人教版八年级数学上册期末复习-17题:整式乘除
人教版初中八年级数学上册专题整式的乘除习题及答案
整式的乘除(习题)➢ 例题示范例1:计算328322(2)(2)(84)(2)x y y x y x x ⋅-+-+÷-.【操作步骤】(1)观察结构划部分:328322(2)(2)(84)(2)x y y x y x x ⋅-+-+÷-①②(2)有序操作依法则:辨识运算类型,依据对应的法则运算.第一部分:先算积的乘方,然后是单项式相乘;第二部分:多项式除以单项式的运算.(3)每步推进一点点.【过程书写】解:原式62634(2)(42)x y y x y =⋅-+-6363842x y x y =-+-6342x y =--➢ 巩固练习1. ①3225()a b ab -⋅-=________________;②322()(2)m m n -⋅-=________________;③2332(2)(3)x x y -⋅-; ④323(2)(2)b ac ab ⋅-⋅-.2. ①2223(23)xy xz x y ⋅+=_____________________; ②31422xy y ⎛⎫-⋅-= ⎪⎝⎭_______________________; ③2241334ab c a b abc ⎛⎫-⋅= ⎪⎝⎭___________________;④222(2)(2)ab a b ⋅-=________________________;⑤32(3231)a a a a -⋅+--=____________________.3. ①(3)(3)x y x y +-; ②(2)(21)a b a b -++;③(23)(24)m n m n ---; ④2(2)x y +;⑤()()a b c a b c -+++.4. 若长方形的长为2(421)a a -+,宽为(21)a +,则这个长方形的面积为()A .328421a a a -+-B .381a -C .328421a a a +--D .381a +5. 若圆形的半径为(21)a +,则这个圆形的面积为()A .42a π+πB .2441a a π+π+C .244a a π+π+πD .2441a a ++6. ①32223x yz xy ⎛⎫÷= ⎪⎝⎭__________________;②3232()(2)a b a b -÷-=________________;③232(2)()x y xy ÷=___________;④2332(2)(__________)2x y x y -÷=;⑤23632()(6)(12)m n m n mn -÷⋅-=_________.7. ①32(32)(3)x yz x y xy -÷-=____________; ②233242112322a b a b a b a b ⎛⎫⎛⎫-+÷-= ⎪ ⎪⎝⎭⎝⎭_______________;③24422(48)(2)m n m n mn --÷=_______________;④()221___________________32m mn n ÷=-+-.8. 计算:①322322(4)(4)()(2)a c a c a c ac -÷--⋅-;②224(2)(21)a a a -+--;③33(2)(2)(2)()a b a b a b ab ab +-+-÷-.➢ 思考小结1. 老师出了一道题,让学生计算()()a b p q ++的值.小聪发现这是一道“多×多”的问题,直接利用握手原则展开即可.()()a b p q ++=小明观察这个式子后,发现可以把这个式子看成长为(a +b ),宽为(p +q )的长方形,式子的结果就是长方形的面积;于是通过分割就可以表达这个长方形的面积为_________________.∴()()a b p q ++=请你类比上面的做法,利用两种方法计算(a +b )(a +2b ).【参考答案】➢ 巩固练习1. ①445a b ②522m n③12272x y - ④3524a b c -2. ①222336+9x y z x y ②428xy xy -+ ③232321334a b c a b c - ④442584a b a b -⑤432323a a a a --++3. ①229x y - ②2242a b a b -+-③224212m mn n -++ ④2244x xy y ++ ⑤2222a b c ac -++4. D5. C6. ①223x z ②12③48x y ④34x y - ⑤22mn7. ①223x z x -+②2246b ab a -+- ③222n m -- ④3222132m n m n m -+-8. ①322a c ②7③23a ab +➢ 思考小结()()a b p q ap aq bp bq ++=+++ 22()(2)32a b a b a ab b ++=++。
八年级上册数学整式乘除知识点和典型习题分类汇总附答案
1、(1) ;(2)
2、(1) ;(2)
3、
【多项式与多项式相乘】
1、计算:
(1)
(2)
(3)
2、计算:
(1)
(2)
(3)
(4)
(5)
(6)
3、计算:
(1)
(2)
(3)
(4)
(5)
(6)
4、计算:
(1)
(2)
参考答案
1、(1) ;(2) ;(4)
【单项式与单项式相除】
1、计算:
(1)
(2)
2、计算:
第10讲整式乘除
基本知识(熟记,一定要结合实例理解,要提问.)
1、单项式与单项式相乘,把它们的系数、同底数幂分别相乘,对于只在一个单项式里含有字母,则连同它的指数作为积的一个因式。
2、单项式与多项式相乘,就是用单项式去乘多项式的每一项,再把所得的积相加。
3、多项式与多项式相乘,先用一个多项式的每一项乘另一个多项式的每一项,再把所得的积相加。
4、单项式与单项式相除,把系数和同底数幂分别相除作为商的因式,对于只在被除式里含有的字母,则连同它的指数作为商的一个因式。
5、多项式除以单项式,先把这个多项式的每一项除以这个单项式,再把所得的商相加。
基本计算训练
【单项式与单项式相乘】
1、计算:
(1)
(2)
2、计算:
(1)
(2)
(3)
(4)
3、下面的计算对不对?如果不对,应当怎样改正?
(1)
(2)
3、计算:
(1)
(2)
(3)
(4)
4、计算:
(1)
(2)
(3)
(4)
人教版八年级数学上册14.整式的乘除与因式分解--复习课件
例2 把下列各式分解因式. (1)(a+b)2-4a2 ; (2)1-10x+25x2; (3)(m+n)2-6(m+n)+9
解:(1)(a+b)2-4a2=(a+b)2-(2a)2 =(a+b+2a)(a+b-2a) =(3a+b)(b-a)
(2)1-10x+25x2 =1-10x+(5x)2 =(1-5x)2 (3)(m+n)2-6(m+n)+9=(m+n-3)2.
5, 求(a
1 )2的值. a
(2)若x y2 2, x2 y2 1, 求xy的值.
(3)如果(m n)2 z m2 2mn n2 ,
则z应为多少?
(4)(x 3y 2z)(x 3y 2z)
(5)19992, (6)20012 19992
练习:计算下列各题。
(1)( 1 a6b4c) ((2a3c) 4
1、 205×195 2、 (3x+2) (3x-2) 3、(-x+2y) (-x-2y) 4 、 (x+y+z)(x+y-z)
(2)、完全平方公式
一般的,我们有:
(a b)2 a2 2ab b2;
(a b)2 a2 2ab b2 其中a, b既可以是数, 也可以是代数式.
即: (a b)2 a2 2ab b2
探索与创新题 例4 若9x2+kxy+36y2是完全平方式,则k= —
分析:完全平方式是形如:a2±2ab+b2即两数 的平方和与这两个数乘积的2倍的和(或差).
∵9x2+kxy+36y2=(3x)2+kxy+(6y)2 ∴±kxy=2·3x·6y=36xy ∴k=±36
人教版八年级数学上册 专题复习:整式的运算
专题 整式的运算知 识 点名师点晴整式的有关概念单项式知道单项式、单项式的系数、次数多项式 知道多项式、多项式的项、多项式的次数、常数项.同类项 能够分清哪些项是同类项.整式的运算1.幂的运算能运用幂的运算法则进行同底数幂的乘法、除法、幂的乘方、积的乘方运算2.整式的加、减、乘、除法运算法则 能按照运算法则进行整式的加、减、乘、除法运算以及整式的混合运算3.乘法公式能熟练运用乘法公式☞2年中考【2015年题组】 1.(2015北海)下列运算正确的是( )A .3412a b a +=B .326()ab ab = C .222(5)(42)3a ab a ab a ab --+=- D .1262x x x ÷= 【答案】C . 【解析】试题分析:A .3a 与4b 不是同类项,不能合并,故错误;B .3226()ab a b =,故错误; C .正确;D .1266x x x ÷=,故错误;故选C .考点:1.幂的乘方与积的乘方;2.合并同类项;3.去括号与添括号;4.同底数幂的除法. 2.(2015南宁)下列运算正确的是( )A .ab a ab 224=÷B .6329)3(x x =C .743a a a =•D .236=÷【答案】C .考点:1.整式的除法;2.同底数幂的乘法;3.幂的乘方与积的乘方;4.二次根式的乘除法. 3.(2015厦门)已知一个单项式的系数是2,次数是3,则这个单项式可以是( )A .22xy -B .23xC .32xyD .32x【答案】D . 【解析】试题分析:此题规定了单项式的系数和次数,但没规定单项式中含几个字母.A .22xy -系数是﹣2,错误;B .23x 系数是3,错误;C .32xy 次数是4,错误;D .32x 符合系数是2,次数是3,正确; 故选D .考点:单项式.4.(2015厦门)32-可以表示为( )A .2522÷ B .5222÷ C .2522⨯ D .(2)(2)(2)-⨯-⨯-【答案】A . 【解析】试题分析:A .2522÷=252-=2522÷,故正确;B .5222÷=32,故错误; C .2522⨯=72,故错误;D .(2)(2)(2)-⨯-⨯-=3(2)-,故错误;故选A .考点:1.负整数指数幂;2.有理数的乘方;3.同底数幂的乘法;4.同底数幂的除法. 5.(2015镇江)计算3(2)4(2)x y x y --+-的结果是( )A .2x y -B .2x y +C .2x y --D .2x y -+ 【答案】A .考点:整式的加减. 6.(2015广元)下列运算正确的是( )A .23222()()ab ab ab -÷=- B .2325a a a +=C .22(2)(2)2a b a b a b +-=-D .222(2)4a b a b +=+【答案】A . 【解析】试题分析:A .23222()()ab ab ab -÷=-,正确;B .325a a a +=,故错误;C .22(2)(2)4a b a b a b +-=-,股错误; D .222(2)44a b a b ab +=++,故错误. 故选A .考点:1.平方差公式;2.合并同类项;3.同底数幂的除法;4.完全平方公式. 7.(2015十堰)当x=1时,1axb 的值为-2,则11ab a b的值为的值为( )A .﹣16B .﹣8C .8D .16 【答案】A . 【解析】试题分析:∵当x=1时,1axb 的值为﹣2,∴12a b ++=-,∴3a b +=-,∴11a b a b=(﹣3﹣1)×(1+3)=﹣16.故选A .考点:整式的混合运算—化简求值.8.(2015黄冈)下列结论正确的是( )A .2232a b a b -= B .单项式2x -的系数是1-C .使式子2+x 有意义的x 的取值范围是2x >-D .若分式112+-a a 的值等于0,则1a =±【答案】B .考点:1.合并同类项;2.单项式;3.分式的值为零的条件;4.二次根式有意义的条件.9.(2015佛山)若n mx x x x ++=-+2)1()2(,则m n +=( ) A .1 B .﹣2 C .﹣1 D .2【答案】C . 【解析】试题分析:∵(2)(1)x x +-=2+2x x -=2x mx n ++,∴m=1,n=﹣2.∴m+n=1﹣2=﹣1.故选C .考点:多项式乘多项式. 10.(2015天水)定义运算:a ⊗b=a (1﹣b ).下面给出了关于这种运算的几种结论:①2⊗(﹣2)=6,②a ⊗b=b ⊗a ,③若a+b=0,则(a ⊗a )+(b ⊗b )=2ab ,④若a ⊗b=0,则a=0或b=1,其中结论正确的序号是( )A .①④B .①③C .②③④D .①②④ 【答案】A .考点:1.整式的混合运算;2.有理数的混合运算;3.新定义. 11.(2015邵阳)已知3a b +=,2ab =,则22a b +的值为( ) A .3 B .4 C .5 D .6 【答案】C . 【解析】试题分析:∵3a b +=,2ab =,∴22a b +=2()2a b ab +-=9﹣2×2=5,故选C .考点:完全平方公式.12.(2015临沂)观察下列关于x 的单项式,探究其规律: x ,3x2,5x3,7x4,9x5,11x6,…按照上述规律,第2015个单项式是( )A .2015x2015B .4029x2014C .4029x2015D .4031x2015 【答案】C . 【解析】 试题解析:系数的规律:第n 个对应的系数是2n ﹣1.指数的规律:第n 个对应的指数是n .故第2015个单项式是4029x2015.故选C . 考点:1.单项式;2.规律型. 13.(2015日照)观察下列各式及其展开式:222()2a b a ab b +=++; 33223()33a b a a b ab b +=+++; 4432234()464a b a a b a b ab b +=++++;554322345()510105a b a a b a b a b ab b +=+++++;…请你猜想10()a b +的展开式第三项的系数是( )A .36B .45C .55D .66【答案】B .考点:1.完全平方公式;2.规律型;3.综合题.14.(2015连云港)已知m n mn +=,则(1)(1)m n --= . 【答案】1.【解析】试题分析:(1)(1)m n --=mn ﹣(m+n )+1,∵m+n=mn ,∴(m ﹣1)(n ﹣1)=mn ﹣(m+n )+1=1,故答案为:1.考点:整式的混合运算—化简求值.15.(2015珠海)填空:2+10x x + =2(_____)x +.【答案】25;5. 【解析】试题分析:∵10x=2×5x ,∴2+1025x x +=2(5)x +.故答案为:25;5.考点:完全平方式. 16.(2015郴州)在m2□6m□9的“□”中任意填上“+”或“﹣”号,所得的代数式为完全平方式的概率为 .【答案】12.考点:1.列表法与树状图法;2.完全平方式. 17.(2015大庆)若若52=na ,162=nb ,则()nab = .【答案】5±. 【解析】试题分析:∵52=n a ,162=n b ,∴2280n na b ⋅=,∴2()80nab =,∴()n ab =45±5±.考点:幂的乘方与积的乘方.18.(2015牡丹江)一列单项式:2x -,33x ,45x -,57x ,…,按此规律排列,则第7个单项式为 . 【答案】213x -. 【解析】试题分析:第7个单项式的系数为﹣(2×7﹣1)=﹣13,x 的指数为8,所以,第7个单项式为213x -.故答案为:213x -.考点:1.单项式;2.规律型.19.(2015安顺)计算:201320111(3)()3-⋅-= .【答案】9.考点:1.幂的乘方与积的乘方;2.同底数幂的乘法.20.(2015铜仁)请看杨辉三角(1),并观察下列等式(2):根据前面各式的规律,则6()a b += .【答案】654233245661520156a a b a b a b a b ab b ++++++. 【解析】试题分析:6()a b +=654233245661520156a a b a b a b a b ab b ++++++.故本题答案为:654233245661520156a a b a b a b a b ab b ++++++.考点:1.完全平方公式;2.规律型:数字的变化类;3.综合题. 21.(2015南宁)先化简,再求值:(1)(1)(2)1x x x x +-++-,其中12x =.【答案】2x ,1. 【解析】试题分析:先利用乘法公式展开,再合并得到答案,然后把12x =代入计算即可.试题解析:原式=22121x x x -++-=2x ,当12x =时,原式=2×12=1.考点:整式的混合运算—化简求值.22.(2015无锡)计算: (1)02(5)(3)3--+-;(2)2(1)2(2)x x +--. 【答案】(1)1;(2)25x +.考点:1.整式的混合运算;2.实数的运算;3.零指数幂.23.(2015内江)填空:()()a b a b -+= ;22()()a b a ab b -++= ; 3223()()a b a a b ab b -+++= .(2)猜想:1221()(...)n n n n a b a a b ab b -----++++= (其中n 为正整数,且2n ≥).(3)利用(2)猜想的结论计算:98732222...222-+-+-+. 【答案】(1) 22a b -,33a b -,44a b -;(2) nna b -;(3)342. 【解析】试题分析:(1)根据平方差公式与多项式乘以多项式的运算法则运算即可; (2)根据(1)的规律可得结果;(3)原式变形后,利用(2)得出的规律计算即可得到结果. 试题解析:(1)()()a b a b -+=22a b -;3223()()a b a a b ab b -+++=33a b -; 3223()()a b a a b ab b -+++=44a b -;故答案为:22a b -,33a b -,44a b -;(2)由(1)的规律可得:原式=nna b -,故答案为:nna b -;(3)令98732222...222S =-+-+-+,∴987321222...2221S -=-+-+-+-=98732[2(1)](222...2221)3---+-+-+-÷=10(21)3(10241)3341-÷=-÷=,∴S=342. 考点:1.平方差公式;2.规律型;3.阅读型;4.综合题.24.(2015咸宁)(1)计算:128(2)-++-;(2)化简:2232(2)()a b ab b b a b --÷--.【答案】(1)32;(2)22b -.考点:1.整式的混合运算;2.实数的运算;3.零指数幂.25.(2015随州)先化简,再求值:5322(2)(2)(5)3()a a a a b a b a b +-+-+÷-,其中12ab =-.【答案】42ab -,5.【解析】试题分析:利用平方差公式、单项式乘以多项式法则、单项式除法运算,合并得到最简结果,把ab 的值代入计算即可求出值.试题解析:原式=22453a a ab ab -+-+=42ab -,当12ab =-时,原式=4+1=5.考点:整式的混合运算—化简求值.26.(2015北京市)已知22360a a +-=. 求代数式3(21)(21)(21)a a a a +-+-的值.【答案】7. 【解析】试题分析:利用单项式乘以多项式法则、平方差公式化简,去括号合并得到最简结果,把已知等式变形后代入计算即可求出值.试题解析:∵22360a a +-=,即2236a a +=,∴原式=226341a a a +-+=2231a a ++=6+1=7. 考点:整式的混合运算—化简求值.27.(2015茂名)设y ax =,若代数式()(2)3()x y x y y x y +-++化简的结果为2x ,请你求出满足条件的a 值.【答案】a=﹣2或0.【解析】试题分析:因式分解得到原式=2()x y +,再把当y ax =代入得到原式=22(1)a x +,所以当2(1)1a +=满足条件,然后解关于a 的方程即可.试题解析:原式=2()x y +,当y ax =时,代入原式得222(1)a x x +=,即2(1)1a +=,解得:a=﹣2或0.考点:1.整式的混合运算;2.平方根. 28.(2015河北省)老师在黑板上书写了一个正确的演算过程随后用手掌捂住了如图所示的一个二次三项式,形式如图:(1)求所捂的二次三项式; (2)若16+=x ,求所捂二次三项式的值.【答案】(1)221x x -+;(2)6.考点:整式的混合运算—化简求值.【2014年题组】 1.(2014年百色中考) 下列式子正确的是( ) A .(a ﹣b )2=a2﹣2ab+b2 B . (a ﹣b )2=a2﹣b2 C .(a ﹣b )2=a2+2ab+b2 D .(a ﹣b )2=a2﹣ab+b2 【答案】A . 【解析】试题分析:A .(a ﹣b )2=a2﹣2ab+b2,故A 选项正确;B .(a ﹣b )2≠a2﹣b2,故B 选项错误;C .(a ﹣b )2≠a2+2ab+b2,故C 选项错误;D .(a ﹣b )2≠a2﹣ab+b2,故D 选项错误;故选A . 考点:完全平方公式.2.(2014年镇江中考)下列运算正确的是( ) A.()339x x = B.()332x 6x -=- C.22x x x -= D.632x x x ÷=【答案】A .考点:1.幂的乘方和积的乘方;2.合并同类项;3.同底幂乘除法. 3.(2014年常州中考)下列运算正确的是( )A. 33a a a ⋅=B.()33ab a b = C. ()236a a = D. 842a a a ÷=【答案】C .【解析】试题分析:根据同底幂乘法,同底幂乘除法,幂的乘方和积的乘方运算法则逐一计算作出判断: A. 31343a a aa a+⋅==≠,选项错误; B.()3333ab a b a b=≠,选项错误;C.()23326a a a ⨯==,选项正确; D. 848442a a aa a -÷==≠,选项错误.故选C .考点:1.同底幂乘法;2.同底幂乘除法;3.幂的乘方和积的乘方. 4.(2014年抚顺中考)下列运算正确的是( ) A .-2(a-1)=-2a-1B .(-2a )2=-2a2C .(2a+b )2=4a2+b2 D . 3x2-2x2=x2 【答案】D . 【解析】 试题分析:A 、-2(a-1)=-2a+2,故A 选项错误;B 、(-2a )2=4a2,故B 选项错误;C 、(2a+b )2=4a2+4ab+b2,故C 选项错误;D 、3x2-2x2=x2,故D 选项正确. 故选D .考点:1.完全平方公式;2.合并同类项;3.去括号与添括号;4.幂的乘方与积的乘方. 5.(2014年眉山中考)下列计算正确的是( )A .235x x x +=B .236x x x ⋅=C .236()x x =D .632x x x ÷=【答案】C .考点:1.同底数幂的除法;2.合并同类项;3.同底数幂的乘法;4.幂的乘方与积的乘方.6.(2014年资阳中考)下列运算正确的是( ) A .a3+a4=a7 B . 2a3•a4=2a7 C . (2a4)3=8a7 D . a8÷a2=a4 【答案】B . 【解析】试题分析:A 、a3和a4不能合并,故A 错误;B 、2a3•a4=2a7,故B 正确;C 、(2a4)3=8a12,故C 错误;D 、a8÷a2=a6,故D 错误;故选B .考点:整式的运算.7.(2014年镇江中考)化简:()()x 1x 11+-+=.【答案】2x . 【解析】试题分析:第一项利用平方差公式展开,去括号合并即可得到结果:()()22x 1x 11x 11x +-+=-+=.考点:整式的混合运算.8.(2014年吉林中考)先化简,再求值:x (x+3)﹣(x+1)2,其中x=+1.【答案】x ﹣1;2.【解析】试题分析:先利用整式的乘法和完全平方公式计算,再进一步合并化简,最后代入数值即可. 试题解析:原式=x2+3x ﹣x2﹣2x ﹣1=x ﹣1,当x=2+1时,原式=2+1﹣1=2. 考点:1.整式的运算;2.化简求值.9.(2014年绍兴中考)先化简,再求值:()()()2a a 3b a b a a b -++--,其中1a 1b 2==-,.【答案】a2+b2,54.考点:整式的混合运算—化简求值.10.(2014年杭州中考)设y kx =,是否存在实数k ,使得代数式2222222(x y )(4x y )3x (4x y )--+-能化简为4x ?若能,请求出所有满足条件的k 值,若不能,请说明理由. 【答案】能. 【解析】试题分析:化简代数式,根据代数式恒等的条件列关于k 的方程求解即可 试题解析:∵y kx=,∴222222222222222(x y )(4x y )3x (4x y )(4x y )(x y 3x )(4x y )--+-=--+=-()2222242(4x k x )x 4k =-=-.∴要使代数式22222224(x y )(4x y )3x (4x y )x --+-=,只要()224k1-=.∴24k 1-=±,解得k=±3或k=±5.考点:1. 代数式的化简;2. 代数式恒等的条件;3.解高次方程.☞考点归纳归纳 1:整式的有关概念 基础知识归纳:整式:单项式与多项式统称整式.(1)单项式:由数与字母的乘积组成的代数式叫做单项式(单独一个数或字母也是单项式).单项式中的数字因数叫做这个单项式的系数;单项式中的所有字母的指数的和叫做这个单项式的次数.多项式:几个单项式的和叫做多项式.在多项式中,每个单项式叫做多项式的项,其中次数最高的项的 次数叫做这个多项式的次数.不含字母的项叫做常数项.2. 同类项:所含字母相同并且相同字母的指数也分别相等的项叫做同类项.基本方法归纳:要准确理解和辨认单项式的次数、系数;判断是否为同类项时,关键要看所含的字母是否相同,相同字母的指数是否相同. 注意问题归纳:1、单项式的次数是指单项式中所有字母指数的和,单独一个非0数的次数是0;2、多项式的次数是指次数最高的项的次数.3、同类项一定要先看所含字母是否相同,然后再看相同字母的指数是否相同. 【例1】下列式子中与3m2n 是同类项的是( ) A.3mn B.3nm2 C.4m D.5n 【答案】B .考点:同类项. 归纳 2:幂的运算 基础知识归纳:(1)同底数幂相乘:am ·an =am +n (m ,n 都是整数,a ≠0) (2)幂的乘方:(am )n =amn (m ,n 都是整数,a ≠0) (3)积的乘方:(ab )n =an ·bn (n 是整数,a ≠0,b ≠0) (4)同底数幂相除:am ÷an =am -n (m ,n 都是整数,a ≠0) 注意问题归纳:(1)幂的运算法则是进行整式乘除法的基础,要熟练掌握,解题时要明确运算的类型,正确运用法则;(2)在运算的过程中,一定要注意指数、系数和符号的处理. 【例2】下列运算正确的是( )A. 33a a a ⋅= B.()33ab a b = C.()236a a = D. 842a a a ÷=【答案】C .考点:幂的运算.归纳 3:整式的运算 基础知识归纳:1.整式的加减法:,实质上就是合并同类项 1.整式乘法①单项式乘多项式:m (a +b )=ma+mb ; ②多项式乘多项式:(a +b )(c +d )=ac+ad+bc+bd ③乘法公式:平方差公式:(a+b )(a-b )=a2-b2;完全平方公式:(a ±b )2=a2±2ab+b2.3.整式除法:单项式与单项式相除,把系数、同底数幂分别相除,作为商的因式,对于只在被除式里含有的字母,连同它的指数作为商的一个因式.多项式除以单项式,将这个多项式的每一项分别除以这个单项式,然后把所得的商相加.注意问题归纳:注意整式的加减,实质上就是合并同类项,有括号的,先去括号,只要算式中没有同类项,就是最后的结果;多项式乘多项式的运算中要做到不重不漏,应用乘法公式进行简便计算,另外去括号时,要注意符号的变化,最后把所得式子化简,即合并同类项,再代值计算. 【例3】下列计算正确的是( ) A .2x -x =x B .a3·a2=a6 C .(a -b )2=a2-b2 D .(a +b )(a -b )=a2+b2 【答案】A .【解析】A 、原式=x ,正确;B 、原式=x5,错误;C 、原式=a2-2ab+b2,错误;D 、原式=a2-b2,故选A .考点:整式的运算.【例4】先化简,再求值:()()()22a b a b b a b b +-++-,其中1a =、2b =-.【答案】-1.【解析】原式222222a b ab b b a ab =-++-=+;当1a =、2b =-时,原式()2112121=+⨯-=-=-.考点:整式的混合运算—化简求值.【例5】计算21()(21)(41)2x x x +-÷- 【答案】12.【解析】原式=12(2x+1)(2x ﹣1)÷[(2x ﹣1)(2x+1)]=12.考点:整式的混合运算. ☞1年模拟 1、(2015届云南省剑川县九上第三次统一模拟考试数学试卷)下列运算正确的是( )A .6a ÷2a =3aB .22532a a a -=C .235()a a a -⋅=D .527a b ab +=【答案】C .考点:整式的运算. 2.(2015届湖北省咸宁市嘉鱼县城北中学中考模拟考试数学试卷)下列运算正确的是( ).A .623a a a =⋅B .6223)(b a ab =C .222)(b a b a -=-D .235=-a a【答案】B . 【解析】试题分析:因为32235a a a a +⋅==,所以A 错误;因为6223)(b a ab =,所以B 正确;因为222()2a b a ab b -=-+,所以C 错误;因为532a a a -=,所以D 错误;故选B .考点:1.幂的运算;2.整式的加减. 3.(2015届重庆市合川区清平中学等九年级模拟联考数学试卷)下列运算正确的是( )A .23a a ⋅=6aB .33()y y x x = C .55a a a ÷= D .326()a a =【答案】D .考点:1.同底数幂的除法;2.幂的乘方与积的乘方;3.同底数幂的乘法.4.(2015届云南省腾冲县九年级上学期五校联考摸底考试数学试卷)下列运算正确的是( )A .642a a a =+B .523)(a a =C .2328=+D .222))((b ab a b a b a ---=---【答案】C .【解析】试题分析:A .2a 和4a 不能合并,故错误;B .3265()a a a =≠,故错误;C .8222232+=+=,故正确;D .2222()()()a b a b a b a b ---=--=-+,故错误;故选C .考点:1.二次根式的混合运算;2.整式的混合运算. 5.(2015届山东省日照市中考一模)观察下列各式及其展开式: (a+b )2=a2+2ab+b2(a+b )3=a3+3a2b+3ab2+b3(a+b )4=a4+4a3b+6a2b2+4ab3+b4(a+b )5=a5+5a4b+10a3b2+10a2b3+5ab4+b5 …请你猜想(a+b )10的展开式第三项的系数是( ) A .36 B .45 C .55 D .66 【答案】B .考点:完全平方公式.6.(2015届云南省腾冲县九年级上学期五校联考摸底考试数学试卷)若3223y x mm -与3852y x m +-能够进行加减运算,则21m +=_________________; 【答案】-1或9.【解析】试题分析:∵3223y x mm -与3852y x m +-能够进行加减运算,∴2258m m m -=+,即:2340m m --=,解得:1m =-或4m =,①当1m =-时,21m +=-1,②当4m =时,21m +=9.故答案为:-1或9.考点:1、同类项;2、解一元二次方程-因式分解法;3、分类讨论. 7.(2015届广东省佛山市初中毕业班综合测试)已知a2-2a-3=0,求代数式2a (a-1)-(a+2)(a-2)的值.【答案】7.考点:整式的混合运算—化简求值.7、我们各种习气中再没有一种象克服骄傲那麽难的了。
人教版 八年级上册数学整式的乘除与因式分解精选分类练习题及答案
分类练习题及答案【练习1】 已知yx yx 11,200080,200025+==则等于 . 【练习2】 满足3002003)1(>-x 的x 的最小正整数为 .【练习3】 化简)2(2)2(2234++-n n n 得 . 【练习4】 计算220032003])5[()04.0(-⨯得 .【练习5】 4)(z y x ++的乘积展开式中数字系数的和是 .【练习6】若多项式7432+-x x 能表示成c x b x a ++++)1()1(2的形式;求a ;b ;c . 【练习7】若=-+=-+=+-c b a c b a c b a 13125,3234,732则( )A.30 B.-30 C.15 D.-15【练习8】 若=-+-=-+=++z y x z y x z y x 则,473,6452 .【练习9】 如果代数式2,635-=-++x cx bx ax 当时的值是7;那么当2=x 时;该代数式的值是 .【练习10】 多项式12+-x x 的最小值是 .分类练习题及答案【练习1】下列各式得公因式是a得是()A.ax+ay+5 B.3ma-6ma2 C.4a2+10ab D.a2-2a+ma【练习2】-6xyz+3xy2-9x2y的公因式是()A.-3x B.3xz C.3yz D.-3xy【练习3】把多项式(3a-4b)(7a-8b)+(11a-12b)(8b-7a)分解因式的结果是()A.8(7a-8b)(a-b) B.2(7a-8b)2 C.8(7a-8b)(b-a)D.-2(7a-8b)【练习4】把(x-y)2-(y-x)分解因式为()A.(x-y)(x-y-1) B.(y-x)(x-y-1)C.(y-x)(y-x-1) D.(y-x)(y-x+1)【练习5】下列各个分解因式中正确的是()A.10ab2c+6ac2+2ac=2ac(5b2+3c)B.(a-b)3-(b-a)2=(a-b)2(a-b+1)C.x(b+c-a)-y(a-b-c)-a+b-c=(b+c-a)(x+y-1)D.(a-2b)(3a+b)-5(2b-a)2=(a-2b)(11b-2a)【练习6】观察下列各式①2a+b和a+b;②5m(a-b)和-a+b;③3(a+b)和-a -b;④x2-y2和x2和y2。
人教版八年级数学上册整式的乘除复习教案优质资料
人教版八年级数学上册整式的乘除复习教案优质资料(可以直接使用,可编辑优质资料,欢迎下载)25.诗词五首第一课时茅屋为秋风所破歌【学习目标】1.了解作者;熟读并背诵《茅屋为秋风所破歌》《过故人庄》。
2.诵读诗词,品味诗中所表达的主题思想。
3.反复诵读,体会诗歌准确生动的语言。
【学习目标】1.诵读诗词,品味诗中所表达的主题思想。
2.反复诵读,体会诗歌准确生动的语言。
【教学过程】一、新课导入在上学年,我们分别学了《诗五首》和《诗词五首》,初步感受了我国古代诗歌的艺术魅力。
诵诗应该是个长期坚持不懈的过程,是一个习惯。
今天,就让我们继续古代诗歌的学习,继续徜徉在诗歌的古风古韵中。
二、自主预习1.走近作者杜甫(712-770),字子美,唐代现实主义大诗人.因曾居住于长安城南少陵附近,自称“少陵野老”,后世称“杜少陵",因做过检校工部员外郎,后人又称他为“杜工部”,因其诗歌成就,被后人尊为“诗圣”“诗史"。
代表作品有《春望》《闻官军收河南河北》《茅屋为秋风所破歌》《登高》“三吏"(《新安吏》《潼关吏》《石壕吏》)“三别”(《新婚别》《垂老别》《无家别》)等,著有《杜工部集》。
2.给下面加点字注音.挂罥.(juàn)塘坳.(ào)丧.乱(sāng) 突兀.(wù)3.理解词义。
怒号:大声吼叫.挂罥:挂住,缠绕.塘坳:池塘和洼地.丧乱:战乱。
这里指安史之乱.4.朗读诗句,注意下列句子节奏。
(1)床头/屋漏/无干处,雨脚/如麻/未断绝.(2)俄顷/风定/云墨色,秋天/漠漠/向昏黑。
5.了解诗的内容(1)学生齐读,参照注释,借助工具书,疏通诗句,理解诗意。
(2)全班交流问题及解答。
(3)学生说说诗句的含义。
三、合作探究1.“八月秋高……飘转沉塘坳."一节写秋破屋之情景。
这段诗中用了几个动词?表现了作者什么样的心境?明确:“号”“卷"“飞”“渡”“洒”“挂罥"“飘转”等动词,突出了风之大,受害之重,隐隐地表现了诗人愁苦、无奈的心情。
人教版-八年级上册数学整式的乘除与因式分解精选分类练习题及答案
第十一練:整式乘除和冪運算【练习1】 已知yx yx11,200080,200025+==则等於 . 【练习2】 滿足3002003)1(>-x のx の最小正整數為 . 【练习3】 化簡)2(2)2(2234++-n n n 得 .【练习4】 計算220032003])5[()04.0(-⨯得 .【练习5】 4)(z y x ++の乘積展開式中數字係數の和是 .【练习6】若多項式7432+-x x 能表示成c x b x a ++++)1()1(2の形式,求a ,b ,c . 【练习7】若=-+=-+=+-c b a c b a c b a 13125,3234,732则( )A.30 B.-30 C.15 D.-15【练习8】 若=-+-=-+=++z y x z y x z y x 则,473,6452 .【练习9】 如果代數式2,635-=-++x cx bx ax 当時の值是7,那麼當2=x 時,該代數式の值是 .【练习10】 多項式12+-x x の最小值是 .【练习1】下列各式得公因式是a得是()A.ax+ay+5 B.3ma-6ma2 C.4a2+10ab D.a2-2a+ma【练习2】-6xyz+3xy2-9x2yの公因式是()A.-3x B.3xz C.3yz D.-3xy【练习3】把多項式(3a-4b)(7a-8b)+(11a-12b)(8b-7a)分解因式の結果是()A.8(7a-8b)(a-b) B.2(7a-8b)2 C.8(7a-8b)(b-a)D.-2(7a-8b)【练习4】把(x-y)2-(y-x)分解因式為()A.(x-y)(x-y-1) B.(y-x)(x-y-1)C.(y-x)(y-x-1) D.(y-x)(y-x+1)【练习5】下列各個分解因式中正確の是()A.10ab2c+6ac2+2ac=2ac(5b2+3c)B.(a-b)3-(b-a)2=(a-b)2(a-b+1)C.x(b+c-a)-y(a-b-c)-a+b-c=(b+c-a)(x+y-1)D.(a-2b)(3a+b)-5(2b-a)2=(a-2b)(11b-2a)【练习6】觀察下列各式①2a+b和a+b,②5m(a-b)和-a+b,③3(a+b)和-a -b,④x2-y2和x2和y2。
人教版八年级数学上整式的乘除及因式分解
第1讲 整式乘法本讲知识点归纳1.同底数幂的乘法:nm nma a a +=⋅2.幂的乘方:()mn nma a =3.积的乘方:()n n nb a ab =4.单项式乘单项式、单项式乘多项式、多项式乘多项式5.乘法公式(1)平方差公式:()()2222b a b a b a -=-++(2)完全平方公式:()2222b ab a b a +±=±(3)立方和(差)公式:()()3322b abab a b a ±=+±基础回顾例1 运用乘法公式计算(1)()()y x y x --+-22 (2) ()()()()b a a b a b b a 43342332+--+- (3) ()()()4222--+x x x (4) ()()222323n m n m +--解:分析:运用平方差公式、完全平方公式,理解两公式中的a ,b ,特别注意符号,在平方差公式中,两括号中完全相同的项相当于公式中的“a ”,只有符号不同的项相当于平方差公式中的“b ”;在完全平方公式中,展开后有三项,两平方项及两个数积的2倍。
平方差公式,完全平方公式可以逆用,有时可使计算变得简捷. 例2小明家的住房结构如图所示,小明的爸爸打算把卧室以外的部分都铺上地砖,至少需要多少2m 的地砖?如果每21m 她砖的价格是a 元钱,则购买地砖至少需要多少钱? 解:分析:把图中每个长方形的长与宽观察出来或表示出来,再用长方形的面积公式及图形的积差关系表示。
1.计算:(1)()42x x x -⋅⋅ (2)()()()6334233a a a -⋅(3)32233243⎪⎭⎫⎝⎛-⋅y x y x (4)()()y x y x 22-+2.利用平方差公式计算(1)()()y x y x 33+- (2)()()n m n m 3322+-(3)()()32323434z xyzxy -+ (4)()()bc a bc a +---223.利用完全平方公式计算(1)()()z y x z y x +--+ (2)()212++n n y x (3)()()22y x y x -⋅+练习4.如图,在边长为a 的正方形中剪去一个边长为b 的小正方形(a >b )。
人教版 八年级数学上册 竞赛专题:整式的乘除(含答案)
人教版 八年级数学上册 竞赛专题:整式的乘除(含答案)【例1】(1)若n 为不等式2003006n>的解,则n 的最小正整数的值为 .(2)已知21x x +=,那么432222019x x x x +--+= .(3)把26(1)x x -+展开后得121121211210a x a x a x a x a +++++,则121086420a a a a a a a ++++++= .(4)若543237629()()()()()x x x x x x a x b x c x d x e -+-++=-----则ab ac ad ae bc bd be cd ce de +++++++++= .解题思路:对于(1),从幂的乘方逆用入手;对于(2),目前无法求x 值,可考虑高次多项式用低次多项式表示;对于(3),它是一个恒等式,即在x 允许取值范围内取任何一个值代入计算,故可考虑赋值法;对于(4),可考虑比较系数法.【例2】已知252019x=,802019y=,则11x y+等于( ) A .2 B .1 C .12D .32解题思路:,x y 为指数,我们无法求出,x y 的值,而11x y x y xy++=,所以只需求出,x y xy +的值或它们的关系,于是自然想到指数运算律.【例3】设,,,a b c d 都是正整数,并且5432,,19a b c d c a ==-=,求d b -的值.(江苏省竞赛试题) 解题思路:设5420326,a b m c d n ====,这样,a b 可用m 的式子表示,,c d 可用n 的式子表示,通过减少字母个数降低问题的难度.【例4】已知多项式2223286(2)(2)x xy y x y x y m x y n +--+-=++-+,求3211m n +-的值.解题思路:等号左右两边的式子是恒等的,它们的对应系数对应相等,从而可考虑用比较系数法.【例5】是否存在常数,p q 使得42x px q ++能被225x x ++整除?如果存在,求出,p q 的值,否则请说明理由.解题思路:由条件可推知商式是一个二次三项式(含待定系数),根据“被除式=除式×商式”,运用待定系数法求出,p q 的值,所谓,p q 是否存在,其实就是关于待定系数的方程组是否有解.【例6】已知多项式432237x x ax x b -+++能被22x x +-整除,求ab的值. (北京市竞赛试题) 解题思路:本题主要考查了待定系数法在因式分解中的应用.本题关键是能够通过分析得出当2x =-和1x =时,原多项式的值均为0,从而求出,a b 的值.当然本题也有其他解法.能力训练A 级1.(1)24234(0.25)1⨯--= . (2)若23n a=,则621n a -= .2.若2530x y +-=,则432xy. 3.满足200300(1)3x ->的x 的最小正整数为 .4.,,,a b c d 都是正数,且23452,3,4,5a b c d ====,则,,,a b c d 中,最大的一个是 . 5.探索规律:133=,个位数是3;239=,个位数是9;3327=,个位数是7;4381=,个位数是1;53243=,个位数是3;63729=,个位数是9;…那么73的个位数字是 ,303的个位数字是 . 6.已知31416181,27,9a b c ===,则,,a b c 的大小关系是( ) A .a b c >>B .a c b >>C .a b c <<D .b c a >>7.已知554433222,3,5,6a b c d ====,那么,,,a b c d 从小到大的顺序是( ) A .a b c d <<< B .a b d c <<< C .b a c d <<< D .a d b c <<<8.若11222,22n n n n x y +--=+=+,其中n 为整数,则x 与y 的数量关系为( )A .4x y =B .4y x =C .12x y =D .12y x =9.已知23,26,212,abc===则,,a b c 的关系是( ) A .2b a c <+B .2b a c =+C .2b a c >+D .a b c +>10.化简4322(2)2(2)n n n ++-得( ) A .1128n +- B .12n +-C .78D .7411.已知2233447,49,133,406ax by ax by ax by ax by +=+=+=+=, 试求171995()6()2x y xy a b ++-+的值.12.已知2267314(23)(3)x xy y x y a x y b x y c --+++=-+++.试确定,,a b c 的值.13.已知323x kx ++除以3x +,其余数较被1x +除所得的余数少2,求k 的值.B 级1.已知23,45,87,abc===则28a c b+-= .2.(1)计算:2019201920192019201973153735+⎛⎫⨯ ⎪+⎝⎭= . (2)如果5555555555555554444666666233322n ++++++++⨯=+++,那么n = . 3.(1)1615与1333的大小关系是1615 1333(填“>”“<”“=”).(2)201920193131++与201920203131++的大小关系是:201920193131++ 201920203131++(填“>”“<”“=”).4.如果210,x x +-=则3223x x ++= .5.已知55432(2)x ax bx cx dx ex f +=+++++,则164b d f ++= . 6.已知,,a b c 均为不等于1的正数,且236,a b c -==则abc 的值为( )A .3B .2C .1D .127.若3210x x x +++=,则27261226271x x x x x x x ---+++++++++的值是( )A .1B .0C .—1D .28.如果328x ax bx +++有两个因式1x +和2x +,则a b +=( ) A .7B .8C .15D .219.已知12320182019,,,,a a a a a 均为正数,又122018232019()()M a a a a a a =++++++,122019232020()()N a a a a a a =++++++,则M 与N 的大小关系是( )A .M N =B .M N <C .M N >D .关系不确定10.满足22(1)1n n n +--=的整数n 有( )个A .1B .2C .3D .411.设,,,a b x y 满足2233443,7,16,42,ax by ax by ax by ax by +=+=+=+=求55ax by +的值.12.若,,,x y z w 为整数,且x y z w >>>,52222208xyzw+++=,求2020(1)x y z w +++-的值.13.已知,,a b c 为有理数,且多项式32x ax bx c +++能够被234x x +-整除. (1)求4a c +的值; (2)求22a b c --的值;(3)若,,a b c 为整数,且1c a >≥.试比较,,a b c 的大小.参考答案例1(1)(n 2)100>(63)100,n 2 >216,n 的最小值为15.(2)原式=x 2(x 2+x )+x (x 2 +x )-2(x 2+x ) +2019= x 2+x -2+2019=2018 (3)令x =1时,a 12+a 11+a 10+…+a 2+a 1+a 0=1, ① 令x =-1时,a 12 –a 11+a l 0-…+n 2-a l +a 0 =729 ② 由①+②得:2(a 12+a l 0+a 8+…+a 2 +a 0)=730. ∴a 12 +a 10 +a 8 +a 6+a 4 +a 2+a 0 =365. (4)所有式子的值为x 3项的系数,故其值为7. 例2 B 提示:25xy =2 019y , ① 80xy =2 019x , ②①×②,得:(25×80)xy =2019x +y ,得:x + y =xy .例3 设a =m 4,b =m 5,c =n 2,d =n 3,由c -a =19得,n 2-m 4=19,即(n +m 2) (n -m 2)=19,因19是质数,n +m 2,n -m 2是自然数,且n +m 2>n -m 2,得⎩⎪⎨⎪⎧n +m 2=19n -m 2=1,解得n =10,m =3,所以d -b =103-35 =757例4 -78提示:由题意知:2x 2+3xy -2y 2-x +8y -6=2x 2+3xy -2y 2+(2m +n )x +(2n -m )y +mn .∴⎩⎪⎨⎪⎧2m +n =-12n -m =8mn =-6,解得⎩⎨⎧m =-2n =3,∴m 3+1n 2-1 =-78倒5提示:假设存在满足题设条件的p ,q 值,设(x 4+px 2+q )=(x 2+2x +5)(x 2+mx +n ),即 x 4+px 2+q =x 4+(m +2)x 3+(5+n +2m )x 2+(2n +5m )x +5n ,得⎩⎨⎧m +2=05+n +2m =p 2n +5m =05n =q ,解得⎩⎨⎧m =-2n =5p =6q =25,故存在常数p ,q 且p =6,q =25,使得x 4+px 2+q 能被x 2+2x +5整除.例6解法1 ∵x 2+x -2=(x +2) (x -1),∴2x 4-3x 3+ax 2+7x +b 能被(x +2)(x -1)整除,设商是A . 则2x 4-3x 3+ax 2+7x +b =A (x +2)(x -l ),则x =-2和x =1时,右边都等于0,所以左边也等于0.当x =-2时,2x 4-3x 3+ax 2+7x +b =32+24+4a -14+b =4a +b +42=0, ① 当x =1时, 2x 4-3x 3+ax 2+7x +b =2-3+a +7+b =a +b +6=0. ② ①-②,得3a +36=0,∴ a =-12, ∴ b =-6-a =6. ∴a b =-126=-2 解法2 列竖式演算,根据整除的意义解2243243232322225(9)22372245(4)75510(9)3(9)(9)2(9)(12)2(9)x x a x x x x ax x bx x x x a x x b x xx a x x ba x a x a a xb a -+++--++++--++++--++-++-+-+--+++∵2x 4-3x 3+ax 2+7x +b 能被x 2+x -2整除,∴⎩⎨⎧-12-a =0b +2(a +9)=0,即⎩⎨⎧a =-12b =6,∴a b =-2A 级1.(1) -5 (2)53 2.8 3.7 4.6 5.7 9 6.A 7.D 提示:a =(25)11,b -(34)11,c =(53)11,d =(62)11 8.A 9.B 10.C 11.4800 12.a =4.b =4,c =113. 提示:令x 3 +kx 2+3=(x +3) (x 2+ax +6)+r 1,x 3+kx 2+3=( x +1) (x 2+cx +d )+r 2,令x =-3,得r 1=9k -24.令x =-1,得r 2=k +2,由9k -24+2=k +2, 得k =3.B 级1.1891252. (1)949(2)123.(1) < 1516 <1615=264,3 313 >3213=265 >264. (2) > 提示:设32 000 =x .4.4 5.512 提示:令x =±2. 6.C 提示:由条件得a =c -3 ,b =c 2 ,abc =c -3·c 2·c =1 7.C 8.D 9.C 10.D11.由ax 2+by 2 =7,得(ax 2+by 2)(x +y )=7(x +y ),即ax 3-ax 2y +bxy 2+by 3 =7(x +y ),(ax 3+by 3)-xy (ax +by )-7(x +y ). ∴16+3xy = 7(x +y ). ①由ax 3 +by 3=16,得(ax 3+by 3)(x +y ) =16(x +y ),即ax 4 +ax 3 y +bxy 3+by 4 =16(x +y ),(ax 4+by 4)+xy (a 2x +b 2y )=16(x +y ). ∴42+7xy =16(x +y ). ② 由①②可得,x +y =-14,xy =-38.由a 2x +b 2y =42,得(a 4x +b 4y )(x +y )=42×(-14), (a 5x +b 5y )+xy (a 3x +b 3y )=-588,55ax by ++16×(-38)=-588.故55ax by +=20. 12. ()20191x y z w +++-=()201942131+---=1.13.(1)∵(x -1)(x +4)=2x +3x -4, 令x -1=0,得x =1;令x +4=0,得x =-4. 当x =1时,得1+a +b +c =0; ① 当x =-4时,得-64+16a -4b +c =0. ② ②-①,得15a -5b =65,即3a -b =13. ③ ①+③,得4a +c =12.(2)③-①,得2a -2b -c =14.(3)∵c ≥a >1,4a +c =12,a ,b ,c 为整数, ∴1<a ≤125,则a =2,c =4. 又a +b +c =-1,∴b =-7,.∴c >a >b .。
初二数学《整式的乘除与因式分解》习题(含答案)
整式的乘除与因式分解一、选择题1.下列计算中,运算正确的有几个()(1) a5+a5=a10(2) (a+b)3=a3+b3 (3) (-a+b)(-a-b)=a2-b2 (4) (a-b)3= -(b-a)3A、0个B、1个C、2个D、3个2.计算(-2a3)5÷(-2a5)3的结果是()A、— 2B、2 C、4 D、—4 3.若,则的值为()A. B.5 C. D.2 4.若x2+mx+1是完全平方式,则m=()。
A、2B、-2C、±2D、±4 5.如图,在长为a的正方形中挖掉一个边长为b的小正方形(a>b)把余下的部分剪拼成一个矩形,通过计算两个图形(阴影部分)的面积,验证了一个等式,则这个等式是()A.a2-b2=(a+b)(a-b) B.(a+b)2=a2+2ab+b2C.(a-b)2=a2-2ab+b2D.(a+2b)(a-b)=a2+ab-2b26.已知()b-2a3,则与的值分别=+2ba7, ()=是()A. 4,1B. 2,32C.5,1D. 10, 32二、填空题1.若2,3=-=+ab b a ,则=+22b a ,()=-2b a2.已知a -1a =3,则a 2+21a的值等于 · 3.如果x 2-kx +9y 2是一个完全平方式,则常数k =________________;4.若⎩⎨⎧-=-=+31b a b a ,则a 2-b 2= ;5.已知2m =x ,43m =y ,用含有字母x 的代数式表示y ,则y =________________;6、如果一个单项式与的积为-34a 2bc,则这个单项式为________________; 7、(-2a 2b 3)3 (3ab+2a 2)=________________;8、()()()()=++++12121212242n ________________;9、如图,要给这个长、宽、高分别为x 、y 、z 的箱子打包,其打包方式如下图所示,则打包带的长至少要____________(单位:mm )。
人教版八年级数学上《整式乘除与因式分解》期末复习专题试卷及答案
2016-2017学年度第一学期八年级数学期末复习专题整式乘除与因式分解姓名:_______________班级:_______________得分:_______________一选择题:1.若8×2x=5y+6,那么当y=﹣6时,x应等于()A.﹣4B.﹣3C.0D.42.计算(﹣2a2b)3的结果是()A.﹣6a6b3B.﹣8a6b3C.8a6b3D.﹣8a5b33.计算(﹣a﹣b)2等于()A.a2+b2B.a2﹣b2C.a2+2ab+b2D.a2﹣2ab+b24.计算(x-1)(-x-1)的结果是()A.﹣x2+1B.x2﹣1C.﹣x2﹣1D.x2+15.若a+b=5,ab=-24,则a2 +b2 的值等于( )A.73B.49C.43D.236.多项式的公因式是()A. B. C. D.7.下列多项式能用平方差公式因式分解的是( )A. B. C. D.8.若m-n=-1,则(m-n)2-2m+2n的值是( )A.3B.2C.1D.-19.若9a2+24ab+k是一个完全平方式,则k=()A.2b2B.4b2C.8b2D.16b210.一个正方形的边长增加,面积相应增加,则这个正方形的边长为()A.6B.5C.8D.711.计算1982等于()A.39998;B.39996;C.39204;D.39206;12.若,,则的值是()(A)9 (B)10 (C)2(D)113.把多项式分解因式结果正确的是()A. B. C. D.14.下列各式从左到右的变形属于分解因式的是()A. B.C. D.15.已知x-y=3,x-z=,则(y-z) 2+5(y-z)+的值等于()A.;B.;C.;D.0;16.观察下列各式:①abx-adx;②2x2y+6xy2;③8m3-4m2+2m+1;④a3+a2b+ab2-b3;⑤(p+q)x2y-5x2(p+q)+6(p+q)2;⑥a2(x+y)(x-y)-4b(y+x).其中可以用提公因式法因式分解的是( )A.①②⑤B.②④⑤C.②④⑥D.①②⑤⑥17.现有若干张卡片,分别是正方形卡片A、B和长方形卡片C,卡片大小如图所示.如果要拼一个长为(a+2b),宽为(a+b)的大长方形,则需要C类卡片张数为()A.1B.2C.3D.418.若x2﹣x+1=0,则等于()A. B. C. D.19.如果a,b,c满足a2+2b2+2c2-2ab-2bc-6c+9=0,则abc等于( )A.9B.27C.54D.8120.请你计算:(1﹣x)(1+x),(1﹣x)(1+x+x2),…,猜想(1﹣x)(1+x+x2+…+x n)的结果是()A.1﹣x n+1B.1+x n+1C.1﹣x nD.1+x n二填空题:21.已知2x+3y﹣4=0,则9x•27y的值为.22.[(-x)2] n·[-(x3)n]=______.23.若b为常数,且是完全平方式,那么b= .24.若x2+2(m﹣3)x+16是完全平方式,则m= .25.已知a+b=7,ab=13,那么a2-ab+b2=_______.26.若三项式4a2-2a+1加上一个单项式后是一个多项式的完全平方,请写出一个这样的单项式.27.多项式kx2-9xy-10y2可分解因式得(mx+2y)(3x-5y),则k=________,m=________.28.观察下列各式:(1)42-12=3×5;(2)52-22=3×7;(3)62-32=3×9;………则第n(n是正整数)个等式为_____________________________.三简答题:29.已知3m=2,3n=5.(1)求3m+n的值;(2)32m﹣n的值.30.先阅读下面的内容,再解决问题,例题:若m2+2mn+2n2﹣6n+9=0,求m和n的值.解:∵m2+2mn+2n2﹣6n+9=0∴m2+2mn+n2+n2﹣6n+9=0∴(m+n)2+(n﹣3)2=0∴m+n=0,n﹣3=0∴m=﹣3,n=3问题:(1)若x2+2y2﹣2xy+4y+4=0,求x y的值.(2)已知a,b,c是△ABC的三边长,满足a2+b2=10a+8b﹣41,且c是△ABC中最长的边,求c的取值范围.31.你能化简(a-1)(a99+a98+a97+……+a2+a+1)吗?我们不妨先从简单情况入手,发现规律,归纳结论.(1)先填空:(a-1)(a+1)= ;(a-1)(a2+a+1)= ;(a-1)(a3+a2+a+1)= ;……由此猜想(a-1) (a99+a98+a97+……+a2+a+1)= .(2)利用这个结论,你能解决下面两个问题吗?①求2199+2198+2197+……+22+2+1的值;②若a5+a4+a3+a2+a+1=0,则a6等于多少?32.数学课上老师出了一道题,计算:.小明看后说:“太繁琐了,我是做不出来”;小亮思考后说:“若设=x,先运用整体思想将原式代换,再进行整式的运算,就简单了”.小明采用小亮的思路,很快就计算出了结果,请你根据小亮思路完成计算.33.在形如的式子中,我们已经研究过已知a和b,求N,这种运算就是乘方运算.现在我们研究另一种情况:已知a和N,求b,我们把这种运算叫做对数运算.定义:如果(a>0,a≠1,N>0),则b叫做以a为底N的对数,记作.例如:因为23=8,所以;因为,所以.(1)根据定义计算:①=______;②=_____;③=______;④如果,那么x=_______. (2)设则(a>0,a≠1,M、N均为正数),因为,所以所以,即. 这是对数运算的重要性质之一,进一步,我们还可以得出:= _.(其中M 1、M2、M3、……、M n均为正数,a>0,a≠1)(a>0,a≠1,M、N均为正数).(3)结合上面的知识你能求出的值吗?四计算题:34.(x﹣2y+4)(x﹣2y﹣4)35.(﹣3a)3﹣(﹣a)•(﹣3a)2.36.4ab[2a2﹣3b(ab﹣ab2)]37.(x﹣1)(x+2)﹣3x(x+3)38.(a﹣2b)2﹣(2a+b)(b﹣2a)﹣4a(a﹣b)39.参考答案1、B2、B3、C4、A5、A6、D7、D8、A9、D 10、B 11、C 12、B 13、D 14、B 15、D;16、D.17、C 18、C 19、B 20、A 21、81 .22、; 23、, 24、﹣1或7 .25、10 26、答案不唯一,如-3a2或-2a或6a或; 27、9 3 28、(n+3)2=3(2n+3)29、【解答】解:(1)∵3m=2,3n=5,∴3m+n=3m•3n=2×5=10;(2)∵3m=2,3n=5,∴32m﹣n=(3m)2÷3n=22÷5=.30【解答】解:(1)x2+2y2﹣2xy+4y+4=x2﹣2xy+y2+y2+4y+4=(x﹣y)2+(y+2)2=0,∴x﹣y=0,y+2=0,解得x=﹣2,y=﹣2,∴x y=(﹣2)﹣2=;(2)∵a2+b2=10a+8b﹣41,∴a2﹣10a+25+b2﹣8b+16=0,即(a﹣5)2+(b﹣4)2=0,a﹣5=0,b﹣4=0,解得a=5,b=4,∵c是△ABC中最长的边,∴5≤c<9.31、(1),………。
人教版初二上册数学期末复习要点:整式的除法
人教版初二上册数学期末复习要点:整式的
除法
1.单项式除法单项式
单项式相除,把系数、同底数幂分别相除,作为商的因式,对于只在被除式里含有的字母,则连同它的指数作为商的一个因式;
2.多项式除以单项式
多项式除以单项式,先把这个多项式的每一项除以单项式,再把所得的商相加,其特点是把多项式除以单项式转化成单项式除以单项式,所得商的项数与原多项式的项数相同,另外还要特别注意符号。
以上就是为大家整理的人教版初二上册数学期末复习要点:整式的除法,怎么样,大家还满意吗?希望对大家的学习有所帮助,同时也祝大家学习进步,考试顺利!
成绩的提高是同学们提高总体学习成绩的重要途径,大家一定要在平时的练习中不断积累,欢迎点击初二期末复习,希望同学们不断取得进步!。
2019学年人教版八年级数学整式的乘除知识点与例题
2019学年人教版八年级数学整式的乘除知识点与例题整式的乘法【知识点1.同底数幂的乘法法则】同底数幂相乘;底数不变;指数相加。
即:m n m n a a a+⋅=(m ;n 都是正整数)。
例1:计算 (1)821010⨯; (2)23x x ⋅-(-)(); (3)n 2n 1n a a a a ++⋅⋅⋅例2:计算 (1)35b 2b 2b 2+⋅+⋅+()()();(2)23x 2y y x -⋅()(2-)例3:已知x 22m +=;用含m 的代数式表示x 2。
【知识点2.幂的乘方(重点)】幂的乘方是指几个相同的幂相乘;如53a ()是三个5a 相乘;读作a 的五次幂的三次方。
幂的乘方法则:幂的乘方;底数不变;指数相乘。
即m n mn a a =()(m ;n 都是正整数)。
例4:计算(1)m 2a (); (2)()43m ⎡⎤-⎣⎦; (3)3m 2a -()【知识点3.积的乘方(重点)】积的乘方的意义:指底数是乘积形式的乘方。
如:()()()()3ab ab ab ab =⋅⋅积的乘方法则:积的乘方;等于把积得每一个因式分别乘方;再把所得的幂相乘。
如:n n n ab a b ⋅()= 例5:计算(1)()()2332xx -⋅-; (2)()4xy -; (3)()3233a b -例6:已知a b 105,106==;求2a 3b 10+的值。
例7:计算(1)201120109910010099⎛⎫⎛⎫⨯ ⎪ ⎪⎝⎭⎝⎭; (2)()315150.1252⨯【知识点4.单项式与单项式相乘(重点)】法则:单项式与单项式相乘;把它们的系数、相同字母分别相乘;对于只在一个单项式例含有的字母;则连同它的指数作为积的一个因式。
例8:计算(1)2213ab a b 2abc 3⎛⎫⋅-⋅ ⎪⎝⎭; (2) ()()n 1n 212xy 3xy x z 2+⎛⎫-⋅-⋅- ⎪⎝⎭; (3) ()()322216m n x y mn y x 3-⋅-⋅⋅-【知识点5.单项式与多项式相乘(重点)】法则:单项式与多项式相乘;就是用单项式去乘多项式的每一项;再把所得的积相加。