催化剂及助剂
三剂(催化剂、助剂、添加剂)管理规定
东营胜星化工有限公司“三剂”管理办法第一条为加强三剂管理,明确各级的责任,实现“三剂”管理的程序化、规范化,确实发挥“三剂”在生产中的作用,进一步降低成本,提高经济效益和企业竞争力,特制定本规定。
第二条本办法所指三剂的范围:公司各生产装置在生产过程中连续加入或一次性添加并需定期更换的催化剂、助剂和添加剂等化学物品;由于设备、产品质量、环保等要求进行外购的各种循环水药剂、防腐剂、酸碱的添加剂和助剂、石油产品调和剂均按照“三剂”进行管理。
第三条机构与职责技术部作为东营胜星化工有限公司“三剂”的归口管理部门,主要职责如下:1、组织制定三剂管理办法;2、负责审批公司“三剂”的采购计划和报废申请报告,并监督、检查执行情况;3、负责考核各单位三剂管理情况。
各使用车间主要职责如下:1、负责三剂的正确使用和管理;2、做好三剂使用情况跟踪;安全环保部主要职责如下:1、负责对三剂的安全、环保认证等方面的审查和检查;2、协助技术质量部管理报废三剂,并反馈信息。
第四条各使用单位使用“三剂”时,必须填报需求计划上报技术部审批并备案,然后上报采购部采购。
为了不造成“三剂”库存积压,在“三剂”使用的有效期内,计划数量不允许超过正常3个月的使用量,对特殊的(如采购周期长,对安全生产有重大影响)“三剂”,原则上不超过半年。
第五条"三剂"的日常管理由各使用单位具体负责,对"三剂"实施动态管理,必须建立"三剂"管理台帐,建立“三剂”管理台帐应包括以下主要内容:名称、型号、技术指标、生产厂家和年使用量;使用单位"三剂"管理台帐应包括以下主要内容:名称、型号、生产厂家、生产日期、领料时间、数量、主要性能和使用说明、库存消耗等。
第六条各使用单位必须建立"三剂"使用规程,技术部定期提出三剂使用效果鉴定计划,由车间提出使用效果报告,由生产部审核,技术部根据使用效果报告对三剂供应商进行质量评估。
采油过程中用到的催化剂
采油过程中用到的催化剂
在采油过程中,常用的催化剂主要有以下几种:
1. 酸性催化剂:如盐酸、硫酸等。
酸性催化剂可用于酸化石油储层,促进原油流动性的提高,从而增强采油效果。
2. 碱性催化剂:如氢氧化钠、氢氧化钾等。
碱性催化剂可用于碱矿物水驱采油工艺中,通过中和酸性物质,减少岩心表面的酸蚀作用,从而改善采油效果。
3. 氧化剂:如过氧化物、高锰酸钾等。
氧化剂可用于氧化地下油藏中的一些物质,如硫化物、胶质等,从而提高采油效率。
4. 催化剂助剂:如矽胶、铁蓝石等。
催化剂助剂可用于改善催化剂的稳定性和活性,提高其催化效果,进而提高采油效率。
需要根据具体的采油工艺和地质条件选择合适的催化剂,以达到最佳的采油效果。
合成材料助剂
合成材料助剂
4. 分散剂:用于改善合成材料中颗粒或填料的分散性,使其均匀分散在基体中,常见的分 散剂有分散剂颗粒、表面活性剂等。
5. 催化剂:用于促进合成材料的反应速率和效果,常见的催化剂有酸、碱、金属催化剂等 。
6. 粘合剂:用于在合成材料中粘合不同的组分或部件,常见的粘合剂有胶水、胶粘剂等。
需要根据具体的合成材料和应用要求选择合适的助剂,并遵循相应的使用指导和安全操作 规程。
合成材料助剂
合成材料助剂是指在合成材料的制备过程中添加的一种化学物质,用于改善合成材料的性能、 工艺性能或加工性能。合成材料助剂的种类繁多,常见的助剂包括以下几类:
1. 增韧剂:用于提高合成材料的韧性和抗冲击性能,常见的增韧剂有增韧剂颗粒、改性聚合 物等。
2. 稳定剂:用于防止合成材料在加工或使用过程中发生分解、氧化或降解,常见的稳定剂有 抗氧剂、紫外线吸收剂等。
催化裂化催化剂主要成分
催化裂化催化剂主要成分催化裂化是石油炼制过程中的重要环节,它通过在高温高压条件下将重质石油馏分转化为轻质石油产品,如汽油、柴油和液化石油气等。
催化裂化催化剂是催化裂化过程中的关键因素之一,它能够促进反应的进行,提高产率和选择性。
催化裂化催化剂的主要成分包括活性组分、载体和助剂。
活性组分是催化裂化催化剂的核心,它能够提供活性位点,促进反应的发生。
常见的活性组分主要包括铂、钯、镍、铜等贵金属和铁、铬、钼等过渡金属。
这些活性组分具有较高的催化活性和选择性,可以加速重质石油馏分的裂化反应,生成轻质石油产品。
载体是催化裂化催化剂的基础支撑材料,它具有较高的比表面积和孔隙结构,能够提供充足的催化活性位点,并且具有良好的稳定性和耐热性。
常见的载体材料主要包括氧化铝、硅铝酸盐、硅钢等。
这些载体材料具有较高的比表面积和孔隙体积,能够提供足够的催化活性位点,并且具有良好的稳定性和耐热性。
助剂是催化裂化催化剂的辅助成分,它能够改善催化剂的性能和稳定性,提高催化反应的效率和选择性。
常见的助剂主要包括稀土氧化物、硫酸铵、钾盐等。
这些助剂能够增加催化剂的酸性和碱性,提高催化剂的热稳定性和抗积碳性能,从而改善催化裂化反应的效果。
催化裂化催化剂的制备过程通常包括活性组分的负载、载体的制备和助剂的添加。
活性组分的负载是将活性组分与载体进行物理或化学吸附,使其均匀分散在载体的表面,增加催化剂的活性位点。
载体的制备是通过合成和煅烧等工艺,将原料转化为具有良好孔隙结构和稳定性的载体材料。
助剂的添加是在载体上加入一定量的助剂,通过改变催化剂的酸碱性质和热稳定性,提高催化剂的性能和稳定性。
催化裂化催化剂的性能主要取决于活性组分的选择和负载量、载体的比表面积和孔隙结构、助剂的种类和添加量等因素。
合理选择催化剂的成分和制备工艺,可以提高催化裂化反应的效率和选择性,降低能耗和环境污染。
因此,催化裂化催化剂的研究和开发对于石油工业的发展具有重要意义。
新型高效、环保催化剂和助剂的开发与生产方案(二)
新型高效、环保催化剂和助剂的开发与生产方案一、实施背景随着全球环保意识的提升和产业结构改革的推进,高效、环保的催化剂和助剂在精细化工、能源、环保等领域的需求日益凸显。
目前,市场上的催化剂和助剂存在活性不高、选择性差、环境污染等问题。
因此,开发新型高效、环保的催化剂和助剂成为当务之急。
二、工作原理新型高效、环保催化剂和助剂的开发基于绿色化学原理,采用纳米技术、杂多酸技术、负载型催化剂技术等手段,对催化剂和助剂进行改性、优化,提高其活性和选择性,降低环境污染。
1. 纳米技术:利用纳米材料的独特性质,如高比表面积、量子尺寸效应等,提高催化剂的活性和选择性。
2. 杂多酸技术:通过合成具有特定结构和性能的杂多酸化合物,实现催化剂的高活性、高选择性和低污染。
3. 负载型催化剂技术:将活性组分负载在载体上,增加催化剂的比表面积,提高催化剂的分散性和稳定性。
三、实施计划步骤1. 研究与设计:对市场需求进行深入调研,明确催化剂和助剂的性能要求。
设计催化剂和助剂的分子结构,选择合适的合成方法。
2. 实验室小试:在实验室条件下,合成催化剂和助剂样品,进行性能测试和优化。
3. 中试放大:在实验室研究基础上,进行中试放大研究,考察催化剂和助剂在规模化生产中的性能表现。
4. 工业化生产:建设中试生产线,进行工业化生产。
在生产过程中不断优化工艺条件,提高产品质量和收率。
5. 市场推广:开展市场推广活动,拓展产品在精细化工、能源、环保等领域的应用。
四、适用范围新型高效、环保催化剂和助剂适用于精细化工、能源、环保等领域的多个产业,如石油化工、高分子合成、医药中间体生产、燃料电池等。
五、创新要点1. 绿色环保:采用绿色化学原理,实现催化剂和助剂的环保制备与应用。
2. 高活性与高选择性:通过纳米技术、杂多酸技术、负载型催化剂技术等手段,提高催化剂和助剂的活性和选择性。
3. 规模化生产:通过中试放大和工业化生产,实现催化剂和助剂的规模化制备与应用。
合成氨催化剂助剂
合成氨催化剂助剂是指在合成氨反应中,用于改善催化剂性能和提高反应效率的辅助物质。
常见的合成氨催化剂助剂包括以下几种:
1. 促进剂:促进剂可以增加催化剂的活性和选择性,提高合成氨反应的速率和产率。
常用的促进剂包括钾、铁、铝等金属物质。
2. 稳定剂:稳定剂可以增强催化剂的热稳定性和抗中毒性能,延长催化剂的使用寿命。
常用的稳定剂包括铝、钾、铁等金属物质。
3. 活性剂:活性剂可以增加催化剂的表面活性位点数目,提高反应速率和选择性。
常用的活性剂包括铝、钾、铁等金属物质。
4. 阻垢剂:阻垢剂可以防止催化剂表面结垢和积碳,保持催化剂的活性和选择性。
常用的阻垢剂包括铝、钾、铁等金属物质。
5. 载体:载体是催化剂助剂的基础,可以提供催化剂活性位点的支撑和固定。
常用的载体包括氧化铝、硅胶、硅铝酸等。
这些合成氨催化剂助剂可以根据具体的反应条件和催化剂性质进行选择和调整,以达到最佳的催化效果。
石油化工装置常用“三剂”基础知识
30年代
固定床催化裂化-Houdry过程
乙烯氧化制环氧乙烷
制聚乙烯-ICI高压法 40年代 石脑油催化重整生产汽油和芳烃
Ag
过氧化物 Pt
烯烃氢甲酰化制醛
环己烷氧化制环己醇(尼龙6-6中间体) 合成橡胶 丁苯橡胶(苯乙烯-丁二烯)
Co(均相)
Co(均相) Li或过氧化物
丁氰橡胶(丙烯腈-丁二烯)
丁基橡胶(异丁烯)
1、非石油替代资源生产化学品催化技术
2、石油化工低值副产高效转化催化技术
3、节能降耗、环境友好催化技术 4、使用新催化材料,开发新型高效催化剂 5、大量应用新技术,加速推动催化剂的研究开发
图2-1-1展示了非石油替代资源生产化学品的技术。
图2-1-1 非石油替代资源生产化学品的技术
第2章 催化剂的定义、作用及基本原理
催化剂的分类:
生物催化剂 按催化作用分类 均相催化剂 多相催化剂
石油化工催化剂 石油炼制催化剂 按使用领域分类 无机化工催化剂 环境保护催化剂
第3章 催化剂的基本特征及性能评价
催化剂的特性和性能评价 在某些反应中,单一的元素或化合物可作为催化剂,但在多数场合 为了使催化剂具备特定的性能,常由几种成分配合而成。在催化剂中起 催化作用的主要部分为具有催化活性的物质,称为活性组分。催化剂由 单一组分构成时,这一组分即为活性组分,对于固体催化剂来说称为无 载体催化剂。 在石油化工中最常用的是固体催化剂,一般来说是由活性组分(主 催化剂)、助催化剂、催化剂载体三部分组成。 活性组分是使催化剂具备活性所必需的成分,是起催化作用的根本 物质。 助催化剂是一类能改善活性组分的催化性能的物质,这类物质单独 存在时并不呈现所需要的催化活性,但与催化活性组分共存时则可改善 后者的催化性能,可提高催化剂的活性、选择性,改善催化剂的耐热性、 抗毒性、机械强度和寿命等性能。
第十三章 催化剂及各种助剂
催化剂及各种助剂
邻苯二甲酸二辛酯为无色无臭液体。密度0.9861 g/cm3 (20℃),熔点-55℃,沸点390℃。不溶于水,溶于乙醇、 乙醚、矿物油等有机溶剂。
邻苯二甲酸二辛酯是使用最广泛的增塑剂,与大多数合 成树脂和橡胶有良好的相溶性。广泛应用于聚氯乙烯各种软 制品的加工,如薄膜、薄板、人造革、电缆料和模塑品等。 本品还可以用于硝基纤维素漆,使漆膜具有弹性和较高的抗 张强度。
⒁ 油品用添加剂 包括防水、增黏、耐高温等种类,汽 油抗震、液力传动、变压器油、刹车油添加剂等。
⒂ 电子工业专用化学品 包括显像管用碳酸钾、氟化剂、 助焊剂、石墨乳等。
⒃ 纸张用添加剂 包括增白剂、补强剂、防水剂、填充 剂等。
⒄ 其它助剂 如玻璃防霉(发花)剂、乳胶凝固剂等。
催化剂及各种助剂
三、催化剂及助剂的应用 1.催化剂的应用 催化剂的应用主要体现在工业催化、化学加工、化学制 药以及环境保护等方面。 催化剂在工业催化方面主要应用于石油炼制、催化裂化、 催化重整、加氢裂化、加氢重整以及烷基化等工业过程。在 化学加工方面主要应用于聚合、烷基化、加氢、脱氢、氧化 以及合成气体等化学反应过程。在环境保护方面主要应用于 汽车尾气的处理和工业废气的净化。 随着科技的发展,催化剂在工业上的应用也日益广泛, 而且逐渐渗透到其它科技领域,如生命科学领域。将来,催 化剂在工业生产中必然扮演更重要的角色。
催化剂及各种助剂
常用的催化剂有二氧化硅、氧化铝、氧化铁、氧化镁、 五氧化二钒等氧化物催化剂,沸石、分子筛等硅铝酸盐催化 剂,铂、银、铜、锌、钛、钒、铬、钼、铁、镍、铑、钯等 金属催化剂,镍、钯、钴、铑、钌的配位化合物催化剂,冠 醚和高分子化合物等有机催化剂,以及固定酶、环糊精等。
除了以上催化剂外,还有一些物质若单独使用对于某种 反应并没有催化作用,但却能使催化剂的活性显著增强,这 种物质叫做助催化剂。
第四章-催化剂载体及助剂
载体的概念
载体是活性组分及助剂的骨架,通 常为具有足够机械强度的多孔性物 质
载体的类型
依据来源分类 天然物质 人工合成
载体的类型
依据比表面大小
低比表面积载体:比表面积<20m2/g(无孔低 比表面载体,如石英粉、SiC及钢铝石,比表 面积<1m2/g以下,硬度高、导热性好、耐热性 好,常用于热效应较大的氧化反应;有孔低比 表面载体,如浮石、SiC粉末烧结体、耐火砖、 硅藻土及烧结金属等,特点是在高温下有稳定 的结构,具有较高的硬度和导热系数)
副反应的发生,例如对于高熔点、低表面的载 体。但对于一些特殊的反应过程,可以利用载 体的表面性质(如酸碱性)提供适宜的活性中 心,以改善催化剂的反应性能。
载体的作用
提供活性中心 例如,双功能铂重整催化剂Pt/γ-Al2O3,金属 承担加氢和脱氢的功能;酸性γ -Al2O3载体承 担裂解、异构和环化等功能。
二氧化钛 具有锐钛矿、板钛矿和金红石三种结晶状态 板钛矿不稳定难以合成;锐钛矿在较低温度下
生成,比表面较大;锐钛矿在600~1000oC加 热变为金红石,比表面急剧下降
常用载体简介
二氧化钛 TiO2表面具有酸性,以L酸中心为主,不
同的制备方法可以调变其酸性 如含1-10%其他金属氧化物可显酸性,
载体的作用
提高催化剂抗中毒性能 催化剂使用过程中常会因各种原因而失
活,尤其是一些金属催化剂,如在反应 物中含有可以与活性组分发生结合反应 形成稳定的化合物时活性会明显下降, 即催化剂中毒
载体的作用
提高催化剂抗中毒性能 例如,烃类蒸汽转化催化剂的活性组分Ni与S
或Cl接触时会形成稳定的硫化物或氯化物,若 将金属活性组分负载于载体上,可以提高催 化剂的抗中毒能力,不仅由于载体使活性表 面增加,降低对毒物的敏感性,而且载体还 有分解和吸附毒物的作用。
催化剂的组成
催化剂的组成催化剂是一种能够加速化学反应速率的物质,它在反应中起到催化作用而本身不参与反应。
催化剂的组成主要包括活性组分、载体和助剂三个方面。
活性组分是催化剂中的关键成分,它能够提供活性位点,与反应物发生作用并降低反应活化能。
活性组分可以是单一元素、合金或复合物等形式存在。
常见的活性组分有金属、金属氧化物、金属酸盐等。
例如,铂、钯、铜等金属催化剂常用于氧化还原反应,氧化锌、二氧化钛等金属氧化物可用于光催化反应。
载体是催化剂中起支撑作用的物质,它能够提供活性组分的固定位置,并增加催化剂的稳定性和机械强度。
常见的载体有氧化铝、二氧化硅、氧化锆等。
载体的选择要考虑到其化学性质、物理性质以及与活性组分的相容性。
例如,氧化铝具有较高的表面积和孔隙度,适合用作负载催化剂的载体。
助剂是催化剂中的辅助成分,它能够改善催化剂的活性、选择性和稳定性。
助剂的种类很多,常见的有促进剂、抑制剂、稳定剂等。
促进剂能够增加催化剂的活性,提高反应速率,常见的促进剂有碱金属、过渡金属等。
抑制剂能够抑制副反应的发生,提高反应的选择性,常见的抑制剂有抗毒剂、阻燃剂等。
稳定剂能够提高催化剂的稳定性,延长催化剂的使用寿命,常见的稳定剂有抗氧化剂、硬质剂等。
催化剂的组成对其催化性能起着重要影响。
活性组分的选择与反应类型密切相关,不同催化反应需要选择合适的活性组分。
载体的选择要考虑到其物理化学性质,以及与活性组分的相容性。
助剂的加入可以改善催化剂的性能,提高催化反应的效率和选择性。
催化剂的制备方法也对其组成有一定影响。
常见的制备方法有浸渍法、共沉淀法、溶胶凝胶法等。
不同的制备方法可以控制催化剂的活性组分分布和载体结构,从而影响催化剂的性能。
催化剂的组成主要包括活性组分、载体和助剂三个方面。
活性组分提供催化活性位点,载体提供支撑作用,助剂改善催化剂的性能。
合理选择和调控催化剂的组成可以提高催化剂的活性、选择性和稳定性,从而实现高效催化反应。
催化剂组成
催化剂的组成催化剂是一种能够加速化学反应速率的物质,而在反应结束后,其本身的质量和化学性质不发生变化。
催化剂在化工、环保、能源等领域具有广泛的应用,其组成和性质对催化效果具有重要影响。
本文将详细介绍催化剂的组成。
一、催化剂的组成1. 活性组分活性组分是催化剂中起主要催化作用的部分,它能够提供催化反应所需的活性位点。
活性组分的种类和性质决定了催化剂的催化效果。
活性组分可以是单一元素,如铂、钯等,也可以是化合物,如氧化铁、硝酸盐等。
2. 载体载体是一种固体材料,用于支撑活性组分,增加其分散性,提高催化效率。
载体本身不具有催化活性,但能够影响活性组分的分散状态和反应物分子的迁移速率。
常见的载体材料有硅胶、氧化铝、活性炭等。
3. 助剂助剂是一种辅助性组分,用于改善催化剂的性能,如提高活性、增强稳定性、扩大反应范围等。
助剂与活性组分之间可能存在相互作用,从而影响催化剂的催化效果。
常见的助剂包括碱金属、碱土金属、过渡金属等。
二、催化剂的制备方法1. 浸渍法浸渍法是一种常用的催化剂制备方法,将活性组分溶液均匀地浸渍在载体材料上,通过蒸发、干燥等步骤得到催化剂。
浸渍法适用于制备含有细小颗粒的催化剂。
2. 沉淀法沉淀法是将活性组分溶液与载体材料溶液混合,通过化学反应生成沉淀,再经过滤、洗涤、干燥等步骤得到催化剂。
沉淀法适用于制备具有特定结构的催化剂。
3. 离子交换法离子交换法是将载体材料与活性组分溶液进行离子交换,从而得到催化剂。
离子交换法适用于制备具有较高活性的催化剂。
4. 物理混合法物理混合法是将活性组分和载体材料进行机械混合,从而得到催化剂。
物理混合法简单易行,适用于制备活性组分与载体材料之间无相互作用的情况。
三、催化剂的性能评价指标1. 活性活性是指催化剂在特定条件下催化反应的能力。
活性评价指标包括转化率、选择性、反应速率等。
2. 稳定性稳定性是指催化剂在反应过程中保持活性不下降的能力。
稳定性评价指标包括寿命、耐热性、抗腐蚀性等。
化工助剂主要类别和品种
化工助剂主要类别和品种化工助剂是在工业生产中,为改善生产过程、提高产品质量和产量,或者为赋予产品某种特有应用性能所添加的辅助化学品,也称作化工添加剂。
一般包含:橡胶助剂、塑料助剂、涂料助剂、胶黏剂助剂、催化剂、水处理剂、油田助剂、矿物油用配制添加剂、燃料(燃油)添加剂、农药助剂、纺织印染助剂、皮革助剂、造纸助剂、建筑助剂、木材助剂、电子工业用助剂、金属加工助剂、日化添加剂、表面活性剂、高分子絮凝剂、信息化学品专用助剂、电子化学品专用助剂、润滑剂、阻燃剂、稀土助剂、药物辅料、酶及酶制剂、环境污染处理专用药剂等。
化工助剂有些是单一成分,有些是多种成分复配的混合物。
单一成分的化工助剂,一般物理化学性质和危险特性明确;多种成分复配的化工助剂,生产企业出于保密目的,经常不告知用户具体成分信息,提供的危险特性等安全信息也经常与产品实际性质不一致,给用户带XX全隐患。
化工企业常用的化工助剂主要类别和品种有:1.橡胶助剂:橡胶硫化助剂(交联剂、促进剂、活化剂和防焦剂等),橡胶防护助剂(抗氧剂、抗臭氧剂、抗屈挠龟裂剂、光稳定剂、紫外光吸收剂、有害金属抑制剂、物理防老剂、防白蚁剂、防鼠咬剂、防啃咬剂,防霉剂等),橡胶补强助剂(炭黑、白炭黑、金属氧化物、无机盐、树脂等),工艺操作助剂,特殊助剂等。
2.塑料助剂:增塑剂、热稳定剂、抗氧剂、光稳定剂、阻燃剂、发泡剂、抗静电剂、防霉剂、着色剂和增白剂(见颜料)、填充剂、偶联剂、润滑剂、脱模剂等。
3.涂料助剂:催干剂、增韧剂、乳化剂、增稠剂、颜料分散剂、消泡剂、流平剂、抗结皮剂、消光剂、光稳定剂、防霉剂、抗静电剂(见塑料助剂)等。
4.胶黏剂助剂:固化剂、交联剂、引发剂、光引发剂、催化剂、促进剂、增韧剂、增黏剂、增塑剂、增稠剂、稀释剂、溶剂、偶联剂、乳化剂、增强剂、填充剂、阻燃剂、阻聚剂、氧化剂、软化剂、防老剂、分散剂、发泡剂、消泡剂、杀菌及防腐剂、着色剂等。
5.水处理剂:缓蚀剂、阻垢剂、杀菌剂、絮凝剂、净化剂、清洗剂、消泡剂、预膜剂等。
催化剂的组成和各组成部分的作用
催化剂的组成和各组成部分的作用
催化剂是一种能够加速化学反应速率的物质,它能够降低反应的起始能量,使得反应更容易发生。
催化剂的组成通常包括活性组分、载体和辅助组分。
活性组分是催化剂中起主要作用的组分,它能够与反应物发生化学反应,形成中间体并促进反应的进行。
常见的活性组分包括金属、金属氧化物、酸、碱、酶等。
不同的反应需要不同的活性组分,选择合适的活性组分对于催化剂的性能起到至关重要的作用。
载体是催化剂中起支撑作用的组分,它能够稳定活性组分并提高催化剂的机械强度和耐热性。
常见的载体材料包括氧化铝、硅胶、碳等。
选择合适的载体对于催化剂的稳定性和反应效果起到至关重要的作用。
辅助组分是催化剂中起辅助作用的组分,它能够调控催化剂的结构和性质,提高催化效率和选择性。
常见的辅助组分包括助剂、促进剂、稳定剂等。
不同的反应需要不同的辅助组分,选择合适的辅助组分对于催化剂的性能起到至关重要的作用。
催化剂的组成和各组成部分的作用是相互关联的,只有合理搭配各组成部分才能够发挥出最佳的催化效果。
例如,选择合适的载体可以提高催化剂的机械强度和耐热性,从而使催化剂更加稳定;而添
加适量的助剂可以调控催化剂的结构和性质,提高催化效率和选择性。
因此,在催化剂的研发过程中,需要从活性组分、载体和辅助组分三个方面进行综合考虑和优化设计,以达到最佳的催化效果。
催化剂的组成和各组成部分的作用是非常复杂和多样的,需要深入研究和探索。
只有通过合理搭配各组成部分,才能够发挥出最佳的催化效果,促进化学反应的进行,为产业发展和环境保护做出贡献。
炼油厂催化剂含什么
炼油厂催化剂含什么炼油厂是一种重要的工业设施,主要用于将原油转化为可供使用的燃料和化学品。
然而,原油中存在着各种各样的杂质和不同分子结构的化合物,这些杂质和化合物需要通过催化剂来进行转化和处理。
那么,炼油厂的催化剂都包含哪些成分呢?炼油厂的催化剂主要由活性金属、载体和助剂组成。
活性金属是催化剂的主要活性成分,它能够在化学反应中发挥关键作用。
常见的活性金属包括铂、镍、钼等。
其中,铂是一种常用的催化剂金属,它具有良好的氧化还原性能,可用于加氢和脱氢反应。
镍则常用于裂解反应和还原反应中,钼主要用于加氢脱硫反应。
除了活性金属外,催化剂还需要有一种载体来支撑活性金属。
载体需要具备一定的物理和化学性质,以保持催化剂的稳定性,增加其表面积,提高反应活性。
常见的载体材料包括活性氧化铝、硅胶、硅铝酸盐等。
其中,活性氧化铝是一种广泛应用的载体材料,它具有高热稳定性、较大的比表面积和较好的吸附性能。
另外,助剂是催化剂的辅助成分,主要用于增强催化剂的活性和选择性。
助剂的种类繁多,常见的有氧化镁、氧化钙、氧化钠等。
这些助剂可以调节催化剂的酸碱性、提高催化剂的抗中毒性能、增加催化剂表面的活性位点等。
总的来说,炼油厂的催化剂含有活性金属、载体和助剂三个主要成分。
活性金属是催化剂的主要活性部分,载体能够支撑活性金属,增加其表面积,提高反应活性,而助剂则可以增强催化剂的活性和选择性。
这些成分的组合和配比将会影响催化剂的性能,进而影响炼油过程中的产品质量和产量。
值得一提的是,在炼油过程中,催化剂会随着时间的推移而失活,需要经常更换。
同时,催化剂还会受到各种因素的影响,如温度、压力、反应物浓度等。
因此,炼油厂需要定期对催化剂进行检测和维护,以确保其良好的催化性能。
总之,炼油厂的催化剂是一种重要的工业材料,它由活性金属、载体和助剂组成。
这些成分的合理组合和使用,将会对炼油过程中的产品质量和产量有重要影响。
因此,在炼油厂的生产过程中,对催化剂的选择和管理非常重要,这将直接关系到炼油工艺的经济效益和环境保护的可行性。
精细化工实验技术第十三章催化剂及各种助剂 实验二十四增塑剂邻苯二甲酸二辛酯的制备
七、安全与环保 浓硫酸有强酸性、强腐蚀性,使用时应注意安全。苯具 有毒性,含苯的废液应回收统一处理。
催化剂及各种助剂
五、实验内容与操作步骤
1.邻苯二甲酸二辛酯合成
将25克苯酐及50克2-乙基己醇加入 到250mL干燥的三口烧瓶中,并加入 0.5mL浓硫酸作为催化剂,再加入几粒 沸石,如图13-1所示。接通冷凝水,加 热使反应混合物沸腾并回流,酯化反 应3小时。反应过程中,分离出分水管 下层的水分。反应结束后,打开分水 管下端出口,继续蒸馏,从分水管下 端出口分离出苯(回收)。温度升高 到110℃时(这时已蒸馏出苯和水分), 停止加热。
催化剂及各种பைடு நூலகம்剂
邻苯二甲酸二辛酯为无色无臭液体。密度0.9861 g/cm3 (20℃),熔点-55℃,沸点390℃。不溶于水,溶于乙醇、 乙醚、矿物油等有机溶剂。
邻苯二甲酸二辛酯是使用最广泛的增塑剂,与大多数合 成树脂和橡胶有良好的相溶性。广泛应用于聚氯乙烯各种软 制品的加工,如薄膜、薄板、人造革、电缆料和模塑品等。 本品还可以用于硝基纤维素漆,使漆膜具有弹性和较高的抗 张强度。
催化剂及各种助剂
六、实验记录与数据处理 化学反应的收率等于实际产量与理论产量的比值,即
化学反应的收率=
实际产量 理论产量
×100%
化学反应的实际产量为邻苯二甲酸二辛酯的粗品质量。
理论产量可按下式计算:
理论产量= M 1wm 克
M2
式 中 : M1—— 邻 苯 二 甲 酸 二 辛 酯 的 摩 尔 质 量 , g/mol, 可 取
精细化工试验技术
第十三章 催化剂及各种助剂
一、催化剂及其分类 二、助剂及其分类 三、催化剂及助剂的应用 四、催化剂及助剂的发展概况 实验二十三 活性氧化铝的制备 实验二十四 增塑剂邻苯二甲酸二辛酯的制备 实验二十五 聚丙烯酰胺絮凝剂的制备
催化剂和助剂使用管理规定
催化剂和助剂使用管理规定
1.催化剂和助剂的选择:
在选择催化剂和助剂时,需要考虑反应的性质和需求。
应选择具有高催化活性、稳定性好、易分离和回收的催化剂和助剂。
2.储存和包装:
3.安全操作:
使用催化剂和助剂时,必须戴上适当的个人防护装备,如手套、护目镜等。
避免直接接触皮肤和吸入其粉尘或溶液。
使用过程中应遵循安全操作程序,如规定反应温度、时间、压力等。
4.废弃物处理:
废弃的催化剂和助剂需要经过适当处理,不能直接倾倒到环境中。
根据当地法规,选择正确的废弃物处理方法,如回收、再利用或通过专业机构进行处理。
5.监测和维护:
6.记录和报告:
使用催化剂和助剂的过程中,需要详细记录相关数据和观察结果,如反应条件、曝光时间、效果等。
这些记录对于后续的研究和工程应用非常重要。
如果出现任何意外事故或异常情况,应及时向上级报告。
7.培训和教育:
总之,催化剂和助剂的使用和管理规定是为了保障工作安全、提高效率和降低环境风险。
遵守这些规定,能够更好地保护人员和环境的安全,确保催化剂和助剂的有效使用。
《Ru-CeO2催化剂的形貌调控及助剂改性在温和条件下氨合成催化性能研究》范文
《Ru-CeO2催化剂的形貌调控及助剂改性在温和条件下氨合成催化性能研究》篇一Ru-CeO2催化剂的形貌调控及助剂改性在温和条件下氨合成催化性能研究一、引言氨(NH3)作为重要的化工原料,在农业、工业和能源领域具有广泛的应用。
传统的哈伯-博施(Haber-Bosch)法虽然能高效合成氨,但该过程需要在高温高压条件下进行,能耗大且对环境产生压力。
因此,开发一种在温和条件下高效、低能耗的氨合成催化剂显得尤为重要。
Ru/CeO2作为一种新兴的氨合成催化剂,因其具有高活性、高选择性和良好的稳定性等特点而备受关注。
本文着重探讨了Ru/CeO2催化剂的形貌调控及助剂改性对在温和条件下氨合成催化性能的影响。
二、Ru/CeO2催化剂的形貌调控形貌调控是改善催化剂性能的有效手段。
Ru/CeO2催化剂的形貌调控主要涉及到催化剂的粒径、比表面积、孔结构等方面的调整。
研究表明,催化剂的粒径越小,比表面积越大,活性组分与反应物的接触面积就越大,从而有利于提高催化活性。
通过控制合成条件,可以制备出不同形貌的Ru/CeO2催化剂。
例如,采用溶胶-凝胶法可以制备出具有高比表面积的纳米级Ru/CeO2催化剂;而采用模板法或气相沉积法则可以制备出具有特定孔结构的Ru/CeO2催化剂。
这些不同形貌的催化剂在氨合成反应中表现出不同的催化性能。
三、助剂改性对Ru/CeO2催化剂性能的影响助剂改性是提高催化剂性能的另一种有效手段。
通过向Ru/CeO2催化剂中添加适量的助剂,可以改善催化剂的电子结构、增强其抗中毒能力、提高其热稳定性等。
常用的助剂包括碱土金属氧化物、稀土氧化物等。
助剂可以与活性组分Ru和载体CeO2之间形成相互作用,从而影响催化剂的电子结构和表面性质。
例如,添加适量的碱土金属氧化物可以增强Ru与CeO2之间的相互作用,提高Ru的分散度和利用率;而添加稀土氧化物则可以改善催化剂的氧化还原性能和抗中毒能力。
这些助剂的添加可以有效提高Ru/CeO2催化剂在温和条件下的氨合成催化性能。
助剂的名词解释
助剂的名词解释助剂是一种广泛应用于工业生产和科学研究领域的辅助物质。
它们在化学、制药、冶金、建筑和纺织等领域中扮演着重要的角色。
本文将解释助剂的定义和几种常见的助剂类型,并探讨它们在不同行业中的应用。
一、助剂的定义助剂是指在特定生产过程中添加的一种或多种化学物质,旨在改善生产过程的效率、质量或产品的特性。
助剂通常以较低的浓度加入到产品中,但它们的作用却是关键和可见的。
助剂可以改变物质的黏度、稳定性、溶解性、反应速率、表面张力和颜色等性质。
二、溶剂助剂溶剂助剂是一种将溶剂添加到溶液中以改变其性质的助剂。
溶剂助剂广泛应用于化工、制药和涂料工业中。
例如,在制药过程中,溶剂助剂可用于调整药物的溶解度、增加产品的稳定性和延长保质期。
而在涂料工业中,溶剂助剂可以改变涂料的粘度、干燥时间和附着性。
三、表面活性剂助剂表面活性剂助剂也称为界面活性剂助剂,是一类能够降低液体或气体界面表面张力,促进物质分散和混合的化学物质。
表面活性剂助剂广泛应用于洗涤剂、乳化剂、泡沫剂和湿润剂等行业中。
它们能够改善清洁剂的去污能力,促进乳液的稳定性,提高发泡和湿润效果。
四、阻燃剂助剂阻燃剂助剂是一类能够减缓或完全阻止材料在火焰作用下燃烧的化学物质。
阻燃剂助剂广泛应用于建筑、电子和汽车行业中。
例如,在建筑领域中,阻燃剂助剂可以用于提高建筑材料的阻燃性能,减少火灾发生时的蔓延速度和烟雾产生量。
五、催化剂助剂催化剂助剂是一种能够加速化学反应速率并在反应结束后不参与其中的物质。
催化剂助剂广泛应用于化工和石油工业中。
例如,在石油加工过程中,催化剂助剂可以改善石油产品的质量、提高反应产率和降低能耗。
六、助剂的未来趋势随着科学技术的不断进步,助剂的应用领域将会不断拓展和创新。
在环境保护和可持续发展的背景下,绿色和可再生助剂逐渐成为研究的热点。
此外,新型纳米材料和生物技术也有望为助剂的研究和应用带来新的突破。
总结:助剂是在工业生产和科学研究中起到辅助作用的化学物质。
催化剂及各种助剂
⒄ 其它助剂 如玻璃防霉(发花)剂、乳胶凝固剂等。
催化剂及各种助剂
三、催化剂及助剂的应用 1.催化剂的应用 催化剂的应用主要体现在工业催化、化学加工、化学制 药以及环境保护等方面。 催化剂在工业催化方面主要应用于石油炼制、催化裂化、 催化重整、加氢裂化、加氢重整以及烷基化等工业过程。在 化学加工方面主要应用于聚合、烷基化、加氢、脱氢、氧化 以及合成气体等化学反应过程。在环境保护方面主要应用于 汽车尾气的处理和工业废气的净化。 随着科技的发展,催化剂在工业上的应用也日益广泛, 而且逐渐渗透到其它科技领域,如生命科学领域。将来,催 化剂在工业生产中必然扮演更重要的角色。
测定和平均的方法不,得到的平均摩 尔质量也不同,常用的有四种表示法
数均摩尔质量Mn 质均摩尔质量Mm z 均摩尔质量Mz 粘均摩尔质量Mh
二、大分子化合物的平均摩尔质量
1.数均摩尔质量(number average molar weight, Mn)
组分1 组分2
···
组分i
分子数
N1
N2
···
Ni
摩尔质量
M1
M2
···
Mi
按分子数进行统计平均
M n
N1M1 N2M 2 NiM i N1 N2 Ni
Ni M i Ni
端基分析法、依数性测定法
催化剂及各种助剂
⑸ 纺织助剂 包括涤纶长丝用、短丝用、锦纶用、腈纶 用、丙纶用、维纶用、玻璃丝用油剂等。
⑹ 有机溶剂 包括吡咯烷酮系列、脂肪烃系列、乙腈系 列、糠醛系列等。
工业催化剂中,活性成分与助催化剂的含量并不高,主 要成分为载体,载体起到支承、分散催化剂的作用,有利于 催化剂活性的充分发挥。
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
2009年4月21日第十七卷第8期
湖北武大拟建万吨级硅烷偶联剂中间体项目
湖北武大有机硅新材料股份有限公司在葛店经济技术开发区建设直接法合成三乙氧基硅烷,并用三乙氧基硅烷合成硅烷偶联剂中间体γ-氯丙基三乙氧基硅烷,第一步是以硅粉和乙醇为主要原料,合成三乙氧基硅烷,附产品四乙氧基硅烷;第二步是以三乙氧基硅烷和氯丙烯为主要原料,合成硅烷偶联剂中间体γ-氯丙基三乙氧基硅烷,附产品四乙氧基硅烷。
闻
新纳米稀土催化剂提升尾气治理水平
由江苏威孚力达催化净化器有限责任公司自主研发的国
Ⅲ排放标准汽车尾气纳米稀土催化剂,近期成功在国内多种
车型上通过了国Ⅲ匹配试验,证明产品的综合性能处于国内领先地位。
这将推动我国汽车催化转化器产业的发展,打破国外同类产品的垄断地位。
威孚力达公司采用纳米技术及复合稀土化合物优化了催化剂性能,获得了更稳定的涂层配方、催化剂配方和催化剂制备工艺。
利用纳米稀土催化剂开发生产汽车催化转化器,产品综合性能可稳定达到国Ⅲ标准。
该公司已形成具有自主知识产权的催化剂核心技术,并全面实现了催化剂及催化转化器的产业化,较好地解决了汽车催化转化器的国产化、系列化问题。
据了解,威孚力达目前已形成年产300万升国Ⅲ标准汽车尾气纳米稀土催化剂、100万套汽车催化转化器的能力。
河南拟建30t/a 脱硫催化添加剂项目
河南兴业天成环保有限公司在郑州高新技术产业开发区拟建30t/a 脱硫催化添加剂项目,该项目主要生产由公司自主研发的“循环流化床锅炉干法强化脱硫及粉煤灰制备
低热水泥技术”所需用的脱硫催化添加剂。
脱硫催化添加剂以河南本地化工厂、金属冶炼行业排放的工业废渣(硫酸渣、锌渣、锰铁渣)为原料,经破碎、按比例混合、粉磨等工艺加工,化验合格后运至各电厂,由其制备脱硫剂实现高效脱硫。
项目投资总额5550万元。
科莱恩投资镇江建立表面活性剂生产基地
科莱恩公司在镇江投资建立了一家表面活性剂生产工厂,预计将于2009年中正式投产。
这家新工厂主要服务的行业包括个人护理、颜料与涂料以及相关的金属工业,同时也生产用于包括纺织、石油、煤炭以及家用化学品等行业的产品。
新建的科莱恩镇江表面活性剂工厂与其天津的工厂,将成为科莱恩功能性化工部在亚洲地区的左膀右臂,大大提高其生产能力。
其他三大生产基地分布于日本、印尼以及澳大利亚。
科莱恩在中国的超过30多座城市的实验室以及生产基地拥有员工超过1300名。
近几年来,科莱恩在中国的业务稳步增长,特别是在个人护理领域更是以每年极高的增长率快速发展。
因此,更加坚定了科莱恩在中国华东地区建立新的表面活性剂工厂的决心。
虽然当前金融与经济危机对行业造成一定的影响,但科莱恩对在华投资政策的中长远目标仍然充满信心。
新工厂的建设完全符合最严格的环境要求及生产标准,以便将来更好地满足客户的需求。
全球第二大脱硝催化剂制造基地开建
2009年4月10日,成都东方凯特瑞环保催化剂有限责任公司二期工程正式启动建设。
该项目投资2.5亿元,是成
都市2009年重大产业化项目。
项目建成后将成为国内第一、全球第二大的脱硝催化剂制造基地,将极大促进我国节能减排和大气污染的治理步伐。
目前,国家要求已建和新建火电机组逐渐把脱硝系统列入建设规划,到2010年,全国至少有2亿kW 机组容量需要建设脱硝系统。
脱硝产业已成为一个极具爆发性增长的市场。
随着环保脱硝产业的迅速发展,东方凯特瑞产能已不能满足市场激增的需求。
在省市区、中国东气集团的支持下,该公司启动了二期工程建设,进行扩能建设技术改造,建设周期为20个月。
工程建成后,产能将扩至13500m 3/a
11。