中国农业大学食品学院生物化学知识点解析

合集下载

中国农业大学生物化学试题知识讲解

中国农业大学生物化学试题知识讲解

中国农业大学生物化学试题《生物化学》复习一一、填空题1、在电场中蛋白质不迁移的pH叫做。

2、1913年Michaelis和Menten提出与酶促反应速度关系的数学方程式。

即米-曼氏方程式,简称米氏方程式。

3、TPP的中文名称是,其功能部位在噻唑环上。

4、催化果糖-6-磷酸C-1磷酸化的酶是。

5、脂肪酸生物合成的限速反应步骤是由催化的。

6、 CoQ是电子传递链中惟一的组分。

7、增加溶液的离子强度能使某种蛋白质的溶解度增高的现象叫做。

8、tRNA的氨基酸臂上含有特殊的结构。

9、维生素D3是由其前体经紫外线照射转变而成。

10、在糖无氧酵解中,唯一的氧化发生在分子上。

11、尿素循环中产生的鸟氨酸和两种氨基酸不是蛋白质氨基酸。

12、因为核酸分子具有,所以在260nm处有吸收峰,可用紫外分光光度计测定。

13、α-酮戊二酸在大多数转氨酶催化的反应中具有汇集的作用。

14、在哺乳动物体内由8分子乙酰CoA合成1分子的软脂酸,总共需要消耗分子的NADPH。

15、以RNA为模板合成DNA的酶叫作。

16、大多数蛋白质中氮的含量较恒定,平均为 %。

17、核苷酸的主要合成途径为。

19、痛风是因为体内产生过多造成的。

20、黄嘌呤氧化酶既可以使用黄嘌呤又可以使用作为底物。

二、解释概念题1、退火:2、氧化磷酸化:3、脂肪酸的β-氧化:4、转氨基作用:5、磷氧比值(P/O):三、判断题【】1、利用双缩脲反应可以确定蛋白质的水解程度。

【】2、tRNA分子中用符号Ψ表示假尿嘧啶。

【】3、在任何条件下,酶的Km值都是常数。

【】4、生食胡萝卜可以有效地补充维生素A。

【】5、沿糖酵解途径简单逆行,可从丙酮酸等小分子前体物质合成葡萄糖。

【】6.酶的抑制剂可以引起酶活力下降或消失,但并不引起酶变性。

【】7.用双倒数作图法可求出别构酶的Km值。

【】8.人类缺乏V B1会产生脚气病。

【】9.发酵可在活细胞外进行。

【】10.三羧酸循环是分解和合成的两用途径。

食品化学7 中国农业大学

食品化学7    中国农业大学

结晶VD对热较稳定。
在储藏、加工中的变化
热稳定 氧化-光、氧、热… 异构化
牛奶
VD强化食品:人造黄油,牛乳
维生素E
是一组具有α-生育酚 活性的色满衍生物的统称; 6-羟基苯并二氢吡喃(母育酚)的衍生物 别名:生育酚
分类
母育酚的苯并二氢吡喃环上有一到多个甲基取代 就衍生为生育酚 生育酚(有8种异构体,差别只在于甲基数量和 位置): α-、β-、γ-和δ-生育酚 生育三烯醇 最为重要!
1β- 胡萝卜素→2VA,转化最有效。
分子结构?
CH3
CH3
CH3
CH3 CH2OR
CH3
醋酸酯R=COCH3, 棕榈酸酯R=CO(CH3)14· CH
共轭双键→顺、反立体异构体, 天然存在:全反式双键结构, 加工后可形成各种顺反异构体, 生物活性:全反式视黄醇(乙酯)和全反β-胡 萝卜素相对VA活性最高,为100%。
O O O OH O H HOCH CH2OH OH H HO CH CH2OH O O
L—抗坏血酸(还原型)
L—脱氢抗坏血酸(氧化型)
异构化-D型、L型、异型… 氧化产物-还原型
O O O O H HOCH CH 2OH
L-异,D-,化学性质与L-相似,无营养价值
生物学功能
抗氧化 治百病 在细胞内的作用 抗癌作用 促进胆固醇转化为胆汁酸,从而降低胆固醇 强还原性,将Fe3+还原成Fe2+,而使其易于吸收, 有利于血红蛋白的形成 解毒作用Fe3+
分类
天然: VK1;叶绿醌或叶绿基甲基萘醌 VK2:甲基萘醌或聚异戊烯甲基萘醌, 人工合成: VK3:1,4-二甲基萘醌,脂溶性萘醌类衍生物, 在人体内变为VK2,活性是K1 和K2 的2-3倍; VK4

中国农业大学食品学院生物化学讲义笔记资料讲解

中国农业大学食品学院生物化学讲义笔记资料讲解

中国农业大学食品学院生物化学讲义笔记资料讲解第二节肽一、肽和肽键的结构含有两个氨基酸的称二肽,三个氨基酸的称三肽以此类推。

参加多肽形成的已不是完整的氨基酸分子称氨基酸残基。

肽的命名是根据参与氨基酸残基来确定的从N端开始称某氨酰某氨酰氨基酸二、肽键的特点肽键具有部分双键的性质。

结构a处于同一平面锥形结构而且单键可以自由转动;结构b双键不能转动处于同一平面;结构c键长介于以上二结构之间肽键具有双键的性质决定了六个原子位于同一平面即肽平面,肽平面内,两个碳原子一般处于反式结构,脯氨酸特殊可以是顺式或者反式这种肽键存在,比较灵活这一点在三维构象中有独特的作用。

三、肽的物理和化学性质⒈物理性质短肽是离子晶格,水中是偶极离子存在有一定的旋光性,短肽是各氨基酸的总和。

⒉酸碱性决定于游离末端氨基、羧基及侧链可解离的基团,长肽或蛋白质中,可解离的基团主要是侧链。

⒊化学性质特征反应是双缩脲反应,氨基酸没有此反应:含有两个或两个以上肽键的化合物加上硫酸铜的碱性溶液形成紫色复合物,复合物的浓度与蛋白质浓度成正比,借助分光光度计可以进行蛋白质定量测定。

四、天然存在的活性肽短链且具有生物功能的多肽不算蛋白质,通常称为活性肽!1、激素类:催产素、加压素、舒缓激肽、干扰素、胸腺肽、脑啡肽、睡眠肽等。

2、抗生素:短杆菌肽、粘菌素、放线菌素3、剧毒物质鹅膏蕈碱、蝎毒素224、谷胱甘肽:谷氨酰半胱酰甘氨酰,红细胞中作为巯基缓冲剂维持血红蛋白和其他红细胞蛋白质的半胱氨酸残基处于还原态复习方法如果细心对比一下历年的专业课考题,我们就会发现考研专业课考试的重复性很强,虽然题量和题型可能会有一些的改动,但是每年考试的命题重点基本上不会有太大的变化。

所以要想在专业课的竞争中获得胜利,建议广大考生第一步就是要搜集专业课历年考试资料和最新信息,标准就是要“准”和“全”。

第一,有效地收集专业课辅导资料专业课的资料主要包括专业辅导书、课程笔记、三人行辅导班笔记以及最重要的历年试题。

中国农业大学食品学院生物化学本科讲义

中国农业大学食品学院生物化学本科讲义

中国农业大学食品学院生物化学本科讲义第十章酶的作用机制和酶的调节一、酶的活性部位㈠酶的活性部位的特点1、概念:三维结构上比较接近的少数特异的氨基酸残基参与底物的结合与催化作用,这一与酶活力直接相关的区域称酶的活性部位。

结合部位:专一性;催化部位:催化能力,对需要辅酶的酶分子,辅酶或其一部分就是活性中心的组成部分组成,酶活性部位的氨基酸数目对不同酶而言存在差异,占整个酶氨基酸残基小部分亲核性基团:丝氨酸的羟基,半胱氨酸的巯基和组氨酸的咪唑基。

酸碱性基团:天冬氨酸和谷氨酸的羧基,赖氨酸的氨基,酪氨酸的酚羟基,组氨酸的咪唑基和半胱氨酸的巯基等。

2、特点55⑴活性部位在酶分子的总体中只占相当小的部分(1%~2%)⑵酶的活性部位是一个三维实体⑶酶的活性部位并不是和底物的形状互补的⑷酶的活性部位是位于酶分子表面的一个裂隙内⑸底物通过次级键结合到酶上⑹酶活性部位具有柔性㈡研究酶活性部位的方法1、酶分子侧链基团的化学修饰⑴非特异性共价修饰:活力丧失程度与修饰剂浓度有正比关系;底物或可逆的抑制剂可保护共价修饰剂的修饰作用。

⑵特异性共价修饰:分离标记肽段,可判断活性部位的氨基酸残基,如二异丙基氟磷酸(DFP)专一性与胰凝乳蛋白酶活性部位丝氨酸残基的羟基结合。

⑶亲和标记法修饰剂的特点:①结构与底物类似,能专一性引入到酶活性部位;②具活泼化学基团,能与活性部位某一氨基酸共价结合。

作用机制:利用酶对底物的特殊亲和力将酶加以修饰标记,称亲和标记,相应的试剂称活性部位指示剂胰凝乳蛋白酶和胰蛋白酶:TPE是酶的底物,TPCK是酶的亲和试剂,当酶与TPCK温浴后,酶活性丧失,这种结合具有空间结构的需求,同时也阻止其他试剂如DFP结合。

对酶活性中心的组氨酸咪唑环进行修饰。

2、动力学参数测定法:通过动力学方法求得相关参数,作出相应判断。

3、X-射线晶体衍射法:如溶菌酶和胰蛋白酶活性中心的测定4、定点诱变法:改变编码蛋白质的DNA基因,研究酶活性部位的必需氨基酸。

中国农业大学_806生物化学_《生物化学》重难点

中国农业大学_806生物化学_《生物化学》重难点

第二章
糖类
第一节 单糖 第二节 寡糖 第三节 多糖 第四节 结合糖 [主要内容]:重要单糖、双糖、多糖的化学结构和性质。 [教学要求]:掌握葡萄糖的构型、构象、理化性质和常见双糖的结构式;了解多糖的种类和功能。 [教学重点]: 糖的结构、化学连键。 [教学难点]:L-,D-构型,-,-异头/构体,烯醇式结构的活性,不均一多糖。
第十一章 糖代谢
第一节 糖原分解与合成 第二节 糖酵解 第三节 柠檬酸循环 第四节 戊糖磷酸途径 第五节 葡萄糖异生作用及血糖 第六节 多糖和双糖代谢 [主要内容] 介绍糖在生物体内的合成、分解及转化,以及其生理意义。 [教学要求] 要求学生掌握糖在体内的来龙去脉,即合成、分解及转化。 [教学重点] 糖酵解,柠檬酸循环。
ห้องสมุดไป่ตู้
第九章
脂类与生物膜
第一节 生物体内的脂类 第二节 生物膜的化学组成与结构 第三节 生物膜的功能 [主要内容]:脂类分子结构特征、化学性质;生物膜结构;生物膜在物质运输、信号转导和能量转换中的 作用。 [教学要求]:要求掌握脂肪酸分子的共性,脂肪酸的活化形式,磷脂分子的双亲性,生物膜化学组成,流 动镶嵌模型要点;能举例说明生物膜的功能。 [教学重点]:磷脂分子结构,生物膜的结构与功能 [教学难点]:胆固醇在生物膜流动性中的双重调节作用;生物大分子的跨膜运输。
第十章
生物能学与生物氧化
第一节 自由能 第二节 高能磷酸化合物 第三节 线粒体电子传递链 第四节 氧化磷酸化作用 第五节 光合磷酸化作用(自学,植物生理会详细介绍) [主要内容]:介绍自由能、氧化还原电势的概念和在生物化学中的应用;线粒体电子传递链组成,氧化磷 酸化。 [教学要求]:要求掌握 ATP 的分子结构和作用,线粒体电子传递链组分的顺序;了解氧化磷酸化偶联机理。 [教学重点]:电子传递链与氧化磷酸化 [教学难点]:自由能,ATP 合成机理。

中国农业大学食品学院806生物化学试题库及答案讲解

中国农业大学食品学院806生物化学试题库及答案讲解

中国农业大学食品学院806生物化学试题库及答案讲解中农生化试题库一、概念题糖有氧氧化脂肪酸β-氧化鸟氨酸循环酮体限制性内切酶中心法则联合脱氨基氮的正平衡糖异生DNA的变性\共价调节Tm值核糖体引发体冈崎片断二、问答题1.简述一分子葡萄糖生成2分子丙酮酸的过程和2分子丙酮酸生成一分子葡萄糖的过程中参与的酶及能量的异同点。

2.简述DNA合成的准确性是如何保证的。

3.讨论苯丙氨酸的代谢途径,解释苯丙氨酸是生糖兼生酮氨基酸。

4.讨论进食,轻度饥饿、极度饥饿三种状态下大脑、肝脏、肌肉和脂肪组织的糖、脂肪及氨基酸的代谢特点。

5.尿素分子中一分子氨来自天冬氨酸时,鸟氨酸循环和柠檬酸循环及氨基酸转氨基作用是如何联系起来的。

6.简述蛋白质合成过程。

7.简述糖异生的生理意义。

8.简述糖酵解的生理意义。

9.简述磷酸戊糖途径的生理意义。

10.简述70S起始复合体的合成。

11.简述体内需要大时5-磷酸核糖时6-磷酸葡萄糖的代谢。

12简述体内需要大量ATP时6-磷酸葡萄糖的代谢。

13简述三羧酸循环。

14简述脂肪组织中的脂肪的代谢调控。

15简述脱氧核糖核酸的合成。

16简述糖代谢为脂肪合成提供所有的原料。

17.简述冈崎片段的加工。

18.简述遗传密码的特点。

19.简述细胞能量对糖酵解的调控。

20.简述氨基酸脱羧后的碳架的去向。

21.简述糖酵解途径的调控元件为何是果糖激酶而不是己糖激酶?22.简述体内需要大量NADPH时6-磷酸葡萄糖的代谢。

23.简述脱氧核糖核酸的合成。

24.简述4种脂蛋白的基本结构及其作用。

25.简述蛋白质合成过程中主要的参与因子。

26.简述有氧或无氧的条件下3-磷酸甘油醛脱下的氢的去向及其意义。

27.比较并讨论脂肪合成及脂肪分解的代谢途径。

28.解释蛋白质合成中为何mRNA链中的AUG密码子不能被起始tRNA识读,而区别两种AUG密码子的结构基础是什么?29.简述三大营养物的相互转换。

30.简述DNA聚合酶和RNA聚合酶的特点。

中国农业大学--生物化学提要

中国农业大学--生物化学提要

中国农业大学--生物化学提要生物化学的的概念:生物化学(biochemistry)是利用化学的原理与方法去探讨生命的一门科学,它是介于化学、生物学及物理学之间的一门边缘学科。

二、生物化学的发展:1.叙述生物化学阶段:是生物化学发展的萌芽阶段,其主要的工作是分析和研究生物体的组成成分以及生物体的分泌物和排泄物。

2.动态生物化学阶段:是生物化学蓬勃发展的时期。

就在这一时期,人们基本上弄清了生物体内各种主要化学物质的代谢途径。

3.分子生物学阶段:这一阶段的主要研究工作就是探讨各种生物大分子的结构与其功能之间的关系。

三、生物化学研究的主要方面:1.生物体的物质组成:高等生物体主要由蛋白质、核酸、糖类、脂类以及水、无机盐等组成,此外还含有一些低分子物质。

2.物质代谢:物质代谢的基本过程主要包括三大步骤:消化、吸收→中间代谢→排泄。

其中,中间代谢过程是在细胞内进行的,最为复杂的化学变化过程,它包括合成代谢,分解代谢,物质互变,代谢调控,能量代谢几方面的内容。

3.细胞信号转导:细胞内存在多条信号转导途径,而这些途径之间通过一定的方式方式相互交织在一起,从而构成了非常复杂的信号转导网络,调控细胞的代谢、生理活动及生长分化。

4.生物分子的结构与功能:通过对生物大分子结构的理解,揭示结构与功能之间的关系。

5.遗传与繁殖:对生物体遗传与繁殖的分子机制的研究,也是现代生物化学与分子生物学研究的一个重要内容。

四、生物化学的应用1.农业2.医药3.营养4.临床化学5.药理学6.毒理学第一章糖第一节概述一、定义糖类(carbohydrate)是一类多元醇的醛衍生物或酮衍生物,或者称为多羟醛或多羟酮的聚合物。

实际上糖类包括多羟醛、多羟酮、它们的缩聚物及其衍生物。

二、糖的分类糖类物质是一大类物质的总称。

根据其能否水解和水解后的产物,将糖类分为单糖(monosaccharides)、寡糖(oligosaccharides)、多糖(polysaccharide)。

中国农业大学_806生物化学_《生物化学》 复习2

中国农业大学_806生物化学_《生物化学》 复习2

插入、缺失 染色体结构 畸变
19
通式、方向
模板与非模板
起始 RNA合成 (原核)
RNA Pol(全酶、核心酶、
σ)
启动子
延长(核心酶) 终止(2类终止子、ρ因子)
RNA合成(真核)
RNA Pol I、II、III
产物 位置 抑制剂
20
转录后加工
hnRNA、内含子 mRNA(内含子、帽子、尾巴) tRNA rRNA
磷酸戊糖途径
反应
第一阶段(不可逆反应)
意义
5
生物氧化
标准自由能的变化的计算
化学平衡常数 Keq→ΔG0’
ΔG0’ =- RT ln [C] [D] /[A] [B]
氧化还原电势ΔE0’→ΔG0’
ΔG0’=-nFΔE0’
6
高能磷酸化合物
高能键(定义)
化学中 生物化学中
核)
原核生物 起始氨基酸 起始tRNA 起始氨酰- tRNA
N-fMet-tRNAf N-fMet tRNAf (formyl-)
真核生物
Met tRNAi (initiation)
Met-tRNAi
(延伸中的甲硫氨酸tRNA
tRNAm)
23
rRNA和核糖体
结构组成(原核、真核) 活性中心 多核糖体
与复制、转录的方向匹配
氨酰tRNA合成酶
氨基酸的活化、转移
蛋白质合成的过程(原核)
起始
辨认起始密码子、SD序列 起始复合物、IF1、2、3、
延长
结合(EF-Tu、EF-Ts) 转肽 移位(EF-G)
终止(RF)
25

中国农业大学生物学院生物化学第01章绪论1

中国农业大学生物学院生物化学第01章绪论1
• Hoppe-Seyler (1825-1895) Biochemie(1877)
学习改变命运,知 识创造未来
中国农业大学生物学院生物化学第01章绪论1
•二十世纪初 德、美、英、法生物化学发展
•生物化学领域三大发现:

酶、维生素、激素
• 生物化学作为一个独立学科出现!
学习改变命运,知 识创造未来
•无机物 •(甲烷、氨、水、氢气) • •有机物 •(氨基酸、氢氧酸、甲醛、氢氰化物)
学习改变命运,知 识创造未来
中国农业大学生物学院生物化学第01章绪论1
•(二)甲烷、氨、水、氢气 可能是生 命进化的原始物质
学习改变命运,知 识创造未来
中国农业大学生物学院生物化学第01章绪论1
•1987,得到上百种有机物,包括 10多种氨基酸、核酸、蛋白质。
学习改变命运,知 识创造未来
中国农业大学生物学院生物化学第01章绪论1
•最新生物学研究成果激动人心 •新概念 •新知识 •新技术
学习改变命运,知 识创造未来
中国农业大学生物学院生物化学第01章绪论1
•Noji 1997, Nature 386:299 (旋转马达)
学习改变命运,知 识创造未来
中国农业大学生物学院生物化学第01章绪论1
学习改变命运,知 识创造未来
中国农业大学生物学院生物化学第01章绪论1
•生物化学 I (50学时)教学内容 •第一章 生物化学导论 •第二章 糖类 •第三章 蛋白质I:蛋白质的组成 •第四章 蛋白质II:蛋白质的结构与功能 •第五章 蛋白质III:蛋白质的性质、分离与鉴 定
学习改变命运,知 识创造未来
我国生物学研究相对滞后
(1992-2001年SCI论文占2.15%,生物论文占0.89%)

中国农业大学食品学院生物化学本科笔记讲义讲解

中国农业大学食品学院生物化学本科笔记讲义讲解
㈢核酸的生物功能 ⒈ DNA 是主要的遗传物质 ⑴ 细菌转化实验 ⑵ 噬菌体侵染实验 结论:基因是DNA 的一个片段;对一些病毒来讲基因是RNA 的一个片段。 ⒉ RNA 功能的多样性 ⑴ 作为某些生物的遗传物质 ⑵ 控制蛋白质合成:rRNA 占细胞总RNA 的80%,它是装配者并起催化作用;t RNA 占细胞总RNA 的15%, 它是转换器,携带氨基酸并起解译作用;mRNA 占细胞总RNA 的3~5%,携带DNA 的遗传信息,蛋白质合 成的模板作用。 ⑶ 作用于RNA 转录后加工与修饰 ⑷ 基因表达与细胞功能的调节 ⑸ 生物催化与其他细胞持家功能 ⑹ 遗传信息的加工与进化 二核酸的结构 ㈠核苷酸 ⒈碱基 ⑴嘌呤碱:线嘌呤A,鸟嘌呤G ⑵嘧啶碱:胞嘧啶C,胸腺嘧啶T,尿嘧啶U ⑶ 稀有碱基:稀有碱基大部分都是甲基化碱基,tRNA 稀有碱基约占10%,代谢过程中的碱基 ⒉ 核糖与脱氧核糖 ⒊ 核苷:戊糖与碱基缩合而成戊糖嘧啶碱;核酸分子中的糖苷键均为β-糖苷键;核苷的顺式结构和反式 结构 五种核苷 ⒋ 核苷酸 戊糖羟基的磷酸化成核苷酸,核糖核苷糖环上有3 个自由羟基,脱氧核糖核苷糖环上有2 个自由羟基 五种核苷酸,环化腺苷酸是细胞功能分子和信号分子。 核苷酸包括核苷酸二磷酸、核苷酸三磷酸 ㈡核酸的共价结构 ⒈ 核酸中核苷酸的连接方式 DNA 通过3 - 5 磷酸二酯键连接核苷酸 RNA 通过3 - 5 磷酸二酯键连接核苷酸 ⒉ 书写方式 ⑴ 线条式:竖线碳链、碱基、磷酸 ⑵ 文字式 5'pApCpTpTpGpApApCpG3'DNA 5'pApCpUpUpGpApApCpG3'RNA
68
信息学派:Delbruck M., Luria S. 等,Schrodinger E.认为生命的本质是信息传递的问题:信息如何被 编码?如何 保持其稳定性?偶然的变异是如何产生的? 生化遗传学派:用生物化学的方法阐明基因是如何行使功能而控制特定性状的。 ⑵ DNA 双螺旋结构 研究基础:核酸化学结构知识;Chargaff E.发现的DNA 碱基组成规律;Wilkins M.等得到DNA X-衍射图及 数据。 蛋白质α-螺旋结构的启示。 1953Watson 和Crick 提出DNA 双螺旋结构模型说明了基因的结构、信息和功能三者的关系,使三个学派得 到统 一,并推动了分子生物学的发展。 ⒊ 分子生物学研究迅猛发展

中国农业大学806生物化学考点分析总结

中国农业大学806生物化学考点分析总结

806生物化学考点分析(20XX年)填空题:共五题30空(30分)选择题:共60题(60分)包括英文选择20题简答题:共6题 (60分)中国农业大学806生物化学考点分析总结考点一:20种必需氨基酸例1:(1)把WYTSPNE用中文名表示,指出哪些是酸性氨基酸,哪些是碱性氨基酸。

(2007)(2)蛋白质中氨基酸的共性;比较Val和Glu的电荷差异;由镰刀形红细胞贫血病说明蛋白质中的保守氨基酸的重要性。

(3)碱性氨基酸有_____________________。

(用单字母或三字母表示)考点二:蛋白质等电点例2:氨基酸的酸碱性,其原因是什么?设计实验证明。

并讨论-氨基,-羧基,氨基酸的pK1(羧基)pK2(氨基)和PI的含义,三者的关系。

例3:(1)氨基酸降解的反应主要有三种方式_____________________ (2)蛋白质中二硫键的断裂有氧化法或还原法,氧化法试剂(),还原法试剂(),蛋白质二硫键还原后易回聚为防止发生用()。

(3)实验室常用的蛋白变性试剂()、()、()。

(4)Sanger反应所使用的重要试剂是();Edman降解所用重要试剂是()考点四:氨基酸的分离分析(p21)○1分配柱层析○2纸层析○3离子交换层析○4薄层层析例4:(1997)1、在PH=3左右,氨基酸混合液(酸性、碱性、中性三类),经强酸型阳离子交换树脂被洗脱分离,指出这三类氨基酸被洗脱的先后顺序,并说明为什么。

2、用阳离子交换层析洗脱Asp、Ala、Lys、Ser 最先洗脱下来的考点五:蛋白质的一级结构、二级结构及肽链测定例5:(1999)1、简述蛋白质一级结构与生物功能的关系。

2、蛋白质二级结构的类型有________________、________________和___________________。

3、测定多肽链N-末端的常用方法有__________________、__________________和__________________等。

中国农业大学食品学院生物化学课后习题及课后答案解析

中国农业大学食品学院生物化学课后习题及课后答案解析

中国农业大学食品学院生物化学课后习题及课后答案解析第七章脂肪酸的合成一.脂肪酸的来源:食物来源;脂类分解生成脂肪酸;脂肪酸合成二.脂肪酸的合成㈠.软脂酸的生物合成脂肪酸的合成不是降解的逆过程脂肪酸合成主要场所:细胞溶胶,肝脏组织,脂肪组织和乳腺组织为主;植物种子和果实等器官合成的原料:脂肪酸氧化,丙酮酸氧化脱羧等生成的乙酰CoA(线粒体),不能透过线粒体内膜进入细胞溶胶,三羧酸转运体系⒈三羧酸转运系统⒉丙二酸单酰CoA的形成原核生物:92生物素羧基载体蛋白(BCCP),生物素的载体,生物素与该蛋白的赖氨酸残基的ε-氨基共价相连,形成生物胞素生物素羧化酶,催化形成羧基生物素转羧酶,催化将羧化生物素的活性羧基转移给乙酰-CoA真核生物哺乳类和鱼类:二聚体,生物素羧化酶,转羧酶和生物素羧基载体在同一条多肽链上.3.脂肪酸合酶与合成过程催化脂肪酸的合成,至少具有六种酶活性和一个酰基载体蛋白;因有机体的种类不同存在不同的结构和装配差异.酰基载体蛋白(ACP):辅基为磷酸泛酰巯基乙胺,末端巯基与反应中间物酯化,将中间物从一个反应中心转移到另一个反应中心乙酰CoA-ACP转乙酰(脂酰基)酶将乙酰基转移到β-酮脂酰-ACP合成酶Cys残基上.脂肪酸合成的启动丙二酸酰基CoA-ACP转移酶催化将丙二酸酰基转移到ACP的巯基,形成酯键.脂肪酸合成的装载β-酮脂酰ACP合成酶催化乙酰基(脂酰基)与丙二酸酰基缩合.β-酮脂酰ACP还原酶还原β-酮基为β-羟基.还原β-羟脂酰ACP脱水酶催化β-脂酰ACP脱水,产生双键.脱水烯脂酰ACP还原酶催化双键还原.二次还原植物和大肠杆菌七种多肽链.其中六种酶和一种载体蛋白ACP,构成多酶复合体酵母菌ACP和六种酶活性结构组成,位于两个多功能的多肽链上.ACP与β-酮脂酰合成酶,β-酮脂酰还原酶位于一条多肽链上;其余四种酶位于另一条多肽链上.动物:脂肪酸合酶由两个相同的亚基组成,每个亚基包括ACP及七种酶(软脂酰-ACP硫脂酶)活性位点,组成三个结构域:1,2,3:底物进入酶系和进行缩合反应;4,5,6,ACP:进行还原;7:游离脂肪酸的释放软脂酰合成中能量消耗:ATP=7,NADPH=14㈡.脂肪酸碳链的延长脂肪酸的合成只能到16C软脂酸,继续延长碳链由两个酶系经两条途径在不同细胞部位完成线粒体脂肪酸延长酶系:脂肪酸降解的逆反应,最后一步使用了还原剂NADPH内质网脂肪酸延长酶系:软脂酰-CoA以丙二酸单酰-CoA为二碳单位的供体,可合成硬脂酸㈢.碳链的去饱和脂肪酰-CoA去饱和酶,哺乳动物体内缺少在C9位以上引进双键的酶,软脂酸→棕榈酸;硬脂酸→油酸㈣.脂肪酸降解和合成的调节自身调控(别构调控,竞争);激素调控(共价修饰);基因表达调控(酶量)脂肪酸降解的调节丙二酰-CoA:别构调节肉碱酰基转移酶I,浓度高抑制酶活性,抑制脂肪酸的分解代谢;促进脂肪酸的合成代93谢激素:胰高血糖素和肾上腺素,磷酸化激活三酯酰甘油脂肪酶活性,促进分解,游离脂肪酸浓度升高;胰岛素引起去磷酸化,降低游离脂肪酸的浓度心脏脂肪酸氧化的调节:乙酰CoA抑制硫解酶的活性;NADH影响3-羟脂酰-CoA脱氢酶活性,降低氧化脂肪酸合成的调节:柠檬酸,乙酰CoA;软脂酰-CoA;胰岛素;胰高血糖素,肾上腺素;酶量调控三.甘油三脂的合成合成前体:脂酰CoA和3-P-甘油及磷酸二羟丙酮动物肝脏,脂肪组织;植物造油体甘油三脂的合成过程四.磷脂类的生物合成磷脂生物合成的前体:磷脂酸,胆碱,乙醇胺,丝氨酸,肌醇和CTP参与高等动植物多以CDP-醇基参与CTP+磷酸胆碱(乙醇胺)→CDP-胆碱(乙醇胺)+PPi但磷脂酰肌醇和线粒体中某些磷脂合成以CDP-二脂酰甘油某些细菌以CDP-二脂酰甘油参与CTP+磷脂酸→CDP-二脂酰甘油+PPiCTP主要起到活化载体的作用磷脂的合成部位:内质网的细胞溶胶面,再输送到膜系统的其他部位大肠杆菌磷酸甘油合成:三种高等动植物甘油磷脂的合成:磷脂酰胆碱,磷脂酰乙醇胺,磷脂酰丝氨酸;磷脂酰肌醇;二磷脂酰甘油;磷脂酰胆碱和磷脂酰乙醇胺复习方法如果细心对比一下历年的专业课考题,我们就会发现考研专业课考试的重复性很强,虽然题量和题型可能会有一些的改动,但是每年考试的命题重点基本上不会有太大的变化。

中国农业大学食品学院生物化学知识点讲解

中国农业大学食品学院生物化学知识点讲解

中国农业大学食品学院生物化学知识点讲解第十一章RNA的生物合成和加工RNA合成需要模板两种模板:DNA和RNA,前者为转录或DNA指导下的RNA合成;后者为复制或RNA指导下的RNA合成讲解内容:DNA指导下的RNA合成RNA指导下的RNA复制一.DNA指导下RNA合成㈠.概述合成前体或原料:四种核糖核苷三磷酸合成模板:DNA链中一条,模板链,负链,无义链,非编码链;另一条链称为非模板链,正链,有义链,编码链合成单位:转录单位,包括起始,延伸和终止合成方向:5→3,无需引物合成催化酶:DNA指导下的RNA聚合酶101㈡.DNA指导下的RNA聚合酶1.聚合酶通性以适当的DNA为模板,全保留方式;底物为四种核苷三磷酸;合成方向5→3;无需引物Mg2+促进聚合反应⒉大肠杆菌DNA指导下的RNA聚合酶全酶由α2ββσ五种亚基组成46-48万α2ββ核心酶:已开始合成RNA链延长,不具有起始合成σ使RNA聚合酶稳定地结合到DNA的启动子上,转录的起始密切相关全酶制剂中含ω亚基,功能未知⒊真核生物DNA指导下的RNA聚合酶真核生物RNA聚合酶通常有8-14个亚基,并含有Zn2+离子.利用抑制剂α-鹅膏蕈碱可将其分为三大类酵母RNA聚合酶II进行凝胶电泳时至少有10条明显的条带,最大的三个亚基相当于大肠杆菌β,β和α亚基,无σ因子的类似物,转录的起始需要转录因子.㈢.启动子和转录因子启动子:RNA聚合酶识别,结合和开始转录的一段DNA序列转录因子:RNA聚合酶起始转录需要的辅助因子(蛋白质)称为转录因子,其作用或是识别DNA的特殊序列,或是识别其他因子,或是识别RNA聚合酶原核生物启动子的一般结构σ因子能直接和启动子的-35序列以及-10序列相互作用,二者之间的间距大小直接影响σ因子的作用力,不同启动子σ因子可能不同真核生物启动子真核生物启动子通常由一些短的保守序列所组成,被各种适当的转录因子识别,多种转录因子和RNA聚合酶在起点上形成前起始复合物促进转录.真核生物启动子三类,分别与三种RNA聚合酶的转录相关.RNA聚合酶I和RNA聚合酶III的启动子结构种类有限,而RNA聚合酶II启动子结构多种多样.类别I启动子控制rRNA前体基因的转录,转录产物经切割和加工后生成各种成熟rRNA两个富含GC的区域:核心启动子,-45至+20,上游控制元件-180至-107两种转录因子:UBF1,结合在GC区;SL1类似于大肠杆菌聚合酶σ因子,能使RNA聚合酶I结合在转录起点上并开始转录类别II启动子涉及众多编码蛋白质的基因表达的控制该类别启动子的转录涉及到四类控制元件:基本启动子,起始子,上游元件和应答元件;这些元件的不同组合,加上其他序列的变化,构成了数量庞大的各种启动子基本启动子序列为中心在-25至-30左右的7bp保守区,RNA聚合酶的定位有关起始子DNA双链在此解开并决定转录的起点位置作用于基本启动子的因子称通用因子,起始转录必须的RNA聚合酶II与通用因子在启动子上的装配过程有些启动子无TATA框,通过某些识别起始子的通用因子介导其他因子结合并装配成起始复合物TATA框和起始子均无的启动子通过结合于上游元件的因子介导并装配成起始复合物.102类别III启动子RNA聚合酶III转录相关,小分子RNA的转录5S和tRNA以及胞质小RNA(scRNA)基因启动子位于起点下游,在基因内部核内小RNA(snRNA)基因启动子在转录起点上游㈣.终止子和终止因子终止子:提供转录停止信号的DNA序列终止因子:协助RNA聚合酶识别终止信号的辅助因子(蛋白质),Nus因子通读:终止子的作用被特异的因子所阻止,使聚合酶得以越过终止子继续转录抗终止因子:引起抗终止子作用的蛋白质称大肠杆菌两类终止子:转录中终止信号位于已转录的序列中,原核生物的终止子在终止点之前均有一个回文结构,其产生的RNA可形成由茎环构成的发夹结构,使聚合酶减慢移动或暂停RNA的合成.不依赖ρ因子的终止子,简单终止子:依赖ρ的终止子,RNA-DNA解螺旋酶活力Nus因子,转录辅助因子,NusA,提高终止频率,可能机理为促使RNA聚合酶在终止位置的停顿.NusA可与RNA聚合酶的核心酶结合,形成α2ββNusA复合物,NusA识别终止序列,转录停顿真核生物转录终止信号和终止过程了解甚少,且三种聚合酶的终止序列和终止机制存在较大差异和多样性㈤.转录过程1.原核生物转录过程模板识别,转录起始,转录延伸和转录终止转录模板识别转录起始RNA聚合酶从转录+1开始按照碱基配对结合核苷三磷酸,第一个核苷酸多为G或A,随后核苷酸结合,35磷酸二酯键形成,依次合成2-9个核苷酸链,σ因子离开核心酶,转录起始阶段结束,进入延伸阶段转录延伸和终止聚合酶沿DNA分子向前移动,解链区前移,新生RNA链逐渐生长,并与模板链形成RNA-DAN杂交体,随着解链区前移,转录后的DNA恢复双螺旋结构,RNA链被置换.解链产生的扭曲张力由拓扑异构酶I消除RNA酶在NusA作用下识别终止子,停止转录,聚合酶和RNA链离开模板,转录终止.2.真核生物转录过程转录过程与细菌相似,但其RNA聚合酶自身不能识别和结合到启动子上,需要在启动子上由转录因子和RNA聚合酶装配成活性转录复合物才能起始转录装配,起始,延长和终止四个阶段㈥.RNA生物合成的抑制剂⒈嘌呤和嘧啶碱基类似物抑制核苷酸生物合成或合成相应的核苷酸渗入到核酸分子,形成异常RNA.5-氟尿嘧啶,6-巯基嘌呤,2,6-二氨基嘌呤等⒉DNA模板功能抑制剂与DNA模板结合,使DNA失去模板功能,抑制其复制和转录.烷化剂,放线菌素和嵌入染料⒊RNA聚合酶的抑制剂抑制真核生物RNA聚合酶,α-鹅膏蕈碱103细菌RNA聚合酶,利福霉素,利链菌素二.RNA的转录后加工RNA转录后加工:细胞内,由RNA聚合酶合成的原初转录物往往需要经过一系列的变化,包括链的裂解,5端与3端的切除和特殊结构的形成,核苷的修饰和糖苷键的改变,以及拼接和编辑等过程转变为成熟的RNA分子,或RNA成熟rRNA,tRNA和mRNA的加工原核生物和真核生物的差异㈠.原核生物RNA的加工rRNA的编码基因与某些tRNA的基因一起转录;tRNA基因也成簇存在,并与某些蛋白质的基因一起转录,经断链成为rRNA和tRNA前体,然后加工成熟⒈rRNA前体加工7个rRNA的转录单位,16S,23S,5SrRNA及一个或几个tRNA基因组成⒉tRNA前体的加工核酸内切酶在tRNA两端切断核酸外切酶从3端逐个切去附加的顺序,进行修剪如自身无CCA OH,则在tRNA3端加CCA OH核苷酸的修饰异构化㈡.真核生物RNA加工真核生物rRNA和tRNA前体的加工过程与原核生物有些相似⒈真核生物rRNA前体加工真核生物rRNA基因成簇排列在一起,由16-18S,5.8S和26-28SrRNA组成一个转录单位,由RNA聚合酶I转录产生一个长的rRNA前体,哺乳动物45S,酵母37S;5SrRNA由聚合酶III转录2.tRNA前体的加工与原核生物类似,转录的前体分子在tRNA的5端和3端的附加序列由核酸内切酶和外切酶加以切除,有些含有居间序列经酶促反应切掉;3端加CCA OH序列;碱基和核酸的修饰3.mRNA前体的加工mRNA的原初转录物为相对分子量极大的前体,在核内形成分子大小不一的中间物,成为核内不均一RNA(hnRNA),半寿期差异大,25%经加工转变为mRNA5形成特殊的帽子(M7G5ppp5NmpNp)3端切断并加上多聚腺苷酸(polyA)尾巴通过拼接除去由内含子转录来的序列链内核苷酸甲基化三.RNA指导下的RNA合成RNA是遗传物质,通过复制合成出与其自身相同的分子,RNA复制.噬菌体QβRNA复制单链RNA,该RNA可以翻译产生相应的酶,具有mRNA功能,称为正链,其互补链为负链复制酶:模板特异性强,只能识别自身的RNA四个亚基:α,δ,γ和β,前三个来自宿主细胞,β亚基为噬菌体编码噬菌体Qβ的RNA进入大肠宿主细胞后,先翻译合成复制酶,然后再以RNA为模板合成负链104正链合成除复制酶外,还需要来自宿主细胞的蛋白质因子HF1和HFII;由负链形成无须这两个因子病毒RNA的复制方式病毒含正链RNA,Qβ噬菌体病毒含负链和复制酶:复制产生正链,合成蛋白和RNA病毒复制,重新组装成新病毒颗粒病毒含双链RNA和复制酶:先合成正链RNA,翻译合成相关蛋白,随后合成负链形成双链RNA分子.致癌RNA病毒:需要逆转录过程四.RNA指导下的DNA合成逆转录:以RNA为模板,按照RNA中的核苷酸顺序合成DNA,这与通常转录过程中遗传信息流从DNA到RNA的方向相反称逆转录前病毒假说:1964年,Temin认为致癌RNA病毒的复制需要经过一个DNA中间体(前病毒),此中间体可部分或全部整合到宿主细胞DNA中,并随着细胞增殖传递至子代细胞1970年,Temin和Baltimore分别找到逆转录酶1975年获得诺贝尔生理和医学奖逆转录酶性质:合成底物为四种脱氧核糖核苷三磷酸模板和引物适当浓度的Mg2+DNA延长方向5→3RNA指导下的DNA聚合酶活力DNA指导下的DNA聚合酶活力核糖核酸酶活力,专门水解RNA-DNA杂种分子的RNA复习方法如果细心对比一下历年的专业课考题,我们就会发现考研专业课考试的重复性很强,虽然题量和题型可能会有一些的改动,但是每年考试的命题重点基本上不会有太大的变化。

中国农业大学_806生物化学_《生物化学》笔记

中国农业大学_806生物化学_《生物化学》笔记

2. 水作为底物或产物参与生物化学反应 3. 水环境非常适合生命体 (二)水是极性分子 水的特殊性质: 水具有比较高的沸点和蒸发热。 此性质源于相邻水分子间比较强的吸引力-高的内聚力。 (三)水是很好的溶剂 水溶解盐,是通过水化(hydration)和电荷屏蔽作用(charge screening)实现的。 水的介电常数高。 F=Q1Q2/r2 F:离子间作用力 Q:所带电荷你 : 介电常数 r: 电荷基团间距 电常数是表示溶剂中偶极数量的一种物理特性参数。 在极性大的环境中离子间的作用力小。 四)非极性物质不溶于水 双亲性物质迫使水结构发生变化 非极性分子排开水的力量即疏水力 (五)弱键对生物分子结构与功能很重要 非共价键( Noncovalent Interaction) : 氢键 (hydrogen bonds) 离子键 (charge-charge interactions) 范德华力 (van der Waals force) (hydrophobic interaction) 疏水键 范德华力(van der vaals interaction) :近距离接触的任意两个原子之间的弱吸引力。 弱键虽然作用力小, 但数量之大, 在维持生物大分子结构和生物分子相互作用中起重要作用。 思考题 生命体的基本特征是什么? 生命物质的特征是什么? 讨论水的性质与生命体的关系。 中国科学家在 年 用 法合成牛胰岛素。 中国科学家在 1983 年人工合成 。 中国科学家在 2002 年完成了 全序列分析。 生物大分子的三维结构主要靠 键维持,包括 、 、 和 。 带电生物大分子或电解质在水中的溶解是通过 作用和 作用实现 的。 第二章 蛋白质 I:蛋白质的组成 问题与讨论 • 蛋白质平均含氮量? • 蛋白质有哪些种类(组成、溶解度、辅基、形状、功能)? • 蛋白质的水解产物是什么? • 球蛋白/球状蛋白质 区别?

中国农业大学食品学院生物化学讲义笔记解析

中国农业大学食品学院生物化学讲义笔记解析

第五章蛋白质的三维结构
一、研究蛋白质构象的方法 ㈠X-衍射法:推算出分子的形状,原理,步骤
更多资料下载:
才思教育考研考博全心全意
㈡研究溶液中蛋白质构象的光谱学方法 1、紫外差光谱:推断蛋白质分子的大体构象 2、荧光和荧光偏振:测定疏水区形成的微区 3、圆二色性:测定-螺旋,-折叠片含量 4、核磁共振:蛋白质分子的三维构象 5、拉曼光谱:测定主链构象。 二、稳定蛋白质三维结构的作用力 键能 肽键 二硫键两者共90kcal/mol 离子键3kcal/mol 氢键1kcal/mol 疏水键1kcal/mol 范德华力0.1kcal/mol 这四种键能远小于共价键,称次级键 提问:次级键微弱但却是维持蛋白质三级结构中主要的作用力,原因何在?,数量巨大 ㈠氢键:多肽主链上的羰基氧和酰胺氢形成氢键,维系蛋白质二级结构的主要作用力;侧链间、侧链与水 介质、 主链肽基与侧链、主链肽基与水之间均可形成氢键
胶原蛋白有多种类型如Ⅰ,Ⅱ,Ⅲ型等,不同类型的胶原由于氨基酸组成和含糖量不同物理性能不同。 2、胶原蛋白的氨基酸组成:含有很高量的Gly(30%)和Pro(13%),并含有3个不常见的氨基酸;胶原蛋 白 是糖蛋白,糖是在肽链合成以后,折叠前发生的。 六、超二级结构和结构域 ㈠超二级结构 定义:若干相邻的二级结构单元(螺旋、折叠、转角)组合在一起,彼此相互作用,形成有规则在空间上 能辨 认的二级结构组合体、充当三级结构的构件,称为超二级结构 类型: 、、-曲折 1、:由两股平行或反平行的右手螺旋彼此缠绕形成的左手卷曲螺旋或称超螺旋,也有三股螺旋和四股 螺 旋,肌球蛋白、角蛋白和纤维蛋白原的主要结构元件。 2、:二段平行的折叠股和一段链连接组成,最常的是3段平行股和二段螺旋构成 3、-曲折:-曲折:折叠中相邻的两条反平行链通过转角连接而成,希腊钥匙拓扑异构 ㈡结构域 1、结构域的概念 多肽链首先形成二级结构,相邻的二级结构片段组装在一起形成超二级结构,进而多肽链折成近乎球形的 结 构;对于较大蛋白质分子和亚基,多肽链往往有两个以上相对独立的三维,这种相对独立的三维实体就是 结 构域,蛋白质三维折叠的一个层次;结构域进一步缔合就形成三级结构 2、多肽链的手性效应:多肽链折叠形成的螺旋结构大多数是右手;折叠股亦具有轻度右手扭曲成β的倾向; 一 种效应是β折叠股间的右手交叉连接;一种效应是β折叠片也以右手方式扭曲 3、结构域的类型:四种类型:全α-结构,α/β-结构,全β-结构,金属或二硫键 七、球状蛋白质与三级结构 ㈠球状蛋白质的分类 1、全α-结构(反平行α螺旋)蛋白质 主要由α-螺旋组成,这些α-螺旋由结构域表面的环区域相连接。 在已知的蛋白质结构中,有两种最常见的螺旋排列方式。 其一是四螺旋束,如细胞色素b562,非血卟啉含氧转移蛋白。 其二是球状折叠,如肌红蛋白和血红蛋白。 2、α/β结构(平行或混合型β折叠片)蛋白质 含有一个由α-螺旋包围着的平行或混合β-回折的核。 所有的糖酵解酶都是α /β型结构,许多其他的酶以及结合运输蛋白也是这种结构。 在α /β型结构中,由环区域形成结合裂缝,这些区域虽对结构的稳定无作用,但通常参与结合和催化活 性。

中国农业大学食品学院生物化学课后习题及答案讲解

中国农业大学食品学院生物化学课后习题及答案讲解

中国农业大学食品学院生物化学课后习题及答案讲解第五章糖的其他代谢途径一.葡萄糖异生作用㈠.糖异生的前体丙酮酸:转化为丙酮酸的物质可以转化为糖,如:经苹果酸穿梭→草酰乙酸→磷酸烯醇式丙酮酸→G生糖氨基酸:转氨或脱氨后生成的酮酸直接或间接转化为G,如:Ala,Glu,Asp等肌肉乳酸,经血液运送至肝脏进入异生反刍动物能将纤维素消化为乙酸,丁酸,丙酸,异生为G奇数脂肪酸氧化产生琥珀酸CoA㈡.糖异生途径1.丙酮酸到磷酸烯醇式丙酮酸丙酮酸进入线粒体,丙酮酸羧化酶的催化下,羧化生成草酰乙酸草酰乙酸-----PEP:烯醇式丙酮酸羧激酶可存在于线粒体基质、细胞溶胶或二者均有,种属差异。

存在于细胞溶胶中,经过苹果酸穿梭2.FBP→F6P3.G6P→G光面内质网结合酶,其活性需要一种与钙离子结合的稳定蛋白协同作用,G6P进入光面内质网催化.糖异生和糖酵解能量比较㈢.糖异生的生理意义维持血糖浓度恒定的重要措施之一,通过异生途径合成G对维持血糖浓度起重要作用;脑组织,红细胞以血液中葡萄糖为主要燃料,自身无糖原贮存饥饿,剧烈运动后,对机体恢复起重要作用:科里循环(Cori cycle)反刍动物可利用异生作用将某些酸类物质转化为葡萄糖植物种子萌发,果实成熟时利用糖异生作用,生成葡萄糖89㈣.糖异生的调节葡萄糖异生和糖酵解作用有协同作用磷酸果糖激酶,果糖1,6二磷酸酶的调节丙酮酸激酶,丙酮酸羧化酶和磷酸烯醇式丙酮酸羧激酶己糖激酶和葡萄糖6磷酸酶二.戊糖磷酸途径㈠.戊糖磷酸途径研究史同位素标记证明葡萄糖C1和C6经糖酵解和三羧酸循环,产生CO2机率不同加入碘乙酸,氟化物等糖酵解的抑制剂,葡萄糖仍可分解利用1931年,Warburg等发现了G6P脱氢酶和6-磷酸葡萄糖酸脱氢酶,NADP+四碳糖,五碳糖,七碳糖的分离1953年,Dicken提出代谢途径Warburg-Dicken途径,戊糖支路,己糖单磷酸途径,磷酸葡萄糖酸氧化途径和戊糖磷酸循环㈡.戊糖磷酸途径主要反应1.氧化阶段:产生戊糖和NADPH,参与的酶2.非氧化阶段戊碳糖异构;戊碳糖间转酮;转醛;四碳糖和五碳糖间转酮反应3.戊糖磷酸途径总结代谢意义细胞产生还原力(NADPH)的主要途径细胞内不同结构糖分子的重要来源,并为各种单糖的相互转化提供条件代谢调节:限速酶:葡萄糖-6-磷酸脱氢酶NADP+/NADPH㈡体内葡萄糖的利用与细胞代谢关系1.机体对核糖-5-磷酸的需要和NADPH的需要处于平衡,磷酸戊糖途径氧化阶段完成G6P+2NADP++H2O→核糖-5-P+2NADPH+H++CO22.机体主要需要核糖-5-磷酸细胞分裂,糖酵解和戊糖磷酸途径非氧化阶段5G6P+ATP→6核糖-5-P+ADP+H+3.机体对NADPH的需要超过核糖-5-磷酸G6P+7H2O+12NADP+→6CO2+12NADPH+12H++Pi4.机体需要NADPH和ATP,不需要核糖-5-磷酸3G6P+6NADP++5NAD++5Pi+8ADP→5丙酮酸+3CO2+6NADPH+5NADH+8ATP+2H2O+8H+三、淀粉和糖原代谢㈠淀粉分解代谢㈡糖原分解代谢:糖原磷酸化酶、糖原脱支酶、磷酸葡萄糖变位酶1、糖原磷酸化酶糖原磷酸化酶的分子结构:1938,Carl Cori和Gerty Cori分离得到磷酸化酶a和磷酸化酶b;Robert Fletterick和Louise Johnson对结构和作用进行研究糖原磷酸化酶的作用特点:催化糖原1→4糖苷键磷酸解;从非还原末端磷酸解2.糖原脱支酶90糖基转移:将三个葡萄糖残基转移到另一分支的非还原性末端的葡萄糖残基上,或者糖原的核心链糖原脱支:脱下1→6连接的葡萄糖残基,产生一分子葡萄糖和1→4相连的葡萄糖残基3.磷酸葡萄糖变位酶葡萄糖-1-磷酸转变成葡萄糖-6-磷酸;活性部位有丝氨酸残基,带有一个磷酸基团;葡萄糖1,6-二磷酸的存在对酶发挥活性是必要的;催化机理与磷酸甘油酸变位酶相似㈢糖原的生物合成1957年,Luis Leloir等人,糖基供体尿苷二磷酸葡萄糖,UDP-葡萄糖糖原的合成通过3个步骤,包括三种酶:UDP-葡萄糖焦磷酸化酶;糖原合酶;糖原分支酶1.UDP-葡萄糖焦磷酸化酶葡萄糖-1-磷酸与UTP反应生成UDP-葡萄糖和PPi,活化了葡萄糖1位羟基2.糖原合酶催化UDPG与糖原分支的非还原末端G残基第4位碳原子上的羟基形成α1→4糖苷键其催化需要至少四个葡萄糖残基引物糖链,生糖原蛋白(Gluconin),糖原引物蛋白;糖原合酶与生糖原蛋白结合时具有催化活性二聚体,每个亚基含有9个丝氨酸残基,可被不同程度的磷酸化,受到不同程度的抑制.3.糖原分支酶断开α(1→4)糖苷键;形成α(1→6)糖苷键;㈣.糖原代谢的调节糖原合酶的调控肝脏中糖原代谢调控的特殊性血糖浓度直接控制肝脏中相关酶的活性G浓度高时,G与磷酸化酶a结合,由R态变为无活性的T,磷酸酶水解磷酸根,磷酸化酶a变为磷酸化酶b,糖原的降解减弱;磷酸化酶水解磷酸化的糖原合酶,由无活性状态变为活性状态,促进糖原的合成.复习方法如果细心对比一下历年的专业课考题,我们就会发现考研专业课考试的重复性很强,虽然题量和题型可能会有一些的改动,但是每年考试的命题重点基本上不会有太大的变化。

食品生物化学知识点大一

食品生物化学知识点大一

食品生物化学知识点大一食品生物化学是食品科学与工程专业的重要基础课程之一,主要涉及食品成分、食品加工及储藏时的物质变化等方面的内容。

以下是大一学习食品生物化学时需要了解的一些重要知识点:一、食物成分1. 碳水化合物:包括单糖、双糖和多糖,是人类主要的能量来源。

2. 脂肪:由甘油与脂肪酸组成,提供能量并帮助维持体温,同时是脂溶性维生素的载体。

3. 蛋白质:由α-氨基酸组成,是构成细胞和组织的基本单位。

4. 维生素:包括水溶性维生素和脂溶性维生素,对人体的生理功能起重要作用。

5. 矿物质:包括铁、锌、钙等,参与多种生命活动和维持正常机体功能。

6. 水:是构成细胞和组织的基本成分,是维持各种生命活动所必需的物质。

二、食物加工与营养1. 食物的储藏与保鲜:食物保存时需注意防止氧化、腐败和细菌滋生等问题,利用冷藏、冷冻、脱水等方法进行储藏与保鲜。

2. 食物加工过程中的物质变化:如淀粉糊化、蛋白质变性、糖类焦糖化等。

3. 食品的味觉和风味:主要取决于食物中的味觉物质和香气物质。

4. 色泽与光感:食物的颜色对其口感和食欲产生重要影响。

三、食品生物化学分析方法1. 常用的食品分析方法:如光度法、比色法、浊度法、色谱法、质谱法等。

2. 食品质量评价:包括感官评价和定量化学分析两种方法。

四、食品添加剂与食品安全1. 食品添加剂的作用与分类:如防腐剂、甜味剂、酸度调节剂等。

2. 食品安全与毒素:了解食品中可能存在的毒素,并了解其毒性和安全使用标准。

五、食品生物化学在食品加工中的应用1. 面粉加工:了解小麦淀粉糊化的过程与原理。

2. 糖果加工:了解糖果制作过程中糖类焦糖化反应的原理。

3. 肉制品加工:了解脂肪氧化和蛋白质变性对肉制品质量的影响。

六、食品添加剂与食品工程1. 食品色素与颜色稳定性:了解食品色素的分类、性质和稳定性。

2. 食品香味剂与香气稳定性:了解食品香精的种类、特性和香气稳定性。

以上是大一学习食品生物化学时需要了解的一些重要知识点,希望可以对你的学习有所帮助。

中国农业大学食品学院生物化学课后习题答案解析

中国农业大学食品学院生物化学课后习题答案解析

中国农业大学食品学院生物化学课后习题答案解析第四节多糖(polysaccharides)一、概述:多糖是多个的单糖分子缩合失水而成的,分子量很大在水中不能形成真溶液只能形成胶体有些不溶于水,如纤维素无甜味也无还原性,有旋光,无变旋现象。

按功能分作为动物植物骨架的原料,如食物的纤维素(cellulose)和动物的几丁质(chitin);作为贮藏多糖,如淀粉和糖元。

在需要时可以通过生物体的酶系统的作用,分解放出多糖;具有复杂的生理功能:如粘多糖(mucopolysaccharides)、血型物质等。

按照组分的繁简:同多糖(homopolysaccharide):某一种单一的多糖缩合而成,如淀粉、糖原、纤维素;杂多糖(heteropolysaccharide)。

由不同类型的单体组成如结缔组织中的透明质酸等。

二、同多糖:水解产生一种单糖或单糖衍生物1、淀粉(starch):存在于所有绿色植物得到多数组织,在显微镜下我们观察植物种子(如麦、玉米、大米、)、块茎及干果(栗子、白果等),会看到大小不等的淀粉颗粒。

1)结构:有直链淀和支链淀粉之分。

直链淀粉(amylose):有葡萄糖单位组成,连接方式和麦芽糖分子中的葡萄糖单位间的相同,α(1-4)糖苷键一般链长250-300个葡萄糖单位。

支链淀粉(amylopectin):有多个较短的α-1、4糖苷键直链组成。

每两个糖的直链之间的连接为α-1、6糖苷键,较短的直链链端葡萄糖分子的第1个碳原子上羟基与邻近的另一个链中的葡萄糖分子中的第6个碳原子上的羟基结合。

一般淀粉都含有直链淀粉和支链淀粉,玉米和马铃薯.分别含有27%和20%的直链淀粉,其余部分为支链糯米,全部为支链淀粉豆类全部是直链淀粉。

2)性质:直链淀粉冷水中不溶解,略溶于热水,但支链淀粉吸收水分吸收水份后成糊状。

淀粉在酸和淀粉酶解作用下可被降解,最终产物是葡萄糖,这种降解产物是逐步进行的。

淀粉红色糊精无色糊精麦芽糖葡萄糖。

  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

中国农业大学食品学院生物化学知识点解析第十二章蛋白质合成和转运一.蛋白质合成的分子基础㈠.mRNA是蛋白质合成的模板mRNA分子的碱基顺序决定氨基酸的一级结构原核生物其mRNA转录后即可进行翻译,通常是多基因编码,不同位置翻译产生不同蛋白质真核生物mRNA前体转录后加工成成熟mRNA,转移到细胞质,通常是单基因编码,合成一条多肽链mRNA翻译的方向5’→3’mRNA的碱基序列如何决定氨基酸排列?㈡.遗传密码四种碱基决定20中氨基酸,编码氨基酸所需要碱基的最低数目为三个遗传密码:核苷酸三联体决定氨基酸的对应关系遗传密码不重叠,重叠造成氨基酸序列中每一个氨基酸受上下氨基酸的约束遗传密码连续的和无标点符号隔开的遗传学实验及现代基因和蛋白质序列的研究证明三联体密码的正确性三联体密码与氨基酸的对应关系如何?遗传密码的破译实验体系:Nirenberg等将大肠杆菌破碎,离心,得上清夜,含由蛋白质合成所需的各种成分:DNA,mRNA,tRNA核糖体,氨酰tRNA合成酶以及蛋白质合成必需得各种因子,将上清夜保温,使内源mRNA被降解,该系统自身蛋白合成停止;105加入外源mRNA和ATP,GTP和放射性标记的氨基酸成分,37℃保温,合成新的蛋白质,根据外源mRNA的序列和合成的多肽链,找出对应关系单一核苷酸的多聚物polyU UUU编码苯丙氨酸;polyA AAA编码赖氨酸;polyC CCC编码脯氨酸polyG GGG编码甘氨酸;两种核苷酸的多聚物P509;三种核苷酸的多聚物P510;四种核苷酸的多聚物P510;1966年,全部密码子破译遗传密码的基本特性基本单位:5’→3’方向编码,不重叠,无标点的三联体密码子,从起始密码子开始到终止密码子结束密码简并性:同一种氨基酸有两个或更多密码子的现象称为密码子的简并性,减少有害突变和物种的稳定性具生物学意义.同义密码子密码的变偶性:密码子的简并性表现在其第三位碱基上,其专一性主要取决于前两位,当反密码子与密码子配对时,一,二位配对是严格的,三位有一定的变动,所谓的变偶性.反密码子第一位经常出现I,可与密码子U,A和C配对,体外实验可识别其余四种碱基,反密码子能识别更多的简并密码子.通用性:各种低等和高等生物,基本共用同一套遗传密码变异性:个别遗传密码在个别物种或不同细胞器存在变异密码子的防错系统:密码子中碱基的顺序与其相应氨基酸物理和化学性质之间存在巧妙关系.氨基酸的极性由第二位碱基决定,简并性由第三位决定.中间碱基为U,编码氨基酸为非极性,疏水氨基酸,位于球蛋白内部.密码子的这种分布使基因突变造成的危害降至最低程度,具防错功能.㈢.tRNA转运活化的氨基酸每一种氨基酸至少有一种tRNA负责转运,tRNA Ser与蛋白质合成有关的位点:氨基酸的接受位点,识别氨酰-tRNA合成酶的位点,核糖体识别位点和反密码子位点氨基酸与tRNA结合后,进一步的去向由tRNA反密码子决定tRNA突变:编码tRNA的基因当反密码子碱基位置发生变化时,其转运氨基酸可能发生变化,与基因间的校正突变有关.㈣.核糖体是蛋白质合成的工厂小亚基16SrRNA具有识别起始密码子的作用,能单独与mRNA形成30S核糖体-mRNA复合体,复合体与tRNA 专一结合;大亚基能与tRNA结合,有两个位点:氨酰基位点和肽酰基位点,还有一个在肽酰-tRNA移位过程中使GTP水解的位点.大小亚基上有起始因子,延伸因子和释放因子及各种酶相结合的位点二.蛋白质合成过程㈠.氨酰tRNA合成酶催化形成氨酰tRNA氨酰tRNA合成酶活性位点:特定氨基酸的识别位点;特定tRNA识别位点,ATP结合位点以及许多氨酰tRNA 合成酶具有校正部位根据氨酰-tRNA合成酶识别tRNA密码子的情况两类:识别反密码子和不识别反密码子许多氨酰-tRNA合成酶具有校正部位,水解非正确组合的氨基酸和-tRNA间形成的共价联系.氨酰-tRNA合成酶和对应的tRNA称为遗传密码第二,第二套遗传密码氨酰tRNA合成酶催化的反应过程氨基酸+ATP→氨酰-AMP+PPi氨酰-AMP+tRNA→氨酰tRNA+AMP106甲硫氨酰-tRNA合成酶:识别两种甲硫氨酸tRNA,一种为起始甲硫氨酰-tRNA,tRNA iMet,由起始因子识别;另一种为渗入到蛋白质内部的甲硫氨酸-tRNA,tRNA Met,由延伸因子识别.原核生物甲酰化酶使tRNA iMet中的氨基酸甲酯化,形成甲酰甲硫氨酸-tRNA㈡.原核生物蛋白质合成的起始起始密码子的识别原核生物:mRNA多蛋白质编码,有多个起始密码子AUG,同时蛋白质内部含有甲硫氨酸,如何识别起始密码子?RNA3’端的7个嘧啶碱基能与SD序列进行碱基互补性识别,帮助从起始AUG处翻译蛋白质合成起始核糖体小亚基结合起始(f)tRNAiMet;在mRNA必须找到合适的起始密码子;大亚基必须与已经形成复合物的小亚基,起始tRNA和mRNA结合在起始过程中多种起始因子(IF)参与原核生物起始复合物的形成㈢.原核生物蛋白质合成的延伸氨酰-tRNA的进入;转肽;移位㈣.蛋白质合成的终止释放因子(RFs)和核糖体释放因子(RRF)参与RF-1识别UAA和UAG;RF-2识别UAA和UAG;RF-3刺激RF-1和RF-2的活性.㈤.真核生物起始复合物的形成真核生物:真核生物最靠近5’端的AUG通常为起始密码子,高等真核生物中起始密码子处有类似序列GCCGCCpurCCAUGG序列,对起始识别是必要的.真核生物肽链延长和终止与原核生物相似,延长因子EF-1A,EF-1B,EF-2;终止因子RF肽链释放㈥.蛋白质合成的抑制剂细胞毒素:原核生物,破坏小亚基16S rRNA嘌呤毒素:破坏转肽过程氯霉素结合70S核糖体链霉素,新霉素和卡那霉素结合30S亚基,引起密码错读亚胺环己酮作用80S核糖体白喉毒素:作用于延伸因子EF-2,抑制肽链移位__复习方法如果细心对比一下历年的专业课考题,我们就会发现考研专业课考试的重复性很强,虽然题量和题型可能会有一些的改动,但是每年考试的命题重点基本上不会有太大的变化。

所以要想在专业课的竞争中获得胜利,建议广大考生第一步就是要搜集专业课历年考试资料和最新信息,标准就是要“准”和“全”。

第一,有效地收集专业课辅导资料专业课的资料主要包括专业辅导书、课程笔记、三人行辅导班笔记以及最重要的历年试题。

如果这些都搜集全的话,就可以踏踏实实的开始复习了。

专业辅导书是复习的出发点,所有的考试的内容都是来源如此,但是通常专业辅导书都是又多又厚的,所以要使我们复习的效率最大化,就要运用笔记和历年试题把书本读薄。

如前所述,专业课试题的重点基本上不会有太大的变动,所以仔细研究历年试题可以帮助我们更快的掌握出题点和命题思路,并根据这些重点有的放矢的进行复习,这样可以节省很多复习的时间。

市场上有很多关于历年考研真题解析的书籍,建议大家去看一些考研专业课辅导名师的著作,毕竟只有他们才有能力充分洞察历年考研的最新变化以及考研命题规律。

考研时各种各样的信息,如三人行辅导班,参考书,以及最新的考研动态,并不是一个人就能顾及到的,在一些大的考研网站上虽然可以获得一些信息,但是有关的专业的信息还是来自于学校内部同学之间的交流,毕竟考生大部分的时间还是要放在学习上。

专业课信息最重要的来源就是刚刚结束研究生考试的的研究生一年级学生,由于他们已经顺利通过考试,所以他们的信息和考试经验是最为可靠的。

笔记和历年试题都可以和认识的师兄师姐索取,或者和学校招生办购买。

由于专业课的考试是集中在一张试卷上考查很多本书的内容,所以精练的辅导班笔记就比本科时繁多的课程笔记含金量更高。

考生最好能找到以前的三人行辅导班笔记,或者直接报一个专业课考研辅导班,由专业课的老师来指导复习。

另外,也可以尝试和师兄师姐们打听一下出题的老师是谁,因为出题的老师是不会参加辅导的,所以可以向出题的老师咨询一下出题的方向。

第二,专业课的具体复习方法专业课的内容繁多,所以采用有效的复习的方法也显得尤为重要。

任何一个会学习的学生,都应该是会高效率地学习的人。

与其为了求得心理上的安慰“小和尚念经”般的在桌边捱过“有口无心”的半天时间,还不如真正有效的学习两个小时,用其余的时间去放松自己,调节一下,准备下一个冲刺。

每个人都有自己的生物钟,十几年的学习生活,你一定很清楚自己在什么时候复习效果最好,要根据自己的情况来合理安排时间。

通常都是把需要背记的内容放在每天精力最旺盛的时候,且每门持续背诵的时间不能安排地过长。

专业课的许多知识都要以记忆为基础。

记忆的方法,除了大家熟悉的形象记忆法,顺口溜等之外,还有就是“阅读法”,即把需要记忆的内容当作一篇故事,就像看故事一样看他几遍,记住大概的“情节”,每次重复看时就补上上次没记住或已经忘记的部分。

这样经常看就会慢慢记住了,而且记地很全面。

因为现在专业课考试的题目很少有照搬书本上的答案,大部分的题都要求考生自己去归纳分析总结,所以对书上的知识有一个全面整体的了解,对考试时的发挥很有帮助;另一种是“位置法”即以段落为单位,记住段落的前后位置。

看到相关题目时,那一页或几页书就会出现在脑海里,使人在答题中不会遗漏大的要点。

这两种方法都能让你全面整体的掌握课本的知识。

在这之后要做的就是提纲挈领,理出一个知识的脉络。

最好的办法就充分利用专业课参考书的目录,考生可以在纸上把每一章的小标题都列上,再把具体每一个标题所涉及的知识一点点地回忆出来,然后再对照书,把遗漏的部分补上,重点记忆。

这样无论考查重点或是一些较偏的地方,我们都能够一一应付。

但是对于概念这种固定化的知识点,就要在理解的基础上反复记忆,默写也不失为一种好的方法。

我们很多同学都是不大喜欢动手,可能他们会默背或小声朗读要背记的内容几个钟头,但是不愿意写半个小时。

殊不知古人所说的“眼过千遍,不如手过一遭”这句话还是很有道理的。

第三,协调专业课和公共课的关系在考研的初始阶段,可以把大部分时间都分配给数学和英语,但是在考研的后期,专业课复习的时间就要逐渐的增加。

一天只有24小时,考生要在保持精力,即在保持正常休息的前提下,最大限度的利用时间,合理的安排各项复习内容。

这时就要考虑把时间用在哪一科上或是具体那一科的哪一部分才能取得最大的收益。

大凡高分的考生,他们的专业课的成绩都很高。

因为对于考生来说,政治和英语的区分度并不是很大,要提高几分是需要花费大量时间和精力的,而且在考试时还存在着许多主观的因素。

但是专业课由于是各校内的老师出题,每年的重点基本不会变化,如果搜集到历年真题以及辅导班的笔记,多下些功夫,想要得高分并不是难事。

相关文档
最新文档