最新中考数学压轴题预测,压轴题解题策略,解题技巧,专项训练 完整版 (12)
中考压轴题-反比例函数综合(八大题型+解题方法)—冲刺2024年中考数学考点(全国通用)(解析版)
中考压轴题反比例函数综合(八大题型+解题方法)1.求交点坐标联立反比例函数与一次函数图象的解析式进行求解,特别地,反比例函数与正比例函数图象的两个交点关于原点对称.2.结合图象比较函数值的大小如图,一次函数y=k1x+b与反比例函数图象交于A,B 两点,过点A,B分别作y 轴的平行线,连同y 轴,将平面分为I,Ⅱ,Ⅲ,IV 四部分,在I,Ⅲ区域内,y₁<y₂,自变量的取值范围为x<x B或0<x<x A;在Ⅱ,IV区域内,y1>y₂,自变量的取值范围为x B<x<0或x>x A.3.反比例函数系数k的几何意义及常用面积模型目录:题型1:反比例函数与几何的解答证明 题型2:存在性问题题型3:反比例函数的代数综合 题型4:动态问题、新定义综合 题型5:定值问题 题型6:取值范围问题 题型7:最值问题题型8:情景探究题(含以实际生活为背景题)题型1:反比例函数与几何的解答证明1.(2024·湖南株洲·一模)如图,在平面直角坐标系xOy 中,矩形OABC 的边OA 在x 轴上,OC 在y 轴上,4OA =,2OC =(不与B ,C 重合),反比例函数()0,0k y k x x=>>的图像经过点D ,且与AB 交于点E ,连接OD ,OE ,DE .(1)若点D 的横坐标为1. ①求k 的值;②点P 在x 轴上,当ODE 的面积等于ODP 的面积时,试求点P 的坐标; (2)延长ED 交y 轴于点F ,连接AC ,判断四边形AEFC 的形状 【答案】(1)①2;②15,04⎛⎫ ⎪⎝⎭或15,04⎛⎫− ⎪⎝⎭(2)四边形AEFC 是平行四边形,理由见解析【分析】(1)①根据矩形的性质得到90BCO B AOC ∠=∠=∠=︒,得()1,2D ,把()1,2D 代入()0,0ky k x x=>>即可得到结论;②由D ,E 都在反比例函数ky x =的图像上,得到1COD AOE S S ==△△,根据三角形的面积公式得到1111315241243222224ODE S =⨯−⨯⨯−⨯⨯−⨯⨯=△,设(),0P x ,根据三角形的面积公式列方程即可得到结论;(2)连接AC ,根据题意得到,22k D ⎛⎫ ⎪⎝⎭,4,4k E ⎛⎫ ⎪⎝⎭,设EF 的函数解析式为y ax b =+,解方程得到84k OF +=,求得24kCF OF AE =−==,根据平行四边形的判定定理即可得到结论.【解析】(1)解:①∵四边形ABCO 是矩形,4OA =, ∴90BCO B AOC ∠=∠=∠=︒,4BC OA ==, ∵2OC =,点D 的横坐标为1, ∴()1,2D ,2AB OC ==,∵反比例函数()0,0ky k x x =>>的图像经过点D ,∴122k =⨯=, ∴k 的值为2; ②∵()1,2D ,∴1CD =,∵D ,E 都在反比例函数2y x =的图像上,∴1COD AOE S S ==△△,∴111422AOE S OA AE AE==⋅=⨯△,∴12AE =,∴13222BE AB AE =−=−=, ∴1111315241243222224ODES =⨯−⨯⨯−⨯⨯−⨯⨯=△,∵点P 在x 轴上,ODE 的面积等于ODP 的面积, 设(),0P x ,∴115224ODP S x =⨯⨯=△, 解得:154x =或154x =−,∴点P 的坐标为15,04⎛⎫ ⎪⎝⎭或15,04⎛⎫− ⎪⎝⎭;(2)四边形AEFC AEFC 是平行四边形. 理由:连接AC ,∵4OA =,2OC =,D ,E 都在反比例函数()0,0ky k x x =>>的图像上,∴,22k D ⎛⎫ ⎪⎝⎭,4,4k E ⎛⎫⎪⎝⎭,设EF 的函数解析式为:y ax b =+,∴2244k a b k a b ⎧⨯+=⎪⎪⎨⎪+=⎪⎩,解得:1284a kb ⎧=−⎪⎪⎨+⎪=⎪⎩, ∴EF 的函数解析式为:1824k y x +=−+, 当0x =时,得:84ky +=,∴84k OF +=, ∴24kCF OF AE =−==,又∵CF AE ∥,∴四边形AEFC 是平行四边形.【点睛】本题是反比例函数与几何的综合,考查待定系数法确定解析式,反比例函数图像上的点的坐标的特征,矩形的性质,平行四边形的判定,三角形的面积等知识点.掌握反比例函数图像上的点的坐标的特征,矩形的性质是解题的关键.题型2:存在性问题2.(2024·四川成都·二模)如图①,O 为坐标原点,点B 在x 轴的正半轴上,四边形OACB 是平行四边形,4sin 5AOB ∠=,反比例函数(0)ky k x =>在第一象限内的图象经过点A ,与BC 交于点F .(1)若10OA =,求反比例函数解析式;(2)若点F 为BC 的中点,且AOF 的面积12S =,求OA 的长和点C 的坐标;(3)在(2)中的条件下,过点F 作EF OB ∥,交OA 于点E (如图②),点P 为直线EF 上的一个动点,连接PA ,PO .是否存在这样的点P ,使以P 、O 、A 为顶点的三角形是直角三角形?若存在,请直接写出所有点P 的坐标;若不存在,请说明理由. 【答案】(1)48(0)y x x =>C(3)存在,满足条件的点P 或(或或(【分析】(1)先过点A 作AH OB ⊥,根据4sin 5AOB ∠=,10OA =,求出AH 和OH 的值,从而得出A 点坐标,再把它代入反比例函数中,求出k 的值,即可求出反比例函数的解析式; (2)先设(0)OA a a =>,过点F 作FM x ⊥轴于M ,根据4sin 5AOB ∠=,得出45AH a =,35OH a=,求出AOHS △的值,根据12AOF S =△,求出平行四边形AOBC 的面积,根据F 为BC 的中点,求出6OBF S =△,根据12BF a =,FBM AOB ∠=∠,得出12BMFS BM FM =⋅,23650FOM S a =+△,再根据点A ,F 都在k y x =的图象上,12AOHSk=,求出a ,最后根据AOBC S OB AH =⋅平行四边形,得出OB AC ==C 的坐标;(3)分别根据当90APO ∠=︒时,在OA 的两侧各有一点P ,得出1P ,2P ;当90PAO ∠=︒时,求出3P ;当90POA ∠=︒时,求出4P 即可.【解析】(1)解:过点A 作AH OB ⊥于H ,4sin 5AOB ∠=,10OA =,8AH ∴=,6OH =,A ∴点坐标为(6,8),根据题意得:86k=,可得:48k =,∴反比例函数解析式:48(0)y x x =>;(2)设(0)OA a a =>,过点F 作FM x ⊥轴于M ,过点C 作CN x ⊥轴于点N , 由平行四边形性质可证得OH BN =,4sin 5AOB ∠=,45AH a ∴=,35OH a=, 2143625525AOHS a a a ∴=⋅⋅=△,12AOF S =△,24AOBC S ∴=平行四边形,F 为BC 的中点,6OBFS∴=,12BF a=,FBM AOB ∠=∠,25FM a ∴=,310BM a =,2112332251050BMF S BM FM a a a ∴=⋅=⋅⋅=△,23650FOMOBFBMFSSSa ∴=+=+,点A ,F 都在ky x =的图象上,12AOH FOM S S k ∴==△△,∴226362550a a =+,a ∴OA ∴=AH ∴=OH =24AOBC S OB AH =⋅=平行四边形,OB AC ∴==ON OB OH ∴=+=C ∴;(3)由(2)可知A ,B 0),F .存在三种情况:当90APO ∠=︒时,在OA 的两侧各有一点P ,如图,设PF 交OA 于点J ,则J此时,AJ PJ OJ ==,P ∴,(P ',当90PAO ∠=︒时,如图,过点A 作AK OB ⊥于点K ,交PF 于点L .由AKO PLA △∽△,可得PLP ,当90POA ∠=︒时,同理可得(P .综上所述,满足条件的点P 的坐标为或(或或(.【点睛】此题考查了反比例函数的综合,用到的知识点是三角函数、平行四边形、反比例函数、三角形的面积等,解题的关键是数形结合思想的运用.3.(2024·广东湛江·一模)【建立模型】(1)如图1,点B 是线段CD 上的一点,AC BC ⊥,AB BE ⊥,ED BD ⊥,垂足分别为C ,B ,D ,AB BE =.求证:ACB BDE ≌;【类比迁移】(2)如图2,点()3,A a −在反比例函数3y x=图象上,连接OA ,将OA 绕点O 逆时针旋转90︒到OB ,若反比例函数k y x =经过点B .求反比例函数ky x=的解析式; 【拓展延伸】(3)如图3抛物线223y x x +−与x 轴交于A ,B 两点(点A 在点B 的左侧),与y 轴交于C 点,已知点()0,1Q −,连接AQ ,抛物线上是否存在点M ,便得45MAQ ∠=︒,若存在,求出点M 的横坐标.【答案】(1)见解析;(2)3y x =−;(3)M 的坐标为39,24⎛⎫ ⎪⎝⎭或()1,4−−.【分析】(1)根据题意得出90C D ABE ︒∠=∠=∠=,A EBD ∠=∠,证明()AAS ACB BDE ≌,即可得证;(2)如图2,分别过点A ,B 作AC x ⊥轴,BD x ⊥轴,垂足分别为C ,D .求解()3,1A −−,1AC =,3OC =.利用ACO ODB ≌△△,可得()1,3B −;由反比例函数ky x =经过点()1,3B −,可得3k =−,可得答案;(3)如图3,当M 点位于x 轴上方,且45MAQ ∠=︒,过点Q 作QD AQ ⊥,交MA 于点D ,过点D 作DE y⊥轴于点E .证明AQO QDE ≌,可得AO QE =,OQ DE =,可得()1,2D ,求解1322AM y x =+:,令2132322x x x +=+−, 可得M 的坐标为39,24⎛⎫ ⎪⎝⎭;如图,当M 点位于x 轴下方,且45MAQ ∠=︒,同理可得()1,4D −−,AM 为26y x =−−.由22623x x x −−=+−,可得M 的坐标是()1,4−−.【解析】证明:(1)如图,∵AC BC ⊥,AB BE ⊥,ED BD ⊥, ∴90C D ABE ︒∠=∠=∠=,∴90,90ABC A ABC EBD ∠+∠=︒∠+∠=︒, ∴A EBD ∠=∠, 又∵AB BE =, ∴()AAS ACB BDE ≌.(2)①如图2,分别过点A ,B 作AC x ⊥轴,BD x ⊥轴,垂足分别为C ,D .将()3,A a −代入3y x =得:1a =−,∴()3,1A −−,1AC =,3OC =.同(1)可得ACO ODB ≌△△, ∴1OD AC ==,3BD OC ==, ∴()1,3B −,∵反比例函数ky x =经过点()1,3B −,∴3k =−, ∴3y x =−;(3)存在;如图3,当M 点位于x 轴上方,且45MAQ ∠=︒,过点Q 作QD AQ ⊥,交MA 于点D ,过点D 作DE y ⊥轴于点E .∵45MAQ ∠=︒,QD AQ ⊥, ∴45MAQ ADQ ∠=∠=︒, ∴AQ QD =,∵DE y ⊥轴,QD AQ ⊥,∴90AQO EQD EQD QDE ∠+∠=∠+∠=︒,90AOQ QED ∠=∠=︒, ∴AQO QDE ∠=∠, ∵AQ QD =, ∴AQO QDE ≌, ∴AO QE =,OQ DE =,令2230y x x =+−=,得13x =−,21x =,∴3AO QE ==,又()0,1Q −,∴1OQ DE ==, ∴()1,2D ,设AM 为y kx b =+,则230k b k b +=⎧⎨−+=⎩,,解得:1232k b ⎧=⎪⎪⎨⎪=⎪⎩,∴1322AM y x =+: 令2132322x x x +=+−,得132x =,23x =−(舍去), 当32x =时,233923224y ⎛⎫=+⨯−= ⎪⎝⎭, ∴39,24M ⎛⎫⎪⎝⎭;如图,当M 点位于x 轴下方,且45MAQ ∠=︒,同理可得()1,4D −−,AM 为26y x =−−.由22623x x x −−=+−,得11x =−,23x =−(舍去)∴当=1x −时,()()212134y =−+⨯−−=−,∴()1,4M −−.综上:M 的坐标为39,24⎛⎫⎪⎝⎭或()1,4−−.【点睛】本题考查的是全等三角形的判定与性质,反比例函数的应用,二次函数的性质,一元二次方程的解法,熟练的利用类比的方法解题是关键.题型3:反比例函数的代数综合4.(2024·湖南长沙·一模)若一次函数y mx n =+与反比例函数ky x=同时经过点(),P x y 则称二次函数2y mx nx k +=-为一次函数与反比例函数的“共享函数”,称点P 为共享点.(1)判断21y x =−与3y x=是否存在“共享函数”,如果存在,请说明理由;(2)已知:整数m ,n ,t 满足条件8t n m <<,并且一次函数()122=+++y n x m 与反比例函数2024y x=存在“共享函数”()()2102024y m t x m t x ++−=-,求m 的值.(3)若一次函数y x m =+和反比例函数213m y x+=在自变量x 的值满足的6m x m ≤≤+的情况下.其“共享函数”的最小值为3,求其“共享函数”的解析式.【答案】(1)3,22P ⎛⎫ ⎪⎝⎭或()1,3P −−,见解析 (2)2(3)2429y x x =+−或(29155y x x −−−=【分析】(1)判断21y x =−与3y x =是否有交点,计算即可;(2)根据定义,12210n m tm m t +=+⎧⎨+=−⎩,得到39869n m n t +⎧=⎪⎪⎨+⎪=⎪⎩,结合8t n m <<,构造不等式组解答即可. (3)根据定义,得“共享函数”为()22225131324m m y x mx m x ⎛⎫+−+=+−− ⎪⎝⎭=结合6m x m ≤≤+,“共享函数”的最小值为3,分类计算即可.本题考查了新定义,解方程组,解不等式组,抛物线的增减性,熟练掌握定义,抛物线的增减性是解题的关键.【解析】(1)21y x =−与3y x =存在“共享函数”,理由如下:根据题意,得213y x y x =−⎧⎪⎨=⎪⎩,解得322x y ⎧=⎪⎨⎪=⎩,13x y =−⎧⎨=−⎩,故函数同时经过3,22P ⎛⎫ ⎪⎝⎭或()1,3P −−, 故21y x =−与3y x =存在“共享函数”.(2)∵一次函数()122=+++y n x m 与反比例函数2024y x =存在“共享函数”()()2102024y m t x m t x ++−=-,∴12210n m tm m t +=+⎧⎨+=−⎩,解得39869n m n t +⎧=⎪⎪⎨+⎪=⎪⎩, ∵8t n m <<, ∴82489869n n m n n +⎧=⎪⎪⎨+⎪⎪⎩<>,解得24n 6<<, ∴327n +9<<, ∴339n +1<<,∴13m <<, ∵m 是整数, ∴2m =.(3)根据定义,得一次函数y x m =+和反比例函数213m y x +=的“共享函数”为 ()22225131324m m y x mx m x ⎛⎫+−+=+−− ⎪⎝⎭=,∵()22225131324m m y x mx m x ⎛⎫+−+=+−− ⎪⎝⎭=.∴抛物线开口向上,对称轴为直线2mx =−,函数有最小值25134m −−,且点与对称轴的距离越大,函数值越大,∵6m x m ≤≤+,当62mx m =−+≥时,即4m ≤−时,∵11622m m m m ⎛⎫⎛⎫−−+−− ⎪ ⎪⎝⎭⎝⎭>, ∴6x m =+时,函数取得最小值,且为2225613182324m m y m m m ⎛⎫=++−−=++ ⎪⎝⎭,又函数有最小值3,∴218233m m ++=,解得99m m =−=−故9m =− ∴“共享函数”为(29155y x x −−−=当2m x m =−≤时,即0m ≥时,∵11622m m m m ⎛⎫⎛⎫−−+−− ⎪ ⎪⎝⎭⎝⎭<, ∴x m =时,函数取得最小值,且为2225131324m m y m m ⎛⎫=+−−=− ⎪⎝⎭,又函数有最小值3,∴2133m −=,解得4,4m m ==−(舍去); 故4m =,∴“共享函数”为2429y x x =+−; 当62mm m −+<<时,即40m −<<时,∴2mx =−时,函数取得最小值,且为25134m y =−−,又函数有最小值3,∴251334m −−=, 方程无解,综上所述,一次函数y x m =+和反比例函数213m y x += 的“共享函数”为2429y x x =+−或(29155y x x −−−=5.(2024·江苏南京·模拟预测)若一次函数y mx n =+与反比例函数ky x=同时经过点(,)P x y 则称二次函数2y mx nx k =+−为一次函数与反比例函数的“共享函数”,称点P 为共享点.(1)判断21y x =−与3y x=是否存在“共享函数”,如果存在,请求出“共享点”.如果不存在,请说明理由; (2)已知:整数m ,n ,t 满足条件8t n m <<,并且一次函数(1)22y n x m =+++与反比例函数2024y x=存在“共享函数” 2()(10)2024y m t x m t x =++−−,求m 的值.(3)若一次函数y x m =+和反比例函数213m y x+=在自变量x 的值满足的6m x m ≤≤+的情况下.其“共享函数”的最小值为3,求其“共享函数”的解析式.【答案】(1)点P 的坐标为:3(2,2)或(1,3)−−;(2)2m =(3)222(13)(9(155y x mx m x x =+−+=+−−+或2429y x x =+−.【分析】(1)联立21y x =−与3y x =并整理得:2230x x −−=,即可求解;(2)由题意得12210n m t m m t +=+⎧⎨+=−⎩,解得39869n m n t +⎧=⎪⎪⎨+⎪=⎪⎩,而8t n m <<,故624n <<,则9327n <+<,故13m <<,m 是整数,故2m =;(3)①当162m m +≤−时,即4m ≤−,6x m =+,函数取得最小值,即22(6)(6)133m m m m +++−−=,即可求解;②当162m m m <−<+,即40m −<<,函数在12x m=−处取得最小值,即22211()13322m m m −−−−=,即可求解;③当0m ≥时,函数在x m =处,取得最小值,即可求解. 【解析】(1)解:(1)21y x =−与3y x =存在“共享函数”,理由如下:联立21y x =−与3y x =并整理得:2230x x −−=,解得:32x =或1−, 故点P 的坐标为:3(2,2)或(1,3)−−;(2)解:一次函数(1)22y n x m =+++与反比例函数2024y x =存在“共享函数”2()(10)2024y m t x m t x =++−−,依据“共享函数”的定义得: 12210n m tm m t +=+⎧⎨+=−⎩,解得:39869n m n t +⎧=⎪⎪⎨+⎪=⎪⎩, 8t n m <<,∴8698249n n n n +⎧<⎪⎪⎨+⎪<⎪⎩, 解得:624n <<;9327n ∴<+<, 13m ∴<<,m 是整数,2m ∴=;(3)解:由y x m =+和反比例函数213m y x +=得:“共享函数”的解析式为22(13)y x mx m =+−+, 函数的对称轴为:12x m=−; ①当162m m+≤−时,即4m ≤−, 6x m =+,函数取得最小值,即22(6)(6)133m m m m +++−−=,解得9m =−9−②当162m m m <−<+,即40m −<<, 函数在12x m =−处取得最小值,即22211()13322m m m −−−−=,无解;③当0m ≥时,函数在x m =处,取得最小值,即222133m m m +−−=,解得:4m =±(舍去4)−,综上,9m =−4,故“共享函数”的解析式为222(13)(9(155y x mx m x x =+−+=+−−+或2429y x x =+−.【点睛】本题是一道二次函数的综合题,主要考查了一次函数与反比例函数的性质,一次函数与反比例函数图象上点的坐标的特征,二次函数的性质,一元一次不等式组的解法,一元二次方程的解法.本题是阅读型题目,理解题干中的定义并熟练应用是解题的关键.6.(2024·湖南长沙·模拟预测)我们规定:若二次函数2y ax bx c =++(a ,b ,c 为常数,且0a ≠)与x 轴的两个交点的横坐标1x ,2x 满足122x x =−,则称该二次函数为“强基函数”,其中点()1,0x ,()2,0x 称为该“强基函数”的一对“基点”.(1)判断:下列函数中,为“强基函数”的是______(仅填序号).①228y x x =−−;②21y x x =++.(2)已知二次函数()2221y x t x t t =−+++为“强基函数”,求:当12x −≤≤时,函数22391y x tx t =+++的最大值.(3)已知直线1y x =−+与x 轴交于点C ,与双曲线()20y x x=−<交于点A ,点B 的坐标为()3,0−.若点()1,0x ,()2,0x 是某“强基函数”的一对“基点”,()12,P x x 位于ACB △内部.①求1x 的取值范围;②若1x 为整数,是否存在满足条件的“强基函数”2y x bx c =++?若存在,请求出该“强基函数”的解析式;若不存在,请说明理由. 【答案】(1)① (2)当23t =−时函数最大值为8或当13t =−时函数最大值为4;(3)①1x 的取值范围是:120x −<<或110x −<<;②21122y x x =+−【分析】(1)根据抛物线与x 轴的交点情况的判定方法分别判定①与②与x 轴的交点情况,再求解交点坐标,结合新定义,从而可得答案; (2)由()22210y x t x t t =−+++=时,可得1x t=,21x t =+,或11x t =+,2x t=,当122x x =−时,根据新定义可得23t =−或13t =−,再分情况求解函数的最大值即可;(3))①先得到点A 、B 、C 的坐标,然后分122x x =−或212x x =−两种情况,列出关于1x 的不等式组,然后解不等式组即可;②根据1x 为整数,先求出1x 的值,然后根据二次函数的交点式直接得到二次函数的解析式即可.【解析】(1)解:①∵228y x x =−−; ∴()()2Δ2418432360=−−⨯⨯−=+=>,∴抛物线与x 轴有两个交点,∵228=0x x −−,∴14x =,22x =−,∴122x x =−,∴228y x x =−−是“强基函数” ②∵21y x x =++, ∴214111430∆=−⨯⨯=−=−<,∴抛物线与x 轴没有交点,∴21y x x =++不是“强基函数” 故答案为:①; (2)∵二次函数()2221y x t x t t=−+++为“强基函数”,∴()()22Δ21410t t t ⎡⎤=−+−+=>⎣⎦,∵()22210y x t x t t =−+++=时, ∴1x t=,21x t =+,或11x t =+,2x t=,当122x x =−时,∴()21t t =−+或12t t +=−,解得:23t =−或13t =−,当23t =−时,函数为225y x x =−+,如图,∵12x −≤≤,此时当=1x −时,函数最大值为1258y =++=; 当13t =−时,函数为22y x x =−+,如图,∵12x −≤≤,此时当=1x −或2x =时,函数最大值为1124y =++=;(3)①联立()201y x x y x ⎧=−<⎪⎨⎪=−+⎩,解得:12x y =−⎧⎨=⎩, ∴点A 的坐标为:()1,2−,把0y =代入 1y x =−+得:10x −+=, 解得:1x =,∴点C 的坐标为()1,0, 设直线AB 为1y kx b =+,∴11302k b k b −+=⎧⎨−+=⎩,解得:113k b =⎧⎨=⎩,∴直线AB 的解析式为:3y x =+, ∵点()1,0x ,()2,0x 是某“强基函数”的一对“基点”, ()12,P x x 位于ACB △内部.当122x x =−时, ∴111,2P x x ⎛⎫− ⎪⎝⎭, ∴点P 在直线2xy =−上,∵点111,2P x x ⎛⎫− ⎪⎝⎭位于以A 、B 、C 三点所构成的三角形内部,如图,∴1111103212x x x x x ⎧⎪<⎪⎪−+⎨⎪⎪−−+⎪⎩<<, 解得:120x −<<;当212x x =−时,∵P 点坐标为()11,2x x −,∴点P 在直线2y x =−上,∵点P 位于以A 、B 、C 三点所构成的三角形内部,如图,∴1111102321x x x x x <⎧⎪−<+⎨⎪−<−+⎩,解得:110x −<<;综上分析可知,1x 的取值范围是:120x −<<或110x −<<;②存在;理由如下:∵1x 为整数,∴当120x −<<时,11x =−,∴此时212x =,此时,“强基函数”的一对“基点”为()1,0−,1,02⎛⎫ ⎪⎝⎭, ∴“强基函数”为()21111222y x x x x ⎛⎫=+−=+− ⎪⎝⎭; 当110x −<<时,则没有符合条件的整数1x 的值,不存在符合条件的“强基函数”; 综上,“强基函数”为21122y x x =+−. 【点睛】本题考查的是一次函数,反比例函数,二次函数的综合应用,新定义的含义,本题难度大,灵活应用各知识点,理解新定义的含义是解题的关键.题型4:动态问题、新定义综合7.(2024·山东济南·一模)如图1,直线14y ax =+经过点()2,0A ,交反比例函数2k y x=的图象于点()1,B m −,点P 为第二象限内反比例函数图象上的一个动点.(1)求反比例函数2y 的表达式;(2)过点P 作PC x ∥轴交直线AB 于点C ,连接AP ,BP ,若ACP △的面积是BPC △面积的2倍,请求出点P 坐标;(3)平面上任意一点(),Q x y ,沿射线BA Q ',点Q '怡好在反比例函数2k y x=的图象上;①请写出Q 点纵坐标y 关于Q 点横坐标x 的函数关系式3y =______;②定义}{()()min ,a a b a b b a b ⎧≤⎪=⎨>⎪⎩,则函数{}13min ,Y y y =的最大值为______. 【答案】(1)26y x =−(2)点P 坐标为1,122⎛⎫− ⎪⎝⎭或3,42⎛⎫− ⎪⎝⎭ (3)①3621y x =−++;②8【分析】本题考查了反比例函数与一次函数的交点问题,坐标与图形,解题的关键是运用分类讨论的思想.(1)先根据点()2,0A 求出1y 的解析式,然后求出点B 的坐标,最后将点B 的坐标代入2y 中,求出k ,即可求解;(2)分两种情况讨论:当点P 在AB 下方时,当点P 在AB 上方时,结合“若ACP △的面积是BPC △面积的2倍”,求出点C 的坐标,将点C 的纵坐标代入反比例函数解析式,即可求解;(3)①根据题意可得:(),Q x y 向右平移1个单位,再向下平移2个单位得到点Q ',则()1,2Q x y +'−,将其代入26y x =−中,即可求解;②分为:当{}131min ,Y y y y ==时,13y y ≤;当{}133min ,Y y y y ==时,13y y >;分别解不等式即可求解.【解析】(1)解:直线14y ax =+经过点()2,0A ,,∴240x +=, 解得:2a =−,∴124y x =−+,点()1,B m −在直线124y x =−+上,∴()2146m =−⨯−+=,∴()1,6B −,∴166k =−⨯=−, ∴26y x =−;(2)①当点P 在AB 下方时,2ACP BPC S S =,∴:2:1AC BC =,过点C 作CH x ⊥轴于点H ,过点B 作BR x ⊥轴于点R ,∴23AC CH AB BR ==, ∴23C B y y =,()1,6B −,∴4C y =,把4C y =代入26y x =−中, 得:32C x =−, ∴3,42P ⎛⎫− ⎪⎝⎭; ②当点P 在AB 上方时,2ACP BPC S S =,∴:1:1AB BC =,∴B 为AC 的中点,()2,0A ,()1,6B −,∴()4,12C −,把12y =代入26y x =−中,得:12x =−, ∴1,122P ⎛⎫− ⎪⎝⎭,综上所述,点P 的坐标为1,122⎛⎫− ⎪⎝⎭或3,42⎛⎫− ⎪⎝⎭;(3)① 由(),Q x y ,沿射线BA Q ', 得:(),Q x y 向右平移1个单位,再向下平移2个单位得到点Q ',∴()1,2Q x y +'−,点()1,2Q x y +'−恰好在反比例函数26y x =−的图象上, ∴621y x −=−+, ∴3621y x =−++;②a .当{}131min ,Y y y y ==时,13y y ≤, 即62421x x −+≤−++, 当1x >−时,()()()2141621x x x x −+++≤−++,解得:2x ≥或2x ≤−(舍去),∴2x =时,函数{}131min ,Y y y y ==有最大值,最大值为2240−⨯+=;当1x <−时,()()()2141621x x x x −+++≥−++,解得:21x −≤<−,∴2x =−时,函数{}131min ,Y y y y ==有最大值,最大值为()2248−⨯−+=;b .当{}133min ,Y y y y ==时,13y y >, 即62421x x −+>−++,当1x >−时,()()()2141621x x x x −+++>−++,解得:2x >或<2x −(舍去), ∴362021y >−+=+,即0Y >;当1x <−时,()()()2141621x x x x −+++<−++,解得:2<<1x −−,∴328y <<,即28Y <<;综上所述,函数{}13min ,Y y y =的最大值为8,故答案为:8.8.(2024·四川成都·一模)如图,矩形OABC 交反比例函数k y x=于点D ,已知点()0,4A ,点()2,0C −,2ACD S =△.(1)求k 的值;(2)若过点D 的直线分别交x 轴,y 轴于R ,Q 两点,2DRDQ =,求该直线的解析式; (3)若四边形有一个内角为60︒,且有一条对角线平分一个内角,则称这个四边形为“角分四边形”.已知点P在y 轴负半轴上运动,点Q 在x 轴正半轴上运动,若四边形ACPQ 为“角分四边形”,求点P 与点Q 的坐标.【答案】(1)4k =−;(2)26y x =+或22y x =−+;(3)(()020P ,,Q ,−或 ()()04320P ,,−或()()040P ,,Q −【分析】(1)利用面积及矩形的性质,用待定系数法即可求解;(2)分两种情况讨论求解:R 在x 轴正半轴上和在负半轴上两种情况分别求解即可;(3)分三种情况:当AO 平分CAQ ∠,60CPQ ∠=︒时,当CO 平分ACP ∠,60CPQ ∠=︒时,当CO 平分ACP ∠,60AQP ∠=︒时,分别结合图形求解. 【解析】(1)解:2ACD S =△, 即122AD OA ⨯⨯=, ()0,4A ,1422AD ∴⨯=,1AD ∴=,()1,4D ∴−, 41k∴=−,4k ∴=−;(2)①如图,当2DR DQ =时,13DQ RQ =,AD OR ,13DQ AD RQ OR ∴==,1AD =,3OR ∴=,()3,0R ∴−,设直线RQ 为11y k x b =+, 把()3,0R −,()1,4D −代入11y k x b =+,得1111304k b k b −+=⎧⎨−+=⎩,解得1126k b =⎧⎨=⎩,直线RQ 为26y x =+,②如图,当2DR DQ =时,1DQ RQ =,AD OR ,1DQ AD RQ OR ∴==,1AD =,1OR ∴=,()1,0R ∴,设直线RQ 为22y k x b =+,把()1,0R ,()1,4D −代入22y k x b =+,得222204k b k b +=⎧⎨−+=⎩,解得2222k b =−⎧⎨=⎩,直线RQ 为22y x =−+,综上所述,直线RQ 的表达式为26y x =+或22y x =−+;(3)解:①当AO 平分CAQ ∠,60CPQ ∠=︒时,CAO QAO AO AOAOC AOQ ∠=∠⎧⎪=⎨⎪∠=⎩,()ASA AOC AOQ ∴≌, CO QO ∴=即AP 垂直平分CQ ,()2,0Q ∴,60CPQ ∠=︒,30CPO ∴∠=︒,tan30OC OP ∴===︒,(0,P ∴−,②当CO 平分ACP ∠,60CPQ ∠=︒时,同理ACO PCO ≌,得4OA OP ==,()0,4P ∴−,PC == 作CM PQ ⊥于M ,60CPQ ∠=︒,1cos602PM PC ∴=⨯︒==sin60CM PC =⨯︒== 90POQ CMQ ,PQO PQO ∠=∠=︒∠=∠,CMQ POQ ∴∽,MQ CM OQ OP ∴=,即MQ OQ =,)2222OQ OP PQ MQ +==② ,联立①,②,解得32OQ =或32OQ =(舍),()32,0Q ∴,③当CO 平分ACP ∠,60AQP ∠=︒时,同理 ACO PCO ≌,得4OA OP ==,AC CP = 同理ACQ PCQ ≌,得AQ PQ =∴APQ 是等边三角形()0,4P ∴−,8AP AQ PQ ,===OQ =, ()Q ∴,综上所述,P 、Q 的坐标为(()0,,2,0P Q −或 ()()0,4,32,0P Q −或()()0,4,P Q −.【点睛】此题是反比例函数综合题,主要考查了待定系数法,解直角三角形,求一次函数解析式,相似三角形的性质和判定,正确作出辅助线,解方程组,灵活运用待定系数法求函数解析式是解本题的关键. 题型5:定值问题9.(2024·山东济南·模拟预测)如图①,已知点()1,0A −,()0,2B −,ABCD Y 的边AD 与y 轴交于点E ,且E 为AD 的中点,双曲线k y x=经过C 、D 两点.(1)求k 的值;(2)点P 在双曲线k y x=上,点Q 在y 轴上,若以点A 、B 、P 、Q 为顶点的四边形是平行四边形,直接写出满足要求的所有点Q 的坐标;(3)以线段AB 为对角线作正方形AFBH (如图③),点T 是边AF 上一动点,M 是HT 的中点,MN HT ⊥,交AB 于N ,当点T 在AF 上运动时,MN HT 的值是否发生改变?若改变,求出其变化范围:若不改变,请求出其值,并给出你的证明.【答案】(1)4k =(2)()0,6或()0,2或()0,6− (3)12MN HT =,其值不发生改变,证明见解析【分析】(1)根据中点坐标公式可得,1D x =,设()1,D t ,由平行四边形对角线中点坐标相同可知()2,2C t −,再根据反比例函数的性质求出t 的值即可;(2)由(1)知4k =可知反比例函数的解析式为4y x =,再由点P 在双曲线4y x =上,点Q 在y 轴上,设()0,Q q ,4P p p ⎛⎫ ⎪⎝⎭,,再分以AB 为边和以AB 为对角线两种情况求出x 的值,故可得出P 、Q 的坐标;(3)连NH 、NT 、NF ,易证NF NH NT ==,故NTF NFT AHN ∠=∠=∠,90TNH TAH ∠=∠=︒,12MN HT =由此即可得出结论.【解析】(1)解:∵()1,0A −,E 为AD 中点且点E 在y 轴上,1D x ∴=, 设()1,D t ,()C m n ,,∵四边形ABCD 是平行四边形,∴AC BD 、的中点坐标相同, ∴101222022m t n +−⎧=⎪⎪⎨−+⎪=⎪⎩, ∴22m n t ==−,()22C t ∴−,,∵C 、D 都在反比例函数4y x =的图象上,()22k t t ∴==−,4t ∴=, 4k ∴=;(2)解:由(1)知4k =,∴反比例函数的解析式为4y x =,点P 在双曲线4x 上,点Q 在y 轴上,∴设()0,Q q ,4P p p ⎛⎫ ⎪⎝⎭,,①当AB 为边时:如图1,若ABPQ 为平行四边形,则1002240422p q p −++⎧=⎪⎪⎨−⎪−=⎪⎩,解得16p q =⎧⎨=⎩,此时()11,4P ,()10,6Q ;如图2,若ABQP 为平行四边形,则1002242022p q p −++⎧=⎪⎪⎨−+⎪+=⎪⎩,解得16p q =−⎧⎨=−⎩,此时()21,4P −−,()20,6Q −;②如图3,当AB 为对角线时,则010*******p q p +−+⎧=⎪⎪⎨+⎪−=⎪⎩解得12p q =−⎧⎨=⎩,()31,4P ∴−−,()30,2Q ;综上所述,满足题意的Q 的坐标为()0,6或()0,2或()0,6−;(3)解:12MN HT =,其值不发生改变,证明如下: 如图4,连NH 、NT 、NF ,∵M 是HT 的中点,MN HT ⊥,∴MN 是线段HT 的垂直平分线,NT NH ∴=,四边形AFBH 是正方形,45ABF ABH ∴∠=∠=︒,在BFN 与BHN △中,BF BH NBF NBH BN BN =⎧⎪∠=∠⎨⎪=⎩,()SAS BFN BHN ∴≌,NF NH NT ∴==,BFN BHN ∠=∠,∵90BFA BHA ==︒∠∠,NTF NFT AHN ∴∠=∠=∠,∵180ATN NTF ∠+∠=︒,∴180ATN AHN ∠+∠=︒,∴3601809090TNH ∠=︒−︒−︒=︒.12MN HT ∴=, ∴12MN HT =.三角形的判定与性质、全等三角形的判定与性质等相关知识,解题的关键是学会用分类讨论的思想思考问题,学会添加常用辅助线,构造全等三角形解决问题.10.(2024·山东济南·二模)如图①,已知点(1,0)A −,(0,2)B −,ABCD Y 的边AD 与y 轴交于点E ,且E 为AD 的中点,双曲线k y x=经过C 、D 两点.(1)求k 的值;(2)点P 在双曲线k y x=上,点Q 在y 轴上,若以点A 、B 、P 、Q 为顶点的四边形是平行四边形,直接写出满足要求的所有点Q 的坐标;(3)以线段AB 为对角线作正方形AFBH (如图③),点T 是边AF 上一动点,M 是HT 的中点,MN HT ⊥,交AB 于N ,当点T 在AF 上运动时,MN HT的值是否发生改变?若改变,求出其变化范围:若不改变,请求出其值,并给出你的证明.【答案】(1)4k =(2)1(0,6)Q ,2(0,6)Q −,3(0,2)Q(3)结论:MN HT 的值不发生改变,12MN HT =证明见解析【分析】(1)设(1,)D t ,由DC AB ∥,可知(2,2)C t −,再根据反比例函数的性质求出t 的值即可;(2)由(1)知4k =可知反比例函数的解析式为4y x =,再由点P 在双曲线4y x =上,点Q 在y 轴上,设(0,)Q y ,4(,)P x x ,再分以AB 为边和以AB 为对角线两种情况求出x 的值,故可得出P 、Q 的坐标;(3)连NH 、NT 、NF ,易证NF NH NT ==,故NTF NFT AHN ∠=∠=∠,90TNH TAH ∠=∠=︒,12MN HT =由此即可得出结论.【解析】(1)解:(1,0)A −,(0,2)B −,E 为AD 中点, 1D x ∴=,设(1,)D t ,又DC AB ∥,(2,2)C t ∴−,24t t ∴=−,4t ∴=,4k ∴=;(2)解:由(1)知4k =,∴反比例函数的解析式为4y x =,点P 在双曲线4x 上,点Q 在y 轴上,∴设(0,)Q y ,4(,)P x x , ①当AB 为边时:如图1,若ABPQ 为平行四边形,则102x −+=,解得1x =,此时1(1,4)P ,1(0,6)Q ;如图2,若ABQP 为平行四边形,则122x −=, 解得=1x −,此时2(1,4)P −−,2(0,6)Q −;②如图3,当AB 为对角线时,AP BQ =,且AP BQ ∥; ∴122x −=,解得=1x −,3(1,4)P ∴−−,3(0,2)Q ;故1(1,4)P ,1(0,6)Q ;2(1,4)P −−,2(0,6)Q −;3(1,4)P −−,3(0,2)Q ;(3) 解:结论:MNHT 的值不发生改变,理由:如图4,连NH 、NT 、NF ,MN 是线段HT 的垂直平分线,NT NH ∴=,四边形AFBH 是正方形,ABF ABH ∴∠=∠,在BFN 与BHN △中,BF BH ABF ABH BN BN =⎧⎪∠=∠⎨⎪=⎩,()BFN BHN SAS ∴≌,NF NH NT ∴==, NTF NFT AHN ∴∠=∠=∠,四边形ATNH 中,180ATN NTF ∠+∠=︒,而NTF NFT AHN ∠=∠=∠,所以,180ATN AHN ∠+∠=︒,所以,四边形ATNH 内角和为360︒,所以3601809090TNH ∠=︒−︒−︒=︒.12MN HT ∴=, ∴12MN HT =.【点睛】此题是反比例函数综合题,主要考查了待定系数法求反比例函数的解析式、正方形的性质、等腰三角形的判定与性质、全等三角形的判定与性质等相关知识,解题的关键是学会用分类讨论的思想思考问题,学会添加常用辅助线,构造全等三角形解决问题.题型6:取值范围问题11.(2024·江苏宿迁·二模)中国象棋棋盘上双方的分界处称为“楚河汉界”,以“楚河汉界”比喻双方对垒的分界线.在平面直角坐标系中,为了对两个图形进行分界,对“楚河汉界线”给出如下定义:点()11,P x y 是图形1G 上的任意一点,点()22,Q x y 是图形2G 上的任意一点,若存在直线()0l y kx b k =+≠∶满足11y kx b ≤+且22y kx b ≥+,则直线(0)y k b k =+≠就是图形1G 与2G 的“楚河汉界线”.例如:如图1,直线4l y x =−−∶是函数6(0)y x x=<的图像与正方形OABC 的一条“楚河汉界线”.(1)在直线①2y x =−,②41y x =−,③23y x =−+,④31y x =−−中,是图1函数6(0)y x x=<的图像与正方形OABC 的“楚河汉界线”的有______;(填序号) (2)如图2,第一象限的等腰直角EDF 的两腰分别与坐标轴平行,直角顶点D 的坐标是()2,1,EDF 与O 的“楚河汉界线”有且只有一条,求出此“楚河汉界线”的表达式;(3)正方形1111D C B A 的一边在y 轴上,其他三边都在y 轴的右侧,点(2,)M t 是此正方形的中心,若存在直线2y x b =−+是函数2)304(2y x x x =−++≤≤的图像与正方形1111D C B A 的“楚河汉界线”,求t 的取值范围.【答案】(1)①④;(2)25y x =−+;(3)7t ≤−或9t ≥.【分析】(1)根据定义,结合图象,可判断出直线为3y x =−或31y x =−−与双曲线6(0)y x x =<及正方形ABCD最多有一个公共点,即可求解;(2)先作出以原点O 为圆心且经过EDF 的顶点D 的圆,再过点D 作O 的切线,求出该直线的解析式即可;(3)先由抛物线与直线组成方程组,则该方程组有唯一一组解,再考虑直线与正方形有唯一公共点的情形,数形结合,分类讨论,求出t【解析】(1)解:如图,从图可知,2y x =−与双曲线6(0)y x x =<和正方形OABC 只有一个公共点,31y x =−−与双曲线6(0)y x x =<和正方形OABC 没有公共点,41y x =−、23y x =−+不在双曲线6(0)y x x =<及正方形ABCD 之间, 根据“楚河汉界线”定义可知,直线2y x =−,31y x =−−是双曲线6(0)y x x =<与正方形OABC 的“楚河汉界线”, 故答案为:①④;(2)解:如图,连接OD ,以O 为圆心,OD 长为半径作O ,作DG x ⊥轴于点G ,过点D 作O 的切线DM ,则MD OD ⊥,∵MD OD ⊥,DG x ⊥轴, ∴90ODM OGD ∠=∠=︒, ∴90MOD OMD ∠+∠=︒, ∵90MOD DOG ∠+∠=︒, ∴OMD DOG ∠=∠, ∴tan tan OMD DOG ∠=∠, ∵()2,1D ,∴1DG =,2OG =,∴1tan tan 2DG OMD DOG OG ∠=∠==,OG ==∵tan ODOMD DM ∠=,∴12=,∴1122MN DM ∴==⨯=∴5OM =,∴()0,5M ,设直线MD 的解析式为y mx n =+,把()0,5M 、()2,1D 代入得,521n m n =⎧⎨+=⎩,解得25m n =−⎧⎨=⎩,∴25y x =−+,∴EDF 与O 的“楚河汉界线”为25y x =−+; (3)解:由2223y x b y x x =−+⎧⎨=−++⎩得,2430x x b −+−=, ∵直线与抛物线有唯一公共点, ∴0=,∴164120b −+=,解得7b =, ∴此时的“楚河汉界线”为27y x =−+,当正方形1111D C B A 在直线27y x =−+上方时,如图,∵点()2,M t 是此正方形的中心,∴顶点()10,2A t −,∵顶点()10,2A t −不能在直线27y x =−+下方,得27t −≥,解得9t ≥;当正方形1111D C B A 在直线27y x =−下方时,如图,对于抛物线223y x x =−++,当0x =时,3y =;当4x =时,5y =−; ∴直线23y x =−+恰好经过点()0,3和点()4,5−;对于直线23y x =−+,当4x =时,5y =−,由()12,2C t +不能在直线23y x =−+上方,得25t ≤−+, 解得7t ≤−;综上所述,7t ≤−或9t ≥.【点睛】此题考查了一次函数、正方形的性质、三角函数、一次函数的应用、二元二次方程组,一元二次方程的根的判别式等知识,解题的关键是理解题意,灵活运用所学知识解决问题,学会用分类讨论的思想思考问题.题型7:最值问题12.(2024·辽宁·一模)【发现问题】随着时代的发展,在现代城市设计中,有许多街道是设计的相互垂直或平行的,因此往往不能沿直线行走到目的地,只能按直角拐弯的方式行走.我们可以按照街道的垂直和平行方向建立平面直角坐标系xOy ,对两点()11,A x y 和()22,B x y ,用以下方式定义两点间的“折线距离”:()1212,d A B x x y y =−+−.【提出问题】(1)①已知点()4,1A ,则(),d O A =______;②函数()2630y x x =+−≤≤的图象如图1,B 是图象上一点,若(),5d O B =,则点B 的坐标为______; (2)函数()30y x x=>的图象如图2,该函数图象上是否存在点C ,使(),2d O C =?若存在,求出其坐标;若不存在,请说明理由; 【拓展运用】(3)已知函数()21460y x x x =−+≥和函数()2231y x x =+≥−的图象如图3,D 是函数1y 图象上的一点,E是函数2y 图象上的一点,当(),d O D 和(),d O E 分别取到最小值的时候,请求出(),d D E 的值.【答案】(1)①5;②()14,(2)不存在,理由见解析(3)()15,4d D E =【分析】本题在新定义下考查了一次方程和分式方程的解法,二次函数的最值,关键是紧靠定义来构造方程和函数.(1)①代入定义中的公式求; ②设出函数()2630y x x =+−≤≤的图象上点B 的坐标,通过(),5d O B =建立方程,解方程;(2)设出函数()30y x x =>的图象上点C 的坐标,通过(),2d O C =建立方程,看方程解的情况;(3)设出函数()21460y x x x =−+≥的图象上点D 的坐标,将()d O D ,表示成函数,利用二次函数的性质求函数最值,可求得点D 的坐标;设出函数()2231y x x =+≥−的图象上点E 的坐标,利用一次函数的性质,可求得点E 的坐标;再按定义求得(),d D E 的值即可.【解析】 解:(1)①∵点()4,1A ,点()00O ,,∴()40105d O A =−+−=,;故答案为:5; ②设点()26B x x +,,∵(),5d O B =, ∴265x x ++=,∵30x −≤≤, ∴265x x −++=, ∴=1x −, ∴点()14B ,.故答案为:()14,; (2)不存在,理由如下:设点3C m m ⎛⎫ ⎪⎝⎭,, ∵(),2d O C =,∴32m m +=,∵0m >, ∴32m m +=,∴2230m m −+=,∵80∆=−<,∴此方程没有实数根, ∴不存在符合条件的点C ;(3)设点D 为()246n nn −+,,∴()246d O D n n n =+−+,,∵0n ≥,()2246220n n n −+=−+>,∴()222315463624d O D n n n n n n ⎛⎫=+−+=−+=−+⎪⎝⎭,, ∴当32n =时,()d O D ,最小,最小值为154,此时点D 坐标为3924⎛⎫ ⎪⎝⎭,. 设点E 为()23e e +,,∴()23d O Ee e =++,,当10e −≤<时,()233d O Ee e e =−++=+,,∴当1e =−时,()d O E ,最小,最小值为2;当0e ≥时,()2333d O Ee e e =++=+,,∴当0e =时,()d O E ,最小,最小值为3;∴此时点E 坐标为()11−,.∴()395515,1124244d D E =−−+−=+=.13.(2024·四川成都·模拟预测)如图,在平面直角坐标系中,已知直线132y x =−与反比例函数ky x=的图象交于点()8,Q t ,与y 轴交于点R ,动直线()08x m m =<<与反比例函数的图象交于点K ,与直线QR 交于点T .(1)求t 的值及反比例函数的表达式;(2)当m 为何值时,RKT △的面积最大,且最大值为多少? (3)如图2,ABCO 的顶点C 在反比例函数()0ky x x=>的图象上,点P 为反比例函数图象上一动点,过点P 作MN x ∥轴交OC 于点N ,交AB 于点M .当点P 的纵坐标为2,点C 的横坐标为1且8OA =时,求PNPM的值.【答案】(1)1t =,反比例函数的表达式为8y x =; (2)当3m =时,RKT △的面积最大,且最大值为254;(3)1517PN PM =【分析】(1)将()8,Q t 代入直线132y x =−,求出t 的值,再将点Q 的坐标代入反比例函数,求出k 的值,即可得到反比例函数解析式;(2)设8,K m m ⎛⎫ ⎪⎝⎭,1,32T m m ⎛⎫− ⎪⎝⎭,则81813322KT m m m m ⎛⎫=−−=−+ ⎪⎝⎭,进而表示出 RKT RTKQTKS SS=+△()2125344m =−−+,结合二次函数的性质,即可求出最值;(3)先求出P 、C 两点的坐标,再利用待定系数法求出直线OC 的解析式,进而得到点N 的坐标,得出PN的长,然后利用平行四边形的性质,得出PM 的长,即可求出PNPM 的值.【解析】(1)解:()8,Q t 在直线132y x =−上,18312t ∴=⨯−=,()8,1Q ∴,()8,1Q 在反比例函数ky x =上,818k ∴=⨯=,。
安徽中考数学压轴题解题技巧
安徽中考数学压轴题解题技巧说起安徽中考数学压轴题的技巧,我有一些心得想分享。
我辅导过一些中考生学习数学,那时候才真正感受到中考数学压轴题就像一座难以攻克的碉堡。
起初,很多同学看到压轴题就直接投降,其实只要掌握了一定技巧,并不是完全不能得分。
就拿函数类型的压轴题来说吧,它好像一个神秘迷宫。
首先,你得像个侦探一样把题目里给出的所有线索,也就是已知条件找出来。
比如说给定函数的表达式、坐标点这些,可别小瞧这一步,就和你找东西先得知道东西长啥样似的重要。
然后呢,我一般会建议学生把这些已知条件往图形里标,这就像是给地图做标记。
比如一次函数和二次函数交了个点,咱就把这个点的坐标标在图上。
真有学生忽略这个步骤,结果做题的时候就像迷失在迷宫里的小鹿,到处乱撞还找不到出口。
对了,还有个事儿要说。
方程思想是解压轴题的一把“利剑”。
很多时候我们需要根据题目中的等量关系列方程。
这就好比是在称东西,左右两边要一样重。
比如说在涉及三角形面积、线段长度关系的时候,利用已知的面积公式或者线段关系列出方程求解。
当然,我也遇到过一些失败的情况。
有一次,一个学生盲目地套技巧,题目要求用一种方法求解,他硬是用另一种不适用的技巧,结果全军覆没。
这就告诉我们,不能死记技巧,还得看清题目背后的逻辑。
而且要知道这些技巧也不是万能药。
有些压轴题出题非常灵活,可能会有陷阱或者超纲的小拓展。
如果遇到这种情况,咱们不要死磕,先把能做的部分做出来,就像吃个苹果,能吃一口是一口。
对于那些很难的部分,有时候用直觉或者排除法说不定还能得到一点分呢。
你来想想看,如果压轴题是一场战斗,那解题技巧就是我们的武器装备,你觉得你还需要在哪些方面加强这个装备库呢?希望大家也能分享一下在做安徽中考数学压轴题时的经验或者困惑呀。
像在一些几何图形结合函数的压轴题当中,图形的运动轨迹是个难点,就如同追踪一只调皮的小松鼠。
咱们要把每个时间点或者运动阶段的图形特征分析出来。
这就需要不断地划分阶段,就好比把这只松鼠走过的路分成好几段去观察。
初三数学总复习之压轴题解法分析
初三数学总复习之压轴题解法分析压轴题是指考试前夕给学生的一份重要的综合试题,目的是检测学生对所学知识的掌握程度和解题能力。
在初中数学考试中,压轴题往往是整个试卷的难点,也是考察学生能力的重要环节。
在本文中,我将从解题方法的角度,分析几种常见的压轴题解法策略,帮助初三学生更好地应对数学考试。
一、代数题解法代数题是初中数学中最常见的题型之一,也是压轴题的常客。
在解代数题时,我们可以采用以下几种解法:1. 消元法:将方程组中的一个未知数表示为另一个未知数的函数,并代入到另一个方程中,从而得到一个只有一个未知数的方程。
然后通过求解这个方程,就可以得到所有未知数的值。
3. 凑整法:通过适当的变换,将方程转化为更简单的形式。
将含有平方项的方程凑成完全平方的形式,再进行求解。
以上三种解法是解代数题的常见方法,需要根据具体情况选择使用。
1. 图形分析法:通过观察图形性质和推理,找出问题中的关键信息,并推导出结论。
这种方法需要学生对几何知识的掌握程度较高。
2. 图像法:通过画图来辅助解题。
画图可以直观地表示问题中的信息,帮助学生更好地理解问题,从而找到解题的思路。
3. 字母代换法:将几何问题中的一些条件用字母代替,构建方程或者不等式,利用代数方法求解。
这种方法需要学生对代数知识的掌握程度较高。
1. 函数性质法:通过分析函数的性质和变化规律,找到函数值的范围、最值点等关键信息,从而得到解题的思路。
2. 代数方法:通过解方程或者不等式来求解函数问题。
求解函数的零点、最值等问题。
压轴题是考察学生综合能力的重要环节,解题方法的选择对于解题的效果至关重要。
在解压轴题时,学生需要根据具体题目的要求,选择合适的解题方法,并进行深入分析和思考,找到解题的关键点。
通过不断的练习和总结,学生可以逐渐提高解题的能力,更好地应对数学考试。
【初中数学】中考数学压轴题解题技巧+题型汇总
【初中数学】中考数学压轴题解题技巧+题型汇总2022中考数学压轴题题型思路数学压轴题9种题型1.线段、角的计算与证明问题中考的解答题一般是分两到三部分的。
第一部分基本上都是一些简单题或者中档题,目的在于考察基础。
第二部分往往就是开始拉分的中难题了。
对这些题轻松掌握的意义不仅仅在于获得分数,更重要的是对于整个做题过程中士气,军心的影响。
线段与角的计算和证明,一般来说难度不会很大,只要找到关键“题眼”,后面的路子自己就“通”了。
2.图形位置关系中考数学当中,图形位置关系主要包括点、线、三角形、矩形/正方形以及圆这么几类图形之间的关系。
在中考中会包含在函数,坐标系以及几何问题当中,但主要还是通过圆与其他图形的关系来考察,这其中最重要的就是圆与三角形的各种问题。
3.动态几何从历年中考来看,动态问题经常作为压轴题目出现,得分率也是最低的。
动态问题一般分两类,一类是代数综合方面,在坐标系中有动点,动直线,一般是利用多种函数交叉求解。
另一类就是几何综合题,在梯形,矩形,三角形中设立动点、线以及整体平移翻转,对考生的综合分析能力进行考察。
所以说,动态问题是中考数学当中的重中之重,只有完全掌握,才有机会拼高分。
4.一元二次方程与二次函数在这一类问题当中,尤以涉及的动态几何问题最为艰难。
几何问题的难点在于想象,构造,往往有时候一条辅助线没有想到,整个一道题就卡壳了。
相比几何综合题来说,代数综合题倒不需要太多巧妙的方法,但是对考生的计算能力以及代数功底有了比较高的要求。
中考数学当中,代数问题往往是以一元二次方程与二次函数为主体,多种其他知识点辅助的形式出现的。
一元二次方程与二次函数问题当中,纯粹的一元二次方程解法通常会以简单解答题的方式考察。
但是在后面的中难档大题当中,通常会和根的判别式,整数根和抛物线等知识点结合5.多种函数交叉综合问题中考数学所涉及的函数就一次函数,反比例函数以及二次函数。
作为福建中考,近年,反比例函数连续四年作为填空压轴出现,一次函数与二次函数作为解答题压轴题出现,特别是第三问区分度大,难度大,在中考中面对这类问题,有步骤有分,对优生而言尽量多得分。
2020年中考数学压轴解答题12 有关函数的计算说理类综合问题(学生版)
备战2020中考数学之解密压轴解答题命题规律专题12 有关函数的计算说理类综合问题【类型综述】计算说理是通过计算得到结论;说理计算侧重说理,说理之后进行代入求值. 压轴题中的代数计算题,主要是函数类题.函数计算题必考的是待定系数法求函数的解析式,按照设、列、解、验、答五步完成,一般来说,解析式中待定几个字母,就要代入几个点的坐标.还有一类计算题,就是从特殊到一般,通过计算寻找规律.【典例分析】【例1】在平面直角坐标系xOy 中,抛物线22y x mx n =-++经过点()0,2A ,()3,4B -.(1)求该抛物线的函数表达式及对称轴;(2)设点B 关于原点的对称点为C ,点D 是抛物线对称轴上一动点,记抛物线在A ,B 之间的部分为图象G (包含A ,B 两点),如果直线CD 与图象G 有一个公共点,结合函数的图象,直接写出点D 纵坐标t 的取值范围.【例2】如图,在平面直角坐标系中,边长为4的等边OAB ∆的边OB 在x 轴的负半轴上,反比例函数()0ky x x=<的图象经过AB 边的中点C ,且与OA 边交于点D .(1)求k 的值;(2)连接OC ,CD ,求OCD ∆的面积;(3)若直线y mx n =+与直线CD 平行,且与OAB ∆的边有交点,直接写出n 的取值范围.【例3】如图1 ,等腰直角三角形 ABC 中,∠ACB =90°,CB =CA,直线 DE 经过点 C,过 A 作 AD ⊥DE 于点 D,过 B 作 BE ⊥DE 于点 E,则△BEC ≌△CDA,我们称这种全等模型为 “K 型全等”.(不需要证明)(模型应用)若一次函数 y=kx+4(k≠0)的图像与 x 轴、y 轴分别交于 A 、B 两点.(1)如图 2,当 k=-1 时,若点 B 到经过原点的直线 l 的距离 BE 的长为 3,求点 A 到直线 l 的距离 AD 的长;(2)如图 3,当 k=- 43时,点 M 在第一象限内,若△ABM 是等腰直角三角形,求点 M 的坐标;(3)当k 的取值变化时,点 A 随之在x 轴上运动,将线段BA 绕点 B 逆时针旋转90°得到BQ,连接OQ,求OQ 长的最小值.【例4】如图,在平面直角坐标系中,直线l1:16 2y x=-+分别与x轴、y轴交于点B、C,且与直线l2:1 2y x=交于点A.(1)求出点A的坐标(2)若D是线段OA上的点,且△COD的面积为12,求直线CD的解析式(3)在(2)的条件下,设P是射线CD上的点,在平面内是否存在点Q,使以O、C、P、Q为顶点的四边形是菱形?若存在,直接写出点P的坐标;若不存在,请说明理由.【例5】寻找神奇点!每条抛物线内都有一个神奇的点F(也叫焦点),还有一条与之配套的直线!(也叫准线),使得抛物线上的每个点到F的距离等于到直线l的距离.如图,对于抛物线上任意一点D,都有DF=DH.根据以上知识,我们来完成以下问题:(1)因为抛物线是轴对称图形,由对称性可知这个神奇的点F应在抛物线的上,且准线l一定与对称轴垂直即l⊥MN(对称轴).(2)若准线l 与对称轴MN 交于E ,MN 交抛物线于点P ,则PE 、PF 的数量关系是PE PF (填>、=、<),(3)求抛物线y =﹣(x ﹣2)2+4的神奇点(焦点)F 的坐标.【例6】在平面直角坐标系中,已知矩形OABC 中的点()0,4A ,抛物线21y ax bx c =++经过原点O 和点C ,并且有最低点()2,1G -点E ,F 分别在线段OC ,BC 上,且516AEF OABCS S ∆=矩形,1CF =,直线BE 的解析式为2y kx b =+,其图像与抛物线在x 轴下方的图像交于点D .(1)求抛物线的解析式;(2)当120y y <<时,求x 的取值范围; (3)在线段BD 上是否存在点M ,使得14DMC EAF ∠=∠,若存在,请求出点M 的坐标,若不存在,请说明理由.【变式训练】一、单选题1.如图,坐标平面上有一顶点为A 的抛物线,此抛物线与方程式2y =的图形交于B 、C 两点,ABC ∆为正三角形.若A 点坐标为()3,0-,则此抛物线与Y 轴的交点坐标为何?( )A.90,2⎛⎫⎪⎝⎭B.270,2⎛⎫⎪⎝⎭C.()0,9D.()0,192.如图,在平面直角坐标系xOy中,直线y=﹣43x+4与x轴、y轴分别交于点A、B,M是y轴上的点(不与点B重合),若将△ABM沿直线AM翻折,点B恰好落在x轴正半轴上,则点M的坐标为()A.(0,﹣4 )B.(0,﹣5 )C.(0,﹣6 )D.(0,﹣7 )3.如图,直线y=23x+2与x轴、y轴分别交于点A和点B,点C、D分别为线段AB、OB的中点,点P为OA上一动点,PC+PD值最小时点P的坐标为()A.(﹣34,0)B.(﹣12,0)C.(﹣32,0)D.(﹣52,0)4.抛物线y=ax2+bx+1的顶点为D,与x轴正半轴交于A、B两点,A在B左,与y轴正半轴交于点C,当△ABD 和△OBC均为等腰直角三角形(O为坐标原点)时,b的值为()A .2B .﹣2或﹣4C .﹣2D .﹣45.如图,菱形ABCD 的边AD ⊥y 轴,垂足为点E,顶点A 在第二象限,顶点B 在y 轴的正半轴上,反比例函数y=kx(k≠0,x >0)的图象同时经过顶点C,D .若点C 的横坐标为5,BE=3DE,则k 的值为( )A .52B .154C .3D .56.如图,已知直线12y x =与双曲线(0)k y k x =>交于A 、B 两点,点B 坐标为(-4,-2),C 为双曲线(0)ky k x =>上一点,且在第一象限内,若△AOC 面积为6,则点C 坐标为( )A .(4,2)B .(2,3)C .(3,4)D .(2,4)二、填空题7.如图,在平面直角坐标系xOy 中,直角三角形的直角顶点与原点O 重合,顶点A,B 恰好分别落在函数1(0)y x x =-<,4(0)y x x=>的图象上,则tan ∠ABO 的值为___________8.如图,直线y=﹣12x+3与坐标轴分别交于点A 、B,与直线y=x 交于点C,线段OA 上的点Q 以每秒1个长度单位的速度从点O 出发向点A 作匀速运动,运动时间为t 秒,连接CQ .若△OQC 是等腰直角三角形,则t 的值为_____.9.如图,在平面直角坐标系中,点A 的坐标为(03),,点B 为x 轴上一动点,以AB 为边在AB 的右侧作等腰Rt ABD △,90ABD ∠=︒,连接OD ,则OD AD +的最小值是 __________.10.如图,抛物线y =ax 2+4x +c (a ≠0)与反比例函数y =5x的图象相交于点B ,且点B 的横坐标为5,抛物线与y 轴交于点C (0,6),A 是抛物线的顶点,P 和Q 分别是x 轴和y 轴上的两个动点,则AQ +QP +PB 的最小值为_____.11.如图,已知⊙P 的半径是1,圆心P 在抛物线y =212x -x-12上运动,当⊙P 与x 轴相切时,圆心P 的坐标为_____.12.如图,四边形ABCD 的项点都在坐标轴上,若//,AB CD AOB V 与COD △面积分别为8和18,若双曲线ky x=恰好经过BC 的中点E ,则k 的值为__________.三、解答题13.如图,在平面直角坐标系xOy 中,抛物线2y x bx c =++经过点3(2,)A -和点(5,0)B ,顶点为C . (1)求这条抛物线的表达式和顶点C 的坐标;(2)点A 关于抛物线对称轴的对应点为点D ,联结,OD BD ,求ODB ∠的正切值;(3)将抛物线2y x bx c =++向上平移(0)t t >个单位,使顶点C 落在点E 处,点B 落在点F 处,如果BE BF =,求t 的值.14.在平面直角坐标系xOy 中,存在抛物线2y mx 2=+以及两点()A 3,m -和()B 1,m . (1)求该抛物线的顶点坐标;(2)若该抛物线经过点()A 3.m -,求此抛物线的表达式;(3)若该抛物线与线段AB 只有一个公共点,结合图象,求m 的取值范围.15.如图,抛物线的表达式为y=ax2+4ax+4a-1(a≠0),它的图像的顶点为A,与x轴负半轴相交于点B、点C (点B在点C左侧),与y轴交于点D,连接AO交抛物线于点E,且S△AEC:S△CEO=1:3.(1)求点A的坐标和抛物线表达式;(2)在抛物线的对称轴上是否存在一点P,使得△BDP的内心也在对称轴上,若存在,求点P的坐标;若不存在,请说明理由;(3)连接BD,点Q是y轴左侧抛物线上的一点,若以Q为圆心,22为半径的圆与直线BD相切,求点Q的坐标.16.在平面直角坐标系中,抛物线y=ax2﹣4ax﹣32(a≠0)交x轴于A、B两点,交y轴于点C,这条抛物线的顶点为D.(1)求点D的坐标.(2)过点C作CE∥x轴交抛物线于点E.当CE=2AB时,求点D的坐标.(3)这条抛物线与直线y=﹣x相交,其中一个交点的横坐标为﹣1.过点P(m,0)作x轴的垂线,交这条抛物线于点M,交直线y=﹣x于点N,且点M在点N的下方.当线段MN的长度随m的增大而增大时,求m的取值范围.(4)点Q 在这条抛物线上运动,若在这条抛物线上只存在两个点Q ,满足S △ABQ =3S △ABC ,直接写出a 的取值范围.17.如图1,在平面直角坐标系中,直线y =﹣5x+5与x 轴,y 轴分别交于A,C 两点,抛物线y =x 2+bx+c 经过A,C 两点,与x 轴的另一交点为B .(1)求抛物线解析式及B 点坐标;(2)若点M 为x 轴下方抛物线上一动点,连接MA 、MB 、BC,当点M 运动到某一位置时,四边形AMBC 面积最大,求此时点M 的坐标及四边形AMBC 的面积;(3)如图2,若P 点是半径为2的⊙B 上一动点,连接PC 、PA,当点P 运动到某一位置时,PC+12PA 的值最小,请求出这个最小值,并说明理由.18.如图,在平面直角坐标系中,点B 的坐标是()0,2,动点A 从原点O 出发,沿着x 轴正方向移动,以AB 为斜边在第一象限内作等腰直角三角形ABP ∆,设动点A 的坐标为()(),00t t ≥.(1)当2t =时,点P 的坐标是 ;当1t =时,点P 的坐标是 ; (2)求出点P 的坐标(用含t 的代数式表示);(3)已知点C 的坐标为()1,1,连接PC 、BC ,过点P 作PQ y ⊥轴于点Q ,求当t 为何值时,当PQB ∆与PCB ∆全等.压轴解答题·直面高考精品资源·战胜高考 19.如图,在平面直角坐标系中,直线l 1的解析式为y x =,直线l 2的解析式为132y x =-+,与x 轴、y 轴分别交于点A 、点B,直线l 1与l 2交于点C .(1)求点A 、点B 、点C 的坐标,并求出△COB 的面积;(2)若直线l 2上存在点P (不与B 重合),满足S △COP =S △COB ,请求出点P 的坐标;(3)在y 轴右侧有一动直线平行于y 轴,分别与l 1,l 2交于点M 、N,且点M 在点N 的下方,y 轴上是否存在点Q,使△MNQ 为等腰直角三角形?若存在,请直接写出满足条件的点Q 的坐标;若不存在,请说明理由. 20.如图,已知直线y =12x+b 与y 轴交于点B (0,﹣3),与反比例函数y =k x (x >0)的图象交于点A,与x 轴交于点C,BC =3AC(1)求反比例函数的解析式;(2)若P 是y 轴上一动点,M 是直线AB 上方的反比例函数y =k x(x >0)的图象上一动点,直线MN ⊥x 轴交直线AB 于点N,求△PMN 面积的最大值.。
中考压轴题-二次函数综合(八大题型+解题方法)——冲刺2024年中考数学考点押题(全国通用)(解析)
中考压轴题-二次函数综合 (八大题型+解题方法)1、求证“两线段相等”的问题:借助于函数解析式,先把动点坐标用一个字母表示出来;然后看两线段的长度是什么距离即是“点点”距离,还是“点轴距离”,还是“点线距离”,再运用两点之间的距离公式或点到x 轴y 轴的距离公式或点到直线的距离公式,分别把两条线段的长度表示出来,分别把它们进行化简,即可证得两线段相等;2、“平行于y 轴的动线段长度的最大值”的问题:由于平行于y 轴的线段上各个点的横坐标相等常设为t,借助于两个端点所在的函数图象解析式,把两个端点的纵坐标分别用含有字母t 的代数式表示出来,再由两个端点的高低情况,运用平行于y 轴的线段长度计算公式-y y 下上,把动线段的长度就表示成为一个自变量为t,且开口向下的二次函数解析式,利用二次函数的性质,即可求得动线段长度的最大值及端点坐标;3、求一个已知点关于一条已知直线的对称点的坐标问题:先用点斜式或称K ,且与已知直线垂直的直线解析式,再求出两直线的交点坐标,最后用中点坐标公式即可;4、“抛物线上是否存在一点,使之到定直线的距离最大”的问题:方法1先求出定直线的斜率,由此可设出与定直线平行且与抛物线相切的直线的解析式注意该直线与定直线的斜率相等,因为平行直线斜率k 相等,再由该直线与抛物线的解析式组成方程组,用代入法把字母y 消掉,得到一个关于x 的的一元二次方程,由题有△=2b -4ac=0因为该直线与抛物线相切,只有一个交点,所以2b -4ac=0从而就可求出该切线的解析式,再把该切线解析式与抛物线的解析式组成方程组,求出x 、y 的值,即为切点坐标,然后再利用点到直线的距离公式,计算该切点到定直线的距离,即为最大距离; 方法2该问题等价于相应动三角形的面积最大问题,从而可先求出该三角形取得最大面积时,动点的坐标,再用点到直线的距离公式,求出其最大距离;方法3先把抛物线的方程对自变量求导,运用导数的几何意义,当该导数等于定直线的斜率时,求出的点的坐标即为符合题意的点,其最大距离运用点到直线的距离公式可以轻松求出;5、常数问题:1点到直线的距离中的常数问题:“抛物线上是否存在一点,使之到定直线的距离等于一个 固定常数”的问题:先借助于抛物线的解析式,把动点坐标用一个字母表示出来,再利用点到直线的距离公式建立一个方程,解此方程,即可求出动点的横坐标,进而利用抛物线解析式,求出动点的纵坐标,从而抛物线上的动点坐标就求出来了;2三角形面积中的常数问题:“抛物线上是否存在一点,使之与定线段构成的动三角形的面积等于一个定常数”的问题:先求出定线段的长度,再表示出动点其坐标需用一个字母表示到定直线的距离,再运用三角形的面积公式建立方程,解此方程,即可求出动点的横坐标,再利用抛物线的解析式,可求出动点纵坐标,从而抛物线上的动点坐标就求出来了;3几条线段的齐次幂的商为常数的问题:用K 点法设出直线方程,求出与抛物线或其它直线的交点坐标,再运用两点间的距离公式和根与系数的关系,把问题中的所有线段表示出来,并化解即可;6、“在定直线常为抛物线的对称轴,或x 轴或y 轴或其它的定直线上是否存在一点,使之到两定点的距离之和最小”的问题:先求出两个定点中的任一个定点关于定直线的对称点的坐标,再把该对称点和另一个定点连结得到一条线段,该线段的长度〈应用两点间的距离公式计算〉即为符合题中要求的最小距离,而该线段与定直线的交点就是符合距离之和最小的点,其坐标很易求出利用求交点坐标的方法;7、三角形周长的“最值最大值或最小值”问题:① “在定直线上是否存在一点,使之和两个定点构成的三角形周长最小”的问题简称“一边固定两边动的问题:由于有两个定点,所以该三角形有一定边其长度可利用两点间距离公式计算,只需另两边的和最小即可;② “在抛物线上是否存在一点,使之到定直线的垂线,与y 轴的平行线和定直线,这三线构成的动直角三角形的周长最大”的问题简称“三边均动的问题:在图中寻找一个和动直角三角形相似的定直角三角形,在动点坐标一母示后,运用=C C 动动定定斜边斜边,把动三角形的周长转化为一个开口向下的抛物线来破解;8、三角形面积的最大值问题:① “抛物线上是否存在一点,使之和一条定线段构成的三角形面积最大”的问题简称“一边固定两边动的问题”:方法1:先利用两点间的距离公式求出定线段的长度;然后再利用上面3的方法,求出抛物线上的动点到该定直线的最大距离;最后利用三角形的面积公式= 12底×高;即可求出该三角形面积的最大值,同时在求解过程中,切点即为符合题意要求的点;方法2:过动点向y 轴作平行线找到与定线段或所在直线的交点,从而把动三角形分割成两个基本模型的三角形,动点坐标一母示后,进一步可得到)()(左(定)右(定)下(动)上(动)动三角形x x y y 21−⋅−=S ,转化为一个开口向下的二次函数问题来求出最大值;②“三边均动的动三角形面积最大”的问题简称“三边均动”的问题:先把动三角形分割成两个基本模型的三角形有一边在x 轴或y 轴上的三角形,或者有一边平行于x 轴或y 轴的三角形,称为基本模型的三角形面积之差,设出动点在x 轴或y 轴上的点的坐标,而此类题型,题中一定含有一组平行线,从而可以得出分割后的一个三角形与图中另一个三角形相似常为图中最大的那一个三角形;利用相似三角形的性质对应边的比等于对应高的比可表示出分割后的一个三角形的高;从而可以表示出动三角形的面积的一个开口向下的二次函数关系式,相应问题也就轻松解决了;9、“一抛物线上是否存在一点,使之和另外三个定点构成的四边形面积最大的问题”:由于该四边形有三个定点,,即可得到一个定三角形的面积之和,所以只需动三角形的面积最大,就会使动四边形的面积最大,而动三角形面积最大值的求法及抛物线上动点坐标求法与7相同;10、“定四边形面积的求解”问题: 有两种常见解决的方案:方案一:连接一条对角线,分成两个三角形面积之和;方案二:过不在x 轴或y 轴上的四边形的一个顶点,向x 轴或y 轴作垂线,或者把该点与原点连结起来,分割成一个梯形常为直角梯形和一些三角形的面积之和或差,或几个基本模型的三角形面积的和差11、“两个三角形相似”的问题: 两个定三角形是否相似:(1)已知有一个角相等的情形:运用两点间的距离公式求出已知角的两条夹边,看看是否成比例 若成比例,则相似;否则不相似;(2)不知道是否有一个角相等的情形:运用两点间的距离公式求出两个三角形各边的长,看看是否成比例若成比例,则相似;否则不相似;一个定三角形和动三角形相似:(1)已知有一个角相等的情形:先借助于相应的函数关系式,把动点坐标表示出来一母示,然后把两个目标三角形题中要相似的那两个三角形中相等的那个已知角作为夹角,分别计算或表示出夹角的两边,让形成相等的夹角的那两边对应成比例要注意是否有两种情况,列出方程,解此方程即可求出动点的横坐标,进而求出纵坐标,注意去掉不合题意的点;2不知道是否有一个角相等的情形:这种情形在相似性中属于高端问题,破解方法是,在定三角形中,由各个顶点坐标求出定三角形三边的长度,用观察法得出某一个角可能是特殊角,再为该角寻找一个直角三角形,用三角函数的方法得出特殊角的度数,在动点坐标“一母示”后,分析在动三角形中哪个角可以和定三角形中的那个特殊角相等,借助于特殊角,为动点寻找一个直角三角形,求出动点坐标,从而转化为已知有一个角相等的两个定三角形是否相似的问题了,只需再验证已知角的两边是否成比例若成比例,则所求动点坐标符合题意,否则这样的点不存在;简称“找特角,求动点标,再验证”;或称为“一找角,二求标,三验证”;12、“某函数图象上是否存在一点,使之与另两个定点构成等腰三角形”的问题:首先弄清题中是否规定了哪个点为等腰三角形的顶点;若某边底,则只有一种情况;若某边为腰,有两种情况;若只说该三点构成等腰三角形则有三种情况;先借助于动点所在图象的解析式,表示出动点的坐标一母示,按分类的情况,分别利用相应类别下两腰相等,使用两点间的距离公式,建立方程;解出此方程,即可求出动点的横坐标,再借助动点所在图象的函数关系式,可求出动点纵坐标,注意去掉不合题意的点就是不能构成三角形这个题意;13、“某图象上是否存在一点,使之与另外三个点构成平行四边形”问题:这类问题,在题中的四个点中,至少有两个定点,用动点坐标“一母示”分别设出余下所有动点的坐标若有两个动点,显然每个动点应各选用一个参数字母来“一母示”出动点坐标,任选一个已知点作为对角线的起点,列出所有可能的对角线显然最多有3条,此时与之对应的另一条对角线也就确定了,然后运用中点坐标公式,求出每一种情况两条对角线的中点坐标,由平行四边形的判定定理可知,两中点重合,其坐标对应相等,列出两个方程,求解即可;进一步有:①若是否存在这样的动点构成矩形呢先让动点构成平行四边形,再验证两条对角线相等否若相等,则所求动点能构成矩形,否则这样的动点不存在;②若是否存在这样的动点构成棱形呢先让动点构成平行四边形,再验证任意一组邻边相等否若相等,则所求动点能构成棱形,否则这样的动点不存在;③若是否存在这样的动点构成正方形呢先让动点构成平行四边形,再验证任意一组邻边是否相等和两条对角线是否相等若都相等,则所求动点能构成正方形,否则这样的动点不存在;14、“抛物线上是否存在一点,使两个图形的面积之间存在和差倍分关系”的问题:此为“单动问题”〈即定解析式和动图形相结合的问题〉,后面的19实为本类型的特殊情形;先用动点坐标“一母示”的方法设出直接动点坐标,分别表示如果图形是动图形就只能表示出其面积或计算如果图形是定图形就计算出它的具体面积,然后由题意建立两个图形面积关系的一个方程,解之即可;注意去掉不合题意的点,如果问题中求的是间接动点坐标,那么在求出直接动点坐标后,再往下继续求解即可;15、“某图形〈直线或抛物线〉上是否存在一点,使之与另两定点构成直角三角形”的问题:若夹直角的两边与y轴都不平行:先设出动点坐标一母示,视题目分类的情况,分别用斜率公式算出夹直角的两边的斜率,再运用两直线没有与y轴平行的直线垂直的斜率结论两直线的斜率相乘等于-1,得到一个方程,解之即可;若夹直角的两边中有一边与y 轴平行,此时不能使用斜率公式;补救措施是:过余下的那一个点没在平行于y轴的那条直线上的点直接向平行于y的直线作垂线或过直角点作平行于y轴的直线的垂线与另一相关图象相交,则相关点的坐标可轻松搞定;16、“某图象上是否存在一点,使之与另两定点构成等腰直角三角形”的问题;①若定点为直角顶点,先用k点法求出另一直角边所在直线的解析式如斜率不存在,根据定直角点,可以直接写出另一直角边所在直线的方程,利用该解析式与所求点所在的图象的解析式组成方程组,求出交点坐标,再用两点间的距离公式计算出两条直角边等否若等,该交点合题,反之不合题,舍去;②若动点为直角顶点:先利用k点法求出定线段的中垂线的解析式,再把该解析式与所求点所在图象的解析式组成方程组,求出交点坐标,再分别计算出该点与两定点所在的两条直线的斜率,把这两个斜率相乘,看其结果是否为-1 若为-1,则就说明所求交点合题;反之,舍去;17、“题中含有两角相等,求相关点的坐标或线段长度”等的问题:题中含有两角相等,则意味着应该运用三角形相似来解决,此时寻找三角形相似中的基本模型“A”或“X”是关键和突破口;18、“在相关函数的解析式已知或易求出的情况下,题中又含有某动图形常为动三角形或动四边形的面积为定常数,求相关点的坐标或线段长”的问题:此为“单动问题”〈即定解析式和动图形相结合的问题〉,本类型实际上是前面14的特殊情形;先把动图形化为一些直角梯形或基本模型的三角形有一边在x 轴或y轴上,或者有一边平行于x 轴或y 轴面积的和或差,设出相关点的坐标一母示,按化分后的图形建立一个面积关系的方程,解之即可;一句话,该问题简称“单动问题”,解题方法是“设点动点标,图形转化分割,列出面积方程”;19、“在相关函数解析式不确定系数中还含有某一个参数字母的情况下,题中又含有动图形常为动三角形或动四边形的面积为定常数,求相关点的坐标或参数的值”的问题:此为“双动问题”即动解析式和动图形相结合的问题;如果动图形不是基本模型,就先把动图形的面积进行转化或分割转化或分割后的图形须为基本模型,设出动点坐标一母示,利用转化或分割后的图形建立面积关系的方程或方程组;解此方程,求出相应点的横坐标,再利用该点所在函数图象的解析式,表示出该点的纵坐标注意,此时,一定不能把该点坐标再代入对应函数图象的解析式,这样会把所有字母消掉;再注意图中另一个点与该点的位置关系或其它关系,方法是常由已知或利用2问的结论,从几何知识的角度进行判断,表示出另一个点的坐标,最后把刚表示出来的这个点的坐标再代入相应解析式,得到仅含一个字母的方程,解之即可;如果动图形是基本模型,就无须分割或转化了,直接先设出动点坐标一母式,然后列出面积方程,往下操作方式就与不是基本模型的情况完全相同;一句话,该问题简称“双动问题”,解题方法是“转化分割,设点标,建方程,再代入,得结论”;常用公式或结论:1横线段的长 = 横标之差的绝对值 =-x x 大小=-x x 右左纵线段的长=纵标之差的绝对值=-y y 大小=-y y 下上 2点轴距离:点P 0x ,0y 到X 轴的距离为0y ,到Y 轴的距离为o x ; 3两点间的距离公式:若A 11,x y ,B 2,2x y , 则AB=目录:题型1:存在性问题 题型2:最值问题 题型3:定值问题 题型4:定点问题题型5:动点问题综合 题型6:对称问题 题型7:新定义题 题型8:二次函数与圆题型1:存在性问题1.(2024·四川广安·二模)如图,抛物线2y x bx c =−++交x 轴于()4,0A −,B 两点,交y 轴于点()0,4C .(1)求抛物线的函数解析式.(2)点D 在线段OA 上运动,过点D 作x 轴的垂线,与AC 交于点Q ,与抛物线交于点P ,连接AP 、CP ,求四边形AOCP 的面积的最大值.(3)在抛物线的对称轴上是否存在点M ,使得以点A 、C 、M 为顶点的三角形是直角三角形?若存在,请求出点M【答案】(1)234y x x =−−+;(2)四边形AOCP 的面积最大为16;(3)点M 的坐标为35,22⎛⎫−− ⎪⎝⎭或311,22⎛⎫− ⎪⎝⎭.【分析】本题主要考查了二次函数综合,熟练掌握用待定系数法求解函数解析式的方法和步骤,以及二次函数的图象和性质,是解题的关键. (1)把()4,0A −,()0,4C 代入2y x bx c =−++,求出b 和c 的值,即可得出函数解析式; (2)易得182AOCSOA OC =⋅=,设()2,34P t t t −−+,则(),4Q t t +,求出24PQ t t =−−,则()()212282ACP C A S PQ x x t =⋅−=−++,根据四边形AOCP 的面积()22216ACP AOCS St =+=−++,结合二次函数的增减性,即可解答;(3)设3,2M m ⎛⎫− ⎪⎝⎭,根据两点之间距离公式得出232AC =,22254AM m =+,229(4)4CM m =+−,然后分情况根据勾股定理列出方程求解即可.【解析】(1)解:把()4,0A −,()0,4C 代入2y x bx c =−++得:01644b c c =−−+⎧⎨=⎩,解得:34b c =−⎧⎨=⎩,∴该二次函数的解析式234y x x =−−+;(2)解:∵()4,0A −,()0,4C ,∴4,4OA OC ==,∴1144822AOC S OA OC =⋅=⨯⨯=△,设直线AC 的解析式为4y kx =+, 代入()4,0A −得,044k =−+,解得1k =,∴直线AC 的解析式为4y x =+, 设()2,34P t t t −−+,则(),4Q t t +,∴()223444PQ t t t t t=−−+−+=−−∴()()()22114422822ACPC A SPQ x x t t t =⋅−=−−⨯=−++,∴四边形AOCP 的面积()22216ACP AOCSSt =+=−++,∵20−<,∴当2t =−时,四边形AOCP 的面积最大为16; (3)解:设3,2M m ⎛⎫− ⎪⎝⎭,∵()4,0A −,()0,4C ,∴2224432AC =+=,2222325424AM m m ⎛⎫=−++=+ ⎪⎝⎭,()()2222394424CM m m ⎛⎫=−+−=+− ⎪⎝⎭,当斜边为AC 时,AM CM AC 222+=,即()2225943244m m +++−=,整理得:24150m m ++=,无解;当斜边为AM 时,222AC CM AM +=,即2292532(4)44m m ++−=+,解得:112m =;∴311,22M ⎛⎫− ⎪⎝⎭当斜边为CM 时,222AC AM CM +=,即2225932(4)44m m ++=+−, 解得:52m =−;∴35,22M ⎛⎫−− ⎪⎝⎭综上:点M 的坐标为35,22⎛⎫−− ⎪⎝⎭或311,22⎛⎫− ⎪⎝⎭.2.(2024·内蒙古乌海·模拟预测)如图(1),在平面直角坐标系中,抛物线()240y ax bx a =+−≠与x 轴交于A ,B 两点(点A 在点B 的左侧),与y 轴交于点C ,点A 的坐标为()1,0−,且OC OB =,点D 和点C 关于抛物线的对称轴对称.(1)分别求出a ,b 的值和直线AD 的解析式;(2)直线AD 下方的抛物线上有一点P ,过点P 作PH AD ⊥于点H ,作PM 平行于y 轴交直线AD 于点M ,交x 轴于点E ,求PHM 的周长的最大值;(3)在(2)的条件下,如图2,在直线EP 的右侧、x 轴下方的抛物线上是否存在点N ,过点N 作NG x ⊥轴交x 轴于点G ,使得以点E 、N 、G 为顶点的三角形与AOC 相似?如果存在,请直接写出点G 的坐标;如果不存在,请说明理由.【答案】(1)1a =,3b =−,=1y x −−(2)4+(3)存在,点G的坐标为⎫⎪⎪⎝⎭或⎫⎪⎪⎝⎭【分析】本题主要考查的是二次函数的综合应用,掌握二次函数的交点式、配方法求二次函数的最值、相似三角形的判定、等腰直角三角形的判定、一元二次方程的求根公式,列出PM 的长与a 的函数关系式是解题的关键.(1)先求得C 的坐标,从而得到点B 的坐标,设抛物线的解析式为()()14y a x x =+−,将点C 的坐标代入求解即可;先求得抛物线的对称轴,从而得到点()3,4D −,然后可求得直线AD 的解析式=1y x −−;(2)求得45BAD ∠=︒,接下来证明PMD △为等腰直角三角形,所当PM 有最大值时三角形的周长最大,设()2,34P a a a −−,()1M a −−,则223PM aa =−++,然后利用配方可求得PM 的最大值,最后根据MPH△的周长(1PM=求解即可;(3)当90EGN ∠=︒时,如果OA EG OC GN = 或OA GNOC EN =时,则AOC ∽EGN △,设点G 的坐标为(),0a ,则()2,34N a a a −−,则1EG a =−,234NG aa =−++,然后根据题意列方程求解即可.【解析】(1)点A 的坐标为()1,0−,1OA ∴=.令0x =,则4y =−,()0,4C ∴−,4OC =,OC OB =Q , 4OB ∴=,()4,0B ∴,设抛物线的解析式为()()14y a x x =+−,将0x =,4y =−代入得:44a −=−,解得1a =,∴抛物线的解析式为234y x x =−−;1a ∴=,3b =−; 抛物线的对称轴为33212x −=−=⨯,()0,4C −,点D 和点C 关于抛物线的对称轴对称,()3,4D ∴−;设直线AD 的解析式为y kx b =+.将()1,0A −、()3,4D −代入得:034k b k b −+=⎧⎨+=−⎩,解得1k =−,1b =-,∴直线AD 的解析式=1y x −−;(2)直线AD 的解析式=1y x −−,∴直线AD 的一次项系数1k =−,45BAD ∴∠=︒. PM 平行于y 轴,90AEP ∴∠=︒,45PMH AME ∴∠=∠=︒.MPH ∴的周长(122PM MH PH PM MP PM PM =++=++=. 设()2,34P a a a −−,则(),1M a a −−, 则()22213423(1)4PM a a a a a a =−−−−−=−++=−−+.∴当1a =时,PM 有最大值,最大值为4.MPH ∴的周长的最大值(414=⨯=+(3)在直线EP 的右侧、x 轴下方的抛物线上存在点N ,过点N 作NG x ⊥轴交x 轴于点G ,使得以点E 、N 、G 为顶点的三角形与AOC 相似;理由如下:设点G 的坐标为(),0a ,则()2,34N a a a −−①如图2.1,若OA EG OC GN = 时,AOC ∽EGN △. 则 211344a a a −=−++,整理得:280a a +−=.得:a =负值舍去),∴点G为⎫⎪⎪⎝⎭; ②如图2.2,若OA GN OC EN =时,AOC ∽NGE ,则21434a a a −=−++,整理得:2411170a a −−=,得:a =负值舍去),∴点G为⎫⎪⎪⎝⎭, 综上所述,点G的坐标为⎫⎪⎪⎝⎭或⎫⎪⎪⎝⎭. 3.(2024·重庆·一模)如图,在平面直角坐标系中,抛物线2y ax bx =+x 轴交于点()1,0A −,()5,0B ,与y 轴交于点C ,连接BC ,AC .(1)求抛物线的表达式;(2)P 为直线BC 上方抛物线上一点,过点P 作PD BC ⊥于点D ,过点P 作PE x 轴交抛物线于点E,求4+PD PE 的最大值及此时点P 的坐标; (3)点C 关于抛物线对称轴对称的点为Q ,将抛物线沿射线CAy ',新抛物线y '与y 轴交于点M ,新抛物线y '的对称轴与x 轴交于点N ,连接AM ,MN ,点R 在直线BC 上,连接QR .当QR 与AMN 一边平行时,直接写出点R 的坐标,并写出其中一种符合条件的解答过程.【答案】(1)2y x x =++(2)当154t =时,PE的最大值,15,416P ⎛ ⎝⎭, (3)R点的坐标为⎛ ⎝⎭或6,⎛ ⎝⎭或(.【分析】(1)利用待定系数法求抛物线解析式即可;(2)先求得2y x =2x =,过点P 作PG x ⊥轴交BC 于点F ,利用勾股定理求得BC ==DPF OBC ∽,得PF DP BC OB =即PF PD=,从而得PF =,求出设直线BC的解析式后,设2,P t ⎛+ ⎝,则,F t ⎛+ ⎝,从而2PF =+,当点P在E 点右侧时()424PE t t t =−−=−,从而得2154t ⎫=−⎪⎝⎭,利用二次函数的性质即可求解;当点P 在E 点左侧时:442PE t t t =−−=−时,同理可求.然后比较4+PE 的最大值即可得出答案. (3)先求得1OA=,OC AC =设抛物线2y =H ⎛ ⎝⎭平移后为P ,过点P 作PW ⊥直线2x =,则AOC PWH ∽,得1OA OC AC WP HW PH ====,进而得平移后的抛物线2y x +'=,从而求得()1,0N,M ⎛ ⎝⎭,然后分QR AM ∥,QR MN ∥,QR AN ∥三种情况,利用二次函数的性质及一次函数的与二元一次方程的关系求解即可得解.【解析】(1)解:∵抛物线2y ax bx =+x 轴交于点()1,0A −,()5,0B 两点,代入坐标得:02550a b a b ⎧−=⎪⎨+=⎪⎩,解得:a b ⎧=⎪⎪⎨⎪=⎪⎩,∴抛物线的函数表达式为255y x x =−++(2)解:∵)2225555y x x x =−+=−−+,∴2y x =2x=,顶点为⎛ ⎝⎭ 过点P 作PG x ⊥轴交BC 于点F ,当0x =时,200y =∴(C ∵()5,0B ∴BC ==∵PG x ⊥轴,PD BC ⊥,x 轴y ⊥轴,∴909090CBO BFG DPF PFD PDF BOC ∠∠∠∠∠∠+=︒+=︒==︒,,∵PFD BFG ∠∠=∴DPF CBO ∠∠=∴DPF OBC ∽,∴PF DP BC OB =即PF PD =,∴PF PD =∴44+PD PE =PF +PE ,设直线BC :y kx b =+,把(C ,()5,0B 代入得:05k b b =+⎧⎪=,解得5k b ⎧=−⎪⎨⎪=⎩, ∴直线BC:y =设2,P t ⎛ ⎝,则,F t ⎛+ ⎝,∴22PF ⎛⎛=−+=+ ⎝⎝,∵2y x =2x =,PE x 轴,∴24,E t ⎛−+ ⎝当点P 在E 点右侧时:()424PE t t t =−−=−,当24PE t =−时:∴+PD PE =PF +()221524545416t t ⎛⎫=−+−=−−+ ⎪⎝⎭ ∴当154t =时,的最大值∴2151544⎛⎫= ⎪⎝⎭,∴154P ⎛ ⎝⎭; 当点P 在E 点左侧时:442PE t t t =−−=−时,∴+PD PE =PF +()225424t t ⎫=−=−⎪⎝⎭, ∴当54t =时,的最大值.2,55P t ⎛−+ ⎝∴25544⎛⎫ ⎪⎝⎭∴5,416P ⎛ ⎝⎭,∵> 综上所诉,当点P 在E 点右侧时:即154t =时,的最大值,154P ⎛ ⎝⎭, (3)解:设直线AC :y mx n =+,把()1,0A −,(C , ∴1OA =,OC =∴AC ==设抛物线2y x =H ⎛ ⎝⎭平移后为P , 过点P 作PW ⊥直线2x =,则AOC PWH ∽,∴1OA OC AC WP HW PH ====∴1PW =,HW=∴21,5P ⎛−⎝即1,5P ⎛ ⎝⎭,∴平移后的抛物线)22155555y x x x =−−+=−++', ∴()1,0N令0x =,y '=,∴M ⎛ ⎝⎭ 如图,当QR AM ∥时,设直线AM 的解析式为:y px q =+,把M ⎛ ⎝⎭,()1,0A −代入得:0p q q =−+⎧=解得p q ⎧=⎪⎪⎨⎪=⎪⎩, ∴直线AM的解析式为:y =, ∴设直线QR的解析式为:y x n =∵(C ,Q 和C 关于2x =对称,∴(Q把(Q代入5y x n =+45n +,解得n =,∴直线QR的解析式为:y = 联立直线QR的解析式y =与直线BC:y x =+55y x y x ⎧=−⎪⎪⎨⎪=⎪⎩,解得3x y =⎧⎪⎨=⎪⎩,∴R ⎛ ⎝⎭ 同理可得:当QR MN ∥时,6,5R ⎛− ⎝⎭ 当QR AN ∥时,(R所有符合条件的R点的坐标为⎛ ⎝⎭或6,⎛ ⎝⎭或(. 【点睛】本题考查待定系数法求抛物线解析式,勾股定理,抛物线的性质,抛物线平移,一次函数的平移,相似三角形的判定及性质,图形与坐标,掌握待定系数法求抛物线解析式,抛物线的性质,抛物线平移,相似三角形的判定及性质,图形与坐标,利用辅助线画出准确图形是解题关键.题型2:最值问题4.(2024·安徽合肥·二模)在平面直角坐标系中,O 为坐标原点,抛物线23y ax bx =+−与x 轴交于()1,0A −,()3,0B 两点,与y 轴交于点C ,连接BC .(1)求a ,b 的值;(2)点M 为线段BC 上一动点(不与B ,C 重合),过点M 作MP x ⊥轴于点P ,交抛物线于点N . (ⅰ)如图1,当3PA PB=时,求线段MN 的长; (ⅱ)如图2,在抛物线上找一点Q ,连接AM ,QN ,QP ,使得PQN V 与APM △的面积相等,当线段NQ 的长度最小时,求点M 的横坐标m 的值.【答案】(1)1a =,2b =−(2)(ⅰ)2MN =;(ⅱ)m 的值为32或12【分析】本题考查诶粗函数的图象和性质,掌握待定系数法和利用函数性质求面积是解题的关键.(1)运用待定系数法求函数解析式即可;(2)(ⅰ)先计算BC 的解析式,然后设(),3M m m −,则3PM PB m ==−,1PA m =+,根据题意得到方程133m m +=−求出m 值,即可求出MN 的长;(ⅱ)作QR PN ⊥于点R ,由(ⅰ)可得1PA m =+,3PB PM m =−−,223PN m m =−++,然后分为点Q 在PN 的左侧和点Q 在PN 的右侧两种情况,根据勾股定理解题即可.【解析】(1)由题意得309330a b a b −−=⎧⎨+−=⎩,解得12a b =⎧⎨=−⎩;(2)(ⅰ)当0x =时,3y =−,∴()0,3C −,设直线BC 为3y kx =−,∵点()3,0B ,∴330k −=,解得1k =,∴直线BC 为3y x =−,设(),3M m m −,则3PM PB m ==−,1PA m =+, ∵3PA PB =, ∴133m m +=−,解得2m =,经检验2m =符合题意,当2m =时,222233y =−⨯−=−, ∴3PN =,31PM PB m ==−=,∴2MN =;(ⅱ)作QR PN ⊥于点R ,由(ⅰ)可得1PA m =+,3PB PM m =−−,223PN m m =−++,PQN V 的面积为()21232m m QR −++⋅,APM △的面积为()()1312m m −+,∴()()()211233122m m QR m m −++⋅=−+,解得1QR =;当点Q 在PN 的左侧时,如图1,Q 点的横坐标为1m QR m −=−,纵坐标为()()2212134m m m m −−⨯−−=−,∴R 点的坐标为()2,4m mm−,∵N 点坐标为()2,23m mm −−,∴32RN m =−,∴()22231NQ m =−+,∴当32m =时,NQ 取最小值;当点Q 在PN 的右侧时,如图2,Q 点的横坐标为1m QR m +=+,纵坐标为()()2212134m m m +−⨯+−=−,∴R 点的坐标为()2,4m m−,∵N 点的坐标为()2,23m mm −−,∴21RN m =−, ∴()222211NQ m =−+,∴当12m =时,NQ 取最小值.综上,m 的值为32或12.。
中考数学压轴题解题技巧及训练(完整版)(完整资料).doc
此文档下载后即可编辑中考数学压轴题解题技巧(完整版)数学综压轴题是为考察考生综合运用知识的能力而设计的,集中体现知识的综合性和方法的综合性,多数为函数型综合题和几何型综合题。
函数型综合题:是给定直角坐标系和几何图形,先求函数的解析式,再进行图形的研究,求点的坐标或研究图形的某些性质。
求已知函数的解析式主要方法是待定系数法,关键是求点的坐标,而求点的坐标基本方法是几何法(图形法)和代数法(解析法)。
几何型综合题:是先给定几何图形,根据已知条件进行计算,然后有动点(或动线段)运动,对应产生线段、面积等的变化,求对应的(未知)函数的解析式,求函数的自变量的取值范围,最后根据所求的函数关系进行探索研究。
一般有:在什么条件下图形是等腰三角形、直角三角形,四边形是平行四边形、菱形、梯形等,或探索两个三角形满足什么条件相似等,或探究线段之间的数量、位置关系等,或探索面积之间满足一定关系时求x的值等,或直线(圆)与圆的相切时求自变量的值等。
求未知函数解析式的关键是列出包含自变量和因变量之间的等量关系(即列出含有x、y的方程),变形写成y=f (x)的形式。
找等量关系的途径在初中主要有利用勾股定理、平行线截得比例线段、三角形相似、面积相等方法。
求函数的自变量的取值范围主要是寻找图形的特殊位置(极端位置)和根据解析式求解。
而最后的探索问题千变万化,但少不了对图形的分析和研究,用几何和代数的方法求出x的值。
解中考压轴题技能:中考压轴题大多是以坐标系为桥梁,运用数形结合思想,通过建立点与数即坐标之间的对应关系,一方面可用代数方法研究几何图形的性质,另一方面又可借助几何直观,得到某些代数问题的解答。
关键是掌握几种常用的数学思想方法。
一是运用函数与方程思想。
以直线或抛物线知识为载体,列(解)方程或方程组求其解析式、研究其性质。
二是运用分类讨论的思想。
对问题的条件或结论的多变性进行考察和探究。
三是运用转化的数学的思想。
由已知向未知,由复杂向简单的转换。
有效破解中考数学压轴题12招
《有效破解中考数学压轴题12招》简介第一招:过河拆桥在数学解题中,我们往往以字母来表示量,如用字母来表示一些量及数量关系,在解决问题过程中,字母常常发挥了以简驭繁的作用,但最后结果又与字母无关。
第二招:得意忘形在数学解题中,我们需要通过理解数学的题意,然后根据题意画出图形,利用图形的直观来解决问题,故称“望形”,再通过“数”的准确性解决问题,实现数形结合。
第三招:一网打尽在数学解题中,有些动点问题形成的轨迹是圆或弧,或者有些存在性的问题中符合条件的点都在同一个圆上,我们把这个圆形象地比喻成“网”,那么所有的点都在圆上,我们即称为“一网打尽”。
第四招:一箭穿心在数学解题中,若某些动点的轨迹是一个圆或一段弧四,在求解最值问题时,常用过圆心的线段来求解平面内一点到圆上的点的距离的最值。
第五招:以点带面在数学解题中,特别是有些选择题或填空题,某个限制条件不影响所求最终结果时,我们可以采用特殊值法;在几何解题中,若点的位置或图形的形状不影响到最后结果是,我们也可用特殊位置或特殊图形来求最终结果。
第六招:携手共进在数学解题中,共顶点的全等或相似三角形常常成对出现,这种成对出现的全等或相似三角形好比是一双手拉着另一双手。
有时我们还需要构造这样成对全等或相似的三角形构成手拉手模型,从而实现转化线段数量及位置关系解决问题。
第七招:改邪归正在数学解题中,改“斜”归正即化斜为直,用来表示将“斜”着的线及线段转化为竖直的或垂直的线及线段,因为互相垂直的线段往往可以运用勾股定理,在平面直角坐标系中垂直于坐标轴的线段也易于与点的坐标联系,从而有利于解题。
第八招:瓮中捉鳖在数学解题中,瓮中捉鳖表示反比例函数与矩形相交的一个性质,利用这个性质可以容易的解决一些求反比例函数系数的问题。
第九招:围追堵截在解决有关45度角的问题中,我们可以用“围”、“追”、“堵”、“截”四种方法来构造辅助线,破解有关难题。
初三数学压轴题解题技巧和方法
初三数学压轴题解题技巧和方法
1. 压轴题解题技巧
认真审题,弄清题意。
压轴题通常会给出含多个未知数的一元二次方程或
二元一次方程组,并伴随一些其他条件或限制。
首先,要明确题目要求解什么,以及给出的条件和限制是什么。
尝试化简方程或方程组。
如果方程或方程组较为复杂,尝试将其化简,以
便更容易找到解题思路。
寻找等量关系。
压轴题中通常会有一些等量关系,如面积、体积、角度等。
找到这些等量关系,可以帮助我们找到解题的突破口。
尝试使用代数方法。
对于一些压轴题,代数方法可能比较适用。
例如,通
过对方程进行变形、替换或解方程等,可以找到未知数的值。
画图分析。
对于一些几何压轴题,可以通过画图来帮助分析。
在画图的过
程中,可以更好地理解题目的条件和要求,从而找到解题思路。
2. 压轴题方法总结
代数法:通过对方程进行变形、替换或解方程等,找到未知数的值。
几何法:通过画图来帮助分析,更好地理解题目的条件和要求,从而找到
解题思路。
等量关系法:通过寻找等量关系,如面积、体积、角度等,找到解题的突
破口。
化简法:将复杂的方程或方程组化简,以便更容易找到解题思路。
2024年中考数学高频考点压轴题专项训练:分式方程的实际应用
2024年中考数学高频考点压轴题专项训练分式方程的实际应用1.从珠海到深圳的距离大约160千米,工作日与周末由于车流量不同,所以导致行驶的平均速度和所用的时间不同.工作日与周末的行驶速度比为3:2,周末所用的时间比工作日多用了50分钟.求周末从珠海到深圳的平均行驶速度是多少?2.数学源于生活,寓于生活,用于生活.在人类历史发展和社会生活中,数学发挥着不可替代的作用.为了激发学生学习数学的兴趣,某校计划购进《什么是数学》和《古今数学思想》若干套,已知5000元可购买《什么是数学》的数量比《古今数学思想》多60套,且《古今数学思想》的单价是《什么是数学》单价的2.5倍.(1)求每套《古今数学思想》的价格;(2)学校计划用不超过4000元购进这两套书共70套,此时正赶上书城8折销售所有书籍,求《古今数学思想》最多能买几套?3.某工程队承接了60万平方米的荒山绿化任务,为了避开雨季的到来,实际工作时的工作效率比原计划提高了25%,结果提前30天完成了这一任务.设原计划的工作效率为x 万平方米/天.工作效率(万平方米/天) 工作时间(天) 总任务量(万平方米) 原计划x 60 实际60 (1)用含x 的式子填表:(2)列方程求原计划的工作效率.4.上个月某超市购进了两批相同品种的水果,第一批用了2000元,第二批用了5500元,第二批购进水果的重量是第一批的2.5倍,且进价比第一批每千克多1元. (1)求两批水果共购进了多少千克?(2)在这两批水果总重量正常损耗10%,其余全部售完的情况下,如果这两批水果的售价相同,且总利润率不低于26%,那么售价至少定为每千克多少元?(利润率=100% 利润进价)5.为美化小区环境,物业计划安排甲、乙两个工程队完成小区绿化工作.已知甲工程队每天绿化面积是乙工程队每天绿化面积的2倍,甲工程队单独完成600m 2的绿化面积比乙工程队单独完成600m2的绿化面积少用2天.(1)求甲、乙两工程队每天绿化的面积分别是多少m2;(2)小区需要绿化的面积为9600m2,物业需付给甲工程队每天绿化费为0.3万元,付给乙工程队每天绿化费为0.2万元,若要使这次的绿化总费用不超过12万元,则至少应安排甲工程队工作多少天?6.某航空公司为了保证C检工作正常进行,事先组织机务人员到外地跟班学习C检工作,后又具体分析研究,周密地制订出C检的具体实施方案,因而工作效率提高了30%,经过31名机务人员的艰苦努力,终于提前6天完成了C检,为公司节约了数十万元的维修费用.请问:原计划多少天完成C检?(根据飞机维护规定,一架飞机每飞行250h,要进行一次定期检查,称为A检;每飞行3000h,就要进行一次中大修性质的全面维护、保养、检查工作,称为C检.)7.小明家距学校980m.(1)若他从家跑步上学,路上时间不超过490s,请直接写出小明跑步的平均速度至少为______m/s.(2)若他从家出发,先步行了350m后,发现上学要迟到了,因此换骑上了共享单车,达到学校时,全程共花了480s.已知小明骑共享单车的平均速度是步行平均速度的3倍,求小明骑共享单车的平均速度是多少?(转换出行方式时,所需时间忽略不计,假设家到学校随时都有共享单车).8.为了进一步丰富市民的休闲生活,某区政府决定在漓江沿岸扩建5400米绿道并进行招标,根据招标结果,该工程由甲、乙两个工程队参与建设.已知:甲工程队每天完成的工程量是乙队的1.2倍,甲队单独完成工程比乙队单独完成少用10天.(1)求乙队每天能完成多少米?(2)若甲、乙两个工程队合作20天后,剩余工程由乙工程队单独完成,求乙工程队还需多少天?9.列方程解应用题:某市将一项市政工程承包给某城建公司,该公司甲、乙两工程队如果全做项工程共需4个月:如果先由甲队单独做3个月,剩下的工程由乙队单独完成,那么乙队所用的时间等于甲队单独完成这项工程所需的时间.求甲、乙两队单独完成这项工程各需几个月.10.某商品经销店欲购进A、B两种纪念品,用360元购进的A种纪念品与用450元购进的B种纪念品的数量相同,每件B种纪念品的进价比每件A种纪念品的进价多10元.(1)求A、B两种纪念品每件的进价分别为多少元?(2)若该商店A种纪念品每件售价50元,B种纪念品每件售价65元,这两种纪念品共购进200件,这两种纪念品全部售出后总获利不低于2400元,求A种纪念品最多购进多少件?11.列分式方程解应用题某厂接到一份订单,要求生产7200顶帐篷支援灾区,后来由于情况紧急,接收到上级指示,要求生产总量比原计划增加20%,且必须提前5天完成生产任务.该厂迅速加派人员组织生产,实际每天生产的顶数是原计划每天生产的顶数的2倍,请问该厂实际每天生产多少顶帐篷12.某商店购进甲,乙两种商品,已知每件甲种商品的价格比每件乙种商品的价格贵5元,用360元购买甲种商品的件数恰好与用300元购买乙种商品的件数相同.(1)求甲乙两种商品的价格各是多少元?(2)某商店计划购买这两种商品共40件,且投入的经费不超过1150元,那么最多可购买多少件甲种商品?(3)李珍购进了甲,乙这两种商品,共用去145元钱,你知道他甲,乙两种商品各买了多少件吗?13.一项工程要在限期内完成,如果第一组单独做,恰好按规定日期完成,如果第二组单独做,超过规定日期6天才能完成,如果两组合做3天后剩下的工程由第二组单独做,正好在规定日期内完成,问规定日期是多少天?14.某小区为了促进生活垃圾分类工作的开展,准备购买A、B两种分类垃圾桶,通过市场调研得知:A种垃圾桶每组的单价比B种垃圾桶每组的单价少150元,且用8000元购买A种垃圾桶的组数量与用11000元购买B种垃圾桶的组数量相等.(1)求A、B两种垃圾桶每组的单价;(2)若该小区物业计划用不超过18000元的资金购买A、B两种垃圾桶共40组,则最多可以购买B种垃圾桶多少组?15.列方程解应用题:某市为了做好“全国文明城市”验收工作,计划对市区的道路进行改造,现安排甲、乙两个工程队进行施工.已知甲工程队改造360米的道路与乙工程队改造300米的道路所用时间相同.若甲工程队每天比乙工程队多改造30米,求甲、乙两工程队每天改造道路的长度各是多少米.参考答案:1.周末从珠海到深圳的平均行驶速度是64千米/时2.(1)125元(2)20套3.(2)0.4万平方米/天4.(1)这两批水果功购进700千克;(2)售价至少为每千克15元.5.(1)甲工程队每天能完成绿化的面积是300m2,乙工程队每天能完成绿化的面积是150m2 (2)至少应安排甲队工作8天6.原计划约26天完成C检7.(1)2(2)小明骑共享单车的平均速度是7m/s 28.(1)乙队每天能完成90米;(2)乙工程队还需16天9.甲单独完成需6天,乙单独完成需12天10.(1)A、B两种纪念品每件的进价分别为40元,50元(2)A种纪念品最多购进120件11.实际每天生产1152顶帐篷12.(1)每件甲种商品的价格为30元,每件乙种商品的价格为25元(2)最多可购买30件甲种商品(3)购买了4件甲种商品,1件乙种商品13.规定日期是6天.14.(1)A种垃圾桶每组的单价为400元,B种垃圾桶每组的单价为550元.(2)最多可以购买B种垃圾桶13组.15.甲每天修180米,乙每天修150米。
中考数学压轴题的常见类型与解题思路
中考数学压轴题的常见类型与解题思路【摘要】本文将介绍中考数学压轴题的常见类型与解题思路。
选择题是中考数学中常见的题型,需要注意题目中的陷阱和解题技巧,如排除法和代入法。
填空题需要根据题目的要求进行计算和推算,不能掉以轻心。
解答题则需要理清思路,注重计算和推导过程,避免粗心错误。
应用题则需要将数学知识与现实生活情境相结合,灵活运用所学知识解决问题。
解题技巧包括拓展思维、灵活运用公式和多角度思考等。
通过学习不同类型的题目和解题思路,加上合理的复习建议和备考策略,可以在中考数学中取得更好的成绩。
【关键词】中考数学压轴题、常见类型、解题思路、选择题、填空题、解答题、应用题、解题技巧、总结、复习建议、备考策略。
1. 引言1.1 中考数学压轴题的常见类型与解题思路中考数学是学生们备战中考的关键科目之一,而数学压轴题往往是考试中最具挑战性的部分。
在备考过程中,掌握数学压轴题的常见类型和解题思路是非常重要的。
本文将介绍中考数学压轴题的常见类型和解题思路,帮助学生们更好地备战中考数学考试。
在中考数学压轴题中,选择题往往是占据较大比重的一个部分。
选择题包括单选题和多选题,学生需要在有限的时间内准确把握题意,运用所学知识和解题技巧进行答题。
填空题则要求学生灵活运用所学知识,准确填写答案。
解答题通常会考察学生对知识的深层理解和应用能力,需要学生具备一定的逻辑思维能力。
应用题则是将知识与实际问题相结合,考察学生解决实际问题的能力。
除了不同类型的题目,解题技巧也是备战数学压轴题的关键。
学生可以通过画图、列方程、逆向推理等方法帮助解题。
掌握常见的数学定理和方法也是解题的关键。
通过本文的介绍,希望学生们能够更好地理解中考数学压轴题的类型和解题思路,为备战中考数学考试提供帮助。
在备考过程中,学生们应该多做练习,巩固知识,掌握解题技巧,提高解题能力,从而取得优异的成绩。
祝所有参加中考数学考试的学生考试顺利,取得好成绩!2. 正文2.1 选择题选择题是中考数学试卷中常见的题型之一,通常占据试卷总分的一大部分。
中考数学复习重难点与压轴题专题12 新定义型几何图形综合问题(重点突围)(原卷版)
专题12 新定义型几何图形综合问题【中考考向导航】目录【直击中考】 (1)【考向一 与三角形有关的新定义型问题】..................................................................................................... 1 【考向二 与四角形有关的新定义型问题】..................................................................................................... 5 【考向三 三角形与圆综合的新定义型问题】 ................................................................................................. 8 【考向四 四角形与圆综合的新定义型问题】 .. (10)【直击中考】【考向一 与三角形有关的新定义型问题】例题:(2022·江西抚州·统考一模)定义:从三角形(不是等腰三角形)的一个顶点引出一条射线与对边相交,顶点与交点所连线段把这个三角形分割成两个小三角形,如果其中一个为等腰三角形,另一个与原三角形相似,我么就把这条线段叫做这个三角形的“华丽分割线”.例如:如图1,AD 把△ABC 分成△ABD 和△ADC ,若△ABD 是等腰三角形,且△ADC ∽△BAC ,那么AD 就是△ABC 的“华丽分割线”. 【定义感知】(1)如图1,在ABC 中,40B ∠=︒,110BAC ∠=︒,AB=BD .求证:AD 是ABC 的“华丽分割线”. 【问题解决】(2)①如图2,在ABC 中,46B ∠=︒,AD 是ABC 的“华丽分割线”,且ABD △是等腰三角形,则C ∠的度数是________;②如图3,在ABC 中,AB =2,AC =3,AD 是ABC 的“华丽分割线”,且ABD △是以AD 为底边的等腰三角形,求华丽分割线AD 的长.【变式训练】1.(2022·山东济宁·三模)我们定义:等腰三角形中底边与腰的比叫做顶角的正对(sad ).如图,在ABC 中,AB =AC ,顶角A 的正对记作sad A ,这时sad BCA AB==底边腰,容易知道一个角的大小与这个角的正对值也是相互唯一确定的.根据上述角的正对定义,解答下列问题:(1)sad60︒=___________,sad90︒=___________;(2)如图,已知3sin 5A =,其中A ∠为锐角,试求sad A 的值.2.(2022春·福建龙岩·九年级校考期中)在一个三角形中,如果有两个内角α与β满足290αβ+=︒,那么我们称这样的三角形为“亚直角三角形”.根据这个定义,显然90αβ+<︒,则这个三角形的第三个角为()18090αβ︒-+>︒,这就是说“亚直角三角形”是特殊的钝角三角形.(1)【尝试运用】:若某三角形是“亚直角三角形”,且一个内角为100︒,请求出它的两个锐角的度数; (2)【尝试运用】:如图1,在Rt ABC 中,90ACB ∠=︒,4AC =,8BC =,点D 在边BC 上,连接AD ,且AD 不平分BAC ∠.若ABD △是“亚直角三角形”,求线段AD 的长;(3)【素养提升】:如图2,在钝角ABC 中,90ABC ∠>︒,5AB =,35BC =,ABC 的面积为15,求证:ABC 是“亚直角三角形”.3.(2022秋·江苏常州·九年级校考期中)【理解概念】定义:如果三角形有两个内角的差为90︒,那么这样的三角形叫做“准直角三角形”. (1)已知△ABC 是“准直角三角形”,且90C ∠>︒. ①若60A ∠=︒,则B ∠=______︒; ②若40A ∠=︒,则B ∠=______︒; 【巩固新知】(2)如图①,在Rt ABC △中,9062ACB AB BC ∠=︒==,,,点D 在AC 边上,若ABD △是“准直角三角形”,求CD 的长;【解决问题】(3)如图②,在四边形ABCD 中,58CD CB ABD BCD AB BD =∠=∠==,,,,且ABC 是“准直角三角形”,求BCD △的面积.4.(2022·山东青岛·统考中考真题)【图形定义】 有一条高线相等的两个三角形称为等高三角形.例如:如图①.在ABC 和A B C '''中,,AD A D ''分别是BC 和B C ''边上的高线,且AD A D ''=,则ABC 和A B C '''是等高三角形.【性质探究】 如图①,用ABCS ,A B C S'''分别表示ABC 和A B C '''的面积.则11,22ABC A B C S BC AD S B C A D '''=⋅=''⋅''△△, ∽AD A D ''=∽::ABC A B C S S BC B C ''=''△△. 【性质应用】(1)如图②,D 是ABC 的边BC 上的一点.若3,4BD DC ==,则:ABD ADC S S =△△__________;(2)如图③,在ABC 中,D ,E 分别是BC 和AB 边上的点.若:1:2BE AB =,:1:3CD BC =,1ABC S =△,则BEC S =△__________,CDE S =△_________;(3)如图③,在ABC 中,D ,E 分别是BC 和AB 边上的点,若:1:BE AB m =,:1:CD BC n =,ABCS a =,则CDE S =△__________.【考向二 与四角形有关的新定义型问题】例题:(2022·陕西西安·校考三模)定义:两组邻边分别相等的四边形叫做筝形.(1)问题发现:如图1,筝形ABCD 中,AD CD =,AB CB =,若12AC BD +=,求筝形ABCD 的面积的最大值;(2)问题解决:如图2是一块矩形铁片ABCD ,其中60AB =厘米,90BC厘米,李优想从这块铁片中裁出一个筝形EFGH ,要求点E 是AB 边的中点,点F 、G 、H 分别在BC 、CD 、AD 上(含端点),是否存在一种裁剪方案,使得筝形EFGH 的面积最大?若存在,求出筝形EFGH 的面积最大值,若不存在,请说明理由.【变式训练】1.(2022·吉林长春·校考模拟预测)定义:如果一个四边形的一组对角互余,我们称这个四边形为对角互余四边形.(1)问题1.利用下面哪组图形可以得到一个对角互余四边形( )①两个等腰三角形;②两个等边三角形;③两个直角三角形;④两个全等三角形.(2)如图①,在对角互余四边形ABCD 中,30D ∠=︒,且AC BC ⊥,AC AD ⊥.若1BC =,求四边形ABCD 的面积和周长.(3)问题2.如图②,在对角互余四边形ABCD 中,AB BC =,13BD =,90ABC ADC ∠+∠=︒,8AD =,6CD =,求四边形ABCD 的面积和周长.(4)问题3.如图③,在对角互余四边形ABCD 中,2BC AB =,3sin 5ABC ∠=,90ABC ADC ∠+∠=︒,10BD =,求ACD 面积的最大值.2.(2023春·江西抚州·九年级金溪一中校考阶段练习)【图形定义】有一组邻边相等的凸四边形叫做“等邻边四边形”.【问题探究】(1)如图①,已知矩形ABCD 是“等邻边四边形”,则矩形ABCD ___________(填“一定”或“不一定”)是正方形;(2)如图②,在菱形ABCD 中,120ABC ∠=︒,4AB =,动点M 、N 分别在AD 、CD 上(不含端点),若60MBN ∠=︒,试判断四边形BMDN 是否为“等邻边四边形”?如果是“等邻边四边形”,请证明;如果不是,请说明理由;此时,四边形BMDN 的周长的最小值为___________; 【尝试应用】(3)现有一个平行四边形材料ABCD ,如图③,在ABCD 中,17AB =,6BC =,tan 4B =,点E 在BC 上,且4BE =,在ABCD 边AD 上有一点P ,使四边形ABEP 为“等邻边四边形”,请直接写出此时四边形ABEP的面积可能为的值___________.3.(2022·江西赣州·统考二模)我们定义:有一组邻角相等的凸四边形叫做“等邻角四边形”.例如:如图①,B C ∠=∠,则四边形ABCD 为“等邻角四边形”.(1)定义理解:以下平面图形中,是等邻角四边形的是___________. ①平行四边形;②矩形;③菱形;④等腰梯形. (2)深入探究:①已知四边形ABCD 为“等邻角四边形”,且120100A B ∠=︒∠=︒,,则D ∠=________.②如图②,在五边形ABCDE 中, DE BC ∥,对角线BD 平分ABC ∠,求证:四边形ABDE 为等邻角四边形.(3)拓展应用:如图③,在等邻角四边形ABCD 中,B C ∠=∠,点P 为边BC 上的一动点,过点P 作PM AB PN CD ⊥⊥,,垂足分别为M ,N .在点P 的运动过程中,PM PN +的值是否会发生变化?请说明理由.【考向三 三角形与圆综合的新定义型问题】例题:(2022·江西上饶·统考一模)定义:如果一个三角形有一个内角的平分线与这个角的对边的夹角是60︒,那么称该三角形为“特异角平分三角形”,这条角平分线称为“特异角平分线”.(1)如图1,ABC 是一个“特异角平分三角形”,AD 是一条“特异角平分线” ①当90C ∠=︒时,试求:AD BD 的值.②在ABC 中,过点D 作DE AB ⊥于点E ,延长至点H ,HE DE =,若:3:3DE AE =,证明:AHE ADC ≌. (2)如图2.BD 是O 的直径,AC 是O 的切线,点C 为切点,AB AC ⊥于点A 且交O 于点H ,连接DH 交BC 于点E ,4BD =,3AB =.试证明DBH △是一个“特异角平分三角形”.【变式训练】1.(2022春·九年级课时练习)定义:三角形一个内角的平分线和与另一个内角相邻的外角平分线相交所成的锐角称为该三角形第三个内角的“好角”.(1)如图1,∽E 是ABC 中∽A 的“好角”,若A α∠=,则E ∠=______;(用含α的代数式表示)(2)如图2,四边形ABCD 内接于O ,点D 是优弧ACB 的中点,直径BF ⊥弦AC ,BF 、CD 的延长线于点G ,延长BC 到点E .求证:∽BGC 是ABC 中∽BAC 的“好角”.(3)如图3,ABC 内接于O ,∽BGC 是ABC 中∽A 的“好角”,BG 过圆心O 交O 于点F ,O 的直径为8,45A ∠=︒,求FG .2.(2022·湖南长沙·长沙市开福区青竹湖湘一外国语学校校考一模)我们不妨定义:有两边之比为1:3的三角形叫敬“勤业三角形”.(1)下列各三角形中,一定是“勤业三角形”的是________;(填序号)①等边三角形;②等腰直角三角形;③含30︒角的直角三角形;④含120︒角的等腰三角形.(2)如图1,∽ABC 是∽O 的内接三角形,AC 为直径,D 为AB 上一点,且2BD AD =,作DE OA ⊥,交线段OA 于点F ,交∽O 于点E ,连接BE 交AC 于点G .试判断∽AED 和∽ABE 是否是“勤业三角形”?如果是,请给出证明,并求出EDBE的值;如果不是,请说明理由; (3)如图2,在(2)的条件下,当AF :FG =2:3时,求BED ∠的余弦值.【考向四 四角形与圆综合的新定义型问题】例题:(2022秋·九年级课时练习)定义:有一个角为45°的平行四边形称为半矩形.(1)如图1,若∽ABCD 的一组邻边AB =4,AD =7,且它的面积为142.求证:∽ABCD 为半矩形. (2)如图2,半矩形ABCD 中,∽ABD 的外心O (外心O 在∽ABD 内)到AB 的距离为1,∽O 的半径=5,求AD 的长.(3)如图3,半矩形ABCD 中,∽A =45° ①求证:CD 是∽ABD 外接圆的切线; ②求出图中阴影部分的面积.【变式训练】1.(2022·浙江宁波·校考模拟预测)定义:如果一个四边形的一组对角互余,那么我们称这个四边形为“对角互余四边形”.(1)如图1,在“对角互余四边形” ABCD 中, 6.5AD CD BD ==,,9043ABC ADC AB CB ∠+∠=︒==,,,求四边形ABCD 的面积.(2)如图2,在四边形ABCD 中,连接AC ,90BAC ∠=︒,点O 是ACD 外接圆的圆心,连接OA ,OAC ABC ∠∠=.求证:四边形ABCD 是“对角互余四边形”;(3)在(2)的条件下,如图3,已知3AD a DC b AB AC ===,,,连接BD ,求2BD 的值.(结果用带有a ,b 的代数式表示)2.(2022·江苏淮安·统考一模)定义:若一个圆内接四边形的两条对角线互相垂直,则称这个四边形为圆美四边形.(1)请在特殊四边形中找出一个圆美四边形,该四边形的名称是 ;(2)如图1,在等腰Rt ∽ABC 中,∽BAC =90°,经过点A 、B 的∽O 交AC 边于点D ,交BC 于点E ,连接DE ,若四边形ABED 为圆美四边形,则AB DE的值是 (3)如图2,在∽ABC 中,经过点A 、B 的∽O 交AC 边于点D ,交BC 于点E ,连接AE 、BD 交于点F ,若在四边形ABED 的内部存在一点P ,使得∽PBC =∽ADP =α,连接PE 交BD 于点G ,连接P A ,若P A ∽PD ,PB ∽PE . ①试说明:四边形ABED 为圆美四边形;②若2tan 3α=,8PA PE +=,33CD BC =,求DE 的最小值.。
中考数学压轴题预测,压轴题解题策略,解题技巧,专项训练完整版
最新中考数学压轴题展望,压轴题解题策略,解题技巧,专项训练数学综压轴题是为观察考生综合运用知识的能力而设计的,集中表现知识的综合性和方法的综合性,多半为函数型综合题和几何型综合题。
函数型综合题:是给定直角坐标系和几何图形,先求函数的分析式,再进行图形的研究,求点的坐标或研究图形的某些性质。
求已知函数的分析式主要方法是待定系数法,重点是求点的坐标,而求点的坐标基本方法是几何法(图形法)和代数法(分析法)。
几何型综合题:是先给定几何图形,依据已知条件进行计算,而后有动点(或动线段)运动,对应产生线段、面积等的变化,求对应的(未知)函数的分析式,求函数的自变量的取值范围,最后依据所求的函数关系进行研究研究。
一般有:在什么条件以下图形是等腰三角形、直角三角形,四边形是平行四边形、菱形、梯形等,或研究两个三角形知足什么条件相像等,或研究线段之间的数目、地点关系等,或研究面积之间知足必定关系时求x的值等,或直线(圆)与圆的相切时求自变量的值等。
求未知函数分析式的重点是列出包括自变量和因变量之间的等量关系(即列出含有x、y的方程),变形写成y=f(x)的形式。
找等量关系的门路在初中主要有益用勾股定理、平行线截得比率线段、三角形相像、面积相等方法。
求函数的自变量的取值范围主假如找寻图形的特别地点(极端地点)和依据分析式求解。
而最后的研究问题变化多端,但少不了对图形的剖析和研究,用几何和代数的方法求出x的值。
解中考压轴题技术:中考压轴题大多是以坐标系为桥梁,运用数形联合思想,经过成立点与数即坐标之间的对应关系,一方面可用代数方法研究几何图形的性质,另一方面又可借助几何直观,获得某些代数问题的解答。
重点是掌握几种常用的数学思想方法。
一是运用函数与方程思想。
以直线或抛物线知识为载体,列(解)方程或方程组求其分析式、研究其性质。
二是运用分类议论的思想。
对问题的条件或结论的多变性进行观察和研究。
三是运用转变的数学的思想。
几何图形中求线段,线段和,面积等最值问题(4题型)—2024年中考数学压轴题(全国通用)(解析版)
几何图形中求线段,线段和,面积等最值问题(压轴通关)目录【中考预测】预测考向,总结常考点及应对的策略 【误区点拨】点拨常见的易错点【抢分通关】精选名校模拟题,讲解通关策略(含新考法、新情境等)几何图形中求线段、线段和、面积最值题是全国中考的热点内容,更是全国中考的必考内容。
每年都有一些考生因为知识残缺、基础不牢、技能不熟、答欠规范等原因导致失分。
1.从考点频率看,几何图形中的性质综合问题,是高频考点、也是必考点。
2.从题型角度看,以解答题的最后一题或最后二题为主,分值12分左右,着实不少!题型一 线段最值问题【例1】(2024·四川成都·一模)如图1,在四边形ABFE 中,90F ∠=︒,点C 为线段EF 上一点,使得AC BC ⊥,24AC BC ==,此时BF CF =,连接BE ,BE AE ⊥,且AE BE =.(1)求CE 的长度;(2)如图2,点D 为线段AC 上一动点(点D 不与A ,C 重合),连接BD ,以BD 为斜边向右侧作等腰直角三角形BGD .①当DG AB ∥时,试求AD 的长度;②如图3,点H 为AB 的中点,连接H G ,试问H G 是否存在最小值,如果存在,请求出最小值;如果不存在,请说明理由.【答案】(2)①103;②2【分析】(1)取AB 的中点H ,连接,EH HC ,证明FEB CAB ∠=∠,得出1tan tan 2FB FEB CAB EF ∠==∠=则12BF EF =,进而根据CE EF CF =−(2)①如图所示,过点D 作DM EF ⊥于点M ,过点D 作DN AB ⊥于点N ,证明DBC GBF ∽得出DC ,即可得出DM GF =,证明DMG GFB ≌,进而证明G 在EF 上,根据已知条件证明D 在EB上,然后解直角三角形,即可求解;②如图所示,过点H 作HP EF ⊥于点P ,连接EH ,由①可得G 在EF 上运动,当HG EF ⊥时,H G 取得最小值,即,G P 重合时,HP 的长即为HG 的最小值,由①可得103AT =,求得sin ETA ∠=45HEF ETA α∠=+︒=∠,即可求解.【详解】(1)解:如图所示,取AB 的中点H ,连接,EH HC ,∵BF CF =,90F ∠=︒,∴45BCF ∠=︒,BC , 又∵AC BC ⊥ ∴45ECA ∠=︒ ∵AE BE =,BE AE ⊥ ∴45EBA ∠=︒ ∴45ECA ABE ∠=∠=︒ ∴FEB CAB ∠=∠ ∵24AC BC ==, ∴2BC =∴BF CF = ∴1tan 2CB CAB AC ∠== ∴1tan tan 2FB FEB CAB EF ∠==∠= ∴12BF EF =∴EF =∴CE EF CF =−(2)①如图所示,过点D 作DM EF ⊥于点M ,过点D 作DN AB ⊥于点N ,由(1)可得45ACE ABE ∠=∠=︒ ∴CDM V 是等腰直角三角形,∴CD ,∵,CBF DBG 都是等腰直角三角形,∴CB DBBF BG==∴BD BGBC BF= 又∵DBG CBF ∠=∠ ∴DBC GBF ∠=∠ ∴DBC GBF ∽∴DC DBGF GB==∴DC ∴DM GF = 在,DMG GFB 中,DM GF DMG F DG BG =⎧⎪∠=∠⎨⎪=⎩∴DMG GFB ≌ ∴MGD FBG ∠=∠ ∵90FBG FGB ∠+∠=︒∴90MGD FGB ∠+∠=︒ 又∵90DGB ∠=︒ ∴180MGF ∠=︒ ∴G 在EF 上,∵DG AB ∥,90DGB ∠=︒ ∴90GBA ∠=︒∵45,45ABE DBG ABD ∠=︒∠=︒=∠ ∴D 在EB 上, ∵1tan 2CAB ∠=,∴12DN AN =,则AD ∵,45DN AB ABE ⊥∠=︒ ∴DN DB = ∴3AB DN =, ∵4AC =,2CB =∴AB ==∴13DN AB ==∴103AD ==, ②如图所示,过点H 作HP EF ⊥于点P ,连接EH ,由①可得G 在EF 上运动,∴当HG EF ⊥时,HG 取得最小值,即,G P 重合时,HP 的长即为H G 的最小值, 设,AC EB 交于点T ,即与①中点D 重合,由①可得103AT =∵AB =∴AE 12EH AB ==∴sin 3AE ETA AT ∠=== 设FEB CAB α∠=∠= 则45HEF ETA α∠=+︒=∠,在Rt PEH △中,sin sin 102PH HEF EH ETA EH =∠⨯=∠⨯= 【点睛】证明G 点在EF 上是解题的关键.【例2】(2024·天津红桥·一模)在平面直角坐标系中,点()0,0O ,()2,0A , (2,B ),C ,D 分别为OA ,OB 的中点.以点O 为中心,逆时针旋转OCD ,得OC D '',点C ,D 的对应点分别为点C ',D ¢.(1)填空∶如图①,当点D ¢落在y 轴上时,点D ¢的坐标为_____,点C '的坐标为______; (2)如图②,当点C '落在OB 上时, 求点D ¢的坐标和 BD '的长; (3)若M 为C D ''的中点,求BM 的最大值和最小值(直接写出结果即可). 逆时针旋转OCD ,得OC D '',知为中心,逆时针旋转OCD,得OC D'',可得(2,23B为中心,逆时针旋转OCD,得OC D'',()A,2,0()A2,0,(2,23 B是AOB的中位线,为中心,逆时针旋转OCD,得OC D'','==,D CD3M是C'(2,23B1.(2024·山东济宁·模拟预测)已知,四边形ABCD 是正方形,DEF 绕点D 旋转(DE AB <),90EDF ∠=︒,DE DF =,连接AE CF ,.(1)如图1,求证:ADE CDF ≅; (2)直线AE 与CF 相交于点G .①如图2,BM AG ⊥于点M ,⊥BN CF 于点N ,求证:四边形BMGN 是正方形;②如图3,连接BG ,若6AB =,3DE =,直接写出在DEF 旋转的过程中,线段BG 长度的最小值为 . 再证明AMB CNB ≅可得MB ,证明BGM 是等腰直角三角形,然后求出【详解】(1)证明:四边形ABCD 是正方形,AD DC ∴=,90ADC ∠=︒,DE DF =,90EDF ∠=︒,ADC EDF ∴∠=∠,ADE CDF \Ð=Ð,在ADE V 和CDF 中,DA DC ADE CDF DE DF =⎧⎪∠=∠⎨⎪=⎩, SAS ADE CDF ∴()≌. (2)解:①证明:如图2中,设AG 与CD 相交于点P ,90ADP ∠=︒, 90DAP DPA ∴∠+∠=︒,ADE CDF ≅,DAE DCF ∴∠=∠,DPA GPC ∠∠=,90DAE DPA GPC GCP ∠∠∠∠∴+=+=︒, 90PGN ∠∴=︒,BM AG ⊥,BN GN ⊥,∴四边形BMGN 是矩形,90MBN ∴∠=︒,四边形ABCD 是正方形,AB BC ∴=,90ABC MBN∠∠==︒,ABM CBN ∴∠=∠,又90AMB BNC ∠∠==︒,AMB CNB ∴≅,MB NB ∴=,∴矩形BMGN 是正方形;∵DAH BAM ABM ∠+∠=∠∴DAH ABM ∠=∠,又∵AD BA =,DHA ∠∴AMB DHA ≌△△, BM AH ∴=,2AH AD =DH ∴最大时,可知,BGM 是等腰直角三角形,23⨯=(1)若AC AB AD BC >⊥,,当点E 在线段AC 上时,AD BE ,交于点F ,点F 为BE 中点.①如图1,若37BF BD AD ===,,求AE 的长度;②如图2,点G 为线段AF 上一点,连接GE 并延长交BC 的延长线于点H .若点E 为GH 中点,602BAC DAC EBC ∠=︒∠=∠,,求证:12AG DF AB +=. (2)如图3,若360AC AB BAC ︒==∠=,.当点E 在线段AC 的延长线上时,连接DE ,将DCE △沿DC 所在直线翻折至ABC 所在平面内得到DCM △,连接AM ,当AM 取得最小值时,ABC 内存在点K ,使得ABK CAK ∠=∠,当KE 取得最小值时,请直接写出2AK 的值.的长,证明(AAS)FDB FGE ≌AD BC EG AD ⊥⊥,, 90BDF ∴∠=︒,EGF ∠=BDF EGF ∴∠=∠,在Rt BDF △中,90BDF ∠=点(AAS)FDB FGE ∴≌3BD GE ∴==DFAD=,7∴=AG ADRt AGE中,2⊥,AD BC90∴∠=︒,ADC点E为GH的中点,∴=,GE HE在AGE和KHE△中,=AE KE∴≌(SAS) AGE KHE∴∠=∠34∠=DAC∴设EBC∠点和KEF中,(SAS)AFB KEF ∴≌89AB FK ∴=∠=∠,BAC ∠=Rt FDM 中,1由题意可知:160∠=︒,AC 30CAM ∴∠=︒,1322CM AC ∴==, ABK ∠=ABK ∴∠+∠EKQ EOA ∴∽,KE KQ QE(1)如图①,在ABC 中,点M ,N 分别是AB ,AC 的中点,若BC =MN 的长为__________. 问题探究:(2)如图②,在正方形ABCD 中,6AD =,点E 为AD 上的靠近点A 的三等分点,点F 为AB 上的动点,将AEF △折叠,点A 的对应点为点G ,求CG 的最小值. 问题解决:(3)如图③,某地要规划一个五边形艺术中心ABCDE ,已知120ABC ∠=︒,60BCD ∠=︒,40m AB AE ==,80m BC CD ==,点C 处为参观入口,DE 的中点P 处规划为“优秀”作品展台,求点C 与点P 之间的最小距离.是ABC 的中位线,由中位线的性质,即可求解,Rt EDC 中,根据勾股定理,求出∵点E为AD上的靠近点∴11633AE AD==⨯=在Rt EDC中,EC 根据折叠的性质,【问题提出】(1)如图1,点D 为ABC 的边BC 上一点,连接2,,3BD AD BDA BAC AB ∠=∠=,若ABD △的面积为4,则ACD 的面积为______; 【问题探究】(2)如图2,在矩形ABCD 中,6,5AB BC ==,在射线BC 和射线CD 上分别取点E F 、,使得65BE CF =,连接AE BF 、相交于点P ,连接CP ,求CP 的最小值; 【问题解决】(3)如图3,菱形ABCD 是某社区的一块空地,经测量,120AB =米,60ABC ∠=︒.社区管委会计划对该空地进行重新规划利用,在射线AD 上取一点E ,沿BE CE 、修两条小路,并在小路BE 上取点H ,将CH 段铺设成某种具有较高观赏价值的休闲通道(通道宽度忽略不计),根据设计要求,BHC BCE ∠=∠,为了节省铺设成本,要求休闲通道CH 的长度尽可能小,问CH 的长度是否存在最小值?若存在,求出CH 长度的最小值;若不存在,请说明理由.994CBAABDSS ==,即可得到ACD 的面积;为直径的O 上交O 于点P )证明,CBH EBC ∽得到,再证明,ABH EBA ∽得到在O 的劣弧与O 相交于点ABDCBAS S=994CBAABDSS ==,∴ACD 的面积为9CBAABDS S−=故答案为:为直径的O 上运动,交O 于点P,作ABH 的外接圆O ,连接∴,CBH EBC ∽ BC BH∴,ABH EBA ∽ 120AHB EAB ∠=∠=在O 的劣弧120=︒在AOB 中,则1602BM AM AB ===米, 与O 相交于点题型二 线段和的最小值问题【例1】(2024·四川达州·模拟预测)【问题发现】(1)如图1,在OAB 中,3OB =,若将OAB 绕点O 逆时针旋转120︒得OA B '',连接BB ',则BB '=________. 【问题探究】(2)如图2,已知ABC 是边长为BC 为边向外作等边BCD △,P 为ABC 内一点,连接AP BP CP ,,,将BPC △绕点C 逆时针旋转60︒,得DQC △,求PA PB PC ++的最小值; 【实际应用】(3)如图3,在长方形ABCD 中,边1020AB AD ==,,P 是BC 边上一动点,Q 为ADP △内的任意一点,是否存在一点P 和一点Q ,使得AQ DQ PQ ++有最小值?若存在,请求出此时PQ 的长,若不存在,请说明理由.将AQD 绕点BC ⊥在OAB 中,3OB =,将OAB 绕点120BOB '∴∠=︒,3OB OB '==,OBB OB B ''∴∠=∠,OBB '∠+OC BB ⊥OCB '∴∠将∴++=+PA PB PC PA∴当点D、Q、P、A⊥连接AD,作DE AC∠=,ABC边长为DCBDCE BCA∴∠=∠=60)如图所示,将AQD绕点,90EA︒=【例2】(2024·贵州毕节·一模)在学习了《图形的平移与旋转》后,数学兴趣小组用一个等边三角形继续进行探究.已知ABC 是边长为2的等边三角形.(1)【动手操作】如图1,若D 为线段BC 上靠近点B 的三等分点,将线段AD 绕点A 逆时针旋转60︒得到线段AE ,连接CE ,则CE 的长为________;(2)【探究应用】如图2,D 为ABC 内一点,将线段AD 绕点A 逆时针旋转60︒得到线段AE ,连接CE ,若,,B D E本题主要考查了等边三角形的性质与判定,矩形的性质与判定,旋转的性质,勾股定理,含度角的直角三角形的性质,解题的关键在于利用旋转构造等边三角形,从而把三条不在一条直线的线段之和的问题,转换成几点共线求线段的最值问题是解题的关键.三点共线,求证:EB 平分AEC ∠;(3)【拓展提升】如图3,若D 是线段BC 上的动点,将线段AD 绕点D 顺时针旋转60︒得到线段DE ,连接CE .请求出点D 在运动过程中,DEC 的周长的最小值. 证明BAD CAE ≌,的三等分点和ABC 是边长为ADB AEC =∠60BEC ∠=︒EB(3)由ABD ACE ≌△△,得CE BD =,可得DEC 的周长BC DE =+,而DE AD =,知AD 的最小时,DEC的周长最小,此时AD BC ⊥,即可求得答案.∵ABC 是等边三角形,AB AC =,∴SAS ABD ACE ≌()BD CE =;的三等分点,且ABC 是边长为∵ABC 是等边三角形,AB AC =,∴SAS ABD ACE≌(),120ADB AEC ∠=∠=上时,DEC 的周长存在最小值,如图:∵ABD ACE ≌△△, ∴CE BD =,∴DEC 的周长DE CE =++∴当点D 在线段BC 上时,DEC 的周长∵DEC 为等边三角形,DE AD =,的最小时,DEC 的周长最小,此时∴DEC 的周长的最小值为【点睛】本题考查几何变换综合应用,旋转性质、涉及等边三角形的性质,全等三角形的判定和性质,垂1.(2024·陕西·二模)在平面直角坐标系中,A 为y 轴正半轴上一点,B 为x 轴正半轴上一点,且4OA OB ==,连接AB .(1)如图1,C 为线段AB 上一点,连接OC ,将OC 绕点O 逆时针旋转90︒得到OD ,连接AD ,求AC AD +的值.(2)如图2,当点C 在x 轴上,点D 位于第二象限时,90ADC ∠=︒,且AD CD =,E 为AB 的中点,连接DE ,试探究线段AD DE +是否存在最小值?若存在,求出AD DE +的最小值;若不存在,请说明理由.≌,可得出点,证明AND CMDAOC的平分线对称,由∴AND CMD≌,DN DM=,P大值和最小值分别是______和______;(2)如图2,在矩形ABCD中,4AB=,6AD=,点P在AD上,点Q在BC上,且AP CQ=,连接CP、QD,求PC QD+最小时AP的长;(3)如图3,在ABCDY中,10AB=,20AD=,点D到AB的距离为动点E、F在AD边上运动,始终保持3EF=,在BC边上有一个直径为BM的半圆O,连接AM与半圆O交于点N,连接CE、FN,求CE EF FN++的最小值.()SASABP CDQ≌=的O 外有一点在O 上, 如图,当点P 在AO 的延长线上时,此时PA 的最大值为:PO OA +故答案为:11;3;(2)延长BA 至点B ',使AB ∵在矩形ABCD 中,4AB =,∴DAB BAP CBA DCQ '∠=∠=∠=∠在ABP 和CDQ 中,AB CD =∴()SAS ABP CDQ ≌Rt B BC '中,AB P BB ''=∠ (3)如图,过点F 作FG EC ∥,交BC OG ',NO ,∵在ABCD Y 中,10AB =,20AD =,点∴AD BC ∥,即EF CG ∥,BC AD =EFGC【点睛】本题考查圆的基本性质,全等三角形的判定和性质,相似三角形的判定和性质,矩形的性质,平行四边形的判定和性质,对称的性质,勾股定理,三角形三边关系定理,两点之间线段最短等知识点.灵活运用所学知识、弄清题意并作出适当辅助线是解题的关键.3.(2024·陕西西安·三模)【问题提出】(1)如图①,AB 为半圆O 的直径,点P 为半圆O 的AB 上一点,BC 切半圆O 于点B ,若10AB =,12BC =,则CP 的最小值为 ; 【问题探究】(2)如图②,在矩形ABCD 中,3AB =,5BC =,点P 为矩形ABCD 内一点,连接PB 、PC ,若矩形ABCD 的面积是PBC 面积的3倍,求PB PC +的最小值; 【问题解决】(3)如图③,平面图形ABCDEF 为某校园内的一片空地,经测量,AB BC ==米,=60B ∠︒,150BAF BCD ∠=∠=︒,DE DC ⊥,20CD =米,劣弧E F 所对的圆心角为90︒,E F 所在圆的圆心在AF 的延长线上,10AF =米.某天活动课上,九(1)班的同学准备在这块空地上玩游戏,每位同学在游戏开始前,在BC 上选取一点P ,在弧E F 上选取一点Q ,并在点P 和点Q 处各插上一面小旗,从点A 出发,先到点P 处拔下小旗,再到点Q 处拔下小旗,用时最短者获胜.已知晓雯和晓静的跑步速度相同,要使用时最短,则所跑的总路程()AP PQ +应最短,问AP PQ +是否存在最小值?若存在,请你求出AP PQ +的最小值;若不存在,请说明理由.交O于点P⊥PH BC交O于点P点P为半圆O的AB上一点,∴当点P与点P不重合时,1当点P与点P重合时,BC切半圆∴∠=ABC=OB OP矩形ABCD 的面积是PBC 面积的13553PBCS∴=⨯⨯=CF PH =又5BC =,60ABC ∠=︒,AB BC ==ABC ∴是等边三角形, 60BAC BCA ∴∠=∠=︒,150BAF BCD ∠=∠=︒,DE AA M '∴和CMN ∴∠=点'A Q OQ+∴的最小值为A Q'ABC为等边三角形,点∴点为BC△,E G分别作,,⊥⊥与EF交于点F,连接CF.EF AD FG AB FG特例感知(1)以下结论中正确的序号有______;ED CF BG为边围成的三角形不是直①四边形AGFE是矩形;②矩形ABCD与四边形AGFE位似;③以,,角三角形;类比发现(2)如图2,将图1中的四边形AGFE绕着点A旋转,连接BG,观察CF与BG之间的数量关系和位置关系,并证明你的发现;拓展应用(3)连接CE ,当CE 的长度最大时, ①求BG 的长度;②连接,,AC AF CF ,若在ACF △内存在一点P ,使CP AP ++的值最小,求CP AP ++的最小值.先证明APF AKL ∽,得到∴HF DE =,CH BG =,∴CHF 是直角三角形,∵四边形ABCD 是矩形,∴43AB CD ==,AD =∴228AC AB BC =+=,则由(2)知,90CEF ∠=︒,∵2247CF CE EF =+=,根据旋转,可得30PAF KAL ∠=∠=,根据两边对应成比例且夹角相等可得APF AKL ∽, ∴3KL PF =,过P 作PS AK ⊥于S ,则12PS AP =题型三 面积的最小值问题【例1】(新考法,拓视野)(2024·陕西西安·一模)【问题提出】(1)如图1,已知在边长为5的等边ABC 中,点D 在边BC 上,3BD =,连接AD ,则ACD 的面积为 ; 【问题探究】(2)如图2,已知在边长为6的正方形ABCD 中,点E 在边BC 上,点F 在边CD 上,且45EAF ∠=︒,若5EF =,求AEF △的面积; 【问题解决】(3)如图3是某座城市廷康大道的一部分,因自来水抢修在4AB =米,AD =ABCD 区域内开挖一个AEF △的工作面,其中B 、F 分别在BC CD 、边上(不与B 、C 、D 重合),且60EAF ∠=︒,为了减少对该路段的拥堵影响,要求AEF △面积最小,那么是否存在一个面积最小的AEF △?若存在,请求出AEF △面积的最小值;若不存在,请说明理由.,证明()SAS ABG ADF ≌,再证明()SAS AEF AEG ≌,得到ABG ,则)()33AEF AEG SS==最小值最小值∵ABC 是边长为 ∴()SAS ABG ADF ≌∴()SAS AEF AEG ≌,得到ABG , )()33AEF AEG SS==最小值最小值【例2】(2024·陕西西安·二模)图形旋转是解决几何问题的一种重要方法.如图1,正方形ABCD 中,E F 、分别在边AB BC 、上,且45EDF ∠=︒,连接EF ,试探究AE CF EF 、、之间的数量关系.解决这个问题可将ADE V 绕点D 逆时针旋转90︒到CDH △的位置(易得出点H 在BC 的延长线上),进一步证明DEF 与DHF △全等,即可解决问题.(1)如图1,正方形ABCD 中,45,3,2EDF AE CF ∠=︒==,则EF =______;(2)如图2,正方形ABCD 中,若30EDF ∠=︒,过点E 作EM BC ∥交DF 于M 点,请计算AE CF +与EM 的比值,写出解答过程;(3)如图3,若60EDF ∠=︒,正方形ABCD 的边长8AB =,试探究DEF 面积的最小值. 进一步证明DEF,,,D F H G 四点共圆;进而可得30FHG ∠=,根据1tan 30AE CF CH CF FH EM GH GH ++====︒(3)过点E 作EK CD ⊥于K ,交DF 于M ,作FT EK ⊥于T ,得出 4DEFS EM =,进而根据(2)的方法得出EM GH =,根据FC AE CH ==时,面积最小,得出32OF =− 【详解】(1)解:∵将ADE V 绕点D 逆时针旋转90︒, ∴90DCH A DCB ∠=∠=︒=∠,DH DE HDC EDA =∠=∠, ∴点H 在BC 的延长线上, ∵四边形ABCD 是正方形 ∴90ADC ∠=︒, ∵45EDF ∠=︒,∴45HDF CDH FDC ADE FDC EDF ∠=∠+∠=∠+∠=︒=∠ 又∵DF DF =,∴DEF ()SAS DHF ≌,∴235EF FH FC CH FC AE ==+=+=+=, 故答案为:5.(2)解:将ADE V ,DEM △绕点D 逆时针旋转90︒,得,DCH DHG∴,AED CHD DEM DHG ∠=∠∠=∠, ∵EM BC ∥,则EM AB ⊥, ∴90AEM ∠=︒,∴90CHG CHD DHG AED DEM AEM ∠=∠+∠=∠+∠=∠=︒, ∵30EDF ∠=︒,EM BC ∥则EM AD ∥, ∴ADE CDH ∠=∠,30GDH MDE ∠=∠=︒, ∵EM BC ∥, ∴EMF DFC ∠=∠,∴180EMD EMF EMD DFC ∠+∠=∠+∠=︒, 即180DFC DGH ∠+∠=︒, ∴,,,D F H G 四点共圆; ∴30GFH GDH ∠=∠=︒, 又30FHG ∠=︒∴1tan 30AE CF CH CF FH EM GH GH ++====︒(3)如图,过点E 作EK CD ⊥于K ,交DF 于M ,作FT EK ⊥于T ,90FTK TKC BCD ∠=∠=∠=︒∴四边形CFTK 是矩形, FT CK ∴=8DK CK DK FT ∴+=+= 111()4222DEFEMDEMFSSSEM DK EM FT EM DK FH EM ∴=+=⋅+⋅=+=同(2)将ADE V ,DEM △绕点D 逆时针旋转90︒,得,DCH DHG , 可得60GFH EDM ∠=∠=︒,EM GH = 取得最小值时,DEF 的面积最小,∵2220−=≥,∴FH x y =+≥ 当且仅当x y =时取得等于号, 此时FC AE CH ==, 设,,,D F H G 的圆心为O , ∵DC FH ⊥,FC CH =, ∴DC 经过点O ,∴OF OD =,sin 602OC OF =︒= ∵8OD OC +=8OF +=解得:32OF =−∴232FH FC OF ===−∴48GH =,∴()44448192DEFSEM GH ====,即DEF 面积的最小为192.【点睛】本题考查了旋转的性质,正方形的性质、全等三角形的判定与性质、四点共圆等知识,解直角三角形,熟练掌握旋转的性质是解题的关键.1.(2023·陕西西安·一模)问题发现(1)在ABC 中,2AB =,60C ∠=︒,则ABC 面积的最大值为 ;(2)如图1,在四边形ABCD 中,6AB AD ==,90BCD BAD ∠=∠=︒,8AC =,求BC CD +的值. 问题解决(3)有一个直径为60cm 的圆形配件O ,如图2所示.现需在该配件上切割出一个四边形孔洞OABC ,要求60O B ∠=∠=︒,OA OC =OABC 的面积尽可能小.试问,是否存在符合要求的面积最小的四边形OABC ?若存在,请求出四边形OABC 面积的最小值及此时OA 的长;若不存在,请说明理由.为弦的确定的圆上,作ABC 的外接圆,可得当点时,ABC 的面积最大,求出,再根据三角形的面积公式计算即可;将ABC 绕点A 逆时针旋转、D 、E 在同一条直线上,求出BCES,可得要使四边形面积最小,就要使BCE 的面积最大,然后由(时,BCE 的面积最)的方法求出BCE 面积的最大值,可得四边形,根据OA 如图,作ABC 的外接圆,∴当点C 在C '的位置,即时,ABC 的面积最大,∴C A C B ''=,BD =∴ABC '△是等边三角形,∴ABC 面积的最大值为)如图,将ABC 绕点∴B ADE ∠=∠,BAC ∠∵6AB AD ==,BCD ∠∴180B ADC ∠+∠=︒,∵60AOC ∠=︒,OA OC =∴将AOB 绕O 点顺时针旋转至COE ,连接∴60BOE ∠=︒,OE OB =∴BOE △是等边三角形,AOBBCOSS+COEBCOSS+ BOE BCES S− BCESBCES,的面积最小,就要使BCE 的面积最大,作BCE 的外接圆I ,点F 是I 上一点,CF 交由(1)可知,当CF 是直径,且CF BE ⊥时,BCE 的面积最大,∴BCE 面积的最大值为150BCES=(1)如图①,已知ABC 是面积为AD 是BAC ∠的平分线,则AB 的长为______. 问题探究:(2)如图②,在ABC 中,90C ∠=︒,AC BC =,4AB =,点D 为AB 的中点,点E ,F 分别在边AC ,BC 上,且90EDF ∠=︒.证明:DE DF =.问题解决:(3)如图③,李叔叔准备在一块空地上修建一个矩形花园ABCD ,然后将其分割种植三种不同的花卉.按照他的分割方案,点P ,Q 分别在AD ,BC 上,连接PQ 、PB 、PC ,60BPC ∠=︒,E 、F 分别在PB 、PC 上,连接QE 、QF ,QE QF =,120EQF ∠=︒,其中四边形PEQF 种植玫瑰,ABP 和PCD 种植郁金香,剩下的区域种植康乃馨,根据实际需要,要求种植玫瑰的四边形PEQF 的面积为2,为了节约成本,矩形花园ABCD 的面积是否存在最小值?若存在,请求出矩形ABCD 的最小面积,若不存在,请说明理由.)设ABC 的边长为EQG ,根据四边形则当PQ BC ⊥时,矩形ABCD 的面积最小,根据2ABCD PEQF S S =四边形四边形,即可求解.【详解】解:(1)∵ABC 是面积为AD 是BAC ∠的平分线, ∴12BD CD AB ==设ABC 的边长为a∴AD ==∴2112224ABCS BC AD a =´=´´=∴24a =解得:4a =, 故答案为:4.(2)如图所示,连接CD ,∵在ABC 中,90C ∠=︒,AC BC =,4AB =,点D 为AB 的中点, ∴CD AD =,90ADC ∠=︒,45A DCF ∠=∠=︒ 又∵90EDF ∠=︒∴ADE ADC CDE EDF EDC CDF ∠=∠−∠=∠−∠=∠ 在,ADE CDF △△中,45A DCF ADE CDF AD CD ∠=∠=︒⎧⎪∠=∠⎨⎪=⎩∴ADE CDF V V ≌ ∴DE DF =; (3)如图所示,∵60BPC ∠=︒,120EQF ∠=︒, ∴36060120180PFQ PEQ ∠+∠=︒−︒−︒=︒ 将QFP △绕点Q 逆时针旋转120︒,得到EQG , ∴,,P E G 三点共线,∴四边形PEQF 的面积等于PQG , 又∵120,PQG PQ GQ ∠=︒=,∴30QPG QGP ∠=∠=︒过点Q 作QN PG ⊥于点N ,则12QN PQ =设PQ b =,则1,22NQ b PN ==∴2PG PN ==∴2111222PQGSPG NQ b =⨯=⨯=∵四边形PEQF 的面积为 ∴16b =,即16PQ =,如图所示,作QM PM ⊥于点M ,∵30EPQ FPQ ∠=∠=︒,QM PM ⊥,QN PG ⊥,则QN QM =, 在,ENQ FMQ 中,QN QM EQ FQ =⎧⎨=⎩∴()HL ENQ FMQ ≌, 同理可得PNQ PMQ ≌ 则2PNQPEQF S S=四边形∴PEQF PNQM S S =四边形四边形,作点Q 关于PE 的对称点T ,连接PT ,则PTQ 是等边三角形,则PTQS=如图所示,依题意,当PQ BC ⊥时,矩形ABCD 的面积最小,此时,E F 与,N M 重合,,∴22ABCD PEQF S S ==⨯四边形四边形∴矩形ABCD 的最小面积为2【点睛】本题考查了全等三角形的性质与判定,等边三角形的性质与判定,等腰三角形的性质与判定,勾股定理,旋转的性质,综合运用以上知识是解题的关键.3.(2024·陕西榆林·二模)(1)如图1,AB CD ∥,1,2AB CD ==,AD ,BC 交于点E ,若4=AD ,则AE = ;(2)如图2,矩形ABCD 内接于O , 2,AB BC ==点 P 在AD 上运动,求 PBC 的面积的最大值; (3)为了提高居民的生活品质,市政部门计划把一块边长为 120米的正方形荒地 ABCD (如图3)改造成一个户外休闲区,计划在边AD ,BC 上分别取点P ,Q ,修建一条笔直的通道PQ ,要求 2CQ AP =,过点 B 作 BE PQ ⊥于点E ,在点E 处修建一个应急处理中心,再修建三条笔直的道路BE CE DE ,,,并计划在 CDE 内种植花卉, DEP 内修建老年活动区, BCE 内修建休息区,在四边形ABEP 内修建儿童游乐园.问种植花卉的 CDE 的面积是否存在最小值? 若存在,求出最小值;若不存在,请说明理由.得ABE DCE ∽,得对应成比例的线段,于是得到结论;时,PBC 的面积有最大值,解直角三角形求出PBC 的高即可得到结论;于点M ,作BME 的外接圆O ,过点OF DC ⊥₂E CD ₂的面积最小. ()∥AB CD DCE ,是O的直径.₂的面积最大.P BC上任意另取一点P₁PBC的面积最大.Rt OBE中,.S=PBC。
浅谈中考数学压轴题的发展趋势及解题策略
浅谈中考数学压轴题的发展趋势及解题策略1. 引言1.1 中考数学压轴题的重要性中考数学压轴题作为中考数学考试中的重要组成部分,承载着选拔优秀学生、检验学生数学综合能力的重要任务。
其重要性主要体现在以下几个方面:一、检验学生对知识的掌握程度。
中考数学压轴题通常涵盖了整个学期所学的知识点,要求学生在解题时能够综合运用知识,考察学生是否真正掌握了各个知识点。
二、考察学生的逻辑思维能力。
中考数学压轴题往往具有一定的难度和复杂性,要求学生能够运用逻辑推理和分析问题的能力来解题,从而培养学生的逻辑思维能力。
三、培养学生的解决问题的能力。
中考数学压轴题常常是一些较为综合性的问题,需要学生具备较强的解决问题的能力,包括分析问题、提出解决方案和合理推断的能力。
四、激励学生学习数学的兴趣。
通过解决中考数学压轴题,学生可以感受到数学的魅力和趣味,从而激发学习数学的兴趣,促使他们更加努力地钻研数学知识。
中考数学压轴题在中考数学考试中具有举足轻重的地位,对学生的学习和成长起着至关重要的作用。
在备考中,学生应当重视中考数学压轴题的练习和掌握,以确保在考试中取得理想的成绩。
1.2 中考数学压轴题的历史演变中考数学压轴题的历史演变源远流长,可以追溯到我国古代科举制度时期。
在科举考试中,对于数学能力的考察也是不可或缺的部分。
随着时间的推移,数学考题的形式和内容也在不断变化和发展。
从过去几十年的中考数学压轴题历年真题来看,最初的数学考题更加注重基础知识和题型的应用。
简单的计算题、几何题和代数题等都是考生必须掌握的内容。
随着教育教学理念的更新和数学教育的发展,中考数学压轴题的内容逐渐趋向于注重思维能力和综合运用能力的考察。
在解题时需要考生灵活应用所学知识,进行逻辑推理和综合分析,而不仅仅是死记硬背基础知识。
随着科技的发展和教育改革的深化,中考数学压轴题也逐渐倾向于注重学生的实际运用能力和创新思维。
涉及到实际问题的数学模型、数学证明题等成为中考数学压轴题中的重要内容。
2024年中考数学重难点押题预测《几何最值问题综合》含答案解析
几何最值问题综合1、2、3、4、题型一1.“两定一动”型将军饮马:①异侧型→直接连接,交点即为待求动点;后用勾股定理求最值②同侧型→对称、连接;后续同上2.“两定两动”型:①同侧型→先水平平移(往靠近对方的方向)、再对称、最后连接;也可先对称、再水平平移(往靠近对方的方向)、最后连接;后续同上。
同侧型异侧型②异侧型→先水平平移(往靠近对方的方向)、再连接;后续同上。
【1(2023•泸州)如图,E,F是正方形ABCD的边AB的三等分点,P是对角线AC上的动点,当PE+PF取得最小值时,APPC的值是 27 .【分析】找出点E 关于AC 的对称点E ',FE '与AC 的交点P '即为PE +PF 取得最小值时P 的位置AP P C的值即可.【E 关于AC 的对称点E ',FE '交AC 于点P ',PE ',∴PE =PE ',∴PE +PF =PE '+PF ≥E 'F ,故当PE +PF 取得最小值时P 位于点P '处∴当PE +PF 取得最小值时AP PC的值AP P C 的值即可.∵正方形ABCD 是关于AC 所在直线轴对称∴点E 关于AC 所在直线对称的对称点E '在AD 上AE '=AE ,过点F 作FG ⊥AB 交AC 于点G ,则∠GFA =90°,∵四边形ABCD 是正方形∴∠DAB =∠B =90°,∠CAB =∠ACB =45°,∴FG ∥BC ∥AD ,∠AGF =∠ACB =45°,∴GF =AF ,∵E ,F 是正方形ABCD 的边AB 的三等分点∴AE '=AE =EF =FB ,∴GC =13AC ,AE GF =AE AF=12,∴AG =23AC ,AP P C =AE GF =12,∴AP '=13AG =13×23AC =29AC ,∴P 'C =AC -AP '=AC -29AC =79AC ,∴AP P C =29AC 79AC =27,故答案为27.2(2023•德州)如图,在四边形ABCD 中,∠A =90°,AD ∥BC ,AB =3,BC =4,点E 在AB 上,且AE =1.F ,G 为边AD 上的两个动点,且FG =1.当四边形CGFE 的周长最小时,CG 的长为 154 .【分析】先确定FG 和EC 的长为确定的值,得到四边形CGFE 的周长最小时,即为CG +EF 最小时,平移CG 到C 'F ,作点E 关于AD 对称点E ',连接E 'C '交AD 于点G ',得到CG +EF 最小时,点G 与G '重合,再利用平行线分线段成比例求出C 'G '长即可.【解答】解:∵∠A =90°,AD ∥BC ,∴∠B =90°,∵AB =3,BC =4,AE =1,∴BE =AB -AE =3-1=2,在Rt △EBC 中,由勾股定理,得EC =BE 2+BC 2=22+42=25,∵FG =1,∴四边形CGFE 的周长=CG +FG +EF +EC =CG +EF +1+25,∴四边形CGFE 的周长最小时,只要CG +EF 最小即可.过点F 作FC '∥GC 交BC 于点C ',延长BA 到E ',使AE '=AE =1,连接E 'F ,E 'C ',E 'C '交AD 于点G ',可得AD 垂直平分E 'E ,∴E 'F =EF ,∵AD ∥BC ,∴C 'F =CG ,CC '=FG =1,∴CG +EF =C 'F +E 'F ≥E 'C ',即CG +EF 最小时,CG =C 'G ',∵E 'B =AB +AE '=3+1=4,BC '=BC -CC '=4-1=3,由勾股定理,得E 'C '=E B 2+BC 2=42+32=5,∵AG '∥BC ',∴C G E C =AB E B ,即C G 5=34,解得C 'G '=154,即四边形CGFE 的周长最小时,CG 的长为154.故答案为:154.3(2023•绥化)如图,△ABC 是边长为6的等边三角形,点E 为高BD 上的动点.连接CE ,将CE 绕点C 顺时针旋转60°得到CF .连接AF ,EF ,DF ,则△CDF 周长的最小值是 3+33 .【分析】分析已知,可证明△BCE≌△ACF,得∠CAF=∠CBE=30°,可知点F在△ABC外,使∠CAF= 30°的射线AF上,根据将军饮马型,求得DF+CF的最小值便可求得本题结果.【解答】解:∵△ABC是等边三角形,∴AC=BC=6,∠ABC=∠BCA=60°,∵∠ECF=60°,∴∠BCE=60°-∠ECA=∠ACF,∵CE=CF,∴△BCE≌△ACF(SAS),∴∠CAF=∠CBE,∵△ABC是等边三角形,BD是高,∴∠CBE=12∠ABC=30°,CD=12AC=3,过C点作CG⊥AF,交AF的延长线于点G,延长CG到H,使得GH=CG,连接AH,DH,DH与AG交于点I,连接CI,FH,则∠ACG=60°,CG=GH=12AC=3,∴CH=AC=6,∴△ACH为等边三角形,∴DH=CD•tan60°=33,AG垂直平分CH,∴CI=HI,CF=FH,∴CI+DI=HI+DI=DH=33,CF+DF=HF+DF≥DH,∴当F与I重合时,即D、F、H三点共线时,CF+DF的值最小为:CF+DF=DH=33,∴△CDF的周长的最小值为3+33.故答案为:3+33.【中考模拟练】4(2024•衡南县模拟)已知:如图,直线y=-2x+4分别与x轴,y轴交于A、B两点,点P(1,0),若在直线AB上取一点M,在y轴上取一点N,连接MN、MP、NP,则MN+MP+NP的最小值是()A.3B.1+255+855C.2855D.10【分析】作点P关于y轴的对称点E,点P关于AB的对称点F,连接EN,EM,EF,FM,FP,设FP交AB 于C,过点F作FD⊥x轴于D,则EN=NP,FM=MP,FP⊥AB,OE=OP,FC=PC,MN+MP+ NP=MN+FM+EN,根据“两点之间线段最短”得MN+FM+EN≥EF,则MN+MP+NP≥EF,因此MN+MP+NP的最小值为线段EF的长;先求出点A(2,0),点B(0,4),则OA=2,OB=4,再由点P (1,0)得OP=1,则OE=OP=1,PA=OA-OP=1,再求出AB=25,证△PAC∽△BAO得PC:OB=PA:AB,由此得PC=255,则PF=455,再证△PFD∽△BAO得FD:OA=PD:OB=PF:AB,由此可得FD=45,PD=85,则ED=OE+OP+PD=185,然后在Rt△EFD中由勾股定理求出EF即可得MN+MP+NP的最小值.【解答】解:作点P关于y轴的对称点E,点P关于AB的对称点F,连接EN,EM,EF,FM,FP,设FP交AB于C,过点F作FD⊥x轴于D,如图所示:则EN=NP,FM=MP,FP⊥AB,OE=OP,FC=PC,∴MN+MP+NP=MN+FM+EN,根据“两点之间线段最短”得MN+FM+EN≥EF,∴MN+MP+NP≥EF,∴MN+MP+NP的最小值为线段EF的长,对于y=-2x+4,当x=0时,y=4,当x=0时,x=2,∴点A(2,0),点B(0,4),∴OA=2,OB=4,又∵点P(1,0),∴OP=1,∴OE=OP=1,PA=OA-OP=2-1=1,在Rt△OAB中,OA=2,OB=4,由勾股定理得:AB=OA2+OB2=25,∵FP⊥AB,FD⊥x轴,∠BOA=90°,∴∠PCA=∠BOA=∠PDF=90°,又∵∠PAC=∠BAO,∴△PAC∽△BAO,∴PC:OB=PA:AB,∠APC=∠ABO,即PC:4=1:25,∴PC=255,∴FC=PC=255,∴PF=FC+PC=455,∵∠APC=∠ABO,∠BOA=∠PDF=90°,∵△PFD∽△BAO,∴FD:OA=PD:OB=PF:AB,即FD:2=PD:4=455:25,∴FD=45,PD=8 5,∴ED=OE+OP+PD=1+1+85=185,在Rt△EFD中,ED=185,FD=45,由勾股定理得:EF=ED2+FD2=285 5.故选:C.5(2023•龙马潭区二模)如图,抛物线y=-x2-3x+4与x轴交于A,B两点(点A在点B的左侧),与y轴交于点C.若点D为抛物线上一点且横坐标为-3,点E为y轴上一点,点F在以点A为圆心,2为半径的圆上,则DE+EF的最小值 65-2 .【分析】先求出点A(-4,0),点D(-3,4),作点D关于y轴对称的点T,则点T(3,4),连接AE交与轴于M,交⊙A于N,过点T作TH⊥x轴于H,连接AF,当点E与点M重合,点F与点N重合时,DE+EF为最小,最小值为线段TN的长,然后可在Rt△ATH中由勾股定理求出TA,进而可得TN,据此可得出答案.【解答】解:对于y=-x2-3x+4,当y=0时,-x2-3x+4=0,解得:x1=-4,x2=1,∴点A的坐标为(-4,0),对于y=-x2-3x+4,当x=-3时,y=4,∴点D的坐标为(-3,4),作点D关于y轴对称的点T,则点T(3,4),连接AE交与轴于M,交⊙A于N,过点T作TH⊥x轴于H,连接AF,当点E与点M重合,点F与点N重合时,DE+EF为最小,最小值为线段TN的长.理由如下:当点E与点M不重合,点F与点N不重合时,∴DE+EF=TE+EF,根据“两点之间线段最短”可知:TE+EF+AF>AT,即:TE+EF+AF>TN+AN,∵AF=AN=2,∴TE+EF>TN,即:DE+EF>TN,∴当点E与点M重合,点F与点N重合时,DE+EF为最小.∵点T(3,4),A(-4,0),∴OH=3,TH=4,OA=4,∴AH=OA+OH=7,在Rt△ATH中,AH=7,TH=4,由勾股定理得:TA=AH2+TH2=65,∴TN=TA-AN=65-2.即DE+EF为最小值为65-2.故答案为:65-2.6(2024•碑林区校级一模)(1)如图①,在Rt△ABC中,∠ABC=90°,AB=6,BC=8,点D是边AC 的中点.以点A为圆心,2为半径在△ABC内部画弧,若点P是上述弧上的动点,点Q是边BC上的动点,求PQ+QD的最小值;(2)如图②,矩形ABCD是某在建的公园示意图,其中AB=2003米,BC=400米.根据实际情况,需要在边DC的中点E处开一个东门,同时根据设计要求,要在以点A为圆心,在公园内以10米为半径的圆弧上选一处点P开一个西北门,还要在边BC上选一处点Q,在以Q为圆心,在公园内以10米为半径的半圆的三等分点的M、N处开两个南门.线段PM、NE是要修的两条道路.为了节约成本,希望PM+NE最小.试求PM+NE最小值及此时BQ的长.【分析】(1)作点D关于BC的对称点D′,连接D′Q、AP,过点D′作D′E⊥AB交AB的延长线于E,则QD =QD′,DK=D′K,当A、P、Q、D′在同一条直线上时,PQ+QD=AD′-AP取得最小值,由DK∥AB,可得△CDK∽△CAB,运用相似三角形性质可得DK=3,CK=4,再由勾股定理即可求得答案;(2)连接MQ,NQ,过点Q作QK⊥MN于K,作点A关于直线MN的对称点A′,将E向左平移10米得到点E′,过点E′作E′L∥AB,过点A′作A′L⊥E′L于L,连接A′M、A′E′、E′M,由题意得随着圆心Q在BC上运动,MN在平行于BC且到BC距离为53的直线上运动,再运用勾股定理可得PM+NE最小值=A′E-AP=(201011-10)米;设E′L与GH的交点为T,过点Q作QK⊥MN于K,由E′L∥AA′,可得△E′MT∽△A′MG,即可求得BQ的值.【解答】解:(1)如图①,作点D 关于BC 的对称点D ′,连接D ′Q 、AP ,过点D ′作D ′E ⊥AB 交AB 的延长线于E ,则QD =QD ′,DK =D ′K ,∴PQ +QD =PQ +QD ′=AQ -AP +QD ′,当A 、P 、Q 、D ′在同一条直线上时,PQ +QD =AD ′-AP 取得最小值,∵∠ABC =90°,AB =6,BC =8,∴AC =AB 2+BC 2=62+82=10,∵点D 是边AC 的中点,∴CD =12AC =5,∵DK ∥AB ,∴△CDK ∽△CAB ,∴DK AB =CK BC =CD AC,即DK 6=CK 8=510,∴DK =3,CK =4,∴D ′K =3,BK =4,∵∠E =∠EBK =∠BKD ′=90°,∴四边形BED ′K 是矩形,∴D ′E =BK =4,BE =D ′K =3,∴AE =AB +BE =6+3=9,∴AD ′=AE 2+D E 2=92+42=97,∵AP =2,∴PQ +QD 的最小值=97-2;(2)如图②,连接MQ ,NQ ,过点Q 作QK ⊥MN 于K ,作点A 关于直线MN 的对称点A ′,将E 向左平移10米得到点E ′,过点E ′作E ′L ∥AB ,过点A ′作A ′L ⊥E ′L 于L ,连接A ′M 、A ′E ′、E ′M ,∵M 、N 是半圆Q 的三等分点,且半径为10,∴△QMN 为等边三角形,且MN ∥BC ,MN =10,∵QK ⊥MN ,QM =10米,∴QK =53米,∴随着圆心Q 在BC 上运动,MN 在平行于BC 且到BC 距离为53的直线上运动,∵EE ′∥MN 且EE ′=MN =10米,∴四边形EE ′MN 是平行四边形,∴NE =ME ′,∴PM +NE =PM +ME ′≥AM -AP +ME ′=AM +ME ′-10,∵E 是CD 的中点,∴DE =12CD =1003,∴E ′L =AA ′-DE =2(AB -QK )-DE =2×(2003-53)-1003=2903(米),A ′L =BC -E ′E =400-10=390(米),在Rt △A ′E ′L 中,A ′E ′=A L 2+E L 2=3902+2903 2=201011,∴PM +NE 最小值=A ′E -AP =(201011-10)米;此时△MNQ 在如图③的△M ′N ′Q 位置,设E′L与GH的交点为T,过点Q作QK⊥MN于K,′∵∠CBG=∠BGK=∠GKQ=90°,∴四边形BGKQ是矩形,∴BQ=GK,∵E′L∥AA′,∴△E′MT∽△A′MG,∴MT MG =E TA G,∵MT=390-MG,E′T=EH=1003-53=953(米),A′G=AG= 2003-53=1953(米),GT=390米,∴390-MGMG =953 1953,∴MG=760529(米),∴GK=GM+MK=760529+5=775029(米),∴BQ=GK=775029米,∴当PM+NE取最小值时,BQ的长为775029米.7(2023•卧龙区二模)综合与实践问题提出(1)如图①,请你在直线l上找一点P,使点P到两个定点A和B的距离之和最小,即PA+PB的和最小(保留作图痕迹,不写作法);思维转换(2)如图②,已知点E是直线l外一定点,且到直线l的距离为4,MN是直线l上的动线段,MN=6,连接ME,NE,求ME+NE的最小值.小敏在解题过程中发现:“借助物理学科的相对运动思维,若将线段MN 看作静线段,则点E在平行于直线l的直线上运动”,请你参考小敏的思路求ME+NE的最小值;拓展应用(3)如图③,在矩形ABCD中,AD=2AB=25,连接BD,点E、F分别是边BC、AD上的动点,且BE= AF,分别过点E、F作EM⊥BD,FN⊥BD,垂足分别为M、N,连接AM、AN,请直接写出△AMN周长的最小值.【分析】(1)作点A的对称点,由两点之间线段最短解题即可;(2)将M、N看作定点,E看作动点,由(1)作法可解;(3)由相似得出MN为定值,再根据(2)作法求出AM+AN的最值,即可解答.【解答】解:(1)如图①,则点P为所求.连接A′B交l于点P,由对称得AP=A′P,∴AP+BP=A′P+BP,∵两点之间线段最短,∴A′P+BP最短,即PA+PB的和最小.(2)如图②,过点E作直线l1∥l,作点N关于l1的对称点N′,连接MN′,交l1于点P,则PM+PN的值即是EM+EN的最小值,∵点E到直线l的距离为4,∵NN′=8,∵MN=6,∴MN′=62+82=10,∴PM+PN=10,即ME+NE的最小值为10.(3)如图③,过A作l∥BD,AH⊥BD于点H,作点M关于l的对称点M′,连接M′N,由(2)得M′N为AM+AN的最小值,∵AB=5,AD=25,∴BD=52=5,2+25∴AH=5×25=2,5∴MM′=4,设ME=x,由△ABD∽△BME得,BM=2x,BE=5x,∴AF=5x,∴DF=25-5x,由△DNF∽△ABD得,DN=4-2x,∴MN=5-2x-(4-2x)=1,∵l∥BD,MM′⊥l,∴MM′⊥BD,∴M′N=42+12=17,∴△AMN周长的最小值为17+1.题型二:辅助圆类几何最值动点的运动轨迹为辅助圆的三种形式:1、定义法--若一动点到定点的距离恒等于固定长,则该点的运动轨迹为以定点为圆心,定长为半径的圆(或圆弧)2、定边对直角--若一条定边所对的“动角”始终为直角,则直角顶点运动轨迹是以该定边为直径的圆(或圆弧)3.定边对定角--若一条定边所对的“动角”始终为定角,则该定角顶点运动轨迹是以该定角为圆周角,该定边为弦的圆(或圆弧)【中考真题练】8(2023•黑龙江)如图,在Rt△ACB中,∠BAC=30°,CB=2,点E是斜边AB的中点,把Rt△ABC 绕点A顺时针旋转,得Rt△AFD,点C,点B旋转后的对应点分别是点D,点F,连接CF,EF,CE,在旋转的过程中,△CEF面积的最大值是 4+3 .【分析】线段CE为定值,点F到CE距离最大时,△CEF的面积最大,画出图形,即可求出答案.【解答】解:∵线段CE为定值,∴点F到CE的距离最大时,△CEF的面积有最大值.在Rt△ACB中,∠BAC=30°,E是AB的中点,∴AB =2BC =4,CE =AE =12AB =2,AC =AB •cos30°=23,∴∠ECA =∠BAC =30°,过点A 作AG ⊥CE 交CE 的延长线于点G ,∴AG =12AC =3,∵点F 在以A 为圆心,AB 长为半径的圆上,∴AF =AB =4,∴点F 到CE 的距离最大值为4+3,∴S △CEF =12CE ⋅4+3 =4+3,故答案为:4+3.【中考模拟练】9(2023•永寿县二模)如图,在正方形ABCD 中,AB =4,M 是AD 的中点,点P 是CD 上一个动点,当∠APM 的度数最大时,CP 的长为 4-22 .【分析】因为同弧所对的圆外角小于圆周角,因此过点A 、M 作⊙O 与CD 相切于点P ',当点P 运动到点P '处时,∠AP 'M 的度数最大,记AM 的中点为N ,可以证出四边形OP 'DN 是矩形,在Rt △MON 中,利用勾股定理求出ON ,从而得出DP '的长,进而求出CP 的长.【解答】解:过点A 、M 作⊙O 与CD 相切于点P ',记PM 与⊙O 交于点Q ,连接AP ′,MP ′,OM ,OP ′,AQ ,则∠AP 'M =∠AQM >∠APM ,∠OP ′D =90°,∴当点P 运动到点P '时,∠AP 'M 最大,作ON ⊥AD 于点N ,则MN =AN =12AM ,∵四边形ABCD 是正方形,∴∠D =90°,∴四边形OP 'DN 是矩形,∵AB =4,M 是AD 的中点,∴AM =DM =2,MN =1,∴OM =OP '=DN =DM +MN =3,在Rt △MON 中,ON =OM 2-MN 2=32-12=22,∴DP '=ON =22,∴CP '=DC -DP '=4-22,∴当∠APM 的度数最大时,CP 的长为4-22.故答案为:4-22.10(2023•营口一模)如图,等边三角形ABC 和等边三角形ADE ,点N ,点M 分别为BC ,DE 的中点,AB =6,AD =4,△ADE 绕点A 旋转过程中,MN 的最大值为 53 .【分析】分析题意可知,点M 是在以AM 为半径,点A 为圆心的圆上运动,连接AN ,AM ,以AM 为半径,点A 为圆心作圆,反向延长AN 与圆交于点M ′,以此得到M 、A 、N 三点共线时,MN 的值最大,再根据勾股定理分别算出AM 、AN 的值,则MN 的最大值M ′N =AN +AM ′=AN +AM .【解答】解:连接AN ,AM ,以AM 为半径,点A 为圆心作圆,反向延长AN 与圆交于点M ′,如图,∵△ADE 绕点A 旋转,∴点M 是在以AM 为半径,点A 为圆心的圆上运动,∵AM +AN ≥MN ,∴当点M 旋转到M ′,即M 、A 、N 三点共线时,MN 的值最大,最大为M ′N ,∵△ABC 和△ADE 都是等边三角形,点N ,点M 分别为BC ,DE 的中点,AB =6,AD =4,∴AN ⊥BC ,AM ⊥DE ,BN =3,DM =2,在Rt △ABN 中,由勾股定理得AN =AB 2-BN 2=33,在Rt △ADM 中,由勾股定理得AM =AD 2-DM 2=23,根据旋转的性质得,AM ′=AM =23,∴M ′N =AN +AM ′=53,即MN 的最大值为53.故答案为:53.11(2023•定远县校级一模)如图,半径为4的⊙O 中,CD 为直径,弦AB ⊥CD 且过半径OD 的中点,点E 为⊙O 上一动点,CF ⊥AE 于点F .当点E 从点B 出发顺时针运动到点D 时,点F 所经过的路径长为 23π3 .【分析】由∠AFC =90°,得点F 在以AC 为直径的圆上运动,当点E 与B 重合时,此时点F 与G 重合,当点E 与D 重合时,此时点F 与A 重合,则点E 从点B 出发顺时针运动到点D 时,点F 所经过的路径长为AG 的长,然后根据条件求出AG 所在圆的半径和圆心角,从而解决问题.【解答】解:∵CF ⊥AE ,∴∠AFC =90°,∴点F 在以AC 为直径的圆上运动,以AC 为直径画半圆AC ,连接OA ,当点E 与B 重合时,此时点F 与G 重合,当点E 与D 重合时,此时点F 与A 重合,∴点E 从点B 出发顺时针运动到点D 时,点F 所经过的路径长为AG的长,∵点G 为OD 的中点,∴OG =12OD =12OA =2,∵OG ⊥AB ,∴∠AOG =60°,AG =23,∵OA =OC ,∴∠ACG =30°,∴AC =2AG =43,∴AG 所在圆的半径为23,圆心角为60°,∴AG 的长为60π×23180=23π3,故答案为:23π3.12(2024•兰州模拟)综合与实践【问题情境】在数学综合实践课上,“希望小组”的同学们以三角形为背景,探究图形变化过程中的几何问题,如图,在△ABC 中,AB =AC ,∠BAC =90°,点D 为平面内一点(点A ,B ,D 三点不共线),AE 为△ABD 的中线.【初步尝试】(1)如图1,小林同学发现:延长AE 至点M ,使得ME =AE ,连接DM .始终存在以下两个结论,请你在①,②中挑选一个进行证明:①DM =AC ;②∠MDA +∠DAB =180°;【类比探究】(2)如图2,将AD 绕点A 顺时针旋转90°得到AF ,连接CF .小斌同学沿着小林同学的思考进一步探究后发现:AE =12CF ,请你帮他证明;【拓展延伸】(3)如图3,在(2)的条件下,王老师提出新的探究方向:点D 在以点A 为圆心,AD 为半径的圆上运动(AD >AB ),直线AE 与直线CF 相交于点G ,连接BG ,在点D 的运动过程中BG 存在最大值.若AB =4,请直接写出BG 的最大值.【分析】(1)利用SAS 证明△ABE ≌△MDE ,可得AB =DM ,再结合AB =AC ,即可证得DM =AC ;由全等三角形性质可得∠BAE =∠DME ,再运用平行线的判定和性质即可证得∠MDA +∠DAB =180°;(2)延长AE 至点M ,使得ME =AE ,连接DM .利用SAS 证得△ACF ≌△DMA ,可得CF =AM ,再由AE =12AM ,可证得AE =12CF ;(3)延长DA 至M ,使AM =AD ,设AM 交CF 于N ,连接BM 交CF 于K ,取AC 中点P ,连接GP ,可证得△ACF ≌△ABM (SAS ),利用三角形中位线定理可得AE ∥BM ,即AG ∥BM ,利用直角三角形性质可得GP =12AC =12AB =2,得出点G 在以P 为圆心,2为半径的⊙P 上运动,连接BP 并延长交⊙P 于G ′,可得BG ′的长为BG 的最大值,再运用勾股定理即可求得答案.【解答】(1)证明:①∵AE 为△ABD 的中线,∴BE =DE ,在△ABE 和△MDE 中,BE =DE ∠AEB =∠MED AE =ME,∴△ABE ≌△MDE (SAS ),∴AB =DM ,∵AB =AC ,∴DM =AC ;②由①知△ABE ≌△MDE ,∴∠BAE =∠DME ,∴AB ∥DM ,∴∠MDA +∠DAB =180°;(2)证明:延长AE 至点M ,使得ME =AE ,连接DM .由旋转得:AF =AD ,∠DAF =90°,∵∠BAC =90°,∠DAF +∠BAC +∠BAD +∠CAF =360°,∴∠BAD +∠CAF =180°,由(1)②得:∠MDA +∠DAB =180°,DM =AB =AC ,∴∠CAF =∠MDA ,在△ACF 和△DMA 中,AF =AD ∠CAF =∠MDA AC =DM,∴△ACF ≌△DMA (SAS ),∴CF =AM ,∵AE =12AM ,∴AE =12CF ;(3)如图3,延长DA 至M ,使AM =AD ,设AM 交CF 于N ,连接BM 交CF 于K ,取AC 中点P ,连接GP ,由旋转得:AF =AD ,∠DAF =90°,∴AF =AM ,∠MAF =180°-90°=90°,∵∠BAC =90°,∴∠MAF +∠CAM =∠BAC +∠CAM ,即∠CAF =∠BAM ,在△ACF 和△ABM 中,AC =AB ∠CAF =∠BAM AF =AM,∴△ACF ≌△ABM (SAS ),∴∠AFC =∠AMB ,即∠AFN =∠KMN ,∵∠ANF=∠KNM,∴∠FAN=∠MKN=90°,∴BM⊥CF,∵E、A分别是DB、DM的中点,∴AE是△BDM的中位线,∴AE∥BM,即AG∥BM,∴AG⊥CF,∴∠AGC=90°,∵点P是AC的中点,∴GP=12AC=12AB=2,∴点G在以P为圆心,2为半径的⊙P上运动,连接BP并延长交⊙P于G′,∴BG′的长为BG的最大值,在Rt△ABP中,BP=AB2+AP2=42+22=25,∴BG′=BP+PG′=25+2,∴BG的最大值为25+2.题型三:瓜豆原理类几何最值大概动点问题符合瓜豆原理的模型时,也可以和几何最值结合【中考真题练】13(2022•沈阳)【特例感知】(1)如图1,△AOB和△COD是等腰直角三角形,∠AOB=∠COD=90°,点C在OA上,点D在BO的延长线上,连接AD,BC,线段AD与BC的数量关系是AD=BC;【类比迁移】(2)如图2,将图1中的△COD绕着点O顺时针旋转α(0°<α<90°),那么第(1)问的结论是否仍然成立?如果成立,证明你的结论;如果不成立,说明理由.【方法运用】(3)如图3,若AB=8,点C是线段AB外一动点,AC=33,连接BC.①若将CB绕点C逆时针旋转90°得到CD,连接AD,则AD的最大值是 8+36 ;②若以BC为斜边作Rt△BCD(B,C,D三点按顺时针排列),∠CDB=90°,连接AD,当∠CBD=∠DAB=30°时,直接写出AD的值.【分析】(1)证明△AOD≌△BOC(SAS),即可得出结论;(2)利用旋转性质可证得∠BOC =∠AOD ,再证明△AOD ≌△BOC (SAS ),即可得出结论;(3)①过点A 作AT ⊥AB ,使AT =AB ,连接BT ,AD ,DT ,BD ,先证得△ABC ∽△TBD ,得出DT =36,即点D 的运动轨迹是以T 为圆心,36为半径的圆,当D 在AT 的延长线上时,AD 的值最大,最大值为8+36;②如图4,在AB 上方作∠ABT =30°,过点A 作AT ⊥BT 于点T ,连接AD 、BD 、DT ,过点T 作TH ⊥AD 于点H ,可证得△BAC ∽△BTD ,得出DT =32AC =32×33=92,再求出DH 、AH ,即可求得AD ;如图5,在AB 下方作∠ABE =30°,过点A 作AE ⊥BE 于点E ,连接DE ,可证得△BAC ∽△BTD ,得出DE =92,再由勾股定理即可求得AD .【解答】解:(1)AD =BC .理由如下:如图1,∵△AOB 和△COD 是等腰直角三角形,∠AOB =∠COD =90°,∴OA =OB ,OD =OC ,在△AOD 和△BOC 中,,∴△AOD ≌△BOC (SAS ),∴AD =BC ,故答案为:AD =BC ;(2)AD =BC 仍然成立.证明:如图2,∵∠AOB =∠COD =90°,∴∠AOB +∠AOC =∠AOC +∠COD =90°+α,即∠BOC =∠AOD ,在△AOD 和△BOC 中,,∴△AOD ≌△BOC (SAS ),∴AD =BC ;(3)①过点A 作AT ⊥AB ,使AT =AB ,连接BT ,AD ,DT ,BD ,∵△ABT 和△CBD 都是等腰直角三角形,∴BT =2AB ,BD =2BC ,∠ABT =∠CBD =45°,∴BT AB=BD BC =2,∠ABC =∠TBD ,∴△ABC ∽△TBD ,∴DT AC =BT AB=2,∴DT =2AC =2×33=36,∵AT =AB =8,DT =36,∴点D 的运动轨迹是以T 为圆心,36为半径的圆,∴当D 在AT 的延长线上时,AD 的值最大,最大值为8+36,故答案为:8+36;②如图4,在AB 上方作∠ABT =30°,过点A 作AT ⊥BT 于点T ,连接AD 、BD 、DT ,过点T 作TH ⊥AD 于点H ,∵BT AB =BD BC =cos30°=32,∠ABC =∠TBD =30°+∠TBC ,∴△BAC ∽△BTD ,∴DT AC=BD BC =32,∴DT =32AC =32×33=92,在Rt △ABT 中,AT =AB •sin ∠ABT =8sin30°=4,∵∠BAT =90°-30°=60°,∴∠TAH =∠BAT -∠DAB =60°-30°=30°,∵TH ⊥AD ,∴TH =AT •sin ∠TAH =4sin30°=2,AH =AT •cos ∠TAH =4cos30°=23,在Rt △DTH 中,DH ===652,∴AD =AH +DH =23+652;如图5,在AB 上方作∠ABE =30°,过点A 作AE ⊥BE 于点E ,连接DE ,则BE AB=BD BC =cos30°=32,∵∠EBD =∠ABC =∠ABD +30°,∴△BDE ∽△BCA ,∴DE AC =BE AB =32,∴DE =32AC =32×33=92,∵∠BAE =90°-30°=60°,AE =AB •sin30°=8×12=4,∴∠DAE =∠DAB +∠BAE =30°+60°=90°,∴AD ===172;综上所述,AD 的值为23+652或172.【中考模拟练】14(2023•金平区三模)如图,长方形ABCD 中,AB =6,BC =152,E 为BC 上一点,且BE =32,F 为AB 边上的一个动点,连接EF ,将EF 绕着点E 顺时针旋转45°到EG 的位置,连接FG 和CG ,则CG 的最小值为 32+32 .【分析】如图,将线段BE 绕点E 顺时针旋转45°得到线段ET ,连接DE 交CG 于J .首先证明∠ETG =90°,推出点G 的在射线TG 上运动,推出当CG ⊥TG 时,CG 的值最小.【解答】解:如图,将线段BE 绕点E 顺时针旋转45°得到线段ET ,连接DE 交CG 于J .∵四边形ABCD 是矩形,∴AB =CD =6,∠B =∠BCD =90°,∵∠BET =∠FEG =45°,∴∠BEF =∠TEG ,∵EB =ET ,EF =EG ,∴△EBF ≌△ETG (SAS ),∴∠B =∠ETG =90°,∴点G 在射线TG 上运动,∴当CG ⊥TG 时,CG 的值最小,∵BC =152,BE =32,CD =6,∴CE =CD =6,∴∠CED =∠BET =45°,∴∠TEJ =90°=∠ETG =∠JGT =90°,∴四边形ETGJ 是矩形,∴DE ∥GT ,GJ =TE =BE =32,∴CJ ⊥DE ,∴JE =JD ,∴CJ =12DE =32,∴CG =CJ +GJ =32+32,∴CG 的最小值为32+32,故答案为:32+32.15(2023•苍溪县一模)如图,线段AB 为⊙O 的直径,点C 在AB 的延长线上,AB =4,BC =2,点P 是⊙O 上一动点,连接CP ,以CP 为斜边在PC 的上方作Rt △PCD ,且使∠DCP =60°,连接OD ,则OD 长的最大值为 23+1 .【分析】如图,作△COE ,使得∠CEO =90°,∠ECO =60°,则CO =2CE ,OE =23,∠OCP =∠ECD ,由△COP ∽△CED ,推出OP ED =CP CD=2,即ED =12OP =1(定长),由点E 是定点,DE 是定长,推出点D 在半径为1的⊙E 上,由此即可解决问题.【解答】解:如图,作△COE ,使得∠CEO =90°,∠ECO =60°,则CO =2CE ,OE =23,∠OCP =∠ECD ,∵∠CDP =90°,∠DCP =60°,∴CP =2CD ,∴CO CE =CP CD=2,∴△COP ∽△CED ,∴OP ED =CP CD =2,即ED =12OP =1(定长),∵点E 是定点,DE 是定长,∴点D 在半径为1的⊙E 上,∵OD ≤OE +DE =23+1,∴OD 的最大值为23+1,故答案为23+1.16(2023•海淀区校级三模)在平面直角坐标系xOy 中,给定图形W 和点P ,若图形W 上存在两个点M ,N 满足PM =3PN 且∠MPN =90°,则称点P 是图形W 的关联点.已知点A (-23,0),B (0,2).(1)在点P 1(-3,-1),P 2(-3,3),P 3(-23,-2)中,P1,P 2 是线段AB 的关联点;(2)⊙T 是以点T (t ,0)为圆心,r 为半径的圆.①当t =0时,若线段AB 上任一点均为⊙O 的关联点,求r 的取值范围;②记线段AB 与线段AO 组成折线G ,若存在t ≥4,使折线G 的关联点都是⊙T 的关联点,直接写出r 的最小值.【分析】(1)根据关联点的定义,结合勾股定理进行判断即可;(2)①根据题意推得三角形PMN 为含30度角的直角三角形,根据瓜豆原理可得求得点O 到点P 的最大距离为3+12r ,最小距离为3-12r ,推得⊙O 的所有关联点在以O 为圆心,3+12r 和3-12r 为半径的两个圆构成的圆环中,结合图形求得半径r 的取值范围;②结合①中的结论,画出满足条件的关联点的范围,进行求解即可.【解答】解:(1)∵∠MPN =90°,∴△MPN 为直角三角形,∴满足MN 2=PM 2+PN 2,根据勾股定理可得:,,,;,,;P3A=2,,,∵,且,∴是线段AB的关联点;∵,且,∴是线段AB的关联点;∵P3A=7P3B,且P3A2+P3B2≠AB2,∴∠BAO=30°,P3A⊥OA,∴∠P3AB=90°+30°=120°,∴对于线段AB上的任意两点M、N,当时,∠P3NM>90°,如图,则∠MPN必是锐角,不可能是直角,∴不是线段AB的关联点;故答案为:P1,P2.(2)①由(1)可得:∵∠MPN=90°,∴△MPN为直角三角形,∴MN2=PM2+PN2=4PN2,即MN=2PN,即三角形PMN为含30度角的直角三角形,如图:则点P是以MN为斜边且含30度角的直角三角形的直角顶点.在圆O上取点M,N,则对于任意位置的M和N,符合的关联点有2个,如图:以点P 为例,当点M 在半径为r 的⊙O 上运动时,点N 为圆上一定点,且MN =2PN ,∠PNM =60°,则点M 的运动轨迹为圆,故点P 的轨迹也为圆,令点P 的轨迹为圆R ,如图:当M ,O ,N 三点共线,P ,R ,N 三点共线时,∠PNM =60°,∴OR =32r ,RN =12r ,则点O 到点P 的最大距离为3+12r ,最小距离为3-12r ,当点N 也在⊙O 上运动时,⊙R 也随之运动,则⊙R 扫过的区域为3+12r 和3-12rr 为半径围成的圆,即⊙O 的所有关联点在以O 为圆心,3+12r 和3-12r 为半径的两个圆构成的圆环中,∴当线段AB 与半径为3+12r 交于点A 时,r 最小,如图:则3+12r =23,解得r =6-23,当线段AB 与半径为3-12r 的圆相切时,r 最大,过点O 作OH ⊥AB ,如图:则,即,解得,则,解得,∴②当关联点在线段AB上时,满足条件的关联点所在范围如图阴影部分:当关联点在线段AO上时,满足条件的关联点所在范围如图阴影部分:当关联点在不同线段上时,满足条件的关联点在点O和点B上的范围如图阴影部分:综上,所有区域叠加一起为:由①可知,满足T的所有关联点所在范围为圆环,故若使得圆环能够完整“包住”关联点,圆环中外圆的必须经过点G1,∵∠GBA=30°,∠G=90°,∠OBA=60°,∠O=90°,∴四边形AOBG为矩形,∴,则,即,解得r=42(负值舍去);综上,r的最小值为42.17(2024•昆山市一模)如图1,在平面直角坐标系中,直线y=-5x+5与x轴,y轴分别交于A、C两点,抛物线y=x2+bx+c经过A、C两点,与x轴的另一交点为B.(1)求抛物线解析式;(2)若点M为x轴下方抛物线上一动点,当点M运动到某一位置时,△ABM的面积等于△ABC面积的35,求此时点M的坐标;(3)如图2,以B为圆心,2为半径的⊙B与x轴交于E、F两点(F在E右侧),若P点是⊙B上一动点,连接PA,以PA为腰作等腰Rt△PAD,使∠PAD=90°(P、A、D三点为逆时针顺序),连接FD.求FD长度的取值范围.【分析】(1)将点A(1,0),C(0,5)代入y=x2+bx+c,即可求解;×4×(-m2+6m-5),(2)设M(m,m2-6m+5),先求AB=4,则S△ABC=10,再由题意可得S△AMB=6=12即可求M(2,-3)或M(4,-3);(3)将点B绕A点顺时针旋转90°到B',连接AB',PB,B'D,可证明△ADB'≌△APB(SAS),则可得D在以B'为圆心,2为半径的圆上运动,又由B'(1,-4),F(7,0),则B'F=213,所以DF的最大值为61+ 2,DF的最小值为61-2,即可求213-2≤DF≤213+2.【解答】解:(1)令x=0,则y=5,∴C(0,5),令y=0,则x=1,∴A(1,0),将点A(1,0),C(0,5)代入y=x2+bx+c,得,∴,∴y=x2-6x+5;(2)设M(m,m2-6m+5),令y=0,则x2-6x+5=0,解得x=5或x=1,∴B(5,0),∴AB=4,∴S△ABC=1×4×5=10,2∵△ABM的面积等于△ABC面积的35,∴S△AMB=6=1×4×(-m2+6m-5),2解得m=2或m=4,∴M(2,-3)或M(4,-3);(3)将点B绕A点顺时针旋转90°到B',连接AB',PB,B'D,∵∠B'AD+∠BAD=90°,∠PAB+∠BAD=90°,∴∠B'AD=∠PAB,∵AB=AB',PA=AD,∴△ADB'≌△APB(SAS),∴BP=B'D,∵PB=2,∴B'D=2,∴D在以B'为圆心,2为半径的圆上运动,∵B(5,0),A(1,0),∴B'(1,-4),∵BF=2,∴F(7,0),∴B'F=213,∴DF的最大值为213+2,DF的最小值为213-2,∴213-2≤DF≤213+2.题型四:其他类几何最值除了常见的模型与几何最值结合外,还有一些几何问题,应用直接的最值原理,比如:点到直线的距离垂线段最短等【中考真题练】18(2023•锦州)如图,在Rt△ABC中,∠ACB=90°,∠ABC=30°,AC=4,按下列步骤作图:①在AC和AB上分别截取AD,AE,使AD=AE.②分别以点D和点E为圆心,以大于12DE的长为半径作弧,两弧在∠BAC内交于点M.③作射线AM交BC于点F.若点P是线段AF上的一个动点,连接CP,则CP+12AP的最小值是 23 .【分析】根据题目中所给的条件,判断AF为角平分线,由问题可知,需要利用胡不归模型构建直角三角形,转化两条线段和为一条线段,利用三角函数求出线段长度.【解答】理由如下:由作图步骤可知,射线AM为∠CAB的角平分线,∵∠ABC=90°,∠B=30°,∴∠CAB=60°,∵AM平分∠CAB,∴∠CAF=∠BAF=12∠CAB=30°,过点C作CN⊥AB于N,交AF于P,在Rt△APN中,∠BAF=30°,∴PN=12AP,∴CP+12AP=CP+PN=CN,根据点到直线的距离,垂线段最短,此时CP+PN值最小在Rt△ACN中,∠CAN=60°,AC=4,∴sin60°=CNAC,∴CN=sin60°×AC=4×32=23,∴CP+12AP=CP+PN=CN=23,故答案为:23.19(2023•德阳)如图,在底面为正三角形的直三棱柱ABC-A1B1C1中,AB=23,AA1=2,点M为AC的中点,一只小虫从B1沿三棱柱ABC-A1B1C1的表面爬行到M处,则小虫爬行的最短路程等于 19 .【分析】利用平面展开图可总结为3种情况,画出图形利用勾股定理求出B1M的长即可.【解答】解:如图1,将三棱柱ABC-A1B1C1的侧面BB1C1C和侧面CC1A1A沿CC1展开在同一平面内,连接MB1,∵M是AC的中点,△ABC和△A1B1C1是等边三角形,∴CM=12AC=12×23=3,∴BM=CM+BC=33,在Rt△MBB1中,由勾股定理得:B1M=BM2+B1B2=31,如图2,把底面ABC和侧面BB1A1A沿AB展开在同一平面内,连接MB1,过点M作MF⊥A1B1于点F,交AB于点E,则四边形AEFA1是矩形,ME⊥AB,在Rt△AME中,∠MAE=60°,∴ME =AM •sin60°=3×32=32,AE =AM •cos60°=32,∴MF =ME +EF =32+2=72,B 1F =A 1B 1-A 1F =332,在Rt △MFB 1中,由勾股定理得:B 1M =MF 2+B 1F 2=19,如图3,连接B 1M ,交A 1C 1于点N ,则B 1M ⊥AC ,B 1N ⊥A 1C 1,在Rt △A 1NB 1中,∠NA 1B 1=60°,∴NB 1=A 1B 1•sin60°=3,∴B 1M =NB 1+MN =5,∵19<5<31,∴小虫爬行的最短路程为19.故答案为:19.20(2023•常州)如图,在Rt △ABC 中,∠BAC =90°,AB =AC =4,D 是AC 延长线上的一点,CD =2.M 是边BC 上的一点(点M 与点B 、C 不重合),以CD 、CM 为邻边作▱CMND .连接AN 并取AN 的中点P ,连接PM ,则PM 的取值范围是 22≤MP <5 .【分析】先根据题意确定点P 的运动轨迹,即可确定MP 的最大值和最小值,从而解答.【解答】解:∵AB =AC =4,∴AD =6,∵△ABC 是等腰直角三角形,四边形CNMD 是平行四边形,∴DN ∥BC ,DN =BC ,CD ∥MN ,CD =MN ,∴∠ADN =∠ACB =45°=∠ABC =∠CMN ,当M 与B 重合时,如图M1,N 1,P 1,∠ABN 1=90°,∴AN 1=42+22=25,∵P 1是中点,∴MP 1=12AN 1=5,当MP ⊥BC 时,如图P 2,M 2,N 2,∵P 1,P ,P 2是中点,∴P 的运动轨迹为平行于BC 的线段,交AC 于H ,∴CH =3-2=1,∵∠ACB =45°,∴PH 与BC 间的距离为P2M 2=22CH =22,∵M不与B、C重合,∴22≤MP<5.【中考模拟练】21(2024•济南一模)如图,在矩形ABCD中,AB=4,BC=3,E为AB上一点,连接DE,将△ADE 沿DE折叠,点A落在A1处,连接A1C,若F、G分别为A1C、BC的中点,则FG的最小值为1.【分析】连接A1B,由F、G分别为A1C、BC的中点可得FG=12A1B,在△A1BD中有A1B+A1D≥BD,由勾股定理可得BD,由折叠性质和矩形性质可得A1D=AD=BC,即可求解.【解答】解:如图,连接A1B,BD,∵F、G分别为A1C、BC的中点,∴FG=12A1B,当FG的最小时,即A1B最小,∵四边形ABCD为矩形,AB=4,BC=3,∴AD=BC=3,∠A=90°,∴BD=AB2+AD2=5,∵△ADE沿DE折叠,∴A1D=AD=3,在△A1BD中有A1B+A1D≥BD,∴A1B≥BD-A1D,即A1B≥2,∴FG=12A1B≥1,∴FG的最小值为1,故答案为:1.22(2024•郾城区一模)如图,在矩形ABCD中,AD=63,AB=6,对角线AC,BD相交于点O,点E在线段AC上,且AE=4,点F为线段BD上的一个动点,则EF+12BF的最小值为4.【分析】过点E作EG⊥BC于点G,过点F作FH⊥BC于点H,首先根据题意将12BF用FH表示,再将EF+FH的最小值用EG表示,进而求出EG的长即可解决问题.【解答】解:过点E作EG⊥BC于点G,过点F作FH⊥BC于点H,如图,∵四边形ABCD是矩形,AD=63,AB=6,。
初中数学考试压轴题解题技巧方法
初中数学考试压轴题解题技巧方法压轴题这类题目一般分数多,难度大,考验综合能力强,在考试中是能够拉开成绩的题目,也是很多同学重点钻研项目。
下面是小编为大家整理的关于初中数学压轴题解题技巧,希望对您有所帮助!中考数学压轴题解题技巧1.学会运用与方程思想。
从分析问题的数量关系入手,适当设定未知数,把所研究的数学问题中已知量和未知量之间的数量关系,转化为方程或的数学模型,从而使问题得到解决的思维方法,这就是方程思想。
用方程思想解题的关键是利用已知条件或公式、定理中的已知结论构造方程(组)。
这种思想在代数、几何及生活实际中有着广泛的应用。
2.学会运用数形结合思想。
数形结合思想是指从几何直观的角度,利用的性质研究数量关系,寻求代数问题的解决方法(以形助数),或利用数量关系来研究几何图形的性质,解决几何问题(以数助形)的一种数学思想. 数形结合思想使数量关系和几何图形巧妙地结合起来,使问题得以解决。
纵观近几年全国各地的中考压轴题,绝大部分都是与有关,其特点是通过建立点与数即坐标之间的对应关系,一方面可用代数方法研究几何图形的性质,另一方面又可借助几何直观,得到某些代数问题的解答。
3.要学会抢得分点。
一道中考数学压轴题解不出来,不等于“一点不懂、一点不会”,要将整道题目解题思路转化为得分点。
如中考数学压轴题一般在大题下都有两至三个小题,难易程度是第1小题较易,大部学生都能拿到;第2小题中等,起到承上启下的作用;第3题偏难,不过往往建立在1、2两小题的基础之上。
因此,我们在解答时要把第1小题的分数一定拿到,第2小题的分数要力争拿到,第3小题的分数要争取得到,这样就大大提高了获得中考数学高分的可能性。
4.学会运用等价转换思想。
转化思想是解决数学问题的一种最基本的数学思想。
在研究数学问题时,我们通常是将未知问题转化为已知的问题,将复杂的问题转化为简单的问题,将抽象的问题转化为具体的问题,将实际问题转化为数学问题。
转化的内涵非常丰富,已知与未知、数量与图形、图形与图形之间都可以通过转化来获得解决问题的转机。
初中数学解题技巧+中考必刷压轴题30道,时间看过来
初中数学解题技巧+中考必刷压轴题30道,抓紧时间看过来!选择题解法大全方法一:排除选项法选择题因其答案是四选一,必然只有一个正确答案,那么我们就可以采用排除法,从四个选项中排除掉易于判断是错误的答案,那么留下的一个自然就是正确的答案。
方法二:赋予特殊值法即根据题目中的条件,选取某个符合条件的特殊值或作出特殊图形进行计算、推理的方法。
用特殊值法解题要注意所选取的值要符合条件,且易于计算。
方法三:通过猜想、测量的方法,直接观察或得出结果这类方法在近年来的初中题中常被运用于探索规律性的问题,此类题的主要解法是运用不完全归纳法,通过试验、猜想、试误验证、总结、归纳等过程使问题得解。
方法四:直接求解法有些选择题本身就是由一些填空题、判断题、解答题改编而来的,因此往往可采用直接法,直接由从题目的条件出发,通过正确的运算或推理,直接求得结论,再与选择项对照来确定选择项。
我们在做解答题时大部分都是采用这种方法。
例如:商场促销活动中,将标价为200元的商品,在打8折的基础上,再打8折销售,现该商品的售价是( )A 、160元 B、128元 C 、120元 D、 88元方法五:数形结合法解决与图形或图像有关的选择题,常常要运用数形结合的思想方法,有时还要综合运用其他方法。
方法六:代入法将选择支代入题干或题代入选择支进行检验,然后作出判断。
方法七:观察法观察题干及选择支特点,区别各选择支差异及相互关系作出选择。
方法八:枚举法列举所有可能的情况,然后作出正确的判断。
例如:把一张面值10元的人民币换成零钱,现有足够面值为2元,1元的人民币,换法有( )A.5种B.6种C.8种D.10种分析:如果设面值2元的人民币x张,1元的人民币y元,不难列出方程,此方程的非负整数解有6对,故选B。
方法九:待定系数法要求某个函数关系式,可先假设待定系数,然后根据题意列出方程(组),通过解方程(组),求得待定系数,从而确定函数关系式,这种方法叫待定系数法。
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
最新中考数学压轴题预测,压轴题解题策略,解题技巧,专项训练中考数学压轴题总的可分为函数型综合题和几何型综合题。
(一)函数型综合题:是先给定直角坐标系和几何图形,求(已知)函数的解析式(即在求解前已知函数的类型),然后进行图形的研究,求点的坐标或研究图形的某些性质。
初中已知函数有:①一次函数(包括正比例函数)和常值函数,它们所对应的图像是直线;②反比例函数,它所对应的图像是双曲线;③二次函数,它所对应的图像是抛物线。
求已知函数的解析式主要方法是待定系数法,关键是求点的坐标,而求点的坐标基本方法是几何法(图形法)和代数法(解析法)。
此类题基本在第25或26题,满分12--14分,基本分2-3小题来呈现。
(二)几何型综合题:是先给定几何图形,根据已知条件进行计算,然后有动点(或动线段)运动,对应产生线段、面积等的变化,求对应的(未知)函数的解析式(即在没有求出之前不知道函数解析式的形式是什么)和求函数的定义域,最后根据所求的函数关系进行探索研究,一般有:在什么条件下图形是等腰三角形、直角三角形、四边形是菱形、梯形等或探索两个三角形满足什么条件相似等或探究线段之间的位置关系等或探索面积之间满足一定关系求x的值等和直线(圆)与圆的相切时求自变量的值等。
求未知函数解析式的关键是列出包含自变量和因变量之间的等量关系(即列出含有x、y的方程),变形写成y=f(x)的形式。
一般有直接法(直接列出含有x和y的方程)和复合法(列出含有x和y和第三个变量的方程,然后求出第三个变量和x之间的函数关系式,代入消去第三个变量,得到y=f(x)的形式),当然还有参数法,这个已超出初中数学教学要求。
找等量关系的途径在初中主要有利用勾股定理、平行线截得比例线段、三角形相似、面积相等方法。
求定义域主要是寻找图形的特殊位置(极限位置)和根据解析式求解。
而最后的探索问题千变万化,但少不了对图形的分析和研究,用几何和代数的方法求出x的值。
几何型综合题基本在第26题做为压轴题出现,满分14分,一般分三小题呈现。
在解数学综合题时我们要做到:数形结合记心头,大题小作来转化,潜在条件不能忘,化动为静多画图,分类讨论要严密,方程函数是工具,计算推理要严谨,创新品质得提高。
解中考数学压轴题秘诀:具有选拔功能的中考压轴题是为考察考生综合运用知识的能力而设计的题目,其特点是知识点多,覆盖面广,条件隐蔽,关系复杂,思路难觅,解法灵活。
解数学压轴题,一要树立必胜的信心,二要具备扎实的基础知识和熟练的基本技能,三要掌握常用的解题策略。
现介绍几种常用的解题策略,供初三同学参考。
1、以坐标系为桥梁,运用数形结合思想:纵观最近几年各地的中考压轴题,绝大部分都是与坐标系有关的,其特点是通过建立点与数即坐标之间的对应关系,一方面可用代数方法研究几何图形的性质,另一方面又可借助几何直观,得到某些代数问题的解答。
2、以直线或抛物线知识为载体,运用函数与方程思想:直线与抛物线是初中数学中的两类重要函数,即一次函数与二次函数所表示的图形。
因此,无论是求其解析式还是研究其性质,都离不开函数与方程的思想。
例如函数解析式的确定,往往需要根据已知条件列方程或方程组并解之而得。
3、利用条件或结论的多变性,运用分类讨论的思想:分类讨论思想可用来检测学生思维的准确性与严密性,常常通过条件的多变性或结论的不确定性来进行考察,有些问题,如果不注意对各种情况分类讨论,就有可能造成错解或漏解,纵观近几年的中考压轴题分类讨论思想解题已成为新的热点。
4、综合多个知识点,运用等价转换思想:任何一个数学问题的解决都离不开转换的思想,初中数学中的转换大体包括由已知向未知,由复杂向简单的转换,而作为中考压轴题,更注意不同知识之间的联系与转换,一道中考压轴题一般是融代数、几何、三角于一体的综合试题,转换的思路更要得到充分的应用。
中考压轴题所考察的并非孤立的知识点,也并非个别的思想方法,它是对考生综合能力的一个全面考察,所涉及的知识面广,所使用的数学思想方法也较全面。
因此有的考生对压轴题有一种恐惧感,认为自己的水平一般,做不了,甚至连看也没看就放弃了,当然也就得不到应得的分数,为了提高压轴题的得分率,考试中还需要有一种分题、分段的得分策略。
5、分题得分:中考压轴题一般在大题下都有两至三个小题,难易程度是第(1)小题较易,第(2)小题中等,第(3)小题偏难,在解答时要把第(1)小题的分数一定拿到,第(2)小题的分数要力争拿到,第(3)小题的分数要争取得到,这样就大大提高了获得中考数学高分的可能性。
6、分段得分:一道中考压轴题做不出来,不等于一点不懂,一点不会,要将片段的思路转化为得分点,因此,要强调分段得分,分段得分的根据是“分段评分”,中考的评分是按照题目所考察的知识点分段评分,踏上知识点就给分,多踏多给分。
因此,对中考压轴题要理解多少做多少,最大限度地发挥自己的水平,把中考数学的压轴题变成最有价值的压台戏。
数学压轴题是初中数学中覆盖知识面最广,综合性最强的题型。
综合近年来各地中考的实际情况,压轴题多以函数和几何综合题的形式出现。
压轴题考查知识点多,条件也相当隐蔽,这就要求学生有较强的理解问题、分析问题、解决问题的能力,对数学知识、数学方法有较强的驾驭能力,并有较强的创新意识和创新能力,当然,还必须具有强大的心理素质。
下面谈谈中考数学压轴题的解题技巧(先以年河南中考数学压轴题为例)。
如图,在平面直角坐标系中,已知矩形ABCD 的三个顶点B (4,0)、C (8,0)、D (8,8).抛物线y=ax 2+bx 过A 、C 两点.(1)直接写出点A 的坐标,并求出抛物线的解析式;(2)动点P 从点A 出发.沿线段AB 向终点B 运动,同时点Q 从点C 出发,沿线段CD 向终点D 运动.速度均为每秒1个单位长度,运动时间为t 秒.过点P 作PE ⊥AB 交AC 于点E.①过点E 作EF ⊥AD 于点F ,交抛物线于点G.当t 为何值时,线段EG 最长? ②连接EQ .在点P 、Q 运动的过程中,判断有几个时刻使得△CEQ 是等腰三角形?请直接写出相应的t 值.解:(1)点A 的坐标为(4,8) …………………1分将A (4,8)、C (8,0)两点坐标分别代入y=ax 2+bx8=16a+4b得 0=64a+8b 解 得a=-12,b=4抛物线的解析式为:y=-12x 2+4x …………………4分 ∴(2)①在Rt △APE 和Rt △ABC 中,tan ∠PAE=PE AP =BC AB ,即PE AP =48∴PE=12AP=12t .PB=8-t . ∴点E的坐标为(4+12t ,8-t ).∴点G 的纵坐标为:-12(4+12t )2+4(4+12t )=-18t 2+8. …………………6分∴EG=-18t 2+8-(8-t) =-18t 2+t.∵-18<0,∴当t=4时,线段EG 最长为2. …………………9分②共有三个时刻. …………………11分t 1=163, t 2=4013,t 3 …………………14分压轴题的做题技巧如下:1、对自身数学学习状况做一个完整的全面的认识,根据自己的情况考试的时候重心定位准确,防止 “捡芝麻丢西瓜”。
所以,在心中一定要给压轴题或几个“难点”一个时间上的限制,如果超过你设置的上限,必须要停止,回头认真检查前面的题,尽量要保证选择、填空万无一失,前面的解答题尽可能的检查一遍。
2、解数学压轴题做一问是一问。
第一问对绝大多数同学来说,不是问题;如果第一小问不会解,切忌不可轻易放弃第二小问。
过程会多少写多少,因为数学解答题是按步骤给分的,写上去的东西必须要规范,字迹要工整,布局要合理;过程会写多少写多少,但是不要说废话,计算中尽量回避非必求成分;尽量多用几何知识,少用代数计算,尽量用三角函数,少在直角三角形中使用相似三角形的性质。
3、解数学压轴题一般可以分为三个步骤:认真审题,理解题意、探究解题思路、正确解答。
审题要全面审视题目的所有条件和答题要求,在整体上把握试题的特点、结构,以利于解题方法的选择和解题步骤的设计。
解数学压轴题要善于总结解数学压轴题中所隐含的重要数学思想,如转化思想、数形结合思想、分类讨论思想及方程的思想等。
认识条件和结论之间的关系、图形的几何特征与数、式的数量、结构特征的关系,确定解题的思路和方法.当思维受阻时,要及时调整思路和方法,并重新审视题意,注意挖掘隐蔽的条件和内在联系,既要防止钻牛角尖,又要防止轻易放弃。
压轴题解题技巧练习一、 图形变换型例:(江苏苏州)已知二次函数()()2680y a xx a =-+>的图象与x 轴分别交于点A 、B ,与y 轴交于点C .点D是抛物线的顶点.(1)如图①,连接AC ,将△OAC 沿直线AC 翻折,若点O 的对应点O'恰好落在该抛物线的对称轴上,求实数a的值;(2)如图②,在正方形EFGH中,点E、F的坐标分别是(4,4)、(4,3),边HG位于边EF的右侧.小林同学经过探索后发现了一个正确的命题:“若点P是边EH或边HG上的任意一点,则四条线段PA、PB、PC、PD不能与任何一个平行四边形的四条边对应相等(即这四条线段不能构成平行四边形).”若点P是边EF或边FG上的任意一点,刚才的结论是否也成立?请你积极探索,并写出探索过程;(3)如图②,当点P在抛物线对称轴上时,设点P的纵坐标t是大于3的常数,试问:是否存在一个正数a,使得四条线段PA、PB、PC、PD与一个平行四边形的四条边对应相等(即这四条线段能构成平行四边形)?请说明理由.【答案】【考点】二次函数,图形的翻转,300角的直角三角形的性质, 平行四边形的判定,一元二次方程. 【分析】(1)先利用点在二次函数上点的坐标满足方程和300角的直角三角形300角所对的 直角边是斜边的一半, 求出点A,B,C 的坐标,再求出a.(2)比较四线段的长短来得出结论.(3)由点A,B 是抛物线与X 轴的交点, 点P 在抛物线对称轴上,所以PA=PB,要PA,PB,PC,PD 构成一个平行四边形的四条边,只要PC=PD, 从而推出a 。
1.(南宁)如图12,把抛物线2y x =-(虚线部分)向右平移1个单位长度,再向上平移1个单位长度,得到抛物线1l ,抛物线2l 与抛物线1l 关于y 轴对称.点A 、O 、B 分别是抛物线1l 、2l 与x 轴的交点,D 、C 分别是抛物线1l 、2l 的顶点,线段CD 交y 轴于点E . (1)分别写出抛物线1l 与2l 的解析式;(2)设P 是抛物线1l 上与D 、O 两点不重合的任意一点,Q 点是P 点关于y 轴的对称点,试判断以P 、Q 、C 、D 为顶点的四边形是什么特殊的四边形?说明你的理由.(3)在抛物线1l 上是否存在点M ,使得ABM AOED S S ∆∆=四边形,如果存在,求出M 点的坐标,如果不存在,请说明理由.AC DE BO 2l 1l yx2.(福建宁德市)如图,已知抛物线C 1:()522-+=x a y 的顶点为P ,与x 轴相交于A 、B 两点(点A 在点B 的左边),点B 的横坐标是1.(1)求P 点坐标及a 的值;(4分)(2)如图(1),抛物线C 2与抛物线C 1关于x 轴对称,将抛物线C 2向右平移,平移后的抛物线记为C 3,C 3的顶点为M ,当点P 、M 关于点B 成中心对称时,求C 3的解析式;(4分)(3)如图(2),点Q 是x 轴正半轴上一点,将抛物线C 1绕点Q 旋转180°后得到抛物线C 4.抛物线C 4的顶点为N ,与x 轴相交于E 、F 两点(点E 在点F 的左边),当以点P 、N 、F 为顶点的三角形是直角三角形时,求点Q 的坐标.(5分)二、 运动型:动点、动线例:(河北)如图,在平面直角坐标系中,点P 从原点O 出发,沿x 轴向右以毎秒1个单位长的速度运动t 秒(t>0),抛物线y=x 2+bx+c 经过点O 和点P ,已知矩形ABCD 的三个顶点 为 A (1,0),B (1,﹣5),D (4,0). (1)求c ,b (用含t 的代数式表示):(2)当4<t <5时,设抛物线分别与线段AB ,CD 交于点M ,N .①在点P 的运动过程中,你认为∠AMP 的大小是否会变化?若变化,说明理由;若不变,求出∠AMP 的值;②求△MPN 的面积S 与t 的函数关系式,并求t 为何值时,错误!未找到引用源。