的性质,角平分线的定义和外角的性质,掌握平行线的性质:两直线平行,内错角相等是解题的关键.3.(2021·陕西中考真题)如图,点D 、E 分别在线段BC 、AC 上,连接AD 、BE .若35A ∠=︒,25B ∠=︒,50C ∠=︒,则1∠的大小为( )A .60°B .70°C .75°D .85°【答案】B【分析】 由题意易得105BEC ∠=︒,然后根据三角形外角的性质可进行求解.【详解】解:∠25B ∠=︒,50C ∠=︒,∠在Rt ∠BEC 中,由三角形内角和可得105BEC ∠=︒,∠35A ∠=︒,∠170BEC A ∠=∠-∠=︒;故选B .【点睛】本题主要考查三角形内角和及外角的性质,熟练掌握三角形内角和及外角的性质是解题的关键. 4.(2021·四川乐山市·中考真题)如图,已知直线1l 、2l 、3l 两两相交,且13l l ⊥.若50α=︒,则β的度数为( )A .120︒B .130︒C .140︒D .150︒【答案】C【分析】 由垂直的定义可得∠2=90°;根据对顶角相等可得510α∠=∠=︒,再根据三角形外角的性质即可求得140β∠=︒.【详解】∠13l l ⊥,∠∠2=90°;∠510α∠=∠=︒,∠125090140β∠=∠+∠=︒+︒=︒.故选C .【点睛】本题考查了垂直的定义、对顶角的性质、三角形外角的性质,熟练运用三角形外角的性质是解决问题的关键.5.(2021·安徽中考真题)两个直角三角板如图摆放,其中90BAC EDF ∠=∠=︒,45E ∠=︒,30C ∠=︒,AB 与DF 交于点M .若//BC EF ,则BMD ∠的大小为( )A .60︒B .67.5︒C .75︒D .82.5︒【答案】C【分析】根据//BC EF ,可得45FDB F ∠=∠=︒,再根据三角形内角和即可得出答案.【详解】由图可得6045B F ∠=︒∠=︒,,∠//BC EF ,∠45FDB F ∠=∠=︒,∠180180456075BMD FDB B ∠=︒-∠-∠=︒-︒-︒=︒,故选:C .【点睛】本题考查了平行线的性质和三角形的内角和,掌握平行线的性质和三角形的内角和是解题的关键. 6.(2021·江苏扬州市·中考真题)如图,点A 、B 、C 、D 、E 在同一平面内,连接AB 、BC 、CD 、DE 、EA ,若100BCD ∠=︒,则A B D E ∠+∠+∠+∠=( )A .220︒B .240︒C .260︒D .280︒【答案】D【分析】 连接BD ,根据三角形内角和求出∠CBD +∠CDB ,再利用四边形内角和减去∠CBD 和∠CDB 的和,即可得到结果.【详解】解:连接BD ,∠∠BCD =100°,∠∠CBD +∠CDB =180°-100°=80°,∠∠A +∠ABC +∠E +∠CDE =360°-∠CBD -∠CDB =360°-80°=280°,故选D .【点睛】本题考查了三角形内角和,四边形内角和,解题的关键是添加辅助线,构造三角形和四边形. 7.(2021·河北中考真题)定理:三角形的一个外角等于与它不相邻的两个内角的和.已知:如图,ACD ∠是ABC 的外角.求证:ACD A B ∠=∠+∠.下列说法正确的是()A.证法1还需证明其他形状的三角形,该定理的证明才完整B.证法1用严谨的推理证明了该定理C.证法2用特殊到一般法证明了该定理D.证法2只要测量够一百个三角形进行验证,就能证明该定理【答案】B【分析】根据三角形的内角和定理与平角的定义可判断A与B,利用理论与实践相结合可判断C与D.【详解】解:A. 证法1给出的证明过程是完整正确的,不需要分情况讨论,故A不符合题意;B. 证法1给出的证明过程是完整正确的,不需要分情况讨论,故选项B符合题意;C. 证法2用量角器度量两个内角和外角,只能验证该定理的正确性,用特殊到一般法证明了该定理缺少理论证明过程,故选项C不符合题意;D. 证法2只要测量够一百个三角形进行验证,验证的正确性更高,就能证明该定理还需用理论证明,故选项D不符合题意.故选择:.B【点睛】本题考查三角形外角的证明问题,命题的正确性需要严密推理证明,三角形外角分三种情形,锐角、直角、和钝角,证明中应分类才严谨.8.(2021·四川泸州市·中考真题)在锐角ABC中,∠A,∠B,∠C所对的边分别为a,b,c,有以下结论:2sinA sinB sinCa cb R ===(其中R为ABC 的外接圆半径)成立.在ABC 中,若∠A =75°,∠B =45°,c =4,则ABC 的外接圆面积为( )A .163πB .643πC .16πD .64π【答案】A【分析】方法一:先求出∠C ,根据题目所给的定理,2sin c R C = , 利用圆的面积公式S 圆=163π. 方法二:设∠ABC 的外心为O ,连结OA ,OB ,过O 作OD ∠AB 于D ,由三角形内角和可求∠C =60°,由圆周角定理可求∠AOB =2∠C =120°,由等腰三角形性质,∠OAB =∠OBA =30,由垂径定理可求AD =BD =2,利用三角函数可求OAS 圆=163π. 【详解】解:方法一:∠∠A =75°,∠B =45°,∠∠C =180°-∠A -∠B =180°-75°-45°=60°,有题意可知42=sin sin 6032c R C ===︒,∠3R =, ∠S 圆=2221633R OA ππππ⎛=== ⎝⎭.方法二:设∠ABC 的外心为O ,连结OA ,OB ,过O 作OD ∠AB 于D ,∠∠A =75°,∠B =45°,∠∠C =180°-∠A -∠B =180°-75°-45°=60°,∠∠AOB =2∠C =2×60°=120°,∠OA =OB ,∠∠OAB =∠OBA =()1180120302︒-︒=︒, ∠OD ∠AB ,AB 为弦,∠AD =BD =122AB =,∠AD =OA cos30°,∠OA =343cos30223AD ÷︒=÷=, ∠S 圆=222431633R OA ππππ⎛⎫=== ⎪ ⎪⎝⎭.故答案为A .【点睛】本题考查三角形的外接圆,三角形内角和,圆周角定理,等腰三角形性质,垂径定理,锐角三角函数,圆的面积公式,掌握三角形的外接圆,三角形内角和,圆周角定理,等腰三角形性质,垂径定理,锐角三角函数,圆的面积公式是解题关键.9.(2021·重庆中考真题)如图,在ABC 和DCB 中,ACB DBC ∠=∠ ,添加一个条件,不能..证明ABC 和DCB 全等的是( )A .ABC DCB ∠=∠B .AB DC = C .AC DB =D .A D ∠=∠【答案】B【分析】 根据已知条件和添加条件,结合全等三角形的判断方法即可解答.【详解】选项A ,添加ABC DCB ∠=∠,在ABC 和DCB 中,ABC DCB BC CBACB DBC ∠=∠⎧⎪=⎨⎪∠=∠⎩, ∠ABC ∠DCB (ASA ),选项B ,添加 AB DC =,在ABC 和DCB 中, AB DC =,BC CB =,ACB DBC ∠=∠,无法证明ABC ∠DCB ; 选项C ,添加AC DB =,在ABC 和DCB 中,BC CB ACB DBC AC DB =⎧⎪∠=∠⎨⎪=⎩,∠ABC ∠DCB (SAS );选项D ,添加A D ∠=∠,在ABC 和DCB 中,A D ACB DBC BC CB ∠=∠⎧⎪∠=∠⎨⎪=⎩,∠ABC ∠DCB (AAS );综上,只有选项B 符合题意.故选B .【点睛】本题考查了全等三角形的判定方法,熟知全等三角形的判定方法是解决问题的关键.10.(2021·重庆中考真题)如图,点B ,F ,C ,E 共线,∠B =∠E ,BF =EC ,添加一个条件,不等判断∠ABC ∠∠DEF的是( )A .AB =DE B .∠A =∠DC .AC =DFD .AC ∠FD【答案】C【分析】根据全等三角形的判定与性质逐一分析即可解题.【详解】 解:BF =EC ,BC EF ∴=A. 添加一个条件AB =DE ,又,BC EF B E =∠=∠()ABC DEF SAS ∴△≌△故A 不符合题意;B. 添加一个条件∠A =∠D又,BC EF B E =∠=∠()ABC DEF AAS ∴≌故B 不符合题意;C. 添加一个条件AC =DF ,不能判断∠ABC ∠∠DEF ,故C 符合题意;D. 添加一个条件AC ∠FDACB EFD ∴∠=∠又,BC EF B E =∠=∠()ABC DEF ASA ∴≌故D 不符合题意,故选:C .【点睛】本题考查添加条件使得三角形全等即全等三角形的判定,是重要考点,难度较易,掌握相关知识是解题关键.11.(2021·浙江嘉兴市·中考真题)将一张三角形纸片按如图步骤∠至∠折叠两次得图∠,然后剪出图∠中的阴影部分,则阴影部分展开铺平后的图形是( )A .等腰三角形B .直角三角形C .矩形D .菱形【答案】D【分析】 此题是有关剪纸的问题,此类问题应亲自动手折一折,剪一剪.【详解】解:由题可知,AD 平分BAC ∠,折叠后AEO △与AFO 重合,故全等,所以EO =OF ;又作了AD 的垂直平分线,即EO 垂直平分AD ,所以AO =DO ,且EO ∠AD ;由平行四边形的判定:对角线互相平分的四边形为平行四边形,所以AEDF 为平行四边形;又AD ∠EF ,所以平行四边形AEDF 为菱形.故选:.D【点睛】本题主要考察学生对于立体图形与平面展开图形之间的转换能力,与课程标准中“能以实物的形状想象出几何图形,有几何图形想象出实物的图形”的要求相一致,充分体现了实践操作性原则.12.(2021·四川遂宁市·中考真题)下列说法正确的是( )A .角平分线上的点到角两边的距离相等B .平行四边形既是轴对称图形,又是中心对称图形C .在代数式1a ,2x ,x π,985,42b a +,13y +中,1a ,x π,42b a+是分式 D .若一组数据2、3、x 、1、5的平均数是3,则这组数据的中位数是4【答案】A【分析】根据角平分线的性质,平行四边形的对称性,分式的定义,平均数,中位数的性质分别进行判断即可.【详解】解:A.角平分线上的点到角两边的距离相等,故选项正确;B.平行四边形不是轴对称图形,是中心对称图形,故选项错误;C.在代数式1a ,2x ,x π,985,42b a +,13y +中,1a ,42b a +是分式,故选项错误; D.若一组数据2、3、x 、1、5的平均数是3,则这组数据的中位数是3,故选项错误;故选:A .【点睛】本题综合考查了角平分线的性质,平行四边形的对称性,分式的定义,平均数,中位数等知识点,熟悉相关性质是解题的关键.13.(2021·湖南娄底市·中考真题)2,5,m ) A .210m -B .102m -C .10D .4 【答案】D【分析】先根据三角形三边的关系求出m 的取值范围,再把二次根式进行化解,得出结论.【详解】解:2,3,m 是三角形的三边,5252m ∴-<<+,解得:37x ,374m m =-+-=,故选:D .【点睛】本题考查了二次根式的性质及化简,解题的关键是:先根据题意求出m 的范围,再对二次根式化简. 14.(2021·山东泰安市·中考真题)如图,直线//m n ,三角尺的直角顶点在直线m 上,且三角尺的直角被直线m 平分,若160∠=︒,则下列结论错误的是( )A .275∠=︒B .345∠=︒C .4105∠=︒D .5130∠=︒【答案】D【分析】 根据角平分线的定义求出∠6和∠7的度数,再利用平行线的性质以及三角形内角和求出∠3,∠8,∠2的度数,最后利用邻补角互补求出∠4和∠5的度数.【详解】首先根据三角尺的直角被直线m 平分,∠∠6=∠7=45°;A 、∠∠1=60°,∠6=45°,∠∠8=180°-∠1-∠6=180-60°-45°=75°,m∥n ,∠∠2=∠8=75°结论正确,选项不合题意;B 、∠∠7=45°,m ∠n ,∠∠3=∠7=45°,结论正确,选项不合题意;C 、∠∠8=75°,∠∠4=180-∠8=180-75°=105°,结论正确,选项不合题意;D 、∠∠7=45°,∠∠5=180-∠7=180-45°=135°,结论错误,选项符合题意.故选:D .【点睛】本题考查了角平分线的定义,平行线的性质,三角形内角和,邻补角互补,解答本题的关键是掌握平行线的性质:两直线平行,同位角相等,内错角相等,同旁内角互补.15.(2021·四川资阳市·中考真题)如图,已知直线//,140,230m n ∠=︒∠=︒,则3∠的度数为()A .80︒B .70︒C .60︒D .50︒【答案】B【分析】如图,由题意易得∠4=∠1=40°,然后根据三角形外角的性质可进行求解.【详解】解:如图,∠//,140m n ∠=︒,∠∠4=∠1=40°,∠230∠=︒,∠34270∠=∠+∠=︒;故选B .【点睛】本题主要考查平行线的性质及三角形外角的性质,熟练掌握平行线的性质及三角形外角的性质是解题的关键.16.(2021·海南中考真题)如图,已知//a b ,直线l 与直线a b 、分别交于点A B 、,分别以点A B 、为圆心,大于12AB 的长为半径画弧,两弧相交于点M N 、,作直线MN ,交直线b 于点C ,连接AC ,若140∠=︒,则ACB ∠的度数是( )A .90︒B .95︒C .100︒D .105︒【答案】C【分析】 根据题意可得直线MN 是线段AB 的垂直平分线,进而可得CB AC =,利用平行线的性质及等腰三角形中等边对等角,可得40CAB CBA ∠=∠=︒,所以可求得100ACB ∠=︒.【详解】∠已知分别以点A B 、为圆心,大于12AB 的长为半径画弧,两弧相交于点M N 、,作直线MN ,交直线b 于点C ,连接AC ,∠直线MN 垂直平分线段AB ,∠CB AC =,∠//a b ,140∠=︒,∠140CBA ∠=∠=︒,∠40CAB CBA ∠=∠=︒,∠180100ACB CBA CAB ∠=︒-∠-∠=︒.故选:C.【点睛】题目主要考查线段垂直平分线的作法及性质、平行线的性质等,根据题意得出直线MN垂直平分线段AB 是解题关键.17.(2021·四川广元市·中考真题)观察下列作图痕迹,所作线段CD为ABC的角平分线的是()A.B.C.D.【答案】C【分析】根据角平分线画法逐一进行判断即可.【详解】A:所作线段为AB边上的高,选项错误;B:做图痕迹为AB边上的中垂线,CD为AB边上的中线,选项错误;C:CD为ACB的角平分线,满足题意。
中考数学专题复习_第十七讲__三角形与全等三角形(含详细参考答案)
第十七讲三角形与全等三角形【重点考点例析】考点一:三角形三边关系例1 (2013•温州)下列各组数可能是一个三角形的边长的是()A.1,2,4 B.4,5,9 C.4,6,8 D.5,5,11思路分析:看哪个选项中两条较小的边的和不大于最大的边即可.解:A、因为1+2<4,所以本组数不能构成三角形.故本选项错误;B、因为4+5=9,所以本组数不能构成三角形.故本选项错误;C、因为9-4<5<8+4,所以本组数可以构成三角形.故本选项正确;D、因为5+5<11,所以本组数不能构成三角形.故本选项错误;故选C.点评:本题主要考查了三角形的三边关系定理:任意两边之和大于第三边,只要满足两短边的和大于最长的边,就可以构成三角形.对应训练1.(2013•长沙)如果一个三角形的两边长分别为2和4,则第三边长可能是()A.2 B.4 C.6 D.81.B考点二:三角形内角、外角的应用例2 (2013•湘西州)如图,一副分别含有30°和45°角的两个直角三角板,拼成如下图形,其中∠C=90°,∠B=45°,∠E=30°,则∠BFD的度数是()A.15°B.25°C.30°D.10°思路分析:先由三角形外角的性质求出∠BDF的度数,根据三角形内角和定理即可得出结论.解:∵Rt△CDE中,∠C=90°,∠E=30°,∴∠BDF=∠C+∠E=90°+30°=120°,∵△BDF中,∠B=45°,∠BDF=120°,∴∠BFD=180°-45°-120°=15°.故选A.点评:本题考查的是三角形外角的性质,熟知三角形的外角等于与之不相邻的两个内角的和是解答此题的关键.对应训练2.(2013•鄂州)一副三角板有两个直角三角形,如图叠放在一起,则∠α的度数是()A.165°B.120°C.150°D.135°2.A考点三:三角形全等的判定和性质例3 (2013•天门)如图,已知△ABC ≌△ADE ,AB 与ED 交于点M ,BC 与ED ,AD 分别交于点F ,N .请写出图中两对全等三角形(△ABC ≌△ADE 除外),并选择其中的一对加以证明.思路分析:找到两三角形全等的条件,三角形全等就写出来,选择一组证明即可. 解:△AEM ≌△ACN ,△BMF ≌△DNF ,△ABN ≌△ADM .选择△AEM ≌△ACN ,理由如下:∵△ADE ≌△ABC ,∴AE=AC ,∠E=∠C ,∠EAD=∠CAB ,∴∠EAM=∠CAN ,∵在△AEM 和△ACN 中,E C AE ACEAM CAN =⎧⎪=⎨⎪∠=∠⎩, ∴△AEM ≌△CAN (ASA ).点评:本题考查三角形全等的判定方法及等腰三角形的性质;判定两个三角形全等的一般方法有:SSS 、SAS 、ASA 、AAS 、HL .注意:AAA 、SSA 不能判定两个三角形全等,判定两个三角形全等时,必须有边的参与,若有两边一角对应相等时,角必须是两边的夹角.例4 (2013•宜宾)如图:已知D 、E 分别在AB 、AC 上,AB=AC ,∠B=∠C ,求证:BE=CD .思路分析:要证明BE=CD ,把BE 与CD 分别放在两三角形中,证明两三角形全等即可得到,而证明两三角形全等需要三个条件,题中已知一对边和一对角对应相等,观察图形可得出一对公共角,进而利用AAS 可得出三角形ABE 与三角形ACD 全等,利用全等三角形的对应边相等可得证.证明:在△ABE 和△ACD 中,B C A A AB AC ∠=∠⎧⎪∠=∠⎨⎪=⎩,∴△ABE ≌△ACD (AAS ),∴BE=CD (全等三角形的对应边相等).点评:此题考查了全等三角形的判定与性质,常常利用三角形的全等来解决线段或角相等的问题,在证明三角形全等时,要注意公共角及公共边,对顶角等隐含条件的运用.对应训练3.(2013•荆州)如图,△ABC 与△CDE 均是等腰直角三角形,∠ACB=∠DCE=90°,D 在AB 上,连结BE .请找出一对全等三角形,并说明理由.3.解:△ACE ≌△BCD .∵△ABC 和△ECD 都是等腰直角三角形,∴∠ECD=∠ACB=90°,∴∠ACE=∠BCD (都是∠ACD 的余角),在△ACE 和△BCD 中,∵CE CD ACE BCD CA CB =⎧⎪∠=∠⎨⎪=⎩,∴△ACE ≌△BCD .4.(2013•十堰)如图,点D ,E 在△ABC 的边BC 上,AB=AC ,BD=CE .求证:AD=AE .4.证明:∵AB=AC ,∴∠B=∠C ,在△ABD 与△ACE 中,∵AB AC B C BD EC =⎧⎪∠=∠⎨⎪=⎩,∴△ABD ≌△ACE (SAS ),∴AD=AE .考点四:全等三角形开放性问题例5 (2013•云南)如图,点B 在AE 上,点D 在AC 上,AB=AD.请你添加一个适当的条件,使△ABC ≌△ADE (只能添加一个).(1)你添加的条件是 .(2)添加条件后,请说明△ABC ≌△ADE 的理由.思路分析:(1)可以根据全等三角形的不同的判定方法选择添加不同的条件;(2)根据全等三角形的判定方法证明即可.解:(1)∵AB=AD ,∠A=∠A ,∴若利用“AAS”,可以添加∠C=∠E ,若利用“ASA”,可以添加∠ABC=∠ADE ,或∠EBC=∠CDE ,若利用“SAS”,可以添加AC=AE ,或BE=DC ,综上所述,可以添加的条件为∠C=∠E (或∠ABC=∠ADE 或∠EBC=∠CDE 或AC=AE 或BE=DC ); 故答案为:∠C=∠E ;(2)选∠C=∠E 为条件.理由如下:在△ABC 和△ADE 中,A A C E AB AD ∠=∠⎧⎪∠=∠⎨⎪=⎩,∴△ABC ≌△ADE (AAS ).点评:本题主要考查了全等三角形的判定,开放型题目,根据不同的三角形全等的判定方法可以选择添加的条件也不相同.对应训练【聚焦山东中考】1.(2013•威海)将一副直角三角板如图摆放,点C 在EF 上,AC 经过点D .已知∠A=∠EDF=90°,AB=AC .∠E=30°,∠BCE=40°,则∠CDF= .1.25°2.(2013•聊城)如图,四边形ABCD 中,∠A=∠BCD=90°,BC=CD ,CE ⊥AD ,垂足为E ,求证:AE=CE .2.证明:如图,过点B 作BF ⊥CE 于F ,∵CE ⊥AD ,∴∠D+∠DCE=90°,∵∠BCD=90°,∴∠BCF+∠DCE=90°,∴∠BCF=∠D ,在△BCF 和△CDE 中,90BCF D CED BFC BC CD ∠=∠⎧⎪∠=∠=︒⎨⎪=⎩,∴△BCF ≌△CDE (AAS ),∴BF=CE ,又∵∠A=90°,CE ⊥AD ,BF ⊥CE ,∴四边形AEFB 是矩形,∴AE=BF ,3.(2013•菏泽)如图,在△ABC 中,AB=CB ,∠ABC=90°,D 为AB 延长线上一点,点E 在BC 边上,且BE=BD ,连结AE 、DE 、DC .(1)求证:△ABE ≌△CBD ;(2)若∠CAE=30°,求∠BDC 的度数.3.(1)证明:∵∠ABC=90°,D 为AB 延长线上一点,∴∠ABE=∠CBD=90°,在△ABE 和△CBD 中,AB CB ABE CBD BE BD =⎧⎪∠=∠⎨⎪=⎩,∴△ABE ≌△CBD (SAS );(2)解:∵AB=CB ,∠ABC=90°,∴∠CAB=45°,∵∠CAE=30°,∴∠BAE=∠CAB-∠CAE=45°-30°=15°,∵△ABE ≌△CBD ,∴∠BCD=∠BAE=15°,∴∠BDC=90°-∠BCD=90°-15°=75°;4.(2013•临沂)如图,在△ABC 中,AD 是BC 边上的中线,E 是AD 的中点,过点A 作BC 的平行线交BE 的延长线于点F ,连接CF .(1)求证:AF=DC ;(2)若AB ⊥AC ,试判断四边形ADCF 的形状,并证明你的结论.4.(1)证明:∵AF ∥BC ,∴∠AFE=∠DBE ,∵E 是AD 的中点,AD 是BC 边上的中线,∴AE=DE ,BD=CD ,在△AFE 和△DBE 中AFE DBE FEA BED AE DE ∠=∠⎧⎪∠=∠⎨⎪=⎩∴△AFE ≌△DBE (AAS ),∴AF=BD ,∴AF=DC .(2)四边形ADCF 是菱形,证明:∥BC ,AF=DC ,∴四边形ADCF 是平行四边形,∵AC ⊥AB ,AD 是斜边BC 的中线,∴AD=DC ,∴平行四边形ADCF 是菱形.5.(2013•东营)(1)如图(1),已知:在△ABC 中,∠BAC=90°,AB=AC ,直线m 经过点A ,BD ⊥直线m ,CE ⊥直线m ,垂足分别为点D 、E .证明:DE=BD+CE .(2)如图(2),将(1)中的条件改为:在△ABC 中,AB=AC ,D 、A 、E 三点都在直线m 上,并且有∠BDA=∠AEC=∠BAC=α,其中α为任意锐角或钝角.请问结论DE=BD+CE 是否成立?如成立,请你给出证明;若不成立,请说明理由.(3)拓展与应用:如图(3),D 、E 是D 、A 、E 三点所在直线m 上的两动点(D 、A 、E 三点互不重合),点F 为∠BAC 平分线上的一点,且△ABF 和△ACF 均为等边三角形,连接BD 、CE ,若∠BDA=∠AEC=∠BAC ,试判断△DEF 的形状.5.证明:(1)∵BD ⊥直线m ,CE ⊥直线m ,∴∠BDA=∠CEA=90°,∵∠BAC=90°,∴∠BAD+∠CAE=90°,∵∠BAD+∠ABD=90°,∴∠CAE=∠ABD ,∵在△ADB 和△CEA 中ABD CAE BDA CEA AB AC ∠=∠⎧⎪∠=∠⎨⎪=⎩,∴△ADB ≌△CEA (AAS ),∴AE=BD ,AD=CE ,∴DE=AE+AD=BD+CE ;(2)∵∠BDA=∠BAC=α,∴∠DBA+∠BAD=∠BAD+∠CAE=180°-α,∴∠CAE=∠ABD ,∵在△ADB 和△CEA 中ABD CAE BDA CEA AB AC ∠=∠⎧⎪∠=∠⎨⎪=⎩,∴△ADB ≌△CEA (AAS ),∴AE=BD ,AD=CE ,∴DE=AE+AD=BD+CE ;(3)由(2)知,△ADB ≌△CEA ,BD=AE ,∠DBA=∠CAE ,∵△ABF 和△ACF 均为等边三角形,∴∠ABF=∠CAF=60°,∴∠DBA+∠ABF=∠CAE+∠CAF ,∴∠DBF=∠FAE ,∵BF=AF在△DBF 和△EAF 中FB FA FBD FAE BD AE =⎧⎪∠=∠⎨⎪=⎩,∴△DBF ≌△EAF (sas ),∴DF=EF ,∠BFD=∠AFE ,∴∠DFE=∠DFA+∠AFE=∠DFA+∠BFD=60°,∴△DEF 为等边三角形.6.(2013•烟台)已知,点P 是直角三角形ABC 斜边AB 上一动点(不与A ,B 重合),分别过A ,B 向直线CP 作垂线,垂足分别为E ,F ,Q 为斜边AB 的中点.(1)如图1,当点P 与点Q 重合时,AE 与BF 的位置关系是 ,QE 与QF 的数量关系式 ;(2)如图2,当点P 在线段AB 上不与点Q 重合时,试判断QE 与QF 的数量关系,并给予证明;(3)如图3,当点P 在线段BA (或AB )的延长线上时,此时(2)中的结论是否成立?请画出图形并给予证明.6.解:(1)AE ∥BF ,QE=QF ,理由是:如图1,∵Q 为AB 中点,∴AQ=BQ ,∵BF ⊥CP ,AE ⊥CP ,∴BF ∥AE ,∠BFQ=∠AEQ ,在△BFQ 和△AEQ 中BFQ AEQBQF AQE BQ AQ∠=∠⎧⎪∠=∠⎨⎪=⎩,∴△BFQ ≌△AEQ (AAS ),∴QE=QF ,故答案为:AE ∥BF ,QE=QF .(2)QE=QF ,证明:如图2,延长FQ 交AE 于D ,∵AE ∥BF ,∴∠QAD=∠FBQ ,在△FBQ 和△DAQ 中FBQ DAQAQ BQ BQF AQD∠=∠⎧⎪=⎨⎪∠=∠⎩,∴△FBQ ≌△DAQ (ASA ),∴QF=QD ,∵AE ⊥CP ,∴EQ 是直角三角形DEF 斜边上的中线,∴QE=QF=QD ,即QE=QF .(3)(2)中的结论仍然成立,证明:如图3,延长EQ 、FB 交于D ,∵AE ∥BF ,∴∠1=∠D ,在△AQE 和△BQD 中123D AQ BQ ∠=∠⎧⎪∠=∠⎨⎪=⎩,∴△AQE ≌△BQD (AAS ),∴QE=QD ,∵BF ⊥CP ,∴FQ 是斜边DE 上的中线,∴QE=QF .【备考真题过关】一、选择题1.(2013•泉州)在△ABC 中,∠A=20°,∠B=60°,则△ABC 的形状是( )A .等边三角形B .锐角三角形C .直角三角形D .钝角三角形1.D2.(2013•宜昌)下列每组数分别表示三根木棒的长度,将它们首尾连接后,能摆成三角形的一组是( )A .1,2,6B .2,2,4C .1,2,3D .2,3,42.D3.(2013•衡阳)如图,∠1=100°,∠C=70°,则∠A 的大小是( )A .10°B .20°C .30°D .80°3.C4.(2013•河北)如图1,M 是铁丝AD 的中点,将该铁丝首尾相接折成△ABC ,且∠B=30°,∠C=100°,如图2.则下列说法正确的是( )A .点M 在AB 上B .点M 在BC 的中点处C .点M 在BC 上,且距点B 较近,距点C 较远D .点M 在BC 上,且距点C 较近,距点B 较远4.C5.(2013•铁岭)如图,在△ABC和△DEC中,已知AB=DE,还需添加两个条件才能使△ABC ≌△DEC,不能添加的一组条件是()A.BC=EC,∠B=∠E B.BC=EC,AC=DCC.BC=DC,∠A=∠D D.∠B=∠E,∠A=∠D5.C6.(2013•台州)已知△A1B1C1△A2B2C2的周长相等,现有两个判断:①若A1B1=A2B2,A1C1=A2C2,则△A1B1C1≌△A2B2C2;②若∠A1=∠A2,∠B1=∠B2,则△A1B1C1≌△A2B2C2,对于上述的两个判断,下列说法正确的是()A.①正确,②错误B.①错误,②正确C.①,②都错误D.①,②都正确6.A7.(2013•邵阳)如图所示,点E是矩形ABCD的边AD延长线上的一点,且AD=DE,连结BE 交CD于点O,连结AO,下列结论不正确的是()A.△AOB≌△BOC B.△BOC≌△EOD C.△AOD≌△EOD D.△AOD≌△BOC7.A8.(2013•河北)一个正方形和两个等边三角形的位置如图所示,若∠3=50°,则∠1+∠2=()A.90°B.100°C.130°D.180°8.B9.(2013•陕西)如图,在四边形ABCD中,AB=AD,CB=CD,若连接AC、BD相交于点O,则图中全等三角形共有()A.1对B.2对C.3对D.4对9.C二、填空题10.(2013•黔东南州)在△ABC中,三个内角∠A、∠B、∠C满足∠B-∠A=∠C-∠B,则∠B= 度.10.6011.(2013•柳州)如图,△ABC≌△DEF,请根据图中提供的信息,写出x= .11.2012.(2013•巴中)如图,已知点B、C、F、E在同一直线上,∠1=∠2,BC=EF,要使△ABC≌△DEF,还需添加一个条件,这个条件可以是.(只需写出一个)12.CA=FD13.(2013•郴州)如图,点D、E分别在线段AB,AC上,AE=AD,不添加新的线段和字母,13.∠B=∠C (答案不唯一)14.(2013•达州)如图,在△ABC 中,∠A=m°,∠ABC 和∠ACD 的平分线交于点A 1,得∠A 1;∠A 1BC 和∠A 1CD 的平分线交于点A 2,得∠A 2;…∠A 2012BC 和∠A 2012CD 的平分线交于点A 2013,则∠A 2013= 度.14.20132m三、解答题15.(2013•玉林)如图,AB=AE ,∠1=∠2,∠C=∠D .求证:△ABC ≌△AED .15.证明:∵∠1=∠2,∴∠1+∠EAC=∠2+∠EAC ,即∠BAC=∠EAD ,∵在△ABC 和△AED 中,D C BAC EAD AB AE =⎧⎪∠=∠⎨⎪=⎩,∴△ABC ≌△AED (AAS ).16.(2013•湛江)如图,点B 、F 、C 、E 在一条直线上,FB=CE ,AB ∥ED ,AC ∥FD ,求证:AC=DF .16.证明:∵FB=CE ,∴FB+FC=CE+FC ,∴BC=EF ,∵AB ∥ED ,AC ∥FD ,∴∠B=∠E ,∠ACB=∠DFE ,∵在△ABC 和△DEF 中,B E BC EFACB DFE ∠=∠⎧⎪=⎨⎪∠=∠⎩, ∴△ABC ≌△DEF (ASA ),∴AC=DF .17.(2013•佛山)课本指出:公认的真命题称为公理,除了公理外,其他的真命题(如推论、定理等)的正确性都需要通过推理的方法证实.(1)叙述三角形全等的判定方法中的推论AAS ;(2)证明推论AAS .要求:叙述推论用文字表达;用图形中的符号表达已知、求证,并证明,证明对各步骤要注明依据.17.解:(1)三角形全等的判定方法中的推论AAS 指的是:两角及其中一角的对边对应相等的两个三角形全等.(2)已知:在△ABC 与△DEF 中,∠A=∠D ,∠C=∠F ,BC=EF .求证:△ABC ≌△DEF .证明:如图,在△ABC 与△DEF 中,∠A=∠D ,∠C=∠F (已知),∴∠A+∠C=∠D+∠F (等量代换).又∵∠A+∠B+∠C=180°,∠D+∠E+∠F=180°(三角形内角和定理),∴∠B=∠E .∵在△ABC 与△DEF 中,C F BC EF B E ∠=∠⎧⎪=⎨⎪∠=∠⎩,∴△ABC ≌△DEF (ASA ).18.(2013•随州)如图,点F 、B 、E 、C 在同一直线上,并且BF=CE ,∠ABC=∠DEF .能否由上面的已知条件证明△ABC ≌△DEF ?如果能,请给出证明;如果不能,请从下列三个条件中选择一个合适的条件,添加到已知条件中,使△ABC ≌△DEF ,并给出证明.提供的三个条件是:①AB=DE ;②AC=DF ;③AC ∥DF .18.解:不能;选择条件:①AB=DE ;∵BF=CE ,∴BF+BE=CE+BE ,即EF=CB ,在△ABC 和△DFE 中,AB DE ABC DEF EF CB =⎧⎪∠=∠⎨⎪=⎩,∴△ABC ≌△DFE (SAS ).19.(2013•内江)已知,如图,△ABC 和△ECD 都是等腰直角三角形,∠ACD=∠DCE=90°,D 为AB 边上一点.求证:BD=AE .19.证明:∵△ABC 和△ECD 都是等腰直角三角形,∴AC=BC ,CD=CE ,∵∠ACD=∠DCE=90°,∴∠ACE+∠ACD=∠BCD+∠ACD ,∴∠ACE=∠BCD ,在△ACE 和△BCD 中,AC BC ACE BCD CD CE =⎧⎪∠=∠⎨⎪=⎩,∴△ACE ≌△BCD (SAS ),∴BD=AE .20.(2013•舟山)如图,△ABC 与△DCB 中,AC 与BD 交于点E ,且∠A=∠D ,AB=DC .(1)求证:△ABE ≌DCE ;(2)当∠AEB=50°,求∠EBC 的度数?20.(1)证明:∵在△ABE 和△DCE 中A D AEB DEC AB DC ∠=∠⎧⎪∠=∠⎨⎪=⎩,∴△ABE ≌△DCE (AAS );(2)解:∵△ABE ≌△DCE ,∴BE=EC ,∴∠EBC=∠ECB ,∵∠EBC+∠ECB=∠AEB=50°,∴∠EBC=25°.21.(2013•荆门)如图1,在△ABC 中,AB=AC ,点D 是BC 的中点,点E 在AD 上.(1)求证:BE=CE ;(2)如图2,若BE 的延长线交AC 于点F ,且BF ⊥AC ,垂足为F ,∠BAC=45°,原题设其它条件不变.求证:△AEF ≌△BCF .21.证明:(1)∵AB=AC ,D 是BC 的中点,∴∠BAE=∠EAC ,在△ABE 和△ACE 中,AB AC BAE EAC AE AE =⎧⎪∠=∠⎨⎪=⎩,∴△ABE ≌△ACE (SAS ),∴BE=CE ;(2)∵∠BAC=45°,BF ⊥AF ,∴△ABF 为等腰直角三角形,∴AF=BF ,∵AB=AC ,点D 是BC 的中点,∴AD ⊥BC ,∴∠EAF+∠C=90°,∵BF ⊥AC ,∴∠CBF+∠C=90°,∴∠EAF=∠CBF ,在△AEF 和△BCF 中,90EAF CBF AF BF AFE BFC ∠=∠⎧⎪=⎨⎪∠=∠=︒⎩,∴△AEF ≌△BCF (ASA ).。
数学中考总复习(一轮复习)第17讲全等三角形
第17讲全等三角形【考点总汇】一、全等三角形的性质及判定定理 1•性质(1) _________________________ 全等三角形的对应边,对应角 。
(2) ________________________________ 全等三角形的对应边的中线 _______________________ ,对应角平分线 _____________________________________ ,对应边上的高 __________ ,全等三角 形的周长 _________ ,面积 _________ 。
2•判定定理(1)三边分别 _________ 的两个三角形全等(简写“边边边”或“ _______ ”)。
微拨炉:已知两边和一角判定三角形全等时,没有“ SSA ”定理,即不能错用成“两边及一边对角相等的两个三角形全等”。
二、角的平分线1•性质:角的平分线上的点到角的两边的距离 ___________ 。
2•判定:角的内部到角的两边的距离相等的点在 ____________ 。
3•三角形的三条角平分线相交于一点,并且这一点到三条边的距离 微拨炉: 1•三角形的角平分线是一条线段,不是射线。
2•角的平分线的性质定理和判定定理互为逆定理。
注意分清题设和结论。
高频考点1、全等三角形的判定与性质 【范例】如图,在△ ABC 中,AB=CB ,■ ABC =90,D 为AB 延长线上一点,点 E 在BC 边上, 且 BE 二 BD ,连接 AE 、DE 、DC 。
(2)两边和它们的夹角分别________ 的两个三角形全等(简写“边角边”或 ”) (3)两角和它们的夹边分别________ 的两个三角形全等(简写“角边角”或”)(4)斜边和一条直角边分别 的两个直角三角形全等(简写“斜边、直角边”或 ”)(1)求证:△ ABE ◎△ CBD(2)若• CAE =30 [求• BDC 的度数D得分要领:判定全等三角形的基本思路1•已知两边:(1)找夹角(SAS) ; (2)找直角(HL或SAS) ; (3)找第三边(SSS)。
中考数学复习考点题型专练17---三角形的基础(解析版)
中考数学复习考点题型专练专题17三角形的基础(满分:100分 时间:90分钟)班级_________ 姓名_________学号_________ 分数_________一、单选题(共10小题,每小题3分,共计30分)1.(2022·青海中考真题)等腰三角形的一个内角为70°,则另外两个内角的度数分别是() A .55°,55°B .70°,40°或70°,55°C .70°,40°D .55°,55°或70°,40°【答案】D【分析】先根据等腰三角形的定义,分70︒的内角为顶角和70︒的内角为底角两种情况,再分别根据三角形的内角和定理即可得.【详解】(1)当70︒的内角为这个等腰三角形的顶角 则另外两个内角均为底角,它们的度数为18070552︒-︒=︒ (2)当70︒的内角为这个等腰三角形的底角则另两个内角一个为底角,一个为顶角底角为70︒,顶角为180707040︒-︒-︒=︒综上,另外两个内角的度数分别是55,55︒︒或70,40︒︒故选:D .2.(2022·山东菏泽市·中考真题)等腰三角形的一边长是3,另两边的长是关于x 的方程240x x k -+=的两个根,则k 的值为()A .3B .4C .3或4D .7【答案】C【分析】分类讨论:当3为等腰三角形的底边,则方程有等根,所以△=0,求解即可,于是根据根与系数的关系得两腰的和=4,满足三角形三边的关系;当3为等腰三角形的腰,则x =3为方程的解,把x =3代入方程可计算出k 的值即可.【详解】解:①当3为等腰三角形的底边,根据题意得△=(-4)2−4k =0,解得k =4,此时,两腰的和=x 1+x 2=4>3,满足三角形三边的关系,所以k =4;②当3为等腰三角形的腰,则x =3为方程的解,把x =3代入方程得9−12+k =0,解得k =3; 综上,k 的值为3或4,故选:C .3.(2022·江西中考真题)如图,1265,335︒∠=∠=∠=︒,则下列结论错误的是()A .//AB CD B .30B ∠=︒C .2C EFC ∠+∠=∠D .CG FG >【答案】C【分析】由12∠=∠可对A 进行判断;根据三角形外角的性质可对B 进行判断;求出∠C ,根据大角对大边,小角对小边可对D 进行判断;求出C EFC ∠∠,可对C 进行判断.【详解】1265∠=∠︒=,//AB CD ∴,故选项A 正确;335︒∠=,35EFB ∴∠=︒,又1EFB B ∠=∠+∠,1653530B EFB ∴∠=∠-∠=︒-︒=︒,故选项B 正确;//AB CD ,30C B ∴∠=∠=︒,3530︒︒>,3C ∴∠>∠CG FG ∴>,故选项D 正确;335︒∠=,3180EFC ∠+∠=︒118035145EFC ︒-︒∴∠==︒, 而2306595145C ∠+∠=+=≠︒︒︒︒2C EFC ∴∠+∠≠∠,故选项C 错误.故选C .4.(2022·辽宁大连市·中考真题)如图,ABC 中,60,40,//A B DE BC ︒︒∠=∠=,则AED ∠的度数是()A .50︒B .60︒C .70︒D .80︒【答案】D【分析】由三角形的内角和定理求出∠C 的度数,然后由平行线的性质,即可得到答案.【详解】解:在ABC 中,60,40A B ︒︒∠=∠=,∴180604080C ∠=︒-︒-︒=︒,∵//DE BC ,∴80AED C ∠=∠=︒;故选:D .5.(2022·江苏宿迁市·中考真题)在△ABC 中,AB =1,BC ,下列选项中,可以作为AC 长度的是( )A .2B .4C .5D .6【答案】A【分析】根据三角形三边关系,两边之差小于第三边,两边之和大于第三边,可以得到AC 的长度可以取得的数值的取值范围,从而可以解答本题.【详解】∵在△ABC 中,AB =1,BC1<AC 1,1<21,4+1,51,61,∴AC 的长度可以是2,故选项A 正确,选项B 、C 、D 不正确;故选:A .6.(2022·四川眉山市·中考真题)如图,四边形ABCD 的外接圆为⊙O ,BC CD =,35DAC ∠=︒,45ACD ∠=︒,则ADB ∠的度数为()A .55︒B .60︒C .65︒D .70︒【答案】C【分析】根据同弧所对的圆周角相等及等边对等角,可得35CDB ∠=︒,根据三角形的内角和可得100ADC ∠=︒,利用角的和差运算即可求解.【详解】解:∵35DAC ∠=︒,∴35DBC ∠=︒,∵BC CD =,∴35CDB ∠=︒,∵45ACD ∠=︒,∴100ADC ∠=︒,∴65ADB ADC CDB ∠=∠-∠=︒,故选:C .7.(2022·辽宁本溪市·中考真题)如图,四边形ABCD 是菱形,对角线AC ,BD 相交于点O ,8AC =,6BD =,点E 是CD 上一点,连接OE ,若OE CE =,则OE 的长是()A .2B .52C .3D .4 【答案】B【分析】根据菱形的对角线互相垂直平分求出OB ,OC ,AC ⊥BD ,再利用勾股定理列式求出BC ,然后根据等腰三角形的性质结合直角三角形两个锐角互余的关系求解即可.【详解】∵菱形ABCD 的对角线AC 、BD 相交于点O ,∴OA=OC=12AC=4,OB=OD=12BD=3,AC ⊥BD ,由勾股定理得,5==,∵OE=CE ,∴∠EOC=∠ECO ,∵∠EOC+∠EOD =∠ECO+∠EDO=90︒,∴∠EOD =∠EDO ,∴OE=ED ,∴OE=ED=CE ,∴OE=12CD=52.故选:B.8.(2022·湖南张家界市·中考真题)已知等腰三角形的两边长分别是一元二次方程2680x x-+=的两根,则该等腰三角形的底边长为()A.2B.4C.8D.2或4【答案】A【分析】解一元二次方程求出方程的解,得出三角形的边长,用三角形存在的条件分类讨论边长,即可得出答案.【详解】解:x2-6x+8=0(x-4)(x-2)=0解得:x=4或x=2,当等腰三角形的三边为2,2,4时,不符合三角形三边关系定理,此时不能组成三角形;当等腰三角形的三边为2,4,4时,符合三角形三边关系定理,此时能组成三角形,所以三角形的底边长为2,故选:A.9.(2022·吉林中考真题)将一副三角尺按如图所示的方式摆放,则α∠的大小为()A.85︒B.75︒C.65︒D.60︒【答案】B先根据直角三角板的性质得出∠ACD 的度数,再由三角形内角和定理即可得出结论.【详解】解:如图所示,由一副三角板的性质可知:∠ECD =60°,∠BCA =45°,∠D =90°,∴∠ACD =∠ECD -∠BCA =60°-45°=15°,∴∠α=180°-∠D -∠ACD =180°-90°-15°=75°,故选:B .10.(2022·贵州黔南布依族苗族自治州·中考真题)已知等腰三角形的一边长等于4,一边长等于9,则它的周长为()A .9B .17或22C .17D .22【答案】D【分析】分类讨论腰为4和腰为9,再应用三角形的三边关系进行取舍即可.【详解】解:分两种情况:当腰为4时,449+<,所以不能构成三角形;当腰为9时,994,994+>-<,所以能构成三角形,周长是:99422++=.故选:D .本题考查了等腰三角形的性质和三角形的三边关系;已知没有明确腰和底边的题目一定要想到两种情况,分类进行讨论,还应验证各种情况是否能构成三角形进行解答,这点非常重要,也是解题的关键.二、填空题(共5小题,每小题4分,共计20分)11.(2022·甘肃天水市·中考真题)一个三角形的两边长分别为2和5,第三边长是方程28120x x -+=的根,则该三角形的周长为_______.【答案】13【分析】先利用因式分解法解方程x 2-8x +12=0,然后根据三角形的三边关系得出第三边的长,则该三角形的周长可求.【详解】解:∵x 2-8x +12=0,∴()()260x x --=,∴x 1=2,x 2=6,∵三角形的两边长分别为2和5,第三边长是方程x 2-8x +12=0的根,当x =2时,2+2<5,不符合题意,∴三角形的第三边长是6,∴该三角形的周长为:2+5+6=13.故答案为:13.12.(2022·湖北襄阳市·中考真题)如图,在△ABC 中,AB=AD=DC ,∠BAD=20°,则∠C=_______.【答案】40°【解析】试题解析:∵AB=AD ,∠BAD=20°, ∴∠B=1801802022BAD ︒-∠︒-︒==80°, ∵∠ADC 是△ABD 的外角,∴∠ADC=∠B+∠BAD=80°+20°=100°, ∵AD=DC ,∴∠C=180********ADC ︒-∠︒-︒==40°. 13.(2022·湖北黄冈市·中考真题)已知:如图,//,75,135AB EF ABC CDF ︒︒∠=∠=,则BCD ∠=_____________度.【答案】30【分析】本题可利用两直线平行,同位角相等求解∠EGC ,继而根据邻补角定义求解∠CDE ,最后根据外角定义求解∠BCD .【详解】令BC 与EF 相交于G 点,如下图所示:∵//,75,135AB EF ABC CDF ︒︒∠=∠=,∴∠EGC=∠ABC=75°,∠EDC=180°-∠CDF=180°-135°=45°,又∵∠EGC=∠BCD+∠EDC ,∴∠BCD=75°-45°=30°,故答案:30.14.(2022·青海中考真题)已知a ,b ,c 为ABC 的三边长.b ,c 满足2(2)30b c -+-=,且a 为方程|4|2x -=的解,则ABC 的形状为________三角形.【答案】等腰三角形【分析】根据绝对值和平方的非负性可得到b 、c 的值,再根据式子解出a 的值,即可得出结果.【详解】 ∵2(2)30b c -+-=,∴20b -=,30c -=,∴2b =,3c =,又∵|4|2x -=,∴16x =,22x =,∵a 是方程的解且a ,b ,c 为ABC 的三边长,∴2a =,∴ABC 是等腰三角形.15.(2022·湖南岳阳市·中考真题)如图:在Rt ABC ∆中,CD 是斜边AB 上的中线,若20A ∠=︒,则BDC ∠=_________.【答案】40︒先根据直角三角形斜边中线的性质得出12CD AD AB ==,则有20DCA A ∠=∠=︒,最后利用三角形外角的性质即可得出答案.【详解】∵在Rt ABC ∆中,CD 是斜边AB 上的中线,, ∴12CD AD AB ==. ∵20A ∠=︒,∴20DCA A ∠=∠=︒,∴40BDC DCA A ∠=∠+∠=︒.故答案为:40︒.三、解答题(共5小题,每小题10分,共计50分)16.(2022·江苏常州市·中考真题)已知:如图,点A 、B 、C 、D 在一条直线上,//,,EA FB EA FB AB CD ==.(1)求证:E F ∠=∠;(2)若40,80A D ∠=︒∠=︒,求E ∠的度数.【答案】(1)见解析;(2)60°【分析】(1)根据已知条件证明△ACE ≌△BDF ,即可得到结论;(2)根据全等三角形的性质得到∠D=∠ACE=80°,再利用三角形内角和定理求出结果.解:(1)∵AE∥BF,∴∠A=∠DBF,∵AB=CD,∴AB+BC=CD+BC,即AC=BD,又∵AE=BF,∴△ACE≌△BDF(SAS),∴∠E=∠F;(2)∵△ACE≌△BDF,∴∠D=∠ACE=80°,∵∠A=40°,∴∠E=180°-∠A-∠ACE=60°.的正方形网格,每个小正方形的边长17.(2022·吉林长春市·中考真题)图①、图②、图③均是33为1,每个小正方形的顶点称为格点,线段AB的端点均在格点上,只用无刻度的直尺,在给定的网格中,按下列要求以AB为边画ABC.要求:(1)在图①中画一个钝角三角形,在图②中画一个直角三角形,在图③中画一个锐角三角形;(2)三个图中所画的三角形的面积均不相等;(3)点C在格点上.【答案】见详解(答案不唯一)【分析】因为点C在格点上,故可将直尺的一角与线段AB点A重合,直尺边长所在直线经过33⨯正方形网格左上角第一个格点,继而以点A为旋转中心,逆时针旋转直尺,当直尺边长所在直线与正方形格点相交时,确定点C的可能位置,顺次连接A、B、C三点,按照题目要求排除不符合条件的C点,作图完毕后可根据三角形面积公式判断其面积是否相等.【详解】经计算可得下图中:图①面积为12;图②面积为1;图③面积为32,面积不等符合题目要求(2),且符合题目要求(1)以及要求(3).故本题答案如下:18.(2022·四川攀枝花市·中考真题)三角形三条边上的中线交于一点,这个点叫三角形的重心.如图G是ABC的重心.求证:3AD GD=.【答案】见解析【分析】过点D 作DH ∥AB 交CE 于H ,根据三角形的中位线平行于第三边并且等于第三边的一半可得BE=2DH ,从而得到AE=2DH ,再根据△AEG 和△DHG 相似,利用相似三角形对应边成比例列出比例式计算即可得证.【详解】解:过点D 作DH ∥AB ,交CE 于点H ,∵AD 是△ABC 的中线,∴点D 是BC 的中点,∴DH 是△BCE 的中位线,∴BE=2DH ,DH ∥AB ,∵CE 是△BCE 的中线,∴AE=BE ,∴AE=2DH ,∵DH ∥AB ,∴△AEG ∽△DHG , ∴2AG AE DG DH==, ∴AG=2GD ,即AD=3GD.19.(2022·四川凉山彝族自治州·中考真题)如图,点P 、Q 分别是等边ABC ∆边AB 、BC 上的动点(端点除外),点P 、点Q 以相同的速度,同时从点A 、点B 出发.(1)如图1,连接AQ 、CP 求证:ABQ CAP ∆≅∆(2)如图1,当点P 、Q 分别在AB 、BC 边上运动时,AQ 、CP 相交于点M ,QMC ∠的大小是否变化?若变化,请说明理由;若不变,求出它的度数(3)如图2,当点P 、Q 在AB 、BC 的延长线上运动时,直线AQ 、CP 相交于M ,QMC ∠的大小是否变化?若变化,请说明理由;若不变,求出它的度数.【答案】(1)证明见解析;(2)不变;60°;(3)不变;120°.【分析】(1)根据点P 、点Q 以相同的速度,同时从点A 、点B 出发,可得BQ=AP ,结合等边三角形的性质证全等即可;(2)由(1)中全等可得∠CPA=∠AQB ,再由三角形内角和定理即可求得∠AMP 的度数,再根据对顶角相等可得QMC ∠的度数;(3)先证出CBP ACQ ≅△△,可得∠Q=∠P ,再由对顶角相等,进而得出∠QMC=∠CBP=120°.【详解】解:(1)证明:∵三角形ABC 为等边三角形,∴AB=AC ,∠ABC=∠CAB=60°,∵点P 、点Q 以相同的速度,同时从点A 、点B 出发,∴BQ=AP ,在△ABQ 与△CAB 中,AB AC ABC CAB BQ AP =⎧⎪∠=∠⎨⎪=⎩∴()ABQ CAP SAS ∆≅∆.(2)角度不变,60°,理由如下:∵ABQ CAP ∆≅∆∴∠CPA=∠AQB ,在△AMP 中,∠AMP=180°-(∠MAP+∠CPA )=180°-(∠MAP+∠AQB )=∠ABC=60°, ∴∠QMC=∠AMP=60°,故∠QMC 的度数不变,度数为60°.(3)角度不变,120°,理由如下:当点P 、Q 在AB 、BC 的延长线上运动时,有AP=BQ ,∴BP=CQ∵∠ABC=∠BCA=60°,∴∠CBP=∠ACQ=120°,BC AC CBP ACQ BP CQ =⎧⎪∠=∠⎨⎪=⎩∴()CBP ACQ SAS ≅△△∴∠Q=∠P ,∵∠QCM=∠BCP ,∴∠QMC=∠CBP=120°,故∠QMC 的度数不变,度数为120°.20.(2022·四川南充市·中考真题)如图,点C 在线段BD 上,且AB ⊥BD ,DE ⊥BD ,AC ⊥CE ,BC=DE ,求证:AB=CD .【答案】详见解析【分析】根据AB ⊥BD ,DE ⊥BD ,AC ⊥CE ,可以得到90ABC CDE ACB ︒∠=∠=∠=,90ACB ECD ︒∠+∠=,90ECD CED ︒∠+∠=,从而有ACB CED ∠=∠,可以验证ABC ∆和CDE ∆全等,从而得到AB =CD .【详解】证明:∵AB BD ⊥,DE BD ⊥,AC CE ⊥∴90ABC CDE ACB ︒∠=∠=∠=∴90ACB ECD ︒∠+∠=,90ECD CED ︒∠+∠=∴ACB CED ∠=∠在ABC ∆和CDE ∆中ACB CED BC DEABC CDE ∠=∠⎧⎪=⎨⎪∠=∠⎩∴ABC ∆≌CDE ∆故AB CD =.。
2021年中考数学复习讲义:第四章 全等三角形 模型(十七)——胖瘦模型(SSA)
第四章.全等三角形模型(十七)——胖瘦模型(SSA)模型讲解【条件】如图,AB=AC,点P在线段BC上(P不是线段BC的中点)胖瘦模型——两条边对应相等,一组角对应相等,两个角互补【结论1】(变胖)如图,△ABQ≌△ACP ,AP=AQ【结论2】(变瘦)如图,△ABP≌△ACQ ,AP=AQ【结论3】(找中间状态)如图,△ABM≌△ACM口诀见胖瘦,变胖加等腰,变瘦减等腰,中间状态加、减直角三角形。
【总结】满足的条件为 SSA.典例秒杀典例1 ☆☆☆☆☆如图,在四边形 ABCD 中,BC>BA,AD=CD,BD平分∠ABC,求证∶∠A+∠C=180°【解析】如图,过点D作DE⊥BC于点E,作 DF⊥AB交BA的延长线于点F.∵BD平分∠ABC,∴DE=DF.在 Rt△CDE 和 Rt△ADF中, CD=AD, DE=DF,∴Rt△CDE≌Rt△ADF(HL),∴∠FAD=∠C.∴∠BAD+∠C=∠BAD+∠FAD=180°.典例2 ☆☆☆☆☆如图,在四边形ABCD中,BC>AB,BD平分∠ABC,∠BAD+∠C=180°,求证∶AD=CD.【解析】如图,在边 BC上截取 BE= BA,连接 DE.∵BD 平分∠ABC,∴∠ABD=∠CBD.在△ABD 和△EBD中,BA= BE, ∠ABD=∠EBD, BD=BD,∴△ABD≌△EBD(SAS), ∴AD=ED,∠BAD=∠BED.又∵∠BAD+∠C=180°,∠BED+∠CED=180°,∴∠C=∠CED,∴CD=ED.AD=CD.小试牛刀1.(★★★☆☆)如图,BN为∠MBC的平分线,P为 BN 上一点,且 PD⊥BC于点D,∠APC+∠ABC=180°,给出下列结论∶①∠MAP=∠BCP;②PA=PC;③AB+BC=2BD;④四边形 BAPC的面积是△PBD面积的 2倍.其中正确结论的个数为().A.4B.3C.2D.12.(★★★★☆)如图,OC平分∠MON,A,B分别为OM,ON上的点,且 BO>AO,AC=BC,求证∶∠OAC+∠OBC=180°.直击中考1.如图,已知∠AOB=60°,在∠AOB的平分线 OM 上有一点C,将一个120°角的顶点与点C重合,它的两条边分别与直线 OA,OB 相交于点D,E.(1)当∠DCE 绕点C 旋转到 CD 与OA 垂直时(如图 1),请猜想 OE十OD与 OC 的数量关系,并说明理由.(2)当∠DCE绕点C旋转到 CD 与 OA 不垂直时,到达图 2的位置,(1)中的结论是否成立?请说明理由。
三角形学习专题全等题目与答案解析
三角形学习专题全等题目与答案解析三角形是几何学中的基本图形之一,而全等三角形则是三角形学习中非常重要的一个概念。
全等三角形的性质与判定方法对于解题具有重要作用。
本文将介绍一些与全等三角形相关的题目,并给出详细的答案解析。
一、全等三角形的定义和性质在开始解答全等三角形的题目之前,我们首先来回顾一下全等三角形的定义和性质。
全等三角形是指具有完全相同形状和大小的两个三角形。
如果两个三角形的对应边长、对应角度全都相等,那么这两个三角形就是全等的。
全等三角形具有以下性质:1. 两个全等三角形的对应角度相等。
2. 两个全等三角形的对应边长相等。
3. 两个全等三角形的对应边中点与对应角的平分线相交于同一点。
4. 两个全等三角形的高、中线、角平分线、垂直平分线、中垂线等相互对应分别相等。
有了对全等三角形性质的了解,我们就可以更好地解答相关题目了。
二、题目与答案解析1. 题目:已知△ABC中,∠A = 60°,∠B = 70°,AB = BC,D为AB上的一点,连接CD并延长交BC于E,若∠BCD = 50°,则∠BED等于多少度?答案解析:首先,我们可以确定△ABC是等腰三角形,因为AB = BC。
所以∠BAC = ∠BCA = (180° - ∠ABC) / 2 = (180° - 70°) / 2 = 55°。
由于BD = CD,所以∠BDC = ∠BCD = 50°。
然后,考虑三角形BED,由角求和定理可知∠BED + ∠BDC + ∠BDE = 180°。
代入已知条件可得∠BED + 50° + 55° = 180°,解得∠BED = 75°。
2. 题目:已知△ABC和△DEF是全等三角形,AB = 5cm,AC =8cm,BD = 4cm,求DE的长度。
答案解析:根据全等三角形的性质,我们知道对应边的长度相等。
全等三角形各类题型讲解
全等三角形及其应用【知识精读】1. 全等三角形的定义:能够完全重合的两个三角形叫全等三角形;两个全等三角形中,互相重合的顶点叫做对应顶点。
互相重合的边叫对应边,互相重合的角叫对应角。
2. 全等三角形的表示方法:若△ABC和△A′B′C′是全等的三角形,记作“△ABC≌△A′B′C′其中,“≌”读作“全等于”。
记两个三角形全等时,通常把表示对应顶点的字母写在对应的位置上。
3. 全等三角形的的性质:全等三角形的对应边相等,对应角相等;4. 寻找对应元素的方法(1)根据对应顶点找如果两个三角形全等,那么,以对应顶点为顶点的角是对应角;以对应顶点为端点的边是对应边。
通常情况下,两个三角形全等时,对应顶点的字母都写在对应的位置上,因此,由全等三角形的记法便可写出对应的元素。
(2)根据已知的对应元素寻找:全等三角形对应角所对的边是对应边,两个对应角所夹的边是对应边;(3)通过观察,想象图形的运动变化状况,确定对应关系。
通过对两个全等三角形各种不同位置关系的观察和分析,可以看出其中一个是由另一个经过下列各种运动而形成①翻折:如图(1),∆BOC≌∆EOD,∆BOC可以看成是由∆EOD沿直线AO翻折180︒得到的;②旋转:如图(2),∆COD≌∆BOA,∆COD可以看成是由∆BOA绕着点O旋转180︒得到的;③平移:如图(3),∆DEF≌∆ACB,∆DEF可以看成是由∆ACB沿CB方向平行移动而得到的。
5. 判定三角形全等的方法:SAS,SSS,ASA,AAS,HL6. 注意问题:(1)在判定两个三角形全等时,至少有一边对应相等;(2)不能证明两个三角形全等的是,a: 三个角对应相等,即AAA;b :有两边和其中一角对应相等,即SSA。
【分类解析】(1)证明线段(或角)相等例1:如图,已知AD=AE,AB=AC.求证:BF=FCD C B A(2)证明线段平行例2:已知:如图,DE ⊥AC ,BF ⊥AC ,垂足分别为E 、F ,DE=BF ,AF=CE.求证:AB ∥CD(3)证明线段的倍半关系,可利用加倍法或折半法将问题转化为证明两条线段相等例3:如图,在△ ABC 中,AB=AC ,延长AB 到D ,使BD=AB ,取AB 的中点E ,连接CD 和CE. 求证:CD=2CE(4)证明线段相互垂直例4:已知:如图,A 、D 、B 三点在同一条直线上,ΔADC 、ΔBDO 为等腰三角形,AO 、BC 的大小关系和位置关系分别如何?证明你的结论。
全等三角形经典例题(含答案)
新思路全等三角形的经典例题 判定方法条件 注意 ⑴边边边公理(SSS )三边对应相等 三边对应相等 ⑵边角边公理(SAS)两边和它们的夹角对应相等 (“两边夹一角”) 必须是两边夹一角,不能是两边对一角 ⑶角边角公理(ASA)两角和它们的夹边对应相等 (“两角夹一边”) 不能理解为两角及任意一边⑷角角边公理(AAS) 两角和其中一角的对边对应相等例1:已知:如图,过∆ABC 的顶点A ,作AF ⊥AB 且AF=AB ,作AH ⊥AC ,使AH=AC ,连结BH 、CF ,且BH 与CF 交于D 点。
求证:(1)BH=CF (2)BH ⊥CF分析:从图中可观察分析,若证BH=CF ,显然,若能证出∆ABH ≌∆AFC ,问题就能解决。
从已知看,已经知道AF=AB ,AC=AH 。
这两个三角形已经具备两条边对应相等了。
还要证明第三条边相等,显然不可能用“边边边”公理了。
只能寻求两对应边的夹角了。
从已知看,∠BAF 和∠HAC 都是直角。
而图中的∠BAC 显然是公共角,根据等式性质,问题可以顺利解决。
证明:(1)∵AF ⊥AB ,AH ⊥AC∴∠BAF=∠HAC=90︒∴∠BAF +∠BAC=∠HAC +∠BAC∴即∠F AC=∠BAH在∆ABH 和∆AFC 中()()()AB AF BAH FAC AH AC =∠=∠=⎧⎨⎪⎪⎩⎪⎪已知已证已知 ∴∆ABH ≌∆AFC (边角边)∴BH=FC (全等三角形对应边相等)(2)设AC 与BH 交于点P在∆APH 中∵∠HAP=90︒∴∠2+∠3=90︒(直角三角形中两个锐角互余)∵∠1=∠2(全等三角形对应角相等)∠3=∠4∴∠1+∠4=∠2+∠3=90︒在∆PDC 中∵∠1+∠4=90︒∴∠HDC=90︒ ∴BH ⊥CF例2:已知,如上图:BD 、CE 是∆ABC 的高,分别在高上取点P 与Q ,使BP=AC ,CQ=AB 。
求证:AQ=AP 分析:从要证的结论AQ=AP ,只有在∆ABP 和∆QCA 中找对应原素,不难发现,已经有BP=AC 、CQ=AB ,也就是这两个三角形中已经有两条对应边相等。
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
中考数学复习专题 “全等三角形“经典题型解析1已知:AB=4,AC=2,D 是BC 中点,AD 是整数,求AD2已知:BC=DE ,∠B=∠E ,∠C=∠D ,F 是CD 中点,求证:∠1=∠23已知:∠1=∠2,CD=DE ,EF//AB ,求证:EF=AC4已知:AD 平分∠BAC ,AC=AB+BD ,求证:∠B=2∠C5已知:AC 平分∠BAD ,CE ⊥AB ,∠B+∠D=180°,求证:AE=AD+BECDBADBCABACDF2 1E6 如图,四边形ABCD 中,AB ∥DC ,BE 、CE 分别平分∠ABC 、∠BCD ,且点E 在AD 上。
求证:BC=AB+DC 。
已知:AB=CD ,∠A=∠D ,求证:∠B=∠C 7是∠BAC 平分线AD 上一点,AC>AB ,求证:9已知,E 是AB 中点,AF=BD ,BD=5,AC=7,求DC10.如图,已知AD ∥BC ,∠PAB 的平分线与∠CBA 的平分线相交于E ,CE 的连线交AP 于D .求证:AD +BC =AB .11如图,△ABC 中,AD 是∠CAB 的平分线,且AB =AC +CD ,求证:∠C =2∠BA D DB F AE CBP ED CBA DCBA12如图:AE 、BC 交于点M ,F 点在AM 上,BE ∥CF ,BE=CF 。
求证:AM 是△ABC 的中线。
13已知:如图,AB =AC ,BD ⊥AC ,CE ⊥AB ,垂足分别为D 、E ,BD 、CE 相交于点F 。
求证:BE =CD .14在△ABC 中,︒=∠90ACB ,BC AC =,直线MN 经过点C ,且MN AD ⊥于D ,MN BE ⊥于E .(1)当直线MN 绕点C 旋转到图1的位置时, 求证: ①ADC ∆≌CEB ∆;②BE AD DE +=;(2)当直线MN 绕点C 旋转到图2的位置时,(1)中的结论还成立吗?若成立,请给出证明;若不成立,说明理由.15如图所示,已知AE ⊥AB ,AF ⊥AC ,AE=AB ,AF=AC 。
求证:(1)EC=BF ;(2)EC ⊥BFMFECBAACBD EFA E F16.如图,已知AC ∥BD ,EA 、EB 分别平分∠CAB 和∠DBA ,CD 过点E ,则AB 与AC+BD 相等吗?请说明理由17.如图9所示,△ABC 是等腰直角三角形,∠ACB =90°,AD 是BC 边上的中线,过C 作AD 的垂线,交AB 于点E ,交AD 于点F ,求证:∠ADC =∠BDE .全等三角形证明经典(答案)1. 延长AD 到E,使DE=AD,则三角形ADC 全等于三角形EBD 即BE=AC=2 在三角形ABE 中,AB-BE<AE<AB+BE 即:10-2<2AD<10+2 4<AD<6 又AD 是整数,则AD=5 2证明:连接BF 和EF 。
因为 BC=ED,CF=DF,∠BCF=∠EDF 。
所以 三角形BCF 全等于三角形EDF(边角边)。
所以 BF=EF,∠CBF=∠DEF 。
连接BE 。
在三角形BEF 中,BF=EF 。
所以 ∠EBF=∠BEF 。
又因为 ∠ABC=∠AED 。
所以 ∠ABE=∠AEB 。
所以 AB=AE 。
在三角形ABF 和三角形AEF 中,AB=AE,BF=EF, ∠ABF=∠ABE+∠EBF=∠AEB+∠BEF=∠AEF 。
所以 三角形ABF 和三角形AEF 全等。
所以 ∠BAF=∠EAF (∠1=∠2)。
3 证明:过E 点,作EG//AC ,交AD 延长线于G 则∠DEG=∠DCA ,∠DGE=∠2 又∵CD=DE ∴⊿ADC ≌⊿GDE (AAS )∴EG=AC ∵EF//AB ∴∠DFE=∠1∵∠1=∠2∴∠DFE=∠DGE ∴EF=EG ∴EF=AC 4证明:ABC DEF 图9在AC 上截取AE=AB ,连接ED ∵AD 平分∠BAC ∴∠EAD=∠BAD又∵AE=AB ,AD=AD ∴⊿AED ≌⊿ABD (SAS )∴∠AED=∠B ,DE=DB ∵AC=AB+BD AC=AE+CE ∴CE=DE ∴∠C=∠EDC ∵∠AED=∠C+∠EDC=2∠C ∴∠B=2∠C5证明:在AE 上取F ,使EF =EB ,连接CF 因为CE ⊥AB 所以∠CEB =∠CEF =90°因为EB =EF ,CE =CE , 所以△CEB ≌△CEF 所以∠B =∠CFE 因为∠B +∠D =180°,∠CFE +∠CFA =180° 所以∠D =∠CFA 因为AC 平分∠BAD 所以∠DAC =∠FAC又因为AC =AC 所以△ADC ≌△AFC (SAS ) 所以AD =AF 所以AE =AF +FE =AD +BE6证明:在BC 上截取BF=BA,连接EF.∠ABE=∠FBE,BE=BE,则⊿ABE ≌ΔFBE(SAS),∠EFB=∠A; AB 平行于CD,则:∠A+∠D=180°; 又∠EFB+∠EFC=180°,则∠EFC=∠D;又∠FCE=∠DCE,CE=CE,故⊿FCE ≌ΔDCE(AAS),FC=CD.所以,BC=BF+FC=AB+CD. 7证明:设线段AB,CD 所在的直线交于E ,(当AD<BC 时,E 点是射线BA,CD 的交点,当AD>BC 时,E 点是射线AB,DC 的交点)。
则:△AED 是等腰三角形。
所以:AE=DE而AB=CD 所以:BE=CE (等量加等量,或等量减等量)所以:△BEC 是等腰三角形所以:角B=角C.8作B 关于AD 的对称点B‘,因为AD 是角BAC 的平分线,B'在线段AC 上(在AC 中间,因为AB 较短) 因为PC<PB’+B‘C,PC -PB’<B‘C,而B'C=AC-AB'=AC-AB,所以PC-PB<AC-AB 9作AG ∥BD 交DE 延长线于GAGE 全等BDEAG=BD=5AGF ∽CDF AF=AG=5所以DC=CF=210证明:做BE 的延长线,与AP 相交于F 点, ∵PA//BC ∴∠PAB+∠CBA=180°,又∵,AE ,BE 均为∠PAB 和∠CBA 的角平分线∴∠EAB+∠EBA=90°∴∠AEB=90°,EAB 为直角三角形 在三角形ABF 中,AE ⊥BF ,且AE 为∠FAB 的角平分线 ∴三角形FAB 为等腰三角形,AB=AF,BE=EF 在三角形DEF 与三角形BEC 中,∠EBC=∠DFE,且BE=EF ,∠DEF=∠CEB ,∴三角形DEF 与三角形BEC 为全等三角形,∴DF=BC ∴AB=AF=AD+DF=AD+BC11证明:在AB 上找点E ,使AE=ACP D ACB∵AE=AC,∠EAD=∠CAD,AD=AD∴△ADE≌△ADC。
DE=CD,∠AED=∠C∵AB=AC+CD,∴DE=CD=AB-AC=AB-AE=BE∠B=∠EDB∠C=∠B+∠EDB=2∠B12证明:∵BE‖CF∴∠E=∠CFM,∠EBM=∠FCM∵BE=CF∴△BEM≌△CFM∴BM=CM∴AM是△ABC的中线.13证明:因为AB=AC,所以∠EBC=∠DCB因为BD⊥AC,CE⊥AB 所以∠BEC=∠CDB BC=CB (公共边)则有三角形EBC全等于三角形DCB 所以BE=CD14(1)证明:∵∠ACB=90°,∴∠ACD+∠BCE=90°,而AD⊥MN于D,BE⊥MN于E,∴∠ADC=∠CEB=90°,∠BCE+∠CBE=90°,∴∠ACD=∠CBE.在Rt△ADC和Rt△CEB中,{∠ADC=∠CEB∠ACD=∠CBE AC=CB,∴Rt△ADC≌Rt△CEB(AAS),∴AD=CE,DC=BE,∴DE=DC+CE=BE+AD;(2)不成立,证明:在△ADC和△CEB中,{∠ADC=∠CEB=90°∠ACD=∠CBE AC=CB,∴△ADC≌△CEB(AAS),∴AD=CE,DC=BE,∴DE=CE-CD=AD-BE;15(1)证明;因为AE垂直AB所以角EAB=角EAC+角CAB=90度因为AF垂直AC所以角CAF=角CAB+角BAF=90度所以角EAC=角BAF因为AE=AB AF=AC所以三角形EAC和三角形FAB全等所以EC=BF角ECA=角F (2)延长FB与EC的延长线交于点G因为角ECA=角F(已证)所以角G=角CAF因为角CAF=90度所以EC垂直BF16在AB上取点N ,使得AN=AC∠CAE=∠EAN ,AE为公共边,所以三角形CAE全等三角形EAN所以∠ANE=∠ACE 又AC平行BD所以∠ACE+∠BDE=180而∠ANE+∠ENB=180所以∠ENB=∠BDE∠NBE=∠EBNBE为公共边,所以三角形EBN全等三角形EBD所以BD=BN所以AB=AN+BN=AC+BD17证明:作CG平分∠ACB交AD于G∵∠ACB=90°∴∠ACG= ∠DCG=45°∵∠ACB=90°AC=BC∴∠B=∠BAC=45°∴∠B=∠DCG=∠ACG∵CF⊥AD∴∠ACF+∠DCF=90°∵∠ACF+∠CAF=90°∴∠CAF=∠DCF∵AC=CB ∠ACG=∠B∴△ACG≌△CBE∴CG=BE∵∠DCG=∠B CD=BD∴△CDG ≌△BDE∴∠ADC=∠BDE。