求极限的方法总结(一)
极限求法总结
极限求法总结极限是微积分中的一个重要概念,是研究函数变化趋势的基础。
在求解极限的过程中,我们常常会使用一些常用的技巧和方法。
下面我将对常见的极限求法进行总结,详细说明每种方法的步骤和应用场景。
一、直接代入法当函数在某个点有定义并且极限存在时,我们可以通过将变量直接代入函数中计算出极限的值。
例如,对于 f(x) = x^2 - 1,当 x -> 2 时,我们可以将 x 的值替换为 2,计算出 f(2) 的值。
这种方法适用于函数在该点有定义且不产生未定义结果的情况。
二、分子有理化法有些极限问题中,分子含有根式、分母含有分式等情况,为了便于计算,我们可以使用有理化方法。
主要有三种情况:有理化分母、有理化分子和有理化共轭。
1. 有理化分母:当分母中含有根式时,我们可以通过乘上分母的共轭形式,并利用差平方公式,将根式有理化为有理数。
例如,对于f(x) = 1/√x,当 x -> 4 时,我们可以乘上分母的共轭√x,得到f(x) = √x/√x^2,再利用 x^2 - a^2 = (x - a)(x + a) 的差平方公式,化简出分母为 (x - 4)。
接着我们可以直接代入计算。
2. 有理化分子:当分子中含有根式时,我们可以通过乘上分子的共轭形式,并利用和平方公式,将根式有理化为有理数。
例如,对于f(x) = √x + 1,当 x -> 2 时,我们可以乘上分子的共轭√x - 1,得到f(x) = (√x + 1)(√x - 1)/(√x - 1),再利用 a^2 -b^2 = (a - b)(a + b) 的和平方公式,化简后得到 f(x) = (x - 1)/(√x - 1)。
接着我们可以直接代入计算。
3. 有理化共轭:当分式中含有复杂的分母,我们可以根据分母的共轭形式,将分式有理化为分子和分母之间关于负号的组合。
例如,对于 f(x) = 1/(x + 3)^2,当 x -> -3 时,我们可以将分子和分母都乘上 (x + 3)^2 的共轭 (-x - 3)^2,然后化简分子和分母。
求极限的12种方法
求极限的方法
1、利用极限的四则运算和幂指数的运算法则
2、利用函数的连续性
3、利用变量替换
4、利用等价无穷小
5、利用洛必达法则
6、分别求左右极限
7、把数列极限转化为函数极限
8、利用夹逼定理(极限存在两定理之一)
1)利用简单的放大、缩小函数法
2)利用不等式的性质进行放大或缩小【根据定义不等式求极限】
3)对积分的极限可以利用积分的性质进行放大缩小
9、利用递归数列先证明极限的存在(常用单调数列必有界),
再利用递归关系求出极限。
10、利用定积分求和式求极限
11、利用泰勒公式
12、利用导数定义求极限
附加:
1、 利用函数极限求数列极限 Example:
(1) n n
n ln lim +∞
→ 解:记:x x
n n x n ln ln lim lim +∞→+∞→= =0。
求极限方法总结
求极限方法总结求极限方法总结第一篇1、等价无穷小的转化,〔只能在乘除时候使用,但是不是说肯定在加减时候不能用,前提是必需证明拆分后极限依旧存在,e的X次方-1或者〔1+x〕的a次方-1等价于Ax等等。
全部熟记〔x趋近无穷的时候还原成无穷小〕。
2、洛必达法则〔大题目有时候会有示意要你使用这个方法〕。
首先他的使用有严格的使用前提!必需是X趋近而不是N趋近!〔所以面对数列极限时候先要转化成求x趋近状况下的极限,当然n趋近是x趋近的一种状况而已,是必要条件〔还有一点数列极限的n当然是趋近于正无穷的,不行能是负无穷!〕必需是函数的导数要存在!〔假如告知你g〔x〕,没告知你是否可导,直接用,无疑于找死!!〕必需是0比0无穷大比无穷大!当然还要留意分母不能为0。
洛必达法则分为3种状况:0比0无穷比无穷时候直接用;0乘以无穷,无穷减去无穷〔应为无穷大于无穷小成倒数的关系〕所以无穷大都写成了无穷小的倒数形式了。
通项之后这样就能变成第一种的形式了;0的0次方,1的无穷次方,无穷的0次方。
对于〔指数幂数〕方程方法主要是取指数还取对数的方法,这样就能把幂上的'函数移下来了,就是写成0与无穷的形式了,〔这就是为什么只有3种形式的缘由,LNx 两端都趋近于无穷时候他的幂移下来趋近于0,当他的幂移下来趋近于无穷的时候,LNX趋近于0〕。
3、泰勒公式(含有e的x次方的时候,尤其是含有正余弦的加减的时候要特变留意!〕E的x展开sina,展开cosa,展开ln1+x,对题目简化有很好帮助。
4、面对无穷大比上无穷大形式的解决方法,取大头原则最大项除分子分母!!!看上去冗杂,处理很简洁!5、无穷小于有界函数的处理方法,面对冗杂函数时候,尤其是正余弦的冗杂函数与其他函数相乘的时候,肯定要留意这个方法。
面对特别冗杂的函数,可能只需要知道它的范围结果就出来了!6、夹逼定理〔主要对付的是数列极限!〕这个主要是观察极限中的函数是方程相除的形式,放缩和扩大。
16种求极限方法及一般题型解题思路分享
16种求极限方法及一般题型解题思路分享求极限是微积分中的重要内容之一,常见于各种数学和工程科学中。
为了求出一个函数在某一点的极限,需要使用合适的方法。
下面介绍16种常用的求极限方法,以及一般题型解题思路。
一、直接代入法对于多项式函数和分式函数,可以直接将自变量代入函数表达式中计算极限。
例如,求函数 f(x) = 2x + 3 在 x = 1 处的极限,直接代入即可得到结果。
二、分解因式法对于分式函数,可以通过分解因式来简化计算,特别适用于分子和分母都是多项式的情况。
例如,求函数 f(x) = (x^2 - 1)/(x - 1) 在 x = 1 处的极限,可以将分子进行因式分解,得到 f(x) = (x - 1)(x + 1)/(x - 1),然后约去公因式,即可得到结果。
三、夹逼定理夹逼定理用于解决复杂函数在某一点处的极限问题。
如果一个函数在某一点附近被两个其他函数夹住,并且这两个函数的极限都存在且相等,那么原函数的极限也存在且等于这个相等的极限。
例如,对于函数 f(x) = x*sin(1/x),当 x 趋近于 0 时,f(x) 被两个函数 g(x) = x 和 h(x) = -x 夹住,且 g(x) 和 h(x) 的极限都是 0,所以 f(x) 的极限也是 0。
四、变量代换法第1页/共5页对于一些特殊的函数,可以通过变量代换来简化计算。
例如,对于函数f(x) = sin(1/√x),当 x 趋近于 0 时,可以将√x = t,那么 x = t^2,且当 x 趋近于 0 时,t 也趋近于 0,所以求 f(x) 在 x = 0 处的极限可以转化为求 g(t) = sin(1/t) 在 t = 0 处的极限。
五、洛必达法则洛必达法则是一种常用的求函数极限的方法,特别适用于形如 0/0 或∞/∞的不定式。
根据洛必达法则,如果一个不定式的分子和分母的极限都存在且为 0 或∞,那么可以分别对分子和分母求导后再次求极限,直到找到一个不是 0/0 或∞/∞的形式。
求极限的若干方法
求极限的若干方法一、数列极限的求解方法1、夹逼准则法(夹逼定理):若数列{an}、{bn}、{cn}满足an≤bn≤cn(n≥N0),且lim an=lim cn = L,则数列{bn}有极限且lim bn = L。
2、单调有界数列必有极限法:单调递增的数列有上确界、单调递减的数列有下确界,因此,单调有界数列必有极限。
3、数列按定义法:对于任何一个ε>0,只要找到一个正整数N,使得当n>N时,有|an-L|<ε,则该数列的极限为L。
二、函数极限的求解方法1、极限的定义法:通过定义式计算出函数在某一点的极限。
2、夹逼定理法:当x趋近于a时,若能找到两个函数f(x)≤g(x)≤h(x),且lim f(x) = lim h(x) = L,则函数g(x)在x→a时有极限,且lim g(x) = L。
3、函数的分解法(分子分母有理化、公式替代、三角函数化合成、指数幂换底等方式):通过对函数进行分解或替换等操作,将其转换为可以用其它非分数函数进行极限操作的形式。
4、洛必达求极限法:当函数f(x)和g(x)在某一点均为0或无穷大时,计算并求出函数f(x) / g(x) 的极限l。
如果极限l存在,则f(x) / g(x) 在该点处的极限也是l。
三、无穷级数的求极限方法1、比项法则法:若某一级数后一项于前一项同比变化的极限为L,则这个级数也有极限,且级数的极限为L。
2、积分判断法:对于大于1的自然数n,若函数f(x)在[1,n+1]上是单调递减的且非负,那么它可以累次积分,获得一个极限值;相反地,若g(x)在[1,∞)上是单调递增的和非负的,若及时积分比对之后的级数的部分和同比下减小,则极限l存在;否则若极限不存在,则级数发散。
3、柯西收敛定理法:当对于任意ε >0,存在自然数N>0,使得对于所有的n>m>N,都有|\sum_{k=m}^n a_k|<ε 成立,则此级数是收敛的;如果它不满足上述条件,则是发散的。
高数中求极限的16种方法
千里之行,始于足下。
高数中求极限的16种方法在高等数学中,求极限是一个格外重要的技巧和考点。
为了解决各种极限问题,数学家们总结出了很多方法和技巧。
以下是高数中求极限的16种方法:1.代换法:将极限中的变量进行代换,使其变成简洁计算的形式。
2.夹逼准则:当函数处于两个已知函数之间时,可以通过比较已知函数的极限来确定未知函数的极限。
3.无穷小量比较法:比较两个函数的无穷小量的大小,以确定它们的极限。
4.利用函数性质:利用函数的对称性、奇偶性等性质来计算极限。
5.利用恒等变形:将极限式子进行恒等变形,以将其转化为简洁计算的形式。
6.利用泰勒开放:将函数开放成无穷级数的形式,以求出极限。
7.利用洛必达法则:对于某些不定型的极限,可以利用洛必达法则将其转化为可计算的形式。
8.利用级数或累次求和:将极限式子转化为级数或累次求和的形式,以求出极限。
9.利用积分计算:将极限式子进行积分计算,以求出极限。
10.利用微分方程:将极限问题转化为求解微分方程的问题,以求出极限。
第1页/共2页锲而不舍,金石可镂。
11.利用积素等价:将极限式子进行积素等价,以求出极限。
12.利用无穷增减变异法:通过凑出一个等价变形,将极限问题转化为比较某些函数值的大小。
13.利用不等式:通过找到合适的不等式,对函数进行估量,以求得极限。
14.利用递推公式:对于递归定义的函数,可以通过递推公式求出极限。
15.利用导数性质:利用函数的导数性质,对极限进行计算。
16.利用对数和指数函数的性质:利用对数和指数函数的特性,求出极限。
除了上述方法外,还有很多其他的方法和技巧,可以依据具体问题来选择使用。
这些方法和技巧的使用需要机敏把握,通过大量的练习和思考,可以在求解极限问题中得到娴熟应用。
几种求极限方法的总结
几种求极限方法的总结求极限是数学中常见的一种运算方法,通过确定变量趋近于一些特定值时的极限值,可以得到一些重要的数学结论和性质。
在数学中,常用的求极限方法主要包括代入法、夹逼定理、换元法、洛必达法则和级数展开法等。
下面对这些方法进行总结。
1.代入法:代入法是求极限的最基本也是最常用的方法之一、该方法的基本思想是将待求极限的表达式中的变量用一些特定的值替代,然后计算得到的函数值,以此来确定极限值。
代入法特别适用于求一些基本极限,如常数的极限、指数函数的极限和三角函数的极限等。
2.夹逼定理:夹逼定理也称为两边夹定理,是一种常用的求极限方法。
它的基本思想是通过找到两个函数,使得它们的极限值分别接近于待求极限值,而且夹逼在它们之间。
这两个函数的极限值可以比较容易地求得,从而通过夹逼定理求出待求极限的值。
夹逼定理常用于求一些复杂函数的极限,如无理函数和乘积、商函数等。
3.换元法:换元法又称为代换法,是一种常用的求极限方法。
该方法的基本思想是通过对待求极限的表达式进行变量替换,将其转化为一个可以比较容易计算的形式。
通过选取合适的变量替换方式,可以使得原表达式中的一些难以计算的部分简化,从而更容易求得极限的值。
换元法特别适用于一些复杂的函数、无穷级数或指数函数等。
4.洛必达法则:洛必达法则是一种求极限的重要方法,尤其适用于求函数之商的极限。
该方法的基本思想是将待求极限转化为求两个函数的导数的极限,然后利用导数的性质来确定极限值。
通过使用洛必达法则,可以简化一些分数形式的极限,使得求解过程更加简单明了。
但需要注意的是,使用洛必达法则时,必须保证函数和导数满足一些特定的条件,如充分可导、分子分母都趋于零或无穷等。
5.级数展开法:级数展开法是一种求极限的常用方法,尤其适用于求函数的幂级数展开形式。
该方法的基本思想是将函数在一些点附近进行泰勒级数展开,然后将其转化为级数的形式。
通过截取级数中的有限项或考虑级数的收敛性,可以确定原函数的极限值。
求函数极限的方法总结
求函数极限的方法总结求函数极限是微积分中的一个重要内容,也是解决实际问题的关键步骤之一。
在求函数极限的过程中,我们有许多方法和技巧可供选择。
本文将总结几种常用的方法,帮助读者更好地理解和应用这些方法。
一、直接代入法直接代入法是求函数极限最简单、最常见的方法之一。
它适用于函数在某个点处定义和连续的情况。
具体的步骤是,将极限的自变量值代入函数中,计算出函数在该点的函数值就得到了极限的结果。
举个例子,考虑函数f(x) = 2x + 1,我们来求极限lim(x→2)[f(x)]。
根据直接代入法,我们将2代入f(x),得到的结果为f(2) = 2(2) + 1 = 5。
所以,lim(x→2)[f(x)] = 5。
二、无穷小量法无穷小量法是通过将函数转化为无穷小量的形式来求解极限。
这种方法适用于函数在某个点处不连续的情况。
具体的步骤是,根据函数的性质,将其转化为与自变量趋于0时等价的无穷小量表达式,再求极限。
以求解lim(x→0)[sin(x)/x]为例,我们可以通过以下步骤来进行。
首先,我们知道当x趋于0时,sin(x)也趋于0,所以可以将sin(x)/x转化为无穷小量表达式。
我们知道sin(x)/x的极限等于1,因此lim(x→0)[sin(x)/x] = 1。
三、夹逼定理夹逼定理是一种常用的求函数极限的方法,特别适用于我们无法直接计算函数极限的情况。
夹逼定理的核心思想是,通过找到两个函数,一个从上方夹逼住待求极限函数,一个从下方夹逼住待求极限函数,进而确定出待求极限的结果。
举个例子,考虑求解lim(x→0)[xsin(1/x)]。
我们可以发现,-|x| ≤xsin(1/x) ≤ |x|。
根据夹逼定理,由于当x趋近于0时,-|x|和|x|都趋近于0,所以lim(x→0)[-|x|]和lim(x→0)[|x|]的极限都等于0。
根据夹逼定理,我们可以得出lim(x→0)[xsin(1/x)]的极限也为0。
四、洛必达法则洛必达法则是用于求解函数极限的常用方法之一,它适用于求解0/0型或∞/∞型的极限。
数学分析中求极限的方法总结
数学分析中求极限的方法总结1 利用极限的四则运算法则和简单技巧极限的四则运算法则叙述如下:定理1.1(1(2(3)若B ≠0(4(5)[]0lim ()lim ()nnn x x x x f x f x →→⎡⎤==A ⎢⎥⎣⎦(n 为自然数)i由上述的性质和公式我们可以看书函数的和、差、积、商的极限等于函数极限的和、差、积、商。
例1. 求225lim3x x x →+- 解:由定理中的第三式可以知道()()22222lim 55lim 3lim 3x x x x x x x →→→++=--22222lim lim5lim lim3x x x x x x →→→→+=+225923+==--例2. 求3x →33x x→→=3x→=14=式子经过化简后就能得到一个只有分母含有未知数的分式,直接求极限即可例3. 已知()11112231nxn n=+++⨯⨯-⨯观察11=1122-⨯111=2323-⨯因此得到()11112231nxn n=+++⨯⨯-⨯11111111223311n nn=-+-+-+---1lim lim11nn nxn→∞→∞⎛⎫=-=⎪⎝⎭2 利用导数的定义求极限导数的定义:函数f(x)如果()()00lim limx xf x x f xyx x∆→∆→+∆-∆=∆∆存在,则此极限值就称函数f(x)()'f x。
即f(x)在定点0x 的导数。
例4.lim()212lim'22x x f x f x f πππ→⎛⎫- ⎪⎝⎭==⎛⎫- ⎪⎝⎭12=3 利用两个重要极限公式求极限两个极限公式:(1(2)1lim 1xx ex →∞⎛⎫+= ⎪⎝⎭但我们经常使用的是它们的变形:(1,(2例5:xx x x 10)1()21(lim +-→解:为了利用极限故把原式括号内式子拆成两项,使得第一项为e x xx =+→10)1(lim 1,第二项和括号外的指数互为倒数进行配平。
求极限的方法总结
千里之行,始于足下。
求极限的方法总结求极限是微积分中重要的概念之一,常见于求导、定积分以及微分方程等内容中。
求解极限可以通过以下几种方法进行总结:1. 代入法:当函数在极限点处存在时,可以直接将极限点代入函数中计算。
这种方法简单直接,适合于函数在某一点处的极限。
2. 分解因式法:当函数存在不定形式时,可以尝试将函数进行分解因式,从而简化计算。
比如,对于分式函数,可以尝试分解分子和分母,消去公因式,然后再进行计算。
3. 幂指函数法:当函数的极限含有幂指函数时,可以尝试使用幂指函数的性质进行计算。
常用的方法包括使用指数函数的性质、对数函数的性质以及对数和指数函数的换底公式等。
4. 无穷小量法:当函数的极限存在无穷小量时,可以利用无穷小量与极限的定义进行计算。
常用的方法包括使用洛必达法则、夹逼定理、泰勒级数展开等。
其中洛必达法则适用于计算$\\frac{0}{0}$、$\\frac{\\infty}{\\infty}$、$0\\cdot \\infty$型的极限,夹逼定理适用于无穷小量和无穷大量的极限,泰勒级数展开适用于函数可展开成无穷级数的情况。
5. 变量替换法:当函数的极限存在特定变量时,可以进行变量替换,通过对新变量极限进行求解来简化计算。
常用的方法包括使用三角函数的三角恒等式、指数和对数函数的换底公式、幂函数的性质等。
第1页/共2页锲而不舍,金石可镂。
6. 递推法:当函数的极限存在递推关系时,可以通过递推关系逐步求解极限。
常用的方法包括使用数列极限的性质以及函数关系的性质。
总的来说,求解极限需要根据具体的函数形式和性质进行判断和选择合适的方法。
在实际计算中,也常常需要综合运用多种方法进行求解。
因此,对于学习者来说,熟练掌握不同的求极限方法,灵活运用,可以更加高效地解决复杂的极限计算问题。
求极限的方法总结
求极限的几种常用方法一、 约去零因子求极限例如求极限limx→1x 4−1x−1,本例中当x →1时,x −1→0,表明x 与1无限接近,但x ≠1,所以x −1这一因子可以约去。
二、 分子分母同除求极限求极限lim x→∞x 3−x 23x 3+1∞∞型且分子分母都以多项式给出的极限,可通过分子分母同除来求。
lim x→∞x 3−x 23x 3+1=lim x→∞1−1x 3+1x3=13三、 分子(母)有理化求极限例:求极限lim x→∞(√x 3+3−√x 2+1)分子或分母有理化求极限,是通过有理化化去无理式。
()()()()131313lim13lim22222222+++++++-+=+-++∞→+∞→x xx xx xxxx x132lim22=+++=+∞→x x x例:求极限limx→0√1+tanx−√1+sinxx 330sin 1tan 1lim x x x x +-+→=()x x x x x x sin 1tan 1sin tan lim30+++-→ =300sin tan lim sin 1tan 11limx x x x x x x -+++→→=41sin tan lim 2130=-→x x x x 本题除了使用分子有理化方法外,及时分离极限式中的非零因子是解题的关键。
四、 应用两个重要极限求极限两个重要的极限(1)limx→0sinx x=1(2)lim x→∞(1+1x)x=lim x→0(1+x)1x=e在这一类型题中,一般也不能直接运用公式,需要恒等变形进行化简后才可以利用公式。
例:求极限lim x→∞(x+1x−1)x第二个重要极限主要搞清楚凑的步骤:先凑出1,再凑1+1x ,最后凑指数部分。
lim x→∞(x +1x −1)x =lim x→∞(1+2x −1)x =lim x→∞[(1+1x −12)2x−1(1+2x −1)12]2=e 2五、 利用无穷小量的性质求极限无穷小量的性质:无穷小量与有界量的乘积还是无穷小量。
求极限的方法与技巧
求极限的方法与技巧求极限是微积分中一个重要的概念,它在数学分析、物理学、经济学等许多领域都有广泛的应用。
正确理解和应用极限的方法和技巧对于解决复杂问题至关重要。
在本文中,我将分享一些求极限的方法和技巧。
一、代入法代入法是求解极限最基本的方法之一、当函数在特定点不可求值或复杂时,我们可以通过代入该点的相邻值来近似求解极限。
例如,对于函数f(x)=x^2,要求极限lim(x->2)f(x),我们可以尝试代入x=2附近的数字,如1.9、1.99、1.999等,通过逐渐逼近2,来估算极限的值。
当代入的数字越接近2时,得到的极限值越接近真实值。
二、基本极限法则基本极限法则是求极限过程中的重要工具,它基于一系列基本的极限结果。
以下是常用的基本极限法则:1. 常数法则:lim(x->a)c=c,其中c为常数;2. 幂函数法则:lim(x->a)x^n=a^n,其中n为正整数,a为实数;3. 指数函数法则:lim(x->0)(1+x)^n=1,其中n为正整数;4. 三角函数法则:lim(x->0)sin(x)/x=1,lim(x->0)(1-cos(x))/x=0;5. 对数函数法则:lim(x->1)ln(x)=0。
通过灵活运用这些基本极限法则,可以简化复杂的极限计算过程。
三、夹逼法夹逼法是求解极限中一种常用的思路。
当我们需要求解一个函数f(x)在特定点的极限时,可以通过构造两个函数g(x)和h(x),使得g(x)≤f(x)≤h(x),且lim(x->a)g(x)=lim(x->a)h(x)=L,则根据夹逼定理,可以得到lim(x->a)f(x)=L。
通过灵活选择g(x)和h(x),我们可以利用夹逼法求解复杂的极限问题。
四、换元法换元法是极限求解中一种常用的技巧。
通过进行变量替换,可以将复杂的极限问题转化为简单的形式。
例如,对于极限lim(x->0)sin(2x)/x,我们可以进行变量替换令u=2x,得到lim(u->0)sin(u)/(u/2),进一步化简为lim(u->0)2sin(u)/u。
求极限方法总结
求极限方法总结求极限方法总结一,求极限的方法横向总结:1带根式的分式或简单根式加减法求极限:1)根式相加减或只有分子带根式:用平方差公式,凑平方(有分式又同时出现未知数的不同次幂:将未知数全部化到分子或分母的位置上)2)分子分母都带根式:将分母分子同时乘以不同的对应分式凑成完全平方式(常用到2分子分母都是有界变量与无穷大量加和求极限:分子与分母同时除以该无穷大量凑出无穷小量与有界变量的乘积结果还是无穷小量。
3等差数列与等比数列和求极限:用求和公式。
4分母是乘积分子是相同常数的n项的和求极限:列项求和5分子分母都是未知数的不同次幂求极限:看未知数的幂数,分子大为无穷大,分子小为无穷小或须先通分。
6运用重要极限求极限(基本)。
7乘除法中用等价无穷小量求极限。
8函数在一点处连续时,函数的极限等于极限的函数。
9常数比0型求极限:先求倒数的极限。
10根号套根号型:约分,注意别约错了。
11三角函数的加减求极限:用三角函数公式,将sin化cos二,求极限的方法纵向总结:1未知数趋近于一个常数求极限:分子分母凑出(x-常数)的形式,然后约分(因为x不等于该常数所以可以约分)最后将该常数带入其他式子。
2未知数趋近于0或无穷:1)将x放在相同的位置2)用无穷小量与有界变量的乘积3)2个重要极限4)分式解法(上述)高数解题技巧。
高数(上册)期末复习要点高数(上册)期末复习要点第一章:1、极限2、连续(学会用定义证明一个函数连续,判断间断点类型)第二章:1、导数(学会用定义证明一个函数是否可导)注:连续不一定可导,可导一定连续2、求导法则(背)3、求导公式也可以是微分公式第三章:1、微分中值定理(一定要熟悉并灵活运用--第一节)2、洛必达法则3、泰勒公式拉格朗日中值定理4、曲线凹凸性、极值(高中学过,不需要过多复习)5、曲率公式曲率半径第四章、第五章:积分不定积分:1、两类换元法 2、分部积分法(注意加C )定积分: 1、定义 2、反常积分第六章:定积分的应用主要有几类:极坐标、求做功、求面积、求体积、求弧长第七章:向量问题不会有很难1、方向余弦2、向量积3、空间直线(两直线的夹角、线面夹角、求直线方程) 3、空间平面4、空间旋转面(柱面)高数解题技巧。
极限方法总结
8各项的拆分相加 (来消掉中间的大多数) (对付的还是数列极限)
可以使用待定系数法来拆分化简函数
9求左右求极限的方式(对付数列极限) 例如知道Xn与Xn+1的关系, 已知Xn的极限存在的情况下, xn的极限与xn+1的极限时一样的 ,应为极限去掉有限项目极限值不变化
10 2 个重要极限的应用。 这两个很重要 !!!!!对第一个而言是X趋近0时候的sinx与x比值 。 地2个就如果x趋近无穷大 无穷小都有对有对应的形式
2分子分母都是有界变量与无穷大量加和求极限:分子与分母同时除以该无穷大量凑出无穷小量与有界变量的乘积结果还是无穷小量。
3等差数列与等比数列和求极限:用求和公式。
4分母是乘积分子是相同常数的n项的和求极限:列项求和
5分子分母都是未知数的不同次幂求极限:看未知数的幂数,分子大为无穷大,分子小为无穷小或须先通分。
必须是 函数的导数要存在!!!!!!!!(假如告诉你g(x), 没告诉你是否可导, 直接用无疑于找死!!)
必须是 0比0 无穷大比无穷大!!!!!!!!!
当然还要注意分母不能为0
落笔他 法则分为3中情况
1 0比0 无穷比无穷 时候 直接用
2 0乘以无穷 无穷减去无穷 ( 应为无穷大于无穷小成倒数的关系)所以 无穷大都写成了无穷小的倒数形式了。通项之后 这样就能变成1中的形式了
首先说下我的感觉, 假如高等数学是棵树木得话,那么 极限就是他的根, 函数就是他的皮。树没有跟,活不下去,没有皮,只能枯萎, 可见这一章的重要性。
为什么第一章如此重要? 各个章节本质上都是极限, 是以函数的形式表现出来的,所以也具有函数的性质。函数的性质表现在各个方面
首先 对 极限的总结 如下
数学分析中求极限的方法总结(最新整理)
,(
型).
定理 6.2:设(1)当 x 时,函数 f x 和 F x 都趋于零;
f (x)
(2)在
a
点的某去心邻域内,
f
'x和
F
'x
都存在且
F
'x
0
;(3)
lim
xa
( x )
F
( x)
存在
(或无穷大),
则
定义 6.3:这种在一定条件下通过分子分母分别求导再求极限来确定未定式的值的方法称为洛必达 法则.
lim
1 1 x2
lim
1
1
解原式 x
1
x
1 x x2
x
1 x2
1
.
型:
lim sec x tan x
例 13 求 x
.
2
sec x tan x 1 sin x 1 sin x
解
cos x cos x cos x ,
lim 1 sin x lim cos x 0
故原式 x cos x x sin x .
x
x
故 x 在 x 时是无穷小量。 1 x3
利用无穷小量与有界函数的乘积还是无穷小量。
所以
1
x sin
lim
x 0
x 1 x 3
.
10.利用等价无穷小的代换求极限
利用等价无穷小代换求函数的极限时,一般只在以乘除形式出现时使用,若以和、差形式出现时,不
要轻易代换,因为经此代换后,往往会改变无穷小之比的阶数,故此慎用为好。常见等价无穷小量(
数学分析中求极限的方法总结
精心整理
1 利用极限的四则运算法则和简单技巧 极限的四则运算法则叙述如下:
求极限的方法总结
求极限的方法总结求极限是数学中非常重要的一个概念,它在微积分、数学分析等领域中都有着广泛的应用。
在学习求极限的过程中,我们常常会遇到各种各样的极限问题,而求解这些问题的方法也是多种多样的。
下面我将对一些常见的求极限的方法进行总结和归纳。
首先,我们来看一下常用的求极限的方法之一——代数运算法。
这种方法通常适用于一些简单的极限问题,通过对极限式进行一系列代数运算,最终得到极限的值。
例如,对于极限lim(x→2)(x^2-4)/(x-2),我们可以将分子进行因式分解,得到lim(x→2)(x+2),然后直接代入x=2,得到4。
这种方法在一些简单的极限问题中比较方便快捷,但在复杂的极限问题中往往不太适用。
其次,我们来看一下夹逼定理。
夹逼定理是求解极限问题中非常重要的一个定理,它通常适用于一些比较复杂的极限问题。
夹逼定理的核心思想是通过构造一个上下夹逼的数列,来确定极限的值。
例如,对于极限lim(n→∞)(1/n),我们可以构造两个数列an=1/n和bn=2/n,然后利用夹逼定理可以得到极限的值为0。
夹逼定理在求解一些复杂的极限问题时非常有用,它能够帮助我们确定极限的值并得到严谨的证明。
另外,还有一种常见的求极限的方法是利用泰勒展开。
泰勒展开是微积分中的一个重要概念,它可以将一个函数在某一点附近用无限项的多项式来表示。
通过利用泰勒展开,我们可以将一些复杂的函数转化为多项式,从而更容易求解极限。
例如,对于极限lim(x→0)(sinx/x),我们可以利用泰勒展开将sinx展开为x-x^3/3!+x^5/5!-...,然后可以得到极限的值为1。
泰勒展开在求解一些复杂的极限问题时非常有用,它能够帮助我们将复杂的函数转化为简单的多项式,从而更容易求解极限。
最后,我们来看一下利用换元法求极限的方法。
换元法是求解极限问题中常用的一种方法,它通常适用于一些复杂的极限问题。
通过对极限式进行适当的变量替换,可以将原极限式转化为一个更容易求解的形式。
求极限的方法总结
x →1
2 1 ) − 2 x −1 x −1
例2. lim
x →1
3x + 1 − 2 x −1
二、利用两个重要极限求极限 利用两个重要极限求极限,往往需要作适当的变换, 利用两个重要极限求极限,往往需要作适当的变换, 将所求极限的函数变形为重要极限或重要极限的扩展 形式, 形式,再利用重要极限的结论和极限的四则运算法则 求极限。 求极限。 (1)
sin x lim =1 x→0 x
(2)
1 x lim(1 + ) = e x→∞ x
2 x
1 − cos x 例3.lim x →0 3 x2 x+2 x ) 例5. lim( x →∞ x − 1
例4.lim(1 − 3sin x )
x →0
三、利用函数的连续性求极限 四、利用导数的定义求极限 五、利用无穷小的性质求极限 六、利用等价无穷小代换求极限 七、利用导数的定义求极限
一、利用极限四则运算法则求极限 四则运算法则指:如果两个函数都有极限, 四则运算法则指:如果两个函数都有极限,那么这 两个函数的和、 两个函数的和、差、积、商组成的函数的极限分别 等于这两个函数的极限的和、 等于这两个函数的极限的和、差、积、商(作为除 数的函数的极限不能为零)。法则本身很简单, )。法则本身很简单 数的函数的极限不能为零)。法则本身很简单,但 有些函数求极限往往不能直接利用法则, 有些函数求极限往往不能直接利用法则,需要先对 Байду номын сангаас数做某些变形或化简, 函数做某些变形或化简,常用的变形或化简方法主 要有分式的分子或分母分解因式、 要有分式的分子或分母分解因式、分式的约分或通 分子或分母的有理化、三角函数的恒等变形等。 分、分子或分母的有理化、三角函数的恒等变形等。