全国各地中考试题压轴题精选讲座六
全国中考数学压轴题精选-解析几何详细解析
全国中考数学压轴题精选-解析几何71.(中考江苏镇江28题)(本小题满分8分)探索研究 如图,在直角坐标系xOy 中,点P 为函数214y x =在第一象限内的图象上的任一点,点A 的坐标为(01),,直线l 过(01)B -,且与x 轴平行,过P 作y 轴的平行线分别交x 轴,l 于C Q ,,连结AQ 交x 轴于H ,直线PH 交y 轴于R .(1)求证:H 点为线段AQ 的中点; (2)求证:①四边形APQR 为平行四边形;②平行四边形APQR 为菱形;(3)除P 点外,直线PH 与抛物线214y x =有无其它公共点?并说明理由. (中考江苏镇江28题解析)(1)法一:由题可知1AO CQ ==.90AOH QCH ∠=∠=o Q ,AHO QHC ∠=∠,AOH QCH ∴△≌△.············································································· (1分) OH CH ∴=,即H 为AQ 的中点. ···························································· (2分) 法二:(01)A Q ,,(01)B -,,OA OB ∴=. ·················································· (1分) 又BQ x ∥轴,HA HQ ∴=. ···································································· (2分) (2)①由(1)可知AH QH =,AHR QHP ∠=∠,AR PQ Q ∥,RAH PQH ∴∠=∠,RAH PQH ∴△≌△. ············································································· (3分) AR PQ ∴=,又AR PQ ∥,∴四边形APQR 为平行四边形. ············································· (4分)②设214P m m ⎛⎫ ⎪⎝⎭,,PQ y Q ∥轴,则(1)Q m -,,则2114PQ m =+. 过P 作PG y ⊥轴,垂足为G ,在Rt APG △中,x2114AP m PQ ====+=.∴平行四边形APQR为菱形. ····································································(6分)(3)设直线PR为y kx b=+,由OH CH=,得22mH⎛⎫⎪⎝⎭,,214P m m⎛⎫⎪⎝⎭,代入得:221.4mk bkm b m⎧+=⎪⎪⎨⎪+=⎪⎩,221.4mkb m⎧=⎪⎪∴⎨⎪=-⎪⎩,∴直线PR为2124my x m=-.·····················(7分)设直线PR与抛物线的公共点为214x x⎛⎫⎪⎝⎭,,代入直线PR关系式得:2211424mx x m-+=,21()04x m-=,解得x m=.得公共点为214m m⎛⎫⎪⎝⎭,.所以直线PH与抛物线214y x=只有一个公共点P.·······································(8分)72(中考黑龙江齐齐哈尔28题)(本小题满分10分)如图,在平面直角坐标系中,点(30)C-,,点A B,分别在x轴,y轴的正半轴上,且满足10OA-=.(1)求点A,点B的坐标.(2)若点P从C点出发,以每秒1个单位的速度沿射线CB运动,连结AP.设ABP△的面积为S,点P的运动时间为t秒,求S与t的函数关系式,并写出自变量的取值范围.(3)在(2)的条件下,是否存在点P,使以点A B P,,为顶点的三角形与AOB△相似?若存在,请直接写出点P的坐标;若不存在,请说明理由.x(中考黑龙江齐齐哈尔28题解析)解:(1)10OA -=Q230OB ∴-=,10OA -= ······································································· (1分)OB ∴=,1OA =Q 点A ,点B 分别在x 轴,y 轴的正半轴上(10)(0A B ∴,, ·················································································· (2分)(2)求得90ABC ∠=o············································································· (3分)(0(t t S t t ⎧<⎪=⎨->⎪⎩ ≤(每个解析式各1分,两个取值范围共1分) ················································ (6分)(3)1(30)P -,;21P ⎛- ⎝;31P ⎛ ⎝;4(3P (每个1分,计4分) ··········································································································· (10分)注:本卷中所有题目,若由其它方法得出正确结论,酌情给分.73(中考海南省卷24题)(本题满分14分)如图13,已知抛物线经过原点O 和x 轴上另一点A ,它的对称轴x =2 与x 轴交于点C ,直线y =-2x -1经过抛物线上一点B (-2,m ),且与y 轴、直线x =2分别交于点D 、E .(1)求m 的值及该抛物线对应的函数关系式; (2)求证:① CB =CE ;② D 是BE 的中点;(3)若P (x ,y )是该抛物线上的一个动点,求出所有符合条件的点P 的坐标;若不存在,请说明理由.(中考海南省卷24题解析)(1)∵ 点B (-2,m )在直线y =-2x -1上,∴ m =-2×(-2)-1=3. ………………………………(2分) ∴ B (-2,3)∵ 抛物线经过原点O 和点A ,对称轴为x =2, ∴ 点A 的坐标为(4,0) .设所求的抛物线对应函数关系式为y =a (x -0)(x -4). ……………………(3分)将点B (-2,3)代入上式,得3=a (-2-0)(-2-4),∴ 41=a . ∴ 所求的抛物线对应的函数关系式为)4(41-=x x y ,即x x y -=241. (6分) (2)①直线y =-2x -1与y 轴、直线x =2过点B 作BG ∥x 轴,与y 轴交于F 、直线x 则BG ⊥直线x =2,BG =4.在Rt △BGC 中,BC =522=+BG CG .∵ CE =5,∴ CB =CE =5. ……………………(9分)②过点E 作EH ∥x 轴,交y 轴于H ,则点H 的坐标为H (0,-5). 又点F 、D 的坐标为F (0,3)、D (0,-1),∴ FD =DH =4,BF =EH =2,∠BFD =∠EHD ∴ △DFB ≌△DHE (SAS ),∴ BD =DE .即D 是BE 的中点. (3) 存在. 由于PB =PE ,∴ 点P 在直线CD 上,∴ 符合条件的点P 是直线CD 与该抛物线的交点.设直线CD 对应的函数关系式为y =kx +b .将D (0,-1) C (2,0)代入,得⎩⎨⎧=+-=021b k b . 解得 1,21-==b k .∴ 直线CD 对应的函数关系式为y =21x -1.∵ 动点P 的坐标为(x ,x x -241),∴ 21x -1=x x -241. ………………………………(13分)解得 531+=x ,532-=x . ∴ 2511+=y ,2511-=y .∴ 符合条件的点P 的坐标为(53+,251+)或(53-,251-).…(14分)(注:用其它方法求解参照以上标准给分.)74.(中考广东东莞22题)(本题满分9分)将两块大小一样含30°角的直角三角板,叠放在一起,使得它们的斜边AB 重合,直角边不重合,已知AB=8,BC=AD=4,AC 与BD 相交于点E ,连结CD . (1)填空:如图9,AC= ,BD= ;四边形ABCD 是 梯形. (2)请写出图9中所有的相似三角形(不含全等三角形).(3)如图10,若以AB 所在直线为x 轴,过点A 垂直于AB 的直线为y 轴建立如图10的平面直角坐标系,保持ΔABD 不动,将ΔABC 向x 轴的正方向平移到ΔFGH 的位置,FH 与BD 相交于点P ,设AF=t ,ΔFBP 面积为S ,求S 与t 之间的函数关系式,并写出t 的取值值范围.(中考广东东莞22题解析)解:(1)…………………………1分等腰;…………………………2分(2)共有9对相似三角形.(写对3-5对得1分,写对6-8对得2分,写对9对得3分)①△DCE 、△ABE 与△ACD 或△BDC 两两相似,分别是:△DCE ∽△ABE ,△DCE ∽△ACD ,△DCE ∽△BDC ,△ABE ∽△ACD ,△ABE ∽△BDC ;(有5对)②△ABD ∽△EAD ,△ABD ∽△EBC ;(有2对) ③△BAC ∽△EAD ,△BAC ∽△EBC ;(有2对)所以,一共有9对相似三角形.…………………………………………5分(3)由题意知,FP ∥AE , ∴ ∠1=∠PFB , 又∵ ∠1=∠2=30°,∴ ∠PFB =∠2=30°,∴ FP =BP.…………………………6分过点P 作PK ⊥FB 于点K ,则FK BK ==∵ AF =t ,AB =8,∴ FB =8-t ,1(8)2BK t =-.DCAE图9图10在Rt △BPK中,1tan 2(8)tan 30)26PK BK t t =⋅∠=-︒=-. ……………………7分 ∴ △FBP的面积11(8)(8)226S FB PK t t =⋅⋅=⋅-⋅-, ∴ S 与t 之间的函数关系式为:28)S t =-,或243S t =-分 t 的取值范围为:08t ≤<. …………………………………………………………9分75(中考甘肃兰州28题)(本题满分12分)如图19-1,OABC 是一张放在平面直角坐标系中的矩形纸片,O 为原点,点A 在x 轴的正半轴上,点C 在y 轴的正半轴上,5OA =,4OC =.(1)在OC 边上取一点D ,将纸片沿AD 翻折,使点O 落在BC 边上的点E 处,求D E,两点的坐标;(2)如图19-2,若AE 上有一动点P (不与A E ,重合)自A 点沿AE 方向向E 点匀速运动,运动的速度为每秒1个单位长度,设运动的时间为t 秒(05t <<),过P 点作ED 的平行线交AD 于点M ,过点M 作AE 的平行线交DE 于点N .求四边形PMNE 的面积S 与时间t 之间的函数关系式;当t 取何值时,S 有最大值?最大值是多少? (3)在(2)的条件下,当t 为何值时,以A M E ,,为顶点的三角形为等腰三角形,并求出相应的时刻点M 的坐标.(中考甘肃兰州28题解析)(本题满分12分) 解:(1)依题意可知,折痕AD 是四边形OAED 的对称轴, ∴在Rt ABE △中,5AE AO ==,4AB =.3BE ∴=.2CE ∴=.E ∴点坐标为(2,4). ··················································································· 2分 在Rt DCE △中,222DC CE DE +=, 又DE OD =Q .222(4)2OD OD ∴-+= . 解得:52CD =. D ∴点坐标为502⎛⎫⎪⎝⎭, ······················································································ 3分(2)如图①PM ED Q ∥,APM AED ∴△∽△.PM AP ED AE ∴=,又知AP t =,52ED =,5AE = 5522t tPM ∴=⨯=, 又5PE t =-Q .而显然四边形PMNE 为矩形.215(5)222PMNE t S PM PE t t t ∴==⨯-=-+g 矩形 ·················································· 5分 21525228PMNES t ⎛⎫∴=--+ ⎪⎝⎭四边形,又5052<<Q∴当52t =时,PMNE S 矩形有最大值258. ······························································ 6分 (3)(i )若以AE 为等腰三角形的底,则ME MA =(如图①) 在Rt AED △中,ME MA =,PM AE ⊥Q ,P ∴为AE 的中点,1522t AP AE ∴===.又PM ED Q ∥,M ∴为AD 的中点. 过点M 作MF OA ⊥,垂足为F ,则MF 是OAD △的中位线, 1524MF OD ∴==,1522OF OA ==, ∴当52t =时,5052⎛⎫<< ⎪⎝⎭,AME △为等腰三角形.此时M 点坐标为5524⎛⎫ ⎪⎝⎭,. ·············································································· 8分 (ii )若以AE 为等腰三角形的腰,则5AM AE ==(如图②)在Rt AOD △中,AD ===过点M 作MF OA ⊥,垂足为F .PM ED Q ∥,APM AED ∴△∽△. AP AMAE AD∴=.555AM AE t AP AD ⨯∴====g,12PM t ∴==.MF MP ∴==5OF OA AF OA AP =-=-=-∴当t =(05<),此时M点坐标为(5-.······················ 11分综合(i )(ii )可知,52t =或t =A M E ,,为顶点的三角形为等腰三角形,相应M 点的坐标为5524⎛⎫ ⎪⎝⎭,或(5-. ······················································· 12分76.(中考天津市卷26题)(本小题10分) 已知抛物线c bx ax y ++=232,(Ⅰ)若1==b a ,1-=c ,求该抛物线与x 轴公共点的坐标;(Ⅱ)若1==b a ,且当11<<-x 时,抛物线与x 轴有且只有一个公共点,求c 的取值范围; (Ⅲ)若0=++c b a ,且01=x 时,对应的01>y ;12=x 时,对应的02>y ,试判断当10<<x 时,抛物线与x 轴是否有公共点?若有,请证明你的结论;若没有,阐述理由.(中考天津市卷26题解析)解(Ⅰ)当1==b a ,1-=c 时,抛物线为1232-+=x x y , 方程01232=-+x x 的两个根为11-=x ,312=x . ∴该抛物线与x 轴公共点的坐标是()10-,和103⎛⎫ ⎪⎝⎭,. ········································· 2分 (Ⅱ)当1==b a 时,抛物线为c x x y ++=232,且与x 轴有公共点.对于方程0232=++c x x ,判别式c 124-=∆≥0,有c ≤31. ·································· 3分①当31=c 时,由方程031232=++x x ,解得3121-==x x . 此时抛物线为31232++=x x y 与x 轴只有一个公共点103⎛⎫- ⎪⎝⎭,. ···························· 4分②当31<c 时, 11-=x 时,c c y +=+-=1231, 12=x 时,c c y +=++=5232.由已知11<<-x 时,该抛物线与x 轴有且只有一个公共点,考虑其对称轴为31-=x ,应有1200.y y ⎧⎨>⎩≤, 即1050.c c +⎧⎨+>⎩≤,解得51c -<-≤. 综上,31=c 或51c -<-≤. ····································································· 6分(Ⅲ)对于二次函数c bx ax y ++=232,由已知01=x 时,01>=c y ;12=x 时,0232>++=c b a y , 又0=++c b a ,∴b a b a c b a c b a +=++++=++22)(23. 于是02>+b a .而c a b --=,∴02>--c a a ,即0>-c a .∴0>>c a . ···························································································· 7分 ∵关于x 的一元二次方程0232=++c bx ax 的判别式 0])[(412)(4124222>+-=-+=-=∆ac c a ac c a ac b ,∴抛物线c bx ax y ++=232与x 轴有两个公共点,顶点在x 轴下方. ························· 8分 又该抛物线的对称轴abx 3-=, 由0=++c b a ,0>c ,02>+b a , 得a b a -<<-2, ∴32331<-<a b . 又由已知01=x 时,01>y ;12=x 时,02>y ,观察图象,可知在10<<x 范围内,该抛物线与x 轴有两个公共点. ····································· 10分77(中考湖北宜昌25题)如图1,已知四边形OABC 中的三个顶点坐标为O (0,0),A (0,n ),C (m ,0).动点P 从点O 出发依次沿线段OA ,AB ,BC 向点C 移动,设移动路程为z ,△OPC 的面积S 随着z 的变化而变化的图象如图2所示.m ,n 是常数, m >1,n >0. (1)请你确定n 的值和点B 的坐标; (2)当动点P 是经过点O ,C 的抛物线y =ax 2+bx +c 的顶点,且在双曲线y =115x上时,求这时四边形OABC 的面积.(中考湖北宜昌25题解析)解:(1) 从图中可知,当P 从O 向A 运动时,△POC 的面积S(第25题)=12mz , z 由0逐步增大到2,则S 由0逐步增大到m ,故OA =2,n =2 . (1分) 同理,AB =1,故点B 的坐标是(1,2).(2分) (2)解法一:∵抛物线y =ax 2+bx +c 经过点O (0,0),C (m ,0),∴c =0,b =-am ,(3分) ∴抛物线为y =ax 2-amx ,顶点坐标为(2m ,-14 am 2).(4分)如图1,设经过点O ,C ,P 的抛物线为l.当P 在OA 上运动时,O ,P 都在y 轴上, 这时P ,O ,C 三点不可能同在一条抛物线上, ∴这时抛物线l 不存在, 故不存在m 的值..① 当点P 与C 重合时,双曲线y =115x不可能经过P , 故也不存在m 的值.②(5分)(说明:①②任做对一处评1分,两处全对也只评一分) 当P 在AB 上运动时,即当0<x 0≤1时,y 0=2, 抛物线l 的顶点为P (2m,2). ∵P 在双曲线y =115x 上,可得 m =115,∵115>2,与 x 0=2m≤1不合,舍去.(6分)③容易求得直线BC 的解析式是:2211m y x m m=---,(7分) 当P 在BC 上运动,设P 的坐标为 (x 0,y 0),当P 是顶点时 x 0=2m, 故得y 0=02211m x m m ---=1m m -,顶点P 为(2m,1m m -), ∵1< x 0=2m <m ,∴m>2,又∵P 在双曲线y =115x 上,于是,2m ×1m m -=115,化简后得5m 2-22m +22=0,解得1m =2m =分)2,2220,>∴-<Q 2222,10m -∴=<与题意2<x 0=2m<m 不合,舍去.④(9分)故由①②③④,满足条件的只有一个值:2210m +=.这时四边形OABC 的面积=1(1)22m +⨯=165+.(10分) (2)解法二: ∵抛物线y =ax 2+bx +c 经过点O (0,0),C (m ,0)∴c =0,b =-am ,(3分)∴抛物线为y =ax 2-amx ,顶点坐标P 为(m 2 ,-14am 2). (4分) ∵m >1,∴m 2 >0,且m 2≠m , ∴P 不在边OA 上且不与C 重合. (5分)∵P 在双曲线y =115x 上,∴m 2 ×(- 14 am 2)=115 即a =- 885m 3 . .①当1<m ≤2时,12 <m 2≤1,如图2,分别过B ,P 作x 轴的垂线, M ,N 为垂足,此时点P 在线段AB 上,且纵坐标为2,∴-14 am 2=2,即a =-8m 2 . 而a =- 885m 3 ,∴- 885m 3 =-8m 2 ,m =115>2,而1<m ≤2,不合题意,舍去.(6分) ②当m ≥2时,m 2>1,如图3,分别过B ,P 作x 轴的垂线,M ,N 为垂足,ON >OM , 此时点P 在线段CB 上,易证Rt △BMC ∽Rt △PNC ,∴BM ∶PN =MC ∶NC ,即: 2∶PN =(m -1)∶m 2 ,∴PN =m m -1(7分) 而P 的纵坐标为- 14 am 2,∴m m -1 =- 14 am 2,即a =4m(1-m)而a =-885m 3 ,∴- 885m 3 =4m(1-m)化简得:5m 2-22m +22=0.解得:m = 11±11 5 ,(8分) 但m ≥2,所以m =11-11 5舍去,(9分) 取m = 11+11 5 . 由以上,这时四边形OABC 的面积为:12 (AB +OC ) ×OA =12 (1+m ) ×2=16+11 5. (10分)。
近6年全国各地中考数学真题压轴题训练——圆及其方程(100题)(原卷版)
近6年全国各地中考数学真题压轴题训练——圆及其方程(100题)(原卷版)1.如图,在Rt ABC 中,90ACB D ∠︒=,为AB 的中点,以CD 为直径O 的分别交AC BC ,于点E F ,两点,过点F 作FG AB ⊥于点G . ()1试判断FG 与O 的位置关系,并说明理由.()2若3 2.5AC CD =,=,求FG 的长.2.如图,四边形ABCD 内接于⊙O ,∠BAD=90°,点E 在BC 的延长线上,且∠DEC=∠BAC .(1)求证:DE 是⊙O 的切线;(2)若AC ∥DE ,当AB=8,CE=2时,求AC 的长.3.已知△ABC,以AB 为直径的⊙O 分别交AC 于D ,BC 于E ,连接ED ,若ED=EC .(1)求证:AB=AC ;(2)若AB=4,BC= ,求CD 的长.4.如图,AB ,AC 分别是半⊙O 的直径和弦,OD ⊥AC 于点D ,过点A 作半⊙O 的切线AP ,AP 与OD 的延长线交于点P .连接PC 并延长与AB 的延长线交于点F .(1)求证:PC 是半⊙O 的切线;(2)若∠CAB=30°,AB=10,求线段BF 的长.5.(2015崇左)如图,在平面直角坐标系中,点M 的坐标是(5,4),⊙M 与y 轴相切于点C ,与x 轴相交于A 、B 两点.(1)则点A 、B 、C 的坐标分别是A (__,__),B (__,__),C (__,__);(2)设经过A 、B 两点的抛物线解析式为21(5)4y x k =-+,它的顶点为F ,求证:直线F A 与⊙M 相切; (3)在抛物线的对称轴上,是否存在点P ,且点P 在x 轴的上方,使△PBC 是等腰三角形.如果存在,请求出点P 的坐标;如果不存在,请说明理由.6.如图,AB是⊙O的直径,点C在AB的延长线上,AD平分∠CAE交⊙O于点D,且AE⊥CD,垂足为点E.(1)求证:直线CE是⊙O的切线.(2)若BC=3,CD=,求弦AD的长.7.如图,已知等腰直角三角形ABC,点P是斜边BC上一点(不与B,C重合),PE是△ABP的外接圆⊙O的直径.(1)求证:△APE是等腰直角三角形;(2)若⊙O的直径为2,求的值.8.如图,点O在∠APB的平分线上,⊙O与P A相切于点C.(1)求证:直线PB与⊙O相切;(2)PO的延长线与⊙O交于点E.若⊙O的半径为3,PC=4.求弦CE的长.9.如图,已知四边形ABCD内接于圆O,连结BD,∠BAD=105°,∠DBC=75°.(1)求证:BD=CD;(2)若圆O的半径为3,求的长.10.如图,AB为⊙O的直径,PD切⊙O于点C,与BA的延长线交于点D,DE⊥PO交PO延长线于点E,连接PB,∠EDB=∠EPB.(1)求证:PB 是的切线.(2)若PB=6,DB=8,求⊙O 的半径.11.如图,△ABC 中,AB =AC ,以AB 为直径的⊙O 与BC 相交于点D ,与CA 的延长线相交于点E ,过点D 作DF ⊥AC 于点F .(1)试说明DF 是⊙O 的切线;(2)若AC =3AE ,求tan C .12.如图,点A B C 、、在半径为8的O 上,过点B 作BD AC ∕∕,交OA 延长线于点D .连接BC ,且30BCA OAC ∠=∠=︒.(1)求证:BD 是O 的切线;(2)求图中阴影部分的面积.13.如图,正方形网格中,每个小正方形的边长都是一个单位长度,在平面直角坐标系内,△ABC 的三个顶点坐标分别为A (1,4),B (1,1),C (3,1).(1)画出△ABC 关于x 轴对称的△A 1B 1C 1;(2)画出△ABC 绕点O 逆时针旋转90°后的△A 2B 2C 2;(3)在(2)的条件下,求线段BC 扫过的面积(结果保留π).14.如图,AB 为⊙O 直径,AC 为⊙O 的弦,过⊙O 外的点D 作DE ⊥OA 于点E ,交AC 于点F ,连接DC 并延长交AB 的延长线于点P ,且∠D =2∠A ,作CH ⊥AB 于点H .(1)判断直线DC 与⊙O 的位置关系,并说明理由;(2)若HB =2,cos D =35,请求出AC 的长.15.⊙O 为△ABC 的外接圆,请仅用无刻度的直尺,根据下列条件分别在图1,图2中画出一条弦,使这条弦将△ABC 分成面积相等的两部分(保留作图痕迹,不写作法).(1)如图1,AC=BC ;(2)如图2,直线l 与⊙O 相切于点P ,且l ∥BC .16.如图,AB 为⊙O 的直径,C 是⊙O 上一点,过点C 的直线交AB 的延长线于点D ,AE ⊥DC ,垂足为E ,F 是AE 与⊙O 的交点,AC 平分∠BAE .(1)求证:DE 是⊙O 的切线;(2)若AE=6,∠D=30°,求图中阴影部分的面积.17.如图,⊙O 中,弦AB 与CD 相交于点E ,AB CD =,连接AD BC 、.求证:⑴AD BC =;⑵AE CE =.18.如图,AB 是⊙O 的直径,ED 切⊙O 于点C ,AD 交⊙O 于点F ,∠AC 平分∠BAD ,连接BF .(1)求证:AD ⊥ED ;(2)若CD=4,AF=2,求⊙O 的半径.19.如图,AB 是半圆O 的直径,C 、D 是半圆O 上的两点,且OD ∥BC ,OD 与AC 交于点E .(1)若∠B=70°,求∠CAD 的度数;(2)若AB=4,AC=3,求DE 的长.20.如图,点C 为△ABD 外接圆上的一动点(点C 不在BD 上,且不与点B ,D 重合),∠ACB=∠ABD=45°.(1)求证:BD 是该外接圆的直径;(2)连结CD ,求证:AC=BC+CD ;(3)若△ABC 关于直线AB 的对称图形为△ABM ,连接DM ,试探究222DM AM BM ,,,三者之间满足的等量关系,并证明你的结论.21.已知四边形ABCD 是⊙O 的内接四边形,AC 是⊙O 的直径,DE ⊥AB ,垂足为E .(1)延长DE 交⊙O 于点F ,延长DC ,FB 交于点P ,如图1.求证:PC=PB ;(2)过点B 作BG ⊥AD ,垂足为G ,BG 交DE 于点H ,且点O 和点A 都在DE 的左侧,如图2.若AB=,DH=1,∠OHD=80°,求∠BDE 的大小.22.如图,⊙O 的弦AB 、CD 的延长线相交于点P ,且AB =CD .求证PA =PC .23.如图,在等腰ABC ∆中,AB AC =,以AC 为直径作O 交BC 于点D ,过点D 作DE AB ⊥,垂足为E .(1)求证:DE 是O 的切线.(2)若DE =30C ∠=︒,求AD 的长. 24.如图1,AB 是⊙O 的直径,点C 在AB 的延长线上,AB=4,BC=2,P 是⊙O 上半部分的一个动点,连接OP ,CP .(1)求△OPC 的最大面积;(2)求∠OCP 的最大度数;(3)如图2,延长PO 交⊙O 于点D ,连接DB ,当CP=DB 时,求证:CP 是⊙O 的切线.25.如图,在△ABC 中,AB=AC ,以AC 为直径的⊙O 交AB 于点D ,交BC 于点E .(1)求证:BE=CE ;(2)若BD=2,BE=3,求AC 的长.26.如图,在Rt ABC ∆中,90C ︒∠=,以BC 为直径的⊙O 交AB 于点D ,切线DE 交AC 于点E .(1)求证:A ADE ∠∠=;(2)若85AD DE =,=,求BC 的长.27.如图,在等腰ABC △中,120BAC ∠=︒,AD 是BAC ∠的角平分线,且6AD =,以点A 为圆心,AD 长为半径画弧EF ,交AB 于点E ,交AC 于点F ,(1)求由弧EF 及线段FC 、CB 、BE 围成图形(图中阴影部分)的面积;(2)将阴影部分剪掉,余下扇形AEF ,将扇形AEF 围成一个圆锥的侧面,AE 与AF 正好重合,圆锥侧面无重叠,求这个圆锥的高h .28.如图,M ,N 是以AB 为直径的⊙O 上的点,且AN =BN ,弦MN 交AB 于点C ,BM 平分∠ABD ,MF ⊥BD 于点F .(1)求证:MF 是⊙O 的切线;(2)若CN =3,BN =4,求CM 的长.29.如图,AB是⊙O的直径,点D是弧AE上一点,且∠BDE=∠CBE,BD与AE交于点F.(1)求证:BC是⊙O的切线;(2)若BD平分∠ABE,求证:DE2=DF·DB;(3)在(2)的条件下,延长ED,BA交于点P,若PA=AO,DE=2,求PD的长.=.30.如图ABC内接于O,60B∠=,CD是O的直径,点P是CD延长线上一点,且AP AC()1求证:P A是O的切线;()2若PD=O的直径.31.如图,四边形ABCD内接于⊙O,AB=AC,BD⊥AC,垂足为E,点F在BD的延长线上,且DF=DC,连接AF、CF.(1)求证:∠BAC=2∠DAC;(2)若AF=10,BC=tan∠BAD的值.32.如图,已知AB是⊙O的直径,C,D是⊙O上的点,OC∥BD,交AD于点E,连结BC.(1)求证:AE=ED;(2)若AB=10,∠CBD=36°,求AC的长.33.如图,⊙O的半径为1,A,P,B,C是⊙O上的四个点.∠APC=∠CPB=60°.(1)判断△ABC的形状:;(2)试探究线段PA,PB,PC之间的数量关系,并证明你的结论;(3)当点P位于AB的什么位置时,四边形APBC的面积最大?求出最大面积.34.如图,AB 是⊙O 的直径,AC 与⊙O 交于点F ,弦AD 平分BAC ∠,DE AC ⊥,垂足为E .(1)试判断直线DE 与⊙O 的位置关系,并说明理由; (2)若⊙O 的半径为2,60BAC ︒∠=,求线段EF 的长. 35.如图,在ABC △中,,120AB AC BAC =∠=︒,点D 在BC 边上,D 经过点A 和点B 且与BC 边相交于点E .(1)求证:AC 是D 的切线;(2)若CE =D 的半径.36.如图,在以线段AB 为直径的⊙O 上取一点,连接AC 、BC .将△ABC 沿AB 翻折后得到△ABD .(1)试说明点D 在⊙O 上;(2)在线段AD 的延长线上取一点E ,使AB 2=AC·AE.求证:BE 为⊙O 的切线;(3)在(2)的条件下,分别延长线段AE 、CB 相交于点F ,若BC=2,AC=4,求线段EF 的长.37.如图,AB 为⊙O 的直径,C 为⊙O 上一点,∠ABC 的平分线交⊙O 于点D ,DE ⊥BC 于点E .(1)试判断DE 与⊙O 的位置关系,并说明理由;(2)过点D 作DF ⊥AB 于点F ,若DF=3,求图中阴影部分的面积.38.如图所示,⊙O 的半径为4,点A 是⊙O 上一点,直线l 过点A ;P 是⊙O 上的一个动点(不与点A 重合),过点P 作PB ⊥l 于点B ,交⊙O 于点E ,直径PD 延长线交直线l 于点F ,点A 是DE 的中点.(1)求证:直线l 是⊙O 的切线;(2)若PA=6,求PB 的长.39.如图,A B是⊙C的直径,M、D两点在AB的延长线上,E是⊙C上的点,且DE2=DB· DA.延长AE至F,使AE=EF,设BF=10,cos∠BED=4 5 .(1)求证:△DEB∽△DAE;(2)求DA,DE的长;(3)若点F在B、E、M三点确定的圆上,求MD的长.40.如图,已知AB是⊙O的直径,CB⊥AB,D为圆上一点,且AD∥OC,连接CD,AC,BD,AC与BD交于点M.(1)求证:CD为⊙O的切线;(2)若CD AD,求CMMA的值.41.如图,AD是△ABC的外接圆⊙O的直径,点P在BC延长线上,且满足∠P AC=∠B.(1)求证:P A是⊙O的切线;(2)弦CE⊥AD交AB于点F,若AF•AB=12 ,求AC的长.42.如图,在OABC中,以O为圆心,OA为半径的圆与BC相切与点B,与OC相交于点D.(1)求BD 的度数.(2)如图,点E 在⊙O 上,连接CE 与⊙O 交于点F ,若EF AB =,求OCE ∠的度数.43.如图,AB 是⊙O 的直径,点C 为⊙O 上一点,CN 为⊙O 的切线,OM ⊥AB 于点O ,分别交AC 、CN 于D 、M 两点.(1)求证:MD=MC ;(2)若⊙O 的半径为5,MC 的长.44.如图,△ABC 内接于⊙O,2,BC AB AC ==,点D 为AC 上的动点,且cos B =. (1)求AB 的长度;(2)在点D 运动的过程中,弦AD 的延长线交BC 的延长线于点E ,问AD •AE 的值是否变化?若不变,请求出AD •AE 的值;若变化,请说明理由.(3)在点D 的运动过程中,过A 点作AH⊥BD,求证:BH CD DH =+.45.如图,AB 是⊙O 的直径,点E 为线段OB 上一点(不与O ,B 重合),作EC ⊥OB ,交⊙O 于点C ,作直径CD ,过点C 的切线交DB 的延长线于点P ,作AF ⊥PC 于点F ,连接CB .(1)求证:AC 平分∠FAB ;(2)求证:BC 2=CE•CP ;(3)当CF CP =34时,求劣弧BD 的长度.46.如图所示,AB 是⊙ 直径, 弦 于点 ,且交⊙ 于点 ,若 .(1)判断直线 和⊙ 的位置关系,并给出证明; (2)当 , 时,求 的长.47.如图,以△ABC 的一边AB 为直径作⊙O ,⊙O 与BC 边的交点恰好为BC 的中点D ,过点D 作⊙O 的切线交AC 于点E .(1)求证:DE ⊥AC ;(2)若AB=3DE ,求tan ∠ACB 的值.48.如图,ABC ∆为O 的内接三角形,AB 为O 的直径,过点A 作O 的切线交BC 的延长线于点D .(1)求证:DAC DBA ∆∆∽; (2)过点C 作O 的切线CE 交AD 于点E ,求证:12CE AD =; (3)若点F 为直径AB 下方半圆的中点,连接CF 交AB 于点G ,且6AD =,3AB =,求CG 的长.49.如图,PA 、PB 是⊙O 的切线,A 、B 为切点,∠APB=60°,连接PO 并延长与⊙O 交于C 点,连接AC ,BC . (1)求证:四边形ACBP 是菱形;(2)若⊙O 半径为1,求菱形ACBP 的面积.50.如图,已知D ,E 分别为△ABC 的边AB ,BC 上两点,点A ,C ,E 在⊙D 上,点B ,D 在⊙E 上.F 为BD 上一点,连接FE 并延长交AC 的延长线于点N ,交AB 于点M . (1)若∠EBD 为α,请将∠CAD 用含α的代数式表示;(2)若EM=MB,请说明当∠CAD为多少度时,直线EF为⊙D的切线;(3)在(2)的条件下,若MNMF的值.51.如图,C、D是半圆O上的三等分点,直径AB=4,连接AD、AC,DE⊥AB,垂足为E,DE交AC于点F.(1)求∠AFE的度数;(3)求阴影部分的面积(结果保留π和根号).52.定义:数学活动课上,李老师给出如下定义:如果一个三角形有一边上的中线等于这条边的一半,那么称三角形为“智慧三角形”.理解:⑴如图,已知是⊙上两点,请在圆上找出满足条件的点,使为“智慧三角形”(画出点的位置,保留作图痕迹);⑵如图,在正方形中,是的中点,是上一点,且,试判断是否为“智慧三角形”,并说明理由;运用:⑶如图,在平面直角坐标系中,⊙的半径为,点是直线上的一点,若在⊙上存在一点,使得为“智慧三角形”,当其面积取得最小值时,直接写出此时点的坐标.53.如图,在Rt△ABC中,点O在斜边AB上,以O为圆心,OB为半径作圆,分别与BC,AB相交于点D,E,连结AD.已知∠CAD=∠B.(1)求证:AD是⊙O的切线.(2)若BC=8,tanB=12,求⊙O 的半径.54.如图,已知AB是⊙O上的点,C是⊙O上的点,点D在AB的延长线上,∠BCD=∠BAC.(1)求证:CD是⊙O的切线;(2)若∠D=30°,BD=2,求图中阴影部分的面积.55.如图,在△ABC中,AB=AC,以AB为直径的⊙O分别与BC、AC交于点D、E,过点D作DF⊥AC于点F.(1)若⊙O的半径为3,∠CDF=15°,求阴影部分的面积;(2)求证:DF是⊙O的切线;(3)求证:∠EDF=∠DAC.56.在△中,,点在以为直径的半圆内.请仅用无刻度的直尺......分别按下列要求画图(保留画图痕迹).(1)在图1中作弦,使;(2)在图2中以为边作一个45°的圆周角.57.图1.2是两张形状和大小完全相同的方格纸,方格纸中每个小正方形的边长均为1,线段AC的两个端点均在小正方形的顶点上;△,点B在小正方形顶点上;(2)在图2中画出以AC为腰的等(1)在图1中画出以AC为底边的等腰直角ABC腰ACD,点D在小正方形的顶点上,且ACD的面积为8.58.如图,在Rt△ACB中,∠C=90°,AC=3cm,BC=4cm,以BC为直径作⊙O交AB于点D.(1)求线段AD的长度;(2)点E是线段AC上的一点,试问:当点E在什么位置时,直线ED与⊙O相切?请说明理由.59.如图,BE是O的直径,点A和点D是⊙O上的两点,过点A作⊙O的切线交BE延长线于点.(1)若∠ADE=25°,求∠C的度数;(2)若AB=AC,CE=2,求⊙O半径的长.60.如图1,菱形ABCD 的顶点A ,D 在直线上,60BAD ∠=︒,以点A 为旋转中心将菱形ABCD 顺时针旋转()030αα︒<<︒,得到菱形'''AB C D ,''B C 交对角线AC 于点M ,''C D 交直线l 于点N ,连接MN .(1)当''MN B D 时,求α的大小.(2)如图2,对角线''B D 交AC 于点H ,交直线l 与点G ,延长''C B 交AB 于点E ,连接EH .当'HEB ∆的周长为2时,求菱形ABCD 的周长.61.如图, 是⊙ 的直径,点 是 延长线上的一点,点 在⊙ 上,且AC=CD, = . ( )求证: 是⊙ 的切线;( )若⊙ 的半径为 ,求图中阴影部分的面积.62.如图,在直角坐标系中,⊙A 的圆心A 的坐标为(-1,0),半径为1,点P 为直线334y x =-+上的动点,过点P 作⊙A 的切线,切点为Q ,求切线长PQ 的最小值.63.如图,在Rt ABC ∆中,90ABC ∠=︒,以AB 为直径作O ,点D 为O 上一点,且CD CB =,连接DO 并延长交CB 的延长线于点E .(1)判断直线CD 与O 的位置关系,并说明理由; (2)若2BE =,4DE =,求圆的半径及AC 的长.64.如图,等边三角形ABC 的边长为2,以A 为圆心,1为半径作圆分别交AB ,AC 边于D ,E ,再以点C 为圆心,CD 长为半径作圆交BC 边于F ,连接E ,F ,那么图中阴影部分的面积为________.65.如图,AB 为⊙O 的直径,C 为⊙O 上一点,AD 与过点C 的切线互相垂直,垂足为点D ,AD 交⊙O 于点E ,连接CE ,CB .(1)求证:CE =CB ;(2)若AC =CE AE 的长.66.如图,AB 是O 的直径,点C 为BD 的中点,CF 为O 的弦,且CF AB ⊥,垂足为E ,连接BD 交CF 于点G ,连接CD ,AD ,BF .(1)求证:BFG CDG ∆≅∆; (2)若2AD BE ==,求BF 的长.67.如图,在以点O 为中心的正方形ABCD 中,4=AD ,连接AC ,动点E 从点O 出发沿O C →以每秒1个单位长度的速度匀速运动,到达点C 停止.在运动过程中,ADE ∆的外接圆交AB 于点F ,连接DF 交AC 于点G ,连接EF ,将EFG ∆沿EF 翻折,得到EFH ∆.(1)求证:DEF ∆是等腰直角三角形;(2)当点H 恰好落在线段BC 上时,求EH 的长;(3)设点E 运动的时间为t 秒,EFG ∆的面积为S ,求S 关于时间t 的关系式.68.如图1和2,ABCD 中,AB =3,BC =15,43tan DAB ∠=.点P 为AB 延长线上一点,过点A 作O 切CP 于点P ,设BP x =.(1)如图1,x 为何值时,圆心O 落在AP 上?若此时O 交AD 于点E ,直接指出PE 与BC 的位置关系;(2)当4x =时,如图2,O 与AC 交于点Q ,求C A P ∠的度数,并通过计算比较弦AP 与劣弧PQ 长度的大小; (3)当O 与线段AD 只有一个公共点时,直接写出x 的取值范围.69.如图,四边形ABCD 内接于O ,AC 为O 的直径,D 为AC 的中点,过点D 作DE AC ,交BC 的延长线于点E .(1)判断DE 与O 的位置关系,并说明理由; (2)若O 的半径为5,8AB =,求CE 的长. 70.如图,PA 是O 的切线,切点为A ,AC 是O 的直径,连接OP 交O 于E .过A 点作AB PO ⊥于点D ,交O 于B ,连接BC ,PB .(1)求证:PB 是O 的切线;(2)求证:E 为∆的内心; (3)若cos PAB ∠=1BC =,求PO 的长. 71.探究活动一:如图1,某数学兴趣小组在研究直线上点的坐标规律时,在直线AB 上的三点A (1,3)、B (2,5)、C (4,9),有k AB =5321--=2,k AC =9341--=2,发现k AB =k AC ,兴趣小组提出猜想:若直线y =kx+b (k≠0)上任意两点坐标P (x 1,y 1),Q (x 2,y 2)(x 1≠x 2),则k PQ =2121y y x x --是定值.通过多次验证和查阅资料得知,猜想成立,k PQ 是定值,并且是直线y =kx+b (k≠0)中的k ,叫做这条直线的斜率. 请你应用以上规律直接写出过S (﹣2,﹣2)、T (4,2)两点的直线ST 的斜率k ST = . 探究活动二数学兴趣小组继续深入研究直线的“斜率”问题,得到正确结论:任意两条不和坐标轴平行的直线互相要直时,这两条直线的斜率之积是定值.如图2,直线DE 与直线DF 垂直于点D ,D (2,2),E (1,4),F (4,3).请求出直线DE 与直线DF 的斜率之积. 综合应用如图3,⊙M 为以点M 为圆心,MN 的长为半径的圆,M (1,2),N (4,5),请结合探究活动二的结论,求出过点N 的⊙M 的切线的解析式.72.如图,在⊙O 中, ,AD ⊥OC 于D .求证:AB=2AD .73.如图,△ABC 在平面直角坐标系中,顶点的坐标分别为A(-4,4),B(-1,1),C(-1,4). (1)画出与△ABC 关于y 轴对称的△A 1B 1C 1. (2)将△ABC 绕点B 逆时针旋转90°,得到△A 2BC 2,画两出△A 2BC 2. (3)求线段AB 在旋转过程中扫过的图形面积.(结果保留π)74.如图,在O 中,点C D 、分别是半径OB 、弦AB 的中点,过点A 作AE CD ⊥于点E .(1)求证:AE 是O 的切线;(2)若2AE =,23sin ADE ∠=,求O 的半径.75.我国南宋著名数学家秦九韶在他的著作《数书九章》中提出了“三斜求积术”,三斜即指三角形的三条边长,可以用该方法求三角形面积.若改用现代数学语言表示,其形式为:设a b c ,,为三角形三边,S 为面积,则S =,这是中国古代数学的瑰宝之一.而在文明古国古希腊,也有一个数学家海伦给出了求三角形面积的另一个公式,若设2a b cp ++=(周长的一半),则S(1)尝试验证.这两个公式在表面上形式很不一致,请你用以578,,为三边构成的三角形,分别验证它们的面积值; (2)问题探究.经过验证,你发现公式①和②等价吗?若等价,请给出一个一般性推导过程(可以从⇒①②或者⇒②①);(3)问题引申.三角形的面积是数学中非常重要的一个几何度量值,很多数学家给出了不同形式的计算公式.请你证明如下这个公式:如图,ABC △的内切圆半径为r ,三角形三边长为a b c ,,,仍记2a b cp ++=,S 为三角形面积,则S pr =. 76.如图,在ABC ∆中,AB AC =,以AB 为直径的O 与边BC ,AC 分别交于D ,E 两点,过点D 作DH AC⊥于点H .(1)判断DH 与O 的位置关系,并说明理由;(2)求证:H 为CE 的中点;(3)若10BC =,cos C =,求AE 的长. 77.如图,AB 、CD 是O 的两条直径,过点C 的O 的切线交AB 的延长线于点E ,连接AC 、BD .(1)求证:ABD CAB ∠=∠;(2)若B 是OE 的中点,12AC =,求O 的半径.78.如图,在ABC ∆中.ABC ACB ∠∠=,以AC 为直径的⊙O 分别交AB BC 、于点M N 、,点P 在AB 的延长线上,且12BCP BAC ∠∠=.(1)求证:CP 是⊙O 的切线;(2)若BC cos BCP ∠=B 到AC 的距离.79.如图,已知AB 是⊙O 的直径,过O 点作OP ⊥AB ,交弦AC 于点D ,交⊙O 于点E ,且使∠PCA=∠ABC . (1)求证:PC 是⊙O 的切线;(2)若∠P=60°,PC=2,求PE 的长.80.如图,在△ABC 中,BA =BC ,以AB 为直径的⊙O 分别交AC ,BC 于点D ,E ,BC 的延长线与⊙O 的切线AF 交于点F .(1)求证:∠ABC =2∠CAF ;(2)若AC =CE :EB =1:4,求CE ,AF 的长.81.如图,ABC ∆是O 的内接三角形,AB 为O 直径,6AB =,AD 平分BAC ∠,交BC 于点E ,交O 于点D ,连接BD .(1)求证:BAD CBD ∠=∠;(2)若125AEB ∠=︒,求BD 的长(结果保留π).82.如图,四边形ABCD 为菱形,以AD 为直径作O e 交AB 于点F ,连接DB 交O e 于点H ,E 是BC 上的一点,且BE BF =,连接DE .(1)求证:DE 是O e 的切线.(2)若2BF =,DH =,求O e 的半径. 83.如图,在ABC ∆中,90ACB ∠=︒,CA CB =,点O 在ABC ∆的内部,O 经过B ,C 两点,交AB 于点D ,连接CO 并延长交AB 于点G ,以GD ,GC 为邻边作GDEC .(1)判断DE 与O 的位置关系,并说明理由.(2)若点B 是DBC 的中点,O 的半径为2,求BC 的长.84.如图,在平行四边形ABCD 中,AE BC ⊥,垂足为点E ,以AE 为直径的O 与边CD 相切于点F ,连接BF 交O 于点G ,连接EG .(1)求证:CD AD CE =+.(2)若4AD CE =,求tan EGF ∠的值.85.如图,AB 是⊙O 的直径,弧ED=弧BD ,连接ED 、BD ,延长AE 交BD 的延长线于点M ,过点D 作⊙O 的切线交AB 的延长线于点C .(1)若OA CD ,求阴影部分的面积; (2)求证:DE DM .86.如图,在ABCD 中,2=AD AB ,以点A 为圆心、AB 的长为半径的A 恰好经过BC 的中点E ,连接DE ,AE ,BD ,AE 与BD 交于点F .(1)求证:DE 与A 相切. (2)若6AB =,求BF 的长.87.如图,AB 是⊙O 的直径,点C 在AB 的延长线上,CD 与⊙O 相切于点D ,CE ⊥AD ,交AD 的延长线于点E . (1)求证:∠BDC =∠A ;(2)若CE =4,DE =2,求AD 的长.88.如图,在△ABC 中,∠C=90°,AE 平分∠BAC 交BC 于点E,O 是AB 上一点,经过A,E 两点的⊙O 交AB 于点D ,连接DE ,作∠DEA 的平分线EF 交⊙O 于点F ,连接AF. (1)求证:BC 是⊙O 的切线;(2)若sin ∠EFA=45,AF=求线段AC 的长.89.如图,O是ABC的外接圆,AB为直径,∠BAC的平分线交O于点D,过点D作DE⊥AC分别交AC、AB的延长线于点E、F.(1)求证:EF是O的切线;(2)若AC=4,CE=2,求BD的长度.(结果保留π)90.如图,在⊙O中,AB是直径,BC是弦,BC=BD,连接CD交⊙O于点E,∠BCD=∠DBE.(1)求证:BD是⊙O的切线.(2)过点E作EF⊥AB于F,交BC于G,已知DE=EG=3,求BG的长.91.如图,点M是矩形ABCD的边AD延长线上一点,以AM为直径的⊙O交矩形对角线AC于点F,在线段CD 上取一点E,连接EF,使EC=EF.(1)求证:EF是⊙O的切线;(2)若cos∠CAD=35,AF=6,MD=2,求FC的长.92.如图,在Rt△ABC中,∠ACB=90°,点D在AB上,以AD为直径的⊙O与边BC相切于点E,与边AC相交于点G,且AG=EG,连接GO并延长交⊙O于点F,连接BF.(1)求证:①AO=AG.②BF是⊙O的切线.(2)若BD =6,求图形中阴影部分的面积.93.如图,AB 为O 的直径,点C 在O 上.(1)尺规作图:作BAC ∠的平分线,与O 交于点D ;连接OD ,交BC 于点E (不写作法,只保留作图痕迹,且用黑色墨水笔将作图痕迹加黑);(2)探究OE 与AC 的位置及数量关系,并证明你的结论.94.如图,△ABC 内接于⊙O ,AD 与BC 是⊙O 的直径,延长线段AC 至点G ,使AG =AD ,连接DG 交⊙O 于点E ,EF ∥AB 交AG 于点F .(1)求证:EF 与⊙O 相切.(2)若EF =AC =4,求扇形OAC 的面积.95.如图,△ABC 内接于⊙O ,BC 是⊙O 的直径,OD ⊥AC 于点D ,连接BD ,半径OE ⊥BC ,连接EA ,EA ⊥BD 于点F .若OD =2,则BC =_____.96.如图,在Rt △ABC 中,∠ACB =90°,D 是AC 上一点,过B ,C ,D 三点的⊙O 交AB 于点E ,连接ED ,EC ,点F 是线段AE 上的一点,连接FD ,其中∠FDE =∠DCE .(1)求证:DF 是⊙O 的切线.(2)若D 是AC 的中点,∠A =30°,BC =4,求DF 的长.97.如图,在ABC ∆中,BA BC =,90ABC ︒∠=,以AB 为直径的半圆O 交AC 于点D ,点E 是BD 上不与点B ,D 重合的任意一点,连接AE 交BD 于点F ,连接BE 并延长交AC 于点G .(1)求证:ADF BDG ∆≅∆;(2)填空:①若=4AB ,且点E 是BD 的中点,则DF 的长为 ;②取AE 的中点H ,当EAB ∠的度数为 时,四边形OBEH 为菱形.98.如图,AB 是O 的直径,过O 外一点P 作O 的两条切线PC ,PD ,切点分别为C ,D ,连接OP ,CD .(1)求证:OP CD ⊥;(2)连接AD ,BC ,若50DAB ∠=︒,70CBA ∠=︒,2OA =,求OP 的长.99.如图,⊙O 是△ABC 的外接圆,点O 在BC 边上,∠BAC 的平分线交⊙O 于点D ,连接BD 、CD ,过点D 作BC 的平行线与AC 的延长线相交于点P .(1)求证:PD 是⊙O 的切线;(2)求证:△ABD ∽△DCP ;(3)当AB=5cm ,AC=12cm 时,求线段PC 的长.100.如图,△ABC 是⊙O 的内接三角形,AB 是⊙O 的直径,OF ⊥AB ,交AC 于点F ,点E 在AB 的延长线上,射线EM 经过点C ,且∠ACE+∠AFO=180°. (1)求证:EM 是⊙O 的切线;(2)若∠A=∠.(结果保留π和根号).。
2008压轴题精选讲座六
2008年全国各地中考试题压轴题精选讲座六阅读理解问题【知识纵横】阅读理解的整体模式是:阅读—理解—应用。
重点是阅读,难点是理解,关键是应用,通过阅读,对所提供的文字、符号、图形等进行分析和综合,在理解的基础上制定解题策略。
【典型例题】【例1】(聊城市)一列快车从甲地驶往乙地,一列慢车从乙地驶往甲地,两车同时出发,设慢车行驶的时间为(h )x ,两车之间的距离.......为(km )y ,图中的折线表示y 与x 之间的函数关系.根据图象进行以下探究: 信息读取(1)甲、乙两地之间的距离为 km ;(2)请解释图中点B 的实际意义;图象理解(3)求慢车和快车的速度;(4)求线段B C 所表示的y 与x 之间的函数关系式,并写出自变量x 的取值范围;问题解决(5)若第二列快车也从甲地出发驶往乙地,速度与第一列快车相同.在第一列快车与慢车相遇30分钟后,第二列快车与慢车相遇.求第二列快车比第一列快车晚出发多少小时?【思路点拨】理解图象的实际意义。
【例2】(江苏镇江)理解发现阅读以下材料:对于三个数a b c ,,,用{}M a b c ,,表示这三个数的平均数,用{}min a b c ,,表示这三个数中最小的数.例如:{}123412333M-++-==,,;{}min 1231-=-,,;{}(1)m in 121(1).aa a a -⎧-=⎨->-⎩≤;,,解决下列问题:(1)填空:{}min sin 30cos 45tan 30=,, ;如果{}min 222422x x +-=,,,则x 的取值范围为x ________≤≤_________. (2)①如果{}{}212min 212M x x x x +=+,,,,,求x ; ②根据①,你发现了结论“如果{}{}min M a b c a b c =,,,,,那么 (填a b c ,,的大小关系)”.证明你发现的结论;(第28题) y③运用②的结论,填空: 若{}{}2222m in 2222Mx y x y x y x y x y x y +++-=+++-,,,,,则x y += .(3)在同一直角坐标系中作出函数1y x =+,2(1)y x =-,2y x =-的图象(不需列表描点).通过观察图象,填空:{}2min 1(1)2x x x +--,,的最大值为 .【思路点拨】(2)②{}min a b c c =,,,则a c ≥,b c ≥.若()()0a cbc ∴-+-=,可得a b c ==;(3)作出图象,通过观察图象解答。
中考压轴题-二次函数综合(八大题型+解题方法)——冲刺2024年中考数学考点押题(全国通用)(解析)
中考压轴题-二次函数综合 (八大题型+解题方法)1、求证“两线段相等”的问题:借助于函数解析式,先把动点坐标用一个字母表示出来;然后看两线段的长度是什么距离即是“点点”距离,还是“点轴距离”,还是“点线距离”,再运用两点之间的距离公式或点到x 轴y 轴的距离公式或点到直线的距离公式,分别把两条线段的长度表示出来,分别把它们进行化简,即可证得两线段相等;2、“平行于y 轴的动线段长度的最大值”的问题:由于平行于y 轴的线段上各个点的横坐标相等常设为t,借助于两个端点所在的函数图象解析式,把两个端点的纵坐标分别用含有字母t 的代数式表示出来,再由两个端点的高低情况,运用平行于y 轴的线段长度计算公式-y y 下上,把动线段的长度就表示成为一个自变量为t,且开口向下的二次函数解析式,利用二次函数的性质,即可求得动线段长度的最大值及端点坐标;3、求一个已知点关于一条已知直线的对称点的坐标问题:先用点斜式或称K ,且与已知直线垂直的直线解析式,再求出两直线的交点坐标,最后用中点坐标公式即可;4、“抛物线上是否存在一点,使之到定直线的距离最大”的问题:方法1先求出定直线的斜率,由此可设出与定直线平行且与抛物线相切的直线的解析式注意该直线与定直线的斜率相等,因为平行直线斜率k 相等,再由该直线与抛物线的解析式组成方程组,用代入法把字母y 消掉,得到一个关于x 的的一元二次方程,由题有△=2b -4ac=0因为该直线与抛物线相切,只有一个交点,所以2b -4ac=0从而就可求出该切线的解析式,再把该切线解析式与抛物线的解析式组成方程组,求出x 、y 的值,即为切点坐标,然后再利用点到直线的距离公式,计算该切点到定直线的距离,即为最大距离; 方法2该问题等价于相应动三角形的面积最大问题,从而可先求出该三角形取得最大面积时,动点的坐标,再用点到直线的距离公式,求出其最大距离;方法3先把抛物线的方程对自变量求导,运用导数的几何意义,当该导数等于定直线的斜率时,求出的点的坐标即为符合题意的点,其最大距离运用点到直线的距离公式可以轻松求出;5、常数问题:1点到直线的距离中的常数问题:“抛物线上是否存在一点,使之到定直线的距离等于一个 固定常数”的问题:先借助于抛物线的解析式,把动点坐标用一个字母表示出来,再利用点到直线的距离公式建立一个方程,解此方程,即可求出动点的横坐标,进而利用抛物线解析式,求出动点的纵坐标,从而抛物线上的动点坐标就求出来了;2三角形面积中的常数问题:“抛物线上是否存在一点,使之与定线段构成的动三角形的面积等于一个定常数”的问题:先求出定线段的长度,再表示出动点其坐标需用一个字母表示到定直线的距离,再运用三角形的面积公式建立方程,解此方程,即可求出动点的横坐标,再利用抛物线的解析式,可求出动点纵坐标,从而抛物线上的动点坐标就求出来了;3几条线段的齐次幂的商为常数的问题:用K 点法设出直线方程,求出与抛物线或其它直线的交点坐标,再运用两点间的距离公式和根与系数的关系,把问题中的所有线段表示出来,并化解即可;6、“在定直线常为抛物线的对称轴,或x 轴或y 轴或其它的定直线上是否存在一点,使之到两定点的距离之和最小”的问题:先求出两个定点中的任一个定点关于定直线的对称点的坐标,再把该对称点和另一个定点连结得到一条线段,该线段的长度〈应用两点间的距离公式计算〉即为符合题中要求的最小距离,而该线段与定直线的交点就是符合距离之和最小的点,其坐标很易求出利用求交点坐标的方法;7、三角形周长的“最值最大值或最小值”问题:① “在定直线上是否存在一点,使之和两个定点构成的三角形周长最小”的问题简称“一边固定两边动的问题:由于有两个定点,所以该三角形有一定边其长度可利用两点间距离公式计算,只需另两边的和最小即可;② “在抛物线上是否存在一点,使之到定直线的垂线,与y 轴的平行线和定直线,这三线构成的动直角三角形的周长最大”的问题简称“三边均动的问题:在图中寻找一个和动直角三角形相似的定直角三角形,在动点坐标一母示后,运用=C C 动动定定斜边斜边,把动三角形的周长转化为一个开口向下的抛物线来破解;8、三角形面积的最大值问题:① “抛物线上是否存在一点,使之和一条定线段构成的三角形面积最大”的问题简称“一边固定两边动的问题”:方法1:先利用两点间的距离公式求出定线段的长度;然后再利用上面3的方法,求出抛物线上的动点到该定直线的最大距离;最后利用三角形的面积公式= 12底×高;即可求出该三角形面积的最大值,同时在求解过程中,切点即为符合题意要求的点;方法2:过动点向y 轴作平行线找到与定线段或所在直线的交点,从而把动三角形分割成两个基本模型的三角形,动点坐标一母示后,进一步可得到)()(左(定)右(定)下(动)上(动)动三角形x x y y 21−⋅−=S ,转化为一个开口向下的二次函数问题来求出最大值;②“三边均动的动三角形面积最大”的问题简称“三边均动”的问题:先把动三角形分割成两个基本模型的三角形有一边在x 轴或y 轴上的三角形,或者有一边平行于x 轴或y 轴的三角形,称为基本模型的三角形面积之差,设出动点在x 轴或y 轴上的点的坐标,而此类题型,题中一定含有一组平行线,从而可以得出分割后的一个三角形与图中另一个三角形相似常为图中最大的那一个三角形;利用相似三角形的性质对应边的比等于对应高的比可表示出分割后的一个三角形的高;从而可以表示出动三角形的面积的一个开口向下的二次函数关系式,相应问题也就轻松解决了;9、“一抛物线上是否存在一点,使之和另外三个定点构成的四边形面积最大的问题”:由于该四边形有三个定点,,即可得到一个定三角形的面积之和,所以只需动三角形的面积最大,就会使动四边形的面积最大,而动三角形面积最大值的求法及抛物线上动点坐标求法与7相同;10、“定四边形面积的求解”问题: 有两种常见解决的方案:方案一:连接一条对角线,分成两个三角形面积之和;方案二:过不在x 轴或y 轴上的四边形的一个顶点,向x 轴或y 轴作垂线,或者把该点与原点连结起来,分割成一个梯形常为直角梯形和一些三角形的面积之和或差,或几个基本模型的三角形面积的和差11、“两个三角形相似”的问题: 两个定三角形是否相似:(1)已知有一个角相等的情形:运用两点间的距离公式求出已知角的两条夹边,看看是否成比例 若成比例,则相似;否则不相似;(2)不知道是否有一个角相等的情形:运用两点间的距离公式求出两个三角形各边的长,看看是否成比例若成比例,则相似;否则不相似;一个定三角形和动三角形相似:(1)已知有一个角相等的情形:先借助于相应的函数关系式,把动点坐标表示出来一母示,然后把两个目标三角形题中要相似的那两个三角形中相等的那个已知角作为夹角,分别计算或表示出夹角的两边,让形成相等的夹角的那两边对应成比例要注意是否有两种情况,列出方程,解此方程即可求出动点的横坐标,进而求出纵坐标,注意去掉不合题意的点;2不知道是否有一个角相等的情形:这种情形在相似性中属于高端问题,破解方法是,在定三角形中,由各个顶点坐标求出定三角形三边的长度,用观察法得出某一个角可能是特殊角,再为该角寻找一个直角三角形,用三角函数的方法得出特殊角的度数,在动点坐标“一母示”后,分析在动三角形中哪个角可以和定三角形中的那个特殊角相等,借助于特殊角,为动点寻找一个直角三角形,求出动点坐标,从而转化为已知有一个角相等的两个定三角形是否相似的问题了,只需再验证已知角的两边是否成比例若成比例,则所求动点坐标符合题意,否则这样的点不存在;简称“找特角,求动点标,再验证”;或称为“一找角,二求标,三验证”;12、“某函数图象上是否存在一点,使之与另两个定点构成等腰三角形”的问题:首先弄清题中是否规定了哪个点为等腰三角形的顶点;若某边底,则只有一种情况;若某边为腰,有两种情况;若只说该三点构成等腰三角形则有三种情况;先借助于动点所在图象的解析式,表示出动点的坐标一母示,按分类的情况,分别利用相应类别下两腰相等,使用两点间的距离公式,建立方程;解出此方程,即可求出动点的横坐标,再借助动点所在图象的函数关系式,可求出动点纵坐标,注意去掉不合题意的点就是不能构成三角形这个题意;13、“某图象上是否存在一点,使之与另外三个点构成平行四边形”问题:这类问题,在题中的四个点中,至少有两个定点,用动点坐标“一母示”分别设出余下所有动点的坐标若有两个动点,显然每个动点应各选用一个参数字母来“一母示”出动点坐标,任选一个已知点作为对角线的起点,列出所有可能的对角线显然最多有3条,此时与之对应的另一条对角线也就确定了,然后运用中点坐标公式,求出每一种情况两条对角线的中点坐标,由平行四边形的判定定理可知,两中点重合,其坐标对应相等,列出两个方程,求解即可;进一步有:①若是否存在这样的动点构成矩形呢先让动点构成平行四边形,再验证两条对角线相等否若相等,则所求动点能构成矩形,否则这样的动点不存在;②若是否存在这样的动点构成棱形呢先让动点构成平行四边形,再验证任意一组邻边相等否若相等,则所求动点能构成棱形,否则这样的动点不存在;③若是否存在这样的动点构成正方形呢先让动点构成平行四边形,再验证任意一组邻边是否相等和两条对角线是否相等若都相等,则所求动点能构成正方形,否则这样的动点不存在;14、“抛物线上是否存在一点,使两个图形的面积之间存在和差倍分关系”的问题:此为“单动问题”〈即定解析式和动图形相结合的问题〉,后面的19实为本类型的特殊情形;先用动点坐标“一母示”的方法设出直接动点坐标,分别表示如果图形是动图形就只能表示出其面积或计算如果图形是定图形就计算出它的具体面积,然后由题意建立两个图形面积关系的一个方程,解之即可;注意去掉不合题意的点,如果问题中求的是间接动点坐标,那么在求出直接动点坐标后,再往下继续求解即可;15、“某图形〈直线或抛物线〉上是否存在一点,使之与另两定点构成直角三角形”的问题:若夹直角的两边与y轴都不平行:先设出动点坐标一母示,视题目分类的情况,分别用斜率公式算出夹直角的两边的斜率,再运用两直线没有与y轴平行的直线垂直的斜率结论两直线的斜率相乘等于-1,得到一个方程,解之即可;若夹直角的两边中有一边与y 轴平行,此时不能使用斜率公式;补救措施是:过余下的那一个点没在平行于y轴的那条直线上的点直接向平行于y的直线作垂线或过直角点作平行于y轴的直线的垂线与另一相关图象相交,则相关点的坐标可轻松搞定;16、“某图象上是否存在一点,使之与另两定点构成等腰直角三角形”的问题;①若定点为直角顶点,先用k点法求出另一直角边所在直线的解析式如斜率不存在,根据定直角点,可以直接写出另一直角边所在直线的方程,利用该解析式与所求点所在的图象的解析式组成方程组,求出交点坐标,再用两点间的距离公式计算出两条直角边等否若等,该交点合题,反之不合题,舍去;②若动点为直角顶点:先利用k点法求出定线段的中垂线的解析式,再把该解析式与所求点所在图象的解析式组成方程组,求出交点坐标,再分别计算出该点与两定点所在的两条直线的斜率,把这两个斜率相乘,看其结果是否为-1 若为-1,则就说明所求交点合题;反之,舍去;17、“题中含有两角相等,求相关点的坐标或线段长度”等的问题:题中含有两角相等,则意味着应该运用三角形相似来解决,此时寻找三角形相似中的基本模型“A”或“X”是关键和突破口;18、“在相关函数的解析式已知或易求出的情况下,题中又含有某动图形常为动三角形或动四边形的面积为定常数,求相关点的坐标或线段长”的问题:此为“单动问题”〈即定解析式和动图形相结合的问题〉,本类型实际上是前面14的特殊情形;先把动图形化为一些直角梯形或基本模型的三角形有一边在x 轴或y轴上,或者有一边平行于x 轴或y 轴面积的和或差,设出相关点的坐标一母示,按化分后的图形建立一个面积关系的方程,解之即可;一句话,该问题简称“单动问题”,解题方法是“设点动点标,图形转化分割,列出面积方程”;19、“在相关函数解析式不确定系数中还含有某一个参数字母的情况下,题中又含有动图形常为动三角形或动四边形的面积为定常数,求相关点的坐标或参数的值”的问题:此为“双动问题”即动解析式和动图形相结合的问题;如果动图形不是基本模型,就先把动图形的面积进行转化或分割转化或分割后的图形须为基本模型,设出动点坐标一母示,利用转化或分割后的图形建立面积关系的方程或方程组;解此方程,求出相应点的横坐标,再利用该点所在函数图象的解析式,表示出该点的纵坐标注意,此时,一定不能把该点坐标再代入对应函数图象的解析式,这样会把所有字母消掉;再注意图中另一个点与该点的位置关系或其它关系,方法是常由已知或利用2问的结论,从几何知识的角度进行判断,表示出另一个点的坐标,最后把刚表示出来的这个点的坐标再代入相应解析式,得到仅含一个字母的方程,解之即可;如果动图形是基本模型,就无须分割或转化了,直接先设出动点坐标一母式,然后列出面积方程,往下操作方式就与不是基本模型的情况完全相同;一句话,该问题简称“双动问题”,解题方法是“转化分割,设点标,建方程,再代入,得结论”;常用公式或结论:1横线段的长 = 横标之差的绝对值 =-x x 大小=-x x 右左纵线段的长=纵标之差的绝对值=-y y 大小=-y y 下上 2点轴距离:点P 0x ,0y 到X 轴的距离为0y ,到Y 轴的距离为o x ; 3两点间的距离公式:若A 11,x y ,B 2,2x y , 则AB=目录:题型1:存在性问题 题型2:最值问题 题型3:定值问题 题型4:定点问题题型5:动点问题综合 题型6:对称问题 题型7:新定义题 题型8:二次函数与圆题型1:存在性问题1.(2024·四川广安·二模)如图,抛物线2y x bx c =−++交x 轴于()4,0A −,B 两点,交y 轴于点()0,4C .(1)求抛物线的函数解析式.(2)点D 在线段OA 上运动,过点D 作x 轴的垂线,与AC 交于点Q ,与抛物线交于点P ,连接AP 、CP ,求四边形AOCP 的面积的最大值.(3)在抛物线的对称轴上是否存在点M ,使得以点A 、C 、M 为顶点的三角形是直角三角形?若存在,请求出点M【答案】(1)234y x x =−−+;(2)四边形AOCP 的面积最大为16;(3)点M 的坐标为35,22⎛⎫−− ⎪⎝⎭或311,22⎛⎫− ⎪⎝⎭.【分析】本题主要考查了二次函数综合,熟练掌握用待定系数法求解函数解析式的方法和步骤,以及二次函数的图象和性质,是解题的关键. (1)把()4,0A −,()0,4C 代入2y x bx c =−++,求出b 和c 的值,即可得出函数解析式; (2)易得182AOCSOA OC =⋅=,设()2,34P t t t −−+,则(),4Q t t +,求出24PQ t t =−−,则()()212282ACP C A S PQ x x t =⋅−=−++,根据四边形AOCP 的面积()22216ACP AOCS St =+=−++,结合二次函数的增减性,即可解答;(3)设3,2M m ⎛⎫− ⎪⎝⎭,根据两点之间距离公式得出232AC =,22254AM m =+,229(4)4CM m =+−,然后分情况根据勾股定理列出方程求解即可.【解析】(1)解:把()4,0A −,()0,4C 代入2y x bx c =−++得:01644b c c =−−+⎧⎨=⎩,解得:34b c =−⎧⎨=⎩,∴该二次函数的解析式234y x x =−−+;(2)解:∵()4,0A −,()0,4C ,∴4,4OA OC ==,∴1144822AOC S OA OC =⋅=⨯⨯=△,设直线AC 的解析式为4y kx =+, 代入()4,0A −得,044k =−+,解得1k =,∴直线AC 的解析式为4y x =+, 设()2,34P t t t −−+,则(),4Q t t +,∴()223444PQ t t t t t=−−+−+=−−∴()()()22114422822ACPC A SPQ x x t t t =⋅−=−−⨯=−++,∴四边形AOCP 的面积()22216ACP AOCSSt =+=−++,∵20−<,∴当2t =−时,四边形AOCP 的面积最大为16; (3)解:设3,2M m ⎛⎫− ⎪⎝⎭,∵()4,0A −,()0,4C ,∴2224432AC =+=,2222325424AM m m ⎛⎫=−++=+ ⎪⎝⎭,()()2222394424CM m m ⎛⎫=−+−=+− ⎪⎝⎭,当斜边为AC 时,AM CM AC 222+=,即()2225943244m m +++−=,整理得:24150m m ++=,无解;当斜边为AM 时,222AC CM AM +=,即2292532(4)44m m ++−=+,解得:112m =;∴311,22M ⎛⎫− ⎪⎝⎭当斜边为CM 时,222AC AM CM +=,即2225932(4)44m m ++=+−, 解得:52m =−;∴35,22M ⎛⎫−− ⎪⎝⎭综上:点M 的坐标为35,22⎛⎫−− ⎪⎝⎭或311,22⎛⎫− ⎪⎝⎭.2.(2024·内蒙古乌海·模拟预测)如图(1),在平面直角坐标系中,抛物线()240y ax bx a =+−≠与x 轴交于A ,B 两点(点A 在点B 的左侧),与y 轴交于点C ,点A 的坐标为()1,0−,且OC OB =,点D 和点C 关于抛物线的对称轴对称.(1)分别求出a ,b 的值和直线AD 的解析式;(2)直线AD 下方的抛物线上有一点P ,过点P 作PH AD ⊥于点H ,作PM 平行于y 轴交直线AD 于点M ,交x 轴于点E ,求PHM 的周长的最大值;(3)在(2)的条件下,如图2,在直线EP 的右侧、x 轴下方的抛物线上是否存在点N ,过点N 作NG x ⊥轴交x 轴于点G ,使得以点E 、N 、G 为顶点的三角形与AOC 相似?如果存在,请直接写出点G 的坐标;如果不存在,请说明理由.【答案】(1)1a =,3b =−,=1y x −−(2)4+(3)存在,点G的坐标为⎫⎪⎪⎝⎭或⎫⎪⎪⎝⎭【分析】本题主要考查的是二次函数的综合应用,掌握二次函数的交点式、配方法求二次函数的最值、相似三角形的判定、等腰直角三角形的判定、一元二次方程的求根公式,列出PM 的长与a 的函数关系式是解题的关键.(1)先求得C 的坐标,从而得到点B 的坐标,设抛物线的解析式为()()14y a x x =+−,将点C 的坐标代入求解即可;先求得抛物线的对称轴,从而得到点()3,4D −,然后可求得直线AD 的解析式=1y x −−;(2)求得45BAD ∠=︒,接下来证明PMD △为等腰直角三角形,所当PM 有最大值时三角形的周长最大,设()2,34P a a a −−,()1M a −−,则223PM aa =−++,然后利用配方可求得PM 的最大值,最后根据MPH△的周长(1PM=求解即可;(3)当90EGN ∠=︒时,如果OA EG OC GN = 或OA GNOC EN =时,则AOC ∽EGN △,设点G 的坐标为(),0a ,则()2,34N a a a −−,则1EG a =−,234NG aa =−++,然后根据题意列方程求解即可.【解析】(1)点A 的坐标为()1,0−,1OA ∴=.令0x =,则4y =−,()0,4C ∴−,4OC =,OC OB =Q , 4OB ∴=,()4,0B ∴,设抛物线的解析式为()()14y a x x =+−,将0x =,4y =−代入得:44a −=−,解得1a =,∴抛物线的解析式为234y x x =−−;1a ∴=,3b =−; 抛物线的对称轴为33212x −=−=⨯,()0,4C −,点D 和点C 关于抛物线的对称轴对称,()3,4D ∴−;设直线AD 的解析式为y kx b =+.将()1,0A −、()3,4D −代入得:034k b k b −+=⎧⎨+=−⎩,解得1k =−,1b =-,∴直线AD 的解析式=1y x −−;(2)直线AD 的解析式=1y x −−,∴直线AD 的一次项系数1k =−,45BAD ∴∠=︒. PM 平行于y 轴,90AEP ∴∠=︒,45PMH AME ∴∠=∠=︒.MPH ∴的周长(122PM MH PH PM MP PM PM =++=++=. 设()2,34P a a a −−,则(),1M a a −−, 则()22213423(1)4PM a a a a a a =−−−−−=−++=−−+.∴当1a =时,PM 有最大值,最大值为4.MPH ∴的周长的最大值(414=⨯=+(3)在直线EP 的右侧、x 轴下方的抛物线上存在点N ,过点N 作NG x ⊥轴交x 轴于点G ,使得以点E 、N 、G 为顶点的三角形与AOC 相似;理由如下:设点G 的坐标为(),0a ,则()2,34N a a a −−①如图2.1,若OA EG OC GN = 时,AOC ∽EGN △. 则 211344a a a −=−++,整理得:280a a +−=.得:a =负值舍去),∴点G为⎫⎪⎪⎝⎭; ②如图2.2,若OA GN OC EN =时,AOC ∽NGE ,则21434a a a −=−++,整理得:2411170a a −−=,得:a =负值舍去),∴点G为⎫⎪⎪⎝⎭, 综上所述,点G的坐标为⎫⎪⎪⎝⎭或⎫⎪⎪⎝⎭. 3.(2024·重庆·一模)如图,在平面直角坐标系中,抛物线2y ax bx =+x 轴交于点()1,0A −,()5,0B ,与y 轴交于点C ,连接BC ,AC .(1)求抛物线的表达式;(2)P 为直线BC 上方抛物线上一点,过点P 作PD BC ⊥于点D ,过点P 作PE x 轴交抛物线于点E,求4+PD PE 的最大值及此时点P 的坐标; (3)点C 关于抛物线对称轴对称的点为Q ,将抛物线沿射线CAy ',新抛物线y '与y 轴交于点M ,新抛物线y '的对称轴与x 轴交于点N ,连接AM ,MN ,点R 在直线BC 上,连接QR .当QR 与AMN 一边平行时,直接写出点R 的坐标,并写出其中一种符合条件的解答过程.【答案】(1)2y x x =++(2)当154t =时,PE的最大值,15,416P ⎛ ⎝⎭, (3)R点的坐标为⎛ ⎝⎭或6,⎛ ⎝⎭或(.【分析】(1)利用待定系数法求抛物线解析式即可;(2)先求得2y x =2x =,过点P 作PG x ⊥轴交BC 于点F ,利用勾股定理求得BC ==DPF OBC ∽,得PF DP BC OB =即PF PD=,从而得PF =,求出设直线BC的解析式后,设2,P t ⎛+ ⎝,则,F t ⎛+ ⎝,从而2PF =+,当点P在E 点右侧时()424PE t t t =−−=−,从而得2154t ⎫=−⎪⎝⎭,利用二次函数的性质即可求解;当点P 在E 点左侧时:442PE t t t =−−=−时,同理可求.然后比较4+PE 的最大值即可得出答案. (3)先求得1OA=,OC AC =设抛物线2y =H ⎛ ⎝⎭平移后为P ,过点P 作PW ⊥直线2x =,则AOC PWH ∽,得1OA OC AC WP HW PH ====,进而得平移后的抛物线2y x +'=,从而求得()1,0N,M ⎛ ⎝⎭,然后分QR AM ∥,QR MN ∥,QR AN ∥三种情况,利用二次函数的性质及一次函数的与二元一次方程的关系求解即可得解.【解析】(1)解:∵抛物线2y ax bx =+x 轴交于点()1,0A −,()5,0B 两点,代入坐标得:02550a b a b ⎧−=⎪⎨+=⎪⎩,解得:a b ⎧=⎪⎪⎨⎪=⎪⎩,∴抛物线的函数表达式为255y x x =−++(2)解:∵)2225555y x x x =−+=−−+,∴2y x =2x=,顶点为⎛ ⎝⎭ 过点P 作PG x ⊥轴交BC 于点F ,当0x =时,200y =∴(C ∵()5,0B ∴BC ==∵PG x ⊥轴,PD BC ⊥,x 轴y ⊥轴,∴909090CBO BFG DPF PFD PDF BOC ∠∠∠∠∠∠+=︒+=︒==︒,,∵PFD BFG ∠∠=∴DPF CBO ∠∠=∴DPF OBC ∽,∴PF DP BC OB =即PF PD =,∴PF PD =∴44+PD PE =PF +PE ,设直线BC :y kx b =+,把(C ,()5,0B 代入得:05k b b =+⎧⎪=,解得5k b ⎧=−⎪⎨⎪=⎩, ∴直线BC:y =设2,P t ⎛ ⎝,则,F t ⎛+ ⎝,∴22PF ⎛⎛=−+=+ ⎝⎝,∵2y x =2x =,PE x 轴,∴24,E t ⎛−+ ⎝当点P 在E 点右侧时:()424PE t t t =−−=−,当24PE t =−时:∴+PD PE =PF +()221524545416t t ⎛⎫=−+−=−−+ ⎪⎝⎭ ∴当154t =时,的最大值∴2151544⎛⎫= ⎪⎝⎭,∴154P ⎛ ⎝⎭; 当点P 在E 点左侧时:442PE t t t =−−=−时,∴+PD PE =PF +()225424t t ⎫=−=−⎪⎝⎭, ∴当54t =时,的最大值.2,55P t ⎛−+ ⎝∴25544⎛⎫ ⎪⎝⎭∴5,416P ⎛ ⎝⎭,∵> 综上所诉,当点P 在E 点右侧时:即154t =时,的最大值,154P ⎛ ⎝⎭, (3)解:设直线AC :y mx n =+,把()1,0A −,(C , ∴1OA =,OC =∴AC ==设抛物线2y x =H ⎛ ⎝⎭平移后为P , 过点P 作PW ⊥直线2x =,则AOC PWH ∽,∴1OA OC AC WP HW PH ====∴1PW =,HW=∴21,5P ⎛−⎝即1,5P ⎛ ⎝⎭,∴平移后的抛物线)22155555y x x x =−−+=−++', ∴()1,0N令0x =,y '=,∴M ⎛ ⎝⎭ 如图,当QR AM ∥时,设直线AM 的解析式为:y px q =+,把M ⎛ ⎝⎭,()1,0A −代入得:0p q q =−+⎧=解得p q ⎧=⎪⎪⎨⎪=⎪⎩, ∴直线AM的解析式为:y =, ∴设直线QR的解析式为:y x n =∵(C ,Q 和C 关于2x =对称,∴(Q把(Q代入5y x n =+45n +,解得n =,∴直线QR的解析式为:y = 联立直线QR的解析式y =与直线BC:y x =+55y x y x ⎧=−⎪⎪⎨⎪=⎪⎩,解得3x y =⎧⎪⎨=⎪⎩,∴R ⎛ ⎝⎭ 同理可得:当QR MN ∥时,6,5R ⎛− ⎝⎭ 当QR AN ∥时,(R所有符合条件的R点的坐标为⎛ ⎝⎭或6,⎛ ⎝⎭或(. 【点睛】本题考查待定系数法求抛物线解析式,勾股定理,抛物线的性质,抛物线平移,一次函数的平移,相似三角形的判定及性质,图形与坐标,掌握待定系数法求抛物线解析式,抛物线的性质,抛物线平移,相似三角形的判定及性质,图形与坐标,利用辅助线画出准确图形是解题关键.题型2:最值问题4.(2024·安徽合肥·二模)在平面直角坐标系中,O 为坐标原点,抛物线23y ax bx =+−与x 轴交于()1,0A −,()3,0B 两点,与y 轴交于点C ,连接BC .(1)求a ,b 的值;(2)点M 为线段BC 上一动点(不与B ,C 重合),过点M 作MP x ⊥轴于点P ,交抛物线于点N . (ⅰ)如图1,当3PA PB=时,求线段MN 的长; (ⅱ)如图2,在抛物线上找一点Q ,连接AM ,QN ,QP ,使得PQN V 与APM △的面积相等,当线段NQ 的长度最小时,求点M 的横坐标m 的值.【答案】(1)1a =,2b =−(2)(ⅰ)2MN =;(ⅱ)m 的值为32或12【分析】本题考查诶粗函数的图象和性质,掌握待定系数法和利用函数性质求面积是解题的关键.(1)运用待定系数法求函数解析式即可;(2)(ⅰ)先计算BC 的解析式,然后设(),3M m m −,则3PM PB m ==−,1PA m =+,根据题意得到方程133m m +=−求出m 值,即可求出MN 的长;(ⅱ)作QR PN ⊥于点R ,由(ⅰ)可得1PA m =+,3PB PM m =−−,223PN m m =−++,然后分为点Q 在PN 的左侧和点Q 在PN 的右侧两种情况,根据勾股定理解题即可.【解析】(1)由题意得309330a b a b −−=⎧⎨+−=⎩,解得12a b =⎧⎨=−⎩;(2)(ⅰ)当0x =时,3y =−,∴()0,3C −,设直线BC 为3y kx =−,∵点()3,0B ,∴330k −=,解得1k =,∴直线BC 为3y x =−,设(),3M m m −,则3PM PB m ==−,1PA m =+, ∵3PA PB =, ∴133m m +=−,解得2m =,经检验2m =符合题意,当2m =时,222233y =−⨯−=−, ∴3PN =,31PM PB m ==−=,∴2MN =;(ⅱ)作QR PN ⊥于点R ,由(ⅰ)可得1PA m =+,3PB PM m =−−,223PN m m =−++,PQN V 的面积为()21232m m QR −++⋅,APM △的面积为()()1312m m −+,∴()()()211233122m m QR m m −++⋅=−+,解得1QR =;当点Q 在PN 的左侧时,如图1,Q 点的横坐标为1m QR m −=−,纵坐标为()()2212134m m m m −−⨯−−=−,∴R 点的坐标为()2,4m mm−,∵N 点坐标为()2,23m mm −−,∴32RN m =−,∴()22231NQ m =−+,∴当32m =时,NQ 取最小值;当点Q 在PN 的右侧时,如图2,Q 点的横坐标为1m QR m +=+,纵坐标为()()2212134m m m +−⨯+−=−,∴R 点的坐标为()2,4m m−,∵N 点的坐标为()2,23m mm −−,∴21RN m =−, ∴()222211NQ m =−+,∴当12m =时,NQ 取最小值.综上,m 的值为32或12.。
中考数学 精讲篇 压轴题重难点突破六 与数学传统文化有关的选填题
田的面积为 1010 平方米.
7.我国南宋著名数学家秦九韶在他的著作《数书九章》一书中,给出了
著名的秦九韶公式,也叫三斜求积公式,即如果一个角形的三边长分别 为 a,b,c,则该三角形的面积为 S= 14[a2b2-a2+b22-c22],现已知
95 △ABC 的三边长分别为 2, 6,3,则△ABC 的面积为 4 .
据此易得 x=2.那么下面右边三个构图(矩 形的顶点均落在边长为 1 的小正方形网格 格点上)中,能够说明方程 x2-4x-12=0 的正确构图是___② _.(只填序号)
1.欧阳修在《卖油翁》中写道:“(翁)乃取一葫芦置于地,以钱覆其口, 徐以杓酌油沥之,自钱孔入,而钱不湿”.如图所示,可见卖油翁的技艺 之高超,若铜钱直径为 4 cm,中间有边长为 1 cm 的正方形小 孔,随机向铜钱上滴一滴油(油滴大小忽略不计),则油恰好落
3.(2021·泰安)《九章算术》中记载:“今有甲乙二人持钱不知其数,
甲得乙半而钱五十,乙得甲太半而钱亦五十.问甲、乙持钱各几何?”
其大意是:“今有甲乙二人,不知其钱包里有多少钱,若乙把其一半的钱
给甲,则甲的钱数为 50;而甲把其23的钱给乙,则乙的钱数也为 50.问甲、
乙各有多少钱?”设甲的钱数为 x,乙的钱数为 y,根据题意,可列方程
重难点突破六 与数学传 统文化有关的选填题
(宁夏:2021T14,2020T16, 2019T16)
(2020·孝感)如图①,四个全等的直角三角形围成一个大正方形,中
间是个小正方形,这个图形是我国汉代赵爽在注解《周髀算经》时给出
的,人们称它为“赵爽弦图”.在此图形中连接四条线
段得到如图娄底)由 4 个直角边长分别为 a,b 的直角三角形围成的“赵 爽弦图”如图所示,根据大正方形的面积 c2 等于小正方形的面积(a-b)2 与 4 个直角三角形的面积 2ab 的和证明了勾股定理 a2+b2=c2,还可以用 来证明结论:若 a>0,b>0,且 a2+b2为定值,则当 a___= _b 时,ab 取得 最大值.
中考数学几何选择填空压轴题精选
中考数学几何选择填空压轴题精选一.选择题(共13小题)1.(2013•蕲春县模拟)如图,点O为正方形ABCD的中心,BE平分∠DBC交DC于点E,延长BC到点F,使FC=EC,连接DF交BE的延长线于点H,连接OH交DC于点G,连接HC.则以下四个结论中正确结论的个数为()①OH=BF;②∠CHF=45°;③GH=BC;④DH2=HE•HB.A.1个B.2个C.3个D.4个2.(2013•连云港模拟)如图,Rt△ABC中,BC=,∠ACB=90°,∠A=30°,D1是斜边AB的中点,过D1作D1E1⊥AC于E1,连结BE1交CD1于D2;过D2作D2E2⊥AC于E2,连结BE2交CD1于D3;过D3作D3E3⊥AC于E3,…,如此继续,可以依次得到点E4、E5、…、E2013,分别记△BCE1、△BCE2、△BCE3、…、△BCE2013的面积为S1、S2、S3、…、S2013.则S2013的大小为()A.B.C.D.3.如图,梯形ABCD中,AD∥BC,,∠ABC=45°,AE⊥BC于点E,BF⊥AC于点F,交AE于点G,AD=BE,连接DG、CG.以下结论:①△BEG≌△AEC;②∠GAC=∠GCA;③DG=DC;④G为AE中点时,△AGC的面积有最大值.其中正确的结论有( )A.1个B.2个C.3个D.4个4.如图,正方形ABCD中,在AD的延长线上取点E,F,使DE=AD,DF=BD,连接BF分别交CD,CE于H,G下列结论:①EC=2DG;②∠GDH=∠GHD;③S△CDG=S▭DHGE;④图中有8个等腰三角形.其中正确的是()A.①③B.②④C.①④D.②③5.(2008•荆州)如图,直角梯形ABCD中,∠BCD=90°,AD∥BC,BC=CD,E为梯形内一点,且∠BEC=90°,将△BEC绕C点旋转90°使BC与DC重合,得到△DCF,连EF交CD于M.已知BC=5,CF=3,则DM:MC的值为()A.5:3B.3:5C.4:3D.3:46.如图,矩形ABCD的面积为5,它的两条对角线交于点O1,以AB,AO1为两邻边作平行四边形ABC1O1,平行四边形ABC1O1的对角线交BD于点02,同样以AB,AO2为两邻边作平行四边形ABC2O2.…,依此类推,则平行四边形ABC2009O2009的面积为()A.B.C.D.7.如图,在锐角△ABC中,AB=6,∠BAC=45°,∠BAC的平分线交BC于点D,M,N分别是AD和AB上的动点,则BM+MN的最小值是( )A.B.6C.D.38.(2013•牡丹江)如图,在△ABC中∠A=60°,BM⊥AC于点M,CN⊥AB于点N,P为BC边的中点,连接PM,PN,则下列结论:①P M=PN;②;③△PMN为等边三角形;④当∠ABC=45°时,BN=PC.其中正确的个数是()A.1个B.2个C.3个D.4个9.(2012•黑河)Rt△ABC中,AB=AC,点D为BC中点.∠MDN=90°,∠MDN绕点D旋转,DM、DN分别与边AB、AC交于E、F两点.下列结论:①(BE+CF)=BC;②S△AEF≤S△ABC;③S四边形AEDF=AD•EF;④AD≥EF;⑤AD与EF可能互相平分,其中正确结论的个数是()A.1个B.2个C.3个D.4个10.(2012•无锡一模)如图,在正方形纸片ABCD中,对角线AC、BD交于点O,折叠正方形纸片ABCD,使AD 落在BD上,点A恰好与BD上的点F重合,展开后折痕DE分别交AB、AC于点E、G,连接GF.下列结论①∠ADG=22.5°;②tan∠AED=2;③S△AGD=S△OGD;④四边形AEFG是菱形;⑤BE=2OG.其中正确的结论有() A.①④⑤B.①②④C.③④⑤D.②③④11.如图,正方形ABCD中,O为BD中点,以BC为边向正方形内作等边△BCE,连接并延长AE交CD于F,连接BD分别交CE、AF于G、H,下列结论:①∠CEH=45°;②GF∥DE;③2OH+DH=BD;④BG=DG;⑤.其中正确的结论是()A.①②③B.①②④C.①②⑤D.②④⑤12.如图,在正方形ABCD中,AB=4,E为CD上一动点,AE交BD于F,过F作FH⊥AE于H,过H作GH⊥BD 于G,下列有四个结论:①AF=FH,②∠HAE=45°,③BD=2FG,④△CEH的周长为定值,其中正确的结论有()A.①②③B.①②④C.①③④D.①②③④13.(2013•钦州模拟)正方形ABCD、正方形BEFG和正方形RKPF的位置如图所示,点G在线段DK上,正方形BEFG的边长为4,则△DEK的面积为()A.10B.12C.14D.16二.填空题(共16小题)14.如图,在梯形ABCD中,AD∥BC,EA⊥AD,M是AE上一点,F、G分别是AB、CM的中点,且∠BAE=∠MCE,∠MBE=45°,则给出以下五个结论:①AB=CM;②A E⊥BC;③∠BMC=90°;④EF=EG;⑤△BMC是等腰直角三角形.上述结论中始终正确的序号有_________ .15.(2012•门头沟区一模)如图,对面积为1的△ABC逐次进行以下操作:第一次操作,分别延长AB、BC、CA至A1、B1、C1,使得A1B=2AB,B1C=2BC,C1A=2CA,顺次连接A1、B1、C1,得到△A1B1C1,记其面积为S1;第二次操作,分别延长A1B1,B1C1,C1A1至A2,B2,C2,使得A2B1=2A1B1,B2C1=2B1C1,C2A1=2C1A1,顺次连接A2,B2,C2,得到△A2B2C2,记其面积为S2…,按此规律继续下去,可得到△A5B5C5,则其面积为S5= _________ .第n 次操作得到△A n B n C n,则△A n B n C n的面积S n= _________ .(2009•黑河)如图,边长为1的菱形ABCD中,∠DAB=60度.连接对角线AC,以AC为边作第二个菱形ACC1D1,16.使∠D1AC=60°;连接AC1,再以AC1为边作第三个菱形AC1C2D2,使∠D2AC1=60°;…,按此规律所作的第n个菱形的边长为_________ .17.(2012•通州区二模)如图,在△ABC中,∠A=α.∠ABC与∠ACD的平分线交于点A1,得∠A1;∠A1BC与∠A1CD的平分线相交于点A2,得∠A2;…;∠A2011BC与∠A2011CD的平分线相交于点A2012,得∠A2012,则∠A2012= _________ .18.(2009•湖州)如图,已知Rt△ABC,D1是斜边AB的中点,过D1作D1E1⊥AC于E1,连接BE1交CD1于D2;过D2作D2E2⊥AC于E2,连接BE2交CD1于D3;过D3作D3E3⊥AC于E3,…,如此继续,可以依次得到点D4,D5,…,D n,分别记△BD1E1,△BD2E2,△BD3E3,…,△BD n E n的面积为S1,S2,S3,…S n.则S n= _________ S△ABC(用含n的代数式表示).19.(2011•丰台区二模)已知:如图,在Rt△ABC中,点D1是斜边AB的中点,过点D1作D1E1⊥AC于点E1,连接BE1交CD1于点D2;过点D2作D2E2⊥AC于点E2,连接BE2交CD1于点D3;过点D3作D3E3⊥AC于点E3,如此继续,可以依次得到点D4、D5、…、D n,分别记△BD1E1、△BD2E2、△BD3E3、…、△BD n E n的面积为S1、S2、S3、…S n.设△ABC的面积是1,则S1= _________ ,S n= _________ (用含n的代数式表示).20.(2013•路北区三模)在△ABC中,AB=6,AC=8,BC=10,P为边BC上一动点,PE⊥AB于E,PF⊥AC于F,M为EF中点,则AM的最小值为_________ .21.如图,已知Rt△ABC中,AC=3,BC=4,过直角顶点C作CA1⊥AB,垂足为A1,再过A1作A1C1⊥BC,垂足为C1,过C1作C1A2⊥AB,垂足为A2,再过A2作A2C2⊥BC,垂足为C2,…,这样一直做下去,得到了一组线段CA1,A1C1,C1A2,…,则CA1= _________ ,= _________ .22.(2013•沐川县二模)如图,点A1,A2,A3,A4,…,A n在射线OA上,点B1,B2,B3,…,B n﹣1在射线OB上,且A1B1∥A2B2∥A3B3∥…∥A n﹣1B n﹣1,A2B1∥A3B2∥A4B3∥…∥A n B n﹣1,△A1A2B1,△A2A3B2,…,△A n﹣1A n B n﹣1为阴影三角形,若△A2B1B2,△A3B2B3的面积分别为1、4,则△A1A2B1的面积为_________ ;面积小于2011的阴影三角形共有_________ 个.23.(2010•鲤城区质检)如图,已知点A1(a,1)在直线l:上,以点A1为圆心,以为半径画弧,交x轴于点B1、B2,过点B2作A1B1的平行线交直线l于点A2,在x轴上取一点B3,使得A2B3=A2B2,再过点B3作A2B2的平行线交直线l于点A3,在x轴上取一点B4,使得A3B4=A3B3,按此规律继续作下去,则①a=_________ ;②△A4B4B5的面积是_________ .24.(2013•松北区二模)如图,以Rt△ABC的斜边BC为一边在△ABC的同侧作正方形BCEF,设正方形的中心为O,连接AO,如果AB=4,AO=6,那么AC的长等于_________ .25.(2007•淄川区二模)如图,将矩形ABCD的四个角向内折起,恰好拼成一个既无缝隙又无重叠的四边形EFGH,若EH=3,EF=4,那么线段AD与AB的比等于_________ .26.(2009•泰兴市模拟)梯形ABCD中AB∥CD,∠ADC+∠BCD=90°,以AD、AB、BC为斜边向形外作等腰直角三角形,其面积分别是S1、S2、S3且S1+S3=4S2,则CD= _________ AB.27.如图,观察图中菱形的个数:图1中有1个菱形,图2中有5个菱形,图3中有14个菱形,图4中有30个菱形…,则第6个图中菱形的个数是_________ 个.28.(2012•贵港一模)如图,E、F分别是平行四边形ABCD的边AB、CD上的点,AF与DE相交于点P,BF与CE相交于点Q,若S△APD=15cm2,S△BQC=25cm2,则阴影部分的面积为_________ cm2.29.(2012•天津)如图,已知正方形ABCD的边长为1,以顶点A、B为圆心,1为半径的两弧交于点E,以顶点C、D为圆心,1为半径的两弧交于点F,则EF的长为_________ .30.如图,ABCD是凸四边形,AB=2,BC=4,CD=7,求线段AD的取值范围().参考答案与试题解析一.选择题(共13小题)1.(2013•蕲春县模拟)如图,点O为正方形ABCD的中心,BE平分∠DBC交DC于点E,延长BC到点F,使FC=EC,连接DF交BE的延长线于点H,连接OH交DC于点G,连接HC.则以下四个结论中正确结论的个数为( )①OH=BF;②∠CHF=45°;③GH=BC;④DH2=HE•HB.A.1个B.2个C.3个D.4个解答:解:作EJ⊥BD于J,连接EF①∵BE平分∠DBC∴EC=EJ,∴△DJE≌△ECF∴DE=FE∴∠HEF=45°+22.5°=67.5°∴∠HFE==22。
全国各地中考数学压轴题汇编:几何综合
全国各地中考数学压轴题汇编几何综合参考答案与试题解析一.解答题(共18小题)1.(2018•无锡)如图,四边形ABCD内接于⊙O,AB=17,CD=10,∠A=90°,cosB=,求AD的长.解:∵四边形ABCD内接于⊙O,∠A=90°,∴∠C=180°﹣∠A=90°,∠ABC+∠ADC=180°.作AE⊥BC于E,DF⊥AE于F,则CDFE是矩形,EF=CD=10.在Rt△AEB中,∵∠AEB=90°,AB=17,cos∠ABC=,∴BE=AB•cos∠ABE=,∴AE==,∴AF=AE﹣EF=﹣10=.∵∠ABC+∠ADC=180°,∠CDF=90°,∴∠ABC+∠ADF=90°,∵cos∠ABC=,∴sin∠ADF=cos∠ABC=.在Rt△ADF中,∵∠AFD=90°,sin∠ADF=,∴AD===6.2.(2018南京)如图,在四边形ABCD中,BC=CD,∠C=2∠BAD.O是四边形ABCD 内一点,且OA=OB=OD.求证:(1)∠BOD=∠C;(2)四边形OBCD是菱形.证明:(1)延长OA到E,∵OA=OB,∴∠ABO=∠BAO,又∠BOE=∠ABO+∠BAO,∴∠BOE=2∠BAO,同理∠DOE=2∠DAO,∴∠BOE+∠DOE=2∠BAO+2∠DAO=2(∠BAO+∠DAO)即∠BOD=2∠BAD,又∠C=2∠BAD,∴∠BOD=∠C;(2)连接OC,∵OB=OD,CB=CD,OC=OC,∴△OBC≌△ODC,∴∠BOC=∠DOC,∠BCO=∠DCO,∵∠BOD=∠BOC+∠DOC,∠BCD=∠BCO+∠DCO,∴∠BOC=∠BOD,∠BCO=∠BCD,又∠BOD=∠BCD,∴∠BOC=∠BCO,∴BO=BC,又OB=OD,BC=CD,∴OB=BC=CD=DO,∴四边形OBCD是菱形.3.(2018淮安)如图,AB是⊙O的直径,AC是⊙O的切线,切点为A,BC交⊙O于点D,点E是AC的中点.(1)试判断直线DE与⊙O的位置关系,并说明理由;(2)若⊙O的半径为2,∠B=50°,AC=4.8,求图中阴影部分的面积.解:(1)直线DE与⊙O相切.理由如下:连接OE、OD,如图,∵AC是⊙O的切线,∴AB⊥AC,∴∠OAC=90°,∵点E是AC的中点,O点为AB的中点,∴OE∥BC,∴∠1=∠B,∠2=∠3,∵OB=OD,∴∠B=∠3,∴∠1=∠2,在△AOE和△DOE中,∴△AOE≌△DOE,∴∠ODE=∠OAE=90°,∴OA⊥AE,∴DE为⊙O的切线;(2)∵点E是AC的中点,∴AE=AC=2.4,∵∠AOD=2∠B=2×50°=100°,∴图中阴影部分的面积=2•×2×2.4﹣=4.8﹣π.4.(2018•连云港)如图,矩形ABCD中,E是AD的中点,延长CE,BA交于点F,连接AC,DF.(1)求证:四边形ACDF是平行四边形;(2)当CF平分∠BCD时,写出BC与CD的数量关系,并说明理由.解:(1)∵四边形ABCD是矩形,∴AB∥CD,∴∠FAE=∠CDE,∵E是AD的中点,∴AE=DE,又∵∠FEA=∠CED,∴△FAE≌△CDE,∴CD=FA,又∵CD∥AF,∴四边形ACDF是平行四边形;(2)BC=2CD.证明:∵CF平分∠BCD,∴∠DCE=45°,∵∠CDE=90°,∴△CDE是等腰直角三角形,∴CD=DE,∵E是AD的中点,∴AD=2CD,∵AD=BC,∴BC=2CD.5.(2018南京)如图,在正方形ABCD中,E是AB上一点,连接DE.过点A作AF ⊥DE,垂足为F,⊙O经过点C、D、F,与AD相交于点G.(1)求证:△AFG∽△DFC;(2)若正方形ABCD的边长为4,AE=1,求⊙O的半径.(1)证明:在正方形ABCD中,∠ADC=90°,∴∠CDF+∠ADF=90°,∵AF⊥DE,∴∠AFD=90°,∴∠DAF+∠ADF=90°,∴∠DAF= ∠CDF,∵四边形GFCD 是⊙O的内接四边形,∴∠FCD+∠DGF=180°,∵∠FGA+∠DGF=180°,∴∠FGA= ∠FCD,∴△AFG∽△DFC.(2)解:如图,连接CG.∵∠EAD= ∠AFD=90°,∠EDA=∠ADF ,∴△EDA ∽△ADF ,∴= ,即= ,∵△AFG∽△DFC,∴∴==,,在正方形ABCD中,DA=DC ,∴AG=EA=1 ,DG=DA ﹣AG=4﹣1=3,∴CG==5,∵∠CDG=90°,∴CG 是⊙O的直径,∴⊙O的半径为.6.(2018无锡)如图,矩形ABCD中,AB=m ,BC=n,将此矩形绕点B顺时针方向旋转θ(0°<θ<90°)得到矩形A BC D ,点A 在边CD 上.1 1 1 1(1)若 m=2,n=1,求在旋转过程中,点 D 到点 D 所经过路径的长度;1(2)将矩形 A BC D 继续绕点 B 顺时针方向旋转得到矩形 A BC D ,点 D 在 BC 的延1 1 12 2 2 2长线上,设边 A B 与 CD 交于点 E ,若 2=﹣1,求 的值.解:(1)作 A H ⊥AB 于 H ,连接 BD ,BD ,则四边形 ADA H 是矩形.1 1 1∴AD=HA =n=1,1在 Rt △A △ HB 中,∵BA =BA=m=2,11∴BA =2HA ,1 1 ∴∠ABA =30°,1 ∴旋转角为 30°,,∵BD==∴D 到点 D 所经过路径的长度= 1(2)∵△BCE ∽△BA D ,2 2∴= = ,∴CE==π.∵=﹣1∴=,∴AC=•,∴BH=AC==•,∴m ﹣n =6•,∴m ﹣m n =6n ,1﹣=6•,∴ =(负根已经舍弃).7.(2018•泰州)如图,AB 为⊙O 的直径,C 为⊙O 上一点,∠ABC 的平分线交⊙O 于 点 D ,DE ⊥BC 于点 E .(1)试判断 DE 与⊙O 的位置关系,并说明理由;(2)过点 D 作 DF ⊥AB 于点 F ,若 BE=3,DF=3,求图中阴影部分的面积.解:(1)DE 与⊙O 相切,理由:连接 DO ,∵DO=BO ,∴∠ODB=∠OBD ,∵∠ABC 的平分线交⊙O 于点 D ,∴∠EBD=∠DBO ,∴∠EBD=∠BDO ,∴DO ∥BE ,∵DE ⊥BC ,∴∠DEB=∠EDO=90°,∴DE 与⊙O 相切;(2)∵∠ABC 的平分线交⊙O 于点 D ,DE ⊥BE ,DF ⊥AB , ∴DE=DF=3,2 2 4 2 2 4∵BE=3,∴BD==6,∵sin ∠DBF= = ,∴∠DBA=30°,∴∠DOF=60°,∴sin60°=∴DO=2则 FO==,,=,故图中阴影部分的面积为:﹣ × ×3=2π﹣ .8.(2018•扬州)如图,在平行四边形 ABCD 中,DB=DA ,点 F 是 AB 的中点,连接 DF 并延长,交 CB 的延长线于点 E ,连接 AE .(1)求证:四边形 AEBD 是菱形;(2)若 DC=,tan ∠DCB=3,求菱形 AEBD 的面积.(1)证明:∵四边形 ABCD 是平行四边形, ∴AD ∥CE ,∴∠DAF=∠EBF ,∵∠AFD=∠EFB ,AF=FB ,∴△AFD ≌△BFE ,∴AD=EB ,∵AD ∥EB ,∴四边形 AEBD 是平行四边形,∵BD=AD ,∴四边形 AEBD 是菱形.(2)解:∵四边形 ABCD 是平行四边形,∴CD=AB=,AB ∥CD ,∴∠ABE=∠DCB ,∴tan ∠ABE=tan ∠DCB=3, ∵四边形 AEBD 是菱形, ∴AB ⊥DE ,AF=FB ,EF=DF ,∴tan ∠ABE==3,∵BF=∴EF=∴DE=3,,,∴S菱形= •AB•DE=•3=15.9.(2018•宿迁)如图,AB 、AC 分别是⊙O 的直径和弦,OD ⊥AC 于点 D .过点 A 作⊙O 的切线与OD 的延长线交于点 P ,PC 、AB 的延长线交于点 F .(1)求证:PC 是⊙O 的切线;(2)若∠ABC=60°,AB=10,求线段 CF 的长.解:(1)连接 OC ,AEBD∵OD⊥AC,OD经过圆心O,∴AD=CD,∴PA=PC,在△OAP和△OCP中,∵,∴△OAP≌△OCP(SSS),∴∠OCP=∠OAP∵PA是半⊙O的切线,∴∠OAP=90°.∴∠OCP=90°,即OC⊥PC∴PC是⊙O的切线.(2)∵OB=OC,∠OBC=60°,∴△OBC是等边三角形,∴∠COB=60°,∵AB=10,∴OC=5,由(1)知∠OCF=90°,∴CF=OCtan∠COB=5.10.(2018•淮安)如果三角形的两个内角α与β满足2α+β=90°,那么我们称这样的三角形为“准互余三角形”.(1)若△ABC是“准互余三角形”,∠C>90°,∠A=60°,则∠B=15°;(2)如图①,在Rt△ABC中,∠ACB=90°,AC=4,BC=5.若AD是∠BAC的平分线,不难证明△ABD 是“准互余三角形”.试问在边BC上是否存在点E(异于点D),使得△ABE也是“准互余三角形”?若存在,请求出BE的长;若不存在,请说明理由.(3)如图②,在四边形ABCD中,AB=7,CD=12,BD⊥CD,∠ABD=2∠BCD,且△ABC 是“准互余三角形”,求对角线AC的长.解:(1)∵△ABC是“准互余三角形”,∠C>90°,∠A=60°,∴2∠B+∠A=60°,解得,∠B=15°,故答案为:15°;(2)如图①中,在Rt△ABC中,∵∠B+∠BAC=90°,∠BAC=2∠BAD,∴∠B+2∠BAD=90°,∴△ABD是“准互余三角形”,∵△ABE也是“准互余三角形”,∴只有2∠A+∠BAE=90°,∵∠A+∠BAE+∠EAC=90°,∴∠CAE=∠B,∵∠C=∠C=90°,∴△CAE∽△CBA,可得CA2=CE•CB,∴CE=,∴BE=5﹣=.(3)如图②中,将△BCD 沿 BC 翻折得到△BCF .∴CF=CD=12,∠BCF=∠BCD ,∠CBF=∠CBD , ∵∠ABD=2∠BCD ,∠BCD +∠CBD=90°, ∴∠ABD +∠DBC +∠CBF=180°,∴A 、B 、F 共线,∴∠A +∠ACF=90°∴2∠ACB +∠CAB ≠90°,∴只有 2∠BAC +∠ACB=90°,∴∠FCB=∠FAC ,∵∠F=∠F ,∴△FCB ∽△FAC ,∴CF=FB •FA ,设 FB=x ,则有:x (x +7)=12 , ∴x=9 或﹣16(舍弃), ∴AF=7+9=16,在 Rt △ACF 中,AC== =20.11.(2018•盐城)如图,在以线段 AB 为直径的⊙O 上取一点 C ,连接 AC 、BC .将△ ABC 沿 AB 翻折后得到△ABD .(1)试说明点 D 在⊙O 上;(2)在线段 AD 的延长线上取一点 E ,使 AB =AC •AE .求证:BE 为⊙O 的切线; (3)在(2)的条件下,分别延长线段 AE 、CB 相交于点 F ,若 BC=2,AC=4,求线段 EF 的长.222解:(1)∵AB 为⊙O 的直径, ∴∠C=90°,∵将△ABC 沿 AB 翻折后得到△ABD , ∴△ABC ≌△ABD ,∴∠ADB=∠C=90°,∴点 D 在以 AB 为直径的⊙O 上; (2)∵△ABC ≌△ABD ,∴AC=AD ,∵AB =AC •AE ,∴AB =AD •AE ,即=,∵∠BAD=∠EAB ,∴△ABD ∽△AEB ,∴∠ABE=∠ADB=90°,∵AB 为⊙O 的直径,∴BE 是⊙O 的切线;(3)∵AD=AC=4、BD=BC=2,∠ADB=90°,∴AB===2,∵=,∴=,解得:DE=1,∴BE==,∵四边形 ACBD 内接于⊙O ,∴∠FBD=∠FAC ,即∠FBE +∠DBE=∠BAE +∠BAC , 又∵∠DBE +∠ABD=∠BAE +∠ABD=90°,∴∠DBE=∠BAE ,2 2∴∠FBE=∠BAC , 又∠BAC=∠BAD , ∴∠FBE=∠BAD , ∴△FBE ∽△FAB ,∴=,即= = ,∴FB=2FE ,在 Rt △ACF 中,∵AF =AC +CF , ∴(5+EF ) 2=4 +(2+2EF ) 2,整理,得:3EF ﹣2EF ﹣5=0,解得:EF=﹣1(舍)或 EF= ,∴EF= .12.(2018 扬州)如图,在△ABC 中,AB=AC ,AO ⊥BC 于点 O ,OE ⊥AB 于点 E , 以点 O 为圆心,OE 为半径作半圆,交 AO 于点 F .(1)求证:AC 是⊙O 的切线;(2)若点 F 是 A 的中点,OE=3,求图中阴影部分的面积;(3)在(2)的条件下,点 P 是 BC 边上的动点,当 PE +PF 取最小值时,直接写出 BP 的长.(1)证明:作 OH ⊥AC 于 H ,如图, ∵AB=AC ,AO ⊥BC 于点 O , ∴AO 平分∠BAC ,∵OE ⊥AB ,OH ⊥AC ,∴OH=OE ,∴AC 是⊙O 的切线;(2)解:∵点 F 是 AO 的中点,2 2 2 2 2∴AO=2OF=3,而OE=3,∴∠OAE=30°,∠AOE=60°,∴AE=OE=3,∴图中阴影部分的面积=S△﹣SAOE扇形=×3×3EOF﹣=;(3)解:作F点关于BC的对称点F′,连接EF′交BC于P,如图,∵PF=PF′,∴PE+PF=PE+PF′=EF′∵OF′=OF=OE,,此时EP+FP最小,∴∠F′=∠OEF′,而∠AOE=∠F′+∠OEF′=60°,∴∠F′=30°,∴∠F′=∠EAF′,∴EF′=EA=3,即PE+PF最小值为3在Rt△OPF′中,OP=在Rt△ABO中,OB=,OF′=OA=,×6=2,∴BP=2﹣=,即当PE+PF取最小值时,BP的长为.13.(2018•南京)结果如此巧合!下面是小颖对一道题目的解答.题目:如图,Rt △ABC 的内切圆与斜边 AB 相切于点 D ,AD=3,BD=4, 求△ABC 的面积.解:设△ABC 的内切圆分别与 AC 、BC 相切于点 E 、F ,CE 的长为 x . 根据切线长定理,得 AE=AD=3,BF=BD=4,CF=CE=x .根据勾股定理,得(x +3) +(x +4) =(3+4) .整理,得 x +7x=12.所以 S= AC•BC△ABC= (x +3)(x +4)= (x +7x +12)= ×(12+12)=12.小颖发现 12 恰好就是 3×4,即△ABC 的面积等于 AD 与 BD 的积.这仅仅是巧合吗? 请你帮她完成下面的探索.已知:△ABC 的内切圆与 AB 相切于点 D ,AD=m ,BD=n .可以一般化吗?(1)若∠C=90°,求证:△ABC 的面积等于 mn .倒过来思考呢?(2)若 AC •BC=2mn ,求证∠C=90°.改变一下条件……(3)若∠C=60°,用 m 、n 表示△ABC 的面积.解:设△ABC 的内切圆分别与 AC 、BC 相切于点 E 、F ,CE 的长为 x , 根据切线长定理,得:AE=AD=m 、BF=BD=n 、CF=CE=x ,(1)如图 1,2 2 2 2 2在 Rt △ABC 中,根据勾股定理,得:(x +m ) +(x +n ) =(m +n ) , 整理,得:x +(m +n )x=mn ,所以 S= AC•BC△ABC= (x +m )(x +n )=[x2 +(m +n )x +mn ]= (mn +mn )=mn ,(2)由 AC •BC=2mn ,得:(x +m )(x +n )=2mn ,整理,得:x +(m +n )x=mn ,∴AC +BC =(x +m ) +(x +n ) =2[x 2+(m +n )x ]+m 2+n2 =2mn +m +n =(m +n )2 =AB ,根据勾股定理逆定理可得∠C=90°; (3)如图 2,过点 A 作 AG ⊥BC 于点 G ,在 Rt △ACG 中,AG=AC •sin60°=(x +m ),CG=AC •cos60°= (x +m ),∴BG=BC ﹣CG=(x +n )﹣ (x +m ),2 2 22 22 2 2 22 22在 Rt △ABG 中,根据勾股定理可得:[(x +m )]+[(x +n )﹣ (x +m )] =(m +n ) 2,整理,得:x +(m +n )x=3mn ,∴S= BC•AG△ABC= ×(x +n )•(x +m )===[x +(m +n )x +mn ]×(3mn +mn ) mn .14.(2018•盐城)【发现】如图①,已知等边△ABC ,将直角三角板的 60°角顶点 D 任意放在 BC 边上(点 D 不与点 B 、C 重合),使两边分别交线段 AB 、AC 于点 E 、F .(1)若 AB=6,AE=4,BD=2,则 CF= 4;(2)求证:△EBD ∽△DCF .【思考】若将图①中的三角板的顶点 D 在 BC 边上移动,保持三角板与边 AB 、AC 的两 个交点 E 、F 都存在,连接 EF ,如图②所示,问:点 D 是否存在某一位置,使 ED 平分∠BEF 且 FD 平分∠CFE ?若存在,求出的值;若不存在,请说明理由.【探索】如图③,在等腰△ABC 中,AB=AC ,点 O 为 BC 边的中点,将三角形透明纸 板的一个顶点放在点 O 处(其中∠MON=∠B ),使两条边分别交边 AB 、AC 于点 E 、F (点 E 、F 均不与△ABC 的顶点重合),连接 EF .设∠B=α,则△AEF 与△ABC 的周长 之比为 1﹣cosα (用含 α 的表达式表示).(1)解:∵△ABC 是等边三角形, ∴AB=BC=AC=6,∠B=∠C=60°. ∵AE=4,2 2 2 2∴BE=2,则BE=BD,∴△BDE是等边三角形,∴∠BED=60°,又∵∠EDF=60°,∴∠CDF=180°﹣∠EDF﹣∠B=60°,则∠CDF=∠C=60°,∴△CDF是等边三角形,∴CF=CD=BC=BD=6﹣2=4.故答案是:4;(2)证明:如图①,∵∠EDF=60°,∠B=60°,∴∠CDF+BDE=120°,∠BED+∠BDE=120°,∴∠BED=∠CDF.又∠B=∠C=60°,∴△EBD∽△DCF;【思考】存在,如图②,过D作DM⊥BE,DG⊥EF,DN⊥CF,垂足分别是M、G、N,∵ED平分∠BEF且FD平分∠CFE.∴DM=DG=DN .又∠B=∠C=60°,∠BMD=∠CND=90°, ∴△BDM ≌△CDN ,∴BD=CD ,即点 D 是 BC 的中点,∴= ;【探索】如图③,连接 AO ,作 OG ⊥BE ,OD ⊥EF ,OH ⊥CF ,垂足分别是 G 、D 、H . 则∠BGO=∠CHO=90°,∵AB=AC ,O 是 BC 的中点,∴∠B=∠C ,OB=OC ,∴△OBG ≌△OCH ,∴OG=OH ,GB=CH ,∠BOG=∠COH=90°﹣α,则∠GOH=180°﹣(∠BOG +∠COH )=2α,∴∠EOF=∠B=α则∠GOH=2∠EOF=2α.由(2)题可猜想应用 EF=ED +DF=GE +FH (可通过半角旋转证明),则CAE +EF +AF=AE +EG +FH +AF=AG +AH=2AG , △AEF设 AB=m ,则 OB=mcos α,GB=mcos α.= = = =1﹣cos α. 故答案是:1﹣cos α.215.(2018扬州)问题呈现如图1,在边长为1的正方形网格中,连接格点D,N和E,C,DN和EC相交于点P,求tan∠CPN的值.方法归纳求一个锐角的三角函数值,我们往往需要找出(或构造出)一个直角三角形.观察发现问题中∠CPN不在直角三角形中,我们常常利用网格画平行线等方法解决此类问题,比如连接格点M,N,可得MN∥EC,则∠DNM=∠CPN,连接DM,那么∠CPN就变换到Rt△DMN中.问题解决(1)直接写出图1中tan∠CPN的值为2;(2)如图2,在边长为1的正方形网格中,AN与CM相交于点P,求cos∠CPN的值;思维拓展(3)如图3,AB⊥BC,AB=4BC,点M在AB上,且AM=BC,延长CB到N,使BN=2BC,连接AN交CM的延长线于点P,用上述方法构造网格求∠CPN的度数.解:(1)如图1中,∵EC∥MN,∴∠CPN=∠DNM,∴tan∠CPN=tan∠DNM,∵∠DMN=90°,∴tan∠CPN=tan∠DNM=故答案为2.==2,(2)如图2中,取格点D,连接CD,DM.∵CD∥AN,∴∠CPN=∠DCM,∵△DCM是等腰直角三角形,∴∠DCM=∠D=45°,∴cos∠CPN=cos∠DCM=.(3)如图3中,如图取格点M,连接AN、MN.∵PC∥MN,∴∠CPN=∠ANM,∵AM=MN,∠AMN=90°,∴∠ANM=∠MAN=45°,∴∠CPN=45°.16.(2018泰州)对给定的一张矩形纸片ABCD进行如下操作:先沿CE折叠,使点B 落在CD边上(如图①),再沿CH折叠,这时发现点E恰好与点D重合(如图②)(1)根据以上操作和发现,求的值;(2)将该矩形纸片展开.①如图③,折叠该矩形纸片,使点C与点H重合,折痕与AB相交于点P,再将该矩形纸片展开.求证:∠HPC=90°;②不借助工具,利用图④探索一种新的折叠方法,找出与图③中位置相同的 P 点,要求 只有一条折痕,且点 P 在折痕上,请简要说明折叠方法.(不需说明理由)解:(1)由图①,可得∠BCE= ∠BCD=45°, 又∵∠B=90°,∴△BCE 是等腰直角三角形,∴=cos45°=,即 CE= BC ,由图②,可得 CE=CD ,而 AD=BC , ∴CD= AD ,∴=;(2)①设 AD=BC=a ,则 AB=CD= a ,BE=a , ∴AE=( ﹣1)a ,如图③,连接 EH ,则∠CEH=∠CDH=90°, ∵∠BEC=45°,∠A=90°,∴∠AEH=45°=∠AHE ,∴AH=AE=( ﹣1)a ,设 AP=x ,则 BP= a ﹣x ,由翻折可得,PH=PC ,即 PH ∴AH +AP =BP +BC ,即[( ﹣1)a ]+x =( a ﹣x ) +a ,2=PC ,解得 x=a ,即 AP=BC , 又∵PH=CP ,∠A=∠B=90°, ∴Rt △APH ≌Rt △BCP (HL ),22 2 2 2 2 2 2 2∴∠APH=∠BCP,又∵Rt△BCP中,∠BCP+∠BPC=90°,∴∠APH+∠BPC=90°,∴∠CPH=90°;②折法:如图,由AP=BC=AD,可得△ADP是等腰直角三角形,PD平分∠ADC,故沿着过D的直线翻折,使点A落在CD边上,此时折痕与AB的交点即为P;折法:如图,由∠BCE=∠PCH=45°,可得∠BCP=∠ECH,由∠DCE=∠PCH=45°,可得∠PCE=∠DCH,又∵∠DCH=∠ECH,∴∠BCP=∠PCE,即CP平分∠BCE,故沿着过点C的直线折叠,使点B落在CE上,此时,折痕与AB的交点即为P.17.(2018宿迁)如图,在边长为1的正方形ABCD中,动点E、F分别在边AB、CD上,将正方形ABCD 沿直线EF折叠,使点B的对应点M始终落在边AD上(点M不与点A、D重合),点C落在点N处,MN与CD交于点P,设BE=x.(1)当AM= 时,求x的值;(2)随着点M在边AD上位置的变化,△PDM的周长是否发生变化?如变化,请说明理由;如不变,请求出该定值;(3)设四边形BEFC的面积为S,求S与x之间的函数表达式,并求出S的最小值.解:(1)如图,在Rt△AEM中,AE=1﹣x,EM=BE=x,AM= ,∵AE+AM=EM,∴(1﹣x)+()=x,∴x=.(2)△PDM的周长不变,为2.理由:设AM=y,则BE=EM=x,MD=1﹣y,在Rt△AEM中,由勾股定理得AE +AM=EM,(1﹣x)+y=x,解得1+y =2x,∴1﹣y=2(1﹣x)∵∠EMP=90°,∠A=∠D,∴Rt△AEM∽Rt△DMP,∴=,即=,解得DM+MP+DP==2.∴△DMP的周长为2.(3)作FH⊥AB于H.则四边形BCFH是矩形.连接BM交FN于O,交FH于K.在Rt△AEM中,AM=∵B、M关于EF对称,=,222222222 22222∴BM ⊥EF ,∴∠KOF=∠KHB ,∵∠OKF=∠BKH , ∴∠KFO=∠KBH ,∵AB=BC=FH ,∠A=∠FHE=90°, ∴△ABM ≌△HFE ,,∴EH=AM=,∴CF=BH=x ﹣2 ∴S= (BE +CF )•BC= (x +x ﹣+ .当= 时,S 有最小值= .)=[( ) ﹣ +1]= ( ﹣ )18.(2018•连云港)在数学兴趣小组活动中,小亮进行数学探究活动.△ABC 是边长为 2 的等边三角形,E 是 AC 上一点,小亮以 BE 为边向 BE 的右侧作等边三角形 BEF ,连 接 CF .(1)如图 1,当点 E 在线段 AC 上时,EF 、BC 相交于点 D ,小亮发现有两个三角形全 等,请你找出来,并证明.(2)当点 E 在线段上运动时,点 F 也随着运动,若四边形 ABFC 的面积为,求 AE的长.(3)如图 2,当点 E 在 AC 的延长线上运动时,CF 、BE 相交于点 D ,请你探求△ECD2的面积S与△DBF的面积S之间的数量关系.并说明理由.12(4)如图2,当△ECD的面积S=1解:(1)结论:△ABE≌△CBF.理由:如图1中,时,求AE的长.∴∵△ABC,△BEF都是等边三角形,∴BA=BC,BE=BF,∠ABC=∠EBF,∴∠ABE=∠CBF,∴△ABE≌△CBF.(2)如图1中,∵△ABE≌△CBF,∴S△=SABE△,BCF∴S四边形=SBECF△BEC+s△=SBCF△BCE+S△ABE错误!=ABC,∵S四边形=ABCF,∴S△=ABE,∴AEABsiin60°=∴AE=.(3)结论:S﹣S=21理由:如图2中,,.∵△ABC,△BEF都是等边三角形,∴BA=BC,BE=BF,∠ABC=∠EBF,∴∠ABE=∠CBF,∴△ABE≌△CBF,∴S=S,△ABE△BCF∵S△﹣SBCF△=S﹣S,BCE21∴S﹣S=S21△﹣SABE=S△BCE△=ABC.(4)由(3)可知:S△﹣SBDF△ECD=,∵S△ECD=,∴S△=BDF,∵△ABE≌△CBF,∴AE=CF,∠BAE=∠BCF=60°,∴∠ABC=∠DCB,∴CF∥AB,则△BDF的BF边上的高为∴CD=x﹣,∵CD∥AB,,可得DF=,设C E=x,则2+x=CD+DF=CD+,∴=,即=,化简得:3x﹣x﹣2=0,解得x=1或﹣(舍弃),∴CE=1,AE=3.2。
最新中考数学压轧题分类名师讲座-全国各版本教材通用,一线名师精心打造
2.
3.
第二轮复习:解决选择、填空、解答中的压 轴题(30分左右)。选择最后一题;填空最 后一题;解答:最后2-3题。 解答题中的压轴题;12分以上;三问。目标: 保一争二弃三或保二弃三。
二.初中数学精髓
1.
2. 3. 4.
几何:两个字概括——特殊:特殊图形;特 殊关系(全等、相似)。 代数:两个字概括——代入:字母的含义代 入代数式、方程、不等式或者函数。 几何三大方法:全等、相似、勾股定理。 辅助线的认识
① 对内分割 ② 对外补形
5.
压轴题大类:几何综合;代数综合;代几综 合。
中考数学复习讲座
第四讲:包头中考压轴题复习预测
瑞星教育数学培训课件
茂李 印角形的存在性; 11年四不象面积问题;梯形及角的存在性; 09年平行四边形的存在性。 二.14年预测:
1. 函数+几何(偏函数综合)
2.
难度分布:
① 一、二两大题各有至少一题为压轴题。 ② 三大题中,基础题、中档题、压轴题个占两题。 ③ 基础题一般为:统计概率一题;解直角三角形应 用一题。中档题:文字应用题一题;几何题一题。 压轴题:几何动点+函数一题;函数+动点存在性 一题。
二.2014中考预测
1.
2.
3. 4.
近三年中考题分类练习讲座(按照选择;填 空;基础;中档;压轴分类分析讲解)。 2014年考题预测:前面的两道大题和解答题 中的前两题基本不变。中档题略有调整,重 点是第二道中档题变化较大。 最后两道压轴题变化较大,一般不会和往年 重复。 选择、填空最后一题压轴题。
① 因动点产生的直角三角形问题。 ② 因动点产生的线段和与差(最大、中小值问题)。 ③ 因动点产生的相似问题。
全国各省市中考数学压轴题精选精析
全国各省市中考数学压轴题精选精析(按省市归类)25、(2011•北京)如图,在平面直角坐标系xOy中,我把由两条射线AE,BF和以AB为直径的半圆所组成的图形叫作图形C(注:不含AB线段).已知A(﹣1,0),B(1,0),AE∥BF,且半圆与y轴的交点D在射线AE的反向延长线上.(1)求两条射线AE,BF所在直线的距离;(2)当一次函数y=x+b的图象与图形C恰好只有一个公共点时,写出b的取值范围;当一次函数y=x+b的图象与图形C恰好只有两个公共点时,写出b的取值范围;(3)已知▱AMPQ(四个顶点A,M,P,Q按顺时针方向排列)的各顶点都在图形C上,且不都在两条射线上,求点M的横坐标x的取值范围.考点:一次函数综合题;勾股定理;平行四边形的性质;圆周角定理。
专题:综合题;分类讨论。
分析:(1)利用直径所对的圆周角是直角,从而判定三角形ADB为等腰直角三角形,其直角边的长等于两直线间的距离;(2)利用数形结合的方法得到当直线与图形C有一个交点时自变量x的取值范围即可;(3)根据平行四边形的性质及其四个顶点均在图形C上,可能会出现四种情况,分类讨论即可.解答:解:(1)分别连接AD、DB,则点D在直线AE上,如图1,∵点D在以AB为直径的半圆上,∴∠ADB=90°,∴BD⊥AD,在Rt△DOB中,由勾股定理得,BD=,∵AE∥BF,∴两条射线AE、BF所在直线的距离为.(2)当一次函数y=x+b的图象与图形C恰好只有一个公共点时,b的取值范围是b=或﹣1<b<1;当一次函数y=x+b的图象与图形C恰好只有两个公共点时,b的取值范围是1<b<(3)假设存在满足题意的平行四边形AMPQ,根据点M的位置,分以下四种情况讨论:①当点M在射线AE上时,如图2.∵AMPQ四点按顺时针方向排列,∴直线PQ必在直线AM的上方,∴PQ两点都在弧AD上,且不与点A、D重合,∴0<PQ<.∵AM∥PQ且AM=PQ,∴0<AM<∴﹣2<x<﹣1,②当点M不在弧AD上时,如图3,∵点A、M、P、Q四点按顺时针方向排列,∴直线PQ必在直线AM的下方,此时,不存在满足题意的平行四边形.③当点M在弧BD上时,设弧DB的中点为R,则OR∥BF,当点M在弧DR上时,如图4,过点M作OR的垂线交弧DB于点Q,垂足为点S,可得S是MQ的中点.∴四边形AMPQ为满足题意的平行四边形,∴0≤x<.当点M在弧RB上时,如图5,直线PQ必在直线AM的下方,此时不存在满足题意的平行四边形.④当点M在射线BF上时,如图6,直线PQ必在直线AM的下方,此时,不存在满足题意的平行四边形.综上,点M的横坐标x的取值范围是﹣2<x<﹣1或0≤x<.点评:本题是一道一次函数的综合题,题目中还涉及到了勾股定理、平行四边形的性质及圆周角定理的相关知识,题目中还渗透了分类讨论思想.26、(2011•河北)如图,在平面直角坐标系中,点P从原点O出发,沿x轴向右以毎秒1个单位长的速度运动t秒(t >0),抛物线y=x2+bx+c经过点O和点P,已知矩形ABCD的三个顶点为 A (1,0),B (1,﹣5),D (4,0).(1)求c,b (用含t的代数式表示):(2)当4<t<5时,设抛物线分别与线段AB,CD交于点M,N.①在点P的运动过程中,你认为∠AMP的大小是否会变化?若变化,说明理由;若不变,求出∠AMP的值;②求△MPN的面积S与t的函数关系式,并求t为何值时,;(3)在矩形ABCD的内部(不含边界),把横、纵坐标都是整数的点称为“好点”.若抛物线将这些“好点”分成数量相等的两部分,请直接写出t的取值范围.考点:二次函数综合题。
2020年中考数学压轴题突破专题6几何综合探究变化型问题
2020年中考数学压轴题突破专题6⼏何综合探究变化型问题2020年中考数学⼤题狂练之压轴⼤题突破培优练专题06 ⼏何综合探究变化型问题【真题再现】1.(2019年宿迁中考第28题)如图①,在钝⾓△ABC中,∠ABC=30°,AC=4,点D为边AB中点,点E为边BC中点,将△BDE绕点B逆时针⽅向旋转α度(0≤α≤180).(1)如图②,当0<α<180时,连接AD、CE.求证:△BDA∽△BEC;(2)如图③,直线CE、AD交于点G.在旋转过程中,∠AGC的⼤⼩是否发⽣变化?如变化,请说明理由;如不变,请求出这个⾓的度数;(3)将△BDE从图①位置绕点B逆时针⽅向旋转180°,求点G的运动路程.2.(2019年连云港中考第27题)问题情境:如图1,在正⽅形ABCD中,E为边BC上⼀点(不与点B、C重合),垂直于AE的⼀条直线MN分别交AB、AE、CD于点M、P、N.判断线段DN、MB、EC之间的数量关系,并说明理由.问题探究:在“问题情境”的基础上.(1)如图2,若垂⾜P恰好为AE的中点,连接BD,交MN于点Q,连接EQ,并延长交边AD于点F.求∠AEF的度数;(2)如图3,当垂⾜P在正⽅形ABCD的对⾓线BD上时,连接AN,将△APN沿着AN 翻折,点P落在点P'处,若正⽅形ABCD 的边长为4,AD的中点为S,求P'S的最⼩值.问题拓展:如图4,在边长为4的正⽅形ABCD中,点M、N分别为边AB、CD上的点,将正⽅形ABCD沿着MN翻折,使得BC的对应边B'C'恰好经过点A,C'N交AD于点F.分别过点A、F作AG⊥MN,FH⊥MN,垂⾜分别为G、H.若AG,请直接写出FH的长.3.(2019年⽆锡中考副卷第28题)如图,在Rt△ABC中,AC=BC=4,∠ACB=90°,正⽅形BDEF的边长为2,将正⽅形BDEF绕点B旋转⼀周,连接AE、BE、CD.(1)请找出图中与△ABE相似的三⾓形,并说明理由;(2)求当A、E、F三点在⼀直线上时CD的长;(3)设AE的中点为M,连接FM,试求FM长的取值范围.4.(2019年盐城中考第25题)如图①是⼀张矩形纸⽚,按以下步骤进⾏操作:(Ⅰ)将矩形纸⽚沿DF折叠,使点A落在CD边上点E处,如图②;(Ⅱ)在第⼀次折叠的基础上,过点C再次折叠,使得点B落在边CD上点B′处,如图③,两次折痕交于点O;(Ⅲ)展开纸⽚,分别连接OB、OE、OC、FD,如图④.【探究】(1)证明:△OBC≌△OED;(2)若AB=8,设BC为x,OB2为y,求y关于x的关系式.5.(2019?扬州)如图,已知等边△ABC的边长为8,点P是AB边上的⼀个动点(与点A、B不重合).直线1是经过点P的⼀条直线,把△ABC沿直线1折叠,点B的对应点是点B′.(1)如图1,当PB=4时,若点B′恰好在AC边上,则AB′的长度为;(2)如图2,当PB=5时,若直线1∥AC,则BB′的长度为;(3)如图3,点P在AB边上运动过程中,若直线1始终垂直于AC,△ACB′的⾯积是否变化?若变化,说明理由;若不变化,求出⾯积;(4)当PB=6时,在直线1变化过程中,求△ACB′⾯积的最⼤值.6.(2019年南京中考第26题)如图①,在Rt△ABC中,∠C=90°,AC=3,BC=4.求作菱形DEFG,使点D在边AC上,点E、F在边AB上,点G在边BC上.⼩明的作法1.如图②,在边AC上取⼀点D,过点D作DG∥AB交BC于点G.2.以点D为圆⼼,DG长为半径画弧,交AB于点E.3.在EB上截取EF=ED,连接FG,则四边形DEFG为所求作的菱形.(1)证明⼩明所作的四边形DEFG是菱形.(2)⼩明进⼀步探索,发现可作出的菱形的个数随着点D的位置变化⽽变化……请你继续探索,直接写出菱形的个数及对应的CD的长的取值范围.【专项突破】【题组⼀】1.(2020?海门市校级模拟)已知正⽅形ABCD,P为射线AB上的⼀点,以BP为边作正⽅形BPEF,使点F在线段CB的延长线上,连接EA、EC.(1)如图1,若点P在线段AB的延长线上,求证:EA=EC;(2)若点P在线段AB上,如图2,当点P为AB的中点时,判断△ACE的形状,并说明理由;(3)在(1)的条件下,将正⽅形ABCD固定,正⽅形BPEF绕点B旋转⼀周,设AB =4,BP=a,若在旋转过程中△ACE⾯积的最⼩值为4,请直接写出a的值.2.(2019秋?青龙县期末)在等边三⾓形ABC中,点D是BC的中点,点E、F分别是边AB、AC(含线段AB、AC的端点)上的动点,且∠EDF=120°,⼩明和⼩慧对这个图形展开如下研究:问题初探:(1)如图1,⼩明发现:当∠DEB=90°时,BE+CF=nAB,则n的值为;问题再探:(2)如图2,在点E、F的运动过程中,⼩慧发现两个有趣的结论:①DE始终等于DF;②BE与CF的和始终不变;请你选择其中⼀个结论加以证明.成果运⽤(3)若边长AB=4,在点E、F的运动过程中,记四边形DEAF的周长为L,L=DE+EA+AF+FD,则周长L的变化范围是.3.(2019秋?张家港市期末)在长⽅形纸⽚ABCD中,点E是边CD上的⼀点,将△AED 沿AE所在的直线折叠,使点D落在点F 处.(1)如图1,若点F落在对⾓线AC上,且∠BAC=54°,则∠DAE的度数为°.(2)如图2,若点F落在边BC上,且AB=6,AD=10,求CE的长.(3)如图3,若点E是CD的中点,AF的沿长线交BC于点G,且AB=6,AD=10,求CG的长.4.(2020?兴化市模拟)如图,现有⼀张矩形纸⽚ABCD,AB=4,BC=8,点M,N分别在矩形的边AD,BC上,将矩形纸⽚沿直线MN折叠,使点C落在矩形的边AD上,记为点P,点D落在G处,连接PC,交MN丁点Q,连接CM.(1)求证:PM=PN;(2)当P,A重合时,求MN的值;(3)若△PQM的⾯积为S,求S的取值范围.【题组⼆】5.(2019秋?娄星区期末)在△ABC中,AB=AC,点D为射线CB上⼀个动点(不与B、C 重合),以AD为⼀边在AD的右侧作△ADE,使AD=AE,∠DAE=∠BAC,过点E作EF∥BC,交直线AC于点F,连接CE.(1)如图①,若∠BAC=60°,则按边分类:△CEF是三⾓形;(2)若∠BAC<60°.①如图②,当点D在线段CB上移动时,判断△CEF的形状并证明;②当点D在线段CB的延长线上移动时,△CEF是什么三⾓形?请在图③中画出相应的图形并直接写出结论(不必证明).6.(2019秋?东海县期末)已知BC=5,AB=1,AB⊥BC,射线CM⊥BC,动点P在线段BC上(不与点B,C重合),过点P 作DP⊥AP交射线CM于点D,连接AD.(1)如图1,若BP=4,判断△ADP的形状,并加以证明.(2)如图2,若BP=1,作点C关于直线DP的对称点C′,连接AC′.①依题意补全图2;②请直接写出线段AC′的长度.7.(2019秋?江都区期末)在Rt△ABC中,∠ACB=90°,AC=15,AB=25,点D为斜边AB上动点.(1)如图1,当CD⊥AB时,求CD的长度;(2)如图2,当AD=AC时,过点D作DE⊥AB交BC于点E,求CE的长度;(3)如图3,在点D的运动过程中,连接CD,当△ACD为等腰三⾓形时,直接写出AD 的长度.8.(2019秋?泰兴市期末)已知:如图,在△ABC中,∠ACB=90°,AC=BC=4,D是AB的中点,点E是射线CB上的动点,连接DE,DF⊥DE交射线AC于点F.(1)若点E在线段CB上.①求证:AF=CE.②连接EF,试⽤等式表⽰AF、EB、EF这三条线段的数量关系,并说明理由.(2)当EB=3时,求EF的长.【题组三】9.(2019秋?镇江期末)△ABC和△ADE都是等腰直⾓三⾓形,∠BAC=∠DAE=90°.(1)如图1,点D、E分别在AB、AC 上,则BD、CE满⾜怎样的数量关系和位置关系?(直接写出答案)(2)如图2,点D在△ABC内部,点E在△ABC外部,连结BD、CE,则BD、CE满⾜怎样的数量关系和位置关系?请说明理由.(3)如图3,点D、E都在△ABC外部,连结BD、CE、CD、EB,BD与CE相交于H 点.已知AB=4,AD=2,设CD2=x,EB2=y,求y与x之间的函数关系式.10.(2019秋?射阳县期末)在△ABC中,AB、AC边的垂直平分线分别交BC边于点M、N.(1)如图①,若∠BAC=110°,则∠MAN=°,若△AMN的周长为9,则BC =.(2)如图②,若∠BAC=135°,求证:BM2+CN2=MN2;(3)如图③,∠ABC的平分线BP和AC边的垂直平分线相交于点P,过点P作PH垂直BA的延长线于点H.若AB=5,CB=12,求AH的长.11.(2019秋?溧⽔区期末)通过对下⾯数学模型的研究学习,解决下列问题:【模型呈现】(1)如图1,∠BAD=90°,AB=AD,过点B作BC⊥AC于点C,过点D作DE⊥AC 于点E.由∠1+∠2=∠2+∠D=90°,得∠1=∠D.⼜∠ACB=∠AED=90°,可以推理得到△ABC≌△DAE.进⽽得到AC=,BC=.我们把这个数学模型称为“K 字”模型或“⼀线三等⾓”模型;【模型应⽤】(2)①如图2,∠BAD=∠CAE=90°,AB=AD,AC=AE,连接BC,DE,且BC⊥AF于点F,DE与直线AF交于点G.求证:点G是DE的中点;②如图3,在平⾯直⾓坐标系xOy中,点A的坐标为(2,4),点B为平⾯内任⼀点.若△AOB是以OA为斜边的等腰直⾓三⾓形,请直接写出点B的坐标.12.(2019?邗江区校级⼀模)阅读下⾯材料:⼩聪遇到这样⼀个有关⾓平分线的问题:如图1,在△ABC中,∠A=2∠B,CD平分∠ACB,AD=2.4,AC=3.6,求BC得长.⼩聪思考:因为CD平分∠ACB,所以可在BC边上取点E,使EC=AC,连接DE.这样很容易得到△DEC≌△DAC,经过推理能使问题得到解决(如图2).请完成:(1)求证:△BDE是等腰三⾓形(2)求BC的长为多少?(3)参考⼩聪思考问题的⽅法,解决问题:如图3,已知△ABC中,AB=AC,∠A=20°,BD平分∠ABC,BD,BC,求AD 的长.【题组四】13.(2019?⿎楼区⼆模)提出问题:⽤⼀张等边三⾓形纸⽚剪⼀个直⾓边长分别为2cm和3cm的直⾓三⾓形纸⽚,等边三⾓形纸⽚的边最⼩值是多少?探究思考:⼏位同学画出了以下情况,其中∠C=90°,BC=2cm,△ADE为等边三⾓形.(1)同学们对图1,图2中的等边三⾓形展开了讨论:①图⼀中AD的长度图②中AD的长度(填“>”,“<”或“=”)②等边三⾓形ADE经过图形变化.AD可以更⼩.请描述图形变化的过程.(2)有同学画出了图3,但⽼师指出这种情况不存在,请说明理由.(3)在图4中画出边长最⼩的等边三⾓形,并写出它的边长.经验运⽤:(4)⽤⼀张等边三⾓形纸⽚剪⼀个直⾓边长为1cm和3cm的直⾓三⾓形纸⽚,等边三⾓形纸⽚的边长最⼩是多少?画出⽰意图并写出这个最⼩值.14.(2019?南京⼆模)【概念提出】如图①,若正△DEF的三个顶点分别在正△ABC的边AB、BC、AC上,则我们称△DEF 是正△ABC的内接正三⾓形.(1)求证:△ADF≌△BED;【问题解决】利⽤直尺和圆规作正三⾓形的内接正三⾓形(保留作图痕迹,不写作法).(2)如图②,正△ABC的边长为a,作正△ABC的内接正△DEF,使△DEF的边长最短,并说明理由;(3)如图③,作正△ABC的内接正△DEF,使FD⊥AB.15.(2020?河南⼀模)【问题提出】在△ABC中,AB=AC≠BC,点D和点A在直线BC的同侧,BD=BC,∠BAC=α,∠DBC=β,且α+β=120°,连接AD,求∠ADB的度数.(不必解答)【特例探究】⼩聪先从特殊问题开始研究,当α=90°,β=30°时,利⽤轴对称知识,以AB为对称轴构造△ABD的轴对称图形△ABD′,连接CD′(如图2),然后利⽤α=90°,β=30°以及等边三⾓形等相关知识便可解决这个问题.请结合⼩聪研究问题的过程和思路,在这种特殊情况下填空:△D′BC的形状是三⾓形;∠ADB的度数为.【问题解决】在原问题中,当∠DBC<∠ABC(如图1)时,请计算∠ADB的度数;【拓展应⽤】在原问题中,过点A作直线AE⊥BD,交直线BD于E,其他条件不变若BC=7,AD=2.请直接写出线段BE的长为.16.(2019?亭湖区⼆模)【阅读材料】⼩明遇到这样⼀个问题:如图1,点P在等边三⾓形ABC内,且∠APC=150°,P A=3,PC=4,求PB的长.⼩明发现,以AP为边作等边三⾓形APD,连接BD,得到△ABD;由等边三⾓形的性质,可证△ACP≌△ABD,得PC=BD;由已知∠APC=150°,可知∠PDB的⼤⼩,进⽽可求得PB的长.(1)请回答:在图1中,∠PDB=°,PB=.【问题解决】(2)参考⼩明思考问题的⽅法,解决下⾯问题:如图2,△ABC中,∠ACB=90°,AC=BC,点P在△ABC内,且P A=1,PB,PC=2,求AB的长.【灵活运⽤】(3)如图3,在Rt△ABC中,∠ACB=90°,∠BAC=α,且tanα,点P在△ABC 外,且PB=3,PC=1,直接写出P A长的最⼤值.【题组五】17.(2019秋?海安市期末)(1)如图①,⼩明同学作出△ABC两条⾓平分线AD,BE得到交点I,就指出若连接CI,则CI平分∠ACB,你觉得有道理吗?为什么?(2)如图②,Rt△ABC中,AC=5,AC=12,AB=13,△ABC的⾓平分线CD上有⼀点I,设点I到边AB的距离为d.(d为正实数)⼩季、⼩何同学经过探究,有以下发现:⼩季发现:d的最⼤值为.⼩何发现:当d=2时,连接AI,则AI平分∠BAC.请分别判断⼩季、⼩何的发现是否正确?并说明理由.18.(2019秋?常熟市期中)如图,在△ABC中,AB=AC,∠BAC=80°,点D为△ABC 内⼀点,∠ABD=∠ACD=20°,E 为BD延长线上的⼀点,且AB=AE.(1)求∠BAD的度数;(2)求证:DE平分∠ADC;(3)请判断AD,BD,DE之间的数量关系,并说明理由.19.(2019秋?常熟市期中)如图,在平⾯直⾓坐标系中,已知点A(8,0),点C(0,6),点B在x轴负半轴上,且AB=AC.(1)求点B的坐标;(2)如图②,若点E为边AC的中点,动点M从点B出发以每秒2个单位长度的速度沿线段BA向点A匀速运动,设点M运动的时间为t(秒);①若△OME的⾯积为2,求t的值;②如图③,在点M运动的过程中,△OME能否成为直⾓三⾓形?若能,求出此时t的值,并写出相应的点M的坐标;若不能,请说明理由.20.(2019秋?崇川区期末)已知△ABC中,AB=AC.(1)如图1,在△ADE中,AD=AE,连接BD、CE,若∠DAE=∠BAC,求证:BD=CD;(2)如图2,在△ADE中,AD=AE,连接BE、CE,若∠DAE=∠BAC=60°,CE⊥AD于点F,AE=4,,求BE的长;(3)如图3,在△BCD中,∠CBD=∠CDB=45°,连接AD,若∠CAB=45°,求的值.【题组六】21.(2018秋?崇川区校级期末)如图,锐⾓△ABC中,AB=AC,点D是边BC上的⼀点,以AD为边作△ADE,使AE=AD,∠EAD=∠BAC.(1)过点E作EF∥DC交AB于点F,连接CF(如图1),①请直接写出∠EAB与∠DAC的数量关系;②试判断四边形CDEF的形状,并证明;(2)若∠BAC=60°,过点C作CF∥DE交AB于点F,连接EF(如图2),那么(1)②中的结论是否仍然成⽴?若成⽴,请给出证明;若不成⽴,请说明理由.22.(2019秋?淮阴区期末)A,B,C,D是长⽅形纸⽚的四个顶点,点E、F、H分别是边AB、BC、AD上的三点,连结EF、FH.(1)将长⽅形纸⽚ABCD按图①所⽰的⽅式折叠,FE、FH为折痕,点B、C、D折叠后的对应点分别为B'、C'、D',点B'在FC'上,则∠EFH的度数为;(2)将长⽅形纸⽚ABCD按图②所⽰的⽅式折叠,FE、FH为折痕,点B、C、D折叠后的对应点分别为B'、C'、D',若∠B'FC'=18°,求∠EFH的度数;(3)将长⽅形纸⽚ABCD按图③所⽰的⽅式折叠,FE、FH为折痕,点B、C、D折叠后的对应点分别为B'、C'、D',若∠EFH =m°,求∠B'FC'的度数为.23.(2019秋?丹阳市期末)如图,已知△ABC中,∠ACB=90°,AC=4,BC=3,点M、N分别是边AC、AB上的动点,连接MN,将△AMN沿MN所在直线翻折,翻折后点A 的对应点为A′.(1)如图1,若点A′恰好落在边AB上,且AN AC,求AM的长;(2)如图2,若点A′恰好落在边BC上,且A′N∥AC.①试判断四边形AMA′N的形状并说明理由;②求AM、MN的长;(3)如图3,设线段NM、BC的延长线交于点P,当且时,求CP的长.24.(2020春?⿎楼区校级⽉考)如图,正⽅形ABCD 的边长为4,点E,F分别在边AB,AD上,且∠ECF=45°,CF的延长线交BA的延长线于点G,CE的延长线交DA的延长线于点H,连接AC,EF,GH.(1)填空:∠AHC∠ACG;(填“>”或“<”或“=”)(2)线段AC,AG,AH什么关系?请说明理由;(3)设AE=m,请直接写出使△CGH是等腰三⾓形的m值.参考答案【真题再现】1.(2019年宿迁中考第28题)如图①,在钝⾓△ABC中,∠ABC=30°,AC=4,点D为边AB中点,点E为边BC中点,将△BDE绕点B逆时针⽅向旋转α度(0≤α≤180).(1)如图②,当0<α<180时,连接AD、CE.求证:△BDA∽△BEC;(2)如图③,直线CE、AD交于点G.在旋转过程中,∠AGC的⼤⼩是否发⽣变化?如变化,请说明理由;如不变,请求出这个⾓的度数;(3)将△BDE从图①位置绕点B逆时针⽅向旋转180°,求点G的运动路程.【分析】(1)如图①利⽤三⾓形的中位线定理,推出DE∥AC,可得,在图②中,利⽤两边成⽐例夹⾓相等证明三⾓形细相似即可.(2)利⽤相似三⾓形的性质证明即可.(3)点G的运动路程,是图③﹣1中的的长的两倍,求出圆⼼⾓,半径,利⽤弧长公式计算即可.【解析】(1)如图②中,由图①,∵点D为边AB中点,点E为边BC中点,∴DE∥AC,∴,∴,∵∠DBE=∠ABC,∴∠DBA=∠EBC,∴△DBA∽△EBC.(2)∠AGC的⼤⼩不发⽣变化,∠AGC=30°.理由:如图③中,设AB交CG于点O.∵△DBA∽△EBC,∴∠DAB=∠ECB,∵∠DAB+∠AOG+∠G=180°,∠ECB+∠COB+∠ABC=180°,∠AOG=∠COB,∴∠G=∠ABC=30°.(3)如图③﹣1中.设AB的中点为K,连接DK,以AC为边向左边等边△ACO,连接OG,OB.以O为圆⼼,OA为半径作⊙O,∵∠AGC=30°,∠AOC=60°,∴∠AGC∠AOC,∴点G在⊙O上运动,以B为圆⼼,BD为半径作⊙B,当直线与⊙B相切时,BD⊥AD,∴∠ADB=90°,∵BK=AK,∴DK=BK=AK,∵BD=BK,∴BD=DK=BK,∴△BDK是等边三⾓形,∴∠DBK=60°,∴∠DAB=30°,∴∠BOG=2∠DAB=60°,∴的长,观察图象可知,点G的运动路程是的长的两倍.点评:本题属于相似形综合题,考查了相似三⾓形的判定和性质,弧长公式,等边三⾓形的判定和性质,圆周⾓定理等知识,解题的关键是正确寻找相似三⾓形解决问题,学会正确寻找点的运动轨迹,属于中考压轴题.2.(2019年连云港中考第27题)问题情境:如图1,在正⽅形ABCD中,E为边BC上⼀点(不与点B、C重合),垂直于AE的⼀条直线MN分别交AB、AE、CD于点M、P、N.判断线段DN、MB、EC之间的数量关系,并说明理由.问题探究:在“问题情境”的基础上.(1)如图2,若垂⾜P恰好为AE的中点,连接BD,交MN于点Q,连接EQ,并延长交边AD于点F.求∠AEF的度数;(2)如图3,当垂⾜P在正⽅形ABCD的对⾓线BD上时,连接AN,将△APN沿着AN 翻折,点P落在点P'处,若正⽅形ABCD 的边长为4,AD的中点为S,求P'S的最⼩值.问题拓展:如图4,在边长为4的正⽅形ABCD中,点M、N分别为边AB、CD上的点,将正⽅形ABCD沿着MN翻折,使得BC的对应边B'C'恰好经过点A,C'N交AD于点F.分别过点A、F作AG⊥MN,FH⊥MN,垂⾜分别为G、H.若AG,请直接写出FH的长.【分析】问题情境:过点B作BF∥MN分别交AE、CD于点G、F,证出四边形MBFN 为平⾏四边形,得出NF=MB,证明△ABE≌△BCF得出BE=CF,即可得出结论;问题探究:(1)连接AQ,过点Q作HI∥AB,分别交AD、BC于点H、I,证出△DHQ 是等腰直⾓三⾓形,HD=HQ,AH=QI,证明Rt△AHQ≌Rt△QIE得出∠AQH=∠QEI,得出△AQE是等腰直⾓三⾓形,得出∠EAQ=∠AEQ=45°,即可得出结论;(2)连接AC交BD于点O,则△APN的直⾓顶点P在OB上运动,设点P与点B重合时,则点P′与点D重合;设点P与点O重合时,则点P′的落点为O′,由等腰直⾓三⾓形的性质得出∠ODA=∠ADO′=45°,当点P在线段BO上运动时,过点P作PG ⊥CD 于点G,过点P′作P′H⊥CD交CD延长线于点H,连接PC,证明△APB≌△CPB得出∠BAP=∠BCP,证明Rt△PGN≌Rt△NHP'得出PG=NH,GN=P'H,由正⽅形的性质得出∠PDG=45°,易得出PG=GD,得出GN=DH,DH=P'H,得出∠P'DH =45°,故∠P'DA=45°,点P'在线段DO'上运动;过点S作SK⊥DO',垂⾜为K,即可得出结果;问题拓展:延长AG交BC于E,交DC的延长线于Q,延长FH交CD于P,则EG=AG,PH=FH,得出AE=5,由勾股定理得出BE3,得出CE=BC﹣BE=1,证明△ABE∽△QCE,得出QE AE,AQ=AE+QE,证明△AGM∽△ABE,得。
中考数学 精讲篇 中考压轴题重难点突破六 几何综合探究题 类型二
∴∠AEB=90°, ∵AE2+BE2=AB2,且 DE=2,AD=BE, ∴(AD+2)2+AD2=(2 5)2+(2 5)2. 解得 AD= 19-1 或 AD=- 19-1(舍去); 如解图 3,A,D,E 三点在同一直线上, 且点 D 在 AE 的延长线上, ∵∠BCF=∠ACE=90°-∠ACF,BC=AC,CF=CE, ∴△BCF≌△ACE(SAS),∴∠BFC=∠AEC,
(2)证明:在等边△ABC 中,AC=BC,∠ACB=60°, 由旋转可得 CP=CQ,∠PCQ=60°, ∴∠ACB=∠PCQ, ∴∠ACP+∠PCB=∠BCQ+∠PCB,即∠ACP=∠BCQ,
∴△ACP≌△BCQ(SAS), ∴AP=BQ,∠CBQ=∠CAP=90°, ∴BQ=AP=AC=BC,
②如图 2,过 A 点作 AM⊥GD,垂足为 M,交 FE 于点 N, ∵四边形 DEFG 是正方形, ∴DE=GD=GF=EF=2,由①得△AGD≌△CED, ∴AG=CE,AD=CD.
又∵CE=CD,∴AG=AD=CD=4, 1
∵AM⊥GD,∴GM=2GD=1,
又∵∠FGD=∠F=90°, ∴四边形 GMNF 是矩形, ∴MN=GF=2,在 Rt△AGM 中,AM= AG2-GM2= 42-12= 15,
∵∠CFE=∠CED=45°, ∴∠BFC+∠CFE=∠AEC+∠CED=180°, ∴点 B,F,E 在同一条直线上. ∵AC=BC,∠ACD=∠BCE=90°+∠ACE,CD=CE,∴△ACD≌△BCE(SAS), ∴AD=BE,∵AE2+BE2=AB2, ∴(AD-2)2+AD2=(2 5)2+(2 5)2. 解得 AD= 19+1 或 AD=- 19+1(舍去). 综上所述,AD 的长为 19-1 或 19+1.
全国各地中数学考试题压轴题精选讲座
2008年全国各地中数学考试题压轴题精选讲座“他山之石可以攻玉”【前言】新课改后的中考数学压轴题已从传统的考察知识点多、难度大、复杂程度高的综合题型,逐步转向数形结合、动态几何、动手操作、实验探究等方向发展。
这些压轴题题型繁多、题意创新,目的是考察学生的分析问题、解决问题的能力,内容包括空间观念、应用意识、推理能力等。
从数学思想的层面上讲:(1)运动观点;(2)方程思想;(3)数形结合思想;(4)分类思想;(5)转化思想等。
但纵观全国各省、市的中考数学试题,它的压轴题均是借鉴于上年各地的中考试题演变而来。
所以,研究上年各地的中考试题,就能找到今年中考数学试题的热点的形成和命题的动向,它有利于我们教师在教学中研究对策,把握方向。
只的这样,学生能力得以的培养,解题方法、技巧得以掌握,学生才能顺利地解答未来中考的压轴题。
2008年全国各地中考试题压轴题精选讲座一几何与函数问题【知识纵横】客观世界中事物总是相互关联、相互制约的。
几何与函数问题就是从量和形的侧面去描述客观世界的运动变化、相互联系和相互制约性。
函数与几何的综合题,对考查学生的双基和探索能力有一定的代表性,通过几何图形的两个变量之间的关系建立函数关系式,进一步研究几何的性质,沟通函数与几何的有机联系,可以培养学生的数形结合的思想方法。
【典型例题】【例1】(上海市)已知24AB AD ==,,90DAB ∠=o,AD BC ∥(如图).E 是射线BC 上的动点(点E 与点B 不重合),M 是线段DE 的中点. (1)设BE x =,ABM △的面积为y ,求y 关于x 的函数解析式,并写出函数的定义域; (2)如果以线段AB 为直径的圆与以线段DE 为直径的圆外切,求线段BE 的长; (3)联结BD ,交线段AM 于点N ,如果以A N D ,,为顶点的三角形与BME △相似,求 线段BE 的长.【思路点拨】(1)取AB 中点H ,联结MH ;(2)先求出 DE; (3)分二种情况讨论。
初中数学:2024年江苏省各地市中考数学一模压轴题精选
2024年江苏省各地市中考数学一模压轴题精选第一部分代数部分1.(2024·江苏省南通市·一模)已知实数a,b满足4a2+√ 7b=n,b2+2√ 7a=n,b≠2a,其中n为自然数,则n的最小值是( )A.4B.5C.6D.72.(2024·江苏省无锡市·一模)已知x、y、z满足等式x5+y20=z4,则下列结论不正确的是( )A.若x=y,则x=zB.若z=4x,则y=4xC.若x<z,则y<zD.若x<y,则x<z3.(2024·江苏省南京市·一模)若A(−4,m−2),B(−2,m),C(2,m)三点在同一函数图像上,则该函数图像可能是( )A. B. C. D.4.(2024·江苏省盐城市·一模)在平面直角坐标系中,M(x1,y1)、N(x2,y2)为抛物线y=ax2+bx+c(a>0)上任意两点,其中x1<x2,设抛物线的对称轴为x=t,若对于x1+x2>4,都有y1<y2,则t的取值范围是( ) A.t<1 B.t≤1 C.t<2 D.t≤25.(2024·江苏省扬州市·一模)对于函数y=x2+1x的图像和性质,下列说法正确的有:①图像与x轴的交点坐标为(−1,0);②图像与y轴没有交点;③图像不经过第四象限;④当x>0时,y随着x的增大而增大.( ) A.①② B.①②③ C.①②③④ D.①②④6.(2024·江苏省泰州市·一模)已知二次函数y =(x −m )2−1(m 为常数),如果当自变量x 分别取−3,−1,1时,所对应的y 值只有一个小于0,则m 的值可能是( )A.−2B.−1C.0D.27.(2024·江苏省无锡市·一模)已知二次函数y =ax 2+bx +c(a <0)图象的对称轴为直线x =t ,该二次函数图象上存在两点A(x 1,y 1),B(x 2,y 2),若对于1<x 1<2<x 2<3,始终有y 1<y 2,则t 的取值范围是( )A.t ≥3B.t ≥52C.t ≥2D.c <18.(2024·江苏省南通市·一模)定义:在平面直角坐标系xOy 中,若经过x 轴上一点P 的直线l 与双曲线m 相交于M ,N 两点(点M 在点N 的左侧),则把PN PM 的值称为直线l 和双曲线m 的“适配比”.已知经过点P(−3,0)的直线y =x +b 与双曲线y =k x(k <0)的“适配比”不大于2,则k 的取值范围为( ) A.−2≤k <−1 B.−94<k ≤−2 C.−52<k ≤−2 D.−94≤k ≤−2 9.(2024·江苏省连云港市·一模)如图,在平面直角坐标系xOy 中,点A(x 1,y 1),点B(x 2,y 2)在双曲线y =3x上,且0<x 1<x 2,分别过点A ,点B 作x 轴的平行线,与双曲线y =6x 分别交于点C ,点D.若△AOB 的面积为94,则AC BD 的值为( ) A. 23B. √ 32C. 12D. √ 3310.(2024·江苏省苏州市·一模)如图①,点A ,B 是⊙O 上两定点,圆上一动点P 从圆上一定点B 出发,沿逆时针方向匀速运动到点A ,运动时间是x (s ),线段AP 的长度是y (cm ).图②是y 随x 变化的关系图象,则图中m 的值是( )A. 92B.4√ 2C. 143D.511.(2024·江苏省无锡市·一模)在平面直角坐标系中,已知点A(−1,2),点B(−2,0),点C(2,0),将△ABC 绕点B 顺时针旋转某个角度后,点A 落在y 轴的负半轴上,此时点C 恰好落在反比例函数y =k x (k 为常数,且k ≠0)的图象上,则k 的值为______. 12.(2024·江苏省泰州市·一模)一次函数y = kx + 2 − k 的图像经过点A (m, 3)和点B (n, 1),若km < 0,则n 的取值范围为 .13.(2024·江苏省扬州市·一模)若关于x 的方程x 2 − (m + 3)x + m + 6 = 0的两根x 1,x 2满足1 < x 1 ≤ 2 < x 2,则二次函数y = x 2 − (m + 3)x + m + 6的顶点纵坐标的最大值是_____.14.(2024·江苏省无锡市·一模)已知某二次函数的图象开口向上,与x 轴的交点坐标为(−2,0)和(6,0),点P (m + 4, n 1)和点Q (3m − 2, n 2)都在函数图象上,若n 1 < n 2,则m 的取值范围为_____.15.(2024·江苏省连云港市·一模)在平面直角坐标系中,抛物线y=ax2+bx+c(a≠0)与x轴的一个交点坐标[2,0],对称轴为直线x=1,其部分图象如图所示,下列结论:①抛物线过原点;②a−b+c<0;③2a+ b+c=0;④抛物线的顶点坐标为(1,b2);⑤当x<1时,y随x的增大而增大.其中结论正确的是______.16.(2024·江苏省盐城市·一模)如图,点A在反比例函数y=1x(x>0)的图像上,点B在反比例函数y=−4x (x<0)的图像上,OA⊥OB,连结AB交y=1x(x>0)的图像于点C,若C是AB的中点,则▵AOB的面积是___.17.(2024·江苏省徐州市·一模)如图,在平面直角坐标系中,点A(4,3)、B(5,2),点C在x轴上运动,点D在直线y=x上运动,则四边形ABCD周长的最小值是_______.18.(2024·江苏省苏州市·一模)如图,在平面直角坐标系中,将直线y=−3x向上平移3个单位,与y轴、x轴分别交于点A、B,以线段AB为斜边在第一象限内作等腰直角三角形ABC.若反比例函数y=k(x>0)的图象x经过点C,则k的值为.19.(2024·江苏省南通市·一模)定义:若一个函数的图象上存在横、纵坐标之和为零的点,则称该点为这个函数图像的“平衡点”.例如,点(−1,1)是函数y=x+2的图像的“平衡点”.,③y=−x2+2x+1,④y=x2+x+7的图象上,存在“平衡点”的(1)在函数①y=−x+3,②y=3x函数是________;(填序号)(x>0)与y=2x+b的图象的“平衡点”分别为点A、B,过点A作AC⊥y轴,垂足为C.当(2)设函数y=−4x▵ABC为等腰三角形时,求b的值;(3)若将函数y=x2+2x的图像绕y轴上一点M旋转180∘,M在(0,−1)下方,旋转后的图象上恰有1个“平衡点”时,求M的坐标.20.(2024·江苏省徐州市·一模)若关于x的函数y,当t−1≤x≤t+1时,函数y的最大值为M,最小值为N,,我们不妨把函数h称之为函数y的“合体函数”.令函数h=M−N2(1)①若函数y=−2024x,当t=1时,则函数y的“合体函数”h=;②若函数y=kx+5(k≠0,k为常数),求函数y的“合体函数”h的表达式;(x≥2),求函数y的“合体函数”h的最大值.(2)若函数y=1x21.(2024·江苏省南京市·一模)已知二次函数y=ax+bx+2(a<0).(1)求证:该函数的图像与x轴总有两个公共点;(2)若该函数图像与x轴的两个交点坐标分别为(x,0),(x,0),且x=−2x,求证a+b=0;(3)若A(k,y1),B(6,y2),C(k+4,y1)都在该二次函数的图像上,且2<y2<y1,结合函数的图像,直接写出k 的取值范围.22.(2024·江苏省无锡市·一模)在平面直角坐标系中,二次函数y=mx2+mx−6m的图象与x轴交于A、B(A在B左侧),与y轴交于C,一次函数y=2x+n的图象经过A、C两点.(1)分别求出m、n的值;(2)在二次函数图象上是否存在点P,且P满足∠POC+∠BCO=45∘若存在,请求出点P的坐标;若不存在,请说明理由.23.(2024·江苏省无锡市·一模)在平面直角坐标系中,二次函数y=mx2−3mx−10m(m为常数,且m<0)的图象与x轴交于A、B两点(点A在点B左侧),与y轴交于点C.过点D(1,0)且平行于y轴的直线l交该二次函数图象于点E,交线段BC于点F.(1)求点A和点B的坐标;(2)求证:∠ECF=2∠DBF;(3)若点B关于CE的对称点B′恰好落在直线l上,求此时二次函数的表达式.24.(2024·江苏省盐城市·一模)我们约定:若关于x的二次函数y1=ax2+bx+c与y2=cx2−bx+a,则称函数y1与函数y2互为“共赢”函数.根据该约定,解答下列问题:(1)若关于x的二次函数y1=−3x2+kx+2与y2=mx2+x+n互为“共赢”函数,则k=;m=;n=.(2)对于任意非零实数r、s,点P(r,t)与点Q(s,t)(r≠s)始终在关于x的函数y1=x2+2rx+s的图像上运动,函数y2与y1互为“共赢”函数.①求函数y2的图像的对称轴;②函数y2的图像与直线y=−x+1交于A、B两点,且AB长为√ 2,求y2的函数表达式;3(3)在同一平面直角坐标系中,若关于x的二次函数y1=ax2+bx+c与它的“共赢”函数y2的图像顶点分别为点A、点B.若函数y1,y2的图像交于不同两点C,D,且四边形ACBD为菱形,∠CAD=60∘,请求出该菱形面积的取值范围.25.(2024·江苏省泰州市·一模)如图所示,在平面直角坐标系xOy中,点A(0,k)是y轴正半轴上一点,点B是反比例函数y=k图像上的一个动点,连接AB,以AB为一边作正方形ABCD,使点D在第一象限.设点B的横坐标x为m(m<0).(1)若k=2,m=−3,求点B和点D的坐标;2(2)若k=2,点D落在反比例函数图像上,求m的值;(3)若点D落在反比例函数图像上,设点D的横坐标为n(n>0),试判断m+n是否为定值?并说明理由.26.(2024·江苏省苏州市·一模)如图1,在平面直角坐标系中,直线y=−5x+5与x轴,y轴分别交于A、C两点,抛物线y=x2+bx+c经过A、C两点,与x轴的另一交点为B.(1)求抛物线解析式;,求此(2)若点M为x轴下方抛物线上一动点,当点M运动到某一位置时,▵ABM的面积等于▵ABC面积的35时点M的坐标;(3)如图2,以B为圆心,2为半径的⊙B与x轴交于E、F两点(F在E右侧),若P点是⊙B上一动点,连接PA,以PA为腰作等腰Rt△PAD,使∠PAD=90∘(P、A、D三点为逆时针顺序),连接FD.求FD长度的取值范围.27.(2024·江苏省连云港市·一模)如图,已知抛物线y=−1x2+bx+c与x轴交于A、B(4,0)两点,与y轴交于2点C(0,2).点P为第一象限抛物线上的点,连接CA,CB,PB,PC.(1)直接写出结果:b=______;c=______;点A的坐标为______;tan∠ABC=______;(2)如图1,当∠PCB=2∠OCA时,求点P的坐标;(3)如图2,点D在y轴负半轴上,OD=OB,点Q为抛物线上一点,∠QBD=90°.点E,F分别为△BDQ的边DQ,DB上的动点,且QE=DF,求BE+QF的最小值.28.(2024·江苏省泰州市·一模)综合与实践 【研究素材】二次函数:y =x −1的图像与y 轴交于点C ,与x 轴分别交于A ,B 两点.小亮对素材进行了深入的研究,提出研究思路,并布置了相关任务,请你根据小亮的研究完成下列任务.(为了方便研究,规定点A 在点B 的右边)【探究1】确定【素材】中∠ACB 的度数【任务1】证明∶∠ACB =90∘;【探究2】改变相交的对象研究若二次函数y =x 2−1的图像与y 轴交于点C ,与一次函数y =x +n 的图像分别交于A ,B 两点.【任务2】若“∠ACB =90°”成立,求n 的值; 【探究3】改变表达式的系数研究 若二次函数.y =ax +c(a >0,c <0)的的图像与y轴交于点C ,与一次函数y =kx +n (k ≠0)的图像分别交于A ,B 两点. 【任务3】若“∠ACB =90∘”成立,当ac =−2时,求n 与c 之间的关系式;【任务4】当n =0时,若直线BC 与x 轴交于点D ,连结AD 交y 轴于点E ,试比较S ▵AOE 与S ▵DOE 的大小,并说明理由.29.(2024·江苏省南通市·一模)在二次函数y=x2的图象上分别取三个点P,A,B,其中,点P(p,−p)在第二象限内,A,B两点横坐标分别为a,b,且满足a≤p≤b.(1)求p的值;(2)记a≤x≤b时二次函数y=x2的最大值为y1,最小值为y2.若b−a=3,求y1−y2的取值范围;(3)连接PA,PB,AB.当PA⊥PB时,作PH⊥AB,垂足为点H,PH是否存在最大值?若存在,求PH的最大值;若不存在,请说明理由.30.(2024·江苏省扬州市·一模)跳台滑雪是冬季奥运会的比赛项目之一.如图,运动员通过助滑道后在点A处起跳,经空中飞行后落在着陆坡BC上的点P处,他在空中飞行的路线可以看作抛物线的一部分.这里OA表示起跳点A到地面OB的距离,OC表示着陆坡BC的高度,OB表示着陆坡底端B到点O的水平距离.建立如图所示的平面直角坐标系,从起跳到着陆的过程中,运动员到地面OB的竖直距离y(单位:m)与他在水平方向上x2+bx+c.已知OA=70m,OC=60m,落点P到OC的水移动的距离x(单位:m)近似满足函数关系y=−112平距离是30m,到地面OB的竖直高度是37.5m.(1)求y与x的函数表达式;(2)进一步研究发现,运动员在空中飞行过程中,其水平方向移动的距离x(m)与飞行时间t(s)具备一次函数关系,当运动员在起跳点腾空时,t=0,x=0;当他在点P着陆时,飞行时间为5s;①求x与t的函数表达式;②当运动员与着陆坡BC在竖直方向上的距离达到最大时,求出此时他飞行时间t的值.第二部分几何部分31.(2024·江苏省南通市·一模)如图,P为正方形ABCD内一点,∠APD=∠ADP=75∘,延长DP交BC于点E.若EP=√ 2,则正方形的边长为( )A.√ 6B.2√ 2C.√ 2+1D.√ 3+132.(2024·江苏省无锡市·一模)如图,正方形ABCD的四个顶点分别在四条平行线l1、l2、l3、l4上,这四条平行线中相邻两条之间的距离依次为a、b、c.若32a+b=1,当a变化时,正方形ABCD面积的最小值为( )A. 45B. 34C. 89D. 1233.(2024·江苏省苏州市·一模)如图,正方形ABCD 的面积为3,点E 在边CD 上,且CE = 1,∠ABE 的平分线交AD 于点F ,点M ,N 分别是BE ,BF 的中点,则MN 的长为( )A. √ 62B. √ 32C.2−√ 3D. √ 6−√ 2234.(2024·江苏省南京市·一模)如图,在边长为2的正方形ABCD 中,E 是AD 边上一点,将▵ABE 沿BE 翻折,得到▵A ′BE.若▵A′BC 为等边三角形,则AE 的长为( )A.4−2√ 3B.√ 3−1C.6−3√ 3D.4√ 3−635.(2024·江苏省徐州市·一模)如图,已知矩形ABCD 的边AB =√ 3,BC =3,E 为边CD 上一点.将▵BCE 沿BE 所在的直线翻折,点C 恰好落在AD 边上的点F 处,过点F 作FM ⊥BE ,垂足为点M ,取AF 的中点N ,连接MN ,则MN 的长为( )A.3B.√ 2C.√ 6−1D.√ 336.(2024·江苏省无锡市·一模)如图,Rt ▵ABC 中,∠C =90∘,∠A =30∘,AC =9,D 为AB 中点,以DB 为对角线长作边长为3的菱形DFBE ,现将菱形DFBE 绕点D 顺时针旋转一周,旋转过程中当BF 所在直线经过点A 时,点A 到菱形对角线交点O 之间的距离为( )A. 43√21B. 32√3C. 43√21或32√3D. 32√21或32√337.(2024·江苏省泰州市·一模)用四个全等的直角三角形围成一个如图1大正方形,中间是一个小正方形,这个图形是我国三国时期赵爽在注解《周髀算经》时给出的,人们称它为“赵爽弦图”,现用如图2的两种直角三角形各两个围成一个如图3的四边形ABCD ,若知道图3中阴影部分的面积,则一定能求出图3中( )A.四边形ABCD 的面积B.四边形EFGH 的面积C.▵ADH 的面积D.▵CDG 的面积38.(2024·江苏省无锡市·一模)如图,四边形ABCD 是边长为4的菱形,∠A =60∘,将▵ABD 沿着对角线BD 平移到▵A′B′D′,在移动过程中,A′B′与AD 交于点E ,连接D′E 、CE 、CD′.则下列结论:①A′E =BB′;②当D′E ⊥CE 时,∠A′D′E −∠CEB′=30∘;③当∠ED′C =60∘时,BB′的长为√ 5;④▵CED′的面积最大值为5√ 3.其中正确的为( )A.①③B.②③C.①②③D.①②④39.(2024·江苏省泰州市·一模)在▵ABC 中,∠C =90∘,∠B =60∘,D 为边AC 上的一点,若线段AB 上存在两个点到D 的距离等于12BC,则AD AB 的取值范围为 .40.(2024·江苏省苏州市·一模)如图,在平行四边形ABCD 中,AD =5,AB =6√ 2,∠D 是锐角,CE ⊥AD 于点E ,F 是CD 的中点,连接BF ,EF.若∠EFB =90∘,则CE 的长为 .41.(2024·江苏省连云港市·一模)如图,直线y=−3x+3与x轴交于点B,与y轴交于点A,以线段AB为边,在(k≠0)上,将正方形ABCD沿x轴负方向平移a个单位长度,第一象限内作正方形ABCD,点C落在双曲线y=kx(k≠0)上的点D1处,则a=.使点D恰好落在双曲线y=kx42.(2024·江苏省泰州市·一模)如图,将▱ABCD沿AD翻折得四边形AEFD,AB=6,BC=12,M、N分别是AB、DF的中点,则MN长的范围是.43.(2024·江苏省南通市·一模)如图,点A,B在反比例函数y=k(k>0)的图象上,AC⊥x轴,BD⊥x轴,垂x足C,D分别在x轴的正、负半轴上,CD=k,已知AB=2AC,E是AB的中点,且△BCE的面积是△ADE的面积的2倍,则k的值是.44.(2024·江苏省泰州市·一模)如图,在矩形ABCD中,AB=6,AD=12,E是线段AD上一动点,以E为直角顶点在EB的右侧作等腰三角形EBF,连接DF,设DF=t,当t为整数时,点F位置有个.45.(2024·江苏省无锡市·一模)如图,▱ABCD中,∠A=45∘,AB=3,AD=4,点E为AD上一点(端点除外),连接BE、CE,点A关于BE的对称点记为A′,当点A′恰好落在线段EC上时,此时EC=_____,AE=_____.46.(2024·江苏省南京市·一模)如图,将矩形ABCD绕点A旋转,使点B的对应点B′恰好落在BD上.若AB=5,BC=12,连接DD′,则DD′的长为__________.47.(2024·江苏省无锡市·一模)如图,Rt▵ABC中,∠ACB=90∘,tanA=2,AC=√ 5,以BC为直径作圆,圆心为O,过圆上一点D作直线AB的垂线,垂足为E,则AE+DE的最大值是________.48.(2024·江苏省南通市·一模)如图,在四边形ABCD中,AC⊥BD,AC+BD=10,点M和点N分别是BD和AC的中点,BA和CD的延长线交于点P,则▵PMN面积的最大值等于.49.(2024·江苏省无锡市·一模)如图,在矩形ABCD中,AB=3,将边AD翻折到AE,使点D的对应点E在边BC上;再将边DA翻折到DF,点A的对应点为F,连接DE、FA、FE.(1)若AD=5,则CE的长为______;(2)若点F为△ABE的内心,则AD的长为______.50.(2024·江苏省南通市·一模)如图1,P是正方形ABCD边BC上一点,线段AE与AD关于直线AP对称,连接EB 并延长交直线AP于点F,连接CF.(1)补全图形,求∠AFE的大小;(2)用等式表示线段CF,BE之间的数量关系,并证明;(3)连接CE,G是CE的中点,AB=2,若点P从点B运动到点C,直接写出DG的最大值.51.(2024·江苏省无锡市·一模)矩形ABCD中,AB=1,AD=2,点M是AD中点,点N从点B出发,沿BC边运动至点C停止,四边形MNB′A′与四边形MNBA关于直线MN对称,设BN=x,四边形MNB′A′与矩形ABCD重叠部分的面积记为S.(1)当点M、A′、C三点共线时,求x;(2)求S关于x的函数表达式.52.(2024·江苏省苏州市·一模)我们定义:有一组邻边相等且有一组对角互补的凸四边形叫做等补四边形.(1)如图1,▵ABC是等边三角形,在BC上任取一点D(B、C除外),连接AD,我们把▵ABD绕点A逆时针旋转60∘,则AB与AC重合,点D的对应点E.请根据给出的定义判断,四边形ADCE(选择是或不是)等补四边形.=8,求BD的长.(2)如图2,等补四边形ABCD中,AB=BC,∠ABC=∠ADC=90∘,若S四边形ABCD(3)如图3,四边形ABCD中,AB=BC,∠A+∠C=180∘,BD=4,求四边形ABCD面积的最大值.53.(2024·江苏省南京市·一模)几何问题中需建构模型去研究图形中元素之间的关系…在▵ABC中,P是BC上一点,点E在直线BC的上方,连接AP,EP,EC,探究下列问题:【认识模型】(1)如图①,▵APB∽▵CPE,①连接BE,求证:△PEB∽△PCA;②∠BEC与∠BAC满足的数量关系为____;【运用模型】(2)已知∠BAC=90∘,D是AB的中点,且▵APD∽▵CPE,①如图②,若P是BC的中点,连接DE,求证:DE//BC;②若∠B=30∘,BC=4,当点P在BC上运动时,点E的位置随点P的位置的变化而变化,直接写出AE的长的最小值.54.(2024·江苏省无锡市·一模)如图,等边▵ABC中,AB=4cm,点E在AB上,从A向B运动,运动速度为1cm/s;点F在BC上,从B向C运动,运动速度是v,两点同时出发,设运动时间为t(s),当一点到达终点时,另一点停止运动.连接CE、AF,交点为G.(1)若v=1cm/s,求∠FGC的度数;(2)在(1)的条件下,取AB中点P,N为BC上一动点,连接PN、GN,则PN+GN的最小值为______;(3)若v=0.5cm/s,求t为何值时,EC+2AF的值最小,并求出最小值是多少?55.(2024·江苏省盐城市·一模)综合与探究【特例感知】(1)如图1,E是正方形ABCD外一点,将线段AE绕点A顺时针旋转90∘得到AF,连接DE、BF.求证:DE=BF;【类比迁移】(2)如图2,在菱形ABCD中,AB=6,∠B=60∘,P是AB的中点,将线段PA、PD分别绕点P顺时针旋转90∘得到PE、PF,PF交BC于点G,连接CE、CF,求四边形CEGF的面积;【拓展提升】(3)如图3,在平行四边形ABCD中,AB=12,AD=10,∠B为锐角且满足sinB=4.P是射线BA上一动点,点5C、D同时绕点P顺时针旋转90∘得到点C′、D′,当△BC′D′为直角三角形时,直接写出BP的长.56.(2024·江苏省泰州市·一模)【定义呈现】有两个内角分别是它们对角的两倍的四边形叫做倍对角四边形,其中,这两个内角称为倍角.例如:如图1,在四边形ABCD中,∠A=2∠C,∠D=2∠B,那么我们就叫这个四边形是倍对角四边形,其中∠A,∠D称为倍角.【定义理解】如图1,四边形ABCD是倍对角四边形,且∠A,∠D是倍角.求∠B+∠C的度数;【拓展提升】如图2,四边形BDEC是倍对角四边形,且∠DEC,∠BDE是倍角,延长BD、CE交于点A.在BC下方作等边三角形▵BCF,延长FC、DE交于点G.若AB=AC,BC=2,FG=kAB,四边形BDEC的周长记为l.(1)用k的代数式表示l;(2)如图3,把题中的“AB=AC”条件舍去,其它条件不变.①求证:CE=EG;②探究l是否为定值.如果是定值,求这个定值,如果不是,请说明理由.k+157.(2024·江苏省扬州市·一模)如图①∼⑧是课本上的折纸活动.【重温旧知】上述活动,有的是为了折出特殊图形,如图①、③和⑧;有的是为了发现或证明定理,如图④和⑦;有的是计算角度,如图②;有的是计算长度,如图⑤和⑥.(1)图③中的▵ABC的形状是______;图④的活动发现了定理“____________”(注:填写定理完整的表述);图⑤中的BF的长是_______;【继续探索】(2)如图,将一个边长为4的正方形纸片ABCD折叠,使点A落在边BC上的点E处,点E不与B、C重合,MN为折痕.折叠后的梯形MNFE的面积是否存在最小值?若存在,请求出最小值;若不存在,请说明理由.58.(2024·江苏省连云港市·一模)【问题呈现】如图1,△ABC和△ADE都是等边三角形,连接BD,CE.求证:BD=CE.【类比探究】如图2,△ABC和△ADE都是等腰直角三角形,∠ABC=∠ADE=90°.连接BD,CE.请直接写出BDCE的值.【拓展提升】如图3,△ABC和△ADE都是直角三角形,∠ABC=∠ADE=90°,且ABBC =ADDE=34.连接BD,CE.(1)求BDCE的值;(2)延长CE交BD于点F,交AB于点G.求sin∠BFC的值.59.(2024·江苏省泰州市·一模)已知,点P是边长为a(a为常数)的正方形ABCD内部一动点,PE⊥AB于E,PF⊥BC于F,连结PD,EF,DE,DF,记▵PDE,▵PDF,▵PEF的面积分别为S1,S2,S3,令PE=x,PF=y.(1)如图1,点P在对角线AC上.①求S1+S2(用含a、x的代数式表示)②是否存在实数k,使S1+S2+kS3的值与P点在AC上的位置无关.若存在,请求出k的值;若不存在,请说明理由;(2)若xy =12,当点P在▵ABC内部(不含边界)时(如图2).①求x的取值范围;②试说明:S1+S2的值随着x的增大而增大.60.(2024·江苏省泰州市·一模)已知:在矩形ABCD中,AB=4,AD=8,点G是边AD的中点,连接BG.以点A为圆心、2为半径作⊙A,点E是⊙A上的一个动点,连接AE、BE.将线段EB绕点E逆时针旋转90∘得到线段EF,连接BF、GF、DF.知识回顾(1)如图1,当点E在直线AB的左侧时,试证明▵ABE∽▵GBF,并求出GF的长.(2)初步探索直接写出DF的最小值是,最大值是.(3)操作并思考如图2,当点E落在边AD上时,试猜想BG和DF有怎样的位置关系,并说明理由;(4)若点E到G、F之间的距离相等,请根据图1、图3两种情况,求DF的长.。
2023年各地中考几何压轴题汇编附详解
2023年各地中考几何压轴题汇编1.(2023·安徽)在Rt ABC △中.M 是斜边AB 的中点.将线段MA 绕点M 旋转至MD 位置.点D 在直线AB 外.连接,AD BD .(1)如图1.求ADB ∠的大小;(2)已知点D 和边AC 上的点E 满足,ME AD DE AB ⊥∥.(ⅰ)如图2.连接CD .求证:BD CD =;(ⅱ)如图3.连接BE .若8,6AC BC ==.求tan ABE ∠的值.2.(2023·北京)在ABC 中、()045B C αα∠=∠=︒<<︒.AM BC ⊥于点M .D 是线段MC 上的动点(不与点M .C 重合).将线段DM 绕点D 顺时针旋转2α得到线段DE .(1)如图1.当点E 在线段AC 上时.求证:D 是MC 的中点;(2)如图2.若在线段BM 上存在点F (不与点B .M 重合)满足DF DC =.连接AE .EF .直接写出AEF ∠的大小.并证明.3.(2023·福建)如图1.在ABC 中.90,,BAC AB AC D ∠=︒=是AB 边上不与,A B 重合的一个定点.AO BC ⊥于点O .交CD 于点E .DF 是由线段DC 绕点D 顺时针旋转90︒得到的.,FD CA 的延长线相交于点M .(1)求证:ADE FMC △∽△;(2)求ABF ∠的度数;(3)若N 是AF 的中点.如图2.求证:ND NO =.4.(2023·广西)如图.ABC是边长为4的等边三角形.点D.E.F分别在边AB.BC.CA==.上运动.满足AD BE CF≌;(1)求证:ADF BED(2)设AD的长为x.DEF的面积为y.求y关于x的函数解析式;(3)结合(2)所得的函数.描述DEF的面积随AD的增大如何变化.5.(2023·河北)如图1和图2.平面上.四边形ABCD 中.8,12,6,90AB BC CD DA A ====∠=︒.点M 在AD 边上.且2DM =.将线段MA 绕点M 顺时针旋转(0180)n n ︒<≤到,MA A MA ''∠的平分线MP 所在直线交折线—AB BC 于点P .设点P 在该折线上运动的路径长为(0)x x >.连接A P '.(1)若点P 在AB 上.求证:A P AP '=;(2)如图2.连接BD .①求CBD ∠的度数.并直接写出当180n =时.x 的值;①若点P 到BD 的距离为2.求tan A MP '∠的值;(3)当08x <≤时.请直接..写出点A '到直线AB 的距离.(用含x 的式子表示).6.(2023·山西)问题情境:“综合与实践”课上.老师提出如下问题:将图1中的矩形纸片沿对角线剪开.得到两个全等的三角形纸片.表示为ABC 和DFE △.其中90,ACB DEF A D ∠=∠=︒∠=∠.将ABC 和DFE △按图2所示方式摆放.其中点B 与点F 重合(标记为点B ).当ABE A ∠=∠时.延长DE 交AC 于点G .试判断四边形BCGE 的形状.并说明理由.(1)数学思考:谈你解答老师提出的问题;(2)深入探究:老师将图2中的DBE 绕点B 逆时针方向旋转.使点E 落在ABC 内部.并让同学们提出新的问题.①“善思小组”提出问题:如图3.当ABE BAC ∠=∠时.过点A 作AM BE ⊥交BE 的延长线于点,M BM 与AC 交于点N .试猜想线段AM 和BE 的数量关系.并加以证明.请你解答此问题;①“智慧小组”提出问题:如图4.当CBE BAC ∠=∠时.过点A 作AH DE ⊥于点H .若9,12BC AC ==.求AH 的长.请你思考此问题.直接写出结果.7.(2023·深圳)(1)如图.在矩形ABCD 中.E 为AD 边上一点.连接BE .①若BE BC =.过C 作CF BE ⊥交BE 于点F .求证:ABE FCB ≌△△;②若20ABCD S =矩形时.则BE CF ⋅=______.(2)如图.在菱形ABCD 中.1cos 3A =.过C 作CE AB ⊥交AB 的延长线于点E .过E 作EF AD ⊥交AD 于点F .若24ABCD S =菱形时.求EF BC ⋅的值.(3)如图.在平行四边形ABCD 中.60A ∠=︒.6AB =.5AD =.点E 在CD 上.且2CE =.点F 为BC 上一点.连接EF .过E 作EG EF ⊥交平行四边形ABCD 的边于点G .若EF EG ⋅=.请直接写出AG 的长.8.(2023·无锡)如图.四边形ABCD 是边长为4的菱形.60A ∠=︒.点Q 为CD 的中点.P 为线段AB 上的动点.现将四边形PBCQ 沿PQ 翻折得到四边形PB C Q ''.(1)当45QPB ∠=︒时.求四边形BB C C ''的面积;(2)当点P 在线段AB 上移动时.设BP x =.四边形BB C C ''的面积为S .求S 关于x 的函数表达式.9.(2023·武汉)问题提出:如图(1).E 是菱形ABCD 边BC 上一点.AEF △是等腰三角形.AE EF =.()90,α∠=∠=≥︒AEF ABC a AF 交CD 于点G .探究GCF ∠与α的数量关系.问题探究:(1)先将问题特殊化.如图(2).当90α=︒时.直接写出GCF ∠的大小;(2)再探究一般情形.如图(1).求GCF ∠与α的数量关系.问题拓展:(3)将图(1)特殊化.如图(3).当120α=︒时.若12DG CG =.求BE CE 的值.10.(2023·徐州)【阅读理解】如图1.在矩形ABCD 中.若,AB a BC b ==.由勾股定理.得222AC a b =+.同理222BD a b =+.故()22222AC BD a b+=+.【探究发现】如图2.四边形ABCD 为平行四边形.若,AB a BC b ==.则上述结论是否依然成立?请加以判断.并说明理由.【拓展提升】如图3.已知BO 为ABC 的一条中线.,,AB a BC b AC c ===.求证:222224a b c BO +=-.【尝试应用】如图4.在矩形ABCD 中.若8,12AB BC ==.点P 在边AD 上.则22PB PC +的最小值为_______.11.(2023·黄冈)【问题呈现】CAB △和CDE 都是直角三角形.90,,ACB DCE CB mCA CE mCD ∠=∠=︒==.连接AD .BE .探究AD .BE 的位置关系.(1)如图1.当1m =时.直接写出AD .BE 的位置关系:____________;(2)如图2.当1m ≠时.(1)中的结论是否成立?若成立.给出证明;若不成立.说明理由. 【拓展应用】(3)当4m AB DE ===时.将CDE 绕点C 旋转.使,,A D E 三点恰好在同一直线上.求BE 的长.12.(2023·十堰)过正方形ABCD 的顶点D 作直线DP .点C 关于直线DP 的对称点为点E .连接AE .直线AE 交直线DP 于点F .(1)如图1.若25CDP ∠=︒.则DAF ∠=___________︒;(2)如图1.请探究线段CD .EF .AF 之间的数量关系.并证明你的结论;(3)在DP 绕点D 转动的过程中.设AF a =.EF b =请直接用含,a b 的式子表示DF 的长.13.(2023·随州)1643年.法国数学家费马曾提出一个著名的几何问题:给定不在同一条直线上的三个点A .B .C .求平面上到这三个点的距离之和最小的点的位置.意大利数学家和物理学家托里拆利给出了分析和证明.该点也被称为“费马点”或“托里拆利点”.该问题也被称为“将军巡营”问题.(1)下面是该问题的一种常见的解决方法.请补充以下推理过程:(其中①处从“直角”和“等边”中选择填空.①处从“两点之间线段最短”和“三角形两边之和大于第三边”中选择填空.①处填写角度数.①处填写该三角形的某个顶点) 当ABC 的三个内角均小于120︒时.如图1.将APC △绕.点C 顺时针旋转60︒得到A P C ''.连接PP '.由60PC P C PCP ''=∠=︒,.可知PCP '△为 ① 三角形.故PP PC '=.又P A PA ''=.故PA PB PC PA PB PP A B '''++=++≥.由 ① 可知.当B .P .P '.A 在同一条直线上时.PA PB PC ++取最小值.如图2.最小值为A B '.此时的P 点为该三角形的“费马点”.且有APC BPC APB ∠=∠=∠= ① ; 已知当ABC 有一个内角大于或等于120︒时.“费马点”为该三角形的某个顶点.如图3.若120BAC ∠≥︒.则该三角形的“费马点”为 ① 点.(2)如图4.在ABC 中.三个内角均小于120︒.且3430AC BC ACB ==∠=︒,,.已知点P 为ABC 的“费马点”.求PA PB PC ++的值;(3)如图5.设村庄A .B .C 的连线构成一个三角形.且已知4km 60AC BC ACB ==∠=︒,,.现欲建一中转站P 沿直线向A .B .C 三个村庄铺设电缆.已知由中转站P到村庄A.B.C的铺设成本分别为a元/km.a元/km元/km.选取合适的P的位置.可以使总的铺设成本最低为___________元.(结果用含a的式子表示)14.(2023·东营)(1)用数学的眼光观察.如图.在四边形ABCD 中.AD BC =.P 是对角线BD 的中点.M 是AB 的中点.N 是DC 的中点.求证:PMN PNM ∠=∠.(2)用数学的思维思考.如图.延长图中的线段AD 交MN 的延长线于点E .延长线段BC 交MN 的延长线于点F .求证:AEM F ∠=∠.(3)用数学的语言表达.如图.在ABC 中.AC AB <.点D 在AC 上.AD BC =.M 是AB 的中点.N 是DC 的中点.连接MN 并延长.与BC 的延长线交于点G .连接GD .若60ANM ∠=︒.试判断CGD △的形状.并进行证明.15.(2023·临沂) 如图.90,,,A AB AC BD AB BC AB BD ∠=︒=⊥=+.(1)写出AB 与BD 的数量关系;(2)延长BC 到E .使CE BC =.延长DC 到F .使CF DC =.连接EF .求证:EF AB ⊥. (3)在(2)的条件下.作ACE ∠的平分线.交AF 于点H .求证:AH FH =.16.(2023· 烟台)如图.点C 为线段AB 上一点.分别以,AC BC 为等腰三角形的底边.在AB 的同侧作等腰ACD 和等腰BCE .且A CBE ∠=∠.在线段EC 上取一点F .使EF AD =.连接,BF DE .(1)如图1.求证:DE BF =;(2)如图2.若2AD BF =,的延长线恰好经过DE 的中点G .求BE 的长.17.(2023·邵阳)如图.在等边三角形ABC 中.D 为AB 上的一点.过点D 作BC 的平行线DE 交AC 于点E .点P 是线段DE 上的动点(点P 不与D E 、重合).将ABP 绕点A 逆时针方向旋转60︒.得到ACQ .连接,EQ PQ PQ 、交AC 于F .(1)证明:在点P 的运动过程中.总有120PEQ ∠=︒. (2)当APDP为何值时.AQF 是直角三角形?18.(2023·湘潭)问题情境:小红同学在学习了正方形的知识后.进一步进行以下探究活动:在正方形ABCD的边BC上任意取一点G.以BG为边长向外作正方形BEFG.将正方形BEFG绕点B顺时针旋转.特例感知:,相交于点P.小红发现点P恰为DF的中点.如图(1)当BG在BC上时.连接DF AC①.针对小红发现的结论.请给出证明;(2)小红继续连接EG.并延长与DF相交.发现交点恰好也是DF中点P.如图②.根据小∆的形状.并说明理由;红发现的结论.请判断APE规律探究:(3)如图③.将正方形BEFG绕点B顺时针旋转α.连接DF.点P是DF中点.连接AP. EP.AE.APE∆的形状是否发生改变?请说明理由.19.(2023·岳阳)如图1.在ABC 中.AB AC =.点,M N 分别为边,AB BC 的中点.连接MN .初步尝试:(1)MN 与AC 的数量关系是_________.MN 与AC 的位置关系是_________.特例研讨:(2)如图2.若90,BAC BC ∠=︒=先将BMN 绕点B 顺时针旋转α(α为锐角).得到BEF △.当点,,A E F 在同一直线上时.AE 与BC 相交于点D .连接CF .(1)求BCF ∠的度数;(2)求CD 的长.深入探究:(3)若90BAC ∠<︒.将BMN 绕点B 顺时针旋转α.得到BEF △.连接AE .CF .当旋转角α满足0360α︒<<︒.点,,C E F 在同一直线上时.利用所提供的备用图探究BAE ∠与ABF ∠的数量关系.并说明理由.20.(2023·大连)综合与实践问题情境:数学活动课上.王老师给同学们每人发了一张等腰三角形纸片探究折叠的性质. 已知,90AB AC A =∠>︒.点E 为AC 上一动点.将ABE 以BE 为对称轴翻折.同学们经过思考后进行如下探究:独立思考:小明:“当点D 落在BC 上时.2EDC ACB ∠=∠.”小红:“若点E 为AC 中点.给出AC 与DC 的长.就可求出BE 的长.”实践探究:奋进小组的同学们经过探究后提出问题1.请你回答:问题1:在等腰ABC 中.,90,AB AC A BDE =∠>︒△由ABE 翻折得到.(1)如图1.当点D 落在BC 上时.求证:2EDC ACB ∠=∠;(2)如图2.若点E 为AC 中点.43AC CD ==,.求BE 的长.问题解决:小明经过探究发现:若将问题1中的等腰三角形换成90A ∠<︒的等腰三角形.可以将问题进一步拓展.问题2:如图3.在等腰ABC 中.90,4,2A AB AC BD D ABD ∠<===∠=∠︒.若1CD =.则求BC 的长.2023年各地中考几何压轴题汇编详解1.(2023·安徽)在Rt ABC △中.M 是斜边AB 的中点.将线段MA 绕点M 旋转至MD 位置.点D 在直线AB 外.连接,AD BD .(1)如图1.求ADB ∠的大小;(2)已知点D 和边AC 上的点E 满足,ME AD DE AB ⊥∥.(ⅰ)如图2.连接CD .求证:BD CD =;(ⅱ)如图3.连接BE .若8,6AC BC ==.求tan ABE ∠的值.【答案】(1)90ADB ∠=︒ (2)(ⅰ)见解析;(ⅱ)21 【小问1详解】解:①MA MD MB ==.∴,MAD MDA MBD MDB ∠=∠∠=∠.在ABD △中.=180MAD MDA MBD MDB ∠+∠+∠+∠︒. ∴180902ADB ADM BDM ︒∠=∠+∠==︒. 【小问2详解】证明:(ⅰ)证法一:如图.延长BD AC 、.交于点F .则90BCF ∠=︒.∵ME AD ⊥.90ADB ∠=︒.∴EM BD ∥.又∵DE AB ∥.∴四边形BDEM 是平行四边形.∴DE BM =.∵M 是AB 的中点..∴AM BM =.∴DE AM =.∴四边形AMDE 是平行四边形.∵ME AD ⊥.∴AMDE 是菱形.∴AE AM =.∵EM BD ∥. ∴AE AM AF AB=. ∴AB AF =.∵90ADB ∠=︒.即AD BF ⊥.∴BD DF =.即点D 是Rt BCF 斜边的中点.∴BD CD =.证法二:∵90ACB ADB ∠=∠=︒.M 是斜边AB 的中点.∴点A C D B 、、、在以M 为圆心.AB 为直径的M 上.∵ME AD ⊥.∴ME 垂直平分AD .∴EA ED =.∴EAD EDA ∠=∠.∵DE AB ∥.∴BAD EDA ∠=∠.∴EAD BAD ∠=∠.∴BD CD =.证法三:∵ME AD ⊥.90ADB ∠=︒.∴EM BD ∥.又∵DE AB ∥.∴四边形BDEM 是平行四边形.∴DE BM =.∵M 是AB 的中点.∴AM BM =.∴DE AM =.∴四边形AMDE 是平行四边形.∵ME AD ⊥.∴AMDE 是菱形.∴EAD MAD ∠=∠.∵90ACB ADB ∠=∠=︒.M 是斜边AB 的中点.∴点A C D B 、、、在以M 为圆心.AB 为直径的M 上.∴BD CD =.(2)如图所示.过点E 作EH AB ⊥于点H .①8,6AC BC ==.∴10AB =.则152AE AM AB ===. ∵,90EAH BAC ACB AHE ∠=∠∠=∠=︒.①AHE ACB ∽. ①510EH AH AE BC AC AB ===. ①3,4EH AH ==.∴1046BH AB AH =-=-=.∴31tan 62EH ABE BH ===. 2.(2023·北京)在ABC 中、()045B C αα∠=∠=︒<<︒.AM BC ⊥于点M .D 是线段MC 上的动点(不与点M .C 重合).将线段DM 绕点D 顺时针旋转2α得到线段DE .(1)如图1.当点E 在线段AC 上时.求证:D 是MC 的中点;(2)如图2.若在线段BM 上存在点F (不与点B .M 重合)满足DF DC =.连接AE .EF .直接写出AEF ∠的大小.并证明.【答案】(1)见解析 (2)90AEF ∠=︒.证明见解析【小问1详解】证明:由旋转的性质得:DMDE =.2MDE α∠=.∵C α∠=.∴D DEC M E C α∠-∠∠==.∴C DEC ∠=∠.∴DE DC =.∴DM DC =.即D 是MC 的中点;【小问2详解】 90AEF ∠=︒;证明:如图2.延长FE 到H 使FE EH =.连接CH .AH .∵DF DC =.∴DE 是FCH ∆的中位线.∴DE CH ∥.2CH DE =.由旋转的性质得:DMDE =.2MDE α∠=.∴2FCH α∠=.∵B C α∠=∠=.∴ACH α∠=.ABC 是等腰三角形.∴B ACH ∠∠=.AB AC =.设DM DE m ==.CD n =.则2CH m =.CM m n =+.∴DF CD n ==.∴FM DF DM n m =-=-.∵AM BC ⊥.∴BM CM m n ==+.∴()2BF BM FM m n n m m =-=+--=.∴CH BF =.在ABF △和ACH 中.AB AC B ACH BF CH =⎧⎪∠=∠⎨⎪=⎩.∴()SAS ABF ACH ≅.∴AF AH =.∵FE EH =.∴AE FH ⊥.即90AEF ∠=︒.3.(2023·福建)如图1.在ABC 中.90,,BAC AB AC D ∠=︒=是AB 边上不与,A B 重合的一个定点.AO BC ⊥于点O .交CD 于点E .DF 是由线段DC 绕点D 顺时针旋转90︒得到的.,FD CA 的延长线相交于点M .(1)求证:ADE FMC △∽△;(2)求ABF ∠的度数;(3)若N 是AF 的中点.如图2.求证:ND NO =.【答案】(1)见解析 (2)135ABF ∠=︒ (3)见解析.【小问1详解】解: DF 是由线段DC 绕点D 顺时针旋转90︒得到的.45DFC ∴∠=︒.,AB AC AO BC =⊥.12BAO BAC ∴∠=∠. 90BAC ∠=︒.45BAO ABC ∴∠=∠=︒.BAO DFC ∴∠=∠.90,90EDA ADM M ADM ︒∠+∠︒=∠+∠=.EDA M ∴∠=∠.ADE FMC ∴△∽△.【小问2详解】解:如图1:设BC 与DF 的交点为I .45,DBI CFI BID FIC ︒∠=∠=∠=∠.BID FIC ∴△∽△.BI DI FI CI∴=. BI FI DI CI ∴=. BIF DIC ∠=∠.BIF DIC ∴△∽△.IBF IDC ∴∠=∠.又90IDC =︒∠.90IBF ∴∠=︒.45,ABC ABF ABC IBF ∠=∠︒=∠+∠.135ABF ∴∠=︒.【小问3详解】解:如图2:延长ON 交BF 于点T .连接,DT DO .90FBI BOA ∠︒∠==.BF AO ∴∥.FTN AON ∴∠=∠. N 是AF 的中点.AN NF ∴=.又TNF ONA ∠=∠.TNF ONA ∴△≌△.,NT NO FT AO ∴==.90,,BAC AB AC AO BC =︒∠=⊥.AO CO ∴=.FT CO ∴=.由(2)知.BIF DIC △∽△.DFT DCO ∴∠=∠.DF DC .DFT DCO ∴△≌△.,DT DO FDT CDO ∴=∠=∠.FDT FDO CDO FDO ∴∠+∠=∠+∠.即ODT CDF ∠=∠.90CDF ∠=︒.90ODT CDF ∴∠=∠=︒.12ND TO NO ∴==. 4.(2023·广西) 如图.ABC 是边长为4的等边三角形.点D .E .F 分别在边AB .BC .CA 上运动.满足AD BE CF ==.(1)求证:ADF BED ≌;(2)设AD 的长为x .DEF 的面积为y .求y 关于x 的函数解析式;(3)结合(2)所得的函数.描述DEF 的面积随AD 的增大如何变化.【答案】(1)见详解 ; (2)24y x =-+ ; (3)当24x <<时.DEF 的面积随AD 的增大而增大.当02x <<时.DEF 的面积随AD 的增大而减小.【小问1详解】证明:∵ABC 是边长为4的等边三角形.∴60∠=∠=∠=︒A B C .4AB BC AC ===.∵AD BE CF ==.∴AF BD CE ==.在ADF △和BED 中.AF BD A B AD BE =⎧⎪∠=∠⎨⎪=⎩.∴()SAS ADF BED ≌;【小问2详解】解:分别过点C 、F 作CH AB ⊥.FG AB ⊥.垂足分别为点H 、G .如图所示:在等边ABC 中.60A B ACB ∠=∠=∠=︒.4AB BC AC ===.∴sin 60CH AC =⋅︒=∴12ABCSAB CH =⋅= 设AD 的长为x .则AD BE CF x ===.4AF x =-.∴)sin 6042FG AF x =⋅︒=-.∴()142ADFSAD FG x =⋅=-. 同理(1)可知ADF BED CFE ≌≌. ∴()344ADFBEDCFESSSx x ===-. ∵DEF 的面积为y .∴()234444ABCADFy SSx xx =-=-=-+ 【小问3详解】 解:由(2)可知:2y x=-+∴04a =>.对称轴为直线2x ==. ∴当2x >时.y 随x 的增大而增大.当2x <时.y 随x 的增大而减小;即当24x <<时.DEF 的面积随AD 的增大而增大.当02x <<时.DEF 的面积随AD 的增大而减小.5.(2023·河北)如图1和图2.平面上.四边形ABCD 中.8,12,6,90AB BC CD DA A ====∠=︒.点M 在AD 边上.且2DM =.将线段MA 绕点M 顺时针旋转(0180)n n ︒<≤到,MA A MA ''∠的平分线MP 所在直线交折线—AB BC 于点P .设点P 在该折线上运动的路径长为(0)x x >.连接A P '.(1)若点P 在AB 上.求证:A P AP '=; (2)如图2.连接BD .①求CBD ∠的度数.并直接写出当180n =时.x 的值; ①若点P 到BD 的距离为2.求tan A MP '∠的值;(3)当08x <≤时.请直接..写出点A '到直线AB 的距离.(用含x 的式子表示). 【答案】(1)见解析 (2)①90CBD ∠=︒.13x =;①76①236 .(3)22816x x +. 【小问1详解】①将线段MA 绕点M 顺时针旋转()0180n n ︒<≤到MA '. ①A M AM '=.①A MA '∠的平分线MP 所在直线交折线AB BC -于点P . ①A MP AMP '∠=∠. 又①PM PM =.①)('SAS AMP MP A ∆≅∆. ①A P AP '=; 【小问2详解】①①8AB =.6DA =.90A ∠=︒.①10BD ==.①=BC 12CD =.①(222210144BC BD +=+=.2212144CD ==.①222BC BD CD +=. ①90CBD ∠=︒; 如图所示.当180n =时.①PM 平分A MA '∠. ①90PMA ∠=︒. ①PM AB ∥.①DNM ∆∽DBA ∆. ①DN DM MNDB DA BA ==. ①2DM =.6DA =. ①21068DN MN==. ①103DN =.83MN =.①203BN BD DN =-=. ①90PBN NMD ∠=∠=︒.PNB DNM ∠=∠. ①PBN ∆∽DMN ∆.①PB BNDM MN=.即203823PB =. ①解得5PB =.①8513x AB PB =+=+=.①如图所示.当P 点在AB 上时.2PQ =.A MP AMP '∠=∠.∵8,6,90AB DA A ==∠=︒.∴10BD ==.63sin 105AD DBA BD ∠===. ∴2103sin 35BQ BP DBA ===∠.①1014833AP AB BP =-=-= ∴1473tan tan 46AP A MP AMP AM '∠=∠===; 如图所示.当P 在BC 上时.则2PB =.过点P 作PQ AB ⊥交AB 的延长线于点Q .延长MP 交AB 的延长线于点H .∵90PQB CBD DAB ∠=∠=∠=︒. ①90QPB PBQ DBA ∠=︒-∠=∠. ①PQB BAD ∽.∴PQ QB PBBA AD BD ==. 即8610PQ QB PB==.∴4855PQ PB ==.3655BQ PB ==. ∴465AQ AB BQ =+=. ∵,PQ AB DA AB ⊥⊥. ∴PQ AD ∥. ∴HPQ HMA ∽.∴HQ PQHA AM=. ∴854645HQHQ =+. 解得:9215HQ =. ∴922315tan tan tan 865HQ A MP AMP QPH PQ '∠=∠=∠===. 综上所述.tan A MP '∠的值为76①236① 【小问3详解】 解:①当08x <≤时. ∴P 在AB 上.如图所示.过点A '作A E AB '⊥交AB 于点E .过点M 作MF A E '⊥于点F .则四边形AMFE 是矩形.①AE FM =.4EF AM ==.①A MP AMP '≌. ①90PA M A '∠=∠=︒. ①90PA E FA M ''∠+∠=︒. 又90A MF FA M ''∠+∠=︒. ∴PA E A MF ''∠=∠. 又∵90A EP MFA ''∠=∠=︒. ∴A PE MA F ''∽. ∴A P PE A EMA A F FM''==''. ∵A P AP x '==.4MA MA '==.设FM AE y ==.A E h '=即44x x y h h y-==-. ∴4hy x=.()()44x y x h -=-. ∴()444h x x h x ⎛⎫-=- ⎪⎝⎭. 整理得22816x h x =+. 即点A '到直线AB 的距离为22816x x +.6.(2023·山西)问题情境:“综合与实践”课上.老师提出如下问题:将图1中的矩形纸片沿对角线剪开.得到两个全等的三角形纸片.表示为ABC 和DFE △.其中90,ACB DEF A D ∠=∠=︒∠=∠.将ABC 和DFE △按图2所示方式摆放.其中点B 与点F 重合(标记为点B ).当ABE A ∠=∠时.延长DE 交AC 于点G .试判断四边形BCGE 的形状.并说明理由.(1)数学思考:谈你解答老师提出的问题;(2)深入探究:老师将图2中的DBE 绕点B 逆时针方向旋转.使点E 落在ABC 内部.并让同学们提出新的问题.①“善思小组”提出问题:如图3.当ABE BAC ∠=∠时.过点A 作AM BE ⊥交BE 的延长线于点,M BM 与AC 交于点N .试猜想线段AM 和BE 的数量关系.并加以证明.请你解答此问题;①“智慧小组”提出问题:如图4.当CBE BAC ∠=∠时.过点A 作AH DE ⊥于点H .若9,12BC AC ==.求AH 的长.请你思考此问题.直接写出结果.【答案】(1)正方形.见解析 .(2)①AM BE =.见解析;①275. 【小问1详解】解:四边形BCGE 为正方形.理由如下: ①90BED ∠=︒.①18090BEG BED ∠=︒-∠=︒. ①ABE A ∠=∠. ①AC BE ∥.①90CGE BED ∠=∠=︒. ①90C ∠=︒.①四边形BCGE 为矩形. ①ACB DEB ≅. ①BC BE =.①矩形BCGE 为正方形. 【小问2详解】 :①AM BE =.证明:①ABE BAC ∠=∠. ①AN BN =. ①90C ∠=︒. ①BC AN ⊥.①AM BE ⊥.即AM BN ⊥. ①1122ABN S AN BC BN AM =⋅=⋅△. ①AN BN =. ①BC AM =.由(1)得BE BC =. ①AM BE =.①解:如图:设,AB DE 的交点为M .过M 作MG BD ⊥于G . ①ACB DEB ≅.①9,12BE BC DE AC ====.A D ABC DBE ∠=∠∠=∠,. ①CBE DBM ∠=∠; ①CBE BAC ∠=∠. ①D BAC ∠=∠. ①MD MB =. ①MG BD ⊥. ①点G 是BD 的中点;由勾股定理得15AB ==.①11522DG BD ==; ①cos DG DED DM BD∠==.①1515752128DG BD DM DE ⨯⋅===.即758BM DM ==; ①75451588AM AB BM =-=-=; ①,AH DE BE DE ⊥⊥.AMH BME ∠=∠. ①AMH BME .①35AH AM BE BM ==. ①33279555AH BE ==⨯=.即AH 的长为275.7.(2023·深圳)(1)如图.在矩形ABCD 中.E 为AD 边上一点.连接BE . ①若BE BC =.过C 作CF BE ⊥交BE 于点F .求证:ABE FCB ≌△△; ②若20ABCD S =矩形时.则BE CF ⋅=______.(2)如图.在菱形ABCD 中.1cos 3A =.过C 作CE AB ⊥交AB 的延长线于点E .过E 作EF AD ⊥交AD 于点F .若24ABCD S =菱形时.求EF BC ⋅的值.(3)如图.在平行四边形ABCD 中.60A ∠=︒.6AB =.5AD =.点E 在CD 上.且2CE =.点F 为BC 上一点.连接EF .过E 作EG EF ⊥交平行四边形ABCD 的边于点G .若EF EG ⋅=.请直接写出AG 的长.【答案】(1)①见解析;②20;(2)32;(3)3或4或32. 【详解】解:(1)①①四边形ABCD 是矩形.则90A ABC ∠=∠=︒. ①90ABE CBF ∠+∠=︒. 又①CF BC ⊥.∴90FCB CBF ∠+∠=︒.90CFB A ∠=∠=︒. ∴FCB ABE ∠=∠. 又∵BC BE =. ∴ABE FCB ≌△△;②由①可得FCB ABE ∠=∠.90CFB A ∠=∠=︒. ∴∽ABE FCB . ∴AB BE CF BC=. 又∵20ABCD S AB CD =⋅=矩形.∴20BE CF AB BC ⋅=⋅=.故答案为:20.(2)①在菱形ABCD 中.1cos 3A =. ∴AD BC ∥.AB BC =.则CBE A ∠=∠.①CE AB ⊥.①90CEB ∠=︒. ①cos BE CBE CB∠=. ∴1cos cos 3BE BC CBE BC A BC =⋅∠=⨯∠=. ①114333AE AB BE AB BC AB AB AB =+=+=+=. ①EF AD ⊥.CE AB ⊥.①90AFE BEC ∠=∠=︒.又CBE A ∠=∠.①AFE BEC △∽△. ∴AE EF AF BC CE BE==. ∴EF BC ⋅2443342433ABCD AE CE AB CE S =⨯==⨯⋅==菱形; (3)①当点G 在AD 边上时.如图所示.延长FE 交AD 的延长线于点M .连接GF .过点E 作EH DM ⊥于点H .①平行四边形ABCD 中.6AB =.2CE =.∴6CD AB ==.624DE DC EC =-=-=.①DM FC ∥.①EDM ECF ∽. ∴422EM ED EF EC ===. ∴2MGE FEG S EM SEF ==. ∴2MGE EFGS S ==EF EG ⋅=在Rt DEH △中.60HDE A ∠=∠=︒.则4EH ===.122DH DE ==. ∴12MG HE ⨯= ∴7MG =.∵,GE EF EH MG ⊥⊥.∴90MEH HEG HGE ∠=︒-∠=∠.∴tan tan MEH HGE ∠=∠.∴HE HM HG HE=. ∴2HE HM HG =⋅.设AG a =.则5GD AD AG a =-=-.527GH GD HD a a =+=-+=-.()77HM GM GH aa =-=--=.∴(()27x x =-.解得:3a =或4a =.即3AG =或4AG =.②当G 点在AB 边上时.如图所示.连接GF .延长GE 交BC 的延长线于点M .过点G 作GN AD ∥.则GN BC ∥.四边形ADNG 是平行四边形.设AG x =.则DN AG x ==.4EN DE DN x =-=-.①GN CM ∥.∴ENG ECM ∽. ∴42EG EN GN x EM EC CM -===. ∴21044GN CM x x ==--. ∴42GEF MEF S EG x S EM -==. ∵EF EG⋅=∴244GEF MEF S S x x==--. 过点E 作EH BC ⊥于点H .在Rt EHC △中.2,60ECECH =∠=︒.①EH =1CH =.①12MEF S MF EH =⨯⨯.则12MF = ∴144MF x =-. ∴14101444x FH MF CM CH x x x=--=--=---.1014144x MH CM CH x x-=+=+=--. 90MEF EHM ∠=∠=︒.∴90FEH MEH M ∠=︒-∠=∠.∴tan tan FEH M ∠=∠. 即FH EH EH HM=. ∴2EH FH HM =⋅.即21444x x x x-=⨯--. 解得:123,82x x ==(舍去). 即32AG =; ③当G 点在BC 边上时.如图所示.过点B 作BT DC ⊥于点T .在Rt BTC 中.1522CT BC ==.2BT ==.∴115222BTC S BT TC =⨯==∵EF EG ⋅=∴EFG S =< ∴G 点不可能在BC 边上. 综上所述.AG 的长为3或4或32. 8.(2023·无锡)如图.四边形ABCD 是边长为4的菱形.60A ∠=︒.点Q 为CD 的中点.P 为线段AB 上的动点.现将四边形PBCQ 沿PQ 翻折得到四边形PB C Q ''.(1)当45QPB ∠=︒时.求四边形BB C C ''的面积;(2)当点P 在线段AB 上移动时.设BP x =.四边形BB C C ''的面积为S .求S 关于x 的函数表达式.【答案】(1)8(2)212S x =++ 【小问1详解】如图.连接BD 、BQ .四边形ABCD 为菱形.∴4CB CD ==.60A C ∠=∠=︒.∴BDC 为等边三角形. Q 为CD 中点.∴2CQ =.BQ CD ⊥.∴BQ =QB PB ⊥.45QPB ∠=︒.∴PBQ 为等腰直角三角形.∴PB =PQ =翻折.∴90BPB ∠='︒.PB PB '=.∴BB '=PE =同理2CQ =.∴CC '=QF = ∴((2211122228222PBB CQC BB C C PBCQ S S SS ''''=-+=⨯⨯+⨯⨯+⨯=四边形梯形;【小问2详解】 如图2.连接BQ 、B Q '.延长PQ 交CC '于点F .PB x =.BQ =90PBQ ∠=︒.∴PQ=.∵1122PBQS PQ BE PB BQ =⨯=⨯.∴BQ PBBEPQ⨯==.∴QE=.∴21212QEBSx==+.90BEQ BQC QFC∠=∠=∠=︒.则90EQB CQF FCQ∠=︒-∠=∠.∴BEQ QFC~.∴2213QFCBEQS CQS QB⎛⎫===⎪⎝⎭.∴QFCS=.∵122BQCS=⨯⨯=∴()22222121212QEB BQC QFCS S S Sx x x⎛⎫=++=+=+⎪⎪+++⎝⎭.9.(2023·武汉)问题提出:如图(1).E是菱形ABCD边BC上一点.AEF△是等腰三角形.AE EF=.()90,α∠=∠=≥︒AEF ABC a AF交CD于点G.探究GCF∠与α的数量关系.问题探究:(1)先将问题特殊化.如图(2).当90α=︒时.直接写出GCF ∠的大小; (2)再探究一般情形.如图(1).求GCF ∠与α的数量关系. 问题拓展:(3)将图(1)特殊化.如图(3).当120α=︒时.若12DG CG =.求BE CE 的值. 【答案】(1)45︒(2)3902GCF α∠=-︒ (3)23BE CE = 【解析】【小问1详解】延长BC 过点F 作FH BC ⊥.∵90BAE AEB ∠+∠=︒.90FEH AEB ∠+∠=︒.∴BAE FEH ∠=∠.在EBA △和FHE 中ABE EHF BAE FEH AE EF ∠=∠⎧⎪∠=∠⎨⎪=⎩∴ABE BHF ≌.∴AB EH =.BE FH =.∴BC EH =.∴BE CH FH .∴045=∠=∠FCH GCF .故答案为:45︒.【小问2详解】解:在AB 上截取AN .使AN EC =.连接NE .180∠+∠+∠=∠+∠+∠=︒ABC BAE AEB AEF FEC AEB . ABC AEF ∠=∠.∴∠=∠EAN FEC .AE EF =.∴△≌△ANE ECF .∴∠=∠ANE ECF .,AB BC =BN BE ∴=α∠=EBN .1902α︒∴∠=-BNE . ∴∠=∠-∠=∠-∠GCF ECF BCD ANE BCD()139********ααα⎛⎫=︒+-︒-=-︒ ⎪⎝⎭.【小问3详解】解:过点A 作CD 的垂线交CD 的延长线于点P .设菱形的边长为3m . 1,2DG CGm CG m DG 2==∴,.在Rt ADP 中.0120=∠=∠ABC ADC .60ADP ∴∠=︒.3,2∴==PD m AP . 120α=︒.由(2)知.390902∠=-︒=︒GCF a .FGC AGP ∠=∠ .FCG ∽∆∆∴APG . ∴=AP PG CF CG. 5222=m CF m.5CF m ∴=. 在AB 上截取AN .使AN EC =.连接NE .作BO NE ⊥于点O . 由(2)知.ANE ECF △≌△.①NE CF =.∵AB BC =.∴BN BE =.12OE EF EN ===. ∵120ABC ∠=︒.∴30BNE BEN ∠=∠=︒. BE OE =0cos30 . ∴6,5BE m m CE 59= . 23BE CE ∴=.。
中考数学全国各地压轴题专练(pdf版)
中考数学专题复习——压轴题1.(四川省宜宾市)已知:如图,抛物线y=-x 2+bx+c 与x 轴、y 轴分别相交于点A (-1,0)、B (0,3)两点,其顶点为D.(1)求该抛物线的解析式;(2)若该抛物线与x 轴的另一个交点为E.求四边形ABDE 的面积;(3)△AOB 与△BDE 是否相似?如果相似,请予以证明;如果不相似,请说明理由.(注:抛物线y=ax 2+bx+c(a +bx+c(a≠≠0)的顶点坐标为)⎟⎟⎠⎞⎜⎜⎝⎛−−a b ac ab 44,22.2.(浙江衢州)(浙江衢州)已知直角梯形纸片已知直角梯形纸片OABC 在平面直角坐标系中的位置如图所示,四个顶点的坐标分别为O(0,0),A(10,0),B(8,),C(0,),点T 在3232线段OA 上(不与线段端点重合),将纸片折叠,使点A 落在射线AB 上(记为点A ′),折痕经过点T ,折痕TP 与射线AB 交于点P ,设点T 的横坐标为t ,折叠后纸片重叠部分(图中的阴影部分)的面积为S ;(1)求∠OAB 的度数,并求当点A ′在线段AB 上时,S 关于t 的函数关系式;(2)当纸片重叠部分的图形是四边形时,求t 的取值范围;(3)S 存在最大值吗?若存在,求出这个最大值,并求此时t 的值;若不存在,请说明理由.3.(浙江温州)如图,在中,,,,分别是边Rt ABC △90A ∠=�6AB =8AC =D E ,yxOBC ATyxOBC AT的中点,点从点出发沿方向运动,过点作于,过点AB AC ,P D DE P PQ BC ⊥Q Q作交于QR BA ∥AC ,当点与点重合时,点停止运动.设,.R Q C P BQ x =QR y =(1)求点到的距离的长;D BC DH (2)求关于的函数关系式(不要求写出自变量的取值范围);y x (3)是否存在点,使为等腰三角形?若存在,请求出所有满足要求的的值;P PQR △x 若不存在,请说明理由.A BCD ER PH Q(山东省日照市)在△ABC 中,∠A =90°,AB =4,AC =3,M 是AB 上的动点(不与A ,B 重合),过M 点作MN ∥BC 交AC 于点N .以MN 为直径作⊙O ,并在⊙O 内作内接矩形AMPN .令AM =x .(1)用含x 的代数式表示△MNP 的面积S ;(2)当x 为何值时,⊙O 与直线BC 相切?(3)在动点M 的运动过程中,记△MNP 与梯形BCNM 重合的面积为y ,试求y 关于x 的函数表达式,并求x 为何值时,y 的值最大,最大值是多少?A BC M NP 图3OABC MND 图2OABCMNP图1O5、(浙江金华)如图1,已知双曲线y=(k>0)与直线y=k′x交于A,B两点,点A在第xk 一象限.试解答下列问题:(1)若点A的坐标为(4,2).则点B的坐标为;若点A的横坐标为m,则点B的坐标可表示为;(2)如图2,过原点O作另一条直线l,交双曲线y=(k>0)于P,Q两点,点P在第一xk 象限.①说明四边形APBQ一定是平行四边形;②设点A.P的横坐标分别为m,n,四边形APBQ可能是矩形吗?可能是正方形吗?若可能,直接写出mn应满足的条件;若不可能,请说明理由.xyBA O 图1B AOPQ图26.(浙江金华)如图1,在平面直角坐标系中,己知ΔAOB是等边三角形,点A的坐标是(0,4),点B在第一象限,点P是x轴上的一个动点,连结AP,并把ΔAOP绕着点A按逆时针方向旋转.使边AO与AB重合.得到ΔABD.(1)求直线AB的解析式;(2)当点P运动到点(,0)时,求此时DP的长及点D的坐标;(3)是否存在点P,使3ΔOPD的面积等于,若存在,请求出符合条件的点P的坐标;若不存在,请说明43理由.7.(浙江义乌)如图1,四边形ABCD 是正方形,G 是CD 边上的一个动点(点G 与C 、D 不重合),以CG 为一边在正方形ABCD 外作正方形CEFG ,连结BG ,DE .我们探究下列图中线段BG 、线段DE 的长度关系及所在直线的位置关系:(1)①猜想如图1中线段BG 、线段DE 的长度关系及所在直线的位置关系;②将图1中的正方形CEFG 绕着点C 按顺时针(或逆时针)方向旋转任意角度,α得到如图2、如图3情形.请你通过观察、测量等方法判断①中得到的结论是否仍然成立,并选取图2证明你的判断.(2)将原题中正方形改为矩形(如图4—6),且AB=a ,BC=b ,CE=ka ,CG=kb (a b ,≠k 0),第(1)题①中得到的结论哪些成立,哪些不成立?若成立,以图5为例简要说>明理由.(3)在第(2)题图5中,连结、,且a =3,b =2,k =,求的值.DG BE 1222BE DG +8.(浙江义乌)如图1所示,直角梯形OABC 的顶点A 、C 分别在y 轴正半轴与轴负半轴上.x 过点B 、C 作直线.将直线平移,平移后的直线与轴交于点D,与轴交于点E .l l l x y (1)将直线向右平移,设平移距离CD 为(t 0),直角梯形OABC 被直线扫过的面积l t ≥l (图中阴影部份)为,关于的函数图象如图2所示,OM 为线段,MN 为抛物s s t 线的一部分,NQ 为射线,N 点横坐标为4.①求梯形上底AB 的长及直角梯形OABC 的面积;②当时,求S 关于的函数解析式;42<<t t (2)在第(1)题的条件下,当直线向左或向右平移时(包括与直线BC 重合),在直l l 线AB 上是否存在点P ,使为等腰直角三角形?若存在,请直接写出所有满足PDE ∆条件的点P 的坐标;若不存在,请说明理由.9.(山东烟台)如图,菱形ABCD 的边长为2,BD=2,E 、F 分别是边AD ,CD 上的两个动点上的两个动点,,且满足AE+CF=2.(1)求证:△BDE ≌△BCF ;(2)判断△BEF 的形状,并说明理由;(3)设△BEF 的面积为S ,求S 的取值范围.10.(山东烟台)如图,抛物线交轴于A 、B 两点,交轴于M 点.抛物21:23L y x x =−−+x y 线向右平移2个单位后得到抛物线,交轴于C 、D 两点.1L 2L 2L x (1)求抛物线对应的函数表达式;2L (2)抛物线或在轴上方的部分是否存在点N ,使以A ,C ,M ,N 为顶点的四边形1L 2L x 是平行四边形.若存在,求出点N 的坐标;若不存在,请说明理由;(3)若点P 是抛物线上的一个动点(P 不与点A 、B 重合),那么点P 关于原点的对称点1L Q 是否在抛物线上,请说明理由.2L11.(淅江宁波)年5月1日,目前世界上最长的跨海大桥——杭州湾跨海大桥通车了.通车后,苏南A 地到宁波港的路程比原来缩短了120千米.已知运输车速度不变时,行驶时间将从原来的3时20分缩短到2时.(1)求A 地经杭州湾跨海大桥到宁波港的路程.(2)若货物运输费用包括运输成本和时间成本,已知某车货物从A 地到宁波港的运输成本是每千米1.8元,时间成本是每时28元,那么该车货物从A 地经杭州湾跨海大桥到宁波港的运输费用是多少元?(3)A 地准备开辟宁波方向的外运路线,即货物从A 地经杭州湾跨海大桥到宁波港,再从宁波港运到B 地.若有一批货物(不超过10车)从A 地按外运路线运到B 地的运费需8320元,其中从A 地经杭州湾跨海大桥到宁波港的每车运输费用与(2)中相同,从宁波港到B 地的海上运费对一批不超过10车的货物计费方式是:一车800元,当货物每增加1车时,每车的海上运费就减少20元,问这批货物有几车?12.(淅江宁波)如图1,把一张标准纸一次又一次对开,得到“2开”纸、“4开”纸开”纸、、“8开”纸开”纸、、“16开”纸….已知标准纸的短边长为.a (1)如图2,把这张标准纸对开得到的“16开”张纸按如下步骤折叠:第一步将矩形的短边与长边对齐折叠,点落在上AB AD B AD 的点处,铺平后得折痕;B ′AE 第二步将长边与折痕对齐折叠,点正好与点重合,铺平后得折痕.AD AE D E AF 则的值是,的长分别是,.:AD AB AD AB ,(2)“2开”纸开”纸、、“4开”纸开”纸、、“8开”纸的长与宽之比是否都相等?若相等,直接写出这个比值;若不相等,请分别计算它们的比值.(3)如图3,由8个大小相等的小正方形构成“”型图案,它的四个顶点L 分别在“16开”纸的边上,求的长.E F G H ,,,AB BC CD DA ,,,DG (4)已知梯形中,,,,且四个顶点MNPQ MN PQ ∥90M =�∠2MN MQ PQ ==都在“4开”纸的边上,请直接写出2个符合条件且大小不同的直角梯形的M N P Q ,,,面积.ABCD BCA D E G HFFEB ′开2开8开16开图1图2图313.(山东威海)如图,在梯形ABCD 中,AB ∥CD ,AB =7,CD =1,AD =BC =5.点M ,N 分别在边AD ,BC 上运动,并保持MN ∥AB ,ME ⊥AB ,NF ⊥AB ,垂足分别为E ,F .(1)求梯形ABCD 的面积;(2)求四边形MEFN 面积的最大值.(3)试判断四边形MEFN 能否为正方形,若能,求出正方形MEFN 的面积;若不能,请说明理由.①标准纸“2开”纸开”纸、、“4开”纸开”纸、、“8开”纸开”纸、、“16开”纸……都是矩形.②本题中所求边长或面积都用含的代数式表示.aAOBMCyxC D A BE F NM14.(山东威海)如图,点A (m ,m +1),B (m +3,m -1)都在反比例函数的图象xk y =上.(1)求m ,k 的值;(2)如果M 为x 轴上一点,N 为y 轴上一点,以点A ,B ,M ,N 为顶点的四边形是平行四边形,试求直线MN 的函数表达式.(3)选做题选做题:在平面直角坐标系中,点:在平面直角坐标系中,点P 的坐标为(5,0),点Q 的坐标为(0,3),把线段PQ 向右平移4个单位,然后再向上平移2个单位,得到线段P 1Q 1,则点P 1的坐标为,点Q 1的坐标为.15.(湖南益阳)我们把一个半圆与抛物线的一部分合成的封闭图形称为我们把一个半圆与抛物线的一部分合成的封闭图形称为“蛋圆”,如果一条“蛋圆”,如果一条直线与“蛋圆”只有一个交点,那么这条直线叫做“蛋圆”的切线.如图12,点A 、B 、C 、D 分别是“蛋圆”与坐标轴的交点,已知点D 的坐标为(0,-3),AB 为半圆的直径,半圆圆心M 的坐标为(1,0),半圆半径为2.(1)请你求出“蛋圆”抛物线部分的解析式,并写出自变量的取值范围;(2)你能求出经过点C 的“蛋圆”切线的解析式吗?试试看;(3)开动脑筋想一想,相信你能求出经过点D 的“蛋圆”切线的解析式.xOyAB友情提示:本大题第(1)小题4分,第(2)小题7分.对完成第(2)小题有困难的同学可以做下面的小题有困难的同学可以做下面的(3)(3)选做题.选做题2分,所得分数计入总分.但第(2)、(3)小题都做的,第(3)小题的得分不重复计入总分.xOy1231Q P 2P 1Q 1OPAxBDC Q y 2OPAxBC QyE33x 23A O yBFC3y ODEC FA B 34在第一象限内,且=3,sin ∠OAB=.AB 555(1)若点C 是点B 关于x 轴的对称点,求经过O 、C 、A 三点的抛物线的函数表达式;(2)在(1)中,抛物线上是否存在一点P ,使以P 、O 、C 、A 为顶点的四边形为梯形?若存在,求出点P 的坐标;若不存在,请说明理由;(3)若将点O 、点A 分别变换为点Q (-2k ,0)、点R (5k ,0)(k>1的常数),设过Q 、R 两点,且以QR 的垂直平分线为对称轴的抛物线与y 轴的交点为N ,其顶点为M 记,记△△QNM 的面积为,△QNR 的面积,求∶的值.QMN S ∆QNR S ∆QMN S ∆QNR S ∆21.(年乐山市)在平面直角坐标系中△ABC 的边AB 在x 轴上,且OA>OB,以AB 为直径的圆过点C 若C 的坐标为(0,2),AB=5,A,B 两点的横坐标X A ,X B 是关于X 的方程的两根:2(2)10x m x n −++−=(1)求m ,n 的值(2)若∠ACB 的平分线所在的直线交x 轴于点D ,试求直线对应的一次函数的解析式l l (3)过点D 任作一直线分别交射线CA ,CB (点C 除外)于点M ,N ,则的值`l 11CM CN +是否为定值,若是,求出定值,若不是,请说明理由ACO BNDML`D E FE DM C C23MA E C DBF 30�乙村甲村东北图①M A EC D B F30�乙村甲村图②O。
压轴题06 坐标图像题-【蝶变中考】2023年中考化学压轴题突破(全国通用)(解析版)
压轴题06坐标图像题类型一:金属与酸、盐的反应类型二:稀释、反应等过程中溶液pH的变化类型三:质量守恒定律及应用类型四:多种反应中物质质量的变化类型五:生产生活情境类问题类型一:金属与酸、盐的反应1.(2023·江苏南京·九年级专题练习)现有等质量的甲、乙、丙三种金属,将其分别放入三份质量分数相同的足量稀硫酸中,生成氢气的质量与反应时间的关系如图所示(已知甲、乙、丙在生成物中的化合价均为+2)。
则下列说法中不正确的是A.生成氢气的质量:甲>乙>丙B.相对原子质量:乙>丙>甲C.金属活动性:乙>甲>丙D.消耗硫酸的质量:甲>乙>丙【答案】B【详解】A、根据反应生成H2的质量与反应时间的关系图所示,在三种金属完全反应后,放出H2的质量是甲>乙>丙,选项A正确;B、因为三种金属的化合价、金属的质量都相等,所以完全反应放出氢气的质量与金属的相对原子质量成反比,即产生氢气多的相对原子质量小。
根据图示,在三种金属完全反应后,放出H2的质量是甲>乙>丙,所以可判断相对原子质量是丙>乙>甲,选项B不正确;C、根据图示,等质量的三种金属完全反应所需时间,乙最少,甲稍多,丙最多,故三种金属活动性顺序是乙>甲>丙,选项C正确;D、金属与酸的反应生成氢气时,氢来源于酸中的氢元素,因此生成的氢气多少与消耗的酸的多少顺序一致,故消耗硫酸的质量:甲>乙>丙,选项D正确。
故选B。
2.(2022秋·江苏扬州·九年级校联考阶段练习)两个烧杯中装有等质量的金属锌和镁,然后分别逐渐加入同浓度的稀硫酸,产生氢气的质量与加入硫酸的质量关系如图所示,下列说法不正确的是A.a点时,两个烧杯中的金属都没有剩余B.b点时,两个烧杯中产生氢气的质量不相同C.c点时,两个烧杯中产生氢气质量相同D.该图反映出镁比锌的金属活动性强【答案】D【详解】A、a点时,装金属锌烧杯中的酸过量,因为在c点上方拐点时氢气不再增加,此时锌已经反应完;而装镁烧杯的酸恰好完全反应,金属镁完全消耗没有剩余,说法正确,故A不符合题意;B、b点时,两个烧杯中产生氢气的质量不相同,因为在c点上方拐点时锌已经反应完,即使酸加到b点时,氢气的质量也不再增加,而镁在c点时没有反应完,酸加到b点时,氢气的质量也不断增加,所以b点出镁生成的氢气质量大于锌生成的氢气质量,说法正确,故B 不符合题意;C、c点时,金属锌和金属镁都没有消耗完,此时生成的氢气质量由加入的硫酸质量决定,而此时两烧杯内的硫酸质量相同,所以生成的氢气质量也相同,说法正确,故C不符合题意;D、该图像中,当横坐标为时间时,图像越陡金属越活泼,该图像横坐标不为时间,无法判断金属活动性强弱,说法错误,故D符合题意;故选D。
2021年全国各省市中考真题汇总:四边形压轴(解析版)
2021年全国各省市中考真题汇总:四边形压轴1.(2021•枣庄)如图1,对角线互相垂直的四边形叫做垂美四边形.(1)概念理解:如图2,在四边形ABCD中,AB=AD,CB=CD,问四边形ABCD是垂美四边形吗?请说明理由;(2)性质探究:如图1,垂美四边形ABCD的对角线AC,BD交于点O.猜想:AB2+CD2与AD2+BC2有什么关系?并证明你的猜想.(3)解决问题:如图3,分别以Rt△ACB的直角边AC和斜边AB为边向外作正方形ACFG 和正方形ABDE,连结CE,BG,GE.已知AC=4,AB=5,求GE的长.2.(2021•吉林)如图①,在Rt△ABC中,∠ACB=90°,∠A=60°,CD是斜边AB上的中线,点E为射线BC上一点,将△BDE沿DE折叠,点B的对应点为点F.(1)若AB=a.直接写出CD的长(用含a的代数式表示);(2)若DF⊥BC,垂足为G,点F与点D在直线CE的异侧,连接CF,如②,判断四边形ADFC的形状,并说明理由;(3)若DF⊥AB,直接写出∠BDE的度数.3.(2021•吉林)如图,在矩形ABCD中,AB=3cm,AD=cm.动点P从点A出发沿折线AB﹣BC向终点C运动,在边AB上以1cm/s的速度运动;在边BC上以cm/s 的速度运动,过点P作线段PQ与射线DC相交于点Q,且∠PQD=60°,连接PD,BD.设点P的运动时间为x(s),△DPQ与△DBC重合部分图形的面积为y(cm2).(1)当点P与点A重合时,直接写出DQ的长;(2)当点P在边BC上运动时,直接写出BP的长(用含x的代数式表示);(3)求y关于x的函数解析式,并写出自变量x的取值范围.4.(2021•贺州)如图,在四边形ABCD中,AD∥BC,∠C=90°,∠ADB=∠ABD=∠BDC,DE交BC于点E,过点E作EF⊥BD,垂足为F,且EF=EC.(1)求证:四边形ABED是菱形;(2)若AD=4,求△BED的面积.5.(2021•福建)如图,在正方形ABCD中,E,F为边AB上的两个三等分点,点A关于DE的对称点为A′,AA′的延长线交BC于点G.(1)求证:DE∥A′F;(2)求∠GA′B的大小;6.(2021•长春)实践与探究操作一:如图①,已知正方形纸片ABCD,将正方形纸片沿过点A的直线折叠,使点B 落在正方形ABCD的内部,点B的对应点为点M,折痕为AE,再将纸片沿过点A的直线折叠,使AD与AM重合,折痕为AF,则∠EAF=度.操作二:如图②,将正方形纸片沿EF继续折叠,点C的对应点为点N.我们发现,当点E的位置不同时,点N的位置也不同.当点E在BC边的某一位置时,点N恰好落在折痕AE上,则∠AEF=度.在图②中,运用以上操作所得结论,解答下列问题:(1)设AM与NF的交点为点P.求证:△ANP≌△FNE;(2)若AB=,则线段AP的长为.7.(2021•绥化)如图所示,四边形ABCD为正方形,在△ECH中,∠ECH=90°,CE=CH,HE的延长线与CD的延长线交于点F,点D、B、H在同一条直线上.(2)当时,求的值;(3)当HB=3,HG=4时,求sin∠CFE的值.8.(2021•安顺)(1)阅读理解我国是最早了解勾股定理的国家之一,它被记载于我国古代的数学著作《周髀算经》中.汉代数学家赵爽为了证明勾股定理,创制了一幅如图①所示的“弦图”,后人称之为“赵爽弦图”.根据“赵爽弦图”写出勾股定理和推理过程;(2)问题解决勾股定理的证明方法有很多,如图②是古代的一种证明方法:过正方形ACDE的中心O,作FG⊥HP,将它分成4份,所分成的四部分和以BC为边的正方形恰好能拼成以AB为边的正方形.若AC=12,BC=5,求EF的值;(3)拓展探究如图③,以正方形一边为斜边向外作直角三角形,再以该直角三角形的两直角边分别向外作正方形,重复这一过程就可以得到“勾股树”的部分图形.设大正方形N的边长为定值n,小正方形A,B,C,D的边长分别为a,b,c,d.已知∠1=∠2=∠3=α,当角α(0°<α<90°)变化时,探究b与c的关系式,并写出该关系式及解答过程(b与c的关系式用含n的式子表示).9.(2021•齐齐哈尔)综合与实践数学实践活动,是一种非常有效的学习方式,通过活动可以激发我们的学习兴趣,提高动手动脑能力,拓展思维空间,丰富数学体验,让我们一起动手来折一折、转一转、剪一剪,体会活动带给我们的乐趣.折一折:将正方形纸片ABCD折叠,使边AB、AD都落在对角线AC上,展开得折痕AE、AF,连接EF,如图1.(1)∠EAF=°,写出图中两个等腰三角形:(不需要添加字母);转一转:将图1中的∠EAF绕点A旋转,使它的两边分别交边BC、CD于点P、Q,连接PQ,如图2.(2)线段BP、PQ、DQ之间的数量关系为;(3)连接正方形对角线BD,若图2中的∠PAQ的边AP、AQ分别交对角线BD于点M、点N,如图3,则=;剪一剪:将图3中的正方形纸片沿对角线BD剪开,如图4.(4)求证:BM2+DN2=MN2.10.(2021•广西)如图①,在△ABC中,AD⊥BC于点D,BC=14,AD=8,BD=6,点E是AD上一动点(不与点A,D重合),在△ADC内作矩形EFGH,点F在DC上,点G,H在AC上,设DE=x,连接BE.(1)当矩形EFGH是正方形时,直接写出EF的长;(2)设△ABE的面积为S1,矩形EFGH的面积为S2,令y=,求y关于x的函数解析式(不要求写出自变量x的取值范围);(3)如图②,点P(a,b)是(2)中得到的函数图象上的任意一点,过点P的直线l 分别与x轴正半轴,y轴正半轴交于M,N两点,求△OMN面积的最小值,并说明理由.11.(2021•玉林)如图,在四边形ABCD中,对角线AC与BD交于点O,已知OA=OC,OB=OD,过点O作EF⊥BD,分别交AB、DC于点E,F,连接DE,BF.(1)求证:四边形DEBF是菱形:(2)设AD∥EF,AD+AB=12,BD=4,求AF的长.12.(2021•海南)如图1,在正方形ABCD中,点E是边BC上一点,且点E不与点B、C重合,点F是BA的延长线上一点,且AF=CE.(1)求证:△DCE≌△DAF;(2)如图2,连接EF,交AD于点K,过点D作DH⊥EF,垂足为H,延长DH交BF 于点G,连接HB,HC.①求证:HD=HB;②若DK•HC=,求HE的长.13.(2021•无锡)已知四边形ABCD是边长为1的正方形,点E是射线BC上的动点,以AE为直角边在直线BC的上方作等腰直角三角形AEF,∠AEF=90°,设BE=m.(1)如图,若点E在线段BC上运动,EF交CD于点P,AF交CD于点Q,连结CF,①当m=时,求线段CF的长;②在△PQE中,设边QE上的高为h,请用含m的代数式表示h,并求h的最大值;(2)设过BC的中点且垂直于BC的直线被等腰直角三角形AEF截得的线段长为y,请直接写出y与m的关系式.14.(2021•广西)如图,四边形ABCD中,AB∥CD,∠B=∠D,连接AC.(1)求证:△ABC≌△CDA;(2)尺规作图:过点C作AB的垂线,垂足为E(不要求写作法,保留作图痕迹);(3)在(2)的条件下,已知四边形ABCD的面积为20,AB=5,求CE的长.15.(2021•盐城)如图,D、E、F分别是△ABC各边的中点,连接DE、EF、AE.(1)求证:四边形ADEF为平行四边形;(2)加上条件后,能使得四边形ADEF为菱形,请从①∠BAC=90°;②AE平分∠BAC;③AB=AC这三个条件中选择1个条件填空(写序号),并加以证明.16.(2021•广西)【阅读理解】如图①,l1∥l2,△ABC的面积与△DBC的面积相等吗?为什么?解:相等.在△ABC和△DBC中,分别作AE⊥l2,DF⊥l2,垂足分别为E,F.∴∠AEF=∠DFC=90°,∴AE∥DF.∵l1∥l2,∴四边形AEFD是平行四边形,∴AE=DF.又S△ABC=BC•AE,S△DBC=BC•DF.∴S△ABC=S△DBC.【类比探究】如图②,在正方形ABCD的右侧作等腰△CDE,CE=DE,AD=4,连接AE,求△ADE的面积.解:过点E作EF⊥CD于点F,连接AF.请将余下的求解步骤补充完整.【拓展应用】如图③,在正方形ABCD的右侧作正方形CEFG,点B,C,E在同一直线上,AD=4,连接BD,BF,DF,直接写出△BDF的面积.17.(2021•黑龙江)如图,在平面直角坐标系中,△AOB的边OA在x轴上,OA=AB,且线段OA的长是方程x2﹣4x﹣5=0的根,过点B作BE⊥x轴,垂足为E,tan∠BAE =,动点M以每秒1个单位长度的速度,从点A出发,沿线段AB向点B运动,到达点B停止.过点M作x轴的垂线,垂足为D,以MD为边作正方形MDCF,点C在线段OA上,设正方形MDCF与△AOB重叠部分的面积为S,点M的运动时间为t(t>0)秒.(1)求点B的坐标;(2)求S关于t的函数关系式,并写出自变量t的取值范围;(3)当点F落在线段OB上时,坐标平面内是否存在一点P,使以M、A、O、P为顶点的四边形是平行四边形?若存在,直接写出点P的坐标;若不存在,请说明理由.18.(2021•衢州)【推理】如图1,在正方形ABCD中,点E是CD上一动点,将正方形沿着BE折叠,点C落在点F处,连结BE,CF,延长CF交AD于点G.(1)求证:△BCE≌△CDG.【运用】(2)如图2,在【推理】条件下,延长BF交AD于点H.若,CE=9,求线段DE的长.【拓展】(3)将正方形改成矩形,同样沿着BE折叠,连结CF,延长CF,BF交直线AD于G,H两点,若=k,=,求的值(用含k的代数式表示).19.(2021•宿迁)已知正方形ABCD与正方形AEFG,正方形AEFG绕点A旋转一周.(1)如图①,连接BG、CF,求的值;(2)当正方形AEFG旋转至图②位置时,连接CF、BE,分别取CF、BE的中点M、N,连接MN、试探究:MN与BE的关系,并说明理由;(3)连接BE、BF,分别取BE、BF的中点N、Q,连接QN,AE=6,请直接写出线段QN扫过的面积.20.(2021•广元)如图,在平行四边形ABCD中,E为DC边的中点,连接AE,若AE 的延长线和BC的延长线相交于点F.(1)求证:BC=CF;(2)连接AC和BE相交于点为G,若△GEC的面积为2,求平行四边形ABCD的面积.21.(2021•十堰)如图,已知△ABC中,D是AC的中点,过点D作DE⊥AC交BC于点E,过点A作AF∥BC交DE于点F,连接AE、CF.(1)求证:四边形AECF是菱形;(2)若CF=2,∠FAC=30°,∠B=45°,求AB的长.22.(2021•宜昌)如图,在矩形ABCD中,E是边AB上一点,BE=BC,EF⊥CD,垂足为F.将四边形CBEF绕点C顺时针旋转α(0°<α<90°),得到四边形CB'E'F′,B′E′所在的直线分别交直线BC于点G,交直线AD于点P,交CD于点K.E′F′所在的直线分别交直线BC于点H,交直线AD于点Q,连接B′F′交CD于点O.(1)如图1,求证:四边形BEFC是正方形;(2)如图2,当点Q和点D重合时.①求证:GC=DC;②若OK=1,CO=2,求线段GP的长;(3)如图3,若BM∥F′B′交GP于点M,tan∠G=,求的值.23.(2021•山西)综合与实践问题情境:数学活动课上,老师出示了一个问题:如图①,在▱ABCD中,BE⊥AD,垂足为E,F为CD的中点,连接EF,BF,试猜想EF与BF的数量关系,并加以证明.独立思考:(1)请解答老师提出的问题;实践探究:(2)希望小组受此问题的启发,将▱ABCD沿着BF(F为CD的中点)所在直线折叠,如图②,点C的对应点为C′,连接DC′并延长交AB于点G,请判断AG与BG的数量关系,并加以证明.问题解决:(3)智慧小组突发奇想,将▱ABCD沿过点B的直线折叠,如图③,点A的对应点为A′,使A′B⊥CD于点H,折痕交AD于点M,连接A′M,交CD于点N.该小组提出一个问题:若此▱ABCD的面积为20,边长AB=5,BC=2,求图中阴影部分(四边形BHNM)的面积.请你思考此问题,直接写出结果.24.(2021•陕西)问题提出(1)如图1,在▱ABCD中,∠A=45°,AB=8,AD=6,E是AD的中点,点F在DC 上,且DF=5,求四边形ABFE的面积.(结果保留根号)问题解决(2)某市进行河滩治理,优化美化人居生态环境.如图2所示,现规划在河畔的一处滩地上规划一个五边形河畔公园ABCDE.按设计要求,要在五边形河畔公园ABCDE内挖一个四边形人工湖OPMN,使点O、P、M、N分别在边BC、CD、AE、AB上,且满足BO=2AN=2CP,AM=OC.已知五边形ABCDE中,∠A=∠B=∠C=90°,AB=800m,BC=1200m,CD=600m,AE=900m.为满足人工湖周边各功能场所及绿化用地需要,想让人工湖面积尽可能小.请问,是否存在符合设计要求的面积最小的四边形人工湖OPMN?若存在,求四边形OPMN面积的最小值及这时点N到点A的距离;若不存在,请说明理由.25.(2021•岳阳)如图,在Rt△ABC中,∠ACB=90°,∠A=60°,点D为AB的中点,连接CD,将线段CD绕点D顺时针旋转α(60°<α<120°)得到线段ED,且ED交线段BC于点G,∠CDE的平分线DM交BC于点H.(1)如图1,若α=90°,则线段ED与BD的数量关系是,=;(2)如图2,在(1)的条件下,过点C作CF∥DE交DM于点F,连接EF,BE.①试判断四边形CDEF的形状,并说明理由;②求证:=;(3)如图3,若AC=2,tan(α﹣60°)=m,过点C作CF∥DE交DM于点F,连接EF,BE,请直接写出的值(用含m的式子表示).26.(2021•菏泽)在矩形ABCD中,BC=CD,点E、F分别是边AD、BC上的动点,且AE=CF,连接EF,将矩形ABCD沿EF折叠,点C落在点G处,点D落在点H处.(1)如图1,当EH与线段BC交于点P时,求证:PE=PF;(2)如图2,当点P在线段CB的延长线上时,GH交AB于点M,求证:点M在线段EF的垂直平分线上;(3)当AB=5时,在点E由点A移动到AD中点的过程中,计算出点G运动的路线长.27.(2021•新疆)如图,在矩形ABCD中,点E在边BC上,点F在BC的延长线上,且BE=CF.求证:(1)△ABE≌△DCF;(2)四边形AEFD是平行四边形.28.(2021•株洲)如图所示,在矩形ABCD中,点E在线段CD上,点F在线段AB的延长线上,连接EF交线段BC于点G,连接BD,若DE=BF=2.(1)求证:四边形BFED是平行四边形;(2)若tan∠ABD=,求线段BG的长度.29.(2021•天津)在平面直角坐标系中,O为原点,△OAB是等腰直角三角形,∠OBA=90°,BO=BA,顶点A(4,0),点B在第一象限,矩形OCDE的顶点E(﹣,0),点C在y轴的正半轴上,点D在第二象限,射线DC经过点B.(Ⅰ)如图①,求点B的坐标;(Ⅱ)将矩形OCDE沿x轴向右平移,得到矩形O′C′D′E′,点O,C,D,E的对应点分别为O′,C′,D′,E′.设OO′=t,矩形O′C′D′E′与△OAB重叠部分的面积为S.①如图②,当点E′在x轴正半轴上,且矩形O′C′D′E′与△OAB重叠部分为四边形时,D′E′与OB相交于点F,试用含有t的式子表示S,并直接写出t的取值范围;②当≤t≤时,求S的取值范围(直接写出结果即可).参考答案1.解:(1)四边形ABCD是垂美四边形.理由如下:如图2,连接AC、BD,∵AB=AD,∴点A在线段BD的垂直平分线上,∵CB=CD,∴点C在线段BD的垂直平分线上,∴直线AC是线段BD的垂直平分线,∴AC⊥BD,即四边形ABCD是垂美四边形;(2)AB2+CD2=AD2+BC2,理由如下:如图1中,∵AC⊥BD,∴∠AOD=∠AOB=∠BOC=∠COD=90°,由勾股定理得,AD2+BC2=AO2+DO2+BO2+CO2,AB2+CD2=AO2+BO2+CO2+DO2,∴AD2+BC2=AB2+CD2;(3)如图3,连接CG、BE,∵正方形ACFG和正方形ABDE,∴AG=AC,AB=AE,∠CAG=∠BAE=90°,∴∠CAG+∠BAC=∠BAE+∠BAC,即∠GAB=∠CAE,在△GAB和△CAE中,,∴△GAB≌△CAE(SAS),∴∠ABG=∠AEC,∵∠AEC+∠AME=90°,∴∠ABG+∠AME=90°,即CE⊥BG,∴四边形CGEB是垂美四边形,由(2)得,CG2+BE2=CB2+GE2,∵AC=4,AB=5,∴BC===3,∵CG===4,BE===5,∴GE2=CG2+BE2﹣CB2=(4)2+(5)2﹣32=73,∴GE=.2.解:(1)如图①,在Rt△ABC中,∠ACB=90°,∵CD是斜边AB上的中线,AB=a,∴CD=AB=a.(2)四边形ADFC是菱形.理由如下:如图②∵DF⊥BC于点G,∴∠DGB=∠ACB=90°,∴DF∥AC;由折叠得,DF=DB,∵DB=AB,∴DF=AB;∵∠ACB=90°,∠A=60°,∴∠B=90°﹣60°=30°,∴AC=AB,∴DF=AC,∴四边形ADFC是平行四边形;∵AD=AB,∴AD=DF,∴四边形ADFC是菱形.(3)如图③,点F与点D在直线CE异侧,∵DF⊥AB,∴∠BDF=90°;由折叠得,∠BDE=∠FDE,∴∠BDE=∠FDE=∠BDF=×90°=45°;如图④,点F与点D在直线CE同侧,∵DF⊥AB,∴∠BDF=90°,∴∠BDE+∠FDE=360°﹣90°=270°,由折叠得,∠BDE=∠FDE,∴∠BDE+∠BDE=270°,∴∠BDE=135°.综上所述,∠BDE=45°或∠BDE=135°.3.解:(1)如图,在Rt△PDQ中,AD=,∠PQD=60°,∴tan60°==,∴DQ=AD=1.(2)点P在AB上运动时间为3÷1=3(s),∴点P在BC上时PB=(x﹣3).(3)当0≤x≤3时,点P在AB上,作PE⊥CD于点E,同(1)可得EQ=AD=1.∴DQ=DE+EQ=AP+EQ=x+1,当x+1=3时x=2,∴y=DQ•AD=×(x+1)=x+(0≤x≤2).当2<x≤3时,点Q在DC延长线上,PQ交BC于点F,如图,∵CQ=DQ﹣DC=x+1﹣3=x﹣2,tan60°=,∴CF=CQ•tan60°=(x﹣2),∴S△CQF=CQ•CF=(x﹣2)×(x﹣2)=x2﹣2x+2,∴y=S△PDQ﹣S△CQF=x+﹣(x2﹣2x+2)=﹣x2x﹣(2<x≤3).综上所述,y=.4.(1)证明:∵∠C=90°,∴EC⊥DC,∵EF⊥BD,EF=EC,∴DE是∠BDC的平分线,∴∠EDB=∠EDC,∵∠ADB=∠BDC,∴∠ADB=∠EDB,∵∠ADB=∠ABD,∴∠ABD=∠EDB,∴AB∥DE,∵AD∥BC,∴AD∥BE,∴四边形ABED是平行四边形,∵∠ADB=∠ABD,∴AB=AD,∴四边形ABED是菱形;(2)解:由(1)知,四边形ABED是菱形,∴DE=BE=AD=4,∵AD∥BC,∴∠ADC+∠C=180°,∵∠C=90°,∴∠ADC=90°,∵∠EDB=∠EDC=∠ADB,∴∠EDC=30°,∴CD=DE•cos30°=4×=2,∴S△BED=BE•CD=×4×2=4.5.证明:(1)如图,设AG与DE的交点为O,连接GF,∵点A关于DE的对称点为A′,∴AO=A'O,AA'⊥DE,∵E,F为边AB上的两个三等分点,∴AE=EF=BF,∴DE∥A'F;(2)∵AA'⊥DE,∴∠AOE=90°=∠DAE=∠ABG,∴∠ADE+∠DEA=90°=∠DEA+∠EAO,∴∠ADE=∠EAO,在△ADE和△BAG中,,∴△ADE≌△BAG(ASA),∴AE=BG,∴BF=BG,∴∠GFB=∠FGB=45°,∵∠FA'G=∠FBG=90°,∴点F,点B,点G,点A'四点共圆,∴∠GA'B=∠GFB=45°;(3)设AE=EF=BF=BG=a,∴AD=BC=3a,FG=a,∴CG=2a,在Rt△ADE中,DE===a=AG,∵sin∠EAO=sin∠ADE,∴,∴,∴OE=a,∴AO===a=A'O,∴A'G=,∵AO=A'O,AE=EF,∴A'F=a=a,∵∠FA'G=∠FBG=90°,∴∠A'FB+∠A'GB=180°,∵∠A'GC+∠A'GB=180°,∴∠A'FB=∠A'GC,又∵==,∴△A'FB∽△A'GC,∴,∴A′C=2A′B.6.操作一:解:∵四边形ABCD是正方形,∴∠C=∠BAD=90°,由折叠的性质得:∠BAE=∠MAE,∠DAF=∠MAF,∴∠MAE+∠MAF=∠BAE+∠DAF=∠BAD=45°,即∠EAF=45°,故答案为:45;操作二:解:∵四边形ABCD是正方形,∴∠B=∠C=90°,由折叠的性质得:∠NFE=∠CFE,∠ENF=∠C=90°,∠AFD=∠AFM,∴∠ANF=180°﹣90°=90°,由操作一得:∠EAF=45°,∴△ANF是等腰直角三角形,∴∠AFN=45°,∴∠AFD=∠AFM=45°+∠NFE,∴2(45°+∠NFE)+∠CFE=180°,∴∠NFE=∠CFE=30°,∴∠AEF=90°﹣30°=60°,故答案为:60;(1)证明:∵△ANF是等腰直角三角形,∴AN=FN,∵∠AMF=∠ANF=90°,∠APN=∠FPM,∴∠NAP=∠NFE=30°,在△ANP和△FNE中,,∴△ANP≌△FNE(ASA);(2)由(1)得:△ANP≌△FNE,∴AP=FE,PN=EN,∵∠NFE=∠CFE=30°,∠ENF=∠C=90°,∴∠NEF=∠CEF=60°,∴∠AEB=60°,∵∠B=90°,∴∠BAE=30°,∴BE=AB=1,∴AE=2BE=2,设PN=EN=a,∵∠ANP=90°,∠NAP=30°,∴AN=PN=a,AP=2PN=2a,∵AN+EN=AE,∴a+a=2,解得:a=﹣1,∴AP=2a=2﹣2,故答案为:2﹣2.7.(1)证明:∵四边形ABCD是正方形,∴BC=CD,∠DCB=90°,∵∠ECH=90°,∴∠DCB﹣∠BCE=∠ECH﹣∠BCE,即∠DCE=∠BCH,在△CDE和△CBH中,,∴△CDE≌△CBH(SAS);(2)解:由(1)得:△ACDE≌△CBH,∴∠CDE=∠CBH,DE=BH,∵四边形ABCD是正方形,∴∠CDB=∠DBC=45°,∴∠CDE=∠CBH=180°﹣45°=135°,∴∠EDH=135°﹣45°=90°,∵BH:DH=1:5,∴设BH=a,则DH=5a,∴DE=BH=a,在Rt△HDE中,EH===a,过C作CM⊥EH于M,过D作DN⊥FH于N,如图1所示:则DN∥CM,∵△DEH的面积=DN×EH=DE×DH,∴DN×a=×a×5a,解得:DN=a,∵CE=CH,∠ECH=90°,∴CM=EH=a,∵DN∥CM,∴△FDN∽△FCM,∴===;(3)解:过点E作PE∥DH交CF于P,过点E作EQ⊥CF于Q,如图2所示:∵PE∥DH,∴∠BHG=∠PEF,∠FPE=∠FDH=135°,∵四边形ABCD是正方形,∴AB∥CD,∴∠HBG=∠FDH=135°,∴∠HBG=∠EPF=135°,∵∠CDE=135°,∴∠EDQ=45°,∠EPQ=45°,∴△PED为等腰直角三角形,∴DE=PE,由(1)得:△CDE≌△CBH,∴DE=BH,∴DE=BH=PE=3,在△BHG和△PEF中,,∴△BHG≌△PEF(ASA),∴HG=EF=4,∵△PED是等腰直角三角形,∴PD=DE=3,∵EQ⊥PD,∴QE=PD=,在Rt△FEQ中,sin∠CFE===.8.解:(1)a2+b2=c2(直角三角形两条直角边的平方和等于斜边的平方),证明如下:∵如图①是由直角边长分别为a,b的四个全等的直角三角形与中间一个边长为(b﹣a)的小正方形拼成的一个边长为c的大正方形,∴4△ADE的面积+正方形EFGH的面积=正方形ABCD是面积,即4×ab+(b﹣a)2=c2,整理得:a2+b2=c2;(2)由题意得:正方形ACDE被分成4个全等的四边形,设EF=a,FD=b,∴a+b=12①,∵正方形ABIJ是由正方形ACDE被分成的4个全等的四边形和正方形CBLM拼成,∴E'F'=EF,KF'=FD,E'K=BC=5,∵E'F'﹣KF'=E'K,∴a﹣b=5②,由①②得:,解得:a=,∴EF=;(3)c+b=n,理由如下:如图③所示:设正方形E的边长为e,正方形F的边长为f,∵∠1=∠2=∠3=α,∠PMQ=∠D'OE'=∠B'C'A'=90°,∴△PMQ∽△D'OE'∽△B'C'A',∴=,=,即=,=,∴e2=cn,f2=bn,在Rt△A'B'C'中,由勾股定理得:e2+f2=n2,∴cn+bn=n2,∴c+b=n.9.(1)解:如图1中,∵四边形ABCD是正方形,∴AB=AD=BC=CD,∠BAD=90°,∴ABC,△ADC都是等腰三角形,∵∠BAE=∠CAE,∠DAF=∠CAF,∴∠EAF=(∠BAC+∠DAC)=45°,∵∠BAE=∠DAF=22.5°,∠B=∠D=90°,AB=AD,∴△BAE≌△DAF(ASA),∴BE=DF,AE=AF,∵CB=CD,∴CE=CF,∴△AEF,△CEF都是等腰三角形,故答案为:45,△AEF,△EFC,△ABC,△ADC.(2)解:结论:PQ=BP+DQ.理由:如图2中,延长CB到T,使得BT=DQ.∵AD=AB,∠ADQ=∠ABT=90°,DQ=BT,∴△ADQ≌△ABT(SAS),∴AT=AQ,∠DAQ=∠BAT,∵∠PAQ=45°,∴∠PAT=∠BAP+∠BAT=∠BAP+∠DAQ=45°,∴∠PAT=∠PAQ=45°,∵AP=AP,∴△PAT≌△PAQ(SAS),∴PQ=PT,∵PT=PB+BT=PB+DQ,∴PQ=BP+DQ.故答案为:PQ=BP+DQ.(3)解:如图3中,∵四边形ABCD是正方形,∴∠ABM=∠ACQ=∠BAC=45°,AC=AB,∵∠BAC=∠PAQ=45°,∴∠BAM=∠CAQ,∴△CAQ∽△BAM,∴==,故答案为:.(4)证明:如图4中,将△ADN绕点A顺时针旋转90°得到△ABR,连接RM.∵∠BAD=90°,∠MAN=45°,∴∠DAN+∠BAM=45°,∵∠DAN=∠BAR,∴∠BAM+∠BAR=45°,∴∠MAR=∠MAN=45°,∵AR=AN,AM=AM,∴△AMR≌△AMN(SAS),∴RM=MN,∵∠D=∠ABR=∠ABD=45°,∴∠RBM=90°,∴RM2=BR2+BM2,∵DN=BR,MN=RM,∴BM2+DN2=MN2.10.解:(1)设EF=m.∵BC=14,BD=6,∴CD=BC﹣BD=14﹣6=8,∵AD=8,∴AD=DC=8,∵AD⊥BC,∴∠ADC=90°,∴AC=AD=8,∵四边形EFGH是正方形,∴EH=FG=GH=EF=m,∠EHG=∠FGH=90°,∴∠AHE=∠FGC=90°,∵∠DAC=∠C=45°,∴∠AEH=∠EAH=45°,∠GFC=∠C=45°,∴AH=EH=x,CG=FG=x,∴3m=8,∴m=,∴EF=.(2)∵DE=DF=x,DA=DC=8,∴AE=CF=8﹣x,∴EH=AE=(8﹣x),EF=DE=x,∴y===,∴y=(0<x<8).(3)如图③中,由(2)可知点P在y=上,当OP最小时,点P在第一象限的角平分线时,此时P(,),当直线MN⊥OP时,△OMN的面积最小,此时OM=ON=2,∴△MON的面积的最小值=×2×2=6.11.(1)证明:∵OA=OC,OB=OD,∴四边形ABCD为平行四边形,∴AB∥CD,∴∠ABD=∠CDB,在△BOE和△DOF中,,∴BE=DF,∵BE∥DF,∴四边形DEBF是平行四边形,∵EF⊥BD,∴四边形DEBF是菱形;(2)过点F作FG⊥AB于点G,如图,∵AD∥EF,EF⊥BD,∴∠ADB=90°,∴在Rt△ABD中,AD2+BD2=AB2,∵AD+AB=12,BD=4,∴AD2+(4)2=(12﹣AD)2,解得AD=4,AB=8,∴∠ABD=30°,∵四边形DEBF是菱形,∴∠EBF=2∠ABD=60°,∴△BEF是等边三角形,∵OB=OD,EF∥AD,∴AE=BE=4,∵FG⊥BE,∴EG=BG=2,在Rt△BGF中,BF=4,BG=2,根据勾股定理得,FG=,在Rt△AGF中,AG=6,根据勾股定理得,AF===4.12.解:(1)∵四边形ABCD为正方形,∴CD=AD,∠DCE=∠DAF=90°,∵CE=AF,∴△DCE≌△DAF(SAS);(2)①∵△DCE≌△DAF,∴DE=DF,∠CDE=∠ADF,∴∠DE=∠ADF+∠ADE=∠CDE+∠ADE=∠ADC=90°,∴△DFE为等腰直角三角形,∵DH⊥EF,∴点H是EF的中点,∴DH=EF,同理,由HB是Rt△EBF的中线得:HB=EF,∴HD=HB;②∵四边形ABCD为正方形,故CD=CB,∵HD=HB,CH=CH,∴△DCH≌△BCH(SSS),∴∠DCH=∠BCH=45°,∵△DEF为等腰直角三角形,∴∠DFE=45°,∴∠HCE=∠DFK,∵四边形ABCD为正方形,∴AD∥BC,∴∠DKF=∠HEC,∴△DKF∽△HEC,∴,∴DK•HC=DF•HE,在等腰直角三角形DFH中,DF=HE=HE,∴DK•HC=DF•HE=HE2=,∴HE=1.13.解:(1)①过F作FG⊥BC于G,连接CF,如图:∵四边形ABCD是正方形,∠AEF=90°,∴∠BAE=90°﹣∠AEB=∠EFG,∠B=∠G=90°,∵等腰直角三角形AEF,∴AE=EF,在△ABE和△EGF中,,∴△ABE≌△EGF(AAS),∴FG=BE=,EG=AB=BC,∴EG﹣EC=BC﹣EC,即CG=BE=,在Rt△CGF中,CF==;②△ABE绕A逆时针旋转90°,得△ADE',过P作PH⊥EQ于H,如图:∵△ABE绕A逆时针旋转90°,得△ADE',∴△ABE≌△ADE',∠B=∠ADE'=90°,∠BAE=∠DAE',∠AEB=∠E',AE=AE',BE=DE',∴∠ADC+∠ADE'=180°,∴C、D、E'共线,∵∠BAE+∠EAD=90°,∴∠DAE'+∠EAD=90°,∵∠EAF=45°,∴∠EAF=∠E'AF=45,在△EAQ和△E'AQ中,,∴△EAQ≌△E'AQ(SAS),∴∠E'=∠AEQ,EQ=E'Q,∴∠AEB=∠AEQ,EQ=DQ+DE'=DQ+BE,∴∠QEP=90°﹣∠AEQ=90°﹣∠AEB=∠CEP,即EF是∠QEC的平分线,又∠C=90°,PH⊥EQ,∴PH=PC,∵∠BAE=∠CEP,∠B=∠C=90°,∴△ABE∽△ECP,∴=,即=,∴CP=m(1﹣m),∴PH=h=﹣m2+m=﹣(m﹣)2+,∴m=时,h最大值是;(2)①当m<时,如图:∵∠BAE=90°﹣∠AEB=∠HEG,∠B=∠HGE=90°,∴△ABE∽△ECP,∴=,即=,∴HG=﹣m2+m,∵MG∥CD,G为BC中点,∴MN为△ADQ的中位线,∴MN=DQ,由(1)知:EQ=DQ+BE,设DQ=x,则EQ=x+m,CQ=1﹣x,Rt△EQC中,EC2+CQ2=EQ2,∴(1﹣m)2+(1﹣x)2=(x+m)2,解得x=,∴MN=,∴y=NH=MG﹣HG﹣MN=1﹣(﹣m2+m)﹣=1﹣m﹣+m2,②当m>时,如图:∵MG∥AB,∴=,即=,同①可得MN=DQ=,∴HN=MG﹣HG﹣MN=1﹣﹣=,∴y=,综上所述,y=1﹣m﹣+m2或y=.14.(1)证明:∵AB∥CD,∴∠ACD=∠CAB,在△ABC和△CDA中,,∴△ABC≌△CDA(AAS);(2)解:过点C作AB的垂线,垂足为E,如图:(3)解:由(1)知:△ABC≌△CDA,∵四边形ABCD的面积为20,∴S△ABC=S△CDA=10,∵AB=5,∴CE=4.15.解:(1)证明:已知D、E、F为AB、BC、AC的中点,∴DE为△ABC的中位线,根据三角形中位线定理,∴DE∥AC,且DE==AF.即DE∥AF,DE=AF,∴四边形ADEF为平行四边形.(2)证明:选②AE平分∠BAC,∵AE平分∠BAC,∴∠DAE=∠FAE,又∵ADEF为平行四边形,∴EF∥DA,∴∠DAE=∠AEF,∴∠FAE=∠AEF,∴AF=EF,∴平行四边形ADEF为菱形.选③AB=AC,∵EF∥AB且EF=,DE∥AC且DE=,又∵AB=AC,∴EF=DE,∴平行四边形ADEF为菱形.16.解:【类比探究】过点E作EF⊥CD于点F,连接AF,∵四边形ABCD是正方形,∴AD=CD=4,∠ADC=90°,∵DE=CE,EF⊥CD,∴DF=CF=CD=2,∠ADC=∠EFD=90°,∴AD∥EF,∴S△ADE=S△ADF,∴S△ADE=×AD×DF=×4×2=4;【拓展应用】如图③,连接CF,∵四边形ABCD和四边形CGFE都是正方形,∴∠BDC=45°,∠GCF=45°,∴∠BDC=∠GCF,∴BD∥CF,∴S△BDF=S△BCD,∴S△BDF=BC×BC=8.17.解:(1)由x2﹣4x﹣5=0,解得x=5或﹣1,∵OA是方程的根,∴OA=5,∴AB=OA=5,在Rt△ABE中,tan∠BAE==,AB=5,∴BE=4,AE=5,∴OE=OA+AE=5+3=8,∴B(8,4).(2)如图1中,当点F落在OB上时,AN=t,DM=t.AD=t,∵FM∥OA,∴=,∴=,∴t=.如图2中,当0<t≤时,重叠部分是四边形ACFM,S=•(AC+FM)•DM=•(t+t﹣t)•t=t2.如图3中,当<t≤5时,重叠部分是五边形ACHGM,S=S梯形ACFM﹣S△FGH=t2﹣××[﹣(5﹣t)]2=﹣t2+t﹣.综上所述,S=.(3)如图4中,满足条件的点P如图所示:∵点F落在OB上时,t=,∵DM=FM=,AD=,AC=,∴PF=PM﹣FM=5﹣=,OC=5﹣=,∴F(,),M(,).∴P(,),P″(﹣,﹣),P′(,).18.(1)证明:如图1中,∵△BFE是由△BCE折叠得到,∴BE⊥CF,∴∠ECF+∠BEC=90°,∵四边形ABCD是正方形,∴∠D=∠BCE=90°,∴∠ECF+∠CGD=90°,∴∠BEC=∠CGD,∵BC=CD,∴△BCE≌△CDG(AAS).(2)如图2中,连接EH.。
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
2009年全国各地中考试题压轴题精选讲座六
函数、方程、不等式问题
(浙江省宁波滨海学校数学组 方德懿)
【知识纵横】
函数、方程、不等式的结合,是函数某一变量值一定或在某一范围下的方程或不等式,体现了一般到特殊的观念。
也体现了函数图像与方程、不等式的内在联系,例求两个函数的交点坐标,一般通过函数解析式组成的方程组来解决。
又如例4复合了一次函数、二次函数,并对所得的函数要结合自变量的取值范围来考虑最值,这就需要结合图像来解决。
【典型例题】
【例1】(天津市)已知函数y 1=x ,y 2=x 2
+bx +c ,α,β为方程y 1-y 2=0的两个根,点M (1,T )在
函数y 2的图象上.
(Ⅰ)若α=3
1,β=21,求函数y 2的解析式;
(Ⅱ)在(Ⅰ)的条件下,若函数y 1与y 2的图象的两个交点为A ,B ,当△ABM 的面积为3
121时,
求t 的值;
(Ⅲ)若0<α<β<1,当0<t <1时,试确定T ,α,β三者之间的大小关系,并说明理由.
【例2】(浙江省慈溪中学保送生招生考试)已知:抛物线y =ax 2
+bx +c 经过点(-1,1),且对于任意的实数x ,有4x -4≤ax 2
+bx +c ≤2x
2
-
4x +4恒成立.
(1)求4a +2b +c 的值.
(2)求y =ax 2
+bx +c 的解析式.
(3)设点M (x ,y )是抛物线上任一点,点B (0,2),求线段MB 的长度的最小值.
【例3】(黑龙江省大兴安岭地区)直线y =b kx +(k ≠0)与坐标轴分别交于A 、B 两点,OA 、OB 的长分别是方程48142+-x x =0的两根(OA >OB ).动点P 从O 点出发,沿路线O →B →A 以每秒1个单位长度的速度运动,到达A 点时运动停止.
(1)直接写出A 、B 两点的坐标;
(2)设点P 的运动时间为t (秒),△OP A 的面积为S ,求S 与t 之间的函数关系式(不必写出自变量的取值范围);
(3)当S =12时,直接写出点P 的坐标,此时,在坐标轴上是否存在点M ,使以O 、A 、P 、M 为顶点的四边形是梯形?若存在,请直接写出点M 的坐标;若不存在,请说明理由.
【例4】(辽宁省锦州市)如图,抛物线与x 轴交于A (x 1,0),B (x 2,0)两点,且x 1>x 2,与y 轴交于点C (0,4),其中x 1,x 2是方程x
2
-
2x -8=0的两个根.
(1)求这条抛物线的解析式;
(2)点P 是线段AB 上的动点,过点P 作PE ∥AC ,交BC 于点E ,连接CP ,当△CPE 的面积最大时,求点P 的坐标;
(3)探究:若点Q 是抛物线对称轴上的点,是否存在这样的点Q ,使△QBC 成为等腰三角形,若存在,请直接写出所有符合条件的点Q 的坐标;若不存在,请说明理由.
【学力训练】
1、(安徽省蚌埠二中高一自主招生考试)已知关于x的方程(m2-1)x2-3(3m-1)x+18=0有两个正
整数根(m是整数),△ABC的三边a、b、c满足c=3
2,m 2+a 2m-8a=0,m 2+b2m-8b=0.求:(1)m的值;(2)△ABC的面积.
1的图象分别交于点A
2、(浙江省杭州市)已知平行于x轴的直线y=a(a≠0)与函数y=x和函数y=
x
和点B,又有定点P(2,0).
1,求线段AB的长;
(1)若a>0,且tan∠POB=
9
8,且在它的对称轴左(2)在过A,B两点且顶点在直线y=x上的抛物线中,已知线段AB=
3边时,y随着x的增大而增大,试求出满足条件的抛物线的解析式;
9x2的图象,求点P到直线AB的(3)已知经过A,B,P三点的抛物线,平移后能得到y=
5
距离.
3、(广西贺州市)如图,抛物线y =-4
1x 2
-x +2的顶点为A ,与y 轴交于点B .
(1)求点A 、点B 的坐标;
(2)若点P 是x 轴上任意一点,求证:P A -PB ≤AB ; (3)当P A -PB 最大时,求点P 的坐标.
4、(福建省莆田市)(1)已知,如图l ,△ABC 的周长为l ,面积为S ,其内切圆圆心为O ,半径为r ,求证:r =l
S 2;
(2)已知,如图2,△ABC 中,A 、B 、C 三点的坐标分别为A (-3,0)、B (3,0)、C (0,4).若△ABC 内心为D ,求点D 坐标;
(3)与三角形的一边和其他两边的延长线相切的圆,叫旁切圆,圆心叫旁心.请求出条件(2)中的△ABC 位于第一象限的旁心的坐标.
5、(山东省滨州市)如图①,某产品标志的截面图形由一个等腰梯形和抛物线的一部分组成,在等腰梯形ABCD中,AB∥DC,AB=20cm,DC=30cm,∠ADC=45°.对于抛物线部分,其顶点为CD的中点O,且过A、B两点,开口终端的连线MN平行且等于DC.
(1)如图①所示,在以点O为原点,直线OC为x轴的坐标系内,点C的坐标为(15,0),试求A、B两点的坐标;
(2)求标志的高度(即标志的最高点到梯形下底所在直线的距离);
(3)现根据实际情况,需在标志截面图形的梯形部分的外围均匀镀上一层厚度为3cm的保护膜,如图②,请在图中补充完整镀膜部分的示意图,并求出镀膜的外围周长.。