用拉伸法测金属丝的杨氏弹性模量

合集下载

拉伸法测金属丝的杨氏弹性模量

拉伸法测金属丝的杨氏弹性模量

实验4—2 拉伸法测金属丝的杨氏弹性模量【实验目的】1. 掌握光杠杆测量微小长度变化的原理,掌握尺读望远镜的使用方法。

2. 学会用拉伸法测量金属丝的杨氏弹性模量。

3. 加强数据处理能力的训练。

【实验原理】固体材料受外力作用时必然发生形变,本实验仅研究轴向形变(或称拉伸形变)。

设一根长度为L 截面积为S 的均匀金属丝,沿长度方向受外力F 的作用后,伸长量为L ∆,在弹性限度内根据胡克定律,有F LES L∆=, 即//F SE L L=∆ (4-2-1)其中F S 称为正应力(或叫胁强),L L∆称为线应变(或叫胁变),E 称为材料的杨氏模量,它是材料的固有属性。

金属丝的截面积可近似地看作圆,214S d π=,代入(4-2-1)式得: 24FLE d Lπ=∆ (4-2-2)上式中L ∆是一个微小的长度变化量,很难用普通的方法测量,因此采用光杠杆放大法来测量。

光杠杆装置包括两部分:光杠杆和尺读望远镜。

光杠杆(图4-2-1)由支架和平面镜组成,支架上有三个尖足组成等腰三角形,后足到两前足的垂直距离k 可以调节。

尺读望远镜由望远镜和读数标尺组成,实验者在望远镜中可以看到通过光杠杆平面镜反射的标尺像,并通过望远镜中的读数叉丝读出当前标尺上的刻度值。

实验4—2 杨氏弹性模量的测定 61当钢丝伸长时,固定在钢丝上的光杠杆后足会随之移动,导致光杠杆上平面镜的镜面绕两前足的连线发生转动,转动角度很小,用θ表示。

根据高等数学的知识,当θ角很小时,sin tan θθθ≈≈。

如图4-2-2所示,在左侧的小三角形中,tan L k θθ≈=∆;在右侧的大三角形中,2tan 2l D θθ≈=,联立上述两式,可得:2kL l D∆= (4-2-3) 将(4-2-3)式代入(4-2-2)式得: 28LDFE=(4-2-4) 【实验仪器】杨氏模量测定仪,卷尺(分度1mm ,极限误差a =1.2mm ),螺旋测微器(分度0.01mm ,极限误差0.004mm ),直尺(分度1mm ,极限误差0.1mm ),砝码(质量m=1kg )。

拉伸法测金属丝的杨氏弹性模量

拉伸法测金属丝的杨氏弹性模量

拉伸法测金属丝的杨氏弹性模量弹性模量是衡量材料受力后发生形变大小的重要参数之一,弹性模量越大,越不易发生形变。

本实验采用拉伸法测量杨氏弹性模量。

实验中,涉及到较多长度量的测量,根据不同测量对象,选用不同的测量仪器。

本实验要求能通过1.掌握用光杠杆法测量微小长度的原理和方法。

2.用杨氏弹性模量仪,掌握拉伸法测定金属丝的杨氏弹性模量。

3.学会用逐差法处理实验数据。

【实验仪器】杨氏弹性模量仪,钢卷尺,水准仪,螺旋测微器。

【实验原理】一、拉伸法测定金属丝的杨氏弹性模量设一粗细均匀的金属丝长为L ,截面积为S ,上端固定,下端悬挂砝码,金属丝在外力F 的作用下发生形变,伸长L Δ。

根据胡克定律,在弹性限度内,金属丝的胁强F S和产生的胁变LL∆成正比。

即F LES L∆=(9-1) 或FLE S L=∆ (9-2) 式中比例系数E 称为杨氏弹性模量。

在国际单位制中,杨氏弹性模量的单位为牛每平方米,记为2-⋅m N 。

实验证明,杨氏弹性模量与外力F 、物体的长度L 和截面积S 的大小无关,它只决定于材料的性质。

它是表征固体材料性质的一个物理量。

在式(9-2)的右端,L F 、和S 可用一般的仪器和方法测得,唯有L Δ是一个微小变化量,需用光杠杆法测量。

二、光杠杆法测微小长度将一平面镜固定在T 形横架上,在支架的下部安置三个尖脚就构成一个光杠杆,如图9-1所示。

用光杠杆法测微小长度原理图如图9-2所示,假定开始时平面镜M 的法线no O 在水平位置,则标尺H 上的标度线0n 发出的光通过平面镜M 反射后,进入望远镜,在望远镜中观察到0n 的像。

当金属丝受外力而伸长后,光杠杆的主杆尖脚随金属丝下降L Δ,平面镜转过一角度α。

根据光的反射定律,镜面旋转α角,反射线将旋转α2角,这时在望远镜中观察到2n 的像。

从图9—2可见(93)Ltg bα∆=- 20_2(94)n n l tg D Dα==-式中b 为光杠杆主杆尖脚到前面两脚连线的距离;D 为标尺平面到平面镜的距离;l 为从望远镜中观测到的两次标尺读数之差。

用拉伸法测金属丝的杨氏弹性模量

用拉伸法测金属丝的杨氏弹性模量

金属杨氏模量的测定杨氏模量是表征固体材料抵抗形变能力的重要物理量,是工程材料重要参数,它反映了材料弹性形变与内应力的关系,它只与材料性质有关,是工程技术中机械构件选材时的重要依据。

本实验采用液压加力拉伸法及利用光杠杆的原理测量金属丝的微小伸长量,从而测定金属材料的杨氏模量。

一、 实验目的(1) 学会测量杨氏弹性模量的一种方法(2) 掌握光杠杆放大法测量微小长度的原理 (3) 学会用逐差法处理数据二、仪器和量具数显液压杨氏模量仪,光杠杆和标尺望远镜,钢卷尺,螺旋测微计。

三、原理1.拉伸法测量钢丝的杨氏模量任何物体在外力作用下都要产生形变,可分为弹性形变和塑性形变。

弹性形变在外力作用撤除后能恢复原状,而塑性形变则不能恢复原状。

发生弹性形变时,物体内部产生的企图恢复物体原状的力叫做内应力。

对固体来讲,弹性形变又可分为4种:伸长或压缩形变、切变、扭变、弯曲形变。

本实验只研究金属丝沿长度方向受外力作用后的伸长形变。

取长为L ,截面积为S 的均匀金属丝,在两端加外力F 相拉后,则作用在金属丝单位面积上的力S F 为正应力,相对伸长LL ∆定义为线应变。

根据胡克定律,物体在弹性限度范围内,应变与应力成正比,其表达式为LLYS F ∆= (1) 式中Y 称为杨氏模量,它与金属丝的材料有关,而与外力F 的大小无关。

由于L ∆是一个微小长度变化,故实验常采用光杠杆法进行测量。

2.光杠杆法测量微小长度变化放大法是一种应用十分广泛的测量技术,有机械放大、光放大、电子放大等。

如螺旋测微计是通过机械放大而提高测量精度的,示波器是通过将电子信号放大后进行观测的。

本实验采用的光杠杆法属于光放大。

光杠杆放大原理被广泛地用于许多高灵敏度仪表中,如光电反射式检流计、冲击电流计等。

图1(b)标尺光杠杆如图1(a )、1(b )所示,在等腰三角形板1的三个角上,各有一个尖头螺钉,底边连线上的两个螺钉B 和C 称为前足尖,顶点上的螺钉A 称为后足尖,A 到前两足尖的连线BC 的垂直距离为b ,如图3(a )所示;2为光杠杆倾角调节架;3为光杠杆反射镜。

大学物理实验 用拉伸法测金属丝的杨氏模量

大学物理实验 用拉伸法测金属丝的杨氏模量

用拉伸法测金属丝的杨氏模量材料在外力作用下产生形变,其应力与应变的比值叫做弹性模量,它是反映材料抵抗形变能力的物理量,杨氏模量是固体材料的纵向弹性模量,是选择机械构件的依据之一,也是工程技术中研究材料性质的常用参数。

测定弹性模量的方法很多,如拉伸法、振动法、弯曲法、光干涉法等,本实验采用拉伸法测定金属丝的杨氏弹性模量,研究拉伸正应力与应变之间的关系。

本实验所涉及的微小长度变化量的测量方法−−光杠杆法,其原理广泛应用在许多测量技术中。

光杠杆装置还被许多高灵敏的测量仪器(如冲击电流计和光电检流计等)所采用。

【实验目的】1. 掌握用拉伸法测金属丝的杨氏模量及进一步熟悉千分尺、望远镜的使用。

2. 学会用光杠杆测微小长度的变化量。

3. 学会用逐差法处理实验数据。

【实验仪器】杨氏模量测定仪、尺读望远镜、千分尺、游标卡尺、钢卷尺、标尺、砝码若干。

【实验原理】物体在外力作用下或多或少都要发生形变,当形变不超过某一限度时,撤走外力之后形变能随之消失,这种形变叫弹性形变,发生弹性形变时物体内部将产生恢复原状的内应力。

设有一截面为S ,长度为L 0的均匀棒状(或线状)材料,受拉力F 拉伸时,伸长了L Δ,其单位面积截面所受到的拉力SF 称为正应力,而单位长度的伸长量L LΔ称为应变。

根据胡克定律,在弹性形变范围内,柱状(或线状)固体正应力与它所受的应变成正比:εσE =其比例系数E 取决于固体材料的性质,反应了材料形变和内应力之间的关系,称为杨氏弹性模量。

其单位为2/m N ,是表征材料抗应变能力的一个物理量。

柱状体受外力作用时的形变量L ∆,柱状体的长度L ,截面积S ,作用力F ,满足胡克定律:LS FLE ∆=(1)图 11、反射镜2、与钢丝相连的夹套组件I3、中托板4、标尺5、望远镜由于一般L ∆很小,常采用光杠杆放大法进行测量,图1为其原理图。

初始时,镜面M 的法线正好是水平的,假设是理想状态,n 0是反射镜M 的法线。

用拉伸法测金属丝的杨氏模量(显微镜直读法)-试验报告(含数据)

用拉伸法测金属丝的杨氏模量(显微镜直读法)-试验报告(含数据)

用拉伸法测金属丝的杨氏模量(显微镜直读法)-试验报告(含数据)大学物理实验讲义实验4.2.1 拉伸法测金属丝的杨氏模量杨氏模量是描述固体材料抵抗形变能力的物理量,是工程技术上常用的参数,是工程技术人员选择材料的重要依据之一。

条形物体(如钢丝)沿纵向的弹性模量叫杨氏模量。

测量材料杨氏模量方法很多,其中最基本的方法有伸长法和弯曲法。

伸长法一般采用拉伸法,其采用的具体测量方法有光杠杆放大法和显微镜直读法;弯曲法包括静态弯曲法和动态弯曲法。

本实验采用拉伸法当中的显微镜直读法。

【实验目的】1. 熟悉米尺和千分尺的使用,掌握读数显微镜的使用方法;2. 学习用逐差法处理数据;3. 了解CCD 成像系统。

【实验仪器】YWC-III 杨氏模量测定仪、钢卷尺、千分尺、水准仪和0.1kg 、0.2kg 的砝码若干。

杨氏模量测定仪的结构如图4-2-1所示。

(a)学生实验配置 (b)教学演示配置图4-2-1 杨氏模量测定仪1. 金属丝支架S 为金属丝支架,高约1.30m ,可置于实验桌上,支架顶端设有金属丝夹持装置,金属丝长度可调,约77cm ,金属丝下端的夹持装置连接一小方块,方块中部的平面上有细十字线供读数用,小方块下端附有砝码盘。

支架下方还有一钳形平台,设有限制小方块转动的装置(未画出),支架底脚螺丝可调。

2. 读数显微镜读数显微镜M 用来观测金属丝下端小圆柱中部平面上细横线位置及其变化,目镜前方装有分划板,分划板上有刻度,其刻度范围0-8mm, 分度值0.01mm ,每隔1mm 刻一数字。

H 1为读数显微镜支架。

D 成像、显示系统(作为示教仪)CCD 黑白摄像机:灵敏度:最低照度≤0.2Lux;CCD 接在显微镜目镜与电视显示器上。

H 2为CCD 黑白摄像机支架。

【实验原理】物体在外力作用下,总会发生形变。

当形变不超过某一限度时,外力消失后形变随之消失,这种形变称为弹性形变。

发生弹性形变时,物体内部产生恢复原状的内应力。

拉伸法测金属丝杨氏弹性模量

拉伸法测金属丝杨氏弹性模量
(1)调节杨氏模量测定仪的底脚调整螺钉,使立柱铅 直。
(2)调节平台的上下位置,使随金属丝伸长的夹具B 上端与沟槽在同一水平面上(为什么?)。
(3)加1Kg砝码在砝码托盘上,将金属丝拉直,检查 夹具B是否能在平台的孔中上下自由地滑动,金属丝 是否被上下夹子夹紧.
2.光杠杆及望远镜尺组的调节
(1)外观对准——调节光杠杆与望远镜、标尺中部 在同一高度上。 (2)镜外找像——缺口、准星、平面镜中标尺 像.三者在一条水平 线上。 (3)镜内找像 ——先调节目镜使叉丝清晰,再调节 调焦距看清标尺像,直到无视差为准。 (4)细调对零——对准标尺像零刻线附近的任一刻
4 n4 9 n9
n7 n2
5 n5 10 n10
n8 n3
n9 n4
n10 n5
5
2
A t0 .9 55i 1
N iN 5 1
,
B仪,
因 n1N
5
所 以 n5 1N
N
2 2
AB
nnn
返回
实验内容
1.杨氏模量测定仪的调整
i1
31
B 仪
nnn
n 2A2B
杨氏模量 E计 8FL算D
d2bn
不确定度计算:
EEFF2LL2D D24dd2bb2nn2
E
E E
E
用拉伸法测量金属丝杨氏模量
1. 实验简介 2. 实验目的 3. 实验原理 4. 逐差法处理数据 5. 实验内容 6. 注意事项 7. 数据记录与处理 8. 课后思考题
实验简介
材料受外力作用时必然发生形变,杨氏模量(也称弹性模量)是 反映固体材料弹性形变的重要物理量,在一般工程设计中是一个 常用参数, 是选定机械构件材料的重要依据之一。常用金属材

用拉伸法测量金属丝的杨氏弹性模量实验报告

用拉伸法测量金属丝的杨氏弹性模量实验报告

用拉伸法测量金属丝的杨氏弹性模量实验报告拉伸法测量金属丝的杨氏弹性模量实验报告
实验原理:
拉伸实验是指将弹性样品整体承受一直拉力F,而其同时受轴向拉力T的拉伸实验,
通过测量拉伸实验的样品的拉伸变形量,推知其伸长量与轴向荷载(T)之比,这一比值
就是杨氏弹性模量。

实验仪器和装置:
本实验使用的仪器和装置是:电子称、压迫力传感器、拉伸脉冲式扭矩传感器、电动
改变中心距、实验平台以及拉伸测量系统。

实验环境:
实验环境稳定,温度、湿度均在20℃时,室温保持在25℃以下,湿度保持在50%以下;光照明亮,可使测量精度更高。

实验方法:
1.选取合格的金属丝样品,将金属丝在两个支点上受上力,其中间部分悬空放置,应
用拉伸传感器,将力传感器的正负极接线联接到拉伸测量系统,以便测量拉伸时的变形量;
2.调节力传感器的拉伸力,测量金属丝在拉伸情况时的杨氏弹性模量;
3.如果所测量金属丝中受力跨度较短,可以适当增加测量力的大小,控制其变形量,
以测得最终结果;
4.在做精度处理时,应按试验标准及要求的容差,采取逐渐迭代的原则做精确的测量,充分检验该样品的杨氏弹性模量;
5.最后,将实验最终结果和测得的参数对比,进行分析,得出金属丝的杨氏弹性模量
大小,从而完成此次实验。

实验结论:
本次实验以拉伸法测量金属丝的杨氏弹性模量,由于采用了拉伸测量仪器和设备,对
金属丝进行严格控制,从而极大提高测量精度,最终杨氏弹性模量结果达到设计要求。

用拉伸法测金属丝的杨氏弹性模量.

用拉伸法测金属丝的杨氏弹性模量.
4.将光杠杆取下放在纸上,压出三个尖脚的痕迹, 用游标卡尺测量出主杆尖脚至前两尖脚连线的距离 三次。取其平均值。
5.用螺旋测微器在金属丝的上、中、下 三处测量其直径,每处都要在互相垂直的方 向上各测一次,共得六个数据,取其平均值。
将以上数据分别填入表9-1、表9-2和表93中。
6.用逐差法算出,再将有关数据化为国
二、测金属丝的杨氏弹性模量
1.轻轻将砝码加到砝码托上,每次增加1kg ,加 至7kg为止。逐次记录每加一个砝码时望远镜中的 标尺读数。加砝码时注意勿使砝码托摆动,并将砝 码缺口交叉放置,以防掉下。
2.再将所加的7kg砝码依次轻轻取下,并逐次记 录每取下1kg砝码时望远镜中的标尺读数。
3.用钢卷尺测量光杠杆镜面至标尺的距离和金属 丝的长度各三次,分别求出它们的平均值。
实验原理
一、拉伸法测定金属丝的杨氏弹性模量
设一粗细均匀的金属丝长为L,截面积为S,上端固定, 下端悬挂砝码,金属丝在外力F的作用下发生形变,伸 长 ΔL 。根据胡克定律,在弹性限度内,金属丝的胁强和产
生的胁变成正比。

F E L SL
(9-1)

E FL SL
(9-2)
式中比例系数E称为杨氏弹性模量。在国际单位制中,
实验内容
一、杨氏弹性模量仪的调节
1.将水准仪放在平台上,调节杨氏弹性模量仪 双柱支架上的底脚螺丝,使立柱铅直。
2.将光杠杆放在平台上,两前尖脚放在平台的 凹槽中,主杆尖脚放在圆柱夹具的上端面上,但不 可与金属丝相碰。调节平台的上下位置,使光杠杆 三尖脚位于同一水平面上。
3.在砝码托上加1kg砝码,把金属丝拉直。并检 查圆柱夹具是否能在平台孔中自由移动。
际单位代入式(9-7)中,求出金属丝的杨氏

大学物理实验用拉伸法测金属丝的杨氏弹性模量

大学物理实验用拉伸法测金属丝的杨氏弹性模量

大学物理实验用拉伸法测金属丝的杨氏弹性模量Coca-cola standardization office【ZZ5AB-ZZSYT-ZZ2C-ZZ682T-ZZT18】用拉伸法测金属丝的杨氏弹性模量一、 实验目的1.学会用光杠杆法测量杨氏弹性模量;2.掌握光杠杆法测量微小伸长量的原理;3.学会用逐差法处理实验数据;4.学会不确定的计算方法,结果的正确表达;5.学会实验报告的正确书写。

二、 实验仪器杨氏弹性模量测量仪(型号见仪器上)(包括望远镜、测量架、光杠杆、标尺、砝码)、 钢卷尺(0-200cm , 、游标卡尺(0-150mm,、螺旋测微器(0-150mm, 三、 实验原理在外力作用下,固体所发生的形状变化成为形变。

它可分为弹性形变和塑性形变两种。

本实验中,只研究金属丝弹性形变,为此,应当控制外力的大小,以保证外力去掉后,物体能恢复原状。

最简单的形变是金属丝受到外力后的伸长和缩短。

金属丝长L ,截面积为S ,沿长度方向施力F 后,物体的伸长L ∆,则在金属丝的弹性限度内,有:我们把E 称为杨氏弹性模量。

如上图:⎪⎪⎭⎪⎪⎬⎫=∆≈=∆ααα2D n tg xL n D x L ∆⋅=∆⇒2 (02n n n -=∆) 四、 实验内容 <一> 仪器调整1. 杨氏弹性模量测定仪底座调节水平;2. 平面镜镜面放置与测定仪平面垂直;3. 将望远镜放置在平面镜正前方-2.0m 左右位置上;4. 粗调望远镜:将镜面中心、标尺零点、望远镜调节到等高,望远镜上的缺口、准星对准平面镜中心,并能在望远镜上方看到尺子的像;5. 细调望远镜:调节目镜焦距能清晰的看到叉丝,并先调节物镜焦距找到平面镜,然后继续调节物镜焦距并能看到尺子清晰的像;6. 0n 一般要求调节到零刻度。

<二>测量7. 计下无挂物时刻度尺的读数0n ;8. 依次挂上kg 1的砝码,七次,计下7654321,,,,,,n n n n n n n ; 9. 依次取下kg 1的砝码,七次,计下'7'65'4'3'2'1,,,,,,'n n n n n n n ;10. 用米尺测量出金属丝的长度L (两卡口之间的金属丝)、镜面到尺子的距离D ; 11. 用游标卡尺测量出光杠杆x 、用螺旋测微器测量出金属丝直径d 。

拉伸法测定金属丝的杨氏模量

拉伸法测定金属丝的杨氏模量

拉伸法测定金属丝的杨氏模量一、引言拉伸法是测量金属丝的杨氏模量的一种常用方法。

杨氏模量是描述材料在受力时变形程度的物理量,它是指单位面积内受力方向上的应力与相应的应变之比。

在实际工程中,了解杨氏模量对于设计和制造各种机械零件和结构件具有重要意义。

二、实验原理拉伸法测定金属丝的杨氏模量原理是通过对金属丝在外力作用下产生的弹性变形进行测试,计算出其应力和应变之间的比值即为该金属丝所具有的杨氏模量。

三、实验步骤1. 准备工作:选择合适尺寸和长度的金属丝,并将其固定在测试机上。

2. 施加外力:通过测试机施加外力使得金属丝发生弹性变形。

3. 测定数据:在施加外力过程中,记录下相应的载荷值和伸长值等数据。

4. 计算结果:根据所记录下来的数据计算出金属丝所具有的杨氏模量。

四、实验注意事项1. 选择合适尺寸和长度的金属丝,并将其固定在测试机上,保证金属丝处于水平状态。

2. 在施加外力时,应逐渐增加外力的大小,避免瞬间施加过大的载荷导致金属丝断裂。

3. 在测定数据时,应注意记录下相应的载荷值和伸长值等数据,并进行准确计算。

4. 在实验过程中应注意安全,避免发生意外事故。

五、实验结果分析通过实验可以得到金属丝的杨氏模量。

根据实验结果可以了解到该金属丝在受力时变形程度的大小,为设计和制造各种机械零件和结构件提供了重要参考依据。

六、结论拉伸法测定金属丝的杨氏模量是一种常用方法,通过实验可以得到该金属丝所具有的杨氏模量。

了解杨氏模量对于设计和制造各种机械零件和结构件具有重要意义。

在实验过程中应注意安全,并进行准确计算。

用拉伸法测定金属丝的杨氏模量

用拉伸法测定金属丝的杨氏模量

用拉伸法测定金属丝的杨氏模量拉伸法是测定金属丝杨氏模量的常用方法之一。

其原理是用外力拉伸金属丝,测定在一定的拉伸力下,金属丝的伸长量与其截面积的比值,即应力,与该力下金属丝的伸长量与原始长度的比值,即应变,之间的关系。

通过实验数据计算得到杨氏模量。

实验器材:拉伸试验机、金属丝、游标卡尺、电子秤等。

实验步骤:1.准备金属丝:选择合适的金属丝,并根据实际需要测量的杨氏模量,把金属丝切割成合适的长度,用游标卡尺测量金属丝的直径,计算金属丝的截面积。

2.制作拉伸样品:将金属丝固定在拉伸试验机的夹具上,固定后尽可能使金属丝在平衡状态下。

3.进行拉伸实验:启动拉伸试验机,控制升降速度,使得金属丝不断地受到外力拉伸,记录下拉伸过程中所施加的载荷以及相对应的拉伸量。

特别地,每当金属丝的载荷发生变化时,需要记录下来以便后续数据处理。

4.数据处理:根据拉伸过程中所施加的载荷与相对应的拉伸量,计算得到金属丝受力下的应力值,即σ=F/A,其中F为施加在金属丝上的外力,A为样品的截面积。

同时,计算出金属丝受力下的应变值,即ε=(L-L0)/L0,其中L为拉伸后的长度,L0为原始长度。

5.绘制应力-应变曲线:根据数据处理得到的应力与应变值,可以绘制出应力-应变曲线。

根据这条曲线的斜率,即可计算出杨氏模量,其公式为E=σ/ε,其中σ为曲线斜率,ε为曲线的坡度。

注意事项:1.在实验进行过程中,要尽可能地保证金属丝的处于稳定的状态下进行拉伸实验。

2.实验数据记录要准确,遇到试验机的偏差时需要及时记录并进行修正。

3.要注意保护好实验器材,以免在实验中出现故障影响实验结果。

4.当金属丝长度增加时,载荷的大小应注意控制,以保证该载荷是线性的。

用拉伸法测金属丝的杨氏弹性模量课件

用拉伸法测金属丝的杨氏弹性模量课件

ቤተ መጻሕፍቲ ባይዱ 实验结果总结
实验数据记录
在实验过程中,我们记录了金属 丝在不同拉伸长度下的应力-应 变数据。通过这些数据,我们可 以分析金属丝的弹性行为并计算
杨氏弹性模量。
数据分析方法
采用线性拟合的方法处理实验数 据,通过最小二乘法得到应力与 应变之间的线性关系,从而求得
斜率,即杨氏弹性模量。
结果准确性评估
为了验证实验结果的准确性,我 们采用了多种方法进行数据分析 和处理,包括手动计算和软件分 析,确保结果的可靠性和一致性
用拉伸法测金属丝的杨 氏弹性模量课件
CONTENTS 目录
• 实验目的 • 实验原理 • 实验步骤 • 数据处理与分析 • 实验总结与思考
CHAPTER 01
实验目的
掌握拉伸法测量金属丝杨氏弹性模量的原理
了解杨氏弹性模量的 定义和物理意义。
理解金属丝在拉伸过 程中的形变和应力变 化。
掌握拉伸法测量金属 丝杨氏弹性模量的基 本原理和方法。
温度影响问题
实验过程中,温度的波动可能对金属丝的弹性模量产生影响。为了减小 温度影响,我们在恒温条件下进行实验,并尽量缩短实验时间。
对实验的改进建议和展望
01
改进实验设备
02
加强数据处理能力
为了提高实验的准确性和可重复性, 建议升级实验设备,如使用高精度测 力计和拉伸装置。
建议采用更先进的数据处理和分析方 法,如使用计算机软件进行自动化处 理和误差分析。
最小二乘法
通过最小化误差的平方和,找到数 据的最佳函数匹配,用于线性回归 分析。
数据误差分析
01
02
03
系统误差
由测量设备、环境因素等 引起的误差,具有重复性 和规律性。

13周 用拉伸法测金属丝的杨氏弹性模量

13周       用拉伸法测金属丝的杨氏弹性模量

用拉伸法测金属丝的杨氏弹性模量弹性模量是表征在弹性限度内材料抗拉或抗压强度的物理量。

1807年英国医生兼物理学家托马斯·杨(Thomas Young, 1773-1829) 提出了弹性模量的定义,因此又称杨氏弹性模量。

杨氏模量的测定对研究金属材料、光纤材料、半导体、纳米材料、聚合物、陶瓷、橡胶等各种材料的力学性质有着重要意义,应用非常广泛。

测量杨氏弹性模量的方法很多,如动态悬挂法、拉伸法、梁的弯曲法等。

本实验采用CCD 杨氏模量测量仪,通过拉伸法测量金属丝的杨氏弹性模量。

由于采用了显微镜和CCD 成像系统,这种仪器具有调节使用方便的特点。

[学习要点]基础知识:弹性形变;胡克定律;杨氏弹性模量。

测量方法:光学放大法。

测量工具的使用:螺旋测微器(千分尺);钢卷尺;分划板;读数显微镜;CCD 摄像机。

调节技术:平台水平调节;支架竖直调节;等高共轴调节;显微镜调焦、消视差等。

数据处理:逐差法;作图法。

[参考资料]LY-1型CCD 杨氏模量测量仪使用说明书。

[实验仪器]⑴LY-1型CCD 杨氏模量测量仪(1套); ⑵钢卷尺; ⑶螺旋测微器。

主要技术指标:待测钼丝:待测长度约80cm ,直径φ0.18mm 立 柱:双柱高约100cm读数显微镜:测量范围3mm ,分度值0.05mm ,放大率25倍 CCD 摄像机:像素数752(H )×582(V ) 视频监视器:黑白,35cm ,输入阻抗75Ω 系统总放大倍数:54杨氏模量测量相对不确定度:<5%[实验原理] 1 杨氏模量长度为L ,横截面为S 的各处相同的物体沿长度方向受力F 作用时,会有长度变化L δ。

按胡克定律,在弹性形变范围内,相对变形量L Lδ(称应变)与单位面积上的作用力(应力)S F成正比,于是有 L L E S F δ= (1)E 就称作杨氏模量。

根据上式得L d MgLL S FL E δπδ24==(2)重力加速度g 取实验所在地的值。

用拉伸法测定金属丝的杨氏弹性模量

用拉伸法测定金属丝的杨氏弹性模量

用拉伸法测定金属丝的杨氏弹性模量一、 一、 概念理解杨氏弹性是描述固体材料抵抗形变的能力的物理量,它与固体材料的几何尺寸无关,与外力大小无关,只决定于金属材料的性质,它的国际单位为:牛/米2(N/m 2),它是表征固体材料性质的重要物理量,是选择固体材料的依据之一,是工程技术中常用的参数。

二、 二、 杨氏弹性模量测量的常用方法1、万能试验机法:在万能试验机上做拉伸或压缩试验,自动记录应力和应变的关系图线,从而计算出杨氏弹性模量。

2、静态拉伸法(本实验采用此法),它适用于有较大形变的固体和常温下的测量,它的缺点是:①因为载荷大,加载速度慢,含有驰豫过程。

所以它不能很真实地反映出材料内部结构的变化。

②对脆性材料不能用拉伸法测量;③不能测量材料在不同温度下的杨氏弹性模量。

3、动态悬挂法:将试样(圆棒或矩形棒)用两根线悬挂起来并激发它作横向振动。

在一定条件下,试样振动的固有频率取决于它的几何形状、尺寸、质量以及它的杨氏弹性模量,如果我们在实验中测出了试样在不同温度下的固有频率,就可以算出试样在不同温度下的杨氏弹性模量。

此法克服了静态拉伸法的缺点,具有实用价值,是国家标准规定的一种测量方法。

三、 三、 理论知识准备1、弹性形变:物理在外力作用下都要或多或少地发生形变。

当形变不超过某一限度时,撤走外力之后,形变能随之消失。

这种形变称为弹性形变。

2、弹性形变类型:对固体来说,弹性形变可分为四种:①伸长或压缩的形变(应变);②切向形变(切变);③扭转形变(扭变);④弯曲形变。

3、基本原理(胡克定律):一根粗细均匀的金属丝,长度为L ,截面积为S ,将其上端固定,下端悬挂砝码,于是,金属丝受外力F 作用而发生形变,伸长了L ∆,比值F/S 是金属丝单位面积上的作用力,称为胁强(正应力);比值L ∆/L 是金属丝的相对伸长,称为胁变(线应变)。

根据虎克定律,金属丝在弹性限度内,它的胁强与胁变成正比, 即L L Y SF ∆= 式中比例系数Y 就是杨氏弹性模量。

大学物理实验《用拉伸法测金属丝的杨氏弹性模量》

大学物理实验《用拉伸法测金属丝的杨氏弹性模量》

用拉伸法测金属丝的杨氏弹性模量一、令狐采学二、实验目的1.学会用光杠杆法测量杨氏弹性模量;2.掌握光杠杆法测量微小伸长量的原理;3.学会用逐差法处理实验数据;4.学会不确定的计算方法,结果的正确表达;5.学会实验报告的正确书写。

三、实验仪器杨氏弹性模量测量仪(型号见仪器上)(包括望远镜、测量架、光杠杆、标尺、砝码)、钢卷尺(0-200cm ,0.1 、游标卡尺(0-150mm,0.02)、螺旋测微器(0-150mm,0.01)四、实验原理在外力作用下,固体所发生的形状变化成为形变。

它可分为弹性形变和塑性形变两种。

本实验中,只研究金属丝弹性形变,为此,应当控制外力的大小,以保证外力去掉后,物体能恢复原状。

最简单的形变是金属丝受到外力后的伸长和缩短。

金属丝长L,截面积为S,沿长度方向施力F后,物体的伸长L ,则在金属丝的弹性限度内,有:我们把E称为杨氏弹性模量。

如上图:⎪⎪⎭⎪⎪⎬⎫=∆≈=∆ααα2D n tg xL n D x L ∆⋅=∆⇒2 (02n n n -=∆)五、实验内容<一> 仪器调整1. 杨氏弹性模量测定仪底座调节水平;2. 平面镜镜面放置与测定仪平面垂直;3. 将望远镜放置在平面镜正前方1.5-2.0m 左右位置上;4.粗调望远镜:将镜面中心、标尺零点、望远镜调节到等高,望远镜上的缺口、准星对准平面镜中心,并能在望远镜上方看到尺子的像;5.细调望远镜:调节目镜焦距能清晰的看到叉丝,并先调节物镜焦距找到平面镜,然后继续调节物镜焦距并能看到尺子清晰的像;6. 0n 一般要求调节到零刻度。

<二>测量7. 计下无挂物时刻度尺的读数0n ;8. 依次挂上kg 1的砝码,七次,计下7654321,,,,,,n n n n n n n ; 9.依次取下kg 1的砝码,七次,计下'7'65'4'3'2'1,,,,,,'n n n n n n n ;10. 用米尺测量出金属丝的长度L (两卡口之间的金属丝)、镜面到尺子的距离D ;11. 用游标卡尺测量出光杠杆x 、用螺旋测微器测量出金属丝直径d 。

拉伸法测金属丝的杨氏弹性模量

拉伸法测金属丝的杨氏弹性模量

Y = 8FLD π d 2bδn
砝码的误差忽略不计,即认为 F 是常量,计算过程中注意拉力 F 的值与所对应的砝码的个数之
间的关系以及公式中各个量的单位及Y 的有效数字的位数。
(4)计算金属丝直径的平均绝对误差,即
Δd
=
1 9
9

i=1
d

di

(5)计算 δn 的平均绝对误差,即 Δδn = δn − δn1 + δn − δn2 + δn − δn3 + δn − δn4 。
4.缓慢旋转调焦手轮使望远镜中的物镜在镜筒内伸缩,直到清晰地看到标尺刻度的像,且 当眼睛上下移动两者无视差为止,记下此时十字叉丝横线对准的标尺读数 n′0。
5.依次增加砝码(每个砝码的质量为 0.360kg),在望远镜中观察标尺的像,每加一个砝码 记录一个标尺读数 n′i(i=0、1、2、3、4、5、6、7)。当记录到 n′7 时,按相反的次序依次将砝码 取下,再记录相应标尺读数 n″i,数据记入表 1 中。
F(N)
F(增)
标尺读数(cm) F(减)
平均值
1
n′0
n″0
n0
2
n′1
n″1
n1
3
n′2
n″2
n2
4
n′3
n″3
n3
5
n′4n″4n4源自6n′5n″5
n5
7
n′6
n″6
n6
8
n′7
n″7
n7
表 2 金属丝直径 d 的测量数据
位置



次数
1
2
3
1
2
3
1
  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

实验报告
班级:自动化一学号:
201311040129
姓名:马远哲实验日期:得分:
实验题目:用拉伸法测金属丝的杨氏弹性模量
一实验目的
1.学会用拉伸法测量杨氏模量;
2.掌握光杠杆法测量微小伸长量的原理;
3学会用逐差法处理实验数据;
4.学会不确定度的计算方法,结果的正确表达。

二仪器及用具
杨氏弹性模量测量仪(包括望远镜、测量架、光杠杆、标尺、砝码)、钢卷尺、游标卡尺、螺旋测微器
三实验原理:
在外力作用下,固体所发生的形状变化称为形变。

它可分为弹性形变和塑性形变两种。

本实验中,只研究金属丝弹性形变,为此,应当控制外力的大小,以保证外力去掉后,物体能恢复原状。

最简单的形变是金属丝受到外力后的伸长和缩短。

金属丝长L,截面积为S,沿长度方向施力F后,物体的伸长L
我们把Y称为杨氏弹性模量。

四实验步骤:
<一> 仪器调整
1、杨氏弹性模量测定仪底座调节水平;
2、平面镜镜面放置与测定仪平面垂直;
3、将望远镜放置在平面镜正前方1.500-2.000m左右位置上;
4、粗调望远镜:将镜面中心、标尺零点、望远镜调节等高,望远镜的缺口、准星对准平面镜中心,并能在望远镜外看到尺子的像;
5、调节物镜焦距能看到尺子清晰的像,调节目镜焦距能清晰的看到叉丝;
6、调节叉丝在标尺0刻度cm2
<二>测量
1、下无挂物时标尺的读数0A;
2、依次挂上kg1的砝码,七次,计下;
3、依次取下kg1的砝码,七次,计下
4、用米尺测量出金属丝的长度L(两卡口之间的金属丝)、镜面到尺子的距离D;
5、用游标卡尺测量出光杠杆x、用螺旋测微器测量出金属丝直径d。

<三>数据处理方法——逐差法
1. 实验测量时,多次测量的算术平均值最接近于真值。

但是简单的求一下平均还
是不能达到最好的效果,我们多采用逐差法来处理这些数据。

2. 逐差法采用隔项逐差:
五、数据记录:(根据实验要求设计实验记录表格)
六、数据处理及误差计算:(按实验要求计算、作图得出实验结果,计算误差,最后正确表示出实验结果。


七、实验结果分析与问题讨论:
1.误差主要取决于金属丝的微小变化量和金属丝的直径,由于平台上的圆柱形卡头上下伸缩存在系统误差,用望远镜读取微小变化量时存在随机误差。

2.实验测数据时,由于砝码的摇晃使得金属丝没有绝对静止,读数时存在随机误差。

3.测量金属丝直径时,由于存在椭圆形,故测出的直径存在系统误差和随机误差。

4.测量D时米尺没有拉水平,测量L时米尺没有铅垂导致误差存在。

5.测量X时,由于作垂线没有完全的垂直,导致X值的测量存在误差。

相关文档
最新文档