圆锥曲线中的切线问题

合集下载

圆锥曲线中切线问题的秒杀策略

圆锥曲线中切线问题的秒杀策略

圆锥曲线中切线问题的秒杀策略圆锥曲线中的切线问题是高考压轴题的一大类型,共分下面四种题型,在高考中主要以考查重要结论为主,且重要结论的证明步骤固定,所以要求考生熟记下面的步骤,在高考中直接套用即可。

『秒杀策略』:当抛物线开口向上或开口向下时(此时抛物线可看作函数),主要利用导数解决,当抛物线开口向左或开口向右时利用解决。

椭圆利用解决。

【题型一】:过曲线上一点作曲线的切线。

『秒杀策略』:秒杀公式:熟记:①过椭圆上一点作切线,则切线方程为:。

证明:(此步骤必须牢记,在大题中要体现)设过的切线方程为:,与椭圆方程联立,利用。

熟记:②过抛物线上一点作切线,则切线方程为:。

证明:(此步骤必须牢记,在大题中要体现)设过的切线方程为:,与抛物线方程联立,利用。

若为开口向上或开口向下的抛物线,求导,代点,求出切线的斜率,利用点斜式求出切线的方程 。

〖母题〗抛物线上到直线的距离最小的点的坐标是 ( )A. B. C. D.0=D 0=D 12222=+by a x ()00,y x P 12020=+byy a x x ()00,y x P ()00x x k y y -=-0=D px y 22=()00,y x P )(00x x p y y +=()00,y x P ()00x x k y y -=-0=D 2y x =24x y -=11,24æöç÷èø()1,139,24æöç÷èø()2,4【解析】:法一:设P ,则,当时最小,选B 。

法二:设切点为,则切线方程为:,,即切点为,由点到直线的距离可求得,选B 。

法三:设P ,过P 的切线与直线平行,切点为所求的点,,,选B 。

1.(高考题)抛物线上的点到直线距离的最小值是 ( ) A. B. C. D.3 【解析】:法一:设抛物线上的点,到直线的距离为,,当时,最小值为。

圆锥曲线中切线问题的妙解

圆锥曲线中切线问题的妙解

圆锥曲线中 切线问题的妙解在高中数学中圆锥曲线是一个重点也是一个难点,我们只有深刻理解圆锥曲线,掌握通性通法,才能更好地解决这一难题。

平时我们还要多归纳、多总结还可以得到一系列的结论。

下面我们利用一些结论来巧妙地解决圆锥曲线中的切线问题。

结论一.过圆锥曲线上一点的切线方程1.设圆(x -a )2+(y -b )2=r 2上有一点P (x 0,y 0),则过P 点的切线方程为(x -a )(x 0-a )+(y -b )(y 0-b )=r 2.2.(1)椭圆+=1(a >b >0)上有一点P (x 0,y 0),则P 点处的切线方程为+=1 (2)双曲线-=1(a ,b >0)上有一点P (x 0,y 0),则P 点处的切线方程为-=1. (3)抛物线y 2=2px (p >0)上有一点P (x 0,y 0),则P 点处的切线方程为y 0y =2p例1:求双曲线x 2-=1在点(,)处的切线方程.解 :由双曲线-=1(a >0,b >0)上一点P (x 0,y 0)处的切线方程是-=1,∴双曲线x 2-=1在点(,)处的切线方程为x -=1,即2x -y -=0.例 2:已知椭圆C :+=1(a >b >0)的焦距为2,且过点Q . (1)求椭圆C 的标准方程;(2)若O 为坐标原点,P 为直线l :x =2上的一动点,过点P 作直线l ′与椭圆相切于点A ,若△POA 的面积S 为,求直线l ′的方程.解 (1)由题意得:椭圆C 的标准方程为+y 2=1.(2)设A (x 0,y 0),则切线l ′的方程为+yy 0=1,即y =-x ,则直线l ′与x 轴交于点B ,∵P ,∴S △POA =··=,即=,∴=±,即或解得x 0=1,y 0=-或x 0=1,y 0=(x 0=0,y 0=±1不合题意舍),∴直线l ′的方程为y =-x +或y =x -.结论二:过圆锥曲线外一点作曲线的切线1.过椭圆+=1(a >b >0)外一点P (x 0,y 0),作椭圆的两条切线,则两切点的连线方程为+=1(a >b >0).2过双曲线-=1(a >0,b >0)外有一点P (x 0,y 0),作双曲线的两条切线,则两切点的连线方程为-=1.3.过抛物线y 2=2px (p >0)外有一点P (x 0,y 0),作抛物线的两条切线,则两切点的连线方程为y 0y =2p例3:已知P (1,1)是双曲线外一点,过P 引双曲线x 2-=1的两条切线PA ,PB ,A ,B 为切点,求直线AB 的方程.解: 利用结论2得直线AB 的方程为x -=1,即2x -y -2=0.例4 :已知曲线C :y =,D 为直线y =-上的动点,过D 作C 的两条切线,切点分别为A ,B .则直线AB 过定点解:设D ,抛物线方程为 ,则过D 点作抛物线的两条切线,则两切点的连线方程为 得,直线AB 的方程为 整理得:2tx -2y +1=0.所以直线AB 过定点在圆锥曲线中我们如果能够熟记这些结论,再结合常规方法,那就可以快速的找到解决切线问题解题思路,从而可以快速求得答案。

圆锥曲线题型总结:切线问题【自己整理】

圆锥曲线题型总结:切线问题【自己整理】

高考数学圆锥曲线专题突破:切线问题【2017•新课标Ⅰ文】设A,B为曲线C:y=上两点,A与B的横坐标之和为4.(1)求直线AB的斜率;(2)设M为曲线C上一点,C在M处的切线与直线AB平行,且AM⊥BM,求直线AB的方程.【解析】解:(1)设A(x1,),B(x2,)为曲线C:y=上两点,则直线AB的斜率为k==(x1+x2)=×4=1;(2)设直线AB的方程为y=x+t,代入曲线C:y=,可得x2﹣4x﹣4t=0,即有x1+x2=4,x1x2=﹣4t,再由y=的导数为y′=x,设M(m,),可得M处切线的斜率为m,由C在M处的切线与直线AB平行,可得m=1,解得m=2,即M(2,1),由AM⊥BM可得,k AM•k BM=﹣1,即为•=﹣1,化为x1x2+2(x1+x2)+20=0,即为﹣4t+8+20=0,解得t=7.则直线AB的方程为y=x+7.【2014•广东理】已知椭圆C:+=1(a>b>0)的每一个焦点为(,0),离心率为.(1)求椭圆C的标准方程;(2)若动点P(x0,y0)为椭圆C外一点,且点P到椭圆C的两条切线相互垂直,求点P的轨迹方程.【解析】(1)依题意知,求得a=3,b=2,∴椭圆的方程为+=1.(2)当过点P的直线斜率不存在时,P的坐标为(±3,±2)时符合题意,设过点P(x0,y0)的切线为y=k(x﹣x0)+y0,+=+=1,整理得(9k2+4)x2+18k(y0﹣kx0)x+9[(y0﹣kx0)2﹣4]=0,△=[18k(y0﹣kx0)]2﹣4(9k2+4)×9[(y0﹣kx0)2﹣4],∴(x02﹣9)k2﹣2x0×y0×k+(y02﹣4)=0,∴﹣1=k1•k2==﹣1,∴x02+y02=13.把点(±3,±2)亦成立,∴点P的轨迹方程为:x2+y2=13.【2014•湖北理】在平面直角坐标系xOy中,点M到点F(1,0)的距离比它到y轴的距离多1,记点M 的轨迹为C.(Ⅰ)求轨迹C的方程;(Ⅱ)设斜率为k的直线l过定点P(﹣2,1),求直线l与轨迹C恰好有一个公共点、两个公共点、三个公共点时k的相应取值范围.【解析】(Ⅰ)设M(x,y),依题意得:|MF|=|x|+1,即,化简得,y2=2|x|+2x.∴点M的轨迹C的方程为;(Ⅱ)在点M的轨迹C中,记C1:y2=4x(x≥0),C2:y=0(x<0).依题意,可设直线l的方程为y﹣1=k(x+2).由方程组,可得ky2﹣4y+4(2k+1)=0.①当k=0时,此时y=1,把y=1代入轨迹C的方程,得.故此时直线l:y=1与轨迹C恰好有一个公共点().②当k≠0时,方程ky2﹣4y+4(2k+1)=0的判别式为△=﹣16(2k2+k﹣1).设直线l与x轴的交点为(x0,0),则由y﹣1=k(x+2),取y=0得.若,解得k<﹣1或k>.即当k∈时,直线l与C1没有公共点,与C2有一个公共点,故此时直线l与轨迹C恰好有一个公共点.若或,解得k=﹣1或k=或.即当k=﹣1或k=时,直线l 与C 1只有一个公共点,与C 2有一个公共点. 当时,直线l 与C 1有两个公共点,与C 2无公共点.故当k=﹣1或k=或时,直线l 与轨迹C 恰好有两个公共点.若,解得﹣1<k <﹣或0<k <.即当﹣1<k <﹣或0<k <时,直线l 与C 1有两个公共点,与C 2有一个公共点. 此时直线l 与C 恰有三个公共点. 综上,当k ∈∪{0}时,直线l 与C 恰有一个公共点;当k ∪{﹣1,}时,直线l 与C 恰有两个公共点;当k ∈时,直线l 与轨迹C 恰有三个公共点.【2013广东理20】已知抛物线C 的顶点为原点,其焦点F (0,c )(c >0)到直线l :x -y -2=0.设P 为直线l 上的点,过点P 作抛物线C 的两条切线P A ,PB ,其中A ,B 为切点.(1)求抛物线C 的方程;(2)当点P (x 0,y 0)为直线l 上的定点时,求直线AB 的方程; (3)当点P 在直线l 上移动时,求|AF |·|BF |的最小值. 【解析】(1)依题意,设抛物线C 的方程为x 2=4cy ,2=,结合c >0,解得c =1. 所以抛物线C 的方程为x 2=4y .(2)抛物线C 的方程为x 2=4y ,即y =14x 2,求导得y ′=12x , 设A (x 1,y 1),B (x 2,y 2)221212,44x x y y ⎛⎫== ⎪⎝⎭其中,则切线P A ,PB 的斜率分别为12x 1,12x 2,所以切线P A 的方程为y -y 1=12x(x -x 1),即y =12x x -212x +y 1,即x 1x -2y -2y 1=0,同理可得切线PB 的方程为x 2x -2y -2y 2=0,因为切线P A ,PB 均过点P (x 0,y 0),所以x 1x 0-2y 0-2y 1=0,x 2x 0-2y 0-2y 2=0.所以(x 1,y 1),(x 2,y 2)为方程x 0x -2y 0-2y =0的两组解. 所以直线AB 的方程为x 0x -2y -2y 0=0.(3)由抛物线定义可知|AF |=y 1+1,|BF |=y 2+1,所以|AF |·|BF |=(y 1+1)(y 2+1)=y 1y 2+(y 1+y 2)+1.联立方程002220,4,x x y y x y --=⎧⎨=⎩消去x 整理得y 2+(2y 0-x 02)y +y 02=0.由一元二次方程根与系数的关系可得y 1+y 2=x 02-2y 0,y 1y 2=y 02, 所以|AF |·|BF |=y 1y 2+(y 1+y 2)+1=y 02+x 02-2y 0+1. 又点P (x 0,y 0)在直线l 上,所以x 0=y 0+2. 所以y 02+x 02-2y 0+1=2y 02+2y 0+5=2019222y ⎛⎫++ ⎪⎝⎭.所以当y 0=12-时,|AF |·|BF |取得最小值,且最小值为92.【2008山东理22】如图,设抛物线方程为x 2=2py (p >0),M 为 直线y =-2p 上任意一点,过M 引抛物线的切线,切点分别为A ,B .(Ⅰ)求证:A ,M ,B 三点的横坐标成等差数列;(Ⅱ)已知当M 点的坐标为(2,-2p )时,AB =(Ⅲ)是否存在点M ,使得点C 关于直线AB 的对称点D 在抛物线22(0)x py p =>上,其中,点C 满足OC OA OB =+(O 为坐标原点).若存在,求出所有适合题意的点M 的坐标;若不存在,请说明理由.【解析】(Ⅰ)证明:由题意设221212120(,),(,),,(,2).22x x A x B x x x M x p p p-<由22x py =得22x y p=,则,x y p'=所以12,.MAMB x x k k p p== 因此直线MA 的方程为102(),x y p x x p+=- 直线MB 的方程为202().x y p x x p+=-所以211102(),2x xp x x p p+=- ①222202().2x xp x x p p+=- ②由①、②得212120,2x x x x x +=+- 因此21202x x x +=,即0122.x x x =+所以A 、M 、B 三点的横坐标成等差数列.(Ⅱ)解:由(Ⅰ)知,当x 0=2时, 将其代入①、②并整理得: 2211440,x x p --=2222440,x x p --=所以 x 1、x 2是方程22440x x p --=的两根,因此212124,4,x x x x p +==-又22210122122,2ABx x x x x p p k x x p p-+===-所以2.ABk p=由弦长公式得AB ==又AB =所以p =1或p =2,因此所求抛物线方程为22xy =或24.x y =(Ⅲ)解:设D (x 3,y 3),由题意得C (x 1+ x 2, y 1+ y 2),则CD 的中点坐标为123123(,),22x x x y y y Q ++++设直线AB 的方程为11(),x y y x x p-=-由点Q 在直线AB 上,并注意到点1212(,)22x x y y ++也在直线AB 上, 代入得33.x y x p=若D (x 3,y 3)在抛物线上,则2330322,x py x x ==因此 x 3=0或x 3=2x 0.即D (0,0)或2002(2,).x D x p(1)当x 0=0时,则12020x x x +==,此时,点M (0,-2p )适合题意.(2)当00x ≠,对于D (0,0),此时2212222212120002(2,),,224CDx x x x x x pC x k px px +++==又0,ABx k p=AB ⊥CD , 所以222201212201,44AB CDx x x x x k k p px p++===- 即222124,x x p +=-矛盾.对于2002(2,),x D x p 因为22120(2,),2x x C x p+此时直线CD 平行于y 轴, 又00,ABx k p=≠ 所以 直线AB 与直线CD 不垂直,与题设矛盾, 所以00x ≠时,不存在符合题意的M 点.综上所述,仅存在一点M (0,-2p )适合题意.【2007江苏理19】如图,在平面直角坐标系xOy 中,过y 轴正方向上一点(0)C c ,任作一直线,与抛物线2y x =相交于A B ,两点.一条垂直于x 轴的直线,分别与线段AB 和直线:l y c =-交于点P Q ,. (1)若2OA OB =,求c 的值;(5分)(2)若P 为线段AB 的中点,求证:QA 为此抛物线的切线;(5分) (3)试问(2)的逆命题是否成立?说明理由.(4分)【解析】(1)设直线AB 的方程为y kx c =+,将该方程代入2y x =得20x kx c --=.令2()A a a ,,2()B b b ,,则ab c =-.因为2222OA OB ab a b c c =+=-+=,解得2c =, 或1c =-(舍去).故2c =.(2)由题意知2a b Q c +⎛⎫-⎪⎝⎭,,直线AQ 的斜率为22222AQ a c a ab k a a b a b a +-===+--. 又2y x =的导数为2y x '=,所以点A 处切线的斜率为2a , 因此,AQ 为该抛物线的切线. (3)(2)的逆命题成立,证明如下:设0()Q x c -,. 若AQ 为该抛物线的切线,则2AQ k a =, 又直线AQ 的斜率为2200AQa c a ab k a x a x +-==--,所以202a aba a x -=-,得202ax a ab =+,因0a ≠,有02a bx +=. 故点P 的横坐标为2a b+,即P 点是线段AB 的中点. 【2005江西理22】如图,设抛物线2:x y C =的焦点为F ,动点P 在直线02:=--y x l 上运动,过P 作抛物线C 的两条切线PA 、PB ,且与抛物线C 分别相切于A 、B 两点.(1)求△APB 的重心G 的轨迹方程. (2)证明∠PFA=∠PFB.【解析】(1)设切点A 、B 坐标分别为))((,(),(0121120x x x x x x ≠和,∴切线AP 的方程为:;02200=--x y x x切线BP 的方程为:;02211=--x y x x解得P 点的坐标为:1010,2x x y x x x P P =+=所以△APB 的重心G 的坐标为 P PG x x x x x =++=310,,343)(3321021010212010pP P G y x x x x x x x x x y y y y -=-+=++=++=所以243G G p x y y +-=,由点P 在直线l 上运动,从而得到重心G 的轨迹方程为:).24(31,02)43(22+-==-+--x x y x y x 即(2)方法1:因为).41,(),41,2(),41,(2111010200-=-+=-=x x x x x x x x 由于P 点在抛物线外,则.0||≠∴||41)1)(1(||||cos 102010010FP x x x x x x x x FA FP AFP +=--+⋅+==∠同理有||41)1)(1(||||cos 102110110FP x x x x x x x x FB FP BFP +=--+⋅+==∠ ∴∠AFP=∠PFB.方法2:①当,0,0,,0000101==≠=y x x x x x 则不妨设由于时所以P 点坐标为)0,2(1x ,则P 点到直线AF 的距离为:,4141:;2||12111x x x y BF x d -=-=的方程而直线即.041)41(1121=+--x y x x x 所以P 点到直线BF 的距离为:2||412||)41()()41(|42)41(|1211212122111212x x x x x x x x x d =++=+-+-=所以d 1=d 2,即得∠AFP=∠PFB.②当001≠x x 时,直线AF 的方程:,041)41(),0(041410020020=+-----=-x y x x x x x x y 即 直线BF 的方程:,041)41(),0(041411121121=+-----=-x y x x x x x x y 即 所以P 点到直线AF 的距离为:2||41)41)(2|)41(|41)2)(41(|1020201020220012010201x x x x x x x x x x x x x x d -=++-=+-+-+-=,同理可得到P 点到直线BF 的距离2||012x x d -=,因此由d 1=d 2,可得到∠AFP=∠PFB.【2006全国卷Ⅱ理21】已知抛物线y x 42=的焦点为B A F ,,是抛物线上的两动点,且).0(>=λλ过A 、B 两点分别作抛物线的切线,设其交点为M .(Ⅰ)证明⋅为定值; (I )由已条件,得F (0,1),0>λ. 设,).,(),,(2211y x B y x A λ=由 即得),1,()1,(2211-=--y x y x λ ⎩⎨⎧-=-=-∴).1(12121y y x x λλ将①式两边平方并把22221141,41x y x y ==代入得221y y λ=, ③ 解②、③式得λλ1,21==y y ,且有.4422221-=-=-=y x x x λλ抛物线方程为.412x y = 求导得.21x y =' 所以过抛物线上A 、B 两点的切线方程分别是,)(21)(21222111y x x y y x x x y +-=⋅+-=即.4121,4121222211x x x y x x x y -=-=① ②陈爱梅老师资料 版权所有 违版必究解出两条切线的交点M 的坐标为).1,2()4,2(212121-+=+x x x x x x …………4分 所以 ),()2,2(121221y y x x x x AB FM --⋅-+=⋅ =)4141(2)(2121222122x x x x --- =0 所以⋅为定值,真值为0. ………………7分。

高中数学圆锥曲线切线题解题方法

高中数学圆锥曲线切线题解题方法

高中数学圆锥曲线切线题解题方法在高中数学中,圆锥曲线是一个重要的概念,而求解圆锥曲线的切线问题是其中的一个难点。

本文将介绍一些解题方法,帮助高中学生和他们的父母更好地理解和应对这类题目。

在解决圆锥曲线切线问题时,首先要明确题目给出的条件和要求。

例如,考虑以下题目:已知椭圆的方程为$\frac{x^2}{a^2}+\frac{y^2}{b^2}=1$,点$P(x_0,y_0)$在椭圆上,求过点$P$的切线方程。

解决这类问题的关键是确定切线的斜率。

我们可以通过对椭圆方程进行求导来得到切线的斜率。

对椭圆方程两边同时对$x$求导,得到$\frac{2x}{a^2}+\frac{2y}{b^2}\cdot\frac{dy}{dx}=0$。

由于点$P$在椭圆上,代入点$P(x_0,y_0)$,可得$\frac{2x_0}{a^2}+\frac{2y_0}{b^2}\cdot\frac{dy}{dx}=0$。

进一步整理得到$\frac{dy}{dx}=-\frac{x_0}{y_0}\cdot\frac{b^2}{a^2}$。

由此可见,切线的斜率与点$P$的坐标有关。

接下来,我们可以利用点斜式或斜截式等方法求解切线方程。

例如,如果我们使用点斜式,切线方程可以表示为$y-y_0=-\frac{x_0}{y_0}\cdot\frac{b^2}{a^2}(x-x_0)$。

通过上述步骤,我们可以得到切线的方程。

但是,在具体解题过程中,我们还需要注意一些细节。

首先,要注意点$P$的坐标是否满足椭圆方程。

如果点$P$不在椭圆上,那么切线方程将无意义。

其次,要注意椭圆方程中的参数$a$和$b$的取值范围。

当$a=b$时,椭圆退化为圆,此时切线方程的求解方法也会有所不同。

除了椭圆,我们还可以考虑其他类型的圆锥曲线,如双曲线和抛物线。

对于双曲线,我们可以通过类似的方法求解切线方程。

例如,已知双曲线的方程为$\frac{x^2}{a^2}-\frac{y^2}{b^2}=1$,点$P(x_0,y_0)$在双曲线上,求过点$P$的切线方程。

圆锥曲线中的切线问题

圆锥曲线中的切线问题

圆锥曲线中的切线问题过曲线上一点P(x o ,y o )的切线方程(焦点在x 轴上):圆:200r b)-b)(y -(y a)-a)(x -(x =+;椭圆:12020=+b y y a x x ;双曲线:12020=-b y y a x x ;抛物线:)(00x x p y y +=.证明:以双曲线为例.442222020220220420222022022020242022202222202022222020)(4)1)(b a x (4)2(,012)b a x (x .11.11b a b a a y x b x a x b y b y a x b y y y b y b y ax b y y a x x b y a x b y y a x x ---=---=∆=-+--⎪⎪⎩⎪⎪⎨⎧+=+=⇒⎪⎪⎩⎪⎪⎨⎧=-=-得消去①式平方后除以②式,,,.0012222202202220220,即证,所以,得又=∆=--=-b a b a y a x b b y a x 过曲线外一点P(x o ,y o )作曲线的切线,切点A 、B ,过切点A 、B 的直线方程(焦点在x 轴上):圆:200r b)-b)(y -(y a)-a)(x -(x =+;椭圆:12020=+b y y a x x ;双曲线:12020=-b y y a x x ;抛物线:)(00x x p y y +=.证明:以椭圆为例.设切点),(),,(2211y x B y x A ,以A ,B 为切点的直线方程分别为.1122222121=+=+b y y a x x b y y a x x ,若两切线均是P(x o ,y o )点引出的,即两切线均过点P ,则有.112022********=+=+by y ax x by y ax x ,可知点),(),,(2211y x B y x A 均在直线12020=+b y y a x x 上,所以过切点A ,B 的直线方程为12020=+by y a x x .即证.思考1.(2021全国乙卷)已知抛物线C :x 2=2py(y>0)的焦点为F ,且点F 与圆M :x 2+(y+4)2=1上的点最小值为4.(1)求p ;(2)若点P 在M 上,PA ,PB 是C 的两条切线,A ,B 是切点,求PAB ∆面积的最大值.).520;2(最大值为=p 解:(1)焦点坐标为(0,2p ),于4142p=-+是得到p=2;(2)设P(x 0,y 0),切点为),(),,(2211y x B y x A ,设过点),(11y x A 的方程为x 1x=2(y+y 1),联立x 2=4y ,化为关于x 的一元二次方程X 2-2x 1x+4y 1=0,得0=∆,所以x 1x=2(y+y 1)是抛物线上过A 的切线方程,同理可得x 2x=2(y+y 2)是抛物线上过B 点的切线方程.于是过P(x 0,y 0)作抛物线的切线,则过切点A ,B 的方程为x 0x=2(y+y 0),联立抛物线方程消去y 得X 2-2x 0x+4y 0=0,4|4|d AB P 16441||200200202+-=-+=x y x y x x AB 的距离到,点.520S -5)35(151221S 4-114)4(214|4|1644121d ||21S PAB 00020PAB 2020202030202002002020PAB取最小值为时,当,)(,于是)(而所以∆∆∆=-≤≤----=+==++-=+--+=⋅=y y y y y x y x y x x y x y x x AB 2.已知椭圆)0(12222>>=+b a b y a x 的左右焦点分别为F 1,F 2,且|F 1F 2|=2,点M 在直线x=-2上运动,线段MF 2与椭圆相交于N ,当NF 1⊥x 轴时,直线MF 2的斜率的绝对值为42.(1)求椭圆方程;(2)设P 是椭圆上一点,直线PF 1的斜率与直线MF 2的斜率之积为31-,证明直线MP 始终与椭圆相切.(1222=+y x )解:(1).12.2,0122,,22,22,422222222221=+==--=-====y x a a a c b a a b c c a b k NF MF 所以得所以又得为通径的一半,所以(2)设P(x 0,y 0),M(-2,y 1),设过P 的直线方程为1200=+y y xx ,联立椭圆方程消去x 得,.0,12,884024)2(20202020204020022020=∆=+-+=∆=-+-+所以而,y x x y x x x y y y x y .3131,31.121000021-=-⋅+-=⋅=+y x y k k y y x x MF PF 即由是椭圆的切线方程所以.MP .12M )1,2(M ,10000001与椭圆相切即证明直线满足椭圆的切线切线,点于是点=++-+=y y xx y x y x y。

高考高频考点(圆锥曲线)3、圆的切线、切点弦结论

高考高频考点(圆锥曲线)3、圆的切线、切点弦结论

第3讲 圆的切线、切点弦结论知识与方法1求过圆()()222:C x a y b r −+−=上一点()00,P x y 的圆C 的切线的步骤如下:(1)先验证经过点P 且垂直于x 轴的直线是否和圆C 相切,若是,如图1所示,所求切线为0x x =,问题求解完毕;若否,则进行下一步;(2)设切线斜率为k ,如图2所示,由PC ⊥切线,求出k ,用点斜式写出切线的方程,问题求解完毕.上述问题的结论:圆C 上点P 处的切线的方程为()()()()200x a x a y b y b r −−+−−=. 2求过圆()()222:C x a y b r −+−=外一点()00,P x y 的圆C 的切线的步骤如下:(1)先验证过点P 且垂直于x 轴的直线是否和圆相切,若是,如图3所示,其中一条切线为0x x =(2)设切线的斜率为k ,用点斜式写出切线的方程,由圆心到切线的距离d r =,解出k ,求得切线方程.3.过圆()()222:C x a y b r −+−=外一点()00,P x y 作圆C 的两条切线,切点分别为A 和B ,如图4所示,则切点弦AB 所在直线的方程为()()()()200x a x a y b y b r −−+−−=典型例题【例l 】圆()22:14C x y −+=在点(P 处的切线方程为______.【解析】显然点P 在圆C 上,故所求切线的方程为()()0114x −−=,化简得:30x +=.【答案】30x +=变式1 圆22:230C x y x +−−=在点(2,P 处的切线方程为______.【解析】易验证点P 在圆C 上,故所求切线的方程为222302xx +−−⋅−=,化简得:50x −=【反思】过圆C 上的点()00,P x y 作圆C 的切线,则切线的方程可以在圆C 的一般式方程中将2x 换成0x x ,将2y 换成0y y ,将x 换成02x x +,将y 换成02y y+得到.【答案】50x −=变式2 已知圆()22:14C x y −+=,则:(1)圆C 的过点()2,0P −的切线方程为_______;(2)圆C 的过点()3,1Q 的切线方程为_______ 【解析】(1)显然过点P 且斜率不存在的直线2x =−与圆C 不相切, 故可设切线的方程为()2y k x =+,即20kx y k −+=2=,解得:k =,故圆C 的过点P 的切线方程为)25y x =±+; (2)易得过点Q 且斜率不存在的直线3x =与圆C 相切,设另一条切线的方程为()13y m x −=−,即130mx y m −+−=2=,解得:34m =−,所以该切线的方程为()3134y x −=−−,化简得:34130x y +−=, 综上所述,圆C 的过点Q 的切线方程为3x =或34130x y +−=.【答案】(1))2y x =+;(2)3x =或34130x y +−= 【例2】已知圆22:4O x y +=外一点()2,3P ,过点P 作圆C 的两条切线,切点分别为A 和B ,则直线AB 的方程为_______【解析】由题意,切点弦AB 所在直线的方程为234x y +=,即2340x y +−= 【答案】2340x y +−=变式1 已知圆22:2410C x y x y +−−+=外一点()2,1P −,过点P 作圆C 的两条切线,切点分别为A 和B ,则直线AB 的方程为______.【解析】由题意,切点弦AB 所在直线的方程为212241022x yx y −++−+−⋅−⋅+= 化简得:310x y +−=【反思】过圆C 外的点()00,P x y 作圆C 的两条切线,则切点弦所在直线的方程,可在圆C 的一般式方程中将2x 换成0x x ,将2y 换成0y y ,将x 换成02x x +,将y 换成02y y+得到. 【答案】310x y +−=变式2 已知圆22:4Q x y +=,P 为直线:4l y x =+上一点,过点P 作圆O 的两条切线,切点分别为A 和B ,若四边形PAOB 的面积为12,则直线AB 的方程为______.【解析】如图,AP =,所以四边形PAOB 的面积122S AP AO =⨯⋅=由题意,12=,解得:PO =由题意,点P 在直线:4l y x =+上,故可设(),4P m m +,则PO == 解得:6m =−或2,当6m =−时,()6,2P −−,此时直线AB 的方程为624x y −−=,化简得:320x y ++= 当2m =时,()2,6P ,此时直线AB 的方程为264x y +=,化简得:320x y +−=, 所以直线AB 的方程为320x y ++=或320x y +−=【答案】320x y ++=或320x y +−=变式3 已知圆22:4O x y +=,P 为直线:260l x y ++=上一点,过点P 作圆C 的两条切线,切点分别为A 和B ,当四边形PACB 的面积最小时,则直线AB 的方程为______.【解析】如图,AP =,所以四边形PACB 的面积122S AP AO =⨯⋅=PO 最小时,S 也最小, 此时PO l ⊥,易求得PO 的方程为20x y −=,联立20260x y x y −=⎧⎨++=⎩解得:65x =−,125y =−,所以612,55P ⎛⎫−− ⎪⎝⎭,故直线AB 的方程为612455x y −−=,化简得:36100x y ++=.【答案】36100x y ++=变式4 已知直线:4l y x =+与x 轴交于点T ,过直线l 上的动点P 作圆22:4O x y +=的两条切线,切点分别为A 、B ,设AB 中点为M ,则TM 的最小值为( )A. B. D.3【解析】如图,因为点P 在直线:4l y x =+上,所以可设(),4P m m +,则切点弦AB 所在直线的方程为()44mx m y ++=即()440m x y y ++−=,所以直线AB 过定点()1,1Q −,又M 为AB 中点,所以OM AB ⊥,故点M 在以OQ 为直径的圆上,从而点M 的轨迹是以11,22G ⎛⎫− ⎪⎝⎭为半径的圆,显然点()4,0T −在该圆外,所以minTMTG ==.【反思】当动点P 在与圆C 相离的某一定直线上运动时,过点P 作圆C 的两条切线,则切点弦所在的直线是过定点的直线,熟悉这一模型,本题的求解就不困难了. 【答案】A强化训练1.(★★)圆22:40C x y x +−=在点(P 处的切线方程为( )A.20x +−=B.40x +−=C.40x +=D.20x +=【解析】显然点P 在圆C 上,故所求切线的方程为11402xx y +⋅+−⋅=,化简得:20x +=.【答案】D2.(★★)已知圆()22:11C x y +−=,则:(1)圆C 的过点()0,2P −的切线方程为______; (2)圆C 的过点()1,1Q −的切线方程为______.【解析】(1)显然过点P 且斜率不存在的直线0x =与圆C 不相切,故可设切线的方程为()()20y k x −−=−,即20kx y −−=1=,解得:k =±C 的过点P的切线方程为2y =±−;(2)易得过点Q 且斜率不存在的直线1x =与圆C 相切,设另一条切线的方程为()()11y m x −−=−,即10mx y m −−−=1=,解得:34m =−,所以该切线的方程为()()3114y x −−=−−,化简得:3410x y ++=, 综上所述,圆C 的过点Q 的切线方程为1x =或3410x y ++=【答案】(1)2y =±−;(2)1x =或3410x y ++=3.(★★)已知圆()22:12C x y −+=外一点()2,2P ,过点P 作圆C 的两条切线,切点分别为A 和B ,则直线AB 的方程为______.【解析】由题意,切点弦AB 所在直线的方程为()()21122x y −−+=,化简得:230x y +−=. 【答案】230x y +−=4.(★★)已知圆()()22:129C x y −+−=外一点()4,2P −,过点P 作圆C 的两条切线,切点分别为A 和B ,则直线AB 的方程为______.【解析】由题意,切点弦AB 所在直线的方程为()()()()4112229x y −−−+−−=,化简得:45x =−.【答案】45x =−5.(★★)已知圆22:2440C x y x y +−−−=外一点()4,1P −−,过点P 作圆C 的两条切线,切点分别为A 和B ,则直线AB 的方程为______.【解析】由题意,切点弦AB 所在直线的方程为414244022x y x y −−−−−⋅−⋅−=,化简得:5320x y +−=.【答案】5320x y +−=6.(★★★)已知圆22:2440C x y x y +−−−=,P 为直线:20l x y ++=上一点,过点P 作圆C 的两条切线,切点分别为A 和B ,若四边形PACB 的面积为12,则直线AB 的方程为______.【解析】如图,AP ==所以四边形PACB 的面积122S AP AC =⨯⋅=由题意,12=,解得:5PC =,由题意,点P 在直线20x y ++=上,故可设(),2P m m −−,则PC =5=,解得:4m =−或1,当4m =−时()4,2P −,此时直线AB 的方程为4242244022x yx y −++−+−⋅−⋅−=, 化简得:45x =−,当1m =时,()1,3P −, 此时直线AB 的方程为133244022x yx y +−+−−⋅−⋅−=, 化简得:15y =, 所以直线AB 的方程为45x =−或15y =.【答案】45x =−或15y =7.(★★★)已知圆22:2440C x y x y +−−−=,P 为直线:20l x y ++=上一点,过点P 作圆C 的两条切线,切点分别为A 和B ,当四边形PACB 的面积最小时,则直线AB 的方程为______.【解析】()()22222440129x y x y x y +−−−=⇒−+−=⇒圆心()1,2C ,半径3r =.如图,AP ==所以四边形PACB 的面积122S AP AC =⨯⋅= 所以当PC 最小时,S 也最小,此时,PC l ⊥, 故PC 的方程为21y x −=−,即10x y −+=,联立1020x y x y −+=⎧⎨++=⎩解得:32x =−,12y =−,即31,22P ⎛⎫−− ⎪⎝⎭,所以直线AB 的方程为()()311122922x y ⎛⎫⎛⎫−−−+−−−= ⎪ ⎪⎝⎭⎝⎭,化简得:5530x y ++=.【答案】5530x y ++=8.(★★★★)已知P 为抛物线2:4C y x =上的动点,过P 作圆()22:44M x y −+=的两条切线,切点分别为A 和B ,则当四边形PAMB 的面积最小时,直线AB 的方程为______.【解析】如图,AP ==,所以四边形PAMB 的面积122S AP AM =⨯⋅=, 所以当PM 最小时,S 也最小,由题意,()4,0M ,可设()2,2P t t ,则()()2222242244416212PM t t t t t =−+=−+=−+,故当t =PM 取得最小值,此时(2,P ±,所以直线AB 的方程为()()2444x −−±=,化简得:20x ±−=.【答案】20x +−=或20x =−=9.(★★★★)已知圆22:2440C x y x y +−−−=,P 为直线:20l x y ++=上的动点,过点P 作圆C 的两条切线,切点分别为A 和B ,AB 的中点为Q ,若点T 的坐标为111,1010⎛⎫⎪⎝⎭,则TQ 的最小值为______.【解析】()()22222440129x y x y x y +−−−=⇒−+−=⇒圆心()1,2C ,半径3r =, 设(),2P m m −−,则切点弦AB 所在直线的方程为()()()()112229m x m y −−+−−−−=, 化简得:()140m x y x y −+−−=,所以直线AB 过定点41,55K ⎛⎫− ⎪⎝⎭,如图,显然CQ KQ ⊥,所以点Q 的轨迹是以CK 为直径的圆,其圆心为111,1010G ⎛⎫ ⎪⎝⎭,CK ==,因为GT =min 12TQ GT GK =−=.【答案】10。

圆锥曲线的切线问题

圆锥曲线的切线问题

OCDOCD ,令OCD 面积1112112x y y y +=时等号成立,所以OCD 面积的最小值为A ,B ,则D的斜率为1,与直线l 垂直的直线的斜率为-1,过A 点且与直线l 垂直的,直线方程为(13)y x +=-一, 即20x y +-=.6.关于椭圆的切线由下列结论:若11(,)P x y 是椭圆22221(0)x y a b a b+=>>上的一点,则过点P的椭圆的切线方程为11221x x y y a b +=.已知椭圆22:143x y C +=.利用上述结论,则过椭圆C 上的点(1,)(0)P n n >的切线方程为 .【答案】240x y +-=【解析】由题意,将1x =代入椭圆方程22:143x y C +=,得32y =,所以3(1,)2P ,所以过椭圆C 上的点3(1,)2P 的切线方程为32143yx +=,即240x y +-=. 7.已知抛物线C:x 2=4y,直线l:x -y-2=0,设P为直线l上的点,过点P作抛物线C的两条切线PA,PB,其中A,B为切点,当点P(x 0,y 0)为直线l上的定点时,则直线AB的方程 . 【答案】y=12x 0x-y 0.【解析】联立方程得{x 2=4y ,x -y -2=0,消去y,整理得x 2-4x+8=0,Δ=(-4)2-4×8=-16<0,故直线l与抛物线C相离.由结论知,P在抛物线外,故切点弦AB所在的直线方程为x 0x=2(y+y 0),即y=12x 0x-y 0. 8.设椭圆C:x 24+y 23=1,点P (1,32),则椭圆C在点P处的切线方程为 .。

圆锥曲线的切线问题

圆锥曲线的切线问题

圆锥曲线的切线问题圆锥曲线的切线问题有两种处理思路:思路1,导数法,将圆锥曲线方程化为函数y f (x),利用导数法求出函数y f (x)在点(X。

, y。

)处的切线方程,特别是焦点在y轴上常用此法求切线;思路2,根据题中条件设出切线方程,将切线方程代入圆锥切线方程,化为关于x (或y)的一元二次方程,利用切线与圆锥曲线相切的充要条件为判别式0 ,即可解出切线方程,注意关于x (或y)的一元二次方程的二次项系数不为0这一条件,圆锥曲线的切线问题要根据曲线不同,选择不同的方法•类型一导数法求抛物线切线x 2例1【2017课表1,文20】设A B为曲线C申—上两点,A与B的横坐标之和为4 .4(1)求直线A的斜率;(2)设M为曲线Ch—点,C在M处的切线与直线A平行,且AM BM求直线A的方程.【解析】设丄(血,严),召(工衍加)匸则斗乳弓,曲=冷,儿=牛4鼻rl■血于是直线曲的斜率盘.丸二^』丄二』1・曲斗(2)由- ?得*设財皿阴由新设知寻J・解得屯=2・于是赵⑵1)・£设直线血的方程为故线段血的中点为N a f |冏=>仙.将y ="曲代入尸罕得▽-4工-条=£ ,斗即肮时,斗产皇±鸟莎贏.从而眉牛J5 ^-^|=去©莎书.由施设去口|/囲|・2|阙[,即4 + 解得m = 7・所氏直线曲的方程为心小类型二椭圆的切线问题X 2 2例2 (2014广东20)(14分)已知椭圆C: l(a b 0)的一个焦点为(5, 0),a b离心率为兰.3(1)求椭圆C的标准方程;(2)若动点P(X o , y o )为椭圆外一点,且点P到椭圆C的两条切线相互垂直,求点P的轨迹方程•【解析】(1) = = — = —= —;-'-0=3;—C 的标准方程—= 1a a 39 4-⑵ 若一杀切线垂直芫轴,则昇一条亶线垂宜于P轴,赃文徉的点P共4个,其坐标分别为(6 ±2>, (3, 土4 •若两条切线不垂直于坐标轴,设切线方程为厂旳二忒兀-吨),即y二虹工-耳〉十卩”代入柵圆方程二十4 = 1并整理得(9P十*)疋十口烈%—乓)工十9「(凡一叫尸一4]= 0,依趣鼠A-0,即:(1阴%厂住)工[a厂帆乎一4]少酬+ 4*山即4<片-gy - 4<9P + 4匸0,二(琦17记-23北+》;7=0」丁两棊切线垂直…■辭=* 即凹二=—1, •:疋+% -9显靱-骑也),($±2)也满足上述方程;二点F的轨迹方=类型三直线与椭圆的一个交点2y例3.【2013年高考安徽卷】已知椭圆r 1(a b 0)的焦距为4 ,且过点bP(2, 3).(i)求椭圆C勺方程;(n)设Q(X0, y°)(X0 y 0)为椭圆C上一点,过点Q作x轴的垂线,垂足为E .取点A(0,2 2),连接AE,过点A作AE的垂线交X轴于点D •点G是点D关于y轴的对称点,作直线QG,问这样作出的直线QG是否与椭圆C-定有唯一的公共点?并说明理由•【解析】(1)因为椭圆过点P( 2, 3)X 2 2 2 3 ,--1 且a2 b2 c2a b2 2 2b 4c 4 椭圆C 的方程是2 2又 X o2 y o 8,求得最后o所以直线QG 与椭圆只有一个公共点 类型四 待定系数求抛物线的切线问题 例4【2oi3年高考广东卷】已知抛物线 C 的顶点为原点,其焦点F 0, C I : x y 20的距离为 丝 •设P 为直线1上的点,过点 P 作抛物线2PA, PB ,其中A, B 为切点.(1) 求抛物线C 的方程;(2) 当点P X o , y o 为直线I 上的定点时,求直线 AB 的方程;⑶当点P 在直线I 上移动时,求 AF BF 的最小值.【解析】(】〕依題意川二 - 尸—= ------ ?解得& = 1〔负根舍去〉则QG 的直线方程: y oy 。

专题14 圆锥曲线的切线问题

专题14 圆锥曲线的切线问题

专题14 圆锥曲线的切线问题一、结论圆锥曲线的切线问题常用方法有几何法,代数法:比如求圆的切线,常用圆心到直线的距离等于半径来解决切线问题,也可以联立直线与圆的方程根据0∆=来求解;比如涉及到椭圆的切线问题,也常常联立直线与椭圆的方程根据0∆=来求解; 对于抛物线的切线问题,可以联立,有时也可以通过求导来求解. 而对于这些圆锥曲线也常常存在一些特殊的求切线公式:1.过圆C :222()()x a y b R −+−=上一点00(,)P x y 的切线方程为200()()()()x a x a y b y b R −−+−−=.2.过椭圆22221x y a b+=上一点00(,)P x y 的切线方程为00221x x y ya b +=.3.已知点00(,)M x y ,抛物线C :22(0)y px p =≠和直线l :00()y y p x x =+.(1)当点00(,)M x y 在抛物线C 上时,直线l 与抛物线C 相切,其中M 为切点,l 为切线. (2)当点00(,)M x y 在抛物线C 外时,直线l 与抛物线C 相交,其中两交点与点M 的连线分别是抛物线的切线,即直线l 为切点弦所在的直线.(3)当点00(,)M x y 在抛物线C 内时,直线l 与抛物线C 相离.二、典型例题1.(2021·安徽·六安一中高二期末(文))已知椭圆具有如下性质:若椭圆的方程为()222210x y a b a b +=>>,则椭圆在其上一点()00,A x y 处的切线方程为00221x x y y a b +=,试运用该性质解决以下问题;椭圆221:12x C y +=,点B 为1C 在第一象限中的任意一点,过B 作1C 的切线l ,l 分别与x 轴和y 轴的正半轴交于,C D 两点,则OCD 面积的最小值为( )A .1 BCD .2【答案】C 【详解】设1111(,),(0,0)B x y x y >>,由题意得,过点B 的切线l 的方程为:1112x xy y +=, 令0y =,可得12(,0)C x ,令0x =,可得11(0,)D y ,所以OCD 面积111112112S x y x y =⨯⨯=,又点B 在椭圆上,所以221112x y +=,所以121111121111122x y S x y x y x x y y +===+≥=当且仅当11112x yy x =,即111,x y = 所以OCD故选:C【反思】过椭圆()222210x y a b a b+=>>上一点()00,A x y 作切线,切线方程为:00221x x y ya b+=,该结论可以在小题中直接使用,但是在解答题中,需先证后用,所以在解答题中不建议直接使用该公式.2.(2020·江西吉安·高二期末(文))已知过圆锥曲线221x y m n+=上一点()00,P x y 的切线方程为001x x y y m n +=.过椭圆221124x y +=上的点()3,1A −作椭圆的切线l ,则过A 点且与直线l 垂直的直线方程为( ) A .30x y −−= B .-20x y += C .2330x y +−= D .3100x y −−=【答案】B 【详解】过椭圆221124x y +=上的点()3, 1A −的切线l 的方程为()31124y x −+=,即40x y −−=,切线l的斜率为1.与直线l 垂直的直线的斜率为-1,过A 点且与直线l 垂直的直线方程为()13y x +=−−,即20x y +−=. 故选:B【反思】根据题中信息,直接代入公式,但是在代入切线方程为001x x y ym n+=注意不要带错,通过对比本题信息,12m =,4n =,03x =,01y =−,将这些数字代入公式,可求出切线l ,再利用直线垂直的性质求解.3.(2022·江苏南通·一模)过点()1,1P 作圆22:2C x y +=的切线交坐标轴于点A 、B ,则PA PB ⋅=_________.【答案】2− 【详解】圆C 的圆心为()0,0C ,10110CP k −==−, 因为22112+=,则点P 在圆C 上,所以,PC AB ⊥,所以,直线AB 的斜率为1AB k =−,故直线AB 的方程为()11y x −=−−,即20x y +−=, 直线20x y +−=交x 轴于点()2,0A ,交y 轴于点()0,2B , 所以,()1,1PA =−,()1,1PB =−,因此,112PA PB ⋅=−−=−. 故答案为:2−.另解:过圆C :222()()x a y b R −+−=上一点00(,)P x y 的切线方程为200()()()()x a x a y b y b R −−+−−=.可知01x =,01y =;0a b ==,22R =,代入计算得到过点()1,1P 作圆22:2C x y +=的切线为:(10)(0)(10)(0)2x y −−+−−=,整理得:20x y +−=,直线20x y +−=交x 轴于点()2,0A ,交y 轴于点()0,2B , 所以,()1,1PA =−,()1,1PB =−,因此,112PA PB ⋅=−−=−. 故答案为:2−.【反思】本题中提供了常规方法和使用二级结论的解法,特别提醒同学们,二级结论的公式代入数字时,最忌讳代入错误,所以需要特别仔细。

圆锥曲线的切线方程的三种求法

圆锥曲线的切线方程的三种求法

圆锥曲线的切线方程问题侧重于考查圆锥曲线的性质、标准方程以及直线方程的几种形式.此类问题的难度一般不大,对同学们的抽象思维和分析能力的要求较高.下面主要探讨一下求圆锥曲线的切线方程的三种方法.一、向量法在求圆的切线方程时,可巧妙利用圆心和切点的连线垂直于切线的性质来建立关系式.在运用向量法解题时,可先给各条线段赋予方向,求得各条直线的方向向量,然后根据“互相垂直的两个向量的数量积为0”的性质建立圆心、切点、切线之间的关系式,从而求得切线的方向向量以及直线的方程.例1.已知圆O的方程是(x-a)2+(y-b)2=r2,求经过圆上一点M(x0,y0)的圆的切线l的方程.解:设切线l上任意一点N的坐标是(x,y).由(x-a)2+(y-b)2=r2得点O的坐标是(a,b),所以OM=(x0-a,y0-b), MN=(x-x0,y-y0).又因为OM∙MN=0,即[(x-a)-(x0-a)](x0-a)+[(y-b)-(y0-b)](y0-b)=0,所以过圆上的点M(x0,y0)的圆的切线l的方程是:(x0-a)(x-a)+(y0-b)(y-b)=[(x0-a)2+(y0-b)2],所以l的方程:(x0-a)(x-a)+(y0-b)(y-b)=r2.由已知圆的方程与圆上一点的坐标,可得出圆心的坐标,再设出切线上任意一点N的坐标,即可得到与切线垂直的向量,根据向量运算便可求得切线的方程.二、导数法我们知道,导数的几何意义是:该函数曲线在某一点上的切线的斜率,那么在求圆锥曲线的切线方程时,可对曲线的方程进行求导,便可得到曲线在切点处切线的斜率或切点的坐标,根据直线的点斜式方程即可求得切线的方程.例2.设A,B为曲线C:y=x24上两点,A与B的横坐标之和为4.设M为曲线C:y=x24上一点,C在M处的切线与直线AB平行,且AB⊥BM,求直线AB的方程.解:设A(x1,y1),B(x2,y2),则x1≠x2,y1=x124,y2=x224,x1+x2=4,于是直线AB的斜率为k=y1-y2x-x=x1+x24=1.由y=x24,得y,=x2.设M(x3,y3),由题意可知:x32=1,解得x3=2,则M(2,1).设直线AB的方程为y=x+m,故线段AB的中点为N(2,2-m),||MN=||m+1,将y=x+m代入y=x24得x2-4x-4m=0.当Δ=16()m+1>0,即当m>-1时,x1=2+2m+1或x2=2-2m+1,从而可得||AB=2||x1-x2=42(m+1),由||AB=2||MN得42(m+1)=2(m+1),解得m=7,所以直线AB的方程为y=x+7.在求得直线AB的斜率后,便可运用导数法对抛物线的方程求导,得出M点的坐标,再根据韦达定理和弦长公式求得切线的方程.三、几何性质法在解答圆锥曲线问题时,我们经常要用到椭圆、双曲线以及抛物线的几何性质,并结合几何图形,如三角形、梯形、平行四边形的性质来解题.采用几何性质法,关键要根据题意绘制出几何图形,明确各个点、直线、曲线的位置关系,然后运用几何性质来解题.例3.求抛物线C:y2=8x上经过点M(8,8)的切线l的方程.解:由抛物线C:y2=8x可得其焦点F为(2,0),准线方程为:x=-2,过点M(8,8)作准线的垂线,设垂足为N,则N的坐标为(-2,8),又设FN的中点为P,则P的坐标为(0,4),故直线PM的方程为:y=8-48x+4,即x-2y+8=0,所以切线l的方程是:x-2y+8=0.我们根据抛物线的几何性质作出准线,根据图形明确各点、曲线、切线的位置,根据点、直线之间的位置关系以及中点坐标公式建立关系式,求得切线的斜率与方程.相比较而言,几何性质法和导数法比较常用,运用几何性质法和向量法解题过程中的运算量较小.在求圆锥曲线的切线方程时,同学们要结合图形来解题,这样不仅能降低解题的难度,还能提升解题的效率.(作者单位:江苏省阜宁中学)周红芹解题宝典40。

秒杀题型12 圆锥曲线中的切线(原卷版)

秒杀题型12 圆锥曲线中的切线(原卷版)

说明:圆锥曲线中的切线问题是高考压轴题的一大类型,共分下面四种题型,在高考中主要以考查重要结论为主,且重要结论的证明步骤固定,所以要求考生熟记下面的步骤,在高考中直接套用即可。

【秒杀题型】:玩转压轴题之三大曲线中的切线『秒杀策略』:当抛物线开口向上或开口向下时(此时抛物线可看作函数),主要利用导数解决,当抛物线 开口向左或开口向右时利用0=∆解决。

椭圆利用0=∆解决。

【题型一】:过曲线上一点作曲线的切线。

『秒杀策略』:秒杀公式:熟记:①过椭圆12222=+by a x 上一点()00,y x P 作切线,则切线方程为:12020=+byy a x x 。

证明:(此步骤必须牢记,在大题中要体现)设过()00,y x P 的切线方程为:()00x x k y y -=-,与椭圆方程联立,利用0=∆。

熟记:②过抛物线px y 22=上一点()00,y x P 作切线,则切线方程为:)(00x x p y y +=。

证明:(此步骤必须牢记,在大题中要体现)设过()00,y x P 的切线方程为:()00x x k y y -=-,与抛物线方程联立,利用0=∆。

若为开口向上或开口向下的抛物线,求导,代点,求出切线的斜率,利用点斜式求出切线的方程 。

〖母题〗抛物线2y x =上到直线24x y -=的距离最小的点的坐标是 ( )A.11,24⎛⎫⎪⎝⎭ B.()1,1 C.39,24⎛⎫⎪⎝⎭D.()2,4 1.(高考题)抛物线2y x =-上的点到直线4380x y +-=距离的最小值是 ( ) A.43 B.75 C.85D.3 【题型二】:过曲线外一点作曲线的切线。

『秒杀策略』:秒杀公式:熟记:①过椭圆12222=+by a x 外一点()00,y x P 作椭圆的两条切线,则两切点连线方程为:12020=+byy a x x 。

证明:(此步骤必须牢记,在大题中要体现)设两切点为()11,y x A 、()22,y x B ,则切线PA :12121=+byy a x x ;同理,切线PB :12222=+b yy a x x ;点P 在两切线上,则有:1201201=+b y y a x x ①,1202202=+by y a x x ②,构造直线l :12020=+b y y a x x ,则由①②可知点A 、B 均在直线l 上,即直线AB 的方程为12020=+byy a x x 。

高考数学二轮专题-圆锥曲线中的双切线问题+课件

高考数学二轮专题-圆锥曲线中的双切线问题+课件

y2
(x x1)
y
4 y1 y2
x
y1 y2 y1 y2
x2 4y
联立
y
4 y1
y2
x
y1 y2 ,整理可得( y1 y1 y2
y2 )x2
16x 4 y1 y2
0
又因为A1A2与x2 4 y相切,故 162 16( y1 y2 ) y1 y2 0即:y1 y22 y12 y2 16 0,
2 y1 y3 1 1 ( y1 y3)2
(2 y1 y2 )2 1 ( y1 y2 )2 整理可得:(y12 1) y22 2 y1 y2 3 y12 0
同理可得:(y12 1) y32 2 y1 y3 3 y12 0
即y2 , y3为方程( y12 1) y2 2 y1 y
课后作业
1、已知C :
x2 a2
y2 b2
1(a
b
0)的一个焦点为(
5,0),离心率
为 5.
3
(1)求椭圆C的方程;
(2)若动点P(x0, y0)为椭圆C外一点,且点P到椭圆C的两 条切线相互垂直,求点P的轨迹方程.
课后作业
2、已知圆G : (x 2)2 y2 r2是椭圆 x2 y2 1的内接三角形
同理可得:y1 y32 y12 y3 16 0,所以y2,y3为方程y1 y2 y12 y 16 0的两根
y2 y2
y3
y3
16 y1
y1
,
而lA2
A3
:
y
y2
4
y3
x
y2 y3 y2 y3
4 y1
x
16 y12
x2 4y
联立
y

圆锥曲线的切线与法线方程的求解技巧总结

圆锥曲线的切线与法线方程的求解技巧总结

圆锥曲线的切线与法线方程的求解技巧总结圆锥曲线是数学中一个重要的概念,在几何学、物理学以及工程学等许多领域都有广泛的应用。

对于圆锥曲线上的任意一点,切线和法线是与其切点和法点相关联的重要性质。

在本文中,我们将总结一些求解圆锥曲线切线和法线方程的技巧与方法。

一、椭圆的切线与法线方程椭圆是圆锥曲线中的一种,具有许多重要的特性。

对于椭圆上的任意一点P(x,y),我们希望求解它的切线和法线方程。

1. 切线方程的求解对于椭圆上一点P(x,y),其切线的斜率可以通过对椭圆的导数求解得到。

椭圆的隐式方程可以表示为:Ax² + By² = C,其中A、B、C为常数。

首先,对隐式方程两边同时求导,得到2Ax + 2By(dy/dx) = 0。

然后解出dy/dx,即切线的斜率。

接下来,通过点斜式的切线方程:y - y₁ = k(x - x₁),其中(k为切线的斜率,(x₁,y₁)为切点坐标),我们可以代入已知点P(x,y)和切线斜率,求解出切线方程。

2. 法线方程的求解对于椭圆上一点P(x,y),其法线与切线垂直,因此法线的斜率可以通过切线斜率的倒数得到。

我们可以通过点斜式的法线方程:y - y₁ = (-1/k)(x - x₁),其中(k为切线的斜率,(x₁,y₁)为切点坐标),代入已知点P(x,y)和切线斜率的倒数,求解出法线方程。

二、双曲线的切线与法线方程双曲线是圆锥曲线中的另一类,其形状与椭圆类似,但具有不同的数学性质。

对于双曲线上的任意一点P(x,y),我们也可以求解其切线和法线方程。

1. 切线方程的求解双曲线的隐式方程可以表示为:Ax² - By² = C,其中A、B、C为常数。

我们同样通过对隐式方程两边同时求导,得到2Ax - 2By(dy/dx) = 0。

然后解出dy/dx,即切线的斜率。

利用点斜式的切线方程,代入切点坐标和切线斜率,求解出切线方程。

2. 法线方程的求解与椭圆类似,双曲线上任意一点P(x,y)的法线与切线垂直,因此法线的斜率可以通过切线斜率的倒数得到。

15.9圆锥曲线的切线问题

15.9圆锥曲线的切线问题

圆锥曲线的切线方程1 经过圆222r y x =+上一点),(00y x M 的切线方程为200r y y x x =+;2当),(00y x M 在圆外时,过M 点引切线有且只有两条,过两切点的弦所在直线方程为200r y y x x =+。

2过椭圆)0(12222>>=+b a by a x 上一点),(00y x M 切线方程为12020=+b y y a x x ;证明:(1)22221x y a b+=的两边对x 求导,得22220x yy a b '+=,得0202x x b x y a y ='=-,由点斜式得切线方程为200020()b x y y x x a y -=--,即22000022221x x y y x y a b a b +=+= 。

解:22221x y a b+=的两边对x 求导,得22220x yy a b '+=,得0202x x b x y a y ='=-,由点斜式得切线方程为200020()b x y y x x a y -=--即22000022221x x y y x y a b a b +=+=即00221x x y y a b +=当),(00y x M 在椭圆12222=+by a x 的外部时,过M 引切线有两条,过两切点的弦所在直线方程为:12020=+byy a x x证明:设过椭圆)0(12222>>=+b a by a x 外一点),(00y x M 引两条切线,切点分别为),(11y x A 、),(22y x B 。

由(1)可知过A 、B 两点的切线方程分别为:12121=+b yy a x x 、12222=+b yy a x x 。

又因),(00y x M 是两条切线的交点,所以有1201201=+b y y a x x 、1202202=+b y y a x x 。

观察以上两个等式,发现),(11y x A 、),(22y x B 满足直线12020=+b y y a x x ,所以过两切点A 、B 两点的直线方程为12020=+byy a x x 。

有关一类圆锥曲线的切线和切点弦结论的推理和证明

有关一类圆锥曲线的切线和切点弦结论的推理和证明

知识导航圆锥曲线问题是高考考查的重点,其中有关圆锥曲线的切线和切点弦问题是比较常见的问题,此类问题主要考查直线与圆锥曲线相切的位置关系,与圆的切线问题较为相似.笔者总结了一些有关圆锥曲线的切线和切点弦的结论,以帮助同学们提升解答此类问题的效率.结论1:若点P (x 0,y 0)在椭圆x 2a 2+y 2b2=1 上,则在点P 处的切线的方程为x 0x a 2+y 0yb2=1 .证明:因为点P 在椭圆上,所以x 02a 2+y 02b2=1 ,①则直线x 0x a 2+y 0yb2=1 必过点P ,所以直线x 0x a 2+y 0y b 2=1与椭圆x 2a 2+y 2b2=1 至少有一个公共点P ,假设直线l 与椭圆有不同于点P 的公共点Q (x 1,y 1),则x 12a 2+y 12b2=1 ②,x 0x 1a 2+y 0y 1b 2=1 ③,由①②③得:(x 0-x 1)2a 2+(y 0-y 1)2b 2=0,当x 0=x 1,y 0=y 1,即点P 与点Q 重合时,直线l 与椭圆有唯一的公共点,此时直线l 是椭圆的切线,其方程为x 0x a 2+y 0y b2=1.这里采用了间接法,假设直线l 与椭圆还有其他的公共点,通过联立方程,从而证明出结论.此类问题具有普遍性,我们可以将该结论推广到双曲线、抛物线中,得到如下结论.结论2:若点P (x 0,y 0)在双曲线x 2a 2-y 2b2=1上,则在点P 处的切线的方程为x 0x 1a 2-y 0y1b2=1 .结论3:若点P (x 0,y 0)在抛物线y 2=2px 上,则在点P 处的切线的方程为y 0y =p (x +x 0).此类结论适用于解答有关圆锥曲线的切线问题,运用上述结论可以快速求出有关圆锥曲线的切线方程.相比较于常规方法:联立直线与圆锥曲线方程,通过判别式Δ判定直线与圆锥曲线相切,要简便很多.结论4:已知椭圆为x 2a 2+y 2b2=1,若点M (x 0,y 0)为椭圆外一点,由点M 引椭圆的两条切线,则切点弦直线的方程为x 0x a 2+y 0yb2=1.证明:设A (x 1,y 1),B (x 2,y 2),因为点A ,B 在椭圆上,由结论1可得在A 点处的切线方程为x 1x a 2+y 1yb2=1,M 经过该切线,所以x 0x 1a 2+y 0y 1b2=1①,同理,在B 点处的切线为x 2x a 2+y 2yb2=1,所以x 0x 2a 2+y 0y 2b2=1②.由①②可得,过点A ,B 切点弦直线为x 0x a 2+y 0yb2=1.我们可以将该结论推广到双曲线、抛物线中,得到如下结论.结论5:若点M (x 0,y 0)为双曲线外一点,由点M 引双曲线的两条切线,则切点弦直线的方程为xx 0a 2-yy 0b2=1.结论6:若点M (x 0,y 0)为抛物线外一点,由M 点向抛物线引两条切线,则切点弦直线的方程为y 0y =p ()x +x 0.以上结论均可用证明椭圆的切点弦直线的方法来证明.例题:若椭圆x 2a 2+y 2b 2=1的右焦点为F ()c ,0,点M 为直线x =a 2c上任意一点,由点M 向椭圆引两条切线,其切点为A ,B ,证明:直线AB 恒过焦点F .解:设点M æèçöø÷a 2c ,m ,由结论4可得切点弦直线AB的方程为x c +myb2=1,将F ()c ,0代入上述方程,满足方程,故AB 恒过焦点F .可见,运用有关圆锥曲线的切线和切点弦的结论来解题,能简化解题的过程,有效提升解题的效率.高中数学题型多变,解法多样,同学们在日常学习中要注意总结解题的规律,将同类型的题目放在一起进行对比,归纳出一类问题的通性通法,这样当再次遇到同类问题的时候便能轻松应对.(作者单位:山东省淄博实验中学)张春宁35。

几个圆锥曲线切线问题的统一性质

几个圆锥曲线切线问题的统一性质
’ X 0 ‘ Y o:一

于是
:一




当 Y< 0时, 曲线为
y一
从 而切 线方 程为 ( ) , )一 ‘ ( ,
一 √ 凡 一 一√ 一 √ 。 m ,
。 — 丽 X 2,
。 X o ‘ Y o=一

从而 c o s / _P F A= =
过 点 P作 P A, P B切 曲线 于点 A, B, 则直线 A B过 定
点C ( p m, q n ) . 若 曲线 为 椭 圆或 双 曲 线 , 且 点 P在 该 曲线 的

条 准线上 , 则 直线 A B过该 曲线 相应 的焦点 F .
1 — — —
k 2 , 础 0—2k myo一砒 0 n y o—k 2 my o一2 k n x 。 ~ , Yl 百 i 一 ;
— —
±√ m, 也满足上述结论. 因此上述结论成立.
2 2
1 1 , + m
r t 十 n t
性质 2 若 点 P( 。 , Y o ) 为 曲线
( 3 ) 图像 的对称性相似 : 圆和椭 圆、 双 曲线 的
图像 均为 中心对 称 和轴 对称 图形 . 2 有 心 二次 曲线切 线 问题 的 2个 引理
. ,




引理 1 直 线 Z 和 曲线 +y =1 ( mn ≠0 ) 相
HL 1 1 ,
显然 , 若该 曲线为圆, 即当 m= n= r 时, 切 线 方程 为 # d O X+Y o Y=r 2 ; 若 该 曲线 为 椭 圆 , 即 当 m=
性质 8 若 点 P( 。 , y 。 ) 为 椭 圆或 双 曲线

圆锥曲线专题——切线问题

圆锥曲线专题——切线问题

第1页(共9页)圆锥曲线专题——切线问题1.已知抛物线C 的顶点为原点,其焦点(0F ,)(0)c c >到直线:20l x y --=设P 为直线l 上的点,过点P 作抛物线C 的两条切线PA ,PB ,其中A ,B 为切点. (1)求抛物线C 的方程;(2)当点0(P x ,0)y 为直线l 上的定点时,求直线AB 的方程; (3)当点P 在直线l 上移动时,求||||AF BF 的最小值.【解答】解:(1)焦点(0F ,)(0)c c >到直线:20l x y --=的距离d ==,解得1c =,所以抛物线C 的方程为24x y =. (2)设2111(,)4A x x ,2221(,)4B x x ,由(1)得抛物线C 的方程为214y x =,12y x '=, 所以切线PA ,PB 的斜率分别为112x ,212x ,所以211111:()42PA y x x x x -=-①222211:()42PB y x x x x -=-②联立①②可得点P 的坐标为1212(,)24x x x x +,即1202x x x +=,1204x xy =, 又因为切线PA 的斜率为2011011142y x x x x -=-,整理得201011124y x x x =-, 直线AB 的斜率221201212114442x x x x x k x x -+===-, 所以直线AB 的方程为210111()42y x x x x -=-,第2页(共9页)整理得20101111224y x x x x x =-+,即0012y x x y =-, 因为点0(P x ,0)y 为直线:20l x y --=上的点,所以0020x y --=,即002y x =-,所以直线AB 的方程为00220x x y y --=.(3)根据抛物线的定义,有211||14AF x =+,221||14BF x =+, 所以2222221212121111||||(1)(1)()144164AF BF x x x x x x =++=+++22212121211[()2]1164x x x x x x =++-+, 由(2)得1202x x x +=,1204x x y =,002x y =+, 所以22222222000000000000119||||(48)121(2)212252()422AF BF y x y x y y y y y y y y =+-+=+-+=++-+=++=++.所以当012y =-时,||||AF BF 的最小值为92.2.已知动圆C 过定点(0,2)M ,且在x 轴上截得弦长为4.设该动圆圆心的轨迹为曲线C . (Ⅰ)求曲线C 方程;(Ⅱ)点A 为直线:20l x y --=上任意一点,过A 作曲线C 的切线,切点分别为P 、Q ,APQ ∆面积的最小值及此时点A 的坐标.【解答】解:(Ⅰ)设动圆圆心坐标为(,)C x y ,⋯(2分)第3页(共9页)化简得24x y =.∴曲线C 方程为24x y =.⋯(4分)(Ⅱ)设直线PQ 的方程为y kx b =+,由24x y y kx b⎧=⎨=+⎩,消去y 得2440x kx b --=, 设1(P x ,1)y ,2(Q x ,2)y ,则121244x x kx x b +=⎧⎨=-⎩,且△21616k b =+.⋯(6分) 以点P 为切点的切线的斜率为112P k x =, 其切线方程为1111()2y y x x x -=-, 即2111124y x x x =-, 同理过点Q 的切线的方程为2221124y x x x =-, 设两条切线的交点为(A A x ,)A y 在直线20x y --=上, 解得1212224A A x x x k x x y b +⎧==⎪⎪⎨⎪==-⎪⎩,即(2,)A k b -,则:220k b +-=,即22b k =-,⋯(8分)代入△222161616323216(1)160k b k k k =+=+-=-+>,12|||PQ x x ∴=-=,第4页(共9页)(2,)A k b -到直线PQ的距离为2d =⋯(10分)32221||4||4()2APQS PQ d k b k b ∆∴==++ 3224[(1)1]k =-+,∴当1k =时,APQ S ∆最小,其最小值为4,此时点A 的坐标为(2,0).⋯(12分)(1)求椭圆C 的方程和其“准圆”方程;(2)点P 是椭圆C 的“准圆”上的一个动点,过动点P 作直线1l,2l ,使得1l ,2l与椭圆C 都只有一个交点,试判断1l ,2l 是否垂直,并说明理由.【解答】解:(1)由题意可得,c a ==, 则2221b a c =-=,则椭圆C的方程为2213x y +=.其“准圆”方程为224xy +=.(2)①设(P 1)±,则过P的直线1:l x =则2l 的斜率0k =,即它们垂直;②设(P m ,)(n m ≠,224m n +=,过P 的直线为()y n k x m -=-,第5页(共9页)联立椭圆方程,消去y ,得到222(13)6()3()30k x k n km x n km ++-+--=, 由于直线与椭圆C 都只有一个交点,则△0=, 即222236()4(13)3[()1]0k n km k n km --+--=,化简得,222(3)210m k kmn n -++-=,22122211(4)133n m k k m m ---===---.即1l ,2l 垂直.综上,当P在直线x =1l ,2l 垂直;当P不在直线x =上时,1l ,2l 垂直.4.已知抛物线2:2C y x =,直线2y kx =+交C 于A ,B 两点,M 是线段AB 的中点,过M 作x 轴的垂线交C 于点N .(Ⅰ)证明:抛物线C 在点N 处的切线与AB 平行;(Ⅱ)是否存在实数k 使0NA NB =,若存在,求k 的值;若不存在,说明理由.【解答】解:(Ⅰ)如图,设1(A x ,212)x ,2(B x ,222)x , 把2y kx =+代入22y x =得2220x kx --=,由韦达定理得122kx x +=,121x x =-, ∴1224N M x x kx x +===,N ∴点的坐标为2(,)48k k .第6页(共9页)设抛物线在点N 处的切线l 的方程为2()84k ky m x -=-,将22y x =代入上式得222048mk k x mx -+-=,直线l 与抛物线C 相切,∴222228()2()048mk k m m mk k m k =--=-+=-=,m k ∴=,即//l AB .(Ⅱ)假设存在实数k ,使0NA NB =,则NA NB ⊥,又M 是AB 的中点,∴1||||2MN AB =.由(Ⅰ)知221212121111()(22)[()4](4)2222224M k k y y y kx kx k x x =+=+++=++=+=+.MN x ⊥轴,∴22216||||2488M N k k k MN y y +=-=+-=.又2222221212121||||1()41()4(1)11622k AB x x k x x x x k k k =-=++-=+-⨯-=++.∴22161168k k +=+,解得2k =±.即存在2k =±,使0NA NB =.第7页(共9页)5.已知动圆22223a cb ac ∴+-=,2b =过定点(0,2)M ,且在x 轴上截得弦长为4.设该动圆圆心的轨迹为曲线C (1)求曲线C 方程;(2)点A 为直线:20l x y --=上任意一点,过A 作曲线C 的切线,切点分别为P 、Q ,APQ ∆面积的最小值及此时点A 的坐标.【解答】解:(1)设动圆圆心坐标为(,)C x y 222(2)4x y y +-=+化简得24x y =.(2)设直线PQ 的方程为y kx b =+,由24x y y kx b⎧=⎨=+⎩消去y 得2440x kx b --=, 设1(P x ,1)y ,2(Q x ,2)y ,124x x k ∴+=,124x x b =-,且△216160k b =+>,以点P 为切点的切线的斜率为112y x '=,其切线方程为:21111()42x y x x x -=-,化为2111124y x x x =-, 同理过点Q 的切线的方程为2221124y x x x =-. 设两条切线的交点为0(A x ,0)y 在直线20x y --=上,第8页(共9页)联立21122211241124y x x x y x x x ⎧=-⎪⎪⎨⎪=-⎪⎩,解得120120224x x x k x x y b +⎧==⎪⎪⎨⎪==-⎪⎩,即(2,)A k b -.220k b ∴+-=,即22b k =-,代入△0>,可得216(1)160k -+>.||PQ ∴点A 到直线PQ的距离2d ,332222221||4||4()4[(1)1]2APQS PQ d k b k b k b k ∆∴==++=+=-+, 当且仅当1k =时,APQ S ∆取得最小值,其最小值为4,此时点A 的坐标为(2,0).(Ⅰ)求椭圆E 的方程;直线AB 恒过定点,并求出定点的坐标;(Ⅲ)记点C 为(Ⅱ)中直线AB 恒过的定点,问否存在实数λ,使得|||||||AC BC AC BC λ+=成立,若成立求出λ的值,若不存在,请说明理由.【解答】()I 解:椭圆方程22221(0)x y a b a b+=>>的焦点是(1,0)-,故1c =,又12c a =,所以2a =,b =第9页(共9页)所以所求的椭圆方程为22143x y +=.⋯(4分)()II 证明:设切点坐标为1(A x ,1)y ,2(B x ,2)y ,直线l 上一点M 的坐标(4,)t ,则切线方程分别为11143x x y y +=,22143x x y y +=, 又两切线均过点M ,可得点A ,B 的坐标都适合方程13tx y +=,故直线AB 的方程是13t x y +=,显然直线13tx y +=恒过点(1,0),故直线AB 恒过定点(1,0)C .⋯(9分) ()III 解:将直线AB 的方程13tx y +=,代入椭圆方程,整理得22(4)2903t y ty +--=,所以韦达定理可得:122612t y y t +=+,1222712y y t=-+, 不妨设10y >,20y <,1||AC y =,同理2||BC y =,⋯(12分)所以212111114494()||||3t AC BC y y ++=-==,即:4||||||||3AC BC AC BC +=, 所以43λ=⋯(14分)。

切线问题的解题技巧

切线问题的解题技巧

切线问题的解题技巧
切线问题是高中圆锥曲线考试中常见的问题之一,通常需要一定的技巧和方法来解决。

以下是一些解决切线问题的常用技巧:
1. 利用三角形面积公式和椭圆切线方程的关系,可以快速求出椭圆上点的横坐标或纵坐标。

2. 利用椭圆的焦点三角形面积公式和椭圆的离心率的关系,可以快速求出椭圆上点的横坐标或纵坐标。

3. 利用椭圆的中点弦公式和椭圆的切线斜率的关系,可以快速求出椭圆上点的横坐标或纵坐标。

4. 利用抛物线的焦点弦公式和抛物线的切线斜率的关系,可以快速求出抛物线上点的横坐标或纵坐标。

5. 利用圆锥曲线的基本性质,例如离心率、截距、中点弦等,可以方便地求解圆锥曲线上的点。

6. 对于一些复杂的切线问题,可以利用仿射变换的方法将其转化为简单的问题,从而方便求解。

以上是解决切线问题的常用技巧,在高中圆锥曲线考试中,考生需要熟练掌握这些技巧,并能够灵活运用来解决各种切线问题。

同时,考生还需要具备扎实的数学基础知识和较强的思维能力,才能更好地应对高中圆锥曲线考试。

  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
相关文档
最新文档