汽车车身电子网络控制系统

合集下载

浅谈汽车车身控制器(BCM)

浅谈汽车车身控制器(BCM)

什么是车身控制器(BCM)?车身控制模块(Body Control Module,BCM)是一个电子控制单元(ECU)。

BCM 通常位于车辆内部,在仪表板后面或座椅下面。

BCM负责驱动、监控和控制车辆的车身功能相关的电子控制单元 (ECU)。

BCM 充当车辆车身的大脑,负责管理照明、车窗、门锁、座椅控制等汽车功能。

BCM 使用各种协议(CAN/LIN /FlexRay等)与车辆中的其他 ECU 通信。

车身控制模块在现代汽车中起着至关重要的作用。

如果没有 BCM,车辆中的许多电气系统将无法正常或高效地运行。

车身控制模块有哪些功能?汽车中的 BCM 可以执行多种功能。

通过 CAN、LIN或以太网与其他模块和系统进行通信,根据输入信号控制以下电气设备,实现相应功能:▪车窗控制。

BCM可控制电动车窗升降。

▪照明控制。

BCM 管理外部和内部照明系统,包括自动头灯、尾灯、转向灯和灯光调光等功能。

▪电动门锁控制。

BCM接收门锁开关请求的信号,控制所有车门的上锁或解锁。

▪空调系统。

BCM 可协调暖气、通风和空调系统,允许驾驶员调节温度、HVAC 模式和风扇速度。

▪安全功能。

现在很多BCM都支持无钥匙进入系统、防盗和报警功能,以防止盗窃。

▪雨刷控制。

BCM 还控制雨刷功能,包括间歇性雨刷控制。

▪舒适性功能。

根据车辆的设计,BCM可控制汽车舒适性功能相关的执行器,如座椅、后视镜和电动调节。

▪诊断和故障报告。

BCM可存储诊断数据,并帮助客户识别电气系统中的问题并排除故障。

▪集成网关,通过车辆总线系统(CAN、LIN 或以太网)保持集成控制单元之间的通信。

▪能耗控制。

BCM 可优化电气零部件的工作模式,在不使用部件时降低功耗。

这提高了传统车辆的燃油效率,并延长了电动汽车的续航里程。

BCM的硬件架构BCM 架构由各种组件组成,这些组件相互配合,实现了车辆电气系统的集成和控制。

BCM的核心是一个微控制器单元(MCU),它根据各种传感器和开关的输入处理和执行命令。

汽车车身电控系统的组成

汽车车身电控系统的组成

汽车车身电控系统的组成汽车车身电控系统是现代汽车中的一个重要组成部分,它负责控制汽车车身的各项功能和操作。

这个系统由多个子系统和控制单元组成,通过电子设备和传感器来实现对汽车车身的控制和监测。

下面将介绍汽车车身电控系统的主要组成部分。

1. 车门控制系统:车门控制系统是汽车车身电控系统中的一个重要子系统,它负责控制汽车的车门开关、锁定和解锁功能。

通过电子开关和传感器,驾驶员可以方便地控制车门的开闭,并且可以实现一键锁车和解锁的功能,提高汽车的安全性和便利性。

2. 电动窗控制系统:电动窗控制系统是汽车车身电控系统中的另一个重要子系统,它负责控制汽车的电动窗的开合。

通过电子开关和传感器,驾驶员可以方便地控制车窗的升降,提供舒适的乘车环境。

3. 外后视镜控制系统:外后视镜控制系统是汽车车身电控系统中的一个重要子系统,它负责控制汽车外后视镜的调整和折叠功能。

通过电子开关和传感器,驾驶员可以方便地调整外后视镜的角度和位置,提供更好的视野和行驶安全。

4. 天窗控制系统:天窗控制系统是汽车车身电控系统中的另一个重要子系统,它负责控制汽车的天窗的开合和倾斜功能。

通过电子开关和传感器,驾驶员可以方便地控制天窗的开合和倾斜角度,提供更好的通风和视野。

5. 中央锁控制系统:中央锁控制系统是汽车车身电控系统中的一个重要子系统,它负责控制汽车的中央锁的开闭功能。

通过电子开关和传感器,驾驶员可以方便地控制车辆的中央锁定和解锁,提高汽车的安全性和便利性。

6. 防盗报警系统:防盗报警系统是汽车车身电控系统中的另一个重要子系统,它负责监测和报警汽车的非法入侵和盗窃行为。

通过电子设备和传感器,防盗报警系统可以及时检测到非法入侵行为,并通过声光报警器发出警报,提醒车主和周围人员。

7. 车身稳定控制系统:车身稳定控制系统是汽车车身电控系统中的一个重要子系统,它负责监测和控制汽车的横向和纵向稳定性。

通过电子设备和传感器,车身稳定控制系统可以实时监测汽车的姿态和动态参数,并通过制动系统和动力系统来实现对车身稳定性的控制,提高汽车的行驶安全性和稳定性。

汽车车身电控系统常见故障诊断与维修

汽车车身电控系统常见故障诊断与维修

汽车车身电控系统常见故障诊断与维修【摘要】汽车车身电控系统在现代汽车中起着至关重要的作用,它可以控制车辆的各种功能,如车门锁、车窗升降、灯光控制等。

随着汽车电子技术的不断发展,车身电控系统也面临着各种故障问题。

本文对汽车车身电控系统常见的故障进行了诊断与维修的探讨。

首先介绍了电控系统的组成部分,包括各种传感器、控制器和执行器。

然后分析了常见的故障现象及可能的原因,如电路短路、传感器损坏等。

接着介绍了故障诊断方法,包括使用诊断仪器和查找故障码。

针对不同的故障情况,提出了相应的维修措施,如更换零部件、修复电路等。

最后强调了预防措施的重要性,如定期检查维护电控系统,避免不必要的故障发生。

通过本文的研究,有助于提高汽车车身电控系统的稳定性和可靠性。

【关键词】汽车车身、电控系统、常见故障、诊断、维修、预防措施、组成部分1. 引言1.1 研究背景汽车车身电控系统是现代汽车的重要部分,它负责控制车身上的各种电子设备和功能,如车窗升降、中控屏操作、车灯控制等。

随着汽车科技的不断发展,车身电控系统也变得越来越复杂,其中包含了大量的传感器、控制模块和电子元件。

随着车身电控系统的复杂化,相关故障问题也日益频繁。

汽车车身电控系统故障会导致车辆无法正常行驶,甚至影响行车安全。

对汽车车身电控系统常见故障进行诊断与维修显得尤为重要。

目前,虽然汽车维修技术不断提升,但仍有许多车主对车身电控系统故障诊断与维修缺乏相关知识,导致维修过程中出现困难。

对汽车车身电控系统常见故障进行深入研究,总结故障诊断方法和维修措施,将有助于提升汽车维修技术水平,保障行车安全,提升驾驶体验。

1.2 研究目的研究目的:汽车车身电控系统作为汽车的重要组成部分,其稳定运行直接影响到行车安全和舒适性。

本文旨在通过对汽车车身电控系统常见故障的诊断与维修方法的研究,探索有效的解决方案,提高故障诊断与维修效率,确保汽车的正常运行。

通过深入分析电控系统的组成部分、常见故障现象及原因分析、以及相应的诊断和维修措施,旨在为汽车维修技术人员提供实用的指导,帮助他们更好地应对各类车身电控系统故障,提高维修水平,为车主提供更为安全可靠的驾驶体验。

汽车电子控制系统

汽车电子控制系统
• 网络防盗器除了有比电子防盗器更强的功能外, 还能把盗情发送到车主的手机上,并具备锁死 发动系统的能力
• GPS卫星定位防盗器功能就更强了,几乎综合 了所有的防盗功能,并能用卫星准确定位在5米 范围内,也就是眼前。其传感器有采用无线传 感的,很难破坏。
雷达防撞系统
• 该系统有多种形式。有的在汽车行驶中, 当两车的距离小到安全距离时,即自动报 警,若继续行驶,则会在即将相撞的瞬间, 自动控制汽车制动器将汽车停住;有的是 在汽车倒车时,显示车后障碍物的距离, 有效地防止倒车事故发生。
• 其功用是采集曲轴转动角 度和发动机转速信号,并 输入电子控制单元(ECu), 以便确定点火时刻和喷油 时刻。
进气温度及压力传感器
• 它将进气岐管压装在进气管上或空气流 量计内。
• 检测发动机的进气温度和 感应进气岐管内的真空变 化,将进气温度转变为电 压信号输入给ECU做为喷 油修正的信号。
• 它采用负温度系数的热敏 电阻作为感应元件,ECM 通过设计在自身内部的一 个电阻为冷却剂温度传感 器提供一个5V的参考信号, 并测量该电阻的压降。
氧传感器
• 氧传感器安装在排气管中, 用以检测排气中氧的浓度, 并向ECU发出反馈信号, 再由ECU控制喷油器喷油 量的增减,从而将混合气 的空燃比控制在理论值附 近。
通信系统
• 这方面真正使用且采用最多的是汽车电话, 在美国、日本、欧洲等发达国家较普及。 目前的水平在不断地提高,除车与路之间, 车与车之间,车与飞机等交通工具之间的 通话外,还可通过卫星与国际电话网相联, 实现行驶过程中的国际间电话通信,实现 网络信息交换,图像传输等。
五、附属装置
• 全自动空调EA/C • 自动座椅 • 音响/音像
四、信息通讯系统

CAN网络在汽车上的应用分析

CAN网络在汽车上的应用分析

CAN网络在汽车上的应用分析随着汽车行业的不断发展,CAN网络在汽车上的应用也越来越广泛。

CAN(Controller Area Network)网络是一种广泛应用于汽车领域的数据通信协议,它是一种串行总线系统,支持多个电子控制单元(ECU)之间的通信。

CAN网络在汽车上的应用主要可以分为以下几个方面:1.车身电子控制系统:CAN网络被广泛应用于车身电子控制系统,用于车门控制、窗户控制、座椅控制、后视镜控制等功能的实现。

通过CAN网络,各个电子控制单元可以互相通信,从而实现车身各部分之间的协调操作。

2.发动机控制系统:CAN网络在汽车的发动机控制系统中起着重要的作用。

通过CAN网络,发动机控制单元可以与其他电子控制单元进行数据交换,如与传感器、喷油器、点火系统等进行数据传输和命令控制,从而实现对发动机的精确控制,提高燃烧效率和减少排放。

3.制动系统:CAN网络也被广泛应用于汽车的制动系统中。

制动系统的各个组件,如制动踏板传感器、制动盘传感器、刹车灯等,可以通过CAN网络与制动控制单元进行通信,实现对制动系统的监测和控制,提高行车安全性。

4.油耗监测与控制系统:CAN网络还可以用于汽车的油耗监测与控制。

通过CAN网络,车辆的燃油供给系统、发动机系统和车辆传感器可以互相通信,实时传输和处理数据,对车辆的油耗进行监测和控制,提供油耗信息给驾驶员,并根据驾驶行为和路况变化来调整发动机工作状态,降低油耗。

5.故障诊断系统:CAN网络也为汽车故障诊断系统提供了良好的通信基础。

通过CAN网络,各个电子控制单元可以实时传输各自的状态和故障码,集中于车辆故障诊断仪或相关诊断设备进行故障分析和判断,提高故障定位和排除的效率。

6.安全气囊系统:CAN网络在汽车的安全气囊系统中也发挥了重要作用。

通过CAN网络,安全气囊控制单元可以与车辆其他控制单元进行数据交换和通信,及时接收和处理相关故障信息和操作命令,确保在发生碰撞时安全气囊的快速响应和正确部署,提高乘员的安全性。

常用车载网络系统(LIN)课件

常用车载网络系统(LIN)课件
详细描述
LIN是一种基于串行通信的总线系统 ,专为汽车分布式电子系统设计。它 具有低成本、高可靠性和易于扩展的 特点,适用于对通信要求不高的汽车 辅助系统。
LIN网络系统的组成
总结词
LIN网络系统由LIN主节点、LIN从属节点和LIN总线组成。
详细描述
LIN网络系统由多个节点组成,其中一个是主节点,其他是从 属节点。主节点负责启动通信并控制总线上的数据传输,从 属节点则响应主节点的请求并发送数据。LIN总线是连接所有 节点的物理媒介,负责传输数据。
受到重视。通过优化电路设计和降低功耗,可以延长车载网络的电池寿
命,提高整车的能效。
03
网络安全技术
随着智能网联汽车的发展,网络安全问题日益突出。LIN网络系统将加
强网络安全技术的研发和应用,以确保车载网络的安全性和可靠性。
LIN网络系统在智能网联汽车中的应用前景
智能驾驶辅助系统
LIN网络系统将广泛应用于智能驾驶辅助系统中,如自适 应巡航控制、自动泊车、碰撞预警等,提高驾驶安全性。
LIN网络系统的数据传输方式
01
LIN网络系统采用基于帧的数据传输方式,每个帧包括标识符、 数据长度、数据内容和校验码等信息。
02
帧格式简单明了,易于实现和维护。
数据传输采用广播方式,即主节点发送的报文会被所有从节点
03
接收并处理。
LIN网络系统的通信速率与线缆选择
01
根据不同的应用需求,LIN总线支持多种通信速率,如20kbps、 40kbps和9600bps等。
车联网应用
随着车联网技术的发展,LIN网络系统将与车载移动互联 网、云计算等技术结合,实现车辆与外部信息交互,提供 更丰富的车载信息服务。

汽车车身电控系统的组成

汽车车身电控系统的组成

汽车车身电控系统的组成一、引言汽车车身电控系统是现代汽车的重要组成部分,它通过电子设备和传感器的配合,对汽车车身的各个部分进行监控和控制,以提供更安全、舒适、便利的驾驶体验。

本文将从多个方面介绍汽车车身电控系统的组成。

二、主要组成部分1. 中央控制器中央控制器是汽车车身电控系统的核心部件,它负责整合和处理来自各个传感器和执行器的信号和指令。

中央控制器通常由微处理器、存储器、输入输出接口等组成,具有强大的数据处理和决策能力。

2. 传感器传感器是车身电控系统中的重要组成部分,它能够感知车身各个部分的状态和环境信息,并将其转化为电信号传输给中央控制器进行处理。

常见的传感器包括温度传感器、湿度传感器、光照传感器、加速度传感器等。

3. 执行器执行器是车身电控系统的另一关键组成部分,它根据中央控制器的指令,对车身的各个部分进行控制和调节。

常见的执行器包括发动机控制单元、制动阀门、电动窗控制器、电动座椅调节器等。

4. 电源系统电源系统为车身电控系统提供电能,使其正常运行。

电源系统通常由蓄电池和发电机组成,蓄电池负责提供起动电能和短时供电,而发电机则在发动机运行时为整个系统提供稳定的电能。

5. 数据总线数据总线是各个电子设备之间进行信息交换的通道,它能够高效地传输大量的数据和指令。

常见的数据总线标准有CAN总线、LIN总线等,它们能够满足车身电控系统对数据传输速率和稳定性的要求。

6. 控制算法控制算法是车身电控系统的核心技术之一,它通过对传感器数据的分析和处理,以及对执行器的控制和调节,实现对车身各个部分的精确控制。

控制算法的优化和改进可以提升系统的性能和稳定性。

7. 人机交互界面人机交互界面是车身电控系统与驾驶员进行信息交互的桥梁,它通过显示屏、按钮、语音识别等方式,向驾驶员展示车身信息,并接受驾驶员的指令和操作。

优秀的人机交互界面设计可以提高驾驶员的操作便利性和安全性。

8. 安全系统安全系统是车身电控系统的重要组成部分,它通过传感器和执行器的配合,对车身的安全进行监控和保护。

汽车车身电控系统概述

汽车车身电控系统概述

汽车车身电控系统概述
三、汽车车身被动安全系统
安全气囊: 系统可在汽车发生碰撞时保护乘员,减小伤害程度,现已作为标准配置在轿车上
安装,并向侧面碰撞防护安全气囊及顶部碰撞防护安全气囊的多气囊系统发展。
图1:安全气囊
汽车车身电控系统概述
三、汽车车身被动安全系统
座椅安全带: 车辆上保护乘员安全的最重要、最有效、最经济、最普及的安全防护装置。预紧
电动车窗
汽车车身电控系统概述
五、汽车车身舒适系统
自动空调 自动控制空调系统,能自动检测车
内温度、车外环境温度、日照温度、空 调蒸发器温度和发动机冷却水温等,并 根据驾驶员所设定的温度,自动调节鼓 风机所送出的空气温度和鼓风机转速, 从而将车内温度保持在设定的温度范围 内。除了温度控制和鼓风机转速控制外, 还能进行进气控制、气流方式控制和压 缩机控制。
汽车车身电控系统概述
五、汽车车身舒适系统
车身舒适控制系统是指为驾乘人员提供舒适性控制的装置,包括车内外照明控制、中 央门锁、电动窗机、智能雨刮器、无钥匙系统、电动转向柱、电动座椅、辅助加热系 统、智能空调器等
汽车车身电控系统概述五、汽源自车身舒适系统电动天窗 为提高乘坐的舒适性和操作的方便
性,现代很多轿车安装了电动天窗。电 动天窗能够有效地使车内空气流通,新 鲜的空气,从天窗进入车厢,,同时天 窗可以开阔视野、快速除去车内雾气、 辅助调节温度及减少空调使用时间,节 能减排,亲近自然。
驶的安全性。汽车防碰撞系统主要包括,防追尾碰撞、侧面防撞、倒车防碰撞三个方 面,其中倒车防碰撞系统是在汽车倒车时,显示车后障碍物的距离或图像,有效地防 止倒车事故的发生。因技术比较成熟,成本也比较低,已得到了广泛的应用。
汽车车身电控系统概述

汽车车身电控系统概述

汽车车身电控系统概述

汽车车身电控系统概述汽车车身电控系统是指一种集成了电子技术和控制系统的汽车部件,用于控制和协调汽车的各项功能和操作。

它主要负责管理车身各个部件的电子控制单元(ECU),包括车门、车窗、车灯、转向灯、雨刷、空调、座椅等。

车身电控系统通过传感器、执行器、连接线路和计算机等组成的系统,实现了汽车车身功能的自动化和智能化。

一、车身电控系统的架构和组成部分车身电控系统的架构通常由多个单元组成,每个单元负责控制特定的车身部件。

其中,最核心的组成部分是电子控制单元(ECU),它是整个系统的“大脑”,负责接收传感器信号、处理数据并发送控制信号给执行器。

车身电控系统还包括以下组成部分:1.传感器:传感器是车身电控系统的信息输入部分,用于感知车身各个部件的状态和环境信息。

例如,车门开关、车窗升降器、雨量传感器等。

传感器将采集的数据转化为电信号,传输给ECU进行处理。

2.执行器:执行器是车身电控系统的输出部分,用于根据ECU的指令控制和调节车身各个部件的运行状态。

例如,电动车窗装置、车灯控制器、空调控制器等。

执行器接收ECU发送的信号,通过执行相应的动作,实现对车身部件的控制。

3.连接线路:连接线路是车身电控系统的信息传递通道,用于将传感器采集的数据传输给ECU,并将ECU发送的控制信号传输给执行器。

连接线路通常采用专用的电缆和连接器,保证信号的传输可靠性和稳定性。

4.计算机系统:计算机系统是车身电控系统的核心处理单元,用于接收传感器的信号、处理数据、生成控制策略并发送控制信号给执行器。

计算机系统通常由多个计算芯片、存储器和接口电路构成,通过硬件和软件协同工作来执行控制功能。

二、车身电控系统的功能和优势车身电控系统通过电子化和智能化的手段,实现了对汽车车身各个部件的控制和管理。

它具有以下优势和功能:1.自动化控制:车身电控系统能够通过传感器感知车身各个部件和环境的状态,通过计算机系统处理数据分析,并发送相应的控制信号给执行器,实现车身部件的自动化控制。

汽车电子控制系统概述

汽车电子控制系统概述

汽车电子控制系统概述汽车电子控制系统是现代汽车中的一种重要系统,其通过电子技术控制汽车的行驶、安全、舒适等方面,不止于传统的机械控制系统。

汽车电子控制系统又分为多个子系统,包括发动机控制系统、变速器控制系统、电子制动系统、车身控制系统等。

本文将对这些子系统进行介绍。

1. 发动机控制系统发动机控制系统是汽车电子控制系统中最重要的一部分,它通过传感器获得发动机工作状态的信息,然后控制喷油、点火等系统的工作,保证发动机在各种工况下的正常工作。

发动机控制系统的核心是发动机控制单元(ECU),它可以实时监测发动机的工作情况,并根据传感器的反馈信号进行调整,以达到最佳的发动机性能和燃油经济性。

2. 变速器控制系统变速器控制系统是汽车电子控制系统中的另一个重要子系统,它通过控制变速器的换挡和锁死等,使得车辆的行驶更加顺畅和稳定。

变速器控制系统通过传感器感知车速、转速、油门踏板等数据,从而精确计算出应该处于的挡位并进行换挡。

3. 电子制动系统电子制动系统是一种智能化的制动系统,通过电子信号控制制动压力,有助于避免车轮抱死,保持制动的平衡状态,从而大大提高了行驶安全性能。

电子制动系统通常包括电子制动控制单元(EBCU)、电子控制制动压力分配系统(EBD)、电子稳定控制系统(ESC)和刹车助力系统(BAS)等。

EBCU可根据汽车各方面的数据,实现自适应制动、防滑、防抱死、刹车平衡等功能,使驾驶员在各种路况下行驶更为安全、舒适。

4. 车身控制系统车身控制系统是一种通过各种传感器感知车辆行驶状态,然后进行控制的系统,能够提供诸如车道保持、智能巡航、盲区监测等功能。

车身控制系统通过各种传感器,如探头、摄像头、雷达等获取信息,识别路面状况以及车辆周围的障碍物等,并在此基础上进行决策,实现自动驾驶等新技术。

综上所述,汽车电子控制系统是现代汽车中一种不可或缺的系统,它通过各种传感器和控制单元实现对汽车各种功能的控制,会对汽车的性能、舒适性、安全性等方面有重要的影响。

bcm论文bcmcan总线汽车电子车身控制系统

bcm论文bcmcan总线汽车电子车身控制系统

【关键词】BCM CAN总线汽车电子车身控制系统【英文关键词】BCM CAN bus Automotive electronic Body control systemBCM论文:经济型轿车车身控制系统设计【中文摘要】随着人们生活水平日益提高,轿车尤其是经济型轿车开始进入平常百姓的生活中。

车身控制系统作为汽车上重要部件之一,对汽车的安全性、舒适性、便捷性有重要的影响。

为了提高和促进国产经济型轿车车身控制系统的水平,本文从车身控制系统基本原理出发,对系统的硬件构成,核心元器件的选择,底层驱动,SCADE逻辑功能代码设计,CAN通讯设计进行了分析与讨论。

在此基础上,设计了带CAN总线的经济型轿车车身控制系统。

目前这套系统已经安装在华泰B11的实验车上,进行了相关的调试和实验工作。

满足了当初的设计要求,并且减少了车身内的线束。

同时针对当前汽车电子的软件设计提出了改进,将SCADE应用于汽车电子实际工程之中,缩短了项开发时间,降低了开发成本,并且提高了代码的可靠性与可维护性。

实验和实际工作经验表明,基于CAN总线的车身控制系统将会逐渐的应用于经济型轿车之中。

此类车身控制系统具有可靠性高、通信实时性好、连接方便等显著优点,对进一步提高国产自主轿车车身控制系统理论研究具有重要意义。

【英文摘要】Along with the rising living standard of thepeople, the cars especially the economy cars began to enter the lives of ordinary people. Body control modular(BCM) as an part of the vehicle has important influence on the vehicle safety, comfort and convenience. In order to improve and promote domestic economic type of car body control system level, this paper analyzes and discusses the hardware structure of the system, selection of core components, the design of SCADE logic function code and CAN communication from the principle of the body control system. Based on this, the paper designs an economy car’s BCM with CAN bus. Now, this BCM has been already assembled in HUATAI B11experimental vehicle. The related experiences and tests have been completed. We come to the conclusion that the BCM designed in this paper meets the design requirements.Also, the wire harness is reduced effectively. Furthermore this design puts forward the improvement measures by using SCADE software in view of the current automotive electronics software design. Therefore, the project development time is shortened and the reliability and maintainability of the code is improved.According to the good performance, the distributed BCM based on CAN bus will be gradually applied in economy car. This type of BCM has the advantages of high reliability, real time communication, convenient connection and so on. It mayhave important significance in improving the domestic independent BCM research level. Keywords:BCM, CAN bus, Automotive electronic, Body control system【目录】经济型轿车车身控制系统设计摘要5-6Abstract6第一章绪论7-111.1 课题研究背景7-81.2 国内外研究现状8-91.3 课题的研究内容和创新点9-11第二章车身控制系统硬件设计11-322.1 需求方案制定11-162.1.1 灯光系统功能12-132.1.2 后视镜功能132.1.3 中控功能13-142.1.4 车窗升降功能142.1.5 遥控设防14-162.2 硬件系统设计16-272.2.1 MCU元器件选型16-172.2.2 MCU及周边电路设计17-182.2.3 输入和信号采集电路18-202.2.4 驱动输出和保护电路设计20-222.2.5 诊断电路设计22-232.2.6 电源电路设计232.2.7 遥控门禁系统设计23-272.3 电动车窗防夹27-302.3.1 防夹区域和防夹力的定义272.3.2 防夹功能设计27-302.4 硬件可靠性设计30-312.5 本章小结31-32第三章CAN总线原理与通信设计32-443.1 汽车网络分类323.2 CAN协议的基本定义与分层结构32-343.2.1 物理层333.2.2 数据链路层33-343.3 帧类型和帧结构34-363.4 CAN总线的拓扑结构36-383.5 CAN应用层协议设计38-393.6 CAN总线节点软件设计39-433.6.1 CAN 模块的初始化软件设计39-413.6.2 CAN节点的发送程序41-423.6.3 CAN节点接收子程序42-433.7 本章小结43-44第四章车身控制系统软件设计44-644.1 软件开发环境介绍44-454.1.1CodeWarrior6.3444.1.2 SCADE软件44-454.2 BCM软件架构设计45-464.3 BCM各节点底层驱动设计46-524.3.1 设置MCU的工作模式46-474.3.2 系统时基和PWM软件设计47-484.3.3 数据采集软件设计48-504.3.4 电机控制策略设计50-524.4 SCADE逻辑功能设计52-584.4.1 SCADE软件使用与电动车窗模块设计52-554.4.2 电动后视镜软件设计55-574.4.3 状态控制软件设计57-584.5 SCADE实现机制分析58-614.5.1 SCADE代码样例58-604.5.2 代码规模与执行效率60-614.6 软件抗干扰措施61-634.6.1 数字滤波技术61-624.6.2 软件陷阱62-634.6.3 冗余技术634.7 本章总结63-64第五章系统验证与实验64-675.1 BCM软件模拟与测试64-655.2 BCM 模块台架功能测试655.3 BCM EMC及其他性能测试65-665.4 本章总结66-67第六章总结与展望67-68致谢68-69参考文献69-71附录71-75攻读硕士学位期间发表的论文75。

TCU、EPS、EPB、ESP、AFS、TPMS等常用模块工作原

TCU、EPS、EPB、ESP、AFS、TPMS等常用模块工作原

ESP、TCS、TPMS、ACC、EPAS——汽车底盘五大技术-fei一、ESP(ESC、VSC)电子稳定控制系统技术介绍:ESP在极限工况下工作示意图ESP的英文全称是ElectronicStabilityProgram,中文意思是“电子稳定控制系统”。

也可称作ESC或VSC。

ESP主要是在紧急情况下对车辆的行驶状态进行主动干预,它整合了ABS和TCS的功能,并且增加横摆扭矩控制――防侧滑功能,可以防止车辆在高速行驶转弯或制动过程中失控。

如图1左侧所视,车辆前轮侧滑,车辆出现转向不足。

此时,VSC系统通过制动器对内后轮施加一定的制动力,由此产生一个逆时针的力矩,改进车辆转向能力。

如图1右侧所视,车辆后轮侧滑,出现车辆甩尾和过度现象。

此时,VSC系统通过制动器对外前轮施加一定的制动力,由此产生一个顺时针的力矩,保证车辆的稳定性。

ESP系统主要在大侧向加速度、大侧偏角的极限工况下工作。

它利用控制左右两侧车轮制动力或驱动力之差产生的横摆力矩来防止出现难以控制的侧滑现象,保证车辆的路径跟踪能力,提高了车辆在高速行使时的安全性。

研究估计ESP降低了30%-50%的轿车单车致命事故和50%-70%的SUV单车致命事故。

技术应用情况:2008年全球的VSC装配率达到33%当今在欧洲和美国,每两辆新乘用车和轻型商用车就有一辆装配了ESP。

美国和欧洲的立法者最近都做出决定,要求强制装配ESP。

2011年9月起,美国所有4.5吨以下车辆都必须装配ESP。

2014年11月起,欧洲所有乘用车和轻、中、重型车辆都要求装配ESP。

在2008年,我国只有约11%的新车装配了ESP。

随着今年国内车市新车型的不断推出,目前我国20万元以上新车配备ESP的比率大幅提高,像别克新君越、新天籁、雅阁八代等都装配了ESP。

相信随着我国车市的进一步发展,电子稳定控制系统一定会如同当今的ABS一样,成为我国汽车的一个标准安全配置。

二、TCS牵引力控制系统技术介绍:TCS的英文全称是TractionControlSystem,中文意思是“牵引力控制系统”。

汽车车身电控技术

汽车车身电控技术

第1章 汽车车身电子控制系统概述
安全气囊碰撞动画分析
第1章 汽车车身电子控制系统概述
2)电控安全带 为确保乘员的安全,除了车身结构设计中应考虑有
效地吸收撞击能量,确保车内具有有效的乘员生存空间 外,作为乘员约束装置之一的座椅安全带,要求当汽车 发生碰撞和翻车事故时使乘员免受大的减速度,同时约 束乘员防止二次冲撞,减轻乘员伤害程度。当安全带结 构性能的改进并与座椅结构和安全气囊相配合时,可达 到较理想的乘员保护效果,进一步降低乘员的伤害指数。
第1章 汽车车身电子控制系统概述
单击播放
第1章 汽车车身电子控制系统概述
3)辅助电气系统 汽车辅助电气系统主要包括电动车窗、电动座椅、风窗玻璃刮水
系统等。 电动玻璃升降机构实质上是在手动玻璃升降系统的基础上,增设
玻璃升降驱动电动机和减速器而构成。驾驶席侧面的总开关可以控制 全部车门玻璃的升降,各车窗升降开关可以单独控制各自车门玻璃的 升降;汽车电动座椅系统又称为座椅位置(座位)调节系统,通过操纵 座位控制开关,可以调整座位的前后滑移、前垂直、后垂直位置,靠 背和头枕的倾斜位置以及腰垫的位置;汽车风窗玻璃刮水系统的功用 是:刮除挡风玻璃上的雨水、积雪、尘土和污物,为驾驶人提供良好 的视野,确保行车安全。
第1章 汽车车身电子控制系统概述
空调系统的组成
第1章 汽车车身电子控制系统概述
3.车身电气系统 1)电子仪表
传统的仪表对车速、发动机转速、 燃油消耗等信息进行监测、传递和显 示。随着汽车工业的发展,人们对汽 车行驶过程中各系统工作状态的信息 需求量显著增加,即对汽车仪表功能 的要求越来越大。因此,传统的汽车 仪表逐渐被电子仪表所取代。它采用 微处理器采集处理不同传感器信号, 控制显示如车速、发动机转速、燃油 消耗和行车里程等多种信息。

汽车车身智能控制系统的设计与实现

汽车车身智能控制系统的设计与实现

汽车车身智能控制系统的设计与实现摘要:汽车车身智能控制系统能够更好地驾驶和保护汽车,如今已经成为汽车的重要配置,是提高其产品竞争力的重要手段。

现如今,各大厂商越来越倾向将车身智能控制系统作为标准的配置,根据对市场的分析数据显示,车身控制器的销量在年以后稳步大幅上升,更加高度的集成芯片技术使得车身电子产品的小型和智能化成为了可能。

本文对汽车车身智能控制系统进行探索,并提出了系统的设计与实践策略,仅供参考。

关键词:汽车行业;车身;智能控制系统;设计;策略前言:电子技术带动了汽车工业的进步,其所占比例也在逐年上升,进入新世纪后汽车业的技术革新比例逐渐增高,这样的革新促进了传统汽车行业的发展。

本人从2005年9月份起直到目前在北汽福田汽车股份有限公司佛山汽车厂工作,一直担任电子电器所高级经理岗位,主要负责皮卡整车电器系统开发工作,下面将对汽车车身智能控制系统的设计与实现展开论述。

一、汽车车身智能控制系统的发展概述(一)汽车的发展概述20世纪年代是电了技术在汽车行业的首次应用,但是直到20世纪80年代以后电了技术才得到了所谓正真的应用,如电了控制发动机管理系统等。

上世纪80年代左右,是汽车工业发展最为重要的阶段,在此过程中开发出了具有非常复杂功能的控制系统,如废气的循环控制、底盘制动以系统控制等。

就目前情况来看,汽车电了技术已发展到一个很高的水平,如远程诊断以及智能通信等,且随着乘客对汽车的安全技术、环保要求,功能变得逐渐多样化,当前网络系统已经开始在汽车上被广泛应用[1]。

(二)汽车智能控制发展概述汽车电子技术需要追求集成、智能,且需要注重安全环保节能,以此极大提高应用性能,二为了达到更加舒适和智能的要求,应在车身的各个系统中加入传感器,以此通过网络接收到更多的动态信息,然而汽车大量使用传感器又使得汽车环境变得更加复杂。

随着智能化的普及,汽车数据呈几何的增长,各大厂商都采用总线路智能通讯方式减少线束的数量,在降低成本的同时实现量化,极大地提高了数据的传输速率,对软件的编辑实现了数据络共享,省去复杂的硬件设计及软件设计[2]。

汽车电子稳定控制系统(ESPESC)历史解析

汽车电子稳定控制系统(ESPESC)历史解析

汽车电子稳定控制系统(ESP/ESC)历史解析网易汽车2月10日报道1987年,ESC系统的最早创新者奔驰和宝马最先在他们的汽车上装备了牵引力控制系统,这套牵引力控制系统可以通过针对每个车轮施加不同的制动力和驱动力来实现保持牵引力,这套系统与今天的ESC系统还不大一样,其设计初衷并不是为了辅助转向。

但牵引力控制系统就是ESC的前身。

在上世纪90年代间牵引力控制系统的名字叫TCL,自从三菱开始装备现代化的主动防滑及牵引力控制系统(ASTC)后这套系统开始了又一轮的进化。

此时的牵引力控制系统已经和现代的ESC系统大体一致了,它设计的目的中包括了帮助驾驶者在过弯时使得车辆按照预定路线行驶,车载电脑通过安置在车身四处的监测器获取并计算众多参数并使电子牵引力控制系统起作用。

比如在过弯时,如果油门轰得过大,车载电脑就会自动调节发动机的动力输出和制动系统以确保车辆无论行驶在何种路况下按照预定路线行驶。

传统的牵引力控制系统只设计了防滑控制功能,三菱的研究使得TCL系统实现了主动安全防护。

其具体方案就是通过主动调节牵引力来避免车辆转弯时出现过大的横向加速度。

尽管这还并不完全是现代意义的车身稳定控制系统,这套系统已经可以监测转向角、油门位置和每个车轮转速,当时并不包括对偏航率的监测。

TCL系统标配的防滑控制功能可以明显改善过弯时的打滑情况。

除此之外,三菱还通过装备集成Diamante的电子控制悬挂和四轮转向系统实现对车辆操控和性能整体性改进。

宝马和博世公司及大陆公司合作开发了一套系统通过减少发动机的扭矩来实现避免车辆失控,并于1992年在全部的旗下车型中装备。

1987年到1992年间,奔驰和博世合作研发了一套名为Electronic stability programm的系统,其英文的意思就是电子稳定程序,也就是我们今天常说的ESP,这是一套可以实现横向防滑控制的电子系统,名为ESC系统。

通用和Delphi于1997年时控制研发出了自己的ESC系统名为StabiliTrak,这套系统在旗下部分凯迪拉克汽车上装备。

ESP(车身电子稳定系统)简介

ESP(车身电子稳定系统)简介

车身电子稳定系统(Electronic Stability Program,简称ESP),是博世(Bosch)公司的专利。

ESP系统实际是一种牵引力控制系统,与其他牵引力控制系统比较,ESP不但控制驱动轮,而且可控制从动轮。

如后轮驱动汽车常出现的转向过多情况,此时后轮失控而甩尾,ESP便会刹慢外侧的前轮来稳定车子;在转向过少时,为了校正循迹方向,ESP则会刹慢内后轮,从而校正行驶方向。

ESP系统包含ABS(防抱死刹车系统)及ASR(驱动防滑转系统),是这两种系统功能上的延伸。

因此,ESP称得上是当前汽车防滑装置的最高级形式。

ESP系统由控制单元及转向传感器(监测方向盘的转向角度)、车轮传感器(监测各个车轮的速度转动)、侧滑传感器(监测车体绕垂直轴线转动的状态)、横向加速度传感器(监测汽车转弯时的离心力)等组成。

控制单元通过这些传感器的信号对车辆的运行状态进行判断,进而发出控制指令。

有ESP与只有ABS及ASR的汽车,它们之间的差别在于ABS及ASR只能被动地作出反应,而ESP则能够探测和分析车况并纠正驾驶的错误,防患于未然。

ESP对过度转向或不足转向特别敏感,例如汽车在路滑时左拐过度转向(转弯太急)时会产生向右侧甩尾,传感器感觉到滑动就会迅速制动右前轮使其恢复附着力,产生一种相反的转矩而使汽车保持在原来的车道上。

当然,任何事物都有一个度的范围,如果驾车者盲目开快车,现在的任何安全装置都难以保全。

ESP和博世公司[1]10年前,博世是第一家把电子稳定程序(ESP)投入量产的公司。

因为ESP是博世公司的专利产品,所以只有博世公司的车身电子稳定系统才可称之为ESP。

在博世公司之后,也有很多公司研发出了类似的系统,如日产研发的车辆行驶动力学调整系统(Vehicle Dynamic Control 简称VDC)[2],丰田研发的车辆稳定控制系统(Vehicle Stability Control 简称VSC)[3],本田研发的车辆稳定性控制系统(Vehicle Stability Assist Control 简称VSA)[4],宝马研发的动态稳定控制系统(Dynamic Stability Control 简称DSC)[5]等等。

  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

汽车车身电子网络控制系统
CAN(Controller Area Network)总线是一种有效支持分布式控制和实时控制的串行通讯网络。

目前已经在国外汽车的电器网络中得到了广泛的应用。

为了满足国产汽车车身控制总线的迫切需求,我们设计了一种基于CAN总线的整车管理系统的硬件方案。

本方案重点对系统的总体结构、车身控制系统CAN总线的节点设置、节点及中央控制与CAN总线的接口电路进行了设计。

随着汽车电子技术的发展及汽车性能的不断提高,汽车上的电子装置越来越多。

传统的电器系统大多采用点对点的单一通信方式,相互之间很少有联系,这样必然造成庞大的布线系统。

目前,国外许多整车制造厂和汽车电器制造厂家在整车管理系统中采用了网络技术,如CAN和LIN、SAEJ1850等。

其中,CAN的使用较为广泛。

CAN总线是德国BOSCH公司于20世纪80年代初提出的,它将汽车上各种信号的接线只用2根简洁的电缆线取代,汽车上的各种电子装置通过CAN控制器挂到这2根电缆上,设备之间利用电缆进行数据通讯和数据共享,从而大大减少了汽车上的线束。

CAN总线结构独特,性能可靠,被公认为是最有前途的现场控制总线之一。

由于客观条件的限制,目前我国的整车制造厂和汽车电子电器厂几乎没有涉及到汽车电器网络化设计的领域。

但随着我国汽车工业和电子工业的发展,进行汽车电器的网络化研究与开发已经成为十分重要的课题。

1、整车管理系统总体结构设计
汽车上各种电器对网络信息传输延迟的敏感性差别很大,发动机控制器、自动变速器控制器、ABS控制器、安全气囊控制器等之间的协调关系所要求的实时性很强,而前后车灯的开关、车门开闭、座位调节等简单事件对信息传输延迟的要求要宽松得多(传输延迟允10ms-100ms),如果将这些功能简单的节点都挂在高速总线上,势必会提高对节点的技术要求和成本,故有必要进行多路总线设计。

考虑到与国际上标准的一致性这里采用2条CAN 总线。

图1为整车管理系统总体结构
汽车驱动系统中采用高速CAN,信息传输速度达500K-1M bps,其主要连接对象是:发动机、自动变速器、ABS/ASR、安全气囊、主动悬架、巡航系统、电动转向系统及组合仪表信号的采集系统等。

驱动系统CAN的控制对象都是与汽车行驶控制直接相关的系统,对信号的传输要求有很强的实时性,它们之间存在着较多的信息交流,而且很多都是连续的和高速的。

车身系统中采用低速CAN,信息传输速率为100K pbs,主要连接对象是:前后车灯控制开关、电动坐椅控制开关、中央门锁与防盗控制开关、电动后视镜控制开关、电动车窗升降开关、气候(空调)控制开关、故障诊断系统、组合开关及驾驶员操纵信号采集系统、仪表显示器等。

车身系统CAN的控制对象主要是低速电机、电磁阀和开关器件,它们对信息传输的实时性要求不高,但数量较多,将这些电控单元与汽车驱动系统分开有利于保证驱动系统的实时性;采用低速CAN总线还能增加总线的传输距离,提高抗干扰能力,降低硬件成本。

两条CAN总线相互独立,通过网关服务器进行数据交换和资源共享。

中央控制器是整车管理系统的控制核心,也是整车综合控制的基础,主要功能是对各种信息进行分析处理,并
发出指令,协调汽车各控制单元及电器设备的工作。

同时,中央控制器也是高速CAN总线和低速CAN总线的网关服务器。

2、节点的设置
本设计以低速CAN总线为基础的车身控制系统为重点,为了将汽车上各类原始信号转换为可在CAN总线上进行传输的数字量信号,同时也为了提高系统的可靠性,在低速总线上设置了节点。

节点的功能是:接收传感器输出的模拟信号、数字信号或开关信号,经ECU 进行处理,转换为可在CAN总线上通讯的数据报文格式,经ECU内的CAN控制器发送到CAN总线上,同时将从CAN总线上接收到的数据信息转换成能够驱动执行器或照明灯的模拟信号或数字信号.节点的设置原则仅仅考虑各电器元件在汽车上的物理位置,节点结构见图2。

节点1:主要控制前部车灯和汽车喇叭,位于驾驶室前部。

节点2:采集组合开关及其他位于仪表板附近的操纵开关的信号,位于仪表板附近。

节点3:将需要在仪表上显示的内容处理后,输出并显示,位于仪表板内部。

节点4:采集空调、中央门锁、驾驶室翻转等开关的状态信号,控制空调、防盗与遥控门锁、刮雨器等的动作,位于驾驶室内手套箱附近。

节点5:驾驶员车门控制节点,采集各开关信号,控制驾驶员一侧的门锁、车窗和电动后视镜的动作,位于驾驶员车门上。

节点6:乘客侧车门控制节点,位于乘客侧车门上。

节点7:采集仪表显示信号及驾驶员操纵信号,包括燃油量、冷却液温度、机油压力、电源电压、空挡开关、倒车开关等,位于仪表板附近。

节点8:整车管理系统的中央控制器,协调和管理整车各系统的工作,并起网关的作用,连接高速和低速总线,位于仪表板附近。

节点9:采集驱动系统中与仪表显示有关的信号,如车速、发动机转速、冷却液温度等,位于驾驶室内手套箱附近。

节点10:电动坐椅节点,采集坐椅开关信号并控制坐椅动作,位于驾驶员坐椅上。

节点11:控制汽车后部车灯,倒车喇叭和防撞雷达监视器,位于汽车后部。

3、节点与CAN总线的接口设计
整车管理系统是由许多节点通过CAN总线相连而组成的一个局域网,因此CAN总线的设计就显得极为重要。

其中CAN控制器、CAN收发器的选取以及抗干扰措施将成为设计的关键。

接口电路见图3。

(1)CAN控制器的选取
为了满足系统功能和进一步扩展的需要,CAN控制器采用MICROCHIP公司内部带CAN引擎的微控制器(单片机)PIC18F248,其片上带5路10bit A/D转换器、1个8bit,两个16bit 定时/计数器、1-4路PWM输出控制器以及22个I/O端口,它除了可以进行模拟、数字量的采集、控制外,还可以通过脉冲宽度调制(PWM)方式控制各种执行电机的速度。

(2)CAN收发器的选取
CAN收发器选用MICROCHIP公司的MCP2551,这是一种应用广泛的CAN控制器与物理总线间的接口芯片,能够对总线的信息进行差动发送和接收。

它能增大通信距离、提高系统的瞬间抗干扰能力、保护总线、降低射频干扰等。

(3)光电隔离
汽车上电磁干扰较厉害,对系统的抗干扰能力要求较高,为了进一步提高系统的抗干扰
能力,在CAN控制器(单片机)和驱动总线的CAN收发器MCP2551之间增加了由高速隔离器件6N137构成的光电隔离电路,电源也采用微型DC/DC模块来进行隔离。

4、中央控制器(网关服务器)与CAN总线的接口设计
中央控制器选用: 选用带两路CAN控制器、支持CAN2.0B通信协议的数字信号处理(DSP)芯片作为节点控制核心。

这样可以增加系统的控制速度,增强系统控制的灵活性以及提高系统的可靠性。

这里选用MICROCHIP公司的dsPIC30F系列的16位定点DSP芯片:dsPIC30F6010,其最高处理能力可达30MIPS,工作温度范围可达(-40-- +125)的汽车级别,具有16通道的10bit 高速A/D转换器、5个16bit定时/计数器、8个通用的PMW控制器和8个专用的马达控制PWM控制器。

此外该芯片还具有MCU+DSP双CPU内核以及多达68个I/O端口。

中央控制器与CAN总线的互连结构见图4。

由于dsPIC30F6010内部具有双CAN引擎,所以可以很好地在高速CAN通道和低速CAN通道之间担当起网关的功能,同时其DSP的处理速度和丰富的外围接口资源,使得它足以应付汽车电控单元不断升级的需求。

5、结束语
该整车管理系统是针对国产轿车、越野车以及轻型货车而设计的。

重点设计了基于CAN 总线的整车管理系统的总体结构、车身控制系统、CAN总线的节点布置、节点与CAN总线的接口及中央控制器与CAN总线的接口电路。

将该系统应用于汽车控制系,可明显减少汽车上的线束,更好地控制和协调汽车的各个系统,以减少对驾驶者本身素质的依赖性,使国产汽车跟上国际技术潮流,在未来市场角逐中具有更强的竞争力。

相关文档
最新文档