【精品】备战2020高考理科数学二轮考点专题突破 专题17 概率与统计(教学案)(学生版)
2020高考数学(理)二轮专题复习课件:第一部分 专题七 概率与统计 1-7-3
32
+34+
34
+38+
20+22+
23
+
23+27+10+12+18)=41567,所以 x 甲< x 乙.
第12页
返回导航
2020大二轮 ·数学(理)
(2)为普及校园安全知识,某校举行了由全部学生参加的校园 安全知识考试,从中抽出 60 名学生,将其成绩分成六段[40,50), [50,60),…,[90,100)后,画出如图所示的频率分布直方图.观察 图形的信息,回答下列问题:估计这次考试的及格率(60 分及以上 为及格)为________;平均分为________.
成绩 不及格 及格 总计
性别
男
6 14 20
女
10 22 32
总计
16 36 52
第23页
返回导航
2020大二轮 ·数学(理)
表2 视力
好 差 总计 性别
男 4 16 20 女 12 20 32 总计 16 36 52
第24页
返回导航
2020大二轮 ·数学(理)
表3
智商 偏高 正常 总计
性别
男
8 12 20
i=1
i=1
10
∵yi=1
600,∴
y
=11010 yi=160.
i=1
i=1
又b^=4,∴a^= y -b^ x =160-4×22.5=70. ∴回归直线方程为y^=4x+70. 将 x=24 代入上式得y^=4×24+70=166.故选 C.
第32页
返回导航
2020大二轮 ·数学(理)
4.(2017·湖南长沙模拟)某社区针对该区的老年人是否需要特 殊照顾进行了一项分性别的抽样调查,根据男性老年人和女性老年 人需要特殊照顾和不需要特殊照顾得出了一个 2×2 的列联表,并 计算得出 K2 的观测值 k=4.350,则下列结论正确的是( B )
2020《新高考 二轮专题突破+考前集训 理科数学》课件 解答题满分攻略(4) 概率与统计
(2)分别估计甲、乙离子残留百分比的平均值(同一组 中的数据用该组区间的中点值为代表).
二轮专题突破+考前集训 理科数学
解答题满分攻略(四) 概率与统计
解:甲离子残留百分比的平均值的估计值为 2×0.15 + 3×0.20+ 4×0.30+ 5×0.20+ 6×0.10+ 7×0.05= 4.05.
此时得出错误结论的概率非常小,说明这种试验方 案合理.
利用出错误概率越小,这种试验方案越合理,得 1 分.
二轮专题突破+考前集训 理科数学
解答题满分攻略(四) 概率与统计
【思路导图】
(1)
求出X的所有 可能取值
→
求出X取各个 值时的概率
→
得X的分布列
(2)(i)
利用(1)的结论, 得a,b,c的值
平均值的估计值等于每个小矩形的面积乘小矩形底
边中点的横坐标之和,得 3 分.
乙离子残留百分比的平均值的估计值为 3×0.05+
4×0.10+5×0.15+6×0.35+7×0.20+8×0.15=
6.00.
(3 分)
二轮专题突破+考前集训 理科数学
解答题满分攻略(四) 概率与统计
【思路导图】
(1)
P(X=1)=α(1-β),
(2 分)
二轮专题突破+考前集训 理科数学
解答题满分攻略(四) 概率与统计
2020版高考理科数学二轮主攻40个必考点:统计与概率过关检测十七[含解析]
考点过关检测(十七)1.(2019·临沂模拟)5个车位分别停放了A ,B ,C ,D ,E 5辆不同的车,现将所有车开出后再按A ,B ,C ,D ,E 的次序停入这5个车位,则在A 车停入了B 车原来的位置的条件下,停放结束后恰有1辆车停在原来位置上的概率是( )A.38B.340C.16D.112解析:选A 若C 停在原来位置上,则剩下三辆车都不停在原来位置上,有3种可能,D ,E 同理,因此共有9种方法,故所求概率为9A 44=38.故选A.2.(2019·武汉调研)我国历法中将一年分春、夏、秋、冬四个季节,每个季节六个节气,如春季包含立春、雨水、惊蛰、春分、清明、谷雨.某书画院甲、乙、丙、丁四位同学接到绘制二十四节气的彩绘任务,现四位同学抽签确定各自完成哪个季节中的6幅彩绘,在制签抽签公平的前提下,甲抽到绘制夏季6幅彩绘的概率是( )A.16B.14C.13D.12 解析:选B 甲从春、夏、秋、冬四个季节的各6幅彩绘绘制的任务中抽一个季节的6幅彩绘绘制,故甲抽到绘制夏季6幅彩绘的概率为14,选B. 3.(2019·福建五校第二次联考)在区间[0,2]上随机取一个数x ,使sin π2x ≥32的概率为( ) A.13B.12C.23D.34解析:选A 当x ∈[0,2]时,0≤π2x ≤π,所以sin π2x ≥32⇔π3≤π2x ≤2π3⇔23≤x ≤43.故由几何概型的概率公式得所求概率P =43-232=13.故选A. 4.甲、乙、丙、丁、戊5名同学参加“《论语》知识大赛”,决出第1名到第5名的名次.甲、乙两名参赛者去询问成绩,回答者对甲说“虽然你的成绩比乙好,但是你俩都没得到第一名”;对乙说“你当然不会是最差的”,从上述回答分析,丙是第一名的概率是( ) A.15 B.13 C.14 D.16 解析:选B 由于甲和乙都不可能是第一名,所以第一名只可能是丙、丁或戊.又因为所有的限制条件对丙、丁或戊都没有影响,所以这三个人获得第一名是等可能事件,所以丙是第一名的概率是13. 5.《九章算术》是我国古代的数学名著,书中把三角形的田称为“圭田”,把直角梯形的田称为“邪田”,称底是“广”,称高是“正从”,“步”是丈量土地的单位.现有一邪田,广分别为十步和二十步,正从为十步,其内有一块广为八步,正从为五步的圭田.若在邪田内随机种植一株茶树,求该株茶树恰好种在圭田内的概率为( )A.215 B.25 C.415 D.15解析:选 A 由题意可得邪田的面积S =12×(10+20)×10=150,圭田的面积S 1=12×8×5=20,则所求的概率P =S 1S =20150=215. 6.中华人民共和国国旗是五星红旗,旗面左上方缀着的五颗黄色五角星,四颗小五角星环拱于大星之后,象征中国共产党领导下的革命人民大团结和人民对党的衷心拥护.五角星可通过正五边形连接对角线得到,且它具有一些优美的特征,如A 2E 2B 1A 2=B 1A 2A 1B 1=A 1B 1B 1E 1=5-12,现在正五边形A 1B 1C 1D 1E 1内随机取一点,则此点取自正五边形A 2B 2C 2D 2E 2内部的概率为( )A.⎝⎛⎭⎪⎫5-124 B.⎝ ⎛⎭⎪⎫5-122 C.5-12 D.5+14解析:选A 由A 2E 2B 1A 2=B 1A 2A 1B 1=A 1B 1B 1E 1=5-12,可得A 2E 2=5-12B 1A 2=⎝ ⎛⎭⎪⎫5-122A 1B 1,显然两个正五边形相似,相似比为⎝ ⎛⎭⎪⎫5-122,则面积比为⎝ ⎛⎭⎪⎫5-124,故所求概率为⎝ ⎛⎭⎪⎫5-124. 7.某商店随机将三幅分别印有福州三宝(脱胎漆器、角梳、油纸伞)的宣传画并排贴在同一面墙上,则角梳与油纸伞的宣传画相邻的概率是________.解析:记脱胎漆器、角梳、油纸伞的宣传画分别为a ,b ,c ,则并排贴的情况有abc ,acb ,bac ,bca ,cab ,cba ,共6种,其中b ,c 相邻的情况有abc ,acb ,bca ,cba ,共4种,故由古典概型的概率计算公式,得所求概率P =46=23. 答案:238.(2019·长春模拟)从集合A ={-2,-1,2}中随机选取一个数记为a ,从集合B ={-1,1,3}中随机选取一个数记为b ,则直线ax -y +b =0不经过第四象限的概率为________.解析:从集合A ,B 中随机选取后,组合成的数对有(-2,-1),(-2,1),(-2,3),(-1,-1),(-1,1),(-1,3),(2,-1),(2,1),(2,3),共9种,要使直线ax -y +b =0不经过第四象限,则需a >0,b >0,共有2种满足,所以所求概率P =29. 答案:299.(2019·潍坊模拟)如图,六边形ABCDEF 是一个正六边形,若在正六边形内任取一点,则该点恰好在图中阴影部分的概率是________.解析:设正六边形的中心为点O ,BD 与AC 交于点G ,BC =1,则BG=CG ,∠BGC =120°,在△BCG 中,由余弦定理得1=BG 2+BG 2-2BG 2cos120°,得BG =33,所以S △BCG =12×BG ×BG ×sin 120°=12×33×33×32=312,因为S 六边形ABCDEF =S △BOC ×6=12×1×1×sin 60°×6=332,所以该点恰好在图中阴影部分的概率是1-6S △BCG S 六边形ABCDEF =23. 答案:2310.(2019·威海模拟)设甲、乙、丙三个乒乓球协会的运动员人数分别为27,9,18.现采用分层抽样的方法从这三个协会中抽取6名运动员组队参加比赛.(1)求应从这三个协会中分别抽取的运动员的人数;(2)将抽取的6名运动员进行编号,编号分别为A 1,A 2,A 3,A 4,A 5,A 6,现从这6名运动员中随机抽取2人参加双打比赛.①用所给编号列出所有可能的结果;②设A 为事件“编号为A 5和A 6的两名运动员中至少有1人被抽到”,求事件A 发生的概率.解:(1)应从甲、乙、丙三个协会中抽取的运动员人数分别为3,1,2.(2)①从6名运动员中随机抽取2人参加双打比赛的所有可能结果为{A 1,A 2},{A 1,A 3},{A 1,A 4},{A 1,A 5},{A 1,A 6},{A 2,A 3},{A 2,A 4},{A 2,A 5},{A 2,A 6},{A 3,A 4},{A 3,A 5},{A 3,A 6},{A 4,A 5},{A 4,A 6},{A 5,A 6},共15种.②编号为A 5和A 6的两名运动员中至少有1人被抽到的所有可能结果为{A 1,A 5},{A 1,A 6},{A 2,A 5},{A 2,A 6},{A 3,A 5},{A 3,A 6},{A 4,A 5},{A 4,A 6},{A 5,A 6},共9种.因此,事件A 发生的概率P (A )=915=35. 11.某超市周年庆典,设置了一项互动游戏如图,一个圆形游戏转盘被分成6个均匀的扇形区域.用力旋转转盘,转盘停止转动时,箭头P 所指区域的数字就是每次游戏所得的分数(箭头指向两个区域的边界时重新转动),且箭头P 指向每个区域的可能性都是相等的.要求每个家庭派一名儿童和一位成人先后各转动一次游戏转盘,记为(a ,b ),一个家庭总得分X =a +b ,假设儿童和成人的得分互不影响,且每个家庭只能参加一次活动,游戏规定:①若X >8,则该家庭可以获得一等奖一份;②若X =8,则该家庭可以获得二等奖一份;③若0<X <8(ab ≠0),则该家庭可以获得纪念奖一份.(1)求一个家庭获得纪念奖的概率;(2)试比较同一个家庭获得一等奖和二等奖的概率的大小.解:(1)由题意可知,一个家庭的得分情况共有36种,获得纪念奖的情况为(1,1),(1,2),(1,3),(1,4),(1,5),(2,1),(2,2),(2,3),(2,4),(2,5),(3,1),(3,2),(3,3),(3,4),(4,1),(4,2),(4,3),(5,1),(5,2),共有19种.记事件A =“一个家庭获得纪念奖”,则P (A )=1936.故一个家庭获得纪念奖的概率为1936. (2)记事件B =“一个家庭获得一等奖”,则符合获得一等奖条件的得分情况为(4,5),(5,4),(5,5),共3种,则P (B )=336=112.记事件C =“一个家庭获得二等奖”,则符合获得二等奖条件的得分情况为(4,4),(5,3),(3,5),共3种,所以P (C )=336=112.所以同一个家庭获得一等奖和二等奖的概率相等.以下内容为“高中数学该怎么有效学习?”首先要做到以下两点:1、先把教材上的知识点、理论看明白。
2020高考数学二轮复习概率与统计.docx
2020 高考数学二轮复习 概率与统计概率内容的新概念 多,相近概念容易混淆,本 就学生易犯 作如下 :型一 “非等可能 ”与 “等可能 ”混同 例 1 两枚骰子,求所得的点数之和 6 的概率.解两枚骰子出 的点数之和2, 3, 4, ⋯ ,12 共 11 种基本事件,所以概率P=111剖析以上 11 种基本事件不是等可能的,如点数和 2 只有 (1, 1),而点数之和6 有 (1, 5)、(2, 4)、 (3, 3)、 (4,2)、 (5, 1)共 5 种.事 上, 两枚骰子共有 36 种基本事件,且是等可能的,所以“所得点数之和6”的概率 P= 5.36型二 “互斥 ”与 “ 立 ”混同例 2把 、黑、白、4 牌随机地分 甲、乙、丙、丁4 个人,每个人分得1 ,事件“甲分得 牌”与“乙分得 牌”是()A . 立事件B .不可能事件C .互斥但不 立事件D .以上均不解A剖析 本 的原因在于把 “互斥 ”与 “ 立”混同,二者的 系与区 主要体 在 :(1)两事件 立,必定互斥,但互斥未必 立; (2) 互斥概念适用于多个事件,但 立概念只适用于两个事件; (3) 两个事件互斥只表明 两个事件不能同 生,即至多只能 生其中一个,但可以都不 生;而两事件 立 表示它 有且 有一个 生.事件 “甲分得 牌 ”与 “乙分得 牌 ”是不能同 生的两个事件,两个事件可能恰有一个 生,一个不 生,可能两个都不 生,所以 C .型三 例 3解“互斥 ”与 “独立 ”混同甲投 命中率 O .8,乙投 命中率 0.7,每人投 3 次,两人恰好都命中 2 次的概率是多少 ?“甲恰好投中两次” 事件 A , “乙恰好投中两次” 事件B , 两人都恰好投中两次事件A+B , P(A+B)=P(A)+P(B): c 32 0.820.2 c 32 0.720.3 0.825剖析本 的原因是把相互独立同 生的事件当成互斥事件来考 , 将两人都恰好投中2 次理解 “甲恰好投中两次”与 “乙恰好投中两次 ”的和.互斥事件是指两个事件不可能同 生;两事件相互独立是指一个事件的 生与否 另一个事件 生与否没有影响,它 然都描 了两个事件 的关系,但所描 的关系是根本不同.解:“甲恰好投中两次 ” 事件 A ,“乙恰好投中两次” 事件 B ,且 A , B 相互独立,两人都恰好投中两次 事件A ·B ,于是 P(A ·B)=P(A) ×P(B)= 0.169类型四例 4错解“条件概率 P(B / A)”与“积事件的概率P(A·B)”混同袋中有 6 个黄色、 4 个白色的乒乓球,作不放回抽样,每次任取一球,取 2 次,求第二次才取到黄色球的概率.记“第一次取到白球”为事件A,“第二次取到黄球”为事件B,”第二次才取到黄球”为事件62C,所以 P(C)=P(B/A)=.93剖析本题错误在于 P(A B)与 P(B/A) 的含义没有弄清 , P(A B) 表示在样本空间S 中 ,A 与 B 同时发生的概率;而P( B/A )表示在缩减的样本空间S A中,作为条件的 A 已经发生的条件下事件 B 发生的概率。
2020届高考二轮复习 专题七 概率与统计(共3讲)
选择题或填空题中,难度为易或中等.
主干知识梳理
1.分类加法计数原理和分步乘法计数原理 如果每种方法都能将规定的事件完成,则要用分类加 法计数原理将方法种数相加;如果需要通过若干步才 能将规定的事件完成,则要用分步乘法计数原理将各 步的方法种数相乘.
2.排列与组合
(1)排列:从n个不同元素中取出m(m≤n)个元素,按
3.二项式定理 (1)二项式定理:(a+b)n=C0nanb0+C1nan-1b+C2nan-2b2 +…+Cnr an-rbr+…+Cnna0bn(r=0,1,2,…,n). (2)二项展开式的通项 Tr+1=Cnr an-rbr,r=0,1,2,…,n,其中 Crn叫做二项 式系数.
(3)二项式系数的性质
情 解
项,利用二项式定理展开式的性质求有关系数问
读 题.主要考查分类与整合思想、转化与化归思想、
补集思想和逻辑思维能力.
2.排列、组合、两个计数原理往往通过实际问
题进行综合考查,一般以选择、填空题的形式
出现,难度中等,还经常与概率问题相结合,
考 出现在解答题的第一或第二个小题中,难度也
情
解 为中等;对于二项式定理的考查,主要出现在
①当定义域中有 3 个元素时,C11C12C12=4, ②当定义域中有 4 个元素时,C11C34=4, ③当定义域中有5个元素时,有一种情况. 所以共有4+4+1=9(个)这样的函数. 答案 B
热点二 排列与组合
例2 (1)(2014·重庆)某次联欢会要安排3个歌舞类
节目,2个小品类节目和1个相声类节目的演出顺序,
热点分类突破
热点一 两个计数原理 热点二 排列与组合 热点三 二项式定理
热点一 两个计数原理
2020年高考数学理科二轮复习考情分析与核心整合课件:7.2概率、随机变量及其分布列
(3)将频率视为概率,设 A 代表居民月用水量,由图知 P(A≤2.5) =0.7,
则由题意可知 X~B(3,0.7), P(X=0)=C30×0.33=0.027, P(X=1)=C31×0.32×0.7=0.189,
P(X=2)=C32×0.3×0.72=0.441, P(X=3)=C33×0.73=0.343. ∴X 的分布列为
『对接训练』
3.[2019·河南一诊]某班为了活跃元旦晚会的气氛,主持人请 12 位同学做一个游戏,第一轮中,主持人将标有数字 1 到 12 的十二张相 同的卡片放入一个不透明的盒子中,每人依次从中取出一张卡片,取 到标有数字 7 到 12 的卡片的同学留下,其余的淘汰;第二轮将标有数 字 1 到 6 的六张相同的卡片放入一个不透明的盒子中,每人依次从中 取出一张卡片,取到标有数字 4 到 6 的卡片的同学留下,其余的淘汰; 第三轮将标有数字 1,2,3 的三张相同的卡片放入一个不透明的盒子中, 每人依次从中取出一张卡片,取到标有数字 2,3 的卡片的同学留下, 其余的淘汰;第四轮用同样的办法淘汰一位同学,最后留下的这位同 学获得一个奖品.已知同学甲参加了该游戏.
解析:(1)记“甲出线”为事件 A,“乙出线”为事件 B,“丙 出线”为事件 C,“甲、乙、丙至少有一名出线”为事件 D,
则 P(D)=1-P(-A -B -C )=1-13×14×25=2390. (2)ξ 的所有可能取值为 0,1,2,3. P(ξ=0)=P(-A -B -C )=310; P(ξ=1)=P(A-B -C )+P(-A B-C )+P(-A -B C)=1630; P(ξ=2)=P(AB-C )+P(A-B C)+P(-A BC)=290; P(ξ=3)=P(ABC)=130.
2020版高考数学大二轮专题突破理科通用版 课件:6.3.1 统计与统计案例
s2=1010
5
∑ ni(yi-y)2
������=1
=1010[(-0.40)2×2+(-0.20)2×24+02×53+0.202×14+0.402×7]=0.029 6,
s= 0.029 6=0.02× 74 ≈0.17.
所以,这类企业产值增长率的平均数与标准差的估计值分别为
30%,17%.
-14-
企业数 2
24 53
14
7
(1)分别估计这类企业中产值增长率不低于40%的企业比例、产 值负增长的企业比例;
(2)求这类企业产值增长率的平均数与标准差的估计值(同一组 中的数据用该组区间的中点值为代表).(精确到0.01)
附: 74≈8.602.
-13-
考向一 考向二 考向三 考向四
解 (1)根据产值增长率频数分布表得,所调查的 100 个企业中产值增
数列与函 数的应用, 随机变量 的分布列
概率与 分析、计 数列的 算、证明, 综合 函数思想
2019 全国 2
求某相互独立事件发 概率、独
生的概率
立事件
相互独 分析、判
立事件 断、计算
的概率
全国 3
依据已知条件求频率 分布直方图中的未知 量;求某量频率的平 均值
频率,频率 分布直方 图;平均数
样本估 计总体
6.3 统计与概率大题
年份卷 设问特点 别
全 据散点图选函数
国 模型拟合,求回归 1 方程,求预报值
2015 全 国 2
用茎叶图比较平 均值及分散程度, 求独立事件及互 斥事件的概率
涉及知识点
题目类型 解题思 想方法
整体代
散点图、回归方
2020年高考数学第二轮复习 统计与概率教学案 精品
2020年高考第二轮专题复习(教学案):统计与概率考纲指要:“统计”是在初中“统计初步”基础上的深化和扩展,本讲主要会用样本的频率分布估计总体的分布,并会用样本的特征来估计总体的分布。
热点问题是频率分布直方图和用样本的数字特征估计总体的数字特征。
统计案例主要包括回归分析的基本思想及其初步应用和独立性检验的基本思想和初步应用。
对概率考察的重点为互斥事件、古典概型的概率事件的计算为主,了解随机数的意义,能运用模拟方法(包括计算器产生随机数来进行模拟)估计概率,初步体会几何概型的意义。
考点扫描:1.三种常用抽样方法:(1)简单随机抽样;(2)系统抽样;(3)分层抽样。
2.用样本的数字特征估计总体的数字特征: (1)众数、中位数;(2)平均数与方差。
3.频率分布直方图、折线图与茎叶图。
4.线性回归:回归直线方程。
5.统计案例:相关系数、卡方检验,6.随机变量:随机变量的概念,离散性随机变量的分布列,相互独立事件、独立重复试验公式,随机变量的均值和方差,几种特殊的分布列:(1)两点分布;(2)超几何分布;(3)二项分布;正态分布。
7随机事件的概念、概率;事件间的关系:(1)互斥事件;(2)对立事件;(3)包含; 事件间的运算:(1)并事件(和事件)(2)交事件(积事件)8古典概型:古典概型的两大特点;古典概型的概率计算公式。
9几何概型:几何概型的概念;几何概型的概率公式;几种常见的几何概型。
考题先知:例1.为了科学地比较考试的成绩,有些选拔性考试常常会将考试分数转化为标准分,转化关系式为:sxx Z -=(其中x 是某位学生的考试分数,x 是该次考试的平均分,s 是该次 考试的标准差,Z 称为这位学生的标准分).转化成标准分后可能出现小数和负值,因此, 又常常再将Z 分数作线性变换转化成其他分数. 例如某次学业选拔考试采用的是T 分数,线性变换公式是:T=40Z+60. 已知在这次考试中某位考生的考试分数是85,这次考试的平均分是70,标准差是25,则该考生的T 分数为 . 分析:正确理解题意,计算所求分数。
2020年高考数学理科热点题型:概率与统计含参考答案
概率与统计热点一 常见概率模型的概率几何概型、古典概型、相互独立事件与互斥事件的概率、条件概率是高考的热点,几何概型主要以客观题考查,求解的关键在于找准测度(面积,体积或长度);相互独立事件,互斥事件常作为解答题的一问考查,也是进一步求分布列,期望与方差的基础,求解该类问题要正确理解题意,准确判定概率模型,恰当选择概率公式.【例1】现有4个人去参加某娱乐活动,该活动有甲、乙两个游戏可供参加者选择.为增加趣味性,约定:每个人通过掷一枚质地均匀的骰子决定自己去参加哪个游戏,掷出点数为1或2的人去参加甲游戏,掷出点数大于2的人去参加乙游戏. (1)求这4个人中恰有2人去参加甲游戏的概率;(2)求这4个人中去参加甲游戏的人数大于去参加乙游戏的人数的概率; (3)用X ,Y 分别表示这4个人中去参加甲、乙游戏的人数,记ξ=|X -Y |,求随机变量ξ的分布列.解 依题意,这4个人中,每个人去参加甲游戏的概率为13,去参加乙游戏的概率为23. 设“这4个人中恰有i 人去参加甲游戏”为事件A i (i =0,1,2,3,4). 则P (A i )=C i 4⎝ ⎛⎭⎪⎫13i ⎝ ⎛⎭⎪⎫234-i.(1)这4个人中恰有2人去参加甲游戏的概率 P (A 2)=C 24⎝ ⎛⎭⎪⎫132⎝ ⎛⎭⎪⎫232=827.(2)设“这4个人中去参加甲游戏的人数大于去参加乙游戏的人数”为事件B ,则B =A 3+A 4,且A 3与A 4互斥,∴P (B )=P (A 3+A 4)=P (A 3)+P (A 4)=C 34⎝ ⎛⎭⎪⎫133×23+C 44⎝ ⎛⎭⎪⎫134=19.(3)依题设,ξ的所有可能取值为0,2,4.且A 1与A 3互斥,A 0与A 4互斥. 则P (ξ=0)=P (A 2)=827, P (ξ=2)=P (A 1+A 3)=P (A 1)+P (A 3) =C 14⎝ ⎛⎭⎪⎫131·⎝ ⎛⎭⎪⎫233+C 34⎝ ⎛⎭⎪⎫133×23=4081,P (ξ=4)=P (A 0+A 4)=P (A 0)+P (A 4) =C 04⎝ ⎛⎭⎪⎫234+C 44⎝ ⎛⎭⎪⎫134=1781.所以ξ的分布列是【类题通法】(1)本题4由独立重复试验,4人中恰有i 人参加甲游戏的概率P =C i 4⎝ ⎛⎭⎪⎫13i ⎝ ⎛⎭⎪⎫234-i ,这是本题求解的关键.(2)解题中常见的错误是不能分清事件间的关系,选错概率模型,特别是在第(3)问中,不能把ξ=0,2,4的事件转化为相应的互斥事件A i 的概率和. 【对点训练】甲、乙两班进行消防安全知识竞赛,每班出3人组成甲乙两支代表队,首轮比赛每人一道必答题,答对则为本队得1分,答错或不答都得0分,已知甲队3人每人答对的概率分别为34,23,12,乙队每人答对的概率都是23,设每人回答正确与否相互之间没有影响,用ξ表示甲队总得分. (1)求ξ=2的概率;(2)求在甲队和乙队得分之和为4的条件下,甲队比乙队得分高的概率. 解 (1)ξ=2,则甲队有两人答对,一人答错,故P (ξ=2)=34×23×⎝⎛⎭⎪⎫1-12+34×⎝ ⎛⎭⎪⎫1-23×12+⎝ ⎛⎭⎪⎫1-34×23×12=1124;(2)设甲队和乙队得分之和为4为事件A ,甲队比乙队得分高为事件B .设乙队得分为η,则η~B ⎝⎛⎭⎪⎫3,23.P (ξ=1)=34×⎝ ⎛⎭⎪⎫1-23×⎝ ⎛⎭⎪⎫1-12+⎝ ⎛⎭⎪⎫1-34×23×⎝ ⎛⎭⎪⎫1-12+⎝ ⎛⎭⎪⎫1-34×⎝ ⎛⎭⎪⎫1-23×12=14,P (ξ=3)=34×23×12=14,P (η=1)=C 13·23·⎝ ⎛⎭⎪⎫132=29,P (η=2)=C 23·⎝ ⎛⎭⎪⎫232·13=49,P (η=3)=C 33⎝ ⎛⎭⎪⎫233=827,∴P (A )=P (ξ=1)P (η=3)+P (ξ=2)P (η=2)+P (ξ=3)·P (η=1) =14×827+1124×49+14×29=13, P (AB )=P (ξ=3)·P (η=1)=14×29=118, ∴所求概率为P (B|A )=P (AB )P (A )=11813=16.热点二 离散型随机变量的分布列、均值与方差离散型随机变量及其分布列、均值与方差及应用是数学高考的一大热点,每年均有解答题的考查,属于中档题.复习中应强化应用题目的理解与掌握,弄清随机变量的所有取值是正确列随机变量分布列和求均值与方差的关键,对概率模型的确定与转化是解题的基础,准确计算是解题的核心,在备考中强化解答题的规范性训练.【例2】甲乙两人进行围棋比赛,约定先连胜两局者直接赢得比赛,若赛完5局仍未出现连胜,则判定获胜局数多者赢得比赛.假设每局甲获胜的概率为23,乙获胜的概率为13,各局比赛结果相互独立.(1)求甲在4局以内(含4局)赢得比赛的概率;(2)记X 为比赛决出胜负时的总局数,求X 的分布列和均值(数学期望).解 用A 表示“甲在4局以内(含4局)赢得比赛”,A k 表示“第k 局甲获胜”,B k 表示“第k 局乙获胜”,则P (A k )=23,P (B k )=13,k =1,2,3,4,5. (1)P (A )=P (A 1A 2)+P (B 1A 2A 3)+P (A 1B 2A 3A 4) =P (A 1)P (A 2)+P (B 1)P (A 2)P (A 3)+P (A 1)P (B 2)·P (A 3)P (A 4)=⎝ ⎛⎭⎪⎫232+13×⎝ ⎛⎭⎪⎫232+23×13×⎝ ⎛⎭⎪⎫232=5681.(2)X 的可能取值为2,3,4,5.P (X =2)=P (A 1A 2)+P (B 1B 2)=P (A 1)P (A 2)+P (B 1)·P (B 2)=59,P (X =3)=P (B 1A 2A 3)+P (A 1B 2B 3)=P (B 1)P (A 2)P (A 3)+P (A 1)P (B 2)P (B 3)=29,P (X =4)=P (A 1B 2A 3A 4)+P (B 1A 2B 3B 4)=P (A 1)P (B 2)P (A 3)P (A 4)+P (B 1)P (A 2)P (B 3)P (B 4)=1081, P (X =5)=1-P (X =2)-P (X =3)-P (X =4)=881. 故X 的分布列为E (X )=2×59+3×29+4×81+5×81=81. 【类题通法】求离散型随机变量的均值和方差问题的一般步骤 第一步:确定随机变量的所有可能值; 第二步:求每一个可能值所对应的概率; 第三步:列出离散型随机变量的分布列; 第四步:求均值和方差;第五步:反思回顾.查看关键点、易错点和答题规范.【对点训练】为回馈顾客,某商场拟通过摸球兑奖的方式对1 000位顾客进行奖励,规定:每位顾客从一个装有4个标有面值的球的袋中一次性随机摸出2个球,球上所标的面值之和为该顾客所获的奖励额.(1)若袋中所装的4个球中有1个所标的面值为50元,其余3个均为10元.求:①顾客所获的奖励额为60元的概率;②顾客所获的奖励额的分布列及数学期望;(2)商场对奖励总额的预算是60 000元,并规定袋中的4个球只能由标有面值10元和50元的两种球组成,或标有面值20元和40元的两种球组成.为了使顾客得到的奖励总额尽可能符合商场的预算且每位顾客所获的奖励额相对均衡,请对袋中的4个球的面值给出一个合适的设计,并说明理由.解(1)设顾客所获的奖励额为X.①依题意,得P(X=60)=C11C13C24=12,即顾客所获的奖励额为60元的概率为1 2 .②依题意,得X的所有可能取值为20,60.P(X=60)=12,P(X=20)=C23C24=12,即X的分布列为所以顾客所获的奖励额的数学期望为E(X)=20×2+60×12=40(元).(2)根据商场的预算,每个顾客的平均奖励额为60元.所以,先寻找期望为60元的可能方案.对于面值由10元和50元组成的情况,如果选择(10,10,10,50)的方案,因为60元是面值之和的最大值,所以期望不可能为60元;如果选择(50,50,50,10)的方案,因为60元是面值之和的最小值,所以期望也不可能为60元,因此可能的方案是(10,10,50,50),记为方案1.对于面值由20元和40元组成的情况,同理,可排除(20,20,20,40)和(40,40,40,20)的方案,所以可能的方案是(20,20,40,40),记为方案2.以下是对两个方案的分析:对于方案1,即方案(10,10,50,50),设顾客所获的奖励额为X1,则X1的分布列为X 1的数学期望为E(X1)=20×6+60×3+100×6=60(元),X 1的方差为D(X1)=(20-60)2×16+(60-60)2×23+(100-60)2×16=1 6003.对于方案2,即方案(20,20,40,40),设顾客所获的奖励额为X2,则X2的分布列为X 2的数学期望为E(X2)=40×6+60×3+80×6=60(元),X 2的方差为D(X2)=(40-60)2×16+(60-60)2×23+(80-60)2×16=4003.由于两种方案的奖励额的数学期望都符合要求,但方案2奖励额的方差比方案1的小,所以应该选择方案2.热点三概率与统计的综合应用概率与统计作为考查考生应用意识的重要载体,已成为近几年高考的一大亮点和热点.主要依托点是统计图表,正确认识和使用这些图表是解决问题的关键.复习时要在这些图表上下工夫,把这些统计图表的含义弄清楚,在此基础上掌握好样本特征数的计数方法、各类概率的计算方法及数学均值与方差的运算.【例3】2018年6月14日至7月15日,第21届世界杯足球赛将于俄罗斯举行,某大学为世界杯组委会招收志愿者,被招收的志愿者需参加笔试和面试,把参加笔试的40名大学生的成绩分组:第1组[75,80),第2组[80,85),第3组[85,90),第4组[90,95),第5组[95,100],得到的频率分布直方图如图所示:(1)分别求出成绩在第3,4,5组的人数;(2)现决定在笔试成绩较高的第3,4,5组中用分层抽样抽取6人进行面试.①已知甲和乙的成绩均在第3组,求甲或乙进入面试的概率;②若从这6名学生中随机抽取2名学生接受考官D的面试,设第4组中有X名学生被考官D面试,求X的分布列和数学期望.解(1)由频率分布直方图知:第3组的人数为5×0.06×40=12.第4组的人数为5×0.04×40=8.第5组的人数为5×0.02×40=4.(2)利用分层抽样,在第3组,第4组,第5组中分别抽取3人,2人,1人.①设“甲或乙进入第二轮面试”为事件A,则P(A)=1-C310C312=511,所以甲或乙进入第二轮面试的概率为5 11 .②X的所有可能取值为0,1,2,P(X=0)=C24C26=25,P(X=1)=C12C14C26=815,P(X=2)=C22C26=115.所以X的分布列为X 01 2P 25815115E(X)=0×25+1×815+2×15=15=3.【类题通法】本题将传统的频率分布直方图与分布列、数学期望相结合,立意新颖、构思巧妙.求解离散型随机变量的期望与频率分布直方图交汇题的“两步曲”:一是看图说话,即看懂频率分布直方图中每一个小矩形面积表示这一组的频率;二是活用公式,本题中X服从超几何分布.【对点训练】某公司为了解用户对某产品的满意度,从A,B两地区分别随机调查了20个用户,得到用户对产品的满意度评分如下:A地区:62 73 81 92 95 85 74 64 53 7678 86 95 66 97 78 88 82 76 89B地区:73 83 62 51 91 46 53 73 64 8293 48 65 81 74 56 54 76 65 79(1)根据两组数据完成两地区用户满意度评分的茎叶图,并通过茎叶图比较两地区满意度评分的平均值及分散程度(不要求计算出具体值,给出结论即可);(2)根据用户满意度评分,将用户的满意度从低到高分为三个等级:满意度评分低于70分70分到89分不低于90分满意度等级不满意满意非常满意记事件C区用户的评价结果相互独立.根据所给数据,以事件发生的频率作为相应事件发生的概率,求C的概率.解(1)两地区用户满意度评分的茎叶图如下通过茎叶图可以看出,A地区用户满意度评分的平均值高于B地区用户满意度评分的平均值;A地区用户满意度评分比较集中,B地区用户满意度评分比较分散.(2)记C A1表示事件:“A地区用户的满意度等级为满意或非常满意”;CA2表示事件:“A地区用户的满意度等级为非常满意”;CB1表示事件:“B地区用户的满意度等级为不满意”;CB2表示事件:“B地区用户的满意度等级为满意”,则C A1与C B1独立,C A2与C B2独立,C B1与C B2互斥,C=CB1CA1∪C B2C A2.P(C)=P(CB1CA1∪C B2C A2)=P(C B1C A1)+P(C B2C A2)=P(C B1)P(C A1)+P(C B2)P(C A2).由所给数据得C A1,C A2,C B1,C B2发生的频率分别为1620,420,1020,820,即P(C A1)=1620,P(CA2)=420,P(C B1)=1020,P(C B2)=820,故P(C)=1020×1620+820×420=0.48.热点四统计与统计案例能根据给出的线性回归方程系数公式求线性回归方程,了解独立性检验的基本思想、方法,在选择或填空题中常涉及频率分布直方图、茎叶图及样本的数字特征(如平均数、方差)的考查,解答题中也有所考查.【例4】从某居民区随机抽取10个家庭,获得第i个家庭的月收入x i(单位:千元)与月储蓄y i (单位:千元)的数据资料,算得∑10i =1x i =80,∑10i =1y i =20,∑10i =1x i y i =184,∑10i =1x 2i =720. (1)求家庭的月储蓄y 对月收入x 的线性回归方程y ^=b ^x +a ^; (2)判断变量x 与y 之间是正相关还是负相关;(3)若该居民区某家庭月收入为7千元,预测该家庭的月储蓄. 附:线性回归方程y ^=b ^x +a ^中,b ^=,a ^=y -b ^ x ,其中x ,y 为样本平均值.解 (1)由题意知n =10,x =1n∑ni =1x i =8010=8, y =1n ∑ni =1y i =2010=2,又l xx =∑ni =1x 2i -n x 2=720-10×82=80, l xy =∑ni =1x i y i -n x y =184-10×8×2=24, 由此得b ^=l xy l xx =2480=0.3,a ^=y -b ^x =2-0.3×8=-0.4, 故所求线性回归方程为y ^=0.3x -0.4.(2)由于变量y 的值随x 值的增加而增加(b ^=0.3>0),故x 与y 之间是正相关. (3)将x =7代入回归方程可以预测该家庭的月储蓄为y ^=0.3×7-0.4=1.7(千元).【类题通法】(1)分析两个变量的线性相关性,可通过计算相关系数r 来确定,r 的绝对值越接近于1,表明两个变量的线性相关性越强,r 的绝对值越接近于0,表明两变量线性相关性越弱.(2)求线性回归方程的关键是正确运用b ^,a ^的公式进行准确的计算.【对点训练】4月23日是“世界读书日”,某中学在此期间开展了一系列的读书教育活动.为了解本校学生课外阅读情况,学校随机抽取了100名学生对其课外阅读时间进行调查.下面是根据调查结果绘制的学生日均课外阅读时间(单位:分钟)的频率分布直方图.若将日均课外阅读时间不低于60分钟的学生称为“读书迷”,低于60分钟的学生称为“非读书迷”.(1)根据已知条件完成下面2×2列联表,并据此判断是否有99%的把握认为“读书迷”与性别有关?(2)1人,共抽取3次,记被抽取的3人中的“读书迷”的人数为X.若每次抽取的结果是相互独立的,求X的分布列、期望E(X)和方差D(X).解(1)完成2×2列联表如下:K 2=100×(40×25-15×20)260×40×55×45≈8.249>6.635,故有99%的把握认为“读书迷”与性别有关.(2)将频率视为概率.则从该校学生中任意抽取1名学生恰为读书迷的概率P =25.由题意可知X ~B ⎝ ⎛⎭⎪⎫3,25,P (X =i )=C i 3⎝ ⎛⎭⎪⎫25i ⎝ ⎛⎭⎪⎫353-i(i =0,1,2,3).X 的分布列为均值E (X )=np =3×5=5,方差D (X )=np (1-p )=3×25×⎝⎛⎭⎪⎫1-25=1825。
2020届高考数学二轮复习(理)讲义及题型归纳(拔高):概率与统计
概率与统计一、考纲解读1.理解取有限个值的离散型随机变量及其分布列的概念,了解分布列对于刻画随机现象的重要性。
2.理解超几何分布及其推导过程,并能进行简单的应用。
3.了解条件概率和两个事件相互独立的概念,理解次独立重复实验的模型及二n 项分布,并能解决一些简单的实际问题。
4.理解取有限个值的离散型变量均值,方差的概念,能计算简单离散型随机变量的均值、方差,并能解决一些实际问题。
5.利用实际问题的频率分布直方图,了解正态分布密度曲线的特点及曲线所表示的意义。
二、命题趋势探究1.高考命题中,该部分命题形式有选择题、填空题,但更多的是解答题。
2.主要以离散型随机变量分布列为主体命题,计算离散型随机变量的期望和方差,其中二项分布与超几何分布为重要考点,难度中等以下。
3.有关正态分布的考题多为一道小题。
三、知识点精讲(一).条件概率与独立事件(1)在事件A 发生的条件下,时间B 发生的概率叫做A 发生时B 发生的条件概率,记作 ,条件概率公式为 。
()P B A ()=P B A ()()P AB P A (2)若,即,称与为相互独立事件。
与()=P B A P B ()()=()()P AB P A P B A B A B 相互独立,即发生与否对的发生与否无影响,反之亦然。
即相互独立,A B ,A B 则有公式。
()=()()P AB P A P B(3)在次独立重复实验中,事件发生次的概率记作,记n A k ()0k n ≤≤()n P k A在其中一次实验中发生的概率为 ,则 .()P A p =()()1n k k k n n P k C p p -=-(二).离散型随机变量分布列、期望、方差及其性质(1)离散型随机变量的分布列(如表13-1所示).ξ表13-1ξ 1ξ 2ξ 3ξ… n ξ P 1p 2p 3pn p ① ;()11,i p i n i N θ*≤≤≤≤∈② .121n p p p ++= (2)表示的期望:,反应随机变量的平均水平,E ξξ1122=+n n p p p E ξξξξ++…若随机变量满足,则.ξη,=a b ηξ+E aE b ηξ=+(3)表示的方差:,反映随机D ξξ()()()2221122=---n n E p E p E p D ξξξξξξξ+++ 变量取值的波动性。
高考二轮数学考点突破复习:概率与统计+解析几何
高考二轮数学考点突破复习:概率与统计+解析几何高考二轮数学考点突破复习:解析几何解析几何是高考的必考内容,它包括直线、圆、圆锥曲线和圆锥曲线综合应用等内容.高考常设置三个客观题和一个解答题,对解析几何知识和数学思想方法的应用进行考查,其分值约为27分,约占总分的16%.近年高考解析几何试题的考查特点,一是设置客观题,考查直线、两直线位置关系、点线距离、圆有关的概念、性质及其简单应用;考查圆锥曲线即椭圆、双曲线、抛物线的概念、性质及其简单应用等基础知识;二是以直线与圆位置关系、直线与圆锥曲线位置关系为载体,在代数、三角函数、向量等知识的交汇处设置解答题,考查圆锥曲线性质和向量有关公式、性质的应用,考查解决轨迹、不等式、参数范围、探索型等综合问题的思想方法,并且注重测试逻辑推理能力.1.2011年高考试题预测纵观近年高考解析几何试题的课程特点和高考命题的发展趋势,下列内容仍是今后高考的重点内容.(1)直线斜率的概念及其计算,直线方程的五种形式;两条直线平行与垂直的条件及其判断,两条直线所成的角和点到直线的距离公式;线性规划的意义及其简单应用.(2)圆的标准方程、一般方程、参数方程的概念、性质及其应用.(3)椭圆、双曲线、抛物线的定义、标准方程及其几何性质和椭圆的参数方程.(4)圆锥曲线的初步应用,即以直线与圆锥曲线位置关系为载体,考查轨迹问题,圆锥曲线与平面向量、不等式、参数范围、探索型等综合问题.(5)函数方程思想、数形结合思想、分类讨论思想在解析几何中的应用.高考二轮数学考点突破复习:概率与统计1.高考对两个原理的考查主要集中在排列、组合及其综合题方面,题目灵活多样.2.二项式定理重点考查二项展开式中的指定项及二项式的展开式系数问题.3.概率统计内容是中学数学的重要知识,与高等数学联系非常密切,是进一步学习高等数学的基础,也是高考数学命题的热点内容,纵观全国及各自主命题省市近几年的高考试题,概率与统计知识在选择、填空、解答三种题型中每年都有试题,分值在17分到20分之间.主要考查以下三点:(1)会用随机抽样的基本方法和样本估计总体的思想,解决一些简单的实际问题;(2)理解古典概型及其概率计算公式,会计算一些随机事件所含的基本事件数及事件发生的概率;(3)理解取有限个值的离散型随机变量均值、方差的概念,能计算简单离散型随机变量的均值、方差,并能解决一些相应的实际问题.1.2011年高考试题预测(1)高考对两个原理及二项式定理的考查.以基础题为主,考查形式比较稳定.①从内容上看,主要考查分类计数原理和分步计数原理,排列、组合的概念及简单应用.例如2010全国Ⅰ,6;2010山东,8.②从考查形式上看,多为选择题和填空题.例如2010北京,4;2010浙江,17.③从能力要求上看,主要考查学生理解问题的能力、分析和解决问题的能力及分类讨论的思想.例如2010江西,14;2010上海,14.④从内容上看,高考对二项式定理的考查,主要涉及利用通项公式求展开式的特定项,利用二项展开式性质求系数或与系数有关的问题,利用二项式定理进行近似计算.例如2010全国Ⅰ,5.⑤从考查形式上看,以选择、填空为主,少有综合性的大题.例如2010江西,6;2010全国Ⅱ,14.。
2020新高考数学二轮冲刺概率与统计全归纳(基础中档拔高题全解析)
统计与统计案例
一、考纲解读
1. 理解随机抽样的必要性和重要性。 2. 会用简单随机抽样方法从总体中抽取样本;了解分层抽样和系统抽样方法。 3. 了解分布的意义和作用,会列频率分布表,会画出频率分布直方图、频率折 线图、茎叶图,理解它们各自的特点。 4. 理解样本数据标准差的意义和作用,会计算数据标准差。 5. 能从样本的频率分布估计总体分布,会用样本的基本数字牲估计总体的基本 数字特征,理解用样本估计总体的思想。 6. 会用随机抽样的基本方法和样本估计总体的思想解决一些简单的实际问题。 7. 会作两个有关联变量的数据的散点图,会利用散点图认识变量间的相关关系。 8. 了解最小二乘法的思想,能根据给出的线性回归方程系数公式建立线性回归 方程。 9. 了解常见的统计方法,并能应用这些方法解决一些实际问题。 (1)独立性检验 了解独立性检验(只要求 2×2 列联表)的基本思想、方法及其简单应用。 (2)回归分析 了解回归分析的基本思想、方法及其简单应用。
个小组的可能性相同,则这两位同学参加同一个兴趣小组的概率为
A. 1 3
B. 1 2
C. 2 3
D. 3 4
答案:
1.D【解析】将 2 名男同学分别记为 x , y ,3 名女同学分别记为 a ,b ,c .设 “选中的 2 人都是女同学”为事件 A ,则从 5 名同学中任选 2 人参加社区服务的所 有可能情况有 (x, y) ,(x, a) ,(x,b) ,(x, c) ,( y, a) ,( y,b) ,( y, c) ,(a,b) ,(a, c) , (b, c) 共 19 种,其中事件 A 包含的可能情况有 (a,b) , (a, c) , (b, c) 共 3 种,故 P(A) 3 0.3,故选 D.
2020高考数学 考前30天之备战冲刺系列二 概率与统计
考前30天之备战2020高考数学冲刺系列二概率与统计(文)学生版【命题趋势】:概率是高考的必考内容,主要考查的内容有:等可能性事件的概率、互斥事件有一个发生的概率、相互独立事件同时发生的概率、n次独立重复试验中恰好发生k次的概率及离散型随机变量的分布列、期望与方差等.一般会有一道选择题或填空题与一道解答题,在高考中所占的比重大于10%.近年来,高考中的应用题基本是考查离散型随机变量的期望与方差的解答题.统计知识则主要考查抽样方法、频率分布直方图、正态分布等知识,主要以选择题和填空题的形式出现.【方法与技巧】事件A、B的和记作A+B,表示事件A、B至少有一个发生。
当A、B为互斥事件时,事件A+B是由“A发生而B不发生”以及“B发生而A不发生”构成的。
当计算事件A的概率P(A)比较困难时,有时计算它的对立事件A的概率则要容易些,为此有P(A)=1-P(A)。
对于n个互斥事件A1,A2,…,A n,其加法公式为P(A1+A2+…+A n)=P(A1)+P(A2)+…+P (A n)。
分类讨论思想是解决互斥事件有一个发生的概率的一个重要的指导思想。
4.在应用题背景条件下,能否把一个复杂事件分解为若干个互相排斥或相互独立、既不重复又不遗漏的简单事件是解答这类应用题的关键,也是考查学生分析问题、解决问题的能力的重要环节【高考冲刺押题】【押题2】某企业招聘中,依次进行A 科、B 科考试,当A 科合格时,才可考B 科,且两科均有一次补考机会,两科都合格方通过。
甲参加招聘,已知他每次考A 科合格的概率均为32,每次考B 科合格的概率均为21。
假设他不放弃每次考试机会,且每次考试互不影响。
(I)求甲恰好3次考试通过的概率;(II)求甲招聘考试通过的概率. 【押题指数】★★★★★【押题3】已知关于x 的一元二次函数2()4 1.f x ax bx =-+(Ⅰ)设集合{}1,2,3P =和{}1,1,2,3,4Q =-,分别从集合P 和Q 中随机取一个数作为a 和b ,求函数()y f x =在区间[1,)+∞上是增函数的概率;(Ⅱ)设点(,)a b 是区域8000x y x y +-≤⎧⎪>⎨⎪>⎩内的随机点,记{()A y f x ==有两个零点,其中一个大于1,另一个小于1},求事件A 发生的概率.【押题指数】★★★★★【押题4】某企业员工500人参加“学雷锋”志愿活动,按年龄分组:第1组[25,30),第2组[30,35),第3组[35,40),第4组[40,45),第5组[45,50],得到的频率分布直方图如右图所示.(Ⅰ)下表是年龄的频数分布表,求正整数,a b 的值;(Ⅱ)现在要从年龄较小的第1,2,3组中用分层抽样的方法抽取6人,年龄在第1,2,3组的人数分别是多少?(Ⅲ)在(Ⅱ)的前提下,从这6人中随机抽取2人参加社区宣传交流活动,求至少区间 [25,30) [30,35) [35,40) [40,45) [45,50]人数 50 50 a 150 b有1人年龄在第3组的概率.【押题指数】★★★★★【押题5】如图,从参加环保知识竞赛的学生中抽出40名,将其成绩(均为整数....)整理后画出的频率分布直方图如下:观察图形,回答下列问题:(1)80~90这一组的频数、频率分别是多少?(2)估计这次环保知识竞赛成绩的平均数、众数、中位数。
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
专题17 概率与统计1.以客观题形式考查抽样方法,样本的数字特征和回归分析,独立性检验的基本思路、方法及相关计算与推断.2.本部分较少命制大题,若在大题中考查多在概率与统计、算法框图等知识交汇处命题,重点考查抽样方法,频率分布直方图和回归分析或独立性检验,注意加强抽样后绘制频率分布直方图,然后作统计分析或求概率的综合练习.3.以客观题形式考查古典概型与几何概型、互斥事件与对立事件的概率计算. 4.与统计结合在大题中考查古典概型与几何概型.1.抽样方法三种抽样方法的比较2.统计图表(1)在频率分布直方图中:①各小矩形的面积表示相应各组的频率,各小矩形的高=频率组距;②各小矩形面积之和等于1;③中位数左右两侧的直方图面积相等,因此可以估计其近似值.(2)茎叶图当数据有两位有效数字时,用中间的数字表示十位数,即第一个有效数字,两边的数字表示个位数,即第二个有效数字,它的中间部分像植物的茎,两边部分像植物茎上长出来的叶子,因此通常把这样的图叫做茎叶图.当数据有三位有效数字,前两位相对比较集中时,常以前两位为茎,第三位(个位)为叶(其余类推). 3.样本的数字特征 (1)众数在样本数据中,频率分布最大值所对应的样本数据(或出现次数最多的那个数据). (2)中位数样本数据中,将数据按大小排列,位于最中间的数据.如果数据的个数为偶数,就取当中两个数据的平均数作为中位数.(3)平均数与方差样本数据的平均数x -=1n (x 1+x 2+…+x n ).方差s 2=1n[(x 1-x -)2+(x 2-x -)2+…+(x n -x -)2].注意:(1)现实中总体所包含的个体数往往较多,总体的平均数与标准差、方差是不知道(或不可求)的,所以我们通常用样本的平均数与标准差、方差来估计总体的平均数与标准差、方差.(2)平均数反映了数据取值的平均水平,标准差、方差描述了一组数据围绕平均数波动的大小.标准差、方差越大,数据的离散程度越大,越不稳定.4.变量间的相关关系(1)利用散点图可以初步判断两个变量之间是否线性相关.如果散点图中的点从整体上看大致分布在一条直线的附近,我们说变量x 和y 具有线性相关关系.(2)用最小二乘法求回归直线的方程 设线性回归方程为y ^=b ^x +a ^,则⎩⎪⎨⎪⎧b ^=∑i =1n (x i -x -)(y i -y -)∑i =1n(x i-x -)2=∑i =1nx i y i -n x -y-∑i =1nx 2i -n x -2a ^=y --b ^x-.注意:回归直线一定经过样本的中心点(x -,y -),据此性质可以解决有关的计算问题. 5.回归分析r =∑i =1n(x i -x -)(y i -y -)∑i =1n(x i -x -)2∑i =1n(y i -y -)2,叫做相关系数.相关系数用来衡量变量x 与y 之间的线性相关程度;|r |≤1,且|r |越接近于1,相关程度越高,|r |越接近于0,相关程度越低.6.独立性检验假设有两个分类变量X 和Y ,它们的取值分别为{x 1,x 2}和{y 1,y 2},其样本频数列联表(称为2×2列联表)为y 1 y 2 总计 x 1 a b a +b x 2 c d c +d 总计a +cb +da +b +c +d则K 2=(a +b +c +d )(ad -bc )2(a +b )(c +d )(a +c )(b +d ),若K 2>3.841,则有95%的把握说两个事件有关; 若K 2>6.635,则有99%的把握说两个事件有关; 若K 2<2.706,则没有充分理由认为两个事件有关. 7.随机事件的概率随机事件的概率范围:0≤P (A )≤1;必然事件的概率为1,不可能事件的概率为0. 8.古典概型①计算一次试验中基本事件的总数n ;②求事件A 包含的基本事件的个数m ;③利用公式P (A )=mn 计算.9.对立事件:在每一次试验中,相互对立的事件A 和A -不会同时发生,但一定有一个发生,因此有P (A -)=1-P (A ).10.互斥事件与对立事件的关系对立必互斥,互斥未必对立. 11.几何概型一般地,在几何区域D 内随机地取一点,记事件“该点落在其内部区域d 内”为事件A ,则事件A 发生的概率P (A )=d 的测度D 的测度.高频考点一 事件与概率例1.(2018年江苏卷)某兴趣小组有2名男生和3名女生,现从中任选2名学生去参加活动,则恰好选中2名女生的概率为________.【变式探究】某险种的基本保费为a (单位:元),继续购买该险种的投保人称为续保人,续保人本年度的保费与其上年度出险次数的关联如下:上年度出险次数 0 1 2 3 4 ≥5 保费0.85aa1.25a1.5a1.75a2a设该险种一续保人一年内出险次数与相应概率如下:一年内出险次数 0 1 2 3 4 ≥5 概率0.300.150.200.200.100.05(1)求一续保人本年度的保费高于基本保费的概率;(2)若一续保人本年度的保费高于基本保费,求其保费比基本保费高出60%的概率; (3)求续保人本年度的平均保费与基本保费的比值.【变式探究】袋中共有15个除了颜色外完全相同的球,其中有10个白球,5个红球.从袋中任取2个球,所取的2个球中恰有1个白球,1个红球的概率为( )A .1 B.1121 C.1021 D.521高频考点二 古典概型例2.从分别标有1,2, ,9的9张卡片中不放回地随机抽取2次,每次抽取1张.则抽到的2张卡片上的数奇偶性不同的概率是(A )518 (B )49 (C )59(D )79 【变式探究】袋中共有15个除了颜色外完全相同的球,其中有10个白球,5个红球.从袋中任取2个球,所取的2个球中恰有1个白球,1个红球的概率为( )A.521B.1021C.1121D .1 【变式探究】从正方形四个顶点及其中心这5个点中,任取2个点,则这2个点的距离不小于该正方形边长的概率为( )A.15B.25C.35D.45高频考点三 随机数与几何概型例3.如图,正方形ABCD 内的图形来自中国古代的太极图.正方形内切圆中的黑色部分和白色部分关于正方形的中心成中心对称.在正方形内随机取一点,则此点取自黑色部分的概率是A .14 B .π8 C .12D .π4【变式探究】某公司的班车在7:30,8:00,8:30发车,小明在7:50至8:30之间到达发车站乘坐班车,且到达发车站的时刻是随机的,则他等车时间不超过10分钟的概率是( )A.13B.12C.23D.34【变式探究】从区间[0,1]随机抽取2n 个数x 1,x 2,…,x n ,y 1,y 2,…,y n ,构成n 个数对(x 1,y 1),(x 2,y 2),…,(x n ,y n ),其中两数的平方和小于1的数对共有m 个,则用随机模拟的方法得到的圆周率π的近似值为( )A.4n mB.2n mC.4m nD.2m n高频考点四 条件概率与相互独立事件的概率例4.海水养殖场进行某水产品的新、旧网箱养殖方法的产量对比,收获时各随机抽取了100 个网箱,测量各箱水产品的产量(单位:kg )某频率分布直方图如下:(1)设两种养殖方法的箱产量相互独立,记A 表示事件:“旧养殖法的箱产量低于50kg, 新养殖法的箱产量不低于50kg”,估计A 的概率;(2)填写下面列联表,并根据列联表判断是否有99%的把握认为箱产量与养殖方法有关:箱产量<50kg 箱产量≥50kg 旧养殖法 新养殖法(3)根据箱产量的频率分布直方图,求新养殖法箱产量的中位数的估计值(精确到0.01)附:22()()()()()n ad bc K a b c d a c b d -=++++【变式探究】投篮测试中,每人投3次,至少投中2次才能通过测试.已知某同学每次投篮投中的概率为0.6,且各次投篮是否投中相互独立,则该同学通过测试的概率为( )A .0.648B .0.432C .0.36D .0.312【变式探究】某地区空气质量监测资料表明,一天的空气质量为优良的概率是0.75,连续两天为优良的概率是0.6,已知某天的空气质量为优良,则随后一天的空气质量为优良的概率是( )A .0.8B .0.75C .0.6D .0.45高频考点五 正态分布例5.为了监控某种零件的一条生产线的生产过程,检验员每天从该生产线上随机抽取16个零件,并测量其尺寸(单位:cm ).根据长期生产经验,可以认为这条生产线正常状态下生产的零件的尺寸服从正态分布2(,)N μσ.(1)假设生产状态正常,记X 表示一天内抽取的16个零件中其尺寸在(3,3)μσμσ-+之外的零件数,求(1)P X ≥及X 的数学期望;(2)一天内抽检零件中,如果出现了尺寸在(3,3)μσμσ-+之外的零件,就认为这条生产线在这一天的生产过程可能出现了异常情况,需对当天的生产过程进行检查.(ⅰ)试说明上述监控生产过程方法的合理性; (ⅰ)下面是检验员在一天内抽取的16个零件的尺寸:9.9510.12 9.969.9610.01 9.929.9810.0410.26 9.91 10.13 10.02 9.22 10.04 10.05 9.95经计算得16119.9716i i x x ===∑,161622221111()(16)0.2121616i i i i s x x x x ===-=-≈∑∑,其中i x 为抽取的第i 个零件的尺寸,1,2,,16i =⋅⋅⋅.用样本平均数x 作为μ的估计值ˆμ,用样本标准差s 作为σ的估计值ˆσ,利用估计值判断是否需对当天的生产过程进行检查?剔除ˆˆˆˆ(3,3)μσμσ-+之外的数据,用剩下的数据估计μ和σ(精确到0.01).附:若随机变量Z 服从正态分布2(,)N μσ,则(33)0.997 4P Z μσμσ-<<+=,160.997 40.959 2=,0.0080.09≈.【变式探究】在如图所示的正方形中随机投掷10 000个点,则落入阴影部分(曲线C 为正态分布N (0,1)的密度曲线)的点的个数的估计值为( )附:若X ~N (μ,σ2),则P (μ-σ<X ≤μ+σ)=0.682 6, P (μ-2σ<X ≤μ+2σ)=0.954 4.A .2 386B .2 718C .3 413D .4 772【变式探究】从某企业生产的某种产品中抽取500件,测量这些产品的一项质量指标值,由测量结果得如下频率分布直方图:(1)求这500件产品质量指标值的样本平均数x 和样本方差s 2(同一组中的数据用该组区间的中点值作代表);(2)由直方图可以认为,这种产品的质量指标值Z 服从正态分布N (μ,σ2),其中μ近似为样本平均数x ,σ2近似为样本方差s 2.(ⅰ)利用该正态分布,求P (187.8<Z <212.2);(ⅰ)某用户从该企业购买了100件这种产品,记X 表示这100件产品中质量指标值位于区间(187.8,212.2)的产品件数.利用(ⅰ)的结果,求E (X ).附:150≈12.2.若Z ~N (μ,σ2),则P (μ-σ<Z <μ+σ)=0.682 6, P (μ-2σ<Z <μ+2σ)=0.954 4.高频考点六 离散型随机变量的分布列例6.从甲地到乙地要经过3个十字路口,设各路口信号灯工作相互独立,且在各路口遇到红灯的概率分别为111,,234.(ⅰ)设X 表示一辆车从甲地到乙地遇到红灯的个数,求随机变量X 的分布列和数学期望;(ⅰ)若有2辆车独立地从甲地到乙地,求这2辆车共遇到1个红灯的概率.【变式探究】甲、乙两人组成“星队”参加猜成语活动,每轮活动由甲、乙各猜一个成语.在一轮活动中,如果两人都猜对,则“星队”得3分;如果只有一人猜对,则“星队”得1分;如果两人都没猜对,则“星队”得0分.已知甲每轮猜对的概率是34,乙每轮猜对的概率是23;每轮活动中甲、乙猜对与否互不影响,各轮结果亦互不影响.假设“星队”参加两轮活动,求:(1)“星队”至少猜对3个成语的概率;(2)“星队”两轮得分之和X 的分布列和数学期望EX .【变式探究】已知2件次品和3件正品混放在一起,现需要通过检测将其区分,每次随机检测一件产品,检测后不放回,直到检测出2件次品或者检测出3件正品时检测结果.(1)求第一次检测出的是次品且第二次检测出的是正品的概率;(2)已知每检测一件产品需要费用100元,设X 表示直到检测出2件次品或者检测出3件正品时所需要的检测费用(单位:元),求X 的分布列和均值(数学期望).高频考点七 均值与方差例7.已知一组数据4.7,4.8,5.1,5.4,5.5,则该组数据的方差是________▲________.【变式探究】如图,将一个各面都涂了油漆的正方体,切割为125个同样大小的小正方体,经过搅拌后,从中随机取一个小正方体,记它的涂漆面数为X ,则X 的均值E (X )=( )A.126125B.65C.168125D.75 高频考点八 抽样方法例8.从甲地到乙地要经过3个十字路口,设各路口信号灯工作相互独立,且在各路口遇到红灯的概率分别为111,,234.(ⅰ)设X 表示一辆车从甲地到乙地遇到红灯的个数,求随机变量X 的分布列和数学期望; (ⅰ)若有2辆车独立地从甲地到乙地,求这2辆车共遇到1个红灯的概率.【变式探究】某高校调查了200名学生每周的自习时间(单位:小时),制成了如图所示的频率分布直方图,其中自习时间的范围是[17.5,30],样本数据分组为[17.5,20),[20, 22.5),[22.5,25),[25,27.5),[27.5,30].根据直方图,这200名学生中每周的自习时间不少于22.5小时的人数是( )A.56 B.60 C.120 D.140【变式探究】某中学初中部共有110名教师,高中部共有150名教师,其性别比例如图所示,则该校女教师的人数为()A.167 B.137 C.123 D.93【变式探究】对一个容量为N的总体抽取容量为n的样本,当选取简单随机抽样、系统抽样和分层抽样三种不同方法抽取样本时,总体中每个个体被抽中的概率分别为p1,p2,p3,则() A.p1=p2<p3B.p2=p3<p1C.p1=p3<p2D.p1=p2=p3高频考点九频率分布直方图与茎叶图例9.(2018年江苏卷)已知5位裁判给某运动员打出的分数的茎叶图如图所示,那么这5位裁判打出的分数的平均数为________.【变式探究】若样本数据x1,x2,…,x10的标准差为8,则数据2x1-1,2x2-1,…,2x10-1的标准差为()A.8 B.15 C.16 D.32【变式探究】重庆市2017年各月的平均气温(ⅰ)数据的茎叶图如下:则这组数据的中位数是()1228 92 5 80 0 0 3 3 81 2A.19 B.20 C.21.5 D.23高频考点十变量间的相关关系及统计案例例10.根据下面给出的2004年至2013年我国二氧化硫排放量(单位:万吨)柱形图.以下结论不正确的是()A.逐年比较,2008年减少二氧化硫排放量的效果最显著B.2007年我国治理二氧化硫排放显现成效C.2006年以来我国二氧化硫年排放量呈减少趋势D.2006年以来我国二氧化硫年排放量与年份正相关【变式探究】为了解某社区居民的家庭年收入与年支出的关系,随机调查了该社区5户家庭,得到如下统计数据表:收入x(万元)8.28.610.011.311.9支出y(万元) 6.27.58.08.59.8根据上表可得回归直线方程y∧=b∧x+a∧,其中b∧=0.76,a∧=y-b∧x.据此估计,该社区一户年收入为15万元家庭的年支出为()A.11.4万元B.11.8万元C.12.0万元D.12.2万元1.【2019年高考全国ⅰ卷理数】《西游记》《三国演义》《水浒传》和《红楼梦》是中国古典文学瑰宝,并称为中国古典小说四大名著.某中学为了解本校学生阅读四大名著的情况,随机调查了100位学生,其中阅读过《西游记》或《红楼梦》的学生共有90位,阅读过《红楼梦》的学生共有80位,阅读过《西游记》且阅读过《红楼梦》的学生共有60位,则该校阅读过《西游记》的学生人数与该校学生总数比值的估计值为( )A .0.5B .0.6C .0.7D .0.82.【2019年高考全国ⅰ卷理数】演讲比赛共有9位评委分别给出某选手的原始评分,评定该选手的成绩时,从9个原始评分中去掉1个最高分、1个最低分,得到7个有效评分.7个有效评分与9个原始评分相比,不变的数字特征是( )A .中位数B .平均数C .方差D .极差3.【2019年高考浙江卷】设0<a <1,则随机变量X 的分布列是( ) 则当a 在(0,1)内增大时, A .()D X 增大B .()D X 减小C .()D X 先增大后减小D .()D X 先减小后增大4.【2019年高考江苏卷】已知一组数据6,7,8,8,9,10,则该组数据的方差是______________. 5.【2019年高考全国ⅰ卷理数】我国高铁发展迅速,技术先进.经统计,在经停某站的高铁列车中,有10个车次的正点率为0.97,有20个车次的正点率为0.98,有10个车次的正点率为0.99,则经停该站高铁列车所有车次的平均正点率的估计值为______________.6.【2019年高考全国ⅰ卷理数】甲、乙两队进行篮球决赛,采取七场四胜制(当一队赢得四场胜利时,该队获胜,决赛结束).根据前期比赛成绩,甲队的主客场安排依次为“主主客客主客主”.设甲队主场取胜的概率为0.6,客场取胜的概率为0.5,且各场比赛结果相互独立,则甲队以4∶1获胜的概率是______________.7.【2019年高考全国ⅰ卷理数】为了解甲、乙两种离子在小鼠体内的残留程度,进行如下试验:将200只小鼠随机分成A ,B 两组,每组100只,其中A 组小鼠给服甲离子溶液,B 组小鼠给服乙离子溶液,每只小鼠给服的溶液体积相同、摩尔浓度相同.经过一段时间后用某种科学方法测算出残留在小鼠体内离子的百分比.根据试验数据分别得到如下直方图:记C为事件:“乙离子残留在体内的百分比不低于5.5”,根据直方图得到P(C)的估计值为0.70.(1)求乙离子残留百分比直方图中a,b的值;(2)分别估计甲、乙离子残留百分比的平均值(同一组中的数据用该组区间的中点值为代表).8.【2019年高考全国ⅰ卷理数】11分制乒乓球比赛,每赢一球得1分,当某局打成10:10平后,每球交换发球权,先多得2分的一方获胜,该局比赛结束.甲、乙两位同学进行单打比赛,假设甲发球时甲得分的概率为0.5,乙发球时甲得分的概率为0.4,各球的结果相互独立.在某局双方10:10平后,甲先发球,两人又打了X个球该局比赛结束.(1)求P(X=2);(2)求事件“X=4且甲获胜”的概率.9.【2019年高考天津卷理数】设甲、乙两位同学上学期间,每天7:30之前到校的概率均为23.假定甲、乙两位同学到校情况互不影响,且任一同学每天到校情况相互独立.(1)用X表示甲同学上学期间的三天中7:30之前到校的天数,求随机变量X的分布列和数学期望;(2)设M为事件“上学期间的三天中,甲同学在7:30之前到校的天数比乙同学在7:30之前到校的天数恰好多2”,求事件M发生的概率.10.【2019年高考北京卷理数】改革开放以来,人们的支付方式发生了巨大转变.近年来,移动支付已成为主要支付方式之一.为了解某校学生上个月A,B两种移动支付方式的使用情况,从全校学生中随机抽取了100人,发现样本中A,B两种支付方式都不使用的有5人,样本中仅使用A和仅使用B的学生的支付金额分布情况如下:(1)从全校学生中随机抽取1人,估计该学生上个月A,B两种支付方式都使用的概率;(2)从样本仅使用A 和仅使用B 的学生中各随机抽取1人,以X 表示这2人中上个月支付金额大于1000元的人数,求X 的分布列和数学期望;(3)已知上个月样本学生的支付方式在本月没有变化.现从样本仅使用A 的学生中,随机抽查3人,发现他们本月的支付金额都大于2000元.根据抽查结果,能否认为样本仅使用A 的学生中本月支付金额大于2000元的人数有变化?说明理由.11.【2019年高考全国ⅰ卷理数】为治疗某种疾病,研制了甲、乙两种新药,希望知道哪种新药更有效,为此进行动物试验.试验方案如下:每一轮选取两只白鼠对药效进行对比试验.对于两只白鼠,随机选一只施以甲药,另一只施以乙药.一轮的治疗结果得出后,再安排下一轮试验.当其中一种药治愈的白鼠比另一种药治愈的白鼠多4只时,就停止试验,并认为治愈只数多的药更有效.为了方便描述问题,约定:对于每轮试验,若施以甲药的白鼠治愈且施以乙药的白鼠未治愈则甲药得1分,乙药得1-分;若施以乙药的白鼠治愈且施以甲药的白鼠未治愈则乙药得1分,甲药得1-分;若都治愈或都未治愈则两种药均得0分.甲、乙两种药的治愈率分别记为α和β,一轮试验中甲药的得分记为X .(1)求X 的分布列;(2)若甲药、乙药在试验开始时都赋予4分,(0,1,,8)i p i =L 表示“甲药的累计得分为i 时,最终认为甲药比乙药更有效”的概率,则00p =,81p =,11i i i i p ap bp cp -+=++(1,2,,7)i =L ,其中(1)a P X ==-,(0)b P X ==,(1)c P X ==.假设0.5α=,0.8β=.(i)证明:1{}i i p p +-(0,1,2,,7)i =L 为等比数列; (ii)求4p ,并根据4p 的值解释这种试验方案的合理性.1. (2018年浙江卷)设0<p <1,随机变量ξ的分布列是ξ1 2 P则当p 在(0,1)内增大时,A. D (ξ)减小B. D (ξ)增大C. D (ξ)先减小后增大D. D (ξ)先增大后减小2. (2018年全国I 卷理数)下图来自古希腊数学家希波克拉底所研究的几何图形.此图由三个半圆构成,三个半圆的直径分别为直角三角形ABC 的斜边BC ,直角边AB ,AC .△ABC 的三边所围成的区域记为I,黑色部分记为II,其余部分记为III.在整个图形中随机取一点,此点取自I,II,III的概率分别记为p1,p2,p3,则A. p1=p2B. p1=p3C. p2=p3D. p1=p2+p33. (2018年全国I卷理数)某地区经过一年的新农村建设,农村的经济收入增加了一倍.实现翻番.为更好地了解该地区农村的经济收入变化情况,统计了该地区新农村建设前后农村的经济收入构成比例.得到如下饼图:则下面结论中不正确的是A. 新农村建设后,种植收入减少B. 新农村建设后,其他收入增加了一倍以上C. 新农村建设后,养殖收入增加了一倍D. 新农村建设后,养殖收入与第三产业收入的总和超过了经济收入的一半4. (2018年全国ⅰ卷理数)某群体中的每位成员使用移动支付的概率都为p,各成员的支付方式相互独立,设X为该群体的10位成员中使用移动支付的人数,,,则p=A. 0.7B. 0.6C. 0.4D. 0.35. (2018年全国ⅰ卷理数)我国数学家陈景润在哥德巴赫猜想的研究中取得了世界领先的成果.哥德巴赫猜想是“每个大于2的偶数可以表示为两个素数的和”,如30=7+23.在不超过30的素数中,随机选取两个不同的数,其和等于30的概率是A. B. C. D.6. (2018年浙江卷)从1,3,5,7,9中任取2个数字,从0,2,4,6中任取2个数字,一共可以组成___________个没有重复数字的四位数.(用数字作答)7. (2018年江苏卷)某兴趣小组有2名男生和3名女生,现从中任选2名学生去参加活动,则恰好选中2名女生的概率为________.8. (2018年江苏卷)已知5位裁判给某运动员打出的分数的茎叶图如图所示,那么这5位裁判打出的分数的平均数为________.9. (2018年全国I卷理数)从2位女生,4位男生中选3人参加科技比赛,且至少有1位女生入选,则不同的选法共有_____________种.(用数字填写答案)10. (2018年天津卷)已知某单位甲、乙、丙三个部门的员工人数分别为24,16,16.现采用分层抽样的方法从中抽取7人,进行睡眠时间的调查.(I)应从甲、乙、丙三个部门的员工中分别抽取多少人?(II)若抽出的7人中有4人睡眠不足,3人睡眠充足,现从这7人中随机抽取3人做进一步的身体检查.(i)用X表示抽取的3人中睡眠不足..的员工人数,求随机变量X的分布列与数学期望;(ii)设A为事件“抽取的3人中,既有睡眠充足的员工,也有睡眠不足的员工”,求事件A发生的概率.11. (2018年北京卷)电影公司随机收集了电影的有关数据,经分类整理得到下表:电影类型第一类第二类第三类第四类第五类第六类电影部数14050300200800510好评率0.40.20.150.250.20.1好评率是指:一类电影中获得好评的部数与该类电影的部数的比值.假设所有电影是否获得好评相互独立.(ⅰ)从电影公司收集的电影中随机选取1部,求这部电影是获得好评的第四类电影的概率;(ⅰ)从第四类电影和第五类电影中各随机选取1部,估计恰有1部获得好评的概率;(ⅰ)假设每类电影得到人们喜欢的概率与表格中该类电影的好评率相等,用“”表示第k类电影得到人们喜欢,“”表示第k类电影没有得到人们喜欢(k=1,2,3,4,5,6).写出方差12. (2018年全国I卷理数)某工厂的某种产品成箱包装,每箱200件,每一箱产品在交付用户之前要对产品作检验,如检验出不合格品,则更换为合格品.检验时,先从这箱产品中任取20件作检验,再根据检验结果决定是否对余下的所有产品作检验,设每件产品为不合格品的概率都为,且各件产品是否为不合格品相互独立.(1)记20件产品中恰有2件不合格品的概率为,求的最大值点.(2)现对一箱产品检验了20件,结果恰有2件不合格品,以(1)中确定的作为的值.已知每件产品的检验费用为2元,若有不合格品进入用户手中,则工厂要对每件不合格品支付25元的赔偿费用.(i)若不对该箱余下的产品作检验,这一箱产品的检验费用与赔偿费用的和记为,求;(ii)以检验费用与赔偿费用和的期望值为决策依据,是否该对这箱余下的所有产品作检验?13. (2018年全国ⅰ卷理数)某工厂为提高生产效率,开展技术创新活动,提出了完成某项生产任务的两种新的生产方式.为比较两种生产方式的效率,选取40名工人,将他们随机分成两组,每组20人,第一组工人用第一种生产方式,第二组工人用第二种生产方式.根据工人完成生产任务的工作时间(单位:min)绘制了如下茎叶图:(1)根据茎叶图判断哪种生产方式的效率更高?并说明理由;(2)求40名工人完成生产任务所需时间的中位数,并将完成生产任务所需时间超过和不超过的工人数填入下面的列联表:超过m不超过m 第一种生产方式第二种生产方式(3)根据(2)中的列联表,能否有99%的把握认为两种生产方式的效率有差异?附:,14. (2018年全国ⅰ卷理数)下图是某地区2000年至2016年环境基础设施投资额y(单位:亿元)的折线图.。