一次函数与反比例函数教案

合集下载

一次函数与反比例函数综合应用教案

一次函数与反比例函数综合应用教案

一次函数与反比例函数综合应用教案一、教学目标1. 让学生掌握一次函数和反比例函数的基本概念和性质。

2. 培养学生运用一次函数和反比例函数解决实际问题的能力。

3. 引导学生通过合作交流,提高解决问题的策略和思维能力。

二、教学内容1. 一次函数的基本概念和性质。

2. 反比例函数的基本概念和性质。

3. 一次函数和反比例函数的综合应用。

三、教学重点与难点1. 教学重点:一次函数和反比例函数的基本概念、性质和综合应用。

2. 教学难点:一次函数和反比例函数的综合应用。

四、教学方法1. 采用问题驱动法,引导学生主动探究一次函数和反比例函数的性质。

2. 利用案例分析法,让学生通过实际问题体会一次函数和反比例函数的应用价值。

3. 采用合作交流法,培养学生团队协作和沟通能力。

五、教学过程1. 导入新课:通过生活实例引入一次函数和反比例函数的概念。

2. 自主学习:让学生自主探究一次函数和反比例函数的性质。

3. 案例分析:分析实际问题,引导学生运用一次函数和反比例函数解决问题。

4. 合作交流:分组讨论,让学生分享解题策略和心得。

5. 总结提升:总结一次函数和反比例函数的性质及应用,提高学生解决问题的能力。

6. 课后作业:布置相关练习题,巩固所学知识。

六、教学活动设计1. 活动一:引入概念通过展示实际生活中的线性关系图片,如直线轨道上列车的运动,引导学生思考线性关系的表现形式。

引导学生提出一次函数的表达式,并解释其含义。

2. 活动二:探索性质学生通过绘制一次函数图像,观察并总结其在坐标系中的性质。

通过实际例子,让学生理解一次函数的斜率和截距对图像的影响。

3. 活动三:反比例函数的引入引导学生从比例关系出发,思考反比例函数的概念。

通过实际问题,如在固定面积内,距离与面积的关系,引入反比例函数。

七、教学评价设计1. 评价目标:学生能理解并应用一次函数和反比例函数解决实际问题。

通过设计具有挑战性的问题,如购物预算问题,让学生应用所学的函数知识。

反比例函数与一次函数综合教案

反比例函数与一次函数综合教案

反比例函数与一次函数的综合
一、定义
一般地,形如 y = x
k ( k 是常数, k = 0 ) 的函数叫做反比例函数。

(1)常数 k 称为比例系数,k 是非零常数;
(2)三种常见的表达形式: y = x
k (k ≠ 0) , xy = k (k ≠ 0) ,y=kx -1(k ≠0) 例1:函数22)2(--=a
x a y 是反比例函数,则a 的值是
T2 提高训练T1
二、图象和性质
1.形状:图象是双曲线。

2.位置:(1)当k>0时,双曲线分别位于第一、三象限内;
(2)当k<0时, 双曲线分别位于第二、四象限内
3.增减性:(1)当k>0时, y 随x 的增大而增大;
(2)当k<0时, y 随x 的增大而减小
4.变化趋势:双曲线无限接近于x 、y 轴,但永远不会与坐标轴相交
5.对称性:对于双曲线本身来说,它的两个分支关于直角坐标系原点对称 T1 T4 T5 提高训练T2 T3
三、用待定系数法求解析式(与一次函数结合)相交问题 面积问题,
T6 提高训练T4 T5
例:如图,在平面直角坐标系中,直线2k y x =+与双曲线k y x
=在第一象限交于点A ,
与x 轴交于点C ,AB ⊥x 轴,垂足为B ,且AOB S Λ=1.求:
(1)求两个函数解析式; (2)求△ABC 的面积.。

论文资料:一次函数与反比例函数的复习教案

论文资料:一次函数与反比例函数的复习教案

一次函数与反比例函数的复习教案文登营中学岳春香教学目标:1.结合具体情景体会一次函数与反比例函数的意义,会根据已知条件确定一次函数与反比例函数的表达式。

2.会画一次函数及反比例函数的图像。

3.根据函数的图像和解析表达式探索并理解一次函数与反比例函数的性质(k>0或k <0时图像的变化情况)。

4.能用一次函数及反比例函数解决实际问题。

5、通过知识点与相应题目相结合,进一步巩固本章知识点;教学重点:关注函数关系式的确定,函数性质的应用教学难点:强化数形结合的意识,从函数图像上获取信息.教学方法:讲练结合.教学过程:知识回顾:利用提纲让学生回忆已学过的知识点一.例题:下列函数,①y=2x②.③④. ⑤⑥y=3x+1;其中是y关于x的反比例函数的有:_________________。

是y关于x的正比例函数的有:____ _______________,是y关于x的一次函数的有:___________________.。

由此例题引出复习一次函数与反比例函数的概念。

1、一次函数的概念:函数y=_______(k、b为常数,k______)叫做一次函数。

当b_____时,函数y=____(k ____)叫做正比例函数。

反比例函数的概念:函数y=________(k_____)叫做反比例函数。

2、一次函数解析式中自变量x的次数是___次,比例系数_____。

而反比例函数解析式中自变量x的的次数是___次,比例系数_____。

3、正比例函数y=kx(k≠0)的图象是过点(____ _),(______)的_________。

4、一次函数y=kx+b(k≠0)的图象是过点(0,___),(____,0)的__________。

5、正比例函数y=kx(k≠0)的性质:⑴当k>0时,图象过______象限;y随x的增大而____。

⑵当k<0时,图象过______象限;y随x的增大而____。

6、一次函数y=kx+b(k ≠ 0)的性质:⑴当k>0时,y随x的增大而_________。

反比例函数教案(优秀7篇)

反比例函数教案(优秀7篇)

反比例函数教案(优秀7篇)反比例函数教案篇一一、背景分析1.对教材的分析本节课讲述内容为北师大版教材九年级下册第五章《反比例函数》的第二节,也这一章的重点。

本节课是在理解反比例函数的意义和概念的基础上,进一步熟悉其图象和性质的过程。

本节课前一课时是在具体情境中领会反比例函数的意义和概念。

函数的性质蕴涵于概念之中,对反比例函数性质的探索是对其内在规定性的的认识,也是对函数的概念的深化。

同时,本节课也是下一节课《反比例函数的应用》的基础,有了本节课的知识储备,便于学生利用函数的观点来处理问题和解释问题。

传统教材在内容和编写意图的比较:传统教材里反比例函数的内容仅有一节,新教材里反比例函数的内容增加至一章。

本节课中的作函数图象的要求在新旧教材中并不一样,旧教材对画图只是一带而过,而新教材中让学生反复作反比例函数的图象,为下一步性质的探索打下良好的基础。

因为在学生进行函数的列表、描点作图是活动中,就已经开始了对反比例函数性质的探索,而且通过对函数的三种表示方式的整和,逐步形成对函数概念的整体性认识。

在旧教材中对反比例函数性质只是简单观察以后,由老师讲解得到,但是在新教材中注重从操作、观察、概括和交流这些数学活动中得到性质结论,从而逐步提高从函数图象中获取信息的能力。

这也充分体现了重视获取知识过程体验的新课标的精神。

(1)教学目标:进一步熟悉作函数图象的主要步骤,会作反比例函数的图象;体会函数三种方式的相互转换,对函数进行认识上的整和;逐步提高从函数图象中获取知识的能力,探索并掌握反比例函数的主要性质。

(2)重点:会作反比例函数的图象;探索并掌握反比例函数的主要性质。

(3)难点:探索并掌握反比例函数的主要性质。

2、对学情的分析九年级学生在前面学习了一次函数之后,对函数有了一定的认识,虽然他们在小学已经接触了反比例,但都处于浅显的、肤浅的知识表面,这对于他们理解反比例函数的图象与性质没有多大的帮助,但由于本节课采用z+z智能教育平台进行教学,比较形象,便于学生接受。

新高一数学衔接课专题四 一次函数与反比例函数(教案)

新高一数学衔接课专题四  一次函数与反比例函数(教案)

专题四 函数第一讲 一次函数与反比例函数学习目标:(1) 掌握一次函数与反比例函数的图像与性质。

(2) 能运用一次函数与反比例函数的图象与性质解决有关问题。

(3) 能懂得分析图象,从图象中得出信息,归纳总结知识,进一步提高学生的分析能力、归纳能力与数形结合能力。

(4) 培养认真严谨的学习态度和良好的合作意识,进一步提高学习积极性。

学习重点:熟练应用一次函数与反比例函数的图象与性质进行解题。

学习难点:进一步利用数形结合的思想方法进行解题。

教学方法:讲授法,启发法 学法指导:数形结合 教具:多媒体 教学过程: 【知识梳理】1、函数:一般地,设在一个变化过程中有_两__个变量x 和y ,如果对于变量x 每一个值,变量y 都有唯一的值与它对应,我们称y 是x 的_函数__,其中,x 是_自变量__,y 是_因变量__。

函数的实质是两个变量的对应关系。

自变量的取值范围应是使代数式和实际问题有意义,当自变量取一个值时,函数都有唯一的一个值与其对应。

2.函数的表示方法有3种:(1)表格;(2)图形;(3)解析式。

3.函数图象的画法---描点法描点法的步骤:列表、描点、连线。

4.一次函数y kx b =+ (k 、b 为常数,k ≠0)的图象与性质5.反比例函数的图象与性质k 、b 的符号k >0b >0 k >0 b <0 k <0 b >0 k <0b <0图像的大致位置经过象限第 1、2、3 象限 第 1、3、4 象限 第1、2、4 象限 第2、3、4 象限 性质 y 随x 的增大 而 增大 y 随x 的增大而 增大 y 随x 的增大而 减小 y 随x 的增大而 减小函数 k 图象象限 x 增大,y 如何变化(k ≠0)k>0一、三___在每一象限内__________,y 随x 的增大而__增大_______.x k y =yxo【例题选讲】知识点1:一次函数和反比例函数的概念例1.①若函数 是一次函数,则m=-2 ②若函数 y=(m-1)22-mx 是反比例函数,则m 的值等于-1知识点2: 一次函数和反比例函数的图象与性质例2.函数y=kx-k 与 y=xk(k ≠0) 在同一条直角坐标系中的 图象可能是( D )知识点3:一次函数与反比例函数综合问题例3:一次函数y=kx+b 的图象与反比例函数y=mx的图象交于A (-2,1),B (•1,n )两点. (1)求反比例函数和一次函数的解析式;(2)根据图象写出使一次函数的值大于反比例函数的值的x 的取值范围.解:(1)把A (-2,1)代入y=mx,得m=-2, 即反比例函数为y=-2x ,则n=21-⇒n=-2.即B (1,-2),把A (-2,1),B (1,-2)代入y=kx+b ,求得k=-1,b=-1,所以y=-x-1. (2)x<-2或0<x<1. 【巩固练习】1.二次函数2y ax bx c =++的图象如图所示,反比列函数ay x=与正比列函数y bx =在同一坐标系内的大致图象是( B )k<0二、四____在每一象限内_____________,y 随x 的增大而__减小_______.xy oxy oxy oxy o(A) (B) (C) (D) yxo123-=+m x y2. 已知一次函数y 1=kx+b与反比例函数y 2=kx错误!未找到引用源。

反比例函数与一次函数的综合运用(优质课教案)

反比例函数与一次函数的综合运用(优质课教案)

反比例函数与一次函数的综合运用蒲岐中学章青海一、教学目标、重点、难点的确定结合本节课的教学内容和学生现有的学习水平,我确定本节课的教学目标如下:1.知识与技能:通过本节学习,巩固反比例函数和一次函数的图像和性质,并能用它解决相关问题.2.过程与方法:通过观察简单图象入手,步步引入,逐渐掌握解决本节例题的方法,通过动手操作,提高分析解决问题的能力,并体会一般与特殊的关系,了解数形结合思想.3.情感、态度与价值观:通过学生之间的讨论、交流和探索,建立合作意识,提高探索能力,激发学习的兴趣和欲望,体会数学在生活中广泛的应用价值.教学重点:利用反比例函数和一次函数的图像和性质解决有关问题教学难点:1、综合运用反比例函数和一次函数的图像和性质知识解决创新型问题2、对数形结合思想的理解与深入应用二、教学流程(一) 简单图象导入,温故知新教师:同学们好,请同学们看屏幕.如图,问题1.如图在Rt△ABC中,∠B=90°,AB=2、BC=1,你可以得出哪些结论?设计意图:让学生复习解直角三角形的知识及一般情况三角形会求哪些结论?引出面积为反比例函数的引入作铺垫。

问(2)将Rt△ABC如图放入直角坐标系中;还可以得出什么结论?设计意图:让学生体会当直角坐标系与简单几何图形结合,点线都可以用代数知识来表示,充分理解直角坐标系是数形结合很好的工具。

.借助哪个函数工具可以画出和它面积一样的直角三角形?设计意图:引入反比例函数,复习反比例函数解析式的求法,充分理解掌握k=xy 面积不变性,认识应用的基本图形,为等积法解决原题作铺垫。

问(3) .在平面直角坐标系中找到点D,使得以A 、B 、C 、 D 为顶点的四边形是平行四边形。

设计意图:比较自然的引出(0,-1);(4,1)又可以得出直线y=21x -1,从数学思想看也复习了分类讨论思想。

问(4).如图反比例函数y=x 4 与一次函数y=21x -1交于C,D 两点 你能提出一个新问题吗?并尝试解决.设计意图:预设3副图解决三类常见问题求交点,求三角形面积及大小比较 让学生总结方法技巧问(5). 直线y=21x-1与x 轴交于点B,过点B 作x 轴的垂线交反比例函数y=x4于点C,连接AC 你能判断三角形ABC 的形状吗?(创新型综合问题)设计意图:还是让学生观察图形特征,总结点规律,为解决原题作基础。

反比例函数与一次函数综合应用教案

反比例函数与一次函数综合应用教案

反比例函数与一次函数的综合应用一、学情分析1. 学生:学生已经学过了反比例函数和一次函数,有了一定的了解,但是综合性有待提高;2. 教材:这是初三复习内容;3. 课程:本课程针对中考反比例函数与一次函数结合的题目进行复习练习。

二、教学目标:1、知识目标:(1)一次函数、正比例函数、反比例函数的概念。

(2)一次函数、正比例函数、反比例函数的图象及性质。

2、能力目标:(1)用待定系数法求一次函数、正比例函数、反比例函数的解析式。

(2)会用作出一次函数、正比例函数、反比例函数的图象。

(3)能够应用一次函数与反比例函数的图象与性质分析解决一次函数与反比例函数的综合题。

3、情感态度与价值观:通过解题进一步理解数形结合的数学思想在函数中的应用。

三、教学重点:1.一次函数、正比例函数、反比例函数的图象及性质。

2.用待定系数法求一次函数、正比例函数、反比例函数的解析式。

3.熟练应用一次函数与反比例函数的图象与性质进行解题。

四、教学难点:1.灵活运用一次函数、正比例函数、反比例函数的有关知识解综合题。

2.进一步利用数形结合的思想方法进行解题。

五、教学方法:讲练结合六、学情分析:学生已经基本掌握反比例函数和一次函数的概念、图象和性质,但我校学生计算能力、试图能力和分析能力都有待提高,因此我选择了稍微简单的综合题,意在让学生提高能力的同时增强学习数学的自信心。

七、教学过程(一)源于中考,以点展面(导入)一个函数具有下列性质:①它的图象经过(-1,4);②在每个象限内,函数y 的值随自变量x 的值增大而增大;请你写出一个符合上述条件的函数关系式: .【设计意图:本题属于开放性试题,答案可以是反比例函数(一般学生)也可以是一次函数(好学生),由此引出本节课的内容,反比例函数与一次函数综合应用】(二)综合应用,提升能力(新授课)1.例题分析若xy 4-=的图象与正比例函数y =kx (k ≠0)的图象在第二象限的交点为A (-1,n ),如图.(1)求正比例函数的解析式;(中等学生回答)(2)确定该函数的图象与正比例函数y =kx 的图象另一个交点B 的坐标;(全体学生回答)(3)过点A 、B 向x 轴作垂线,垂足为M 、N ,求S △AOM 、S △BON . (全体学生回答)(4)①若C (2,m ) 为该正比例函数图象上一点,比较m 与n 的大小;(中等学生回答)②若E (-2,m ) 为该正比例函数图象上一点,比较m 与n 的大小;(全体学生回答) ③若反比例函数值大于正比例函数值,确定 x 的取值范围. (中等学生回答)【说明:本题是由4道学生熟悉的小题综合在一起的,难度不大,让学生体验一部分综合题就是由几个有关联的小题放在一起,消除学生抵触心理,为后面难点打基础】2. 方法总结解决函数问题方法总结:(师生共同总结,学生在学案中填写)解决问题 求函数解析式 确定交点坐标 求几何图形面积 比较函数值大小 3. 针对练习:回归中考,能力检测4(学生独立完成,大屏幕展示学生解题过程)(三)变式延伸,拓展思维:1. 例题分析若直线()041>+=k kx y 与反比例函数()02≠=m m xm y 为常数,的图象一个交点为A (-3,1),如图.(1)=1y ;=2y (全体学生)(2)直接写出两函数的另一个交点坐标;(全体学生)(3)当x 取何值时,21y y >;(中等学生)(4)求△OAB 的面积; (较好学生)(5)过点A 作x 轴的垂线,过点B 作y 轴的垂线,两线交于点C .(课外延伸)①若反比例函数()02≠=m m xm y 为常数,的图象与△ABC 有公共点,请直接写出m 的取值范围;②若一次函数y =ax +b 的图象平行于直线 AB ,若直线y =ax +b 与△ABC 有公共点,求b 的取值范围;【说明:本题是本节课的难点,一次函数与反比例函数的结合,以及割补法求面积,利用多媒体教学的优势,用动画展示割补的过程,从而突破难点】2. 方法总结一次函数与反比例函数综合应用方法总结:(师生共同总结,学生在学案中填写)3. 针对练习:回归中考,能力检测5(学生独立完成,大屏幕展示学生解题过程)(四)课堂小结:本节课讲的解决函数问题以及函数综合题的方法,强调交点的重要性.(五)课堂反馈:回归中考,能力检测6八、板书设计策 略 方 法八、教学反思本节课学生基本掌握反比例函数和一次函数的概念、图象和性质以及掌握利用这些知识解较简单的综合题的方法,但是对于数形结合的思想运用、与几何知识的结合、坐标与线段的转化还不是很熟练,需要进一步练习提高。

反比例函数教案(优秀8篇)

反比例函数教案(优秀8篇)

反比例函数教案(优秀8篇)《反比例函数》教学设计篇一一、知识与技能1、能灵活列反比例函数表达式解决一些实际问题。

2、能综合利用几何、方程、反比例函数的知识解决一些实际问题。

二、过程与方法1、经历分析实际问题中变量之间的关系,建立反比例函数模型,进而解决问题。

2、体会数学与现实生活的紧密联系,增强应用意识,提高运用代数方法解决问题的能力。

三、情感态度与价值观1、积极参与交流,并积极发表意见。

2、体验反比例函数是有效地描述现实世界的重要手段,认识到数学是解决实际问题和进行交流的重要工具。

教学重点:掌握从实际问题中建构反比例函数模型。

教学难点:从实际问题中寻找变量之间的关系。

关键是充分运用所学知识分析实际情况,建立函数模型,教学时注意分析过程,渗透数形结合的思想。

教具准备1、教师准备:课件(课本有关市煤气公司在地下修建煤气储存室等)。

2、学生准备:(1)复习已学过的反比例函数的图象和性质(2)预习本节课的内容,尝试收集有关本节课的情境资料。

教学过程一、创设问题情境,引入新课复习:反比例函数图象有哪些性质?反比例函数 y?kx 是由两支曲线组成,当K0时,两支曲线分别位于第一、三象限内,在每一象限内,y随x的增大而减少;当K0时,两支曲线分别位于第二、四象限内,在每一象限内,y随x的增大而增大。

二、讲授新课[例1]市煤气公司要在地下修建一个容积为104m3的圆柱形煤气储存室。

(1)储存室的底面积S(单位:m2)与其深度d(单位:m)有怎样的函数关系?(2)公司决定把储存室的底面积S定为500m2,施工队施工时应该向下挖进多深?(3)当施工队按(2)中的计划挖进到地下15m时,碰上了坚硬的岩石,为了节约建设资金,公司临时改变计划把储存室的深改为15m,相应的,储存室的底面积应改为多少才能满足需要(保留两位小数)。

设计意图:让学生体验反比例函数是有效地描述现实世界的重要手段,让学生充分认识到数学是解决实际问题和进行交流的重要工具,此活动让学生从实际问题中寻找变量之间的关系。

反比例函数教案(优秀6篇)

反比例函数教案(优秀6篇)

反比例函数教案(优秀6篇)(经典版)编制人:__________________审核人:__________________审批人:__________________编制单位:__________________编制时间:____年____月____日序言下载提示:该文档是本店铺精心编制而成的,希望大家下载后,能够帮助大家解决实际问题。

文档下载后可定制修改,请根据实际需要进行调整和使用,谢谢!并且,本店铺为大家提供各种类型的经典范文,如工作资料、求职资料、报告大全、方案大全、合同协议、条据文书、教学资料、教案设计、作文大全、其他范文等等,想了解不同范文格式和写法,敬请关注!Download tips: This document is carefully compiled by this editor. I hope that after you download it, it can help you solve practical problems. The document can be customized and modified after downloading, please adjust and use it according to actual needs, thank you!In addition, this shop provides you with various types of classic model essays, such as work materials, job search materials, report encyclopedia, scheme encyclopedia, contract agreements, documents, teaching materials, teaching plan design, composition encyclopedia, other model essays, etc. if you want to understand different model essay formats and writing methods, please pay attention!反比例函数教案(优秀6篇)作为一无名无私奉献的教育工作者,就不得不需要编写教案,编写教案有利于我们科学、合理地支配课堂时间。

《一次函数和反比例函数的综合运用》教学设计

《一次函数和反比例函数的综合运用》教学设计

《一次函数和反比例函数的综合运用》教学设计一、教学内容分析教学内容:一次函数和反比例函数的综合运用内容分析:一次函数和反比例函数是在初中阶段比较重要的两个函数问题,是二次函数的基础,学生不仅要掌握函数知识,还应该掌握解决问题的常规方法,利用“方程思想”“数形结合”思想及“转化”的数学思想解决问题。

在教学中要注重类比教学和启发式教学,通过对知识的传授与运用,让学生达到举一反三,触类旁通的目的。

同时也要注重“数形结合”思想的运用,数学是研究现实世界数量关系和空间形式的科学,而“数形结合”就是通过数与形之间的对应和转化来解决问题,以形助数和以数解行两个方面,利用它可使复杂问题简单化,抽象问题具体化。

本节课主要是让学生掌握一次函数和反比例函数的综合运用,近几年的中考也有涉及一次函数和反比例函数的综合运用等相关问题,解决一次函数和反比例函数的综合运用主要是一次函数和反比例函数的相交问题和围成图像的面积计算问题,解决此类问题,主要要熟练一次函数和反比例函数的解析式和性质,借助图像,运用知识,利用“方程思想”“数形结合”思想及“转化”的数学思想解决问题。

二、教学目标:1、知识与技能:理解和掌握一次函数与反比例函数的概念、图像、性质,会运用知识分析解决一次函数与反比例的综合题,培养学生的发散思维能力。

2、过程与方法:让学生经历一次函数与反比例函数的复习过程,进一步领会“方程思想”“数形结合”思想及“转化”的数学思想,遵循“优化”原则。

3、情感、态度、价值观:通过全班互动,小组探究合作学习,培养学生的合作意识,增进学生的感情,培养沟通能力,通过方法探索,培养学生的探索钻研精神。

三、教学重难点重点:熟练应用一次函数与反比例函数的图像和性质进行解题。

难点:利用“数形结合”以及转化思想解决问题。

三、工具、教法和学法1、教学工具:多媒体2、教学方法:本节课根据学生的认识水平采用启发式,练习法等教学方法,讲练结合,在学生和教师共同分析,合作探究,小组讨论,展示交流,互相启发的过程中,教师适时适当地点拨、肯定、表扬学生,给学生提供展示的机会,激发学生的学习积极性,使学生主动参与学习的全过程。

一次函数与反比例函数综合应用教案

一次函数与反比例函数综合应用教案

一次函数与反比例函数综合应用教案一、教学目标1. 让学生理解一次函数和反比例函数的定义及其性质。

2. 培养学生运用一次函数和反比例函数解决实际问题的能力。

3. 引导学生运用数形结合的方法,探究一次函数与反比例函数的综合应用。

二、教学内容1. 一次函数的定义及其性质。

2. 反比例函数的定义及其性质。

3. 一次函数与反比例函数的综合应用。

三、教学重点与难点1. 教学重点:一次函数和反比例函数的定义及其性质,一次函数与反比例函数的综合应用。

2. 教学难点:一次函数与反比例函数的综合应用。

四、教学方法1. 采用问题驱动法,引导学生主动探究一次函数与反比例函数的综合应用。

2. 利用数形结合的方法,直观展示一次函数与反比例函数的关系。

3. 通过小组合作、讨论交流,培养学生的团队协作能力。

五、教学过程1. 导入:回顾一次函数和反比例函数的定义及其性质,引导学生思考一次函数与反比例函数之间的关系。

2. 新课:讲解一次函数与反比例函数的综合应用,举例说明实际问题中的运用。

3. 案例分析:分析具体案例,让学生运用一次函数与反比例函数解决实际问题。

4. 课堂练习:布置相关练习题,巩固所学知识。

5. 总结:对本节课的内容进行总结,强调一次函数与反比例函数的综合应用。

6. 作业布置:布置课后作业,巩固所学知识。

六、教学评价1. 评价目标:检查学生对一次函数与反比例函数综合应用的理解和掌握程度。

2. 评价方法:课堂问答:通过提问,了解学生对一次函数与反比例函数定义、性质的理解。

练习题:分析学生完成练习题的情况,评估其对知识的运用能力。

小组讨论:观察学生在小组讨论中的表现,评估其合作和交流能力。

七、教学资源1. 教学课件:制作包含一次函数与反比例函数图示、案例分析的课件,辅助教学。

2. 练习题库:准备一系列针对一次函数与反比例函数综合应用的练习题。

3. 案例素材:收集或设计一些实际问题,作为学生练习的素材。

八、教学拓展1. 延伸学习:介绍一次函数与反比例函数在高级数学中的应用,如微积分中的极限概念。

反比例函数与一次函数课堂教学设计与反思

反比例函数与一次函数课堂教学设计与反思

反比例函数与一次函数综合教学设计与反思【第一环节】情景引入,激发兴趣【第二环节】学习准备,复习旧知【第三环节】快乐参与,小组合作请同学们分析一下:最近几年成都中考题中关于反比例函数与一次函数综合常出现哪些考点呢?1.学生课前完成知识复习单,并自己改错2.教师通过智学网收集大数据,对整体情况进行分析3.学生小组改错问题:如图,点A(11x y,)、点B(22x y,)线bkx+=y与反比例xym=的图象的两个交点.直线与坐标轴分别交于M、N两点. 求△AOB的面积类型一两个交点分别在双曲线两支习得:___________播放完第一段PPT,教师提问给学生两分钟改错将教学内容设计成分类讨论的形式,学生结合已学知识,先组内讨论,再组与组的方式进行全班展示效果。

最后总结出方法和一般形式激发学生的学习兴趣,明确学习目标为后面探索新知的部分做知识储备。

将教学的内容,设计成分类讨论的形式,学生小组合作完成,养成团队的习惯,让不同层次的学生在课堂上都能”有所做,有所学,有所获”,在全班展示的时候,让学生思维相互碰撞,相互学习,取长补短,充分激发学生的学习热情。

在总结的时候让学思维得到提升。

多媒体展示,营造出中考的紧张氛围。

多媒体展示PPT利用智学网收集数据,充分了解学生的掌握情况运用沃软件让学生充分展示,提高学生的综合能力再运用多媒体PP展示不同方法,让学生更直观,更形象的理解割补法求面积【第四环节】智慧成长,运用新知类型二两个交点同在双曲线一支习得:类型一两个交点分别在双曲线两支典型例题(2019.广安改编)如图,已知A(n,﹣2),B(﹣1,4)是一次函数y=kx+2和反比例函数xy4的图象的两个交点.直线与坐标轴分别交于M、N两点.求△AOB的面积.习得:学生利用已学知识解决实际问题教师板书书写格式通过观察、推理、割补法获得结论,发展学生的数形结合年和转化能力希沃展示能够准确看到学生书写格式是否规范,可以直接纠正,让学生更直观的发现直接的优点与不足【第五环节】变式练习,落实新知【第六环节】课堂小结,细化习得类型二两个交点同在双曲线一支变式练习(2019.天水改编)如图,一次函数y=kx+6与反比例函数xy4的图象交于(m,4)、B(2,n)两点,与坐标轴分别交于M、N两点,求△AOB的面积习得:知识习得:方法习得:数学思想:学生独立完成,小组互助学习。

(完整版)反比例函数教案

(完整版)反比例函数教案

第十七章 反比例函数17.1.1反比例函数的意义一、教学目标1.使学生理解并掌握反比例函数的概念2.能判断一个给定的函数是否为反比例函数,并会用待定系数法求函数解析式 3.能根据实际问题中的条件确定反比例函数的解析式,体会函数的模型思想 二、重、难点1.重点:理解反比例函数的概念,能根据已知条件写出函数解析式 2.难点:理解反比例函数的概念 3.难点的突破方法:(1)在引入反比例函数的概念时,可适当复习一下第11章的正比例函数、一次函数等相关知识,这样以旧带新,相互对比,能加深对反比例函数概念的理解(2)注意引导学生对反比例函数概念的理解,看形式xky =,等号左边是函数y ,等号右边是一个分式,自变量x 在分母上,且x 的指数是1,分子是不为0的常数k;看自变量x 的取值范围,由于x 在分母上,故取x ≠0的一切实数;看函数y 的取值范围,因为k ≠0,且x ≠0,所以函数值y 也不可能为0.讲解时可对照正比例函数y =kx (k ≠0),比较二者解析式的相同点和不同点。

(3)xky =(k ≠0)还可以写成1-=kx y (k ≠0)或xy =k(k ≠0)的形式三、例题的意图分析教材第46页的思考题是为引入反比例函数的概念而设置的,目的是让学生从实际问题出发,探索其中的数量关系和变化规律,通过观察、讨论、归纳,最后得出反比例函数的概念,体会函数的模型思想。

教材第47页的例1是一道用待定系数法求反比例函数解析式的题,此题的目的一是要加深学生对反比例函数概念的理解,掌握求函数解析式的方法;二是让学生进一步体会函数所蕴含的“变化与对应”的思想,特别是函数与自变量之间的单值对应关系。

补充例1、例2都是常见的题型,能帮助学生更好地理解反比例函数的概念.补充例3是一道综合题,此题是用待定系数法确定由两个函数组合而成的新的函数关系式,有一定难度,但能提高学生分析、解决问题的能力。

四、课堂引入1.回忆一下什么是正比例函数、一次函数?它们的一般形式是怎样的?2.体育课上,老师测试了百米赛跑,那么,时间与平均速度的关系是怎样的? 五、例习题分析例1.见教材P47分析:因为y 是x 的反比例函数,所以先设xky =,再把x =2和y =6代入上式求出常数k,即利用了待定系数法确定函数解析式。

反比例函数教案6篇

反比例函数教案6篇

反比例函数教案精选6篇作为一无名无私奉献的教育工,就不得不需要编写教案,编写教案有利于我们科学、合理地支配课堂时间。

那么你有了解过教案吗?下面是本文范文为大伙儿带来的6篇《反比例函数教案》,亲的肯定与分享是对我们最大的鼓励。

反比例函数教案篇一教学目标(1)进一步体验现实生活与反比例函数的关系。

(2)能解决确定反比例函数中常数志值的实际问题。

(3)会处理涉及不等关系的实际问题。

(4)继续培养学生的交流与合作能力。

重点:用反比例函数知识解决实际问题。

难点:如何从实际问题中抽象出数学问题,建立数学模型,用数学知识解决实际问题。

教学过程:1、引入新课上节课我们学习了实际问题与反比例函数,使我们认识到了反比例函数在现实生活中的实际存在。

今天我们将继续学习这一部分内容,请看例1(投影出课本第50页例2)。

例1码头工人以每天30吨的速度往一艘轮船上装载货物,把轮船装载完毕恰好用了8天时间。

轮船到达目的地后开始卸货,卸货速度v(吨/天)与卸货时间t(天)之间有怎样的关系由于紧急情况,船上货物必须在不超过5日内卸载完毕,那么每天至少卸货多少吨2、提出问题、解决问题(1)审完题后,你的切入点是什么,由题意知:船上载物重是30×8=240吨,这是一个不变量,也就是在这个卸货过程中的常量,所以根据卸货速度×卸货天数=货物重量,可以得到v与t的函数关系即vt=240,v=240,所以v是t的反比例函数,且t0.t(2)你们再回忆一下,今天求出的反比例函数与昨天求出的反比例函数在思路上有什么不同(昨天求出的反比例函数,常数k是直接知道的,今天要先确定常数k)(3)明确了问题的区别,那么第二问怎样解决根据反比例函数v=240(t0),当t=5时,v=48。

即每天至少要48吨。

这样做的答案是不错的,这里请同学们再仔细看一下第二问,你有什么想法。

实际上这里是不等式关系,5日内完成,可以这样化简t=240/v,0t≤5,即0240/v≤5,可以知道v≥48即至少要每天48吨。

反比例与一次函数教案

反比例与一次函数教案

反比例与一次函数教案教案标题:探索反比例与一次函数教案目标:1. 了解反比例与一次函数的基本概念和特征。

2. 掌握反比例与一次函数的图像特征和性质。

3. 能够应用反比例与一次函数解决实际问题。

4. 培养学生的数学思维和问题解决能力。

教案步骤:引入活动:1. 引导学生回顾一次函数的概念和特征。

提问:你能给出一次函数的定义吗?一次函数的图像有什么特点?2. 引导学生思考反比例的概念。

提问:你能给出反比例的定义吗?反比例的图像有什么特点?知识讲解:3. 介绍反比例与一次函数的定义和特点。

解释反比例函数y = k/x 中的k为常数,x不等于0;一次函数y = kx + b 中的k和b为常数。

4. 比较反比例与一次函数的图像特征。

指导学生观察反比例函数和一次函数的图像,并对比它们的特点。

示例分析:5. 通过具体的例子,引导学生分析反比例与一次函数的应用。

例如,反比例函数可以用来表示两个量成反比的关系,一次函数可以用来表示直线运动的位移。

练习与应用:6. 提供一些练习题,让学生巩固对反比例与一次函数的理解和应用能力。

例如,给出一组数据,让学生判断它们是反比例还是一次函数,并画出对应的图像。

7. 引导学生应用反比例与一次函数解决实际问题。

例如,给出一个与速度和时间有关的问题,让学生建立相应的反比例或一次函数,并求解问题。

总结与拓展:8. 总结本节课的内容,强调反比例与一次函数的应用。

提醒学生在实际生活中遇到相关问题时,可以运用这些知识进行解决。

9. 拓展学生的思维,让他们思考反比例与一次函数之间是否存在其他联系或应用。

教学评估:10. 针对学生的学习情况,进行课堂练习和讨论,检查他们对反比例与一次函数的理解和应用能力。

11. 布置课后作业,让学生继续巩固和拓展所学知识。

教学资源:- 反比例和一次函数的定义和特点的讲解材料。

- 反比例和一次函数的图像示例。

- 反比例和一次函数的练习题和答案。

- 实际问题解决的案例材料。

反比例函数教案汇总

反比例函数教案汇总

反比例函数教案汇总一、教学内容本节课选自人教版《数学》八年级下册,第十七章“反比例函数”。

具体内容包括:反比例函数的定义、性质、图像、实际应用等。

重点章节为17.1“反比例函数的定义与性质”和17.2“反比例函数的图像”。

二、教学目标1. 知识与技能:使学生掌握反比例函数的定义,理解反比例函数的性质,学会绘制反比例函数的图像,并能运用反比例函数解决实际问题。

2. 过程与方法:培养学生运用数学符号表达反比例函数关系,通过数形结合分析反比例函数的性质,提高学生的逻辑思维能力和解决问题的能力。

3. 情感态度价值观:激发学生学习数学的兴趣,培养学生的团队协作意识,提高学生的数学素养。

三、教学难点与重点1. 教学难点:反比例函数的性质及其图像的绘制。

2. 教学重点:反比例函数的定义及其在实际问题中的应用。

四、教具与学具准备1. 教具:多媒体教学设备、黑板、粉笔、直尺、圆规等。

2. 学具:练习本、铅笔、直尺、圆规等。

五、教学过程1. 实践情景引入通过展示实际生活中的反比例关系问题,如“速度与时间的关系”、“密度与体积的关系”等,引导学生发现反比例函数的定义。

2. 例题讲解(1)讲解反比例函数的定义,如:y = k/x(k≠0)。

(2)分析反比例函数的性质,如:当x>0时,y随x的增大而减小;当x<0时,y随x的增大而增大。

(3)绘制反比例函数的图像,如:y = 2/x。

3. 随堂练习(1)让学生绘制反比例函数y = 3/x的图像。

(2)分析反比例函数y = 1/x的性质。

4. 小组讨论学生分组讨论反比例函数在实际问题中的应用,如:计算物体的密度、求解速度与时间的关系等。

六、板书设计1. 反比例函数的定义:y = k/x(k≠0)2. 反比例函数的性质3. 反比例函数的图像4. 反比例函数的实际应用七、作业设计1. 作业题目(1)绘制反比例函数y = 4/x的图像。

2. 答案(1)图像如下:(2)密度为4kg/m³。

《反比例函数与一次函数的交点问题》教学设计

《反比例函数与一次函数的交点问题》教学设计

《反比例函数与一次函数的交点问题》教学设计一、教学背景分析【教材内容】人教版第26章反比例函数【课标要求】在数学课程中,应当注重发展学生的数感、符号意识、空间观念、几何直观、运算能力、推理能力和模型思想。

为了适应时代发展对人才培养的需要,数学课程还要特别注重发展学生的应用意识和创新意识.【内容分析】中考常将一次函数和反比例函数放在一个坐标系内,根据所给图像提供的信息求解各函数的解析式、确定自变量取值范围、比较函数大小、图形面积等问题,是这部分内容考查的“高频考点”,题型有填空题、选择题、也有中档的解答题。

【学情分析】学生刚刚学完反比例函数,初步掌握了一次函数和反比例函数的相关知识,但由于中考一般是以综合题型的形式进行考查的,而学生综合应用知识和分析问题能力较弱,因此在本节课中特别准备了一些中考常见题型,帮助学生提升分析问题的能力和灵活应用知识的能力。

二、目标【教学目标】1.会联立方程求反比例函数与一次函数的交点坐标;2.会根据交点情况求参数的值或取值范围.【教学重点】根据交点求参数的值或取值范围.【教学难点】利用数形结合思想进行解题.【教学策略】引导启发式、讨论合作式、多媒体辅助教学,教学中注重数形结合思想的渗透。

【课前准备】多媒体课件、写字板【课的类型】专题课【课时安排】1课时三、教学活动教学环节教学活动设计设计意图教师活动学生活动一、前置作业1.在平面直角坐标系中直线y=2x+2与直线xy=的交点坐标为.2.直线2+-=xy与抛物线2xy=的交点坐标为.3.直线与双曲线的交点坐标为.课前5分钟利用练习题复习求交点坐标.重温如何求两个函数图象的交点坐标.二、例题学习类型一、求直线与双曲线的交点坐标例1.如图,一次函数的图象与反比例函数xky=(k为常数,且0k≠)的图象相交于A(-1,m)和B两点,求点 B 的坐标 .进行求交点坐标的例题来规范书写过程让学生规范联立方程来解题,规范书写过程变式1.已知直线y=mx与双曲线xky=的一个交点坐标为(﹣1,3),则它们的另一个交点坐标是 .变式1 让学生明白还可以通过中心对称来求另一个交点坐标xy4=xy=5y x=+类型二、根据交点情况求参数的值或取值范围例2.如图,将一次函数5y x =+的图象沿y 轴向下平移b 个单位()0b >.使平移后的图象与反比例函数 的图象有且只有一个交点,求b 的值.思考:当平移后的直线与双曲线没有交点时,求b 的取值范围?变式2.如图,在平面直角坐标系中直 线y =x +2与反比例函数 y =−k x的图象有唯一公共点, (1)求k 的值;(2)若直线y =mx +2与反比例函数 y =−kx的图象有2个公共点,请你根据图象写出m 的取值范围.小组合作讨论求b 值.学生合作讨论通过几何画板展示平移,利用判别式来求解.通过思考问题拓展参数的取值范围第(1)问常规求解过程.第(2)问除了利用判别式来求解外,还考究学生的数形结合思想,属于旋转的类型,比平移高了一个难度xy 4-=三、课堂练习A组1.正比例函数y=kx的图象与反比例函数y=mx的图象有一个交点的坐标是(−1,−2),则另一个交点的坐标为()A.(2,1)B.(1,−2)C.(−1,2)D.(1,2)2.已知反比例函数y=kx与一次函数y=x+1的图象没有交点,则k的值可以是()A.12B.14C.−14D.−1B组3.如图,一次函数3+=xy的图象与反比例函数)0(1<-=xxky的图象交于点A),2(m-、点B.(1)求这个反比例函数的表达式;(2)将一次函数3+=xy的图象向下平移m个单位,当平移后的函数图象与反比例函数的图象只有一个交点时,求m的值.课堂分层练习分层课堂作业设计,充分照顾各个层次的学生.四、课堂小结(1)求直线与双曲线的交点坐标;(2)根据交点求参数的值或取值范围.学生进行小结课堂小结五、挑战自我已知一次函数3y mx m=-(0m≠)和反比例函数4yx=的图象如图所示.(1)一次函数3y mx m=-必定经过点________.(写点的坐标)(2)当2m=-时,一次函数与反比例函数图象交于点A,B,与x,y轴分别交于点C,D,连接BO并延长,交反比例另一支于点E,求出此时A,B两点的坐标及ABE的面积.(3)直线3y mx m=-绕点C旋转,直接写出当直线与反比例图象无交点时m的取值范围.提供给学有余力的学生进行挑战提供给学有余力的学生进行挑战。

  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

一次函数: 选择题1、图3中,表示一次函数y mx n =+与正比例函数(y mx m =、n 是常数,且0,0)m n ≠<的图象的是( )2、直线y kx b =+经过一、二、四象限,则直线y bx k =-的图象只能是图4中的( )3、若直线11y k x =+与24y k x =-的交点在x 轴上,那么12k k 等于( ) .4A .4B - 1.4C 1.4D -4、直线0px qy r ++=(0)pq ≠如图5,则下列条件正确的是( ).,1A p q r == .,0B p q r == .,1C p q r =-= .,0D p q r =-=5、直线y kx b =+经过点(1,)A m -,(,1)B m (1)m >,则必有( ) A. 0,0k b >> .0,0B k b ><.0,0C k b <> .0,0D k b <<6、如果0ab >,0a c <,则直线a cy x b b=-+不通过( ) A .第一象限 B .第二象限C .第三象限D .第四象限7、已知关于x 的一次函数27y mx m =+-在15x -≤≤上的函数值总是正数,则m 的取值范围是( ) A .7m > B .1m > C .17m ≤≤ D .都不对8、如图6,两直线1y kx b =+和2y bx k =+在同一坐标系内图象的位置可能是( )图69、已知一次函数2y x a =+与y x b =-+的图像都经过(2,0)A -,且与y 轴分别交于点B ,c ,则ABC ∆的面积为( )A .4B .5C .6D .710、已知直线(0)y kx bk =+≠与x 轴的交点在x 轴的正半轴,下列结论:① 0,0k b >>;②0,0k b ><;③0,0k b <>;④0,0k b <<,其中正确的个数是( )A .1个B .2个C .3个D .4个 11、已知(0,0)b c a c a bk b a b c a b c+++===>++=,那么y kx b =+的图象一定不经过( ) A .第一象限 B .第二象限 C .第三象限 D .第四象限12、已知abc ≠0,而且a b b c c ac a b+++===p ,那么直线y=px+p 一定通过( ) (A )第一、二象限 (B )第二、三象限 (C )第三、四象限 (D )第一、四象限13、若k 、b 是一元二次方程x 2+px-│q │=0的两个实根(kb ≠0),在一次函数y=kx+b 中,y 随x 的增大而减小,则一次函数的图像一定经过( )(A )第1、2、4象限 (B )第1、2、3象限(C )第2、3、4象限 (D )第1、3、4象限14、(2009黑龙江)一个水池接有甲、乙、丙三个水管,先打开甲,一段时间后再打开乙,水池注满水后关闭甲,同时打开丙,直到水池中的水排空.水池中的水量)(3m v 与时间)(h t 之间的函数关系如图,则关于三个水管每小时的水流量,下列判断正确的是 ( ) A .乙>甲 B . 丙>甲 C .甲>乙 D .丙>乙15、(2009日照)如图,点A 的坐标为(-1,0),点B 在直线y =x 上运动,当线段AB 最短时,点B 的坐标为(A )(0,0) (B )(22,22)(C )(-21,-21)(D )(-22,-22) 16、(2013厦门,9,4分)在平面直角坐标系中,已知直线y=-43x+3与x 轴、y 轴分别交于A 、B 两点,点C (0,n )是y 轴上一点.把坐标平面沿直线AC 折叠,使点B 刚好落在x 轴上,则点C 的坐标是( ) (A )(0,43) (B )(0,34) (C )(0,3) (D )(0,4) 17、(2012龙岩,7,3)一个矩形被直线分成面积为x ,y 的两部分,则y 与x 之间的函数关系只可能是18、(福建)如图,在平面直角坐标系中,线段AB 的端点坐标为A (-2,4),B (4,2),直线y=kx-2与线段AB 有交点,则k 的值不可能是( )A.-5B.-2C.3D. 5yxOBA19、(2011福建,16,3分)设min {x,y }表示x,y 两个数中的最小值,例如min {0,2}=0,min {12,8}=8,则关于x 的函数y 可以表示为( ) A. ()()2222xx y x x <⎧⎪=⎨+≥⎪⎩ B. ()()2222x x y xx +<⎧⎪=⎨≥⎪⎩C. y =2xD. y=x +219、(2011山东枣庄,10,3分)如图所示,函数x y =1和34312+=x y 的图象相交于(-1,1),(2,2)两点.当21y y >时,x 的取值范围是( )A .x <-1B .—1<x <2C .x >2D . x <-1或x >220、如图,正方形ABCD 的边长为4,P 为正方形边上一动点,运动路线是A→D→C→B→A,设P 点经过的路线为x ,以点A 、P 、D 为顶点的三角形的面积是y .则下列图象能大致反映y 与x 的函数关系的是( )解答题:1、在直角坐标系x0y 中,一次函数y=23x+2的图象与x 轴,y 轴,分别交于A 、B 两点,•点C 坐标为(1,0),点D 在x 轴上,且∠BCD=∠ABD ,求图象经过B 、D•两点的一次函数的解析式.2、已知直线y=43x+4与x 轴、y 轴的交点分别为A 、B .又P 、Q 两点的坐标分别为P (•0,-1),Q (0,k ),其中0<k<4,再以Q 点为圆心,PQ 长为半径作圆,则当k 取何值时,⊙Q•与直线AB 相切?(-1,1)1y (2,2)2yx yO3、如图8,在直标系内,一次函数(0,0)y kx b kb b =+><的图象分别与x 轴、y 轴和直线4x =相交于A 、B 、C 三点,直线4x =与x 轴交于点D ,四边形OBCD (O 是坐标原点)的面积是10,若点A 的横坐标是12-,求这个一次函数解析式.反比例函数:一、 利用反比例函数中|k|的几何意义求解与面积有关的问题结论1:过双曲线上任意一点作x 轴、y 轴的垂线,所得矩形的面积S 为定值|k|对于下列三个图形中的情形,利用三角形面积的计算方法和图形的对称性以及上述结论,可得出对应的面积的结论为: 结论2:在直角三角形ABO 中,面积S= 结论3:在直角三角形ACB 中,面积为S= 结论4:在三角形AMB 中,面积为S=例题讲解【例1】如右图,已知△P 10A 1,△P 2A 1A 2都是等腰直角三角形,点P 1、P 2都在函数y=4x(x >0)的图象上,斜边OA 1、A 1A 2都在x 轴上.则点A 2的坐标为 .1、如例1图,已知△P 1OA 1,△P 2A 1A 2,△P 3A 2A 3…△P n A n-1A n 都是等腰直角三角形,点P 1、P2、P 3…P n 都在函数y=4x(x >0)的图象上,斜边OA 1、A 1A 2、A 2A 3…A n-1A n 都在x 轴上.则点A 10的坐标为【例2】如右图,已知点(1,3)在函数y=kx(x >0)的图像上,矩形ABCD 的边BC 在x 轴上,E 是对角线BD 的中点,函数y=kx(k >0)的图象又经过A,E 两点,点E 的横坐标为m ,解答下列各题 1.求k 的值2.求点C 的横坐标(用m 表示)3.当∠ABD=45°时,求m 的值。

1、已知:如图,矩形ABCD 的边BC 在x 轴上,E 是对角线AC 、BD 的交点,反比例函数y=2x(x >0)的图象经过A ,E 两点,点E 的纵坐标为m . (1)求点A 坐标(用m 表示)(2)是否存在实数m ,使四边形ABCD 为正方形,若存在,请求出m 的值;若不存在,请说明理由【例3】已知:如右图,已知反比例函数y=2kx和一次函数y=2x-1,其中一次函数的图像经过(a ,b ),(a+1,b+k ). (1) 求反比例函数的解析式;(2)如图,已知点A 在第一象限,且同时在上述两个函数的图象上,求点A 的坐标;(3)利用(2)的结果,请问:在x 轴上是否存在点P ,使△AOP 为等腰三角形?若存在,把符合条件的P 点坐标都求出来;若不存在,请说明理由.1、已知反比例函数y=2kx和一次函数y=2x-1,其中一次函数的图象经过(a ,b ),(a+k ,b+k+2)两点. (1)求反比例函数的解析式;(2)求反比例函数与一次函数两个交点A 、B 的坐标: (3)根据函数图象,求不等式2kx>2x-1的解集; (4)在(2)的条件下,x 轴上是否存在点P ,使△AOP 为等腰三角形?若存在,把符合条件的P 点坐标都求出来;若不存在,请说明理由。

2、已知:如右图已知反比例函数y=12x的图像与一次函数y=kx-7的图像都经过P (m ,2) (1)求这个一次函数的解析式;(2)如果等腰梯形ABCD 的顶点A 、B 在这个一次函数的图象上,顶点C 、D 在这个反比例函数的图象上,两底AD 、BC 与y 轴平行,且A 和B 的横坐标分别为a 和a+2,求a 的值.。

相关文档
最新文档