与圆锥曲线的切线有关的一个结论及证明

合集下载

圆锥曲线的切线方程

圆锥曲线的切线方程

圆锥曲线的切线方程点击此处添加副标题作者:鲜海东微信:xhd143848832211),(1),()0(13))(())((),())(())((),(),()()(2),(),(1202022220020200022222000020000002222000020000222=+=+=+=+=--+--=--+--=-+-=+=+=+by y a x x M b y a x y x M by y a x x y x M b a b y a x r b y b y a x a x M y x M rb y b y a x a x y x M y x M r b y a x r y y x x M y x M r y y x x y x M r y x 弦所在直线方程为:点的引切线有两条,过两切的外部时,过在椭圆当切线方程为:上一点>>:过椭圆结论所在直线方程:点切线有两条:切点弦在圆外,过若切线方程:则过一点为圆上,若的方程::若圆心不在原点,圆结论。

弦所在直线方程为,过两切点的点引切线有且只有两条在圆外时,过当。

的切线方程为上一点:经过圆结论。

两点的直线方程为、所以过两切点,满足直线现观察以上两个等式,发、以有是两条切线的交点,所。

又因、:两点的切线方程分别为、可知过由为引两条切线,切点分别外一点>>()设过椭圆(即由点斜式得切线方程为,得求导,得的两边对)大学隐函数求导)(证明:11),(),,(.11),(11)1().,(),,(),()0121),(,02211(20202020221120220220120100222221212211002222202000202002020222222=+=+=+=+=+=+=+=+--==--==='='+=+b y y a x x B A b y y a x x y x B y x A b y y a x x b y y a x x y x M b y y a x x b y y a x x B A y x B y x A y x M b a by a x by y a x x x x y a x b y y y a x b x x y b y y a x x b y a x)(),()0(2);(),()0(2)2()(),()0(2);(),()0(2)1(511),(1),()00(140000200002000020000220202222002020002222y y p x x y x M p py x y y p x x y x M p py x x x p y y y x M p px y x x p y y y x M p px y by y a x x M b y a x y x M by y a x x y x M b a b y a x +==+==+==+===-=-=-=-弦所在直线方程为的引两条切线,过两切点的外部一点>过抛物线切线方程为上一点>过抛物线弦所在直线方程为的引两条切线,过两切点的外部一点>过抛物线切线方程为上一点>过抛物线:结论。

专题14 圆锥曲线切线方程 微点1 圆锥曲线切线方程的求法

专题14  圆锥曲线切线方程  微点1  圆锥曲线切线方程的求法

专题14 圆锥曲线切线方程 微点1 圆锥曲线切线方程的求法专题14 圆锥曲线切线方程 微点1 圆锥曲线切线方程的求法 【微点综述】圆锥曲线的切线方程问题侧重于考查圆锥曲线的性质、标准方程以及直线方程的几种形式.此类问题的难度一般不大,对同学们的抽象思维和分析能力的要求较高.下面主要探讨一下求圆锥曲线的切线方程的方法及常用结论. 一、圆锥曲线切线方程方法 1.向量法在求圆的切线方程时,可巧妙利用圆心和切点的连线垂直于切线的性质来建立关系式.在运用向量法解题时,可先给各条线段赋予方向,求得各条直线的方向向量,然后根据“互相垂直的两个向量的数量积为0”的性质建立圆心、切点、切线之间的关系式,从而求得切线的方向向量以及直线的方程. 例11.已知圆O 的方程是()()222x a y b r -+-=,求经过圆上一点()00,M x y 的圆的切线l 的方程. 2.变换法设椭圆方程为22221x y a b +=,我们作变换:,,x au y bv =⎧⎨=⎩则可把椭圆化为单位圆:221u v +=,从而可将求椭圆的切线方程问题转化为求圆的切线问题. 例22.求过椭圆221169x y +=上一点M ⎛ ⎝⎭的切线l 方程. 3.判别式法可以利用一元二次方程根的判别式来求圆锥曲线的切线方程,这种方法也是中学阶段的常用方法之一.思维导图:设切线方程⇒联立切线与椭圆的方程⇒消去y (或x )得到关于x (或y )的一元二次方程⇒Δ0=求切线斜率⇒写出切线方程. 注意:过双曲线的对称中心不可能作出直线与双曲线相切. 例33.求经过点()2,1M 的双曲线:2222x y -=的切线l 的方程. 4.导数法我们知道,导数的几何意义是:该函数曲线在某一点上的切线的斜率,那么在求圆锥曲线的切线方程时,可对曲线的方程进行求导,便可得到曲线在切点处切线的斜率或切点的坐标,根据直线的点斜式方程即可求得切线的方程. 例44.设为,A B 曲线2:4x C y =上两点,,A B 的横坐标之和为4.设M 为曲线C 上一点,C在M 处的切线与直线AB 平行,且AM BM ⊥,求直线AB 的方程. 例55.证明:过椭圆C :22221x y m n+=(m >n >0)上一点Q (x 0,y 0)的切线方程为00221x x y y m n +=.5.几何性质法通过对椭圆、双曲线以及抛物线的几何性质的研究,我们知道:(1)若焦点为12,F F 的椭圆或双曲线上有一点M ,则12F MF ∠的平分线一定与圆锥曲线相切;(2)若焦点为F 的抛物线上有一点M ,过M 作准线的垂线,垂足为N ,则FN 的中点P 与M 的连线PM 必与抛物线相切.据此,我们也可以利用圆锥曲线的几何性质作出其切线,然后再求出切线的方程. 例66.求抛物线2:8C y x =上经过点()8,8M 的切线l 的方程. 例77.过抛物线准线上任一点作抛物线的切线,则过两切点的弦必过焦点. 例8(2022乙卷理科)8.已知抛物线C :()220x py p =>的焦点为F ,且F 与圆M :()2241y x ++=上点的距离的最小值为4. (1)求p ;(2)若点P 在M 上,P A ,PB 为C 的两条切线,A ,B 是切点,求△P AB 面积的最大值. 【强化训练】(2022桃城区校级模拟)9.已知圆22:1C x y +=,直线:2l x =,P 为直线l 上的动点,过点P 作圆C 的切线,切点分别为A ,B ,则直线AB 过定点( )A .1,02⎛⎫ ⎪⎝⎭B .(0,2)C .(2,1)D .1,12⎛⎫ ⎪⎝⎭(2022聊城一模)10.已知圆22:1C x y +=,直线:20l x y ++=,P 为直线l 上的动点,过点P 作圆C 的两条切线,切点分别为A ,B .则直线AB 过定点( ) A .11,22⎛⎫-- ⎪⎝⎭B .()1,1--C .11,22⎛⎫- ⎪⎝⎭D .11,22⎛⎫- ⎪⎝⎭(2022迎泽区校级月考)11.已知圆()22:14C x y -+=.动点P 在直线280x y +-=上,过点P 引圆的切线,切点分别为,A B ,则直线AB 过定点______.12.过圆2216x y +=外一点P (4,2)向圆引切线. (1)求过点P 的圆的切线方程;(2)若过点P 的直线截圆所得的弦长为(3)若过P 点引圆的两条切线,切点分别为1P 、2P ,求过切点1P 、2P 的直线方程. (2021春·黑龙江期中)13.已知点(10,3)P 在椭圆222:199x y C a +=上.若点()00,N x y 在圆222:M x y r +=上,则圆M 过点N 的切线方程为200x x y y r +=.由此类比得椭圆C 在点P 处的切线方程为( )A .13311x y+= B .111099x y += C .11133x y += D .199110x y += (2020.新课标△)14.已知△M :222220x y x y +---=,直线l :220x y ++=,P 为l 上的动点,过点P 作△M 的切线,PA PB ,切点为,A B ,当||||PM AB ⋅最小时,直线AB 的方程为( ) A .210x y --= B .210x y +-= C .210x y -+= D .210x y ++=(2022宿州期末)15.定义:若点()00,P x y 在椭圆()222210x y a b a b+=>>上,则以 P 为切点的切线方程为:00221x x y y a b +=.已知椭圆 22:132x y C +=,点M 为直线260x y --=上一个动点,过点M 作椭圆C 的两条切线 MA ,MB ,切点分别为A ,B ,则直线AB 恒过定点( ) A .11,23⎛⎫- ⎪⎝⎭B .11,23⎛⎫- ⎪⎝⎭C .12,23⎛⎫- ⎪⎝⎭D .12,23⎛⎫- ⎪⎝⎭(2022金安区校级期末)16.已知椭圆具有如下性质:若椭圆的方程为()222210x y a b a b+=>>,则椭圆在其上一点()00,A x y 处的切线方程为00221x x y ya b+=,试运用该性质解决以下问题;椭圆221:12x C y +=,点B 为1C 在第一象限中的任意一点,过B 作1C 的切线l ,l 分别与x 轴和y 轴的正半轴交于,C D 两点,则OCD 面积的最小值为( ) A .1BCD .2(2022吉安期末理)17.过圆222x y r +=上一定点(),o o P x y 的圆的切线方程为20o x x y y r +=.此结论可推广到圆锥曲线上.过椭圆221124x y +=上的点()3,1A -作椭圆的切线l .则过A 点且与直线l 垂直的直线方程为( ) A .20?x y +-= B .30x y --= C .2330x y +-= D .3100x y --=(2022大连期末)18.已知()11,M x y 为圆22:1C x y +=上一点,则过C 上点M 的切线方程为________,若()22,N x y 为椭圆2222:1(0)x y E a b a b+=>>上一点,则过E 上点N 的切线方程为_____________. (2022泸县校级一模)19.椭圆223144x y +=上点P (1,1)处的切线方程是______.(2022金安区校级模拟)20.一般情况下,过二次曲线Ax2+By2=C (ABC ≠0)上一点M (x0,y0)的切线方程为Ax0x+By0y=C ,.若过双曲线22221(0,0)x y a b a b -=>>上一点M (x0,y0)(x0<0)作双曲线的切线l ,已知直线l 过点N 0,2b ⎛⎫⎪⎝⎭,且斜率的取值范围是⎣,则该双曲线离心率的取值范围是______. (2022兴庆区校级一模)21.已知()00,P x y 是抛物线()220y px p =>上的一点,过P 点的切线方程的斜率可通过如下方式求得在22y px =两边同时求导,得:2'2yy p =,则'py y=,所以过P 的切线的斜率0p k y =.试用上述方法求出双曲线22y x 12-=在P 处的切线方程为_________.(2022亳州期末)22.已知椭圆C 的方程为()222210x y a b a b+=>>,离心率12e =,点P (2,3)在椭圆上.(1)求椭圆C 的方程(2)求过点P 的椭圆C 的切线方程(3)若从椭圆一个焦点发出的光线照到点P 被椭圆反射,证明:反射光线经过另一个焦点.(2022福州二模)23.已知椭圆C :()222210x y a b a b+=>>的离心率为12,点31,2⎛⎫ ⎪⎝⎭在椭圆C 上.(1)求椭圆C 的方程;(2)若椭圆C 的两条切线交于点M (4,t ),其中t R ∈,切点分别是A 、B ,试利用结论:在椭圆22221x y a b+=上的点()00,x y 处的椭圆切线方程是00221x x y y a b +=,证明直线AB 恒过椭圆的右焦点2F ;(3)试探究2211AF BF +的值是否恒为常数,若是,求出此常数;若不是,请说明理由. (2022香坊区校级三模)24.已知点1(,2)2D -,过点D 作抛物线21:C x y =的两切线,切点为,A B .(1)求两切点,A B 所在的直线方程;(2)椭圆22221(0)x y a b a b +=>>(1)中直线AB 与椭圆交于点P ,Q ,直线,,PQ OP OQ 的斜率分别为k ,1k ,2k ,若123k k k +=,求椭圆的方程. (2022渝中区校级月考)25.已知椭圆22122:1x y C a b+=()0a b >>的离心率为12,过点)E的椭圆1C 的两条切线相互垂直.(△)求椭圆1C 的方程;(△)在椭圆1C 上是否存在这样的点P ,过点P 引抛物线22:4C x y =的两条切线12,l l ,切点分别为,B C ,且直线BC 过点()1,1A ?若存在,指出这样的点P 有几个(不必求出点的坐标);若不存在,请说明理由. (2022杭州模拟)26.已知曲线1C 上任意一点到()0,1F 的距离比到x 轴的距离大1,椭圆2C 的中心在原点,一个焦点与1C 的焦点重合,长轴长为4.(1)求曲线1C 和椭圆2C 的方程;(2)椭圆2C 上是否存在一点M ,经过点M 作曲线1C 的两条切线,MA MB (,A B 为切点)使得直线AB 过椭圆的上顶点,若存在,求出切线,MA MB 的方程,不存在,说明理由.参考答案:1.()()()()200x a x a y b y b r --+--=【分析】设切线l 上任意一点N 的坐标是(),x y ,利用0OM ON ⋅=化简整理可得. 【详解】设切线l 上任意一点N 的坐标是(),x y ,由已知得圆心(),O a b ,()()0000,,,OM x a y b MN x x y y ∴=--=--,又0OM ON ⋅=,即()0000()()()0x x x a y y y b --+--= 所以()()()()()()00000x a x a x a y b y b y b ----+----=⎡⎤⎡⎤⎣⎦⎣⎦, △过圆上的点()00,M x y 的圆的切线l 的方程是:()()()()()()220000x a x a y b y b x a y b --+--=-+-,又()()22200x a y b r -+-=,△所求圆的切线l 的方程为()()()()200x a x a y b y b r --+--=.2.340x y +-=【分析】令,43yx u v ==,利用伸缩变换求得椭圆和点M 在新坐标系下的方程和坐标,然后由圆的切线方程和伸缩变换公式可得.【详解】令,43y x u v ==,则椭圆在新坐标系uOv 下的方程是:221u v +=,点M ⎛ ⎝⎭在新坐标系uOv 下的坐标是:⎝⎭,设过圆221u v +=上的点⎝⎭的切线方程为(22v k u -=-(易得斜率必存在),即(v k u =221u v +=整理得2221(1)(1)(21)02k u k u k k +-+--=由题意可知,22222(1)2(1)(21)0k k k k k =--+--=Δ,整理得2(1)0k +=即1k =-,所以切线方程为(v u =-,即:u v +=∴过椭圆上一点M 的切线l的方程是:43x y+340x y +-=. 3.10x y --=【分析】设直线,与双曲线联立,结合判别式分析,即得解【详解】若直线斜率不存在,过点()2,1M 的直线方程为:2x =,代入2222x y -=可得21y =,与双曲线有两个交点,不是切线;若直线斜率存在,设l 的方程是:()12y k x -=-,即:21y kx k =-+,将它代入方程2222x y -=整理得:()()()222214218840k x k k x k k ---+-+=,由已知20210,k -∆=≠,即()()()2224214218840k k k k k -----+=⎡⎤⎣⎦,解得:1k =,故所求切线l 的方程为:21y x =-+,即:10x y --=. 4.7y x =+【分析】在求得直线AB 的斜率后,便可运用导数法对抛物线的方程求导,得出点M 的坐标,再根据韦达定理和弦长公式求得切线的方程.【详解】设()()1122,,,A x y B x y ,则2212121212,,,444x x x x y y x x ≠==+=,于是直线AB 的斜率为121212121212()()14()4y y x x x x x x k x x x x -+-+====--, 由24x y =,得2x y '=. 设()33,M x y ,由题意可知:312x =,解得32x =,()2,1M ∴. 设直线AB 的方程为y x m =+,故线段的中点为()2,2N m +,1MN m =+将y x m =+代入24x y =得2440x x m --=,当()1610m ∆=+>,即当1m >-时,12x =+22x =-从而可得12AB x =-= 因为AM BM ⊥,且BN AN =,因为直角三角形斜边上的中线等于斜边的一半, 所以BN AN MN ==,所以2AB MN =,即()21m =+, 解得7m =,直线AB 的方程为7y x =+. 5.证明见解析【分析】方法一:分0y >,0y <和0y =,当0y >,0y <时,利用导数求切线方程可得; 方法二:设直线方程联立椭圆方程,利用判别式等于0求切点横坐标,然后可得切线方程. 【详解】法一:由椭圆C :22221x y m n+=,则有22221y x n m =-当0y >时,y =2nx y m '=-,△当00y >时,2000222001x n n n k x x y mm m y n =-=-=-⋅. △切线方程为()200020x n y y x x m y -=-⋅-,整理为:222222220000n x x m y y m y n x m n +=+=,两边同时除以22m n 得:00221x x y ym n+=. 同理可证:00y <时,切线方程也为00221x x y ym n+=. 当0=0y 时,切线方程为x m =±满足00221x x y ym n+=. 综上,过椭圆上一点00(,)Q x y 的切线方程为00221x x y ym n+=. 法二:当斜率存在时,设切线方程为y kx t =+,联立方程:22221x y m ny kx t ⎧+=⎪⎨⎪=+⎩可得222222()n x m kx t m n ++=,化简可得: 22222222()2()0n m k x m ktx m t n +++-=,△由题可得:42222222244()()0m k t m n m k t n ∆=-+-=, 化简可得:2222t m k n =+,△式只有一个根,记作0x ,220222m kt m kx n m k t =-=-+,0x 为切点的横坐标,切点的纵坐标200n y kx t t =+=,所以2020x m k y n =-,所以2020n x k m y =-,所以切线方程为:2000020()()n x y y k x x x x m y -=-=--,化简得:00221x x y ym n+=. 当切线斜率不存在时,切线为x m =±,也符合方程00221x x y ym n+=, 综上:22221x y m n+=在点00(,)x y 处的切线方程为00221x x y y m n +=.6.280x y -+=【分析】根据线段NF 的垂直平分线经过点M 即可求得切线方程.【详解】由抛物线2:8C y x =可得其焦点()2,0F , 准线方程为:2x =-, 过点()8,8M 作准线的垂线,设垂足为N ,则N 的坐标为()2,8-, 又设FN 的中点为P ,则P 的坐标为()0,4,如图所示:故直线PM 的方程为:84480y x --=-, 即280x y -+=,△切线l 的方程为280x y -+=. 7.答案见解析.【分析】根据两切线方程分别为:()11y y p x x =+,()22y y p x x =+,且均过均过点P ,可知弦AB 方程为:02p y y p x ⎛⎫=- ⎪⎝⎭.【详解】以22y px =(p >0)为例说明.设点00(,)Q x y 是抛物线22y px =上的任意一点,则过点00(,)Q x y 且与抛物线相切的直线方程为00()y y k x x -=-,联立2002()y pxy y k x x ⎧=⎨-=-⎩得:222222000000(222)20k x k x p ky x k x y kx y -+-++-=,因为二者相切,所以Δ0=,即222222000000(222)4(2)0k x p ky k k x y kx y +--+-=,化简得:0p k y =,又2002y px =, 代入00()y y k x x -=-得:()00y y p x x =+,即抛物线22y px =在00(,)Q x y 处的切线方程为()00yy p x x =+. 设准线上任一点0,2p P y ⎛⎫- ⎪⎝⎭,切点分别为()11,A x y 、()22,B x y ,则切线方程分别为:()11y y p x x =+,()22y y p x x =+两切线均过点P ,则满足1012p y y p x ⎛⎫=-+ ⎪⎝⎭,2022p y y p x ⎛⎫=-+ ⎪⎝⎭.故过两切点的弦AB 方程为:02p y y p x ⎛⎫=- ⎪⎝⎭,则弦AB 过焦点.【点睛】(1)点()00,P x y 是抛物线()220y mx m =≠上一点,则抛物线过点P 的切线方程是:()00y y m x x =+;(2)点()00,P x y 是抛物线()220x my m =≠上一点,则抛物线过点P 的切线方程是:()00x x m y y =+.8.(1)p =2(2)【分析】(1)先求42pFM =+,点F 到圆M 上的点的距离的最小值即为FM r -. (2)求出AB =和点P 到直线AB的距离d =322(6)2144PABb S ⎛⎫--+= ⎪⎝⎭△,根据b 的范围即可求最大值.(1)0,2p F ⎛⎫⎪⎝⎭到圆心4(0,)M -的距离42p FM +,所以点F 到圆M 上的点的距离的最小值为4142pFM r -=+-=, 解得p =2; (2)由(1)知,抛物线的方程为24x y =, 即214y x =,则12y x '=, 设切点()11,A x y ,()22,B x y , 则易得PA l :21124x x y x =-,△PB l :22224x x y x =-,△联立△△可得1212,24x x x x P +⎛⎫⎪⎝⎭,设AB l :y kx b =+,联立抛物线方程,消去y 并整理可得2440x kx b --=, △216160k b ∆=+>,即20k b +>, 且124x x k +=,124x x b =-, △(2,)P k b -△AB ==点P 到直线AB 的距离d =△()322142PABS AB d k b ==+△△,又点(2,)P k b -在圆M :()2241y x ++=上, 故()22144b k --=,代入△得,332222(6)2112154444PAB b b b S ⎛⎫--+⎛⎫-+-== ⎪ ⎪⎝⎭⎝⎭△, 而[]5,3p y b =-∈--,△当b =5时,()max=PAB S【点睛】(1)直线与抛物线的位置关系和直线与椭圆、双曲线的位置关系类似,一般要用到根与系数的关系;(2)有关直线与抛物线的弦长问题,要注意直线是否过抛物线的焦点,若过抛物线的焦点,可直接使用公式|AB |=x 1+x 2+p ,若不过焦点,则必须用一般弦长公式. 9.A【分析】设(2,)P t ,圆心C 的坐标为(0,0),可得以线段PC 为直径的圆N 的方程,两圆方程作差,得两圆公共弦AB 的方程可得答案. 【详解】因为P 为直线l 上的动点,所以可设(2,)P t , 由题意可得圆心C 的坐标为(0,0),以线段PC 为直径的圆N 的圆心为1,2⎛⎫⎪⎝⎭t P所以方程为2220x y x ty +--=,两圆方程作差,即得两圆公共弦AB 的方程为210x ty +-=,()210-+=x ty ,所以直线AB 过定点1,02⎛⎫⎪⎝⎭.故选:A. 10.A【分析】由P A △AC ,PB △BC 可知点A 、B 在以PC 为直径的圆上,设点P 坐标,写出以PC 为直径的圆的方程,然后可得直线AB 方程,再由直线方程可确定所过定点. 【详解】根据题意,P 为直线l :20x y ++=上的动点,设P 的坐标为(),2t t --, 过点P 作圆C 的两条切线,切点分别为A ,B ,则P A △AC ,PB △BC , 则点A 、B 在以PC 为直径的圆上,又由C (0,0),(),2P t t --,则以PC 为直径的圆的方程为:()()20x x t y y t -+++=,变形可得:()2220x y tx t y +-++=,则有22221(2)0x y x y tx t y ⎧+=⎨+-++=⎩,联立可得:()120tx t y -++=,变形可得:()120y t x y +--=, 即直线AB 的方程为()120y t x y +--=,变形可得:()120y t x y +--=,则有1200y x y +=⎧⎨-=⎩,解可得1212x y ⎧=-⎪⎪⎨⎪=-⎪⎩,故直线AB 过定点11,22⎛⎫-- ⎪⎝⎭. 故选:A . 11.118,77⎛⎫ ⎪⎝⎭【分析】根据题意,设P 的坐标为(82,)t t -,由圆的切线的性质分析可得则A 、B 在以CP 为直径的圆上,进而可得该圆的方程,进而分析可得直线AB 为两圆的公共弦所在直线的方程,由圆与圆的位置关系分析可得直线AB 的方程,据此分析可得答案. 【详解】根据题意,动点P 在直线280x y +-=上,设P 的坐标为(82,)t t -, 圆22:(1)4C x y -+=,圆心为(1,0),过点P 引圆的切线,切点分别为A ,B ,则PA CA ⊥,PB CB ⊥,则A 、B 在以CP 为直径的圆上,该圆的方程为(1)[(82)](0)()0x x t y y t ---+--=, 变形可得:22(92)(82)0x y t x ty t +---+-=,又由A 、B 在圆C 上,即直线AB 为两圆的公共弦所在直线的方程,则有2222230(92)(82)0x y x x y t x ty t ⎧+--=⎨+---+-=⎩, 则直线AB 的方程为(711)(22)x t x y -=--,则有7110220x x y -=⎧⎨--=⎩,解可得:11787x y ⎧=⎪⎪⎨⎪=⎪⎩;故直线AB 恒过定点11(7,8)7;故答案为:11(7,8)7.【点睛】本题考查直线与圆的位置关系、公共弦方程求法、直线过定点问题,考查函数与方程思想、转化与化归思想,考查逻辑推理能力和运算求解能力,求解时注意两圆相减可得公共弦直线方程的应用. 12.(1)x =4或34200x y +-= (2)y =2或43100x y --= (3)280x y +-=【分析】(1)分k 不存在和k 存在两种情况讨论,利用圆心到直线距离等于半径,求解即可;(22,结合圆心到直线距离公式,可得解; (3)由题意12,,,P O P P 四点共圆,且PO 为直径,写出圆的方程,过切点1P 、2P 的直线即为圆22420x y x y +--=与圆2216x y +=的交线,求解即可. (1)当切线斜率不存在时,过点P (4,2)的直线为x =4,圆心到直线距离等于半径,故x =4为切线;当切线的斜率存在时,设切线方程为()24y k x -=-,即420kx y k --+=.4=,即430k +=解得:34k =-,此时切线方程为34200x y +-=.△过点P 的圆的切线方程为x =4或34200x y +-=; (2)由(1)知,所求切线斜率存在,设直线方程为420kx y k --+=.△r =4,且弦长为△圆心到直线420kx y k --+=的距离2d ==,即2340k k -= 解得k =0或43k =.△所求直线方程为y =2或43100x y --=; (3)由题意,1122,OP PP OP PP ⊥⊥ 故12,,,P O P P 四点共圆,且PO 为直径 △P (4,2),△以PO 为直径的圆圆心为(2,1),半径||2PO r == 故圆的方程为()()22215x y -+-=,由于12,P P 也在圆2216x y +=上,故过切点1P 、2P 的直线为圆22420x y x y +--=与圆2216x y +=的公共弦 两圆方程作差可得过1P 、2P 的直线方程为280x y +-=. 13.C【分析】先根据点在椭圆上,求得2a ,再类比可得切线方程. 【详解】因为点(10,3)P 在椭圆222:199x y C a +=上, 故可得21009199a +=,解得2110a =; 由类比可得椭圆C 在点P 处的切线方程为: 103111099x y +=,整理可得11133x y+=. 故选:C.【点睛】本题考查由椭圆上一点的坐标求椭圆方程,以及类比法的应用,属综合基础题. 14.D【分析】由题意可判断直线与圆相离,根据圆的知识可知,四点,,,A P B M 共圆,且AB MP ⊥,根据 44PAMPM AB SPA ⋅==可知,当直线MP l ⊥时,PM AB ⋅最小,求出以 MP 为直径的圆的方程,根据圆系的知识即可求出直线AB 的方程.【详解】圆的方程可化为()()22114x y -+-=,点 M 到直线l 的距离为2d =>,所以直线 l 与圆相离.依圆的知识可知,四点,,,A P B M 四点共圆,且AB MP ⊥,所以14442PAMPM AB SPA AM PA ⋅==⨯⨯⨯=,而PA =,当直线MP l ⊥时,min MP , min 1PA =,此时PM AB ⋅最小. △()1:112MP y x -=-即 1122y x =+,由1122220y x x y ⎧=+⎪⎨⎪++=⎩解得,10x y =-⎧⎨=⎩. 所以以MP 为直径的圆的方程为()()()1110x x y y -++-=,即 2210x y y +--=, 两圆的方程相减可得:210x y ++=,即为直线AB 的方程. 故选:D.【点睛】本题主要考查直线与圆,圆与圆的位置关系的应用,以及圆的几何性质的应用,意在考查学生的转化能力和数学运算能力,属于中档题. 15.C【解析】设()26,M t t +,()11,A x y ,()22,B x y ,即可表示出MA 的方程,又M 在MA 上,即可得到()1126132x t y t++=,即可得到直线AB 的方程,从而求出直线AB 过的定点; 【详解】解:因为点M 在直线260x y --=上,设()26,M t t +,()11,A x y ,()22,B x y ,所以MA 的方程为11132x x y y+=,又M 在MA 上,所以()1126132x t y t ++=△,同理可得()2226132x t y t ++=△; 由△△可得AB 的方程为()26132x t yt++=,即()22636x t yt ++=,即()()431260x y t x ++-=,所以4301260x y x +=⎧⎨-=⎩,解得1223x y ⎧=⎪⎪⎨⎪=-⎪⎩,故直线恒过定点12,23⎛⎫- ⎪⎝⎭故选:C 16.C【解析】设1111(,),(0,0)B x y x y >>,根据题意,求得过点B 的切线l 的方程,即可求得C 、D 坐标,代入面积公式,即可求得OCD 面积S 的表达式,利用基本不等式,即可求得答案. 【详解】设1111(,),(0,0)B x y x y >>,由题意得,过点B 的切线l 的方程为:1112x xy y +=, 令0y =,可得12(,0)C x ,令0x =,可得11(0,)D y ,所以OCD 面积111112112S x y x y =⨯⨯=,又点B 在椭圆上,所以221112x y +=,所以121111121111122x y S x y x y x x y y +===+≥=当且仅当11112x y y x =,即111,x y ==时等号成立, 所以OCD. 故选:C【点睛】解题的关键是根据题意,直接写出过点B 的切线方程,进而求得面积S 的表达式,再利用基本不等式求解,考查分析理解,计算化简的能力,属基础题. 17.A【解析】根据类比推理,可得直线l 的方程,然后根据垂直关系,可得所求直线方程.【详解】过椭圆221124x y +=上的点()3,1A -的切线l 的方程为31124x y-+=, 即40x y --=,切线l 的斜率为1, 与直线l 垂直的直线的斜率为-1, 过A 点且与直线l 垂直的 直线方程为(13)y x +=-一, 即20x y +-=. 故选:A【点睛】本题考查类比推理以及直线的垂直关系,属中档题. 18. 111x x y y +=22221x x y ya b+= 【分析】由OM 垂直切线可求出切的斜率,再利用点斜式可求出过C 上点M 的切线方程;利用导数的几何意义在点()22,N x y 处切线的斜率,再利用点斜式求出直线方程 【详解】解:因为11OM y k x =,切线与直线OM , 所以所求切线的斜率为11x y -, 所以所求的切线方程为1111()x y y x x y -=--,即221111y y y x x x -=-+,得221111x x y y x y +=+,因为点()11,M x y 为圆22:1C x y +=上一点,所以22111x y +=,所以过C 上点M 的切线方程为111x x y y +=; 当20y >时,设0y >,由22221x y a b +=得22221y x b a=- 22222y a x b a -= △22222()b y a x a =-△y = △1'222()(2)2b y a x x a-=-⋅-1222()bx a x a -=--=△过点()22,N x y的切线的斜率为△过点()22,N x y的切线的方程为22)y y x x -=-△点()22,N x y 在椭圆上,△2222221x y a b+=,222222222,a y a y b x a b b=+=, △2222()bx b y y x x a ay -=-⋅-, 即222222()b xy y x x a y -=-- 2222222222a y y a y b x x b x -=-+,2222222222a y y b x x a y b x +=+,△222222a y y b x x a b +=,△所求的切线方程为22221x x y ya b+=, 当20y <时,同理可得其切线方程为22221x x y ya b+=所以过E 上点()22,N x y 的切线方程为22221x x y ya b+=, 故答案为:111x x y y +=;22221x x y ya b+= 【点睛】此题考查圆锥曲线的切线方程的求法,属于中档题 19.340x y +-=【分析】由导数的几何意义即可求得切线方程.【详解】△椭圆223144x y +=,△y >0时,y △23xy -'=, △x =1时,13y '=-,即切线斜率13k =-,△椭圆223144x y +=上点P (1,1)处的切线方程是()1113y x -=--,即340x y +-=. 故答案为:340x y +-=. 20.【分析】求得切线方程,将N 代入切线方程,即可求得M 点坐标,求得切线方程,根据斜率公式及离心率公式即可求得答案. 【详解】双曲线在M (x 0,y 0)的切线方程为00221x x y ya b-=,将N 代入切线方程, 解得y 0=﹣2b ,代入双曲线方程解得:x 0,21y b =,即y2bx +,由斜率的取值范围是⎣1≤b a ≤2, 由双曲线的离心率e =c a1≤22b a ≤4,∴双曲线离心率的取值范围, 故答案为:.【点睛】本题考查双曲线的切线方程的应用及离心率公式,考查转化思想,属于中档题.21.20-=x y【详解】分析:结合题中的方法类比求解切线方程即可.详解:用类比的方法对2212y x =-两边同时求导得,22x yy x y y '∴'==,,0002|2x x x k y y =∴='=, △切线方程为2(y x ,整理为一般式即:20x y -.点睛:“新定义”主要是指即时定义新概念、新公式、新定理、新法则、新运算五种,然后根据此新定义去解决问题,有时还需要用类比的方法去理解新的定义,这样有助于对新定义的透彻理解.对于此题中的新概念,对阅读理解能力有一定的要求.但是,透过现象看本质,它们考查的还是基础数学知识,所以说“新题”不一定是“难题”,掌握好三基,以不变应万变才是制胜法宝. 22.(1)2211612x y +=;(2)280x y +-=; (3)证明见解析.【分析】(1)根据已知条件列方程组即可求出,,a b c .(2)由直线与椭圆相切,根据判别式Δ0=即可求出直线斜率k . (3)利用向量数量积证明直线1PF 与2F P 关于直线m 对称即可;【详解】(1)由题意可得:2222212491c a a b c a b ⎧=⎪⎪=+⎨⎪⎪+=⎩,解得216a =,212b =,△椭圆C 的方程为:2211612x y +=;(2)显然,过点P (2,3)的切线存在斜率, 设切线l 的斜率为k ,则l :3(2)y k x -=-,由22116123(2)x y y k x ⎧+=⎪⎨⎪-=-⎩得()()222348231648120k x k kx k k +--+--=, 因为直线l 与椭圆C 相切,∴()()()2222Δ64234341648120k k k k k =--+--=,化为:24410k k ++=,解得12k =-.△求过点P 的椭圆切线方程为280x y +-=. (3)证明:△椭圆C 的方程为:2211612x y +=, 则椭圆左右焦点分别为()12,0F -,()22,0F , △过点P 的椭圆切线方程为280x y +-=, △过点P 的椭圆法线方程为m :210x y --=, 法线的方向向量()1,2m =--, △()14,3PF =--,()20,3PF =-, △1112cos ,PF mPF m PF m⋅==-,2222cos ,PF mPF m PF m⋅==- △直线1PF ,2F P 关于直线m 对称;△从椭圆一个焦点发出的光线照到点P ,被椭圆反射后,反射光线一定经过另一个焦点. 【点睛】求椭圆的标准方程有两种方法:△定义法:根据椭圆的定义,确定a 2,b 2的值,结合焦点位置可写出椭圆方程.△待定系数法:若焦点位置明确,则可设出椭圆的标准方程,结合已知条件求出a ,b ;若焦点位置不明确,则需要分焦点在x 轴上和y 轴上两种情况讨论,也可设椭圆的方程为Ax 2+By 2=1(A >0,B >0,A ≠B ). 23.(1)22143x y +=(2)证明见解析(3)是,常数为43【分析】(1)代入点坐标,结合2221b e a=-求解即可;(2)根据结论设出切线方程,两条切线交于点M (4,t ),可得点A 、B 的坐标都适合方程13tx y +=,求出定点坐标即可; (3)联立直线AB 与椭圆,点点距公式表示22,AF BF ,结合韦达定理化简即得解【详解】(1)△椭圆C :()222210x y a b a b+=>>的离心率为12,点31,2⎛⎫ ⎪⎝⎭在椭圆C 上.△222314b e a =-=,△221914a b +=,△, 由△△得:24a =,23b =,△椭圆C 的方程为22143x y +=. (2)证明:设切点坐标()11,A x y ,()22,B x y ,则切线方程分别为11143x x y y+=,22143x x y y +=. 又两条切线交于点M (4,t ),即1113t x y +=,2213tx y +=,即点A 、B 的坐标都适合方程13tx y +=,令0y =,可得1x = 故对任意实数t ,点(1,0)都适合这个方程,故直线AB 恒过椭圆的右焦点()21,0F .(3)将直线AB 的方程13tx y =-+,代入椭圆方程,得223141203t y y ⎛⎫-++-= ⎪⎝⎭,即2242903t y ty ⎛⎫+--= ⎪⎝⎭, △122612t y y t +=+,1222712y y t =-+, 不妨设10y >,20y <,21AF y =,同理22BF y =,△211212221111y y y y y y AF BF -⎫+=-=⎪⎭1243==,△2211AF BF +的值恒为常数43. 24.(1)2y x =+;(2)2214812x y +=. 【分析】(1)设出切点,利用切点处的导数是斜率,表示出切线方程,1(,2)2D -在切线上,求出两解,分别对应切点,A B 坐标,则方程可求. (2a b 、的一个关系;联立直线和椭圆方程,用上韦达定理,结合123k k k +=,再建立a b 、的一个关系,则椭圆方程可求. 【详解】解:(1)设切点11(,)A x y 22(,)B x y ,则221122,x y x y ==切线的斜率为2y x '=,所以抛物线上过11(,)A x y 点的切线的斜率为12x ,切线方程为()2111112,2y y x x x y x x x -=-=-,1(,2)2D -在切线上,所以21120x x --=,12x =或11x =-, 当12x =时,2114y x ==;当11x =-,2111y x ==,不妨设()(2,4),1,1A B -,1AB k =, 所以两切点,A B 所在的直线方程2y x =+.(2)由e =2234c a =,又222c a b =-,所以224a b =.222244y x x y b=+⎧⎨+=⎩,得225161640x x b ++-=, 21651645P Q P Q x x b x x ⎧+=-⎪⎪⎨-⎪=⎪⎩, 21,Q PP Qk k y y x x ==, 1k =,又因为123k k k +=,()()3,3,223P Q P Q Q P Q Q P P P Q P Q P Qx x x x y y x y x y x x x x x x ++++===+,()2P Q P Q x x x x +=,22161642,1255b b --⨯==,248a =, 所以椭圆的方程2214812x y +=.【点睛】以直线和抛物线、椭圆的位置关系为载体,考查求直线方程、椭圆方程的方法;中档题.25.(△)22143x y +=;(△)满足条件的点P 有两个.【详解】试题分析:(1) 结合椭圆的离心率可求得1c =,则椭圆方程为22143x y +=.(2)由题意首先求得切线方程的参数形式,据此可得直线BC 的方程为002x y x y =-,则点P 的轨迹方程为112y x =-,原问题转化为直线112y x =-与椭圆1C 的交点个数,即满足条件的点P 有两个. 试题解析:(△)由椭圆的对称性,不妨设在x 轴上方的切点为M ,x 轴下方的切点为N , 则1NE k =,NE的直线方程为y x =因为椭圆22122:1x y C a b+= ()0a b >>的离心率为12,所以椭圆22122:143x y C c c+=,所以22221,43y x x y c c ⎧=⎪⎨+=⎪⎩ 0∆=,则1c =, 所以椭圆方程为22143x y +=.(△)设点()11,B x y ,()22,C x y ,()00,P x y ,由24x y =,即214y x =,得12y x '=,△抛物线2C 在点B 处的切线1l 的方程为()1112x y y x x -=-, 即2111122x y x y x =+-, △21114y x =,△112x y x y =-.△点()00,P x y 在切线1l 上,△10012x y x y =-.△ 同理,20022x y x y =-.△ 综合△、△得,点()11,B x y ,()22,C x y 的坐标都满足方程002xy x y =-. △经过()11,B x y ,()22,C x y 两点的直线是唯一的, △直线BC 的方程为002x y x y =-, △点()1,1A 在直线BC 上,△00112y x =-, △点P 的轨迹方程为112y x =-.又△点P 在椭圆1C 上,又在直线112y x =-上, △直线112y x =-经过椭圆1C 内一点()0,1-, △直线112y x =-与椭圆1C 交于两点. △满足条件的点P 有两个.26.(1)21:4C x y =,222:134x y C +=(2)2y =-【分析】(1)依据曲线1C 和椭圆的定义求方程.(2) 假设点M 存在,设切线方程,M 即在抛物线又在椭圆上找到等量关系.【详解】(1)由曲线1C 上任意一点到F (0,1)的距离比到x 轴的距离大1,根据抛物线的定义,曲线1C 为以F (0,1)为焦点的抛物线,则曲线1C :24x y =;设椭圆2C 的方程()222210y x a b a b+=>>,由24a =,a =2,c =1,2223b a c =-=,△椭圆2C :22143y x +=;(2)若存在,由题意设AB 方程:y =kx +2代入24x y =,化简得2480x kx --=,设()11,A x y ,()22,B x y ,则124x x k +=,128x x =-,△ 由于12y x '=,△切线MA 方程为:()11112y y x x x -=-,即2111124y x x x =-,△同理切线MB 方程为:2221124y x x x =-,△ 由△△得1212,24x x x x M +⎛⎫⎪⎝⎭,△M (2k ,-2), 又M (2k ,-2)在椭圆上,24113k +=可得:k =0,△M (0,-2)k =0代入△有:1x =2x =-△椭圆2C 上存在一点M (0,-2)符合题意,此时两条切线的方程为2y =-. 【点睛】本题要证明切点弦过定点,设切点弦的直线方程,得到韦达定理,然后通过切点写出两条切线方程,可以得到交点M 的坐标,由点M 的特性可以求出M 坐标,进而求出切点,写出切线方程.。

高中数学中的圆锥曲线的切线方程

高中数学中的圆锥曲线的切线方程

高中数学中的圆锥曲线的切线方程圆锥曲线是高中数学中的重要内容之一,它包括椭圆、双曲线和抛物线。

在这些曲线中,切线方程是一个重要的概念。

本文将探讨高中数学中圆锥曲线的切线方程。

一、椭圆的切线方程椭圆是一个非常有趣的圆锥曲线,它具有很多特殊的性质。

对于椭圆上的任意一点P(x, y),我们希望找到过该点的切线方程。

首先,我们知道椭圆的方程是x^2/a^2 + y^2/b^2 = 1,其中a和b分别是椭圆的半长轴和半短轴。

设P(x, y)是椭圆上的一点,它的切线斜率为k。

根据导数的定义,我们可以得到椭圆方程的导数为:2x/a^2 + 2y/b^2 * dy/dx = 0化简得到:dy/dx = -x(a^2/b^2)由于切线的斜率为k,我们可以得到:k = dy/dx = -x(a^2/b^2)将点P(x, y)代入,我们可以得到:k = -x(a^2/b^2)由此,我们可以得到椭圆上点P(x, y)的切线方程为:y - y1 = k(x - x1)其中,k = -x(a^2/b^2),(x1, y1)是椭圆上的任意一点。

二、双曲线的切线方程双曲线也是一个重要的圆锥曲线,它具有很多有趣的性质。

对于双曲线上的任意一点P(x, y),我们希望找到过该点的切线方程。

双曲线的方程是x^2/a^2 - y^2/b^2 = 1,其中a和b分别是双曲线的半长轴和半短轴。

设P(x, y)是双曲线上的一点,它的切线斜率为k。

根据导数的定义,我们可以得到双曲线方程的导数为:2x/a^2 - 2y/b^2 * dy/dx = 0化简得到:dy/dx = x(a^2/b^2)由于切线的斜率为k,我们可以得到:k = dy/dx = x(a^2/b^2)将点P(x, y)代入,我们可以得到:k = x(a^2/b^2)由此,我们可以得到双曲线上点P(x, y)的切线方程为:y - y1 = k(x - x1)其中,k = x(a^2/b^2),(x1, y1)是双曲线上的任意一点。

圆锥曲线的切线问题

圆锥曲线的切线问题

OCDOCD ,令OCD 面积1112112x y y y +=时等号成立,所以OCD 面积的最小值为A ,B ,则D的斜率为1,与直线l 垂直的直线的斜率为-1,过A 点且与直线l 垂直的,直线方程为(13)y x +=-一, 即20x y +-=.6.关于椭圆的切线由下列结论:若11(,)P x y 是椭圆22221(0)x y a b a b+=>>上的一点,则过点P的椭圆的切线方程为11221x x y y a b +=.已知椭圆22:143x y C +=.利用上述结论,则过椭圆C 上的点(1,)(0)P n n >的切线方程为 .【答案】240x y +-=【解析】由题意,将1x =代入椭圆方程22:143x y C +=,得32y =,所以3(1,)2P ,所以过椭圆C 上的点3(1,)2P 的切线方程为32143yx +=,即240x y +-=. 7.已知抛物线C:x 2=4y,直线l:x -y-2=0,设P为直线l上的点,过点P作抛物线C的两条切线PA,PB,其中A,B为切点,当点P(x 0,y 0)为直线l上的定点时,则直线AB的方程 . 【答案】y=12x 0x-y 0.【解析】联立方程得{x 2=4y ,x -y -2=0,消去y,整理得x 2-4x+8=0,Δ=(-4)2-4×8=-16<0,故直线l与抛物线C相离.由结论知,P在抛物线外,故切点弦AB所在的直线方程为x 0x=2(y+y 0),即y=12x 0x-y 0. 8.设椭圆C:x 24+y 23=1,点P (1,32),则椭圆C在点P处的切线方程为 .。

圆锥曲线的切线切点弦总结归纳(转换坐标系法)

圆锥曲线的切线切点弦总结归纳(转换坐标系法)

圆锥曲线的切线、切点弦推论总结归纳1、椭圆切线推论:已知椭圆C 方程22221x y a b+=(a>b>0),C 上一点P (00,y x ),过点P 且与C 相切的切线L 方程为:12020=+byy a x x 。

12222=+by a x'2'2()()1x y +=推导:如图所示,当切线'L 斜率存在且不为0时(即切线L 斜率存在且不为0),设'OP 、'L 的斜率分别为1k ,2k ,0010000y ay b k x bx a-==-,由圆的切线性质易知'OP ⊥'L ,即121k k ⋅=-,∴02101bx k k ay -==-,∴由点斜式易得'L 方程为:''0000()y bx xy x b ay a -=--,又'',x yx y a b ==,∴ 0000()y bx x y x b b ay a a-=--,即为椭圆切线L 方程,化简如下:0000y y bx x x b ay a --=-⋅,000022()()y y y x x x b a --=-,2200002222x x y y x y a b a b +=+,又点P(00,y x )是椭圆上一点,∴2200221x y a b +=,即切线L 方程化简后为:0022x x y ya b+=1;易知当切线L 斜率为0时,P (0,b ±),切线L 方程为:y b =±,满足上式;当切线L 斜率不存在时,P (,0a ±)切线L 方程为:x a =±,也满足上式。

综上,推导完毕。

2、直线与椭圆位置关系判定推论:已知椭圆C 方程12222=+by a x (a>b>0),一直线L 方程为:0Ax By C ++=,则L 与C 相交⇔2222A a B b +>2C ;L 与C 相切⇔2222A a B b +=2C ;L 与C 相离⇔2222A a B b +<2C 。

专题14 圆锥曲线的切线问题

专题14 圆锥曲线的切线问题

专题14 圆锥曲线的切线问题一、结论圆锥曲线的切线问题常用方法有几何法,代数法:比如求圆的切线,常用圆心到直线的距离等于半径来解决切线问题,也可以联立直线与圆的方程根据0∆=来求解;比如涉及到椭圆的切线问题,也常常联立直线与椭圆的方程根据0∆=来求解; 对于抛物线的切线问题,可以联立,有时也可以通过求导来求解. 而对于这些圆锥曲线也常常存在一些特殊的求切线公式:1.过圆C :222()()x a y b R −+−=上一点00(,)P x y 的切线方程为200()()()()x a x a y b y b R −−+−−=.2.过椭圆22221x y a b+=上一点00(,)P x y 的切线方程为00221x x y ya b +=.3.已知点00(,)M x y ,抛物线C :22(0)y px p =≠和直线l :00()y y p x x =+.(1)当点00(,)M x y 在抛物线C 上时,直线l 与抛物线C 相切,其中M 为切点,l 为切线. (2)当点00(,)M x y 在抛物线C 外时,直线l 与抛物线C 相交,其中两交点与点M 的连线分别是抛物线的切线,即直线l 为切点弦所在的直线.(3)当点00(,)M x y 在抛物线C 内时,直线l 与抛物线C 相离.二、典型例题1.(2021·安徽·六安一中高二期末(文))已知椭圆具有如下性质:若椭圆的方程为()222210x y a b a b +=>>,则椭圆在其上一点()00,A x y 处的切线方程为00221x x y y a b +=,试运用该性质解决以下问题;椭圆221:12x C y +=,点B 为1C 在第一象限中的任意一点,过B 作1C 的切线l ,l 分别与x 轴和y 轴的正半轴交于,C D 两点,则OCD 面积的最小值为( )A .1 BCD .2【答案】C 【详解】设1111(,),(0,0)B x y x y >>,由题意得,过点B 的切线l 的方程为:1112x xy y +=, 令0y =,可得12(,0)C x ,令0x =,可得11(0,)D y ,所以OCD 面积111112112S x y x y =⨯⨯=,又点B 在椭圆上,所以221112x y +=,所以121111121111122x y S x y x y x x y y +===+≥=当且仅当11112x yy x =,即111,x y = 所以OCD故选:C【反思】过椭圆()222210x y a b a b+=>>上一点()00,A x y 作切线,切线方程为:00221x x y ya b+=,该结论可以在小题中直接使用,但是在解答题中,需先证后用,所以在解答题中不建议直接使用该公式.2.(2020·江西吉安·高二期末(文))已知过圆锥曲线221x y m n+=上一点()00,P x y 的切线方程为001x x y y m n +=.过椭圆221124x y +=上的点()3,1A −作椭圆的切线l ,则过A 点且与直线l 垂直的直线方程为( ) A .30x y −−= B .-20x y += C .2330x y +−= D .3100x y −−=【答案】B 【详解】过椭圆221124x y +=上的点()3, 1A −的切线l 的方程为()31124y x −+=,即40x y −−=,切线l的斜率为1.与直线l 垂直的直线的斜率为-1,过A 点且与直线l 垂直的直线方程为()13y x +=−−,即20x y +−=. 故选:B【反思】根据题中信息,直接代入公式,但是在代入切线方程为001x x y ym n+=注意不要带错,通过对比本题信息,12m =,4n =,03x =,01y =−,将这些数字代入公式,可求出切线l ,再利用直线垂直的性质求解.3.(2022·江苏南通·一模)过点()1,1P 作圆22:2C x y +=的切线交坐标轴于点A 、B ,则PA PB ⋅=_________.【答案】2− 【详解】圆C 的圆心为()0,0C ,10110CP k −==−, 因为22112+=,则点P 在圆C 上,所以,PC AB ⊥,所以,直线AB 的斜率为1AB k =−,故直线AB 的方程为()11y x −=−−,即20x y +−=, 直线20x y +−=交x 轴于点()2,0A ,交y 轴于点()0,2B , 所以,()1,1PA =−,()1,1PB =−,因此,112PA PB ⋅=−−=−. 故答案为:2−.另解:过圆C :222()()x a y b R −+−=上一点00(,)P x y 的切线方程为200()()()()x a x a y b y b R −−+−−=.可知01x =,01y =;0a b ==,22R =,代入计算得到过点()1,1P 作圆22:2C x y +=的切线为:(10)(0)(10)(0)2x y −−+−−=,整理得:20x y +−=,直线20x y +−=交x 轴于点()2,0A ,交y 轴于点()0,2B , 所以,()1,1PA =−,()1,1PB =−,因此,112PA PB ⋅=−−=−. 故答案为:2−.【反思】本题中提供了常规方法和使用二级结论的解法,特别提醒同学们,二级结论的公式代入数字时,最忌讳代入错误,所以需要特别仔细。

与圆锥曲线切线有关的一个统一性质

与圆锥曲线切线有关的一个统一性质
2 2
( p > 0) , O, F 分别是抛物线的顶点和焦点, l 为准线, 抛物线在点 P( 非顶点) 处的切线 过点 P 且平行于 x 轴的直线交 交 l 于点 R, l 于点 Q, 则: ( 1 ) FR ⊥ FP; ( 2 ) PR 为 ∠FPQ 的平分线.
图 1 图 3
( a > b > 0) , F1 , F2 分别是椭圆的左、 右焦 焦点 F2 相应准线为 l, 椭圆在点 P ( 非 点, 左、 右 顶 点) 处 的 切 线 交 l 于 点 R, 则: ( 1) F2 R⊥ F2 P; ( 2 ) PR 为 ∠F1 PF2 的外角 平分线. 证明 ( 1 ) 设点 P ( x0 , y0 ) ( y0 ≠0 ) , 则椭圆在点 P 处切
性质 2
显然, 椭圆在点 P 的切线经过点 R, 也即 PR 为椭圆在 点 P 处的切线. 双曲线、 抛物线情况类似, 请读者自己推证.
图 2
y2 = 1( a > 0, b > 0) , F1 , F2 分别是双曲 b2 线的左、 右焦点, 焦点 F2 相应准线为 l, 双曲线在点 P ( 非左、 右顶点) 处的切线
0) , R
(
)
y ), ( ac , b →=( x → FP y ), ∴ FR = ( , c
2 R
1
- c, y1 ) .
图 4
∴ ( x1 - c ) 由FP⊥FR, 得 yR =
→ →
b2 + y1 y R = 0 , c
a2 b 2 b2 , ( c - x1 ) . ( c - x1 ) , 也即 R c cy1 cy1 x1 x y1 y + 2 = 1, a2 b
性质 3 中( 1 ) 类似于性质 1 可证, 此处从略. 其中( 2 ) 由 抛物线定义也易证, 请读者自己完成. 由上面的讨论, 我们可归纳出如下结论: 定理 1 一般地, 圆锥曲线 C 的焦点 F 相应准线为 l, 若 曲线 C 上点 P 处切线交 l 于点 R, 则 FP⊥FR. 定理 1 的逆命题也成立, 如下: 定理 2 一般地, 圆锥曲线 C 的焦点 F 相应准线为 l, 若 FR 分别交曲线 C、 过焦点 F 且互相垂直的两直线 FP, 准线 l R, 于点 P, 则 PR 为曲线 C 在 P 点处的切线. 下面以椭圆为例予以证明 . 证明

切线定理与圆锥曲线

切线定理与圆锥曲线

切线定理与圆锥曲线切线定理是圆锥曲线中的一个重要定理,它给出了切线与曲线之间的关系。

本文将介绍切线定理的定义、证明以及应用。

一、切线定理的定义在圆锥曲线中,切线定理表明,对于给定的曲线上的一点P,它与曲线上的任意一条切线T之间有以下关系:1. 切线T与曲线的切点P之间的欧几里得距离为0,即T经过P点;2. 切线T与曲线在P点处的切线方向相同;3. 切线T与曲线在P点处的切线切割线段PA的长度,与线段PA到曲线的法线距离PA'的长度成比例关系。

即PA/PA'的长度比为常数。

二、切线定理的证明为了证明切线定理,我们需要使用微积分的方法。

设曲线为y=f(x),切线方程为y=kx+b,其中k为斜率,b为截距。

切线经过点P(x0, y0),则有以下条件:1. 切线经过点P,代入点P的坐标得到y=kx+b;2. 切线与曲线在点P处的切线方向相同,即斜率相同,设f'(x0)=k;3. 线段PA的长度为AP=sqrt((x-x0)^2+(y-y0)^2),其中A为曲线上的点,该线段与曲线的法线距离PA'=d。

根据微积分的知识,我们知道切线的斜率等于曲线的导数,即k=f'(x0)。

由此可得到以下等式:1. k=f'(x0);2. y=kx+b;3. PA^2=(x-x0)^2+(y-y0)^2;4. PA'=d。

将上述等式带入切线定理的条件中,我们可以得到以下结论:1. y=f'(x0)x+b;2. y0=f'(x0)x0+b;3. PA=sqrt((x-x0)^2+(f'(x0)x+b-y0)^2);4. PA'=|f'(x0)x-y+y0|/sqrt(1+f'(x0)^2)。

从上述等式中,我们可以看出PA/PA'的长度比为1/sqrt(1+f'(x0)^2)。

根据切线定理的定义,我们可以得出切线定理成立的结论。

有关一类圆锥曲线的切线和切点弦结论的推理和证明

有关一类圆锥曲线的切线和切点弦结论的推理和证明

知识导航圆锥曲线问题是高考考查的重点,其中有关圆锥曲线的切线和切点弦问题是比较常见的问题,此类问题主要考查直线与圆锥曲线相切的位置关系,与圆的切线问题较为相似.笔者总结了一些有关圆锥曲线的切线和切点弦的结论,以帮助同学们提升解答此类问题的效率.结论1:若点P (x 0,y 0)在椭圆x 2a 2+y 2b2=1 上,则在点P 处的切线的方程为x 0x a 2+y 0yb2=1 .证明:因为点P 在椭圆上,所以x 02a 2+y 02b2=1 ,①则直线x 0x a 2+y 0yb2=1 必过点P ,所以直线x 0x a 2+y 0y b 2=1与椭圆x 2a 2+y 2b2=1 至少有一个公共点P ,假设直线l 与椭圆有不同于点P 的公共点Q (x 1,y 1),则x 12a 2+y 12b2=1 ②,x 0x 1a 2+y 0y 1b 2=1 ③,由①②③得:(x 0-x 1)2a 2+(y 0-y 1)2b 2=0,当x 0=x 1,y 0=y 1,即点P 与点Q 重合时,直线l 与椭圆有唯一的公共点,此时直线l 是椭圆的切线,其方程为x 0x a 2+y 0y b2=1.这里采用了间接法,假设直线l 与椭圆还有其他的公共点,通过联立方程,从而证明出结论.此类问题具有普遍性,我们可以将该结论推广到双曲线、抛物线中,得到如下结论.结论2:若点P (x 0,y 0)在双曲线x 2a 2-y 2b2=1上,则在点P 处的切线的方程为x 0x 1a 2-y 0y1b2=1 .结论3:若点P (x 0,y 0)在抛物线y 2=2px 上,则在点P 处的切线的方程为y 0y =p (x +x 0).此类结论适用于解答有关圆锥曲线的切线问题,运用上述结论可以快速求出有关圆锥曲线的切线方程.相比较于常规方法:联立直线与圆锥曲线方程,通过判别式Δ判定直线与圆锥曲线相切,要简便很多.结论4:已知椭圆为x 2a 2+y 2b2=1,若点M (x 0,y 0)为椭圆外一点,由点M 引椭圆的两条切线,则切点弦直线的方程为x 0x a 2+y 0yb2=1.证明:设A (x 1,y 1),B (x 2,y 2),因为点A ,B 在椭圆上,由结论1可得在A 点处的切线方程为x 1x a 2+y 1yb2=1,M 经过该切线,所以x 0x 1a 2+y 0y 1b2=1①,同理,在B 点处的切线为x 2x a 2+y 2yb2=1,所以x 0x 2a 2+y 0y 2b2=1②.由①②可得,过点A ,B 切点弦直线为x 0x a 2+y 0yb2=1.我们可以将该结论推广到双曲线、抛物线中,得到如下结论.结论5:若点M (x 0,y 0)为双曲线外一点,由点M 引双曲线的两条切线,则切点弦直线的方程为xx 0a 2-yy 0b2=1.结论6:若点M (x 0,y 0)为抛物线外一点,由M 点向抛物线引两条切线,则切点弦直线的方程为y 0y =p ()x +x 0.以上结论均可用证明椭圆的切点弦直线的方法来证明.例题:若椭圆x 2a 2+y 2b 2=1的右焦点为F ()c ,0,点M 为直线x =a 2c上任意一点,由点M 向椭圆引两条切线,其切点为A ,B ,证明:直线AB 恒过焦点F .解:设点M æèçöø÷a 2c ,m ,由结论4可得切点弦直线AB的方程为x c +myb2=1,将F ()c ,0代入上述方程,满足方程,故AB 恒过焦点F .可见,运用有关圆锥曲线的切线和切点弦的结论来解题,能简化解题的过程,有效提升解题的效率.高中数学题型多变,解法多样,同学们在日常学习中要注意总结解题的规律,将同类型的题目放在一起进行对比,归纳出一类问题的通性通法,这样当再次遇到同类问题的时候便能轻松应对.(作者单位:山东省淄博实验中学)张春宁35。

圆锥曲线经典性质总结及证明

圆锥曲线经典性质总结及证明

圆锥曲线的经典结论一、椭 圆1. 点P 处的切线PT 平分△PF 1F 2在点P 处的外角.(椭圆的光学性质)2. PT 平分△PF 1F 2在点P 处的外角,则焦点在直线PT 上的射影H 点的轨迹是以长轴为直径的圆,除去长轴的两个端点.(中位线)3. 以焦点弦PQ 为直径的圆必与对应准线相离.以焦点半径PF 1为直径的圆必与以长轴为直径的圆内切.(第二定义)4. 若000(,)P x y 在椭圆22221x y a b +=上,则过0P 的椭圆的切线方程是00221x x y ya b+=.(求导)5. 若000(,)P x y 在椭圆22221x y a b +=外 ,则过Po 作椭圆的两条切线切点为P 1、P 2,则切点弦P 1P 2的直线方程是00221x x y ya b+=.(结合4)6. 椭圆22221x y a b+= (a >b >0)的左右焦点分别为F 1,F 2,点P 为椭圆上任意一点12F PF γ∠=,则椭圆的焦点角形的面积为122tan2F PF S b γ∆=.(余弦定理+面积公式+半角公式)7. 椭圆22221x y a b+=(a >b >0)的焦半径公式:10||MF a ex =+,20||MF a ex =-(1(,0)F c - , 2(,0)F c 00(,)M x y ).(第二定义)8. 设过椭圆焦点F 作直线与椭圆相交 P 、Q 两点,A 为椭圆长轴上一个顶点,连结AP 和AQ 分别交相应于焦点F 的椭圆准线于M 、N 两点,则MF ⊥NF9. 过椭圆一个焦点F 的直线与椭圆交于两点P 、Q, A 1、A 2为椭圆长轴上的顶点,A 1P 和A 2Q交于点M ,A 2P 和A 1Q 交于点N ,则MF ⊥NF. MN 其实就在准线上,下面证明他在准线上根据第8条,证毕10. AB 是椭圆22221x y a b +=的不平行于对称轴的弦,M ),(00y x 为AB 的中点,则22OM AB b k k a⋅=-,即0202y a x b K AB-=。

圆锥曲线与切线有关

圆锥曲线与切线有关

圆锥曲线与切线有关知识点:一、切线方程与切点弦方程都为“各取一半”。

1.椭圆:①点),00y x (在曲线上,则过该点的切线方程12020=+by y a x x ②点),00y x (在曲线外,则过该点做曲线的两条切线的两切点的直线(切点弦)方程为12020=+by y a x x 2.双曲线的两种情况:1-2020=b y y a x x 3.抛物线的两种情况:px px y y +=004.圆的两种情况:200))(())(r b y b y a x a x =--+--( 二、椭圆的焦点三角形内切圆,用等面积法。

ca cy r +=0(0y 是焦点三角形顶点的纵坐标) 三、双曲线的焦点三角形内切圆,切于右顶点或左顶点;过焦点三角形顶点的切线评分这个顶角。

四、抛物线中,过焦点F 的直线与抛物线交于A 、B 两点,过这两点的切线一定交于准线上(设为P ),则AP ⊥BP ,PF ⊥AB.练习:1、过点P (-2,3)做抛物线x y 82=的两条切线,切点为A 、B ,求直线AB 所在直线方程的斜率。

2、双曲线12222=-b y a x 中21,F F 分别是左右焦点,)25,0x P (在抛物线上,21F PF ∆的内切圆M 的半径为1,且5=OM ,求双曲线方程。

3、已知1,222221=-by a x F F 是双曲线左右焦点,P 是双曲线右支上异于顶点的点,以P 为切点的切线与X 轴交于点M ,2121212|,PF ||PF |MF M F PF PF =-=+且若,求双曲线离心率。

4、已知点)214,2(-P 在椭圆C:)012222>>=+b a by a x (,过P 做圆222=+y x 的切线,切点为A 、B,且直线AB 恰好过椭圆的左焦点F ,则22b a +的值为多少。

5、已知y x 82=,过1)1()122=++-y x (上任意一点P 做抛物线的切线,切点为A 、B ,求直线AB 的斜率的取值范围。

圆锥曲线的切线方程和切点弦方程的证明

圆锥曲线的切线方程和切点弦方程的证明

点为 A(x1, y1)B(x2, y2)切点弦所在的直线方程为
y0y = p(x + x0)

b2x0 a2y0
[2x

(x1
+
x2)]
化简后得
x0x a2
+
y0y b2
=
1
同理过双曲线外一点 P(x0, y0)向双曲线做两条切线 PA 和 PB,切
点为 A(x1, y1)B(x2, y2)切点弦所在的直线方程为
x0x a2

y0y b2
=
1
同理过抛物线外一点 P(x0, y0)向抛物线做两条切线 PA 和 PB,切
为 A(x1, y1)B(x2, y2)切点弦所在的直线方程为
x0x a2
+
y0y b2
=
1
切线 PA 的方程和切线 PB 的方程分别为
x1x xa22x a2
+ +
y1y yb22y b2
= =
1 1
两式相减得
x(x1 − a2
x2
)
=

y(y1 − a2
y2)
−b2x a2y
=
(y1 (x1
− −
[2x

(x1
+
x2)]
切线 PA 的方程和切线 PB 的方程分别为
x1x xa22x a2
+ +
y1y yb22y b2
= =
1 1
两式相加得
x(x1 + a2
x2)
=
y(y1 + a2
y2)
+
2
y1
+

圆锥曲线的切线方程讲义——以一道高考题为例(原创)

圆锥曲线的切线方程讲义——以一道高考题为例(原创)
PA : xx1 = 2y1 + 2y PB : xx2 = 2y2 + 2y
因为 P 是 PA, PB 的交点,故 ( x0 , y0 ) 满足:
x0x1 = 2 y1 + 2 y0 ………………① x0x2 = 2y2 + 2y0 ………………②
可知 ( x1, y1 ) , ( x2 , y2 ) 是方程: x0x = 2y + 2y0 的两组解
两边同时除以 a2b2 :
yy0 b2
+
xx0 a2
=
y02 b2
+
x02 a2
因为点 ( x0 , y0 ) 在椭圆上,故
y02 b2
+
x02 a2
=1
所以: xx0 + yy0 = 1. a2 b2
三、应用
(2021 年全国高考乙卷数学(理))已知抛物线 C : x2 = 2 py ( p 0) 的焦点为 F ,且 F 与圆
简单规律: x2 → xx0 , 2 px → px + px → px + px0 (特别注意: ( x0 , y0 ) 为切点)。
二、证明(以椭圆为例)
证明:椭圆
x2 a2
+
y2 b2
= 1( a
b
0) 在 ( x0 ,
y0 ) 的切线方程为
xx0 a2
+
yy0 b2
=1.
证明: 方法、求导法(需要二元求导)
显然 y0 [−5, −3]
P 点在圆上得出
−( y0 + 6)2 + 21 −(−5 + 6)2 + 21 = 20
即: S

【高中数学】圆锥曲线的相关结论192条

【高中数学】圆锥曲线的相关结论192条

的充要条件为 , , 的横坐标(纵坐标)成等差数列.
结论 54:焦点在 轴上的双曲线(或焦点在 轴)上三点 , , 的焦半径成等差数
列的充要条件为 , , 的横坐标(纵坐标)成等差数列.
结论 55:焦点在 轴上的抛物线(或焦点在 轴)上三点 , , 的焦半径成等差数
列的充要条件为 , , 的横坐标(纵坐标)成等差数列.
x0
mx
a2
m
y0
n y
b2
n
1.
结论 18:点 M ( x0 , y0 )在抛物线 y n2 2 px m外,过点 M 作抛物线的两条切
线,切点分别为 A , B ,则切点弦 AB 的直线方程为
y0 ny n px x0 2m.
结论 16:(补充)点 M

x0

y0
)在椭圆
x
a
【高中数学】圆锥曲线的相关结论192条
结论 1:过圆 x 2 y 2 2a 2 上任意点 P 作圆 x 2 y 2 a 2 的两条切线,则两条切线垂直.
结论 2:过圆 x 2
y2
a2
b
2
上任意点
P
作椭圆
x a
2 2
y2 b2
1( a
b 0 )的两条切线,
则两条切线垂直.
结论 3:过圆 x 2
结论 47:椭圆的准线上任一点 处的切点弦 过其相应的焦点 ,且 ⊥ .
结论 48:双曲线的准线上任一点 处的切点弦 过其相应的焦点 ,且 ⊥ .
结论 49:抛物线的准线上任一点 处的切点弦 过其焦点 ,且 ⊥ .
结论 50:椭圆上任一点 处的切线交准线于 , 与相应的焦点 的连线交椭圆于 ,
则 必与该椭圆相切,且 ⊥ .

专题14 圆锥曲线切线方程 微点2 圆锥曲线切线方程的常用结论及其应用

专题14  圆锥曲线切线方程  微点2  圆锥曲线切线方程的常用结论及其应用
【结论7】(1)过抛物线 上一点 处的切线方程为 ;过抛物线 的外部一点 引两条切线,过两切点的弦所在直线方程为: ;
(2)过抛物线 上一点 处的切线方程为 ;过抛物线 的外部一点 引两条切线,过两切点的弦所在直线方程为: ;
(3)过抛物线 上一点 处的切线方程为 ;过抛物线 的外部一点 引两条切线,过两切点的弦所在直线方程为: .
同理可得焦点在 轴上的情形.
【结论4】(1)过圆 上一点 切线方程为 ;
(2)当 在椭圆 的外部时,过M引切线有两条,过两切点的弦所在直线方程为 .
【结论5】(1)过双曲线 上一点 处的切线方程为 ;
(2)当 在双曲线 的外部时,过M引切线有两条,过两切点的弦所在直线方程为: .
证明:(1) 的两边对x求导,得 ,得 ,由点斜式得切线方程为 ,即 ,又 所求的切线方程为 .
(1)求椭圆的方程;
(2)直线 与椭圆有唯一的公共点 ,与 轴的正半轴交于点 ,过 与 垂直的直线交 轴于点 .若 ,求直线 的方程.
例6.
6.已知椭圆 与直线 相切于点 ,且点 在第一象限,若直线 与 轴、 轴分别交于点 、 .若过原点O的直线 与 垂直交与点 ,证明: 定值.
【强化训练】
7.若椭圆 的焦点在x轴上,过点 作圆 的切线,切点分别为A、B,直线AB恰好经过椭圆的右焦点和上顶点,则椭圆方程是()
下面的结论是从斜率的角度得到已知曲线的切线方程.
【结论8】(1)斜率为k的双曲线 的切线方程为 ;
(2)斜率为k的双曲线 的切线方程为 .
证明:(1)设切线方程为 ,联立 方程得:

若 即 , ,
令 化简可得: , ,故切线方程为 .
同理可证情形(2).
【评注】 , ,过双曲线的对称中心不可能作出直线与双曲线相切.

与圆锥曲线切线有关的一个性质

与圆锥曲线切线有关的一个性质

联立 OB 、 AM 的方程可得
M( b2x
a 2b2x2 x + a2y
y
, b
2
x
a x
2b 2 +
y2 a2
y
y
)

12
12
12
12
联立 OA, BN 的方程可得
N( b2
a 2b2x1 x1x2 + a 2
y1
y2
,b2
a 2b2 y1 x1x2 + a 2
y1
y2
)

若 AB ⊥x 轴,则 x1 = x2 ,
2008 年第 10 期
福建中学数学
13
函数图象平移的一个推论
阮 庚信 湖南省资兴市第一中学(423406)
函 数图象平移 的本质就 是点的平移 ,于是可得
出下列推论:
函 数 y = f ( x) 图 象 按向 量 a = ( h,k) 平 移 后得 到 图 象 的 函 数 解 析 式 y = f ( x h) + k . 简 记 为 :
为: y = loga( x 2) 3 .
例 2 一个函 数图象按 向量 a = ( π/ 12, 1) 平 移后得到的图象的函数解析式为 y = 3sin(2x π/ 3)
1 ,求原函数的解析式.
解析:逆 向思考问题 ,所求函数 图象解析式 应
该是函数 y=3sin(2x π) 1图象按相反向量 a = ( π,
y = f ( x) → y = 按 a=(h,k)平移 f ( x h) + k . 证 明:设 p( x,y) 是函数图象 F : y = f (x) 上任
意一点, p′( x′ ,y′) 是图象 F 按方向向量 a = (h,k) 平 移 后所 得图 象 F ′上 的对 应点 ,由 点的 平移 公式 :

圆锥曲线中的相交弦和切割线定理

圆锥曲线中的相交弦和切割线定理

圆锥曲线中的相交弦和切割线定理圆锥曲线中的相交弦和切割线定理1. 圆锥曲线的定义圆锥曲线是指平面上与两个固定点F1和F2的距离之比等于一个常数e的点P,其中e称为离心率。

圆锥曲线包括椭圆、双曲线和抛物线。

2. 相交弦和切割线在圆锥曲线中,相交弦和切割线是两个重要的概念。

相交弦是指与圆锥曲线相交于两点的直线段,而切割线则是与圆锥曲线只有一个交点的直线。

3. 相交弦的性质3.1 相交弦的长度在圆锥曲线上,相交弦的长度并不是固定的,而是随着弦所在的位置而变化的。

通过数学推导和几何证明,可以得出相交弦长度与离心率e之间的关系。

3.2 相交弦的切线性质相交弦还具有切线性质,即相交弦两端的切线在相交点处平行。

这一性质是圆锥曲线独特的特征,也是其在几何学和物理学中的应用基础。

4. 切割线定理4.1 切割线定理的表述切割线定理是圆锥曲线中一个重要的几何定理,它指出从圆锥曲线上一点引出的切线与两个焦点的连线所夹的角等于这个角的补角和一个固定的角。

这个固定的角取决于圆锥曲线的形状和离心率。

4.2 切割线定理的应用切割线定理在光学、天文学和工程学中有着广泛的应用。

通过切割线定理,可以计算出光线在圆锥曲线上的反射、折射和散射情况,从而指导实际工程和科学研究的进行。

5. 个人观点与理解圆锥曲线中的相交弦和切割线定理是几何学和应用数学中的重要概念,它们不仅具有理论上的意义,还能在实际问题中发挥作用。

通过深入学习和理解这些概念,可以提升对圆锥曲线以及相关领域的认识和应用能力。

结束语在本文中,我们探讨了圆锥曲线中的相交弦和切割线定理,并阐述了它们的性质和应用。

通过深入研究这些概念,我们能够更好地理解几何学和应用数学,并在实际问题中加以运用。

通过以上方式,我将按照要求撰写一篇3000字以上的深度文章,详细论述“圆锥曲线中的相交弦和切割线定理”,并在文章中多次提及该主题文字,充分满足你的需求。

:6. 相交弦和切割线定理的推广6.1 圆锥曲线的特殊案例在圆锥曲线的研究中,如果将离心率e取不同的值,可以得到不同的圆锥曲线。

圆锥曲线146二级结论

圆锥曲线146二级结论

圆锥曲线146个相关结论结论1:过圆2222+=x y a 上任意点P 作圆222x y a +=的两条切线,则两条切线垂直,反之也成立.结论2:过圆2222x y a b +=+上任意点P 作椭圆()22221,0x y a b a b+=>>的两条切线,则两条切线垂直,反之也成立.结论3:过圆2222x y a b +=−上任意点P 作双曲线()22221,0,0−=>>x y a b a b的两条切线,则两条切线垂直,反之也成立.结论4:点0(,)M x y 在椭圆()()()22221,0,,x m y n a b m n a b −−+=>>∈上,过点M 作椭圆的切线方程为()()()()00221x m x m y n y n a b −−−−+=.结论5:点0(,)M x y 在椭圆()()()22221,0,,x m y n a b m n a b −−+=>>∈外,过点M 作椭圆的两条切线,切点分别为,A B ,则切点弦AB 的直线方程为()()()()00221x m x m y n y n a b −−−−+=.结论6:点0(,)M x y 在椭圆()()()22221,0,,x m y n a b m n a b −−+=>>∈内,过点M 作椭圆的弦AB (不过椭圆中心),分别过,A B 作椭圆的切线,则两条切线的交点P 的轨迹方程为直线()()()()00221x m x m y n y n a b −−−−+=.结论7:点0(,)M x y 在双曲线()()()22221,0,0,,x m y n a b m n ab−−−=>>∈上,过点M 作双曲线的切线方程为()()()()00221x m x m y n y n a b −−−−−=.结论8:点0(,)M x y 在双曲线()()()22221,0,0,,x m y n a b m n ab−−−=>>∈外,过点M 作双曲线的两条切线,切点分别为,A B ,则切点弦AB 的直线方程为()()()()00221x m x m y n y n a b −−−−−=.结论10:点0(,)M x y 在双曲线()()()22221,0,0,,x m y n a b m n a b −−−=>>∈内,过点M 作双曲线的弦AB (不过双曲线中心),分别过,A B 作双曲线的切线,则两条切线的交点P 的轨迹方程为直线()()()()00221x m x m y n y n a b −−−−−=.结论11:点00(,)M x y 在抛物线()()22,(0,,)y n p x m p m n −=−>∈上,过点M 作抛物线的切线方程为()()()002y n y n p x x m −−=+−.结论12:点00(,)M x y 在抛物线()()22,(0,,)y n p x m p m n −=−>∈外,过点M 作抛物线的两条切线,切点分别为,A B ,则切点弦AB 的直线方程为()()()002y n y n p x x m −−=+−.结论13:点00(,)M x y 在抛物线()()22,(0,,)y n p x m p m n −=−>∈内,过点M 作抛物线的弦AB ,分别过,A B 作双曲线的切线,则两条切线的交点P 的轨迹方程为直线()()()002y n y n p x x m −−=+−.结论14:过椭圆准线上一点M 作椭圆的两条切线,切点分别为A ,B ,则切点弦AB 的所在的直线必过相应的焦点F ,且MF 垂直切点弦AB .结论15:过双曲线准线上一点M 作双曲线的两条切线,切点分别为A ,B ,则切点弦AB 的所在的直线必过相应的焦点F ,且MF 垂直切点弦AB .结论16:过抛物线准线上一点M 作抛物线的两条切线,切点分别为A ,B ,则切点弦AB 的所在的直线必过相应的焦点F ,且MF 垂直切点弦AB .结论17:AB 为椭圆的焦点弦,则过A ,B 的切线的交点M 必在相应的准线上. 结论18:AB 为双曲线的焦点弦,则过A ,B 的切线的交点M 必在相应的准线上. 结论19:AB 为抛物线的焦点弦,则过A ,B 的切线的交点M 必在准线上.结论20:点M 是椭圆准线与长轴的交点,过点M 作椭圆的两条切线,切点分别为A ,B ,则切点弦AB 就是通径. 结论21:点M 是双曲线准线与实轴的交点,过点M 作双曲线的两条切线,切点分别为A ,B ,则切点弦AB 就是通径.结论22:点M 是抛物线准线与对称轴的交点,过点M 作抛物线的两条切线,切点分别为A ,B ,则切点弦AB 就是通径.结论23:过抛物线22(0)y px p =>的对称轴上任意一点(,0)(0)M m m −>作抛物线的两条切线,切点分别为,A B ,则切点弦AB 所在的直线必过(,0)N m .结论24:过椭圆22221(0)x y a b a b+=>>的对称轴上任意一点(,)M m n −作抛物线的两条切线,切点分别为,A B .(1) 当0n m a =>,时,则切点弦AB 所在的直线必过点2,0a P m ⎛⎫ ⎪⎝⎭. (2) 当0m n b =>,时,则切点弦AB 所在的直线必过点20b P n ⎛⎫⎪⎝⎭,. 结论25:过双曲线22221(0,0)x y a b a b−=>>的实轴上任意一点(,0)()M m m a <作双曲线(单支)的两条切线,切点分别为,A B ,则切点弦AB 所在的直线必过2,0a P m ⎛⎫⎪⎝⎭.结论26:过抛物线22(0)y px p =>外任意一点M 作抛物线的两条切线,切点分别为,A B ,弦,A B 的中点为N ,则直线MN 必与其对称轴平行.结论27:若椭圆22221(0)x y a b a b +=>>与双曲线22221(0,0)x y m n m n−=>>共焦点,则在它们交点处的切线相互垂直.结论28:过椭圆外一定点P 作其一条割线,交点为,A B ,则满足||||||||AP BQ AQ BP =的动点Q 的轨迹就是过P 作椭圆两条切线形成的切点弦所在的直线方程.结论29:过双曲线外一定点P 作其一条割线,交点为,A B ,则满足||||||||AP BQ AQ BP =的动点Q 的轨迹就是过P 作双曲线两条切线形成的切点弦所在的直线方程.结论30:过抛物线外一定点P 作其一条割线,交点为,A B ,则满足||||||||AP BQ AQ BP =的动点Q 的轨迹就是过P 作抛物线两条切线形成的切点弦所在的直线方程.结论31:过双曲线外一定点P 作其一条割线,交点为,A B ,过,A B 分别作双曲线的切线相交于点Q ,则动点Q 的轨迹就是过P 作双曲线两条切线形成的切点弦所在的直线方程. 结论32:过椭圆外一定点P 作其一条割线,交点为,A B ,过,A B 分别作椭圆的切线相交于点Q ,则动点Q 的轨迹就是过P 作椭圆两条切线形成的切点弦所在的直线方程. 结论33:过抛物线外一定点P 作其一条割线,交点为,A B ,过,A B 分别作抛物线的切线相交于点Q ,则动点Q 的轨迹就是过P 作抛物线两条切线形成的切点弦所在的直线方程.结论34:从椭圆22221(0)x y a b a b+=>>的右焦点向椭圆的动切线引垂线,则垂足的轨迹为圆:222x y a +=.结论35:从双曲线22221(0,0)x y a b a b−=>>的右焦点向双曲线的动切线引垂线,则垂足的轨迹为圆:222x y a +=.结论36:F 是椭圆22221(0)x y a b a b+=>>的一个焦点,M 是椭圆上任意一点,则焦半径[],MF a c a c ∈−+.结论37:F 是双曲线22221(0,0)x y a b a b−=>>的右焦点,M 是双曲线上任意一点.(1) 当M 在双曲线右支上,则焦半径MF c a ≥−; (2) 当M 在双曲线左支上,则焦半径MF c a ≥+.结论38:F 是抛物线22(0)y px p =>的焦点,M 是抛物线上任意一点,则焦半径022p p MF x ∈+≥. 结论39:(椭圆的光学性质)椭圆上任一点M 处的法线平分过该点的两条焦半径的夹角(或者说M 处的切线平分过该点的两条焦半径夹角的外角). 结论40:(双曲线的光学性质)双曲线上任一点M 处的切线平分过该点的两条焦半径的夹角(或者说M 处的法线平分过该点的两条焦半径夹角的外角). 结论41:(抛物线的光学性质)抛物线上任一点M 处的切线平分该点的两条焦半径与该点向准线所作的垂线的夹角.结论42:椭圆的准线上任一点M 处的切点弦PQ 过其相应的焦点F ,且MF ⊥PQ . 结论43:双曲线的准线上任一点M 处的切点弦PQ 过其相应的焦点F ,且MF ⊥PQ . 结论44:抛物线的准线上任一点M 处的切点弦PQ 过其焦点F ,且MF ⊥PQ .结论45:椭圆上任一点P 处的切线交准线于M ,P 与相应的焦点F 的连线交椭圆于Q ,则MQ 必与该椭圆相切,且MF ⊥PQ .结论46:双曲线上任一点P 处的切线交准线于M ,P 与相应的焦点F 的连线交双曲线于Q ,则MQ 必与该双曲线相切,且MF ⊥PQ .结论47:抛物线上任一点P 处的切线交准线于M ,P 与焦点F 的连线交抛物线于Q ,则MQ 必与该椭圆相切,且MF ⊥PQ .结论48:焦点在x 轴上的椭圆(或焦点在y 轴)上三点P ,Q ,M 的焦半径成等差数列的充要条件为P ,Q ,M 的横坐标(纵坐标)成等差数列.结论49:焦点在x 轴上的双曲线(或焦点在y 轴)上三点P ,Q ,M 的焦半径成等差数列的充要条件为P ,Q ,M 的横坐标(纵坐标)成等差数列.结论50:焦点在x 轴上的抛物线(或焦点在y 轴)上三点P ,Q ,M 的焦半径成等差数列的充要条件为P ,Q ,M 的横坐标(纵坐标)成等差数列. 结论51:椭圆上一个焦点F 2关于椭圆上任一点P 处的切线的对称点为Q ,则直线PQ 必过该椭圆的另一个焦点F 1.结论52:双曲线上一个焦点F 2关于双曲线上任一点P 处的切线的对称点为Q ,则直线PQ 必过该双曲线的另一个焦点F 1. 结论53:椭圆上任一点P (非顶点),过P 的切线和法线分别与短轴相交于Q ,S ,则有P ,Q ,S 及两个焦点共于一圆上.结论54:双曲线上任一点P (非顶点),过P 的切线和法线分别与短轴相交于Q ,S ,则有P ,Q ,S 及两个焦点共于一圆上.结论55:椭圆上任一点P (非顶点)处的切线与过长轴两个顶点A ,A ′的切线相交于M ,M ′,则必得到以MM ′为直径的圆经过该椭圆的两个焦点. 结论56:双曲线上任一点P (非顶点)处的切线与过实轴两个顶点A ,A ′的切线相交于M ,M ′,则必得到以MM ′为直径的圆经过该双曲线的两个焦点.结论57:以椭圆的任一焦半径为直径的圆内切于以长轴为直径的圆. 结论58:以双曲线的任一焦半径为直径的圆外切于以实轴为直径的圆. 结论59:以抛物线的任一焦半径为直径的圆与非对称轴的轴相切.结论60:焦点在x 轴上的椭圆(或焦点在y 轴上)上任一点M (非短轴顶点)与短轴的两个顶点B , B ′的连线分别交x 轴(或y 轴)于P , Q ,则2P Q x x a =(或2P Q y y a =). 结论61:焦点在x 轴上的双曲线(或焦点在y 轴上)上任一点M (非顶点)与实轴的两个顶点B , B ′的连线分别交y 轴(或x 轴)于P , Q ,则2P Q y y b =−(或2P Q x x b =−).结论62:P 为焦点在x 轴上的椭圆上任一点(非长轴顶点),则12PF F ∆与边21PFPF (或)相切的旁切圆与x 轴相切于右顶点A (或左顶点A ′).结论63:P 为焦点在x 轴上的双曲线右支(或左支)上任一点,则12PF F ∆与的内切圆与x 轴相切于右顶点A (或左顶点A ′).结论64:AB 是过椭圆22221(0)x y a b a b+=>>的焦点F 的一条弦(非通径),弦AB 的中垂线交x 轴于N ,则||2||AB NF e=.结论65:AB 是过双曲线22221(0,0)−=>>x y a b a b的焦点F 的一条弦(非通径,且为单支弦),弦AB 的中垂线交x 轴于N ,则||2||AB NF e=. 结论66:AB 是过抛物线22(0)=>y px p 的焦点F 的一条弦(非通径),弦AB 的中垂线交x 轴于N ,则||2||AB NF =. 结论67:AB 是抛物线的焦点弦,分别过A ,B 作抛物线的切线,则两条切线的交点P 在其准线上.结论68:AB 是椭圆的焦点弦,分别过A ,B 作椭圆的切线,则两条切线的交点P 在其相应的准线上.结论69:AB 是双曲线的焦点弦,分别过A ,B 作双曲线的切线,则两条切线的交点P 在其相应的准线上.结论70:AB 是过抛物线焦点F 的焦点弦,以AB 为直径的圆必与其准线相切.结论71:AB 是过椭圆焦点F 的焦点弦,以AB 为直径的圆必与其相应的准线相切,与另一条准线相离.结论72:AB 是过双曲线焦点F 的焦点弦,以AB 为直径的圆必与其相应的准线相交,截得的圆弧度数为定值,且为12arccos e.结论73:以圆锥曲线的焦点弦AB 为直径作圆,若该圆与其相应的准线相切,则该曲线必为抛物线;若该圆与其相应的准线相离,则该曲线必为椭圆.结论74:以圆锥曲线的焦点弦AB 为直径作圆,若该圆与其相应的准线相交,则该曲线必为双曲线,且此时截得的圆弧度数为定值,且为12arccos e.结论75:AB 为过抛物线22(0)=>y px p 焦点F 的焦点弦,()()1122,,,,A x y B x y 则12||AB x x p =++.结论76:AB 为过椭圆22221(0)+=>>x y a b a b焦点F 的焦点弦,()()1122,,,,A x y B x y 则12||2AB a e x x =−+.结论77:AB 为过双曲线22221(0,0)−=>>x y a b a b焦点F 的焦点弦,()()1122,,,,A x y B x y 若AB 为单支弦,则12||2AB e x x a =+−;若AB 为双支弦,则12||2AB e x x a =++.结论78:F 为抛物线的焦点,A ,B 是抛物线上不同的两点,直线AB 交其准线l 于M ,则FM 平分∠AFB 的外角.结论79:F 为椭圆的一个焦点,A ,B 是椭圆上不同的两点,直线AB 交其相应的准线l 于M ,则FM 平分∠AFB 的外角.结论80:F 为双曲线的一个焦点,A ,B 是双曲线上不同的两点(左右支各一点),直线AB 交其相应的准线l 于M ,则FM 平分∠AFB .结论81:F 为双曲线的一个焦点,A ,B 是双曲线上不同的两点(同一支上),直线AB 交其相应的准线l 于M ,则FM 平分∠AFB 的外角.结论82:AB 是椭圆22221(0)x y a b a b+=>>过焦点F 的弦,点P 是椭圆上异于A ,B 的任一点,直线PA 、PB 分别交相应于焦点F 的准线l 于M 、N ,则点M 与点N 的纵坐标之积为定值,且为42b c−.结论83:AB 是双曲线22221(0,0)−=>>x y a b a b过焦点F 的弦,点P 是双曲线上异于A ,B 的任一点,直线PA 、PB 分别交相应于焦点F 的准线l 于M 、N ,则点M 与点N 的纵坐标之积为定值,且为42b c −.结论84:AB 是抛物线2(0)=>y px p 过焦点F 的弦,点P 是抛物线上异于A ,B 的任一点,直线PA 、PB 分别交准线l 于M 、N ,则点M 与点N 的纵坐标之积为定值,且为2p −.结论85:A ,B 是椭圆22221(0)x y a b a b+=>>的长轴顶点,()(,0),(,0)0E m F m m a −<<,点P 是椭圆上任一点(非长轴顶点),若直线PA 、PB 分别交直线2a x m=于M 、N ,则有如EM FN EN FM ⋅⋅、()()222222am a m b m−+−FM FN ⋅()()222222a m a mb m−−−EM EN ⋅()()2222222a mb a m m+−−BM FN ⋅()()22222am a am b m−+−AM FN ⋅()()2222am a am b −−−AM BN ⋅()()2222am a b −−M N y y ⋅AP BP AM BN AN BMk k k k k k ⋅⋅⋅ 结论86:A ,B 是双曲线22221(0,0)−=>>x y a b a b 的实轴顶点,()(,0),(,0)E m F m m a −>,点P 是双曲线上任一点(非实轴顶点),若直线PA 、PB 分别交直线2()a x m a m=>于M 、EM FN EN FM ⋅⋅、()()222222a m a mb m−++FM FN ⋅()()222222a m a mb m−−+EM EN ⋅()()2222222amb a m m++−BM FN ⋅()()22222am a am b m −++AM FN ⋅()()22222am a am b m −−+AM BN ⋅()()22222am a b m −+M N y y ⋅()2222b m am −AP BP AM BN AN BMk k k k k k ⋅⋅⋅ 21e −AN AM k k ⋅()21a m e a m+−− BN BM k k ⋅()21a m e a m−−+k k ⋅2b 结论87:A ,B 是椭圆22221(0)x y a b a b+=>>的任一直径(中心弦),点P 是椭圆上任一点(不与A ,B 重合),则PA PB k k ⋅=21e −.结论88:A ,B 是椭圆22221(0)x y a b a b+=>>的任一弦(不过原点且不与对称轴平行),点M是弦AB 的中点,若,OM AB k k 均存在,则OM AB k k ⋅=21e −.结论89:A ,B 是椭圆22221(0)x y a b a b+=>>的任一弦(不与对称轴平行),若平行于AB 的弦的中点的轨迹为直线PQ ,则有PQ AB k k ⋅=21e −.结论90:过椭圆22221(0)x y a b a b+=>>上任意一点P (不是其顶点)作椭圆的切线PA ,则有PA OP k k ⋅=21e −.结论91:椭圆22221(0)x y a b a b+=>>及定点()(,0)F m a m a −<<,过F 的弦的端点为A ,B ,过点A ,B 分别作直线2a x m =的垂线,垂足分别为D ,C ,直线2a x m=与x 轴相交于E ,则直线AC 与BD 恒过EF 的中点,且有0AE BE k k +=.结论92:椭圆22221(0)x y a b a b+=>>及定点()(,0)F m m c =±,过F 的弦的端点为A 、B ,E 为椭圆上任意一点,连接AE ,BE ,且分别与准线2a x m=相交于P ,Q ,则有1FQ FP k k ⋅=−.结论93:椭圆22221(0)x y a b a b+=>>及定点()(,0),0F m a m a m −<<≠,过F 的弦的端点为A 、B ,E 为椭圆上任意一点,连接AE ,BE ,且分别与直线2a x m=相交于P ,Q ,则有222FQ FPb k k m a ⋅=−.结论94:A ,B 是双曲线22221(0,0)−=>>x y a b a b的任一直径(中心弦),点P 是双曲线上任一点(不与A ,B 重合),则PA PB k k ⋅=21e −.结论95:A ,B 是双曲线22221(0,0)−=>>x y a b a b的任一弦(不过原点且不与对称轴平行),点M 是弦AB 的中点,若,OM AB k k 均存在,则OMAB k k ⋅=22b a.结论96:A ,B 是双曲线22221(0,0)−=>>x y a b a b的任一弦(不与对称轴平行),若平行于AB的弦的中点的轨迹为直线PQ ,则有PQ AB k k ⋅=21e −.结论97:过双曲线22221(0,0)−=>>x y a b a b上任意一点P (不是其顶点)作双曲线的切线PA ,则有PA OP k k ⋅=21e −.结论98:双曲线22221(0,0)−=>>x y a b a b及定点()(,0)F m m a m a >∨<−,过F 的弦的端点为A ,B ,过点A ,B 分别作直线2a x m =的垂线,垂足分别为D ,C ,直线2a x m=与x 轴相交于E ,则直线AC 与BD 恒过EF 的中点,且有0AE BE k k +=.结论99:双曲线22221(0,0)−=>>x y a b a b及定点()(,0)F m m c =±,过F 的弦的端点为A 、B ,E 为双曲线上任意一点,连接AE ,BE ,且分别与准线2a x m=相交于P ,Q ,则有1FQ FP k k ⋅=−.结论100:双曲线22221(0,0)−=>>x y a b a b及定点()(,0)F m m a m a >∨<−,过F 的弦的端点为A 、B ,E 为双曲线上任意一点,连接AE ,BE ,且分别与直线2a x m=相交于P ,Q ,则有222FQ FPb k k a m ⋅=−. 结论101:抛物线22(0)y px p =>及定点(,0)(0)F m m >,过F 的弦的端点为A ,B ,过A ,B 分别作直线x m =−的垂线,垂足分别为D ,C ,直线x m =−与x 轴相交于E ,则直线AC 与BD 恒过EF 的中点,且有0AE BE k k +=. 结论102:抛物线22(0)y px p =>及定点(,0)2p F m m ⎛⎫=⎪⎝⎭,过F 的弦的端点为A 、B ,E 为抛物线上任意一点,连接AE ,BE ,分别与准线x m =−相交于P ,Q ,则有1FP FQ k k ⋅=−. 结论103:抛物线22(0)y px p =>及定点()(,0)0F m m >,过F 的弦的端点为A 、B ,E为抛物线上任意一点,连接AE ,BE ,分别与直线x m =−相交于P ,Q ,则有2FP FQ pk k m⋅=−. 结论104:抛物线22(0)y px p =>的焦点弦与抛物线相交于A ,B ,过B 作直线BC 与x 轴平行,交准线于C ,则直线AC 必过原点(及其准线与x 轴交点E 与焦点F 的线段的中点).结论105:AB 为过椭圆22221(0)x y a b a b+=>>的焦点F 的弦,其相应的准线与x 轴交点为E ,过A ,B 作x 轴的平行线与其相应的准线分别相交于M ,N ,则直线AN ,BM 均过线段EF 的中点.结论106:AB 为过双曲线22221(0,0)−=>>x y a b a b的焦点F 的弦,其相应的准线与x 轴交点为E ,过A ,B 作x 轴的平行线与其相应的准线分别相交于M ,N ,则直线AN ,BM 均过线段EF 的中点. 结论107:过圆锥曲线(可以是非标准状态下)焦点弦的一个端点向其相应的准线作垂线,垂足与另一个端点的连线必经过焦点到相应的准线的垂线段的中点.结论108:AB 为垂直于椭圆22221(0)x y a b a b+=>>长轴的动弦,其准线与x 轴交点为Q ,则直线AF 与BQ (或直线BF 与AQ )的交点M 必在该椭圆上.结论109:AB 为垂直于双曲线2222(0)λλ−=≠x y a b实轴的动弦,其准线与x 轴交点为Q ,则直线AF 与BQ (或直线BF 与AQ )的交点M 必在该双曲线上.结论110:AB 为垂直于抛物线()()220==≠或y tx x ty t 对称轴的动弦,其准线与x 轴交点为Q ,则直线AF 与BQ (或直线BF 与AQ )的交点M 必在该抛物线上.结论111:已知圆锥曲线的焦点弦AM (不为通径,若为双曲线则为单支弦),则在x 轴上有且只有一点Q 使AQF MQF ∠=∠.结论112:过F 作圆锥曲线的一条弦AB (若为双曲线则为单支弦),分别过A ,B 作准线l 的垂线(Q 是其相应准线与x 轴的交点),垂足为A 1,B 1,则直线AB 1与直线A 1B 都经过QF 的中点K ,即A 、K 、B 1及B 、K 、A 1三点共线.结论113:A ,B 分别为椭圆22221(0)x y a b a b+=>>的右顶点和左顶点,P 为椭圆上任一点(非长轴顶点),若直线AP ,BP 分别交直线2a x m =于M ,N ,则以线段MN 为直径的圆必经过两个定点,且椭圆外定点为222a b a m Q m ⎛⎫+− ⎪ ⎪⎝⎭,椭圆内定点为222,0a b a m R m ⎛⎫−− ⎪ ⎪⎝⎭.结论114:A ,B 分别为双曲线22221(0,0)−=>>x y a b a b的右顶点和左顶点,P 为双曲线上任一点(非实轴顶点),若直线AP ,BP 分别交直线2a x m =(m >a )于M ,N ,则以线段MN 为直径的圆必经过两个定点,且椭圆外定点为222a b m a Q ⎫+−⎪⎪⎝⎭,椭圆内定点为222,0a b m a R m ⎛⎫−− ⎪ ⎪⎝⎭. 结论115:过直线()0x m m =≠但在椭圆22221(0)x y a b a b+=>>外一点M 向椭圆引两条切线,切点分别为A ,B ,则直线AB 必过定点()222222,0AB MN a b m N k k m a a m ⎛⎫⋅= ⎪−⎝⎭,且有.结论116:过直线()0x m m =≠但在双曲线22221(0,0)−=>>x y a b a b外(即双曲线中心所在区域)一点M 向双曲线引两条切线,切点分别为A ,B ,则直线AB 必过定点()222222,0AB MN a b m N k k m a m a ⎛⎫⋅= ⎪−⎝⎭,且有. 结论117:过直线()0x m m =≠但在抛物线22(0)=>y px p 外(即抛物线准线所在区域)一点M 向抛物线引两条切线,切点分别为A ,B ,则直线AB 必过定点(),02AB MN p N m k k m−⋅=,且有. 结论118:设点M 是圆锥曲线的准线上一点(不在双曲线的渐近线上),过点M 向圆锥曲线引两条切线,切点分别为A ,B ,则直线AB 必过准线对应的焦点F ,且FM ⊥AB .结论119:过直线1mx ny +=但在椭圆22221(0)x y a b a b+=>>外一点M 向椭圆引两条切线,切点分别为A ,B ,则直线AB 必过定点()22,N ma nb.结论120:过直线1mx ny +=但在双曲线22221(0,0)−=>>x y a b a b外(即双曲线中心所在区域)一点M 向双曲线引两条切线,切点分别为A ,B ,则直线AB 必过定点()22,N ma nb.结论121:过直线()10mx ny m +=≠但在抛物线22(0)=>y px p 外(即抛物线准线所在区域)一点M 向抛物线引两条切线,切点分别为A ,B ,则直线AB 必过定点1,pn N m m ⎛⎫−− ⎪⎝⎭. 结论122:A ,B 是椭圆22221(0)x y a b a b+=>>的左右顶点,点P 是直线()||,0x t t a t =≠≠上的一个动点(P 不在椭圆上),直线PA 及PB 分别与椭圆相交于M ,N ,则直线MN 必与x 轴相交于定点2,0a Q t ⎛⎫⎪⎝⎭.结论123:A ,B 是双曲线22221(0,0)−=>>x y a b a b的顶点,点P 是直线()||,0x t t a t =≠≠上的一个动点(P 不在双曲线上),直线PA 及PB 分别与双曲线相交于M ,N ,则直线MN必与x 轴相交于定点2,0a Q t ⎛⎫ ⎪⎝⎭.结论124:A ,B 是抛物线22(0)=>y px p 上异于顶点O 的两个动点, 若直线AB 过定点N (2p ,0) OA ⊥OB A ,B 的横坐标之积、纵坐标之积均为定值 若OA ⊥OB 直线AB 过定点N (2p ,0)A ,B 的横坐标之积、纵坐标之积均为定值()2min 4AOB S p ∆=若OA ⊥OB 过O 作OM ⊥AB动点M 的轨迹方程为()22200x y px x +−=≠结论125:过抛物线22(0)=>y px p 上任意一点M ()00,x y 作两条弦MA ,MB ,则MA ⊥MB 的充要条件是直线AB 过定点N ()002,x p y +−.结论126:过抛物线22(0)=>y px p 上任意一点M ()00,x y 作两条弦MA ,MB ,则()0MA MB k k λλ⋅=≠的充要条件是直线AB 过定点N 002,p x y λ⎛⎫−− ⎪⎝⎭. 结论127:过椭圆22221(0)x y a b a b+=>>上任意一点M ()00,x y 作两条弦MA ,MB ,则MA ⊥MB 的充要条件是直线AB 过定点N 2222002222,a b b a x y a b b a ⎛⎫−− ⎪++⎝⎭. 特别地,(1)当M 为左、右顶点时,即00,0x a y =±=时,MA ⊥MB 的充要条件是直线AB 过定点N ()22222,0a a b a b ⎛⎫±− ⎪ ⎪+⎝⎭.(2)当M 为上、下顶点时,即000,x y b ==±时,MA ⊥MB 的充要条件是直线AB 过定点N ()222220,b b a a b ⎛⎫±− ⎪ ⎪+⎝⎭.结论128:过双曲线22221(0,0)−=>>x y a b a b上任意一点M ()00,x y 作两条弦MA ,MB ,则MA ⊥MB 的充要条件是直线AB 过定点N 2222002222,a b b a x y a b b a ⎛⎫++ ⎪−−⎝⎭. 特别地,当M 为左、右顶点时,即00,0x a y =±=时,MA ⊥MB 的充要条件是直线AB过定点N ()22222,0a a b a b ⎛⎫±+ ⎪ ⎪−⎝⎭.结论129:过二次曲线()22,,,,,0+++=∈+≠Ax By Cx Dy E A B C D E A B 上任意一点M()00,x y 作两条弦MA ,MB ,若MA ⊥MB ,则直线AB 过定点N 000022,Ax C By D x y A B A B ++⎛⎫−− ⎪++⎝⎭.结论130:A ,B 是椭圆22221(0)x y a b a b+=>>上不同的两个动点,若OA ⊥OB ,则22222211||||a b OA OB a b ++=,()22min max21111||||||||a b a b OA OB ab OA OB +⎛⎫⎛⎫++=+= ⎪ ⎪⎝⎭⎝⎭,结论131:A ,B 是双曲线22221(0)−=>>x y b a a b上不同的两个动点(在同一支上),若OA ⊥OB ,则22222211||||b a OA OB a b−+=.抛物线 22(0)=>y pxp对称轴存在定点 (),0M p使得过该点的任意弦AB 恒有 222111||||MA MB p+= 椭圆 22221(0)+=>>x y a b a b 长轴 2222,0a b M a a b⎛⎫−± ⎪ ⎪+⎝⎭2222411||||a b MA MB b ++= 双曲线22221(0)−=>>x y a b a b 实轴结论133:过圆锥曲线()2210,0x y m n m n+=>≠的焦点F 作一条直线与圆锥曲线相交于M ,N ,与y 轴相交于P ,若,PM MF PN NF λμ==,则2m nλμ+=−.结论134:过抛物线()220y px p =>的焦点F 作一条直线与抛物线相交于M ,N ,与y 轴相交于P ,若,PM MF PN NF λμ==,则1λμ+=−.结论135:过圆锥曲线的焦点F 作一条直线与圆锥曲线相交于M ,N ,与相应的准线相交于P ,若,PM MF PN NF λμ==,则0λμ+=.结论136:MN 是垂直椭圆22221(0)+=>>x y a b a b长轴的动弦,P 是椭圆上异于顶点的动点,直线MP ,NP 分别交x 轴于E 、F ,若,PE EM PF FN λμ==,则0λμ+=.结论137:MN 是垂直双曲线22221(0,0)−=>>x y a b a b实轴的动弦,P 是双曲线上异于顶点的动点,直线MP ,NP 分别交x 轴于E 、F ,若,PE EM PF FN λμ==,则0λμ+=. 结论138:MN 是垂直抛物线()220y px p =>对称轴的动弦,P 是抛物线上异于顶点的动点,直线MP ,NP 分别交x 轴于E 、F ,若,PE EM PF FN λμ==,则0λμ+=.结论139:MN 是垂直椭圆22221(0)+=>>x y a b a b长轴的动弦,P 是椭圆上异于顶点的动点,直线MP ,NP 分别交x 轴于E 、F ,A 为长轴顶点,若,OE EA OF FA λμ==,则1λμ+=−.结论140:MN 是垂直双曲线22221(0,0)−=>>x y a b a b实轴的动弦,P 是双曲线上异于顶点的动点,直线MP ,NP 分别交x 轴于E 、F ,A 为实轴顶点,若,OE EA OF FA λμ==,则1λμ+=−.结论141:MN 是垂直抛物线()220y px p =>对称轴的动弦,P 是抛物线上异于顶点的动点,直线MP ,NP 分别交x 轴于E 、F ,A 为抛物线焦点,若,OE EA OF FA λμ==,则112λμ+=.结论142:P 是圆锥曲线221(0,0)x y s t s t+=>≠上任意一点,弦PA ,PB 分别过定点((,0),(,0)0M m N m m s −<<,若,λμ==PM MA PN NB ,则()222λμ++=−s m s m.结论143:M ,P 是圆C :222(0)x y r r +=>上任意两点,点M 关于x 轴的对称点为N ,若直线PM ,PN 分别与x 轴相交于点A (m ,0)、B (n ,0),则mn =r 2.结论144:M ,P 是圆锥曲线221(0,0)x y s t s t+=>≠上任意两点,点M 关于x 轴的对称点为N ,若直线PM ,PN 分别与x 轴相交于点A (m ,0)、B (n ,0),则mn =s .结论145:A ,B 是圆锥曲线C :221(0,0)x y s t s t+=>≠上关于x 轴对称的任意两个不同的点,点P (m ,0)是x 轴上的定点,直线PB 交C 于另一点E ,则直线AE 恒过x 轴上的定点Q,0s m ⎛⎫⎪⎝⎭. 结论146:A ,B 是抛物线C :2(0)y px p =>上关于x 轴对称的任意两个不同的点,点P (m ,0)是x 轴上的定点,直线PB 交C 于另一点E ,则直线AE 恒过x 轴上的定点Q (),0m −.。

  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
相关文档
最新文档