山东省德州市2017_2018学年七年级数学上学期第二次招生试题青岛版(附答案)

合集下载

2022-2023学年苏科版七年级数学上册第二次阶段性(1-1-4-3)综合训练题(附答案)

2022-2023学年苏科版七年级数学上册第二次阶段性(1-1-4-3)综合训练题(附答案)

2022-2023学年苏科版七年级数学上册第二次阶段性(1.1-4.3)综合训练题(附答案)一、选择题(共18分)1.下列计算正确的是()A.2m+3n=5mn B.x2+2x2=3x4C.﹣a2b+ba2=0D.3(a+b)=3a+b2.下列方程:①3x﹣y=2:②x++2=0;③=1;④x=0;⑤3x﹣1≥5:⑥x2﹣2x﹣3=0;⑦x.其中一元一次方程有()A.5个B.4个C.3个D.2个3.关于x的方程3﹣=0与方程2x﹣5=1的解相同,则常数a是()A.2B.﹣2C.3D.﹣34.下列运用等式的性质对等式进行的变形中,错误的是()A.若a=b,则B.若a=b,则ac=bcC.若a(x2+1)=b(x2+1),则a=bD.若x=y,则x﹣3=y﹣35.若a表示一个有理数,且有|﹣3﹣a|=3+|a|,则a应该是()A.任意一个有理数B.任意一个正数C.任意一个负数D.任意一个非负数6.若1<x<2,则的值是()A.﹣3B.﹣1C.2D.1二、填空题(共30分)7.写出一个单项式,使得它与多项式m+2n的和为单项式:.8.单项式﹣的系数是,次数是.9.关于x,y的两个多项式2mx2﹣2x+y与﹣6x2+2x﹣3y的差中不含二次项,则m=10.已知A=2x2+ax﹣5y+1,B=x2+3x﹣by﹣4,且对于任意有理数x,y,代数式A﹣2B的值不变,则(a﹣a)﹣(2b﹣b)的值是.11.当a=时,式子10﹣|a+2|取得最大值,2023+(﹣2a+1)2有最小值为.12.若(m﹣2)x3y|m|是关于x、y的五次单项式,则m的值是.13.若代数式3x n﹣(m﹣1)x+5是关于x的三次二项式,则(m﹣n)n的值为.14.用字母表示图中阴影部分面积.15.“科赫曲线”是瑞典数学家科赫1904构造的图案(又名“雪花曲线”).其过程是:第一次操作,将一个等边三角形每边三等分,再以中间一段为边向外作等边三角形,然后去掉中间一段,得到边数为12的图②.第二次操作,将图②中的每条线段三等分,重复上面的操作,得到边数为48的图③.如此循环下去,得到一个周长无限的“雪花曲线”.若操作4次后所得“雪花曲线”的边数是.16.在一列数:a1,a2,a3,…,a n中,a1=2,a2=,a3=4,且任意相邻的三个数的积都相等.若前n个数的积等于64,则n=.三、解答题(共72分)17.把下列各数分别填入相应的集合里.①﹣,②,③0,④﹣(﹣2)2,⑤﹣1.2,⑥0.5050050005…(每两个5之间多一个0),⑦32%,⑧.(1)无理数集合:{…};(2)分数集合:{…}.18.)计算(1)﹣44﹣(﹣)×[4﹣(﹣2)2]﹣1;(2)﹣14÷(﹣5)2×(﹣)﹣.19.化简(1)3ab﹣2(a2﹣ab)﹣(a2﹣ab);(2)3x2﹣[x2﹣(4x﹣1)]+2(x2+5x﹣2).20.先化简,再求值:6x2﹣3(2x2﹣4y)+2(x2﹣y),其中,x=﹣1,y=.21.解方程(1)5x+4=3(x﹣4);(2)﹣1=;(3)﹣=2.22.(4分)已知a、b、c的大致位置如图所示:化简|a+c|+|b﹣c|﹣|a﹣b|+2b.23.若关于x的方程mx﹣=(x﹣)有负整数解,求整数m的值.24.我们规定,若关于x的一元一次方程mx=n(m≠0)的解为n﹣m,则称该方程为差解方程,例如:5x=的解为x=﹣5,则该方程5x=就是差解方程.请根据上边规定解答下列问题(1)若关于x的一元一次方程3x=a+1是差解方程,则a=.(2)若关于x的一元一次方程3x=a+b是差解方程且它的解为x=a,求代数式4a2b﹣[2a2﹣2(ab2﹣2a2b)]的值(提示:若m+n+1=m,移项合并同类项可以把含有m的项抵消掉,得到关于n的一元一次方程,求得n=﹣1)25.数轴是学习有理数的一种重要工具,任何有理数都可以用数轴上的点表示,这样能够运用数形结合的方法解决一些问题.如图,将一条数轴在原点O和点B处各折一下,得到一条“折线数轴”.图中点A表示﹣10,点B表示10,点C表示18,我们称点A和点C在数轴上相距28个长度单位.动点P从点A出发,以2单位/秒的速度沿着“折线数轴”的正方向运动,从点O运动到点B期间速度变为原来的一半,之后立刻恢复原速;同时,动点Q从点C出发,以1单位/秒的速度沿着数轴的负方向运动,从点B运动到点O期间速度变为原来的两倍,之后也立刻恢复原速.当点P到达点C时,两点都停止运动.设运动的时间为t秒.问:(1)t=2秒时,点P在“折线数轴”上所对应的数是;点P到点Q的距离是个单位长度;(2)动点P从点A运动至C点需要秒;(3)P、Q两点相遇时,t=秒;此时相遇点M在“折线数轴”上所对应的数是;(4)如果动点P、O两点在数轴上相距的长度与Q、B两点在数轴上相距的长度相等,直接写出t的值.参考答案一、选择题(共18分)1.解:A.2m与3n不是同类项,不能合并,此选项错误;B.x2+2x2=3x2,此选项错误;C.﹣a2b+ba2=0,此选项正确;D.3(a+b)=3a+3b,此选项错误;故选:C.2.解:下列方程:①3x﹣y=2:②x++2=0;③=1;④x=0;⑤3x﹣1≥5:⑥x2﹣2x ﹣3=0;⑦x.其中一元一次方程有③④⑦,共3个.故选:C.3.解:方程2x﹣5=1,移项得:2x=1+5,合并得:2x=6,解得:x=3,把x=3代入得:3﹣=0,去分母得:6﹣3a+3=0,解得:a=3.故选:C.4.解:∵若a=b,只有c≠0时,成立,∴选项A符合题意;∵若a=b,则ac=bc,∴选项B不符合题意;∵若a(x2+1)=b(x2+1),则a=b,∴选项C不符合题意;∵若x=y,则x﹣3=y﹣3,∴选项D不符合题意.故选:A.5.解:由题意得:(﹣3﹣a)2=(3+|a|)2,开平方得:9+6a+a2=9+6|a|+a2,整理得:|a|=a,故可得a为非负数.故选:D.6.解:∵1<x<2,∴x﹣2<0,x﹣1>0,x>0,∴原式=﹣1﹣(﹣1)+1=1,故选:D.二、填空题(共30分)7.解:﹣m+(m+2n),=﹣m+m+2n,=2n,或m+2n﹣2n=m.故答案为:﹣m或﹣2n.8.解:根据单项式系数、次数的定义,单项式的数字因数﹣即为系数,所有字母的指数和是3+2=5故答案为:5.9.解:∵关于x、y的两个多项式2mx2﹣2x+y与﹣6x2+2x﹣3y的差中不含二次项,∴2mx2﹣2x+y﹣(﹣6x2+2x﹣3y)=2mx2﹣2x+y+6x2﹣2x+3y=(2m+6)x2﹣4x+4y,则2m+6=0,解得:m=﹣3.故答案为:﹣3.10.解:∵A=2x2+ax﹣5y+1,B=x2+3x﹣by﹣4,∴A﹣2B=2x2+ax﹣5y+1﹣2(x2+3x﹣by﹣4)=2x2+ax﹣5y+1﹣2x2﹣6x+2by+8=(a﹣6)x+(2b﹣5)y+9,∵对于任意有理数x,y,代数式A﹣2B的值不变,∴a﹣6=0,2b﹣5=0,解得:a=6,b=2.5,则(a﹣a)﹣(2b﹣b)=(6﹣2)﹣(5﹣)=4﹣3=.11.解:∵|a+2|≥0,∴当a+2=0,即a=﹣2时,式子10﹣|a+2|取得最大值;∵(﹣2a+1)2≥0,∴当﹣2a+1=0,即a=时,2023+(﹣2a+1)2有最小值为2023.故答案是:﹣2,2023.12.解:∵(m﹣2)x3y|m|是关于x、y的五次单项式,∴3+|m|=5,m﹣2≠0,∴m=﹣2.故答案为:﹣2.13.解:∵代数式3x n﹣(m﹣1)x+5是关于x的三次二项式,∴n=3,m﹣1=0,解得:m=1,∴(m﹣n)n=(1﹣3)3=﹣8.故答案为:﹣8.14.解:∵梯形的面积为,圆的面积为π×()2,∴阴影部分的面积为,故答案为.15.解:操作1次后所得“雪花曲线”的边数为12,即3×41=12;操作2次后所得“雪花曲线”的边数为48,即3×42=48;操作3次后所得“雪花曲线”的边数为192,即3×43=192;所以操作4次后所得“雪花曲线”的边数为768,即3×44=768;故答案为:768.16.解:由任意相邻的三个数的积都相等.可知:a4=2,a5=,a6=4,…,可得:a1,a4,a7,…,a3n﹣2,相等为2,a2,a5,a8,…,a3n﹣1,相等为,a3,a6,a9,…,a3n,相等为4,∵相邻的三个数的积为2,∴将这列数每3个分成一组,∵64=26,可知6组数之积为64,则n=18,满足题意;由规律,得a16=2,a17=,a18=4,a17•a18=1,∴前16个数之积为64,则n=16满足题意;由规律,得a19=2,a20=,a21=4,a22=2,•a23=,它们五个数相乘为1,所以前23个数之积为64.则n=23满足题意.故答案为18或16或23.三、解答题(共72分)17.解:(1)无理数集合:{⑥⑧…};(2)分数集合:{②⑤⑦…}.故答案为:⑥⑧;②⑤⑦.18.解:(1)﹣44﹣(﹣)×[4﹣(﹣2)2]﹣1=﹣256﹣(﹣)×(4﹣4)﹣1=﹣256﹣(﹣)×0﹣1=﹣256﹣0﹣1=﹣257;(2)﹣14÷(﹣5)2×(﹣)﹣=﹣1÷25×(﹣)﹣=﹣1××(﹣)﹣=﹣=﹣.19.解:(1)3ab﹣2(a2﹣ab)﹣(a2﹣ab)=3ab﹣2a2+2ab﹣a2+ab=6ab﹣3a2;(2)3x2﹣[x2﹣(4x﹣1)]+2(x2+5x﹣2)=3x2﹣(x2﹣4x+1)+2x2+10x﹣4=3x2﹣x2+4x﹣1+2x2+10x﹣4=4x2+14x﹣5.20.解:原式=6x2﹣6x2+12y+2x2﹣2y=2x2+10y,当x=﹣1,y=时,原式=2×1+10×=2+5=7.21.解:(1)5x+4=3(x﹣4),去括号得,5x+4=3x﹣12,移项得,5x﹣3x=﹣4﹣12,合并同类项得,2x=﹣16,系数化为1得,x=﹣8;(2)﹣1=,去分母得,3(4x﹣3)﹣15=5(2x﹣2),去括号得,12x﹣9﹣15=10x﹣10,移项得,12x﹣10x=9+15﹣10,合并同类项得,2x=14,系数化为1得,x=7;(3)﹣=2,原方程变形为,去分母得,3(4x+30)﹣2(10x﹣1)=12,去括号得,12x+90﹣20x+2=12,移项得,12x﹣20x=12﹣92,合并同类项得,﹣8x=﹣80,系数化为1得,x=10.22.解:由数轴可得:a+c>0,b﹣c<0,a﹣b>0,则原式=a+c﹣(b﹣c)﹣(a﹣b)+2b=a+c﹣b+c﹣a+b+2b=2b+2c.23.解:因为关于x的方程mx﹣=(x﹣)有负整数解,所以解方程,得x=,所以m﹣1<0,所以m<1,所以整数m的值为:0,﹣1.24.解:(1)∵关于x的一元一次方程3x=a+1是差解方程,∴=a+1﹣3,解,得,故答案为:.(2)∵关于x的一元一次方程3x=a+b是差解方程且它的解为x=a,∴a==a+b﹣3,解,得,b=3.4a2b﹣[2a2﹣2(ab2﹣2a2b)]=4a2b﹣(2a2﹣2ab2+4a2b)=4a2b﹣2a2+2ab2﹣4a2b=﹣2a2+2ab2,当,b=3时,原式=﹣2×+2××9=.25.解:如图所示:(1)设动点P从点A出发,运动2秒后的点对应数为x,∵点P以2单位/秒的速度沿着“折线数轴”的正方向运动,∴AP=2×2=4,又∵x﹣(﹣10)=4,解得:x=﹣6,又∵同时,动点Q从点C出发,以1单位/秒的速度沿着数轴的负方向运动,∴QC=2×1=2,又∵AC=28,AC=AO+OB+BC,∴点P到点Q的距离=28﹣4﹣2=22;故答案为﹣6,22;(2)由图可知:动点P从点A运动至C分成三段,分别为AO、OB、BC,AO段时间为,OB段时间为=10,BC段时间为=4,∴动点P从点A运动至C点需要时间为5+10+4=19(秒),故答案为19秒;(3)设点Q经过8秒后从点B运动到OB段,再经进y秒与点P在OB段相遇,依题意得:3+y+2y=10,解得:y=,∴P、Q两点相遇时经过的时间为8+=(秒),此时相遇点M在“折线数轴”上所对应的数是为3+=;故答案为,;(4)当点P在AO,点Q在BC上运动时,依题意得:10﹣2t=8﹣t,解得:t=2,当点P、Q两点都在OB上运动时,t﹣5=2(t﹣8)解得:t=11,当P在OB上,Q在BC上运动时,8﹣t=t﹣5,解得:t=;当P在BC上,Q在OA上运动时,t﹣8﹣5+10=2(t﹣5﹣10)+10,解得:t=17;即PO=QB时,运动的时间为2秒或秒或11秒或17秒.。

2023-2024学年青岛版七年级数学上册《第五章 代数式与函数的初步认识》单元测试卷附答案

2023-2024学年青岛版七年级数学上册《第五章 代数式与函数的初步认识》单元测试卷附答案

2023-2024学年青岛版七年级数学上册《第五章代数式与函数的初步认识》单元测试卷附答案学校:___________班级:___________姓名:___________考号:___________(共25题,共120分)一、选择题(共12题,共36分)1.(3分)下列各式中,代数式的个数有( )① a;② 2x=6;③ 0;④ m2−1n ;⑤ mx−ny;⑥ ba.A.2个B.3个C.4个D.5个2.(3分)2018年新年之后,大家期盼已久的第一场冬雪终于来临,俗语:“下雪不冷化雪冷”,温度由t∘C下降5∘C后是( )A.t−5∘C B.(t+5)∘C C.t+5∘C D.(t−5)∘C3.(3分)当a=1时,a+2a+3a+4a+⋯+99a+100a的值为( )A.5050B.100C.−50D.504.(3分)当x=1时,代数式ax5+bx3+cx−5的值为m,则当x=−1时,此代数式的值为( )A.−m B.−m−10C.−m−5D.−m+55.(3分)若a≤0,则∣a∣+a+2等于( )A.2a+2B.2C.2−2a D.2a−26.(3分)代数式y2+2y+7的值是6,则4y2+8y−5的值是( )A.9B.−9C.18D.−187.(3分)已知3−x+2y=−2,则整式x−2y的值为( )A.12B.10C.5D.158.(3分)当x=−3,y=2时,代数式2x2+xy−y2的值是( )A.5B.6C.7D.89.(3分)在利用太阳能热水器来加热水的过程中,热水器里的水温随所晒时间的长短而变化,这个问题中因变量是( )A.太阳光强弱B.水的温度C.所晒时间D.热水器10.(3分)下列关于变量x,y的关系,其中y不是x的函数的是( )A.B.C.D.11.(3分)下列各曲线中,不能表示y是x的函数的是( )A.B.C.D.,在这个函数关12.(3分)设路程为s(km),速度为v(km/h),时间为t(h),当s=50时t=50v 系式中( )A.路程是常量,t是s的函数B.速度是常量,t是v的函数C.时间是常量,v是t的函数D.s=50是常数,v是自变量,t是v的函数二、填空题(共6题,共18分)13.(3分)若实数a满足a2−2a=3,则3a2−6a−8的值为.14.(3分)“x与y平方的差”用代数式表示为,“x与y差的平方”用代数式表示为.15.(3分)若∣m+2∣+(n−1)2=0,则(m+n)2020的值为.16.(3分)已知x2+3x+7的值为11,则代数式3x2+9x−15的值为.17.(3分)已知a,b互为相反数,c是绝对值最小的数,d是负整数中最大的数,则a+b+c−d=.18.(3分)若a=2b+4,则5(2b−a)−3(−a+2b)−100=.三、解答题(共7题,共66分)19.(8分)如图所示,在长和宽分别是a,b的矩形纸片的四个角都剪去一个边长为x的正方形.(1) 用a,b,x表示纸片剩余部分的面积;(2) 当a=6,b=4,且剪去部分的面积等于剩余部分的面积时,求正方形的边长.20.(8分)某学校准备印刷一批证书,现有两个印刷厂可供选择:甲厂收费方式:收制版费1000元,每本印刷费0.5元;乙厂收费方式:无制版费,不超过2000本时,每本收印刷费 1.5元;超过2000本时,超过部分每本收印刷费0.25元.(1) 若设该校共需印制证书x本,请用代数式分别表示甲,乙两厂的收费情况;(2) 当印制证书8000本时应该选择哪个印刷厂更节省费用?节省了多少?21.(8分)某服装厂生产一种西装和领带,西装每套定价200元,领带每条定价40元,在促销活动期间,该厂向客户提供了两种优惠方案(客户只能选择其中一种优惠方案):①买一套西装送一条领带;②西装按原价的9折收费,领带按原价的8折收费.在促销活动期间,某客户要到该服装厂购买x套西装,y条领带(y>x).(1) 两种方案需的费用分别是多少元?(用含x,y的代数式表示并化简)(2) 若该客户需要购买20套西装,25条领带,则他选择哪种方案更划算?22.(8分)某农户去年承包荒山若干亩.投资7800元改造后,种果树2000棵.今年产量为18000千克,此水果在市场上每千克售a元,在果园每千克售b元.该农户将水果运到市场出售平均每天出售1000千克,需8人帮忙.每人每天付工资25元,农用车运费及其他各项税费平均每天100元.(1) 分别用a,b表示两种方式出售水果的收人.(2) 若a=1.3,b=1.1,且两种出售方式都在相同的时间内售完全部水果,请你通过计算说明选择哪种出售方式较好?23.(10分)如图,圆柱的高是3cm,当圆柱的底面半径r cm由小到大变化时,圆柱的体积V cm3也随之发生了变化.(1) 在这个变化中,自变量是,因变量是.(2) 写出体积V与半径r的关系式.(3) 当底面半径由1cm变化到10cm时,通过计算说明圆柱的体积增加了多少cm3.24.(12分)据商务部监测,2018年10月1日至7日,全国零售和餐饮企业实现销售额约1.4万亿元.苏宁电器某品牌电烤箱每台定价1000元,电磁炉每台定价200元,十一期间商场开展促销活动,向顾客提供两种优惠方案:方案一:买一台电烤箱送一台电磁炉;方案二:电烤箱和电磁炉都按定价的90%付款.某顾客要准备购买微波炉10台,电磁炉x台(x>10).(1) 若该顾客选择方案一购买,他需付款元(用含x的代数式表示);(2) 若该顾客选择方案二购买,他需付款元(用含x的代数式表示);(3) 若x=20,请你通过计算说明按哪种方案购买更省钱?能省多少钱?25.(12分)甲、乙两家超市以相同的价格出售同样的商品,为了吸引顾客,各自推出不同的优惠方案:在甲超市累计购买商品超出300元之后,超出部分按原价8折优惠;在乙超市累计购买商品超出200元之后,超出部分按原价8.5折优惠.设顾客预计累计购物x元(x>300).(1) 请用含x代数式分别表示顾客在两家超市购物所付的费用;(2) 李明准备购买500元的商品,你认为他应该去哪家超市?请说明理由.(3) 计算一下,李明购买多少元的商品时,到两家超市购物所付的费用一样?答案一、选择题(共12题,共36分)1. 【答案】D【解析】① a;③ 0;④ m2−1n ;⑤ mx−ny;⑥ ba是代数式,② 2x=6是等式.2. 【答案】D3. 【答案】A【解析】当a=1时a+2a+3a+4a+⋯+99a+100a=1+2+3+4+⋯+99+100=100×(100+1)2=5050.4. 【答案】B【解析】将x=1代入ax5+bx3+cx−5=m,得:a+b+c−5=m 则a+b+c=m+5当x=−1时原式=−a−b−c−5=−(a+b+c)−5=−m−5−5=−m−10,故选:B.5. 【答案】B【解析】∵a≤0∴∣a∣=−a.原式=−a+a+2=2.6. 【答案】B【解析】∵y2+2y+7=6∴y2+2y=−1又∵4y2+8y−5=4(y2+2y)−5∴4y2+8y−5=−4−5=−9.7. 【答案】C【解析】∵3−x+2y=−2∴2y−x=−5,则x−2y=5.8. 【答案】D【解析】当x=−3,y=2时2x2+xy−y2=2×(−3)2+(−3)×2−22=2×9−6−4=18−6−4=8.9. 【答案】B【解析】因为热水器里的水温随所晒时间的长短而变化,所以所晒时间是自变量,水的温度是因变量.10. 【答案】B【解析】函数的定义:对于x的每一个取值,y都有唯一确定的值与之对应的关系,A,C,D中每一个x都只对应一个y,而B中一个x对应两个y,故B中y不是x的函数.11. 【答案】B【解析】A,C,D选项中自变量x取任何值,y都有唯一的值与之相对应,y是x的函数;B选项自变量x取一个值时y都有2个值与之相对应,则y不是x的函数.12. 【答案】D中,v为自变量,t为v的函数,50为常量.【解析】在函数关系式t=50v二、填空题(共6题,共18分)13. 【答案】1【解析】∵a2−2a=3∴3a2−6a−8=3(a2−2a)−8=3×3−8=1∴3a2−6a−8的值为1.14. 【答案】x2−y2;(x−y)2【解析】“x与y平方的差”用代数式表示为x2−y2“x与y差的平方”用代数式表示为(x−y)2.15. 【答案】1【解析】由题意得m+2=0,n−1=0解得m=−2,n=1∴(m+n)2020=(−2+1)2020=1.16. 【答案】−3【解析】∵x2+3x+7=11∴x2+3x=4∴3x2+9x=3⋅(x2+3x)=3×4=12∴3x2+9x−15=12−15=−3.17. 【答案】1【解析】由题意得a+b=0,∣c∣=0,d=−1∴a+b+c−d=1.18. 【答案】−108三、解答题(共7题,共66分)19. 【答案】(1) ab−4x2.(2) 依题意得:ab−4x2=4x2将a=6,b=4代入上式,得x2=3.解得:x1=√3,x2=−√3(舍去)即正方形的边长为√3.20. 【答案】(1) 若x不超过2000时,甲厂的收费为(1000+0.5x)元,乙厂的收费为(1.5x)元.若x超过2000时,甲厂的收费为(1000+0.5x)元,乙厂的收费为2000×1.5+0.25(x−2000)=0.25x+2500元.(2) 当x=8000时,甲厂费用为1000+0.5×8000=5000元乙厂费用为:0.25×8000+2500=4500元∴当印制证书8000本时应该选择乙印刷厂更节省费用,节省了500元.21. 【答案】(1) 按方案①购买,需付款:200x+(y−x)×40=(40y+160x)元;该客户按方案②购买,需付款:200x⋅90%+40y⋅80%=(180x+32y)(元).(2) 当x=20,y=25时,按方案①购买,需付款:40×25+160×20=4200(元);该客户按方案②购买,需付款:180×20+32×25=4400(元);∵4200<4400∴按方案①更划算.22. 【答案】(1) 市场销售的收入为:18000a−180001000×(25×8+100)−7800=18000a−5400−7800=18000a−13200.果园销售的收入为:18000b−7800.(2) 当a=1.3,b=1.1时市场销售收入为:18000×1.3−13200=23400−13200=10200(元)果园销售收入为:18000×1.1−7800=12000(元)∵10200<12000∴选择果园出售利润较高.23. 【答案】(1) r;V(2) V=3πr2.(3) 当r=1时V=3πr2=3π当r=10时V=3πr2=300π∵300π−3π=297π∴当底面半径由1cm变化到10cm时,圆柱的体积增加了297πcm3.24. 【答案】(1) (200x+8000)(2) (180x+9000)(3) 当x=20时,方案一的费用为200×20+8000=12000(元)方案二的费用为180×20+9000=12600(元)∵12000<12600∴方案一省钱,省600元.【解析】(1) 若该顾客选择方案一购买,他需付款1000×10+200(x−10)=200x+8000(元).(2) 该顾客选择方案二购买,他需付款90%×(10×1000+200x)=180x+9000(元).25. 【答案】(1) 设顾客在甲超市购物所付的费用为y甲顾客在乙超市购物所付的费用为y乙根据题意得:y甲=300+0.8(x−300)=0.8x+60;y乙=200+0.85(x−200)=0.85x+30.(2) 他应该去乙超市,理由如下:当x=500时y甲=0.8x+60=460,y乙=0.85x+30=455∵460>455∴他去乙超市划算.(3) 令y甲=y乙,即0.8x+60=0.85x+30解得:x=600.答:李明购买600元的商品时,到两家超市购物所付的费用一样.。

七年级数学上册第一单元试卷(附答案)

七年级数学上册第一单元试卷(附答案)

2017—2018学年度全南二中上学期七年级数学第一单元试卷有理数一、选择题:每题3分,共18分,请将答案填写在表格中1、下列各组量中,互为相反意义的量是( )A 、收入200元与赢利200元B 、向东走10米与向西走7米C 、“白天”与“黑夜”D 、“你比我高3cm ”与“我比你重3kg ”2、大于–3.5,小于1.5的整数共有( )个。

A 、3B 、4C 、5D 、63、2017年1-2月全南县财政收入达到100190000元,用科学记数法表示该数据为( )元A 、8100019.1⨯元B 、61010019⨯元C 、10100.10019⨯元D 、9100019.1⨯元4、如果两个有理数的积是正数,和也是正数,那么这两个有理数( )A 、异号,且正数的绝对值比负数的绝对值大B 、同号,且均为负数C 、异号,且负数的绝对值比正数的绝对值大D 、同号,且均为正数5、下列计算正确的是( )A. -(-2)2=4B.-22=-4C.(-3)2=6D.(-1)3=16、在下列说法中,正确的个数是( )⑴任何一个有理数都可以用数轴上的一个点来表示⑵数轴上的每一个点都表示一个有理数⑶任何有理数的绝对值都不可能是负数⑷每个有理数都有相反数A 、1B 、2C 、3D 、4二、填空题(每题3分,共18分)7、-23的相反数是 ;倒数是 ;绝对值是 。

8、若向东走5m ,记为+5m ,则﹣3m 表示为 。

9、在数轴上,与表示-5的点距离为4的点所表示的数是 。

10、若 0)3(22=++-y x ,则x+y = 。

11、把(+5)﹣(﹣7)+(﹣23)﹣(+6)写成省略括号的和的形式为____ ____ 。

12、计算1﹣2+3﹣4+5﹣6+…+2015﹣2016的结果是_____ ___ 。

三、认真找一找(4分)13.在有理数1.7,﹣17,0,,﹣0.001,,2003,3.14,﹣1中,分数有: ;整数有: ;负数有: ;正数有: .四、用心画一画:(5分)14.在数轴上表示下列各数,并比较它们的大小.3,﹣1.5,,0,2.5,﹣4.五、计算题(每题5分,共30分)15、 7+(﹣5)+2+(﹣4) (﹣18)+21+(﹣16)+8+(﹣23)+2516、).18(181719-⨯-)( )12()614121(-⨯--17、)21(549)2()32(22323-⨯+⨯-÷-+- 5432)1()1()3(2---⨯---六、解答题:(第18题7分,第19题8分,第20题10分).2182的值,求式子的绝对值为互为倒数,、互为相反数,、、已知x cd b a x d c b a ++19、教师节当天,出租车司机小王在东西向的街道上免费接送教师,规定向东为正,向西为负,当天出租车的行程如下(单位:千米):+5,﹣4,﹣8,+10,+3,﹣6,+7,﹣11.(1)将最后一名老师送到目的地时,小王距出发地多少千米?方位如何?(2)若汽车耗油量为0.2升/千米,则当天耗油多少升?若汽油价格为6.20元/升,则小王共花费了多少元钱?20、定义新运算:对于任意有理数a,b,都有a⊕b=a(a﹣b)+1,等式右边是通常的加法、减法及乘法运算,比如,数字2⊕5.计算如下:2⊕5=2×(2﹣5)+1=2×(﹣3)+1=﹣6+1=﹣5(1)求(﹣2)⊕3的值;(2)求﹝(﹣3)⊕2﹞⊕(-1)的值2017—2018学年度七年级数学上册第一单元试卷有理数答案一、选择题:每题3分,共18分,请将答案填写在表格中 题号1 2 3 4 5 6 选项 B C A D B C二、填空题(每题3分,共18分)7、23, -1/23, 238、向西走3米9、-9和-110、-111、5+7-23-612、-1008三、认真找一找(4分)13.分数有:1.7,,﹣0.001,,3.14;整数有:﹣17,0,2003;﹣1负数有:﹣17,,﹣0.001,﹣1;正数有:1.7,,2003,3.14.四、用心画一画:(5分)答案略五、计算题(每题5分,共30分)15、 7+(﹣5)+2+(﹣4) (﹣18)+21+(﹣16)+8+(﹣23)+25解:原式=434412625657-+- 解:原式=21+8+25-18-16-23 =212212- =-3 =016、).18(181719-⨯-)( )12()614121(-⨯-- 解:原式=)18()18120(-⨯+- 解:原式=)12(61)12(41)12(21-⨯--⨯--⨯=360-1 =-6+3+2=359 =-117、)21(549)2()32(22323-⨯+⨯-÷-+- 5432)1()1()3(2---⨯--- 解:原式=)41(549)81(948-⨯+⨯-⨯+- 解:原式=1274++- =45818--- =24 =839- 六、解答题:(第18题7分,第19题8分,第20题10分)18、解:∵a 与b 互为相反数,c 、d 互为倒数,x 的绝对值是2∴a+b=0 cd =1 x =±2∴2x cd b a ++=2)2(10±+=41 19、(1)解:+5﹣4﹣8+10+3﹣6+7﹣11=-4答:在出发地西边4千米处。

山东省德州市六校2017_2018学年七年级英语下学期第二次联考试题人教新目标版(附答案)

山东省德州市六校2017_2018学年七年级英语下学期第二次联考试题人教新目标版(附答案)

山东省德州市六校2017-2018学年七年级英语下学期第二次联考试题温馨提示:1.本试题共六大题,分选择题和非选择题两种类型;选择题计80分,非选择题计70分;试卷总分150分,考试时间120分钟。

2.考生应将选择题答案填涂在答题卡上,注意事项请参照答题卡要求。

3.相信以最佳的精神和心理状态,认真审题,沉着答题,你一定会成功!一、听力部分(共20小题,每小题1.5分,总计30分。

)Ⅰ.听句子,选出相应的图片,每个句子读一遍。

AB C D E1.______2.______3.______4.______5.______Ⅱ.听五段对话,回答每段对话后面的问题,每段对话读两遍。

6.A. Mary’s. B. Kate’s. C. Nancy’s.7.A. His mobile phone.B. His bag.C. His computer.8.A. A picture.B. Lingling’s name.C. Lingling’s number.9.A. At the lost and found office.B. In her schoolbag.C. We don’t know.10. A. In New York. B. In Sydney. C. In Toronto.Ⅲ. 听短文,请根据所听的内容,在每小题所给的A、B、C三个选项中选出最佳选项,短文读两遍。

11. What’s the little dog’s name?A. Lanlan.B. Laifu.C. Fanfan.12. What colour is the dog?A. Black.B. White.C. Grey.13. What does the dog help Mr.Li do?A. Get his shirt and shorts.B. Get his shirt and shoes.C. Get his gloves and shoes.14. What does the dog like doing?A. Playing with toys.B. Playing with balls.C. Playing with cats.15. Who took the dog home?A. Mr.Li’s friend.B. Maybe someone.C. A bad man.Ⅳ.听短文,根据短文内容填空,每空一词,短文读两遍。

青岛版2019-2020七年级数学第二章有理数假期自主学习基础达标测试题3(附答案)

青岛版2019-2020七年级数学第二章有理数假期自主学习基础达标测试题3(附答案)

青岛版2019-2020七年级数学第二章有理数假期自主学习基础达标测试题3(附答案) 1.-5的绝对值是( ) A .5B .-5C .15D .15-2.如果上升8℃记作+8℃,那么﹣5℃表示( )A .上升5℃B .下降5℃C .上升3℃D .下降3℃3.如图,点A 、B 在数轴上所表示的数分别是2和5,若点C 与A 、B 在同一条数轴上且AC-AB=m (m >0),则点C 所表示的数为( )A .m 5+B .1m -C .m 5+或2m -D .m 5+或m 1--4.有理数a ,b 在数轴上的位置如图所示,则下列结论正确的是 ( )A .B .C .D .5.18的绝对值是( ) A .8B .﹣8C .18 D .﹣186.有理数-2的相反数是( ) A .2 B .-2C .12D .-127.在0,12-,2,-2这四个数中,最小的数是( ) A .0B .12- C .2D .-28.在数-3,2,0,3中,大小在-1和2之间的数是( ) A .-3 B .2 C .0 D .39.四个有理数0,-1,9,-2018中,最小的数是( ) A .0 B .-1 C .9 D .-2018 10.-2018的绝对值是( ) A .2018B .2018±C .12018- D .-201811.已知实数m 、n 满足,则______________.12.已知a ,b 两数在数轴上的位置如图所示,则化简代数式的结果是____.13._____的相反数是﹣2019.14.数轴上点M表示有理数﹣3,将点M向右平移2个单位长度到达点N,点E到点N的距离为5,则点E表示的有理数为_____.15.在数轴上,点A所表示的数为4,那么到点A的距离等于5个单位长度的点所表示的数是_____.16.写出一个大于-1且小于1的负有理数:______.17.在数轴上,与-3表示的点相距4个单位的点所对应的数是_________.18.如图,直径为2个单位长度的半圆,从原点沿数轴向右滚动一周,圆上的一点由原点O 到达点O',则点O'对应的数是________。

2022-2023学年苏科版七年级数学上册第二次阶段性(1-1-6-1)综合训练题(附答案)

2022-2023学年苏科版七年级数学上册第二次阶段性(1-1-6-1)综合训练题(附答案)

2022-2023学年苏科版七年级数学上册第二次阶段性(1.1-6.1)综合训练题(附答案)一、单选题(共18分)1.下列运算正确的是()A.﹣1+2=3B.3×(﹣2)=1C.﹣1﹣2=﹣3D.﹣12020=12.下列说法正确的是()A.是单项式B.是单项式C.是单项式D.(a﹣b)2是单项式3.过度包装既浪费资源又污染环境.据测算,如果全国每年减少10%的过度包装纸用量,那么可减排二氧化碳3120000吨,把数3120000用科学记数法表示为()A.3.12×105B.3.12×106C.31.2×105D.0.312×1074.已知关于y的方程y+3m=24与y+4=1的解相同,则m的值是()A.9B.﹣9C.7D.﹣85.下面四个几何体中,同一个几何体的主视图和俯视图相同的共有()A.1个B.2个C.3个D.4个6.如图所示,圆的周长为4个单位长度,在圆的4等分点处标上数字0,1,2,3,先让圆周上数字0所对应的点与数轴上的数﹣2所对应的点重合,再让圆沿着数轴按顺时针方向滚动,那么数轴上的数﹣2017将与圆周上的哪个数字重合()A.0B.1C.2D.3二、填空题(共30分)7.比较大小:﹣.8.在x﹣3y=3中,用含x的代数式表示y,得.9.已知a、b、c三个数在数轴上对应点的位置如图所示,下列几个判断:①a<c<b;②﹣a<b;③a+b>0;④c﹣a<0中,错误的是(写序号)10.若m﹣n=﹣1,则(m﹣n)2﹣2m+2n=.11.若(a﹣2)x|a|﹣1﹣2=0是关于x的一元一次方程,则a=.12.一台电器原价是a元,按8折优惠出售,用式子表示现价为元.13.如图,将五角星沿虚线折叠,使得A,B,C,D,E五个点重合,得到的立体图形是.14.一个正方体的数字魔方的平面展开图如图所示,将它折成正方体,若每组对立面的代数式相等,则A=.15.如图所示的某种玩具是由两个正方体用胶水黏合而成的,它们的棱长分别为1dm和2dm,为了美观,现要在其表面喷涂油漆,如果喷涂1dm2需用油漆4g,那么喷涂这个玩具共需油漆g.16.已知(a+1)2+|b+5|=b+5,且|2a﹣b﹣1|=1,则ab=.三、解答题(共72分)17.计算:(1)﹣9+5﹣(﹣12)+(﹣3);(2)8﹣(﹣4)÷22×3.18.解方程:(1)5(x﹣1)﹣2(1﹣x)=3+2x.(2)﹣1=.19.实数a、b在数轴上的位置如图所示,则化简2|a+b|﹣|a﹣b|.20.小王在解关于x的方程2a﹣2x=15时,误将﹣2x看作+2x,得方程的解x=3,求原方程的解.21.如图,是由7个棱长为1的小正方体组合成的简单几何体.(1)请画出这个几何体的三视图;(注:所画线条用黑色签字笔描黑)(2)该几何体的表面积(含下底面)为;(直接写出结果)(3)如果在这个几何体上再添加一些相同的小正方体,并保持这个几何体的主视图和俯视图不变,那么最多可以再添加个小正方体.22.如图,A、B、C、D四点不在同一直线上,读句画图.(1)画射线DA;(2)画直线BD;(3)连接BC;(4)延长BC,交射线DA的反向延长线于E;(5)在直线BD上找一点P,使得P A+PC的和最小,并简要说明理由.(保留作图痕迹)23.用一元一次方程解决问题:小芳的爸爸买了一箱苹果回家,小芳想分给家里的每一个人,如果每人分3个,就剩下3个苹果分不完,如果每人分4个,则还差2个苹果才够分,问小芳家有几个人?爸爸买了多少个苹果?24.定义:对于一个有理数x,我们把[x]称作x的对称数.若x≥0,则[x]=x﹣2;若x<0,则[x]=x+2.例:[1]=1﹣2=﹣1,[﹣2]=﹣2+2=0.(1)求[],[﹣1]的值;(2)已知有理数a>0,b<0,且满足[a]=[b],试求代数式(b﹣a)3﹣2a+2b的值;(3)解方程:[2x]+[x+1]=1.25.一辆快车从甲地驶往乙地,一辆慢车从乙地驶往甲地,两车同时出发相向而行,并以各自的速度匀速行驶.1.5小时后两车相距70km;2小时后两车相遇.相遇时快车比慢车多行驶40km.(1)甲乙两地之间相距km;(2)求快车和慢车行驶的速度;(3)若快车到达乙地后立刻返回甲地,慢车到达甲地后停止行驶,快车出发多长时间,两车相距35km?26.在数轴上,点A表示的数为a,点B表示的数为b,且a、b满足|a+5|+(b﹣7)2=0.其中O为原点,如图:(1)直接写出:a=,b=,A,B两点之间的距离为;(2)在数轴上有一动点M,若点M到点A的距离是点M到点B的距离的2倍,求点M 对应的数;(3)在数轴上有一动点P,动点P从点A出发第一次向左运动1个单位长度;然后在此位置进行第二次运动,向右运动2个单位长度;然后在此位置进行第三次运动,向左运动3个单位长度…;按照如此规律不断地进行左右运动,当运动到2021次时,求此时点P所对应的有理数.参考答案一、单选题(共18分)1.解:A、原式=+(2﹣1)=1,不符合题意;B、原式=﹣3×2=﹣6,不符合题意;C、原式=﹣(1+2)=﹣3,符合题意;D、原式=﹣1,不符合题意.故选:C.2.解:A选项,分母中有未知数,不是整式,不是单项式,故该选项不符合题意;B选项,单独的一个数字是单项式,故该选项符合题意;C选项,是多项式,故该选项不符合题意;D选项,(a﹣b)2是多项式,故该选项不符合题意;故选:B.3.解:将3120000用科学记数法表示为:3.12×106.故选:B.4.解:y+4=1,解得y=﹣3,把y=﹣3代入y+3m=24,得3+3m=24.解得m=9,故选:A.5.解:圆柱主视图、俯视图分别是长方形、圆,主视图与俯视图不相同;圆锥主视图、俯视图分别是三角形、有圆心的圆,主视图与俯视图不相同;球主视图、俯视图都是圆,主视图与俯视图相同;正方体主视图、俯视图都是正方形,主视图与俯视图相同.共2个同一个几何体的主视图与俯视图相同.故选:B.6.解:圆在旋转的过程中,圆上的四个数,每旋转一周即循环一次,则与圆周上的0重合的数是﹣2,﹣6,﹣10…,即﹣(﹣2+4n),同理与3重合的数是:﹣(﹣1+4n),与2重合的数是﹣4n,与1重合的数是﹣(1+4n),其中n是正整数.而﹣2017=﹣(1+4×504),∴数轴上的数﹣2017将与圆周上的数字1重合.故选:B.二、填空题(共30分)7.解:∵﹣<0,>0,∴﹣<.故答案为:<.8.解:∵x﹣3y=3,∴y=,故答案为:.9.解:由数轴上右边表示的数总大于左边表示的数,可知a<c<b.①正确;②a<﹣2,则﹣a一定大于2,而b<1,所以﹣a>b,错误;③∵a<0,b>0,|a|>|b|,∴a+b<0,③错误;④∵a<c,∴c﹣a>0,错误.故答案为②③④.10.解:∵m﹣n=﹣1,∴(m﹣n)2﹣2m+2n=(m﹣n)2﹣2(m﹣n)=(﹣1)2﹣2×(﹣1)=1+2=3.故答案为:3.11.解:(a﹣2)x|a|﹣1﹣2=0是关于x的一元一次方程,∴a﹣2≠0,|a|﹣1=1,解得a=﹣2.故答案为:﹣2.12.解:由题意得:现价为:0.8a元,故答案为:0.8a.13.解:底面是五边形,侧面是三角形,实际上是正五棱锥的展开图,所以是正五棱锥.故答案为正五棱锥.14.解:∵每组对立面的代数式相等,∴x=5,A=3x﹣y,﹣x+2y=3,∴y=4,∴A=3x﹣y=3×5﹣4=11.故答案为:11.15.解:玩具的表面积为:6×(2×2)+4×(1×1)=28平方分米,所以喷涂这个玩具共需油漆28×4=112克.故答案为:112.16.解:∵(a+1)2≥0,|b+5|≥0,∴b+5≥0,∴(a+1)2=0,解得,a=﹣1,则|﹣2﹣b﹣1|=1,即|﹣b﹣3|=1,∴﹣b﹣3=±1,解得,b=﹣4或﹣2,∴ab=2或4,故答案为:2或4.三、解答题(共72分)17.解:(1)﹣9+5﹣(﹣12)+(﹣3)=﹣9+5+12+(﹣3)=5;(2)8﹣(﹣4)÷22×3=8﹣(﹣4)÷4×3=8+1×3=8+3=11.18.解:(1)去括号得:5x﹣5﹣2+2x=3+2x,移项合并得:5x=10,解得:x=2;(2)去分母得:x+1﹣2=2﹣3x,移项合并得:4x=3,解得:x=0.75.19.解:由数轴可知a<0<b,∵|b|>|a|,∴b>﹣a,∴a+b>0,∴2|a+b|﹣|a﹣b|=2(a+b)﹣(b﹣a)=2a+2b﹣b+a=b+3a.20.解:根据题意得:2a+6=15,a=,原方程为:9﹣2x=15原方程的解是:x=﹣3.21.解:(1)如图所示:;(2)(4×2+6×2+4×2)×(1×1)=(8+12+8)×1=28×1=28故该几何体的表面积(含下底面)为28;(3)由分析可知,最多可以再添加2个小正方体.故答案为:28;2.22.解:图形如图所示.理由:两点间线段最短23.解:设小芳家有x个人,根据题意得3x+3=4x﹣2,解得x=5.3x+3=3×5+3=18.答:小芳家有5个人,爸爸买了18个苹果.24.解:(1)[]=﹣2=﹣,[﹣1]=﹣1+2=1;(2)a>0,b<0,[a]=[b],即a﹣2=b+2,解得:a﹣b=4,故(b﹣a)3﹣2a+2b=(b﹣a)3﹣2(a﹣b)=(﹣4)3﹣8=﹣72;(3)当x≥0时,方程为:2x﹣2+x+1﹣2=1,解得:x=;当﹣1≤x<0时,方程为:2x+2+x+1﹣2=1,解得:x=0(舍弃);当x<﹣1时,方程为:2x+2+x+1+2=1,解得:x=﹣;故方程的解为:x=.25.解:(1)70÷(2﹣1.5)×2=70÷0.5×2=280(km).答:甲乙两地之间相距280km;(2)(280÷2+40÷2)÷2=160÷2=80(km/h),(280÷2﹣40÷2)÷2=120÷2=60(km/h),故快车行驶的速度80 km/h,慢车行驶的速度60km/h.(3)设快车出发x小时,两车相距35km,①两车相遇前,相距35km,则有80x+35+60x=280,解得x=;②两车相遇后,相距35km,则有80x﹣35+60x=280,解得x=;③快车到达乙地后,慢车到达甲地前,相距35km,则有80x﹣280+35=60x,解得x=,因为慢车走完全程需要小时,>,所以不合题意,舍去;④慢车到达甲地后,相距35km,则有80x+35=280×2,解得x=综上所述,小时或小时或小时,两车相距35km.故答案为:280.26.解:(1)由非负数的意义得:a+5=0,b﹣7=0,解得:a=﹣5;b=7,∴AB=7﹣(﹣5)=7+5=12,故答案为:﹣5,7,12;(2)设点M对应的数为t,①当t<﹣5时,AM=2BM,此种情况不成立;②当﹣5≤t≤7时,AM=2BM,则t+5=2(7﹣t),解得:t=3,③当t>7时,AM=2BM,则t+5=2(t﹣7),解得:t=19,综上,点M对应的数是3或19;(3)由题意得:﹣5﹣1+2﹣3+•﹣2021=﹣5+(﹣1+2)+(﹣3+4)+•+(﹣2019+2020)﹣2021=﹣5+1+1+•+1﹣2021=﹣5+1010﹣2021=﹣1016.此时点P所对应的有理数是﹣1016.。

人教版七年级上册数学期末考试试卷附答案

人教版七年级上册数学期末考试试卷附答案

人教版七年级上册数学期末考试试题一、单选题1.2-的值等于()A.2B.12-C.12D.﹣22.在墙壁上固定一根横放的木条,则至少需要钉子的枚数是()A.1枚B.2枚C.3枚D.任意枚3.已知x=y,则下列变形不一定成立的是()A.x+a=y+a B.x ya a=C.x﹣a=y﹣a D.ax=ay4.下列各组数中,互为相反数的是()A.-(-1)与1B.(-1)2与1C.|1|-与1D.-12与15.下列图形中,不是正方体的展开图的是()A.B.C.D.6.下列说法中正确的是()A.两点之间的所有连线中,线段最短B.射线就是直线C.两条射线组成的图形叫做角D.小于平角的角可分为锐角和钝角两类7.某品牌手机的进价为1200元,按原价的八折出售可获利14%,则该手机的原售价为()A.1800元B.1700元C.1710元D.1750元8.中国古代问题:有甲、乙两个牧童,甲对乙说:“把你的羊给我一只,我的羊数就是你的羊数的2倍”.乙回答说:“最好还是把你的羊给我一只,我们羊数就一样了”.若设甲有x 只羊,则下列方程正确的是()A.x+1=2(x﹣2)B.x+3=2(x﹣1)C.x+1=2(x﹣3)D.1 112xx+-=+9.某中学生军训,沿着与笔直的铁路并列的公路匀速前进,每小时走4500米,一列火车以每小时120千米的速度迎面开来,测得火车与队首学生相遇,到车尾与队末学生相遇共经过60秒,如果队伍长500米,那么火车长()A .1500米B .1575米C .2000米D .2075米10.如图,小明将一个正方形纸片剪去一个宽为4cm 的长条后,再从剩下的长方形纸片上剪去一个宽为5cm 的长条,如果两次剪下的长条面积正好相等,那么每一个长条的面积为()A .162cm B .202cm C .802cm D .1602cm 二、填空题11.数轴上距离原点2个单位长度的点表示的数是_____12.如果把6.48712保留三位有效数字可近似为_________.13.青藏高原是世界上海拔最高的高原,它的面积约为2500000平方千米,数据2500000用科学记数法表示为_______________.14.单项式2323x y -的系数是__________,次数是___________.15.若代数式53m a b 与22n a b -是同类项,那么m +n =______.16.小明每晚19:00都要看新闻联播,这时钟面上时针和分针的夹角的度数为_________度.17.已知|3m ﹣12|+212n ⎛⎫+ ⎪⎝⎭=0,则2m ﹣n=_____.18.关于x 的方程352x k -+=的解是1x =,则k =________.19.当x=1时,代数式31px qx ++的值为2012,则当x=-1时,代数式31px qx ++的值为_____.20.如图,∠AOC 和∠BOD 都是直角,如果∠DOC=36°,则∠AOB 是__________度三、解答题21.计算(1)(-3)-13+(-12)-|-43|.(2)2108(2)(4)(3)-+÷---⨯-(3)233136402924''''''+︒︒22.解方程(1)()()()228131x x x ---=-(2)225353x x x ---=-23.先化简,再求值222212[32()6]2x y x y ----+,其中1,2x y =-=-.24.一个角的余角比这个角的12少30°,请你计算出这个角的大小.25.如图M 是线段AC 中点,B 在线段AC 上,且AB=2cm ,BC=2AB ,求MC 和BM 长度.26.一艘船从甲码头到乙码头顺流而行,用了2h ;从乙码头返回甲码头逆流而行,用了2.5h .已知水流的速度是3km/h ,求船在静水中的平均速度.(要求列方程解答)27.某班将买一些乒乓球和乒乓球拍,现了解情况如下:甲、乙两家商店出售两种同样品牌的乒乓球和乒乓球拍.乒乓球拍每副定价30元,乒乓球每盒定价5元.经洽谈后,甲店每买一副球拍赠送一盒乒乓球,乙店全部按定价的九折优惠.该班需球拍5副,乒乓球若干盒(不小于5盒).问:(1)当购买乒乓球多少盒时,两种优惠办法付款一样?(2)当购买15盒乒乓球时,请你去办这件事,你打算去哪家商店购买?为什么?28.如图,已知90AOB ∠=︒,OE 平分∠AOB ,60EOF ∠=︒,OF 平分∠BOC .求∠BOC 和∠AOC 的度数.参考答案1.A【详解】根据数轴上某个点与原点的距离叫做这个点表示的数的绝对值的定义,在数轴上,点﹣2到原点的距离是2,所以22-=,故选A .2.B【分析】结合题意,根据两点确定一条直线的性质分析,即可得到答案.【详解】在墙壁上固定一根横放的木条,则至少需要钉子的枚数是2,故选:B .【点睛】本题考查了直线的知识;解题的关键是熟练掌握两点确定一条直线的性质,从而完成求解.3.B【分析】答题时首先记住等式的基本性质,然后对每个选项进行分析判断.【详解】A.C.D的变形均符合等式的基本性质,B项a不能为0,不一定成立.故答案选B.【点睛】本题考查了等式的性质,解题的关键是熟练的掌握等式的性质.4.D【分析】利用相反数的定义,两个数之和为零来判断.【详解】解:A,-(-1)与1不是相反数,选项错误,不符合题意;B,(-1)2与1不是互为相反数,选项错误,不符合题意;C,|-1|与1不是相反数,选项错误,不符合题意;D,-12与1是相反数,选项正确,符合题意;故选D.【点睛】本题考查了相反数,解题的关键是掌握相应的定义即两个数之和为零,这两个数互为相反数.5.D【详解】A、B、C是正方体的展开图,D不是正方体的展开图.故选D.6.A【详解】试题分析:根据线段、射线和角的概念,对选项一一分析,选择正确答案.解:A、两点之间的所有连线中,线段最短,选项正确;B、射线是直线的一部分,选项错误;C、有公共端点的两条射线组成的图形叫做角,选项错误;D、小于平角的角可分为锐角、钝角,还应包含直角,选项错误.故选:A.考点:直线、射线、线段;角的概念.7.C【详解】设手机的原售价为x元,由题意得,0.8x-1200=1200×14%,解得:x=1710.即该手机的售价为1710元.故选:C .8.C【详解】试题解析:∵甲对乙说:“把你的羊给我1只,我的羊数就是你的羊数的两倍”.甲有x 只羊,∴乙有13122x x +++=只,∵乙回答说:“最好还是把你的羊给我1只,我们的羊数就一样了”,∴311,2x x ++=-即x+1=2(x−3).故选:C .9.B【详解】试题解析:设火车长x 千米.60秒160=小时,根据题意得:()1 4.51200.5.60x ⨯+=+解得:x=1.575.1.575千米=1575米.火车的长为1575米.故选B.10.C【分析】首先根据题意,设原来正方形纸的边长是xcm ,则第一次剪下的长条的长是xcm ,宽是4cm ,第二次剪下的长条的长是(x ﹣4)cm ,宽是5cm ;然后根据第一次剪下的长条的面积=第二次剪下的长条的面积,列出方程,求出x 的值是多少,即可求出每一个长条面积为多少.【详解】解:设原来正方形纸的边长是xcm ,则第一次剪下的长条的长是xcm ,宽是4cm ,第二次剪下的长条的长是(x ﹣4)cm ,宽是5cm ,则4x =5(x ﹣4),去括号,可得:4x =5x ﹣20,移项,可得:5x ﹣4x =20,解得x =204x =4×20=80(cm 2)所以每一个长条面积为80cm2.故选:C.【点睛】此题主要考查了一元一次方程的应用,要熟练掌握,首先审题找出题中的未知量和所有的已知量,直接设要求的未知量或间接设一关键的未知量为x,然后用含x的式子表示相关的量,找出之间的相等关系列方程、求解、作答,即设、列、解、答是解题的关键.11.-2或2【详解】试题分析:设数轴上与原点的距离等于2的点所表示的数是x,则|x|=2,进而可得出结论.解:数轴上与原点的距离等于2的点所表示的数是x,则|x|=2,解得x=±2.故答案为-2或2.考点:1.数轴;2.绝对值.12.6.49【分析】一个近似数的有效数字是从左边第一个不是0的数字起,后面所有的数字都是这个数的有效数字.近似数6.48712保留三位有效数字,精确到百分位.【详解】解:6.48712保留三位有效数字可近似为:6.49.故答案是:6.49.【点睛】本题考查了近似数和有效数字,从左边第一个不是0的数开始数起,到精确到的数位为止,所有的数字都叫做这个数的有效数字.最后一位所在的位置就是精确度.13.62.510⨯【分析】用科学记数法表示较大的数时,一般形式为a×10n,其中1≤|a|<10,n为整数,据此判断即可.【详解】解:2500000=2.5×106.故答案为:2.5×106.【点睛】本题主要考查了用科学记数法表示较大的数,一般形式为a×10n,其中1≤|a|<10,确定a与n的值是解题的关键.14.23-5【分析】根据单项式系数和次数的定义:单项式中的数字因数叫做单项式的系数,一个单项式中所有字母的指数的和叫做单项式的次数解答即可.【详解】解:单项式2323x y-的系数是23-,次数是5,故答案为:23-,5.【点睛】本题考查单项式的知识,熟知单项式中的数字因数叫做单项式的系数,一个单项式中所有字母的指数的和叫做单项式的次数是解题的关键.15.7【分析】根据同类项的概念求解.【详解】解:∵代数式53m a b 与22n a b -是同类项,∴n=5,m=2,∴m+n=2+5=7.故答案为:7.【点睛】本题考查了同类项的知识,解答本题的关键是掌握同类项定义中的两个“相同”:相同字母的指数相同.16.150【分析】利用钟表表盘的特征:钟表上12个数字,每相邻两个数字之间的夹角为30°解答即可.【详解】解:19:00,时针和分针中间相差5大格.∵钟表12个数字,每相邻两个数字之间的夹角为30°,∴19:00分针与时针的夹角是5×30°=150°.故答案为:150【点睛】本题考查的是钟面角的含义及计算,掌握“钟表上12个数字,每相邻两个数字之间的夹角为30°”是解本题的关键.17.10【详解】解:∵|3m ﹣12|+2(1)2n +=0,∴|3m ﹣12|=0,2(1)2n +=0,∴m=4,n=﹣2,∴2m ﹣n=8﹣(﹣2)=10.故答案为:10【点睛】本题考查了非负数的性质,几个非负数的和等于0,则每个数都等于0,初中范围内的非负数有:绝对值,算术平方根和偶次方.18.6【分析】把x=1代入已知方程,列出关于k 的新方程,通过解新方程来求k 的值.【详解】解:把x=1代入,得3×1-k+5=2,解得k=6.故答案是:6.【点睛】本题考查了一元一次方程的解的定义.把方程的解代入原方程,等式左右两边相等.19.-2010【分析】由当x=1时,代数式31px qx ++的值为2012,可得2011p q +=,把x=-1代入代数式31px qx ++整理后,再把2011p q +=代入计算即可.【详解】因为当1x =时,3112012px qx p q ++=++=,所以2011p q +=,所以当1x =-时,311()1201112010px qx p q p q ++=--+=-++=-+=-.【点睛】本题考查了求代数式的值,把所给字母代入代数式时,要补上必要的括号和运算符号,然后按照有理数的运算顺序计算即可,熟练掌握有理数的运算法则是解答本题的关键.在求代数式的值时,一般先化简,再把各字母的取值代入求值.有时题目并未给出各个字母的取值,而是给出一个或几个式子的值,这时可以把这一个或几个式子看作一个整体,将待求式化为含有这一个或几个式子的形式,再代入求值.运用整体代换,往往能使问题得到简化.20.144【分析】根据∠AOC 和∠BOD 都是直角,∠DOC=36°,可得∠AOD 的度数,从而求得结果.【详解】∵∠AOC=∠BOD=90º,∠DOC=36°∴∠AOD=∠AOC-∠DOC=54°∴∠AOB =∠AOD+∠BOD =144°.故答案为36°.点睛:本题是基础应用题,只需学生熟练掌握角的大小关系,即可完成.21.(1)-71;(2)-20;(3)641'︒.【分析】(1)根据有理数的加减法可以解答本题;(2)根据有理数的乘方、有理数的乘除法和加减法可以解答本题;(3)根据度分秒的换算进行计算即可.(1)解:(-3)-13+(-12)-|-43|=-3-13-12-43=-71;(2)解:2108(2)(4)(3)-+÷---⨯-108412=-+÷-10212=-+-=-20;(3)解:233136402924''''''+︒︒636060'''=︒641'=︒.【点睛】本题考查了有理数的混合运算以及度分秒的换算,注意:1°60'=,160'''=.22.(1)13x =(2)38x =-【分析】(1)去括号,移项,合并同类项,系数化为1;(2)去分母,移项,合并同裂项,系数化为1.(1)()()()228131x x x ---=-,去括号得248833x x x --+=-,整理得13x =(2)225353x x x ---=-,去分母得122535533x x x -+=--,整理得38x =-【点睛】本题考查方程的化简求解,需熟练掌握其运算方法.23.22532x y ---,14-【分析】先去小括号,再去中括号得到化简后的结果,再将未知数的值代入计算.【详解】解:原式=222232()32x y x y --+--=22532x y ---,当1,2x y =-=-时,原式=()()2251232---⨯--=14-.【点睛】此题考查了整式的化简求值,正确掌握整式去括号的计算法则,是解题的关键.24.这个角的度数是80°.【分析】设这个角的度数为x ,根据互余的两角的和等于90°表示出它的余角,然后列出方程求.【详解】设这个角的度数为x ,则它的余角为(90°-x ),由题意得:12x-(90°-x )=30°,解得:x=80°.答:这个角的度数是80°.25.MC 的长度是3cm ;BM 的长度是1cm .【分析】先根据AB=2cm ,BC=2AB 求出BC 的长,进而得出AC 的长,由M 是线段AC 中点求出AM ,再由BM=AM-AB 即可得出结论.【详解】解:∵AB=2cm ,BC=2AB ,∴BC=4cm ,∴AC=AB+BC=2+4=6(cm),∵M 是线段AC 中点,∴MC=AM=12AC=3(cm),∴BM=AM-AB=3-2=1(cm).故MC 的长度是3cm ;BM 的长度是1cm .【点睛】本题考查的是两点间的距离,熟知各线段之间的和、差及倍数关系是解答此题的关键.26.在静水中的速度为27km/h【分析】等量关系为:顺水速度⨯顺水时间=逆水速度⨯逆水时间.即2⨯(静水速度+水流速度) 2.5=⨯(静水速度-水流速度).【详解】解:设船在静水中的平均速度为x km/h ,根据往返路程相等,列得2(3) 2.5(3)x x +=-,解得27x =.答:在静水中的速度为27km/h .【点睛】本题考查了一元一次方程的应用,解题关键是要读懂题目的意思,根据题目给出的条件,找出合适的等量关系,顺流速度=静水速度+水流速度,逆流速度=静水速度-水流速度,列出方程求解.27.(1)购买20盒乒乓球时,两种优惠办法付款一样(2)购买15盒乒乓球时,去甲店较合算,见解析【分析】(1)根据总价=单价×数量结合两家店给出的优惠政策,即可用含x 的代数式表示出在两家店购买所需费用;(2)根据在两家店购买所需费用相同,即可得出关于x 的一元一次方程,解之即可得出结论.(1)解:设购买x 盒乒乓球时,两种优惠办法付款一样.依题意得,()()3055530550.9x x ⨯+-⨯=⨯+⨯,解得:x =20,所以,购买20盒乒乓球时,两种优惠办法付款一样.(2)当购买15盒时:甲店需付款:()3051555200⨯+-⨯=(元),乙店需付款:()3051550.9202.5⨯+⨯⨯=(元),因为200202.5<,所以购买15盒乒乓球时,去甲店较合算.【点睛】本题考查了一元一次方程的应用以及列代数式,解题的关键是:(1)根据各数量之间的关系,用含x 的代数式表示出在两家店购买所需费用;(2)找准等量关系,正确列出一元一次方程.28.∠BOC 和∠AOC 的度数分别为30°,120︒【分析】根据角平分线的定义得到1452BOE AOB ∠=∠=︒,∠BOC=2∠BOF ,再计算出15BOF EOF BOE ∠=∠-∠=︒,然后根据∠BOC=2∠BOF ,∠AOC=∠BOC+∠AOB 进行计算.【详解】解:∵OE 平分∠AOB ,OF 平分∠BOC ,∴1452BOE AOB ∠=∠=︒,∠BOC=2∠BOF ,∵604515BOF EOF BOE ∠=∠-∠=︒-︒=︒,∴230BOC BOF ∠=∠=︒,3090120AOC BOC AOB ∠=∠+∠=︒+︒=︒.即∠BOC 和∠AOC 的度数分别为30°,120︒.【点睛】本题主要考查了角的计算以及角平分线的定义,正确应用角平分线的定义是解题关键.。

青岛版七年级数学上册单元测试卷附答案第3章有理数的运算

青岛版七年级数学上册单元测试卷附答案第3章有理数的运算

青岛版七年级数学上册单元测试卷附答案第3章有理数的运算第3章有理数的运算一、选择题(共11小题;共55分)1. 7554000000约等于( )亿(保留整数).A. 75B. 76C. 75.542. 冬天里的某一时刻,小明家室内温度是20°C,室外温度是?3°C,室内温度比室外温度高( )A. ?23°CB. 23°CC. ?17°CD. 17°C3. 下列计算结果不正确的是( )A. 4+(?2)=2B. ?2?(?1.5)=?0.5C. ?(?4)+4=8D. ∣?6∣+∣2∣=44. ?13的倒数是( )A. 3B. 13C. ?3 D. ±135. 我国倡导的“一带一路”建设将促进我国与世界上的一些国家的互利合作,根据规划“一带一路”地区覆盖总人口为4400000000人,这个数用科学记数法表示为( )A. 44×108B. 4.4×108C. 4.4×109D. 4.4×10106. 下列各对数中互为倒数的是( )A. 5和?5B. ?3和13C. ?2和?12D. 0和07. 学校教学楼从每层楼到它上一层楼都要经过20级台阶,小明从一楼到五楼要经过的台阶数是( )A. 100B. 80C. 50D. 1208. 已知某快递公司的收费标准为:寄一件物品不超过5千克,收费13元;超过5千克的部分每千克加收2元.圆圆在该快递公司寄一件8千克的物品,需要付费( )A. 17元B. 19元C. 21元D. 23元9. 若?1<x<="" p="">A. 正数B. 负数C. 零D. 不能确定10. 若∣a∣≤1,则a2?1是( )A. 正数B. 负数C. 非正数D. 非负数11. 已知:(m?2)2+∣3+n∣=0,则m+n的值是( )A. 1B. ?1C. 5D. ?5二、填空题(共6小题;共30分)12. 在整数中,倒数是它本身的数是.13. +8和?12的和取号,+4和?2的和取号,?5和?4的和取号.14. 全球每年大约有577000000000000米3的水从海洋和陆地转化为大气中的水汽,将数577000000000000用科学记数法表示为.15. 现有如图所示的程序,若输入的x的值为?3,则输出的y的值为.16. 准确数A精确到0.01的近似数为 3.85,那么A的取值范围为.17. 将下列各式表示成平方的形式:(1)100=.(2)a4=.(3)14x2=.(4)49a2b4=.(5)259n6=.(6)0.01x2n=.三、解答题(共5小题;共65分)18. 小丽和小娟两位同学的身高都约是1.6×102cm,但小丽说她比小娟高9cm.请问小丽说的可能吗?19. 某自行车厂计划一周生产自行车1400辆,平均每天生产200辆,但由于种种原因,实际每天生产量与计划量相比有出入,下表是某周的实际生产量与计划量的差值:星期一二三四五六日生产量与计划量的差值+5?2?4+13?10+14?9(1)根据记录的数据可知该厂星期四生产自行车多少辆?</x。

(人教版)初中数学七年级上册 全册测试卷一(附答案)

(人教版)初中数学七年级上册 全册测试卷一(附答案)

(人教版)初中数学七年级上册全册测试卷一(附答案)第一章综合测试一、选择题(每小题4分,共28分) 1.(舟山中考)6-的绝对值是( ) A.6B.6-C.16D.16-2.(台州中考)在12,0,1,2-这四个数中,最小的数是( )A.12B.0C.1D.2-3.下列各数:0.8-,123-,8.2--(), 2.7+-(),17-+(), 2 012+-.其中负数的个数是( ) A.6B.5C.4D.34.下列运算结果等于1的是( ) A.33-+-()() B.33---()() C.33-⨯-()D.33-÷-()()5.(福州中考)2010年某市启动了历史上规模最大的轨道交通投资建设,预计某市轨道交通投资将达到51 800 000 000元人民币.将51 800 000 000用科学记数法表示正确的是( ) A.105.1810⨯ B.951.810⨯ C.110.51810⨯D.851810⨯6.(吉林中考)如图,检测4个足球,其中超过标准质量的克数记为正数,不足标准质量的克数记为负数,从轻重的角度看,最接近标准的是( )ABCD7.(舟山中考)一个纸环链,纸环按红黄绿蓝紫的顺序重复排列,被截去其中的一部分,剩下部分如图所示,则被截去部分纸环的个数可能是( )A.2 010B.2 011C.2 012D.2 013二、填空题(每小题5分,共25分) 8.3-的倒数是_______.9.(河南中考)计算:212-+-=()_______.10.用“<”“>”或“=”填空: (1)0.02-_______1;(2)45-_______56-;(3)34⎛⎫-- ⎪⎝⎭_______[(0.75)]-+-.11.绝对值大于1而小于4的整数有_______,其和为_______. 12.若a ,b 互为相反数,x ,y 互为倒数,则()xa b xy y+-=_______ 三、解答题(共47分)13.(14分)(1)2432232(2)(4)5⨯-÷---⨯;(2)2531324524864⎡⎛⎫⎤-+-⨯÷ ⎪⎢⎥⎣⎝⎭⎦.14.(10分)“十一”黄金周期间,某商场家电部大力促销,收银情况一直看好.下表为当天与前一天的营业额的涨跌情况(单位:万元).已知9月30日的营业额为26万元:(1)黄金周内营业额最低的是哪一天?那天的营业额是多少?(直接回答,不必写过程) (2)黄金周内平均每天的营业额是多少?15.(11分)有一出租车在一条南北走向直的公路上进行出租运营服务,如果规定向北为正,向南为负,出租车运营8次的行车里程如下(单位:千米):13+,7-,11+,10-,5-,9+,12-,8+.(1)将最后一位乘客送到目的地时,该出租车在出发点的什么方向?距离出发点多远? (2)若出租车耗油量为a 升/千米,则以上8次出租运营服务共耗油多少升?16.(12分)(中山中考)阅读下列材料:112(123012)3⨯=⨯⨯-⨯⨯,123(234123)3⨯=⨯⨯-⨯⨯,134(345234)3⨯=⨯⨯-⨯⨯,由以上三个等式相加,可得1122334345203⨯+⨯+⨯=⨯⨯⨯=.读完以上材料,请你计算下列各题:(1)1223341011⨯+⨯+⨯+⋯+⨯(写出过程); (2)122334(1)n n ⨯+⨯+⨯+⋯+⨯+=_______; (3)123234345789⨯⨯+⨯⨯+⨯⨯+⋯+⨯⨯=_______.第一章综合测试答案解析一、 1.【答案】A 2.【答案】【解析】正数大于0,负数小于0,正数大于负数,所以上述四个数中最小的数是2-. 3.【答案】C 4.【答案】D【解析】因为336-+-=-()(); 330---=()(); 339-⨯-=();331÷-=(-)().5.【答案】A6.【答案】C7.【答案】D 二、8.【答案】13- 9.【答案】5 10.【答案】(1)< (2)> (3)=【解析】(1)因为负数小于正数,所以0.02-<1.(2)因为40.85-=,50.836-≈,又因为5465-->,所以4556-->.(3)因为330.7544⎛⎫--== ⎪⎝⎭,[(0.75)]0.75-+-=, 所以3[(0.75)]4⎛⎫--=-+- ⎪⎝⎭.11.【答案】23±±, 0 12.【答案】1- 三、13.【答案】(1)原式2916(8)165=⨯-÷--⨯18280=+- 60=-(2)原式253131242424248645⎛⎫-⨯-⨯+⨯⨯ ⎪⎝⎭= 2519418245⎛⎫=--+⨯ ⎪⎝⎭ 2515245⎛⎫=+⨯ ⎪⎝⎭25115551124552424=⨯+⨯=+=.14.【答案】(1)10月7日的营业额最低,营业额是26万元.(2)30333535343126732++++++÷=(),即黄金周内每天的平均营业额是32万元. 15.【答案】(1)137111059128+-+--+-+ 131198710512=++++----()()4134=- 7=(千米).答:将最后一位乘客送到目的地时,该出租车在出发点向北方向,距离出发点有7千米. (2)()1371111059128175a a ++-+++-+-+++-++⨯=(升). 答:以上8次出租运营服务共耗油75a 升. 16.【答案】(1)1223341011⨯+⨯+⨯+⋯+⨯111(123012)(23412 3) (10111291011)333=⨯⨯-⨯⨯+⨯⨯-⨯⨯++⨯⨯-⨯⨯L 11011124403=⨯⨯⨯=. (2)1(1)(2)3n n n ++(3)123234345789⨯⨯+⨯⨯+⨯⨯++⨯⨯L1111(23451234)(12340123)(789106789)444=⨯⨯⨯-⨯⨯⨯++⨯⨯⨯-⨯⨯⨯+⨯⨯⨯-⨯⨯⨯L 178910 1 2604=⨯⨯⨯⨯=.第二章综合测试一、选择题(每小题4分,共28分) 1.下列说法正确的是( ) A.x 的指数是0B.x 的系数是0C.3-是一次单项式D.23ab -的系数是23-2.下列式子中,整式的个数为( )1x a +,abc ,225b ab -,πy x+,2xy -,5- A.3B.4C.5D.63.若A 是3次多项式,B 也是3次多项式,则A B +一定是( ) A.6次多项式B.次数不低于3次的多项式C.次数不高于3次的整式D.以上答案都不正确4.单项式233πxy z -的系数和次数分别是( )A.π-,5B.1-,6C.3x -,6D.3-,7 5.四个连续偶数中,最小的一个为22n -(),则最大的一个是( ) A.2(2)3n -+ B.2(1)n + C.23n +D.2(2)n +6.()223422x x x x --+=-,括号内应填( )A.2532x x --B.23x x -+C.232x x -++D.232x x -+-7.(衢州中考)如图,边长为3m +()的正方形纸片剪出一个边长为m 的正方形之后剩余部分又剪拼成一个长方形(不重叠无缝隙).若拼成的长方形一边长为3,则另一边长是( )A.23m +B.26m +C.3m +D.6m +二、填空题(每小题5分,共25分)8.已知单项式312n a b +与223m a b --是同类项,则23m n +=______. 9.254143a b ab --+是______次______项式,常数项为______. 10.若40.5m x y -与36m x y 的次数相同,则m =______. 11.(绥化中考)若2345x x --的值为7,则2453x x --的值为______. 12.如图所示,它是一个程序计算器,用字母及符号把它的程序表达出来为______,如果输入3m =,那么输出______.三、解答题(共47分)13.(10分)试说明把一个两位数的十位上的数字与个位上的数字互换位置后所得的新两位数与原两位数之和可被11整除。

七年级上册人教版政治期末试卷(附答案)1

七年级上册人教版政治期末试卷(附答案)1

2011/2012学年度第一学期期末考试七年级思想品德试题(闭卷)一. 单项选择题(每题3分, 共45分, 请把答案填在后面的表格里)1.庆祝中国共产党成立周年大会2011年7月1日在北京人民大会堂隆重进行, 中共中央总书记胡锦涛在大会上发表重要讲话8....... B. 9........C. 9....... D. 1002、2011年10月15日至18日中国共产党第十七届中央委员会第六次全体会议在北京举行, 会议审议通过《中共中央深化体制改革, 推动社会主义大发展大繁荣若干重大问题的决定》通过《关于召开党的第十八次全国代表大会的决议》, 决定党的第十八次全国代表大会于2012年下半年在北京召开。

A.政治政治B.经济经济C.文化文化D.社会社会3.2011年9月29日和11月1日, 我国自行研制的目标飞行器和飞船分别在酒泉卫星发射中心成功发射, 准确入轨。

11月3日和11月14日, 目标飞行器和飞船在天空进行了两次交会对接, 均取得圆满成功。

A.天宫一号神舟八号B.嫦娥一号神舟八号C.天宫一号神舟七号D.嫦娥一号神舟七号4.在班级篮球赛中, 个人的单打独斗难以取胜, 如果注重整体协防, 配合进攻, 这样更容易获胜。

这说明()①班集体不能有个人才能的发挥与表现②一个人应该把自己融入集体中, 服从于整体需要③班集体的成功需要成员的密切配合④各成员的相互支持、相互配合能大大提高班集体的整体能力。

A.①②③B.①③④C.①②④D.②③④5.“不登高山, 不知天之高也;不临深溪, 不知地之厚也。

”相对于学习来说, 这表明()A.学习过程中有苦有.B.从学习中逐渐了解世界奥.C.学习是苦乐交织..D.我们要珍惜享有学习的权利和机会6.下列语句是对学习中的苦与乐的描述, 其中描述学习是乐事的语句是()A.书山有路勤为径, 学海无涯苦作舟B.宝剑锋从磨砺出, 梅花香自苦寒来C.知之者不如好之者, 好之者不如乐之者D.吃得苦中苦, 方为人上人7、当看到小草青青, 听到虫鸟鸣叫、人声鼎沸, 闻到百花芬芳时, 我们的感受是()A.人是自然界的一部分B.世界因生命的存在而生动和精彩C.生命是顽强的, 也是脆弱的D.人类受到其他生命的挑战8、假如你是一个寄宿生, 半夜突然宿舍起火, 而你又住在四楼, 正确的做法是()①大喊救命, 惊慌失措②迅速喊醒同学③有秩序地和同学一同撤离④有条件的, 打电话报警A.①②③B.②③④C.①③④D.①②④9、对于青春的感悟, 同学们可以通过相互交流, 彼此共享成长的体验。

七年级数学上册二单元有理数的混合运算测验题附答案

七年级数学上册二单元有理数的混合运算测验题附答案

七年级数学上册二单元有理数的混合运算测验题附答案七年级数学上册二单元有理数的混合运算测验题附答案有理数可以用大写黑正体符号Q代表。

小编为大家准备了这篇七年级数学上册二单元有理数的混合运算测验题。

1.形如a cb d的式子叫做二阶行列式,它的运算法则用公式表示为a cb d=ad-bc,依此法则计算2 -1-3 4的结果为(C)A.11B.-11C.5D.-22.计算13÷(-3)×-13×33的结果为(A)A.1B.9C.27D.-33.下列各组数中最大的数是(D)A.3×32-2×22B.(3×3)2-2×22C.(32)2-(22)2D.(33)2-(22)24.计算16-12-13×24的结果为__-16__.5.若(a-4)2+|2-b|=0,则ab=__16__,a+b2a-b=__1__.6.计算:(1)(23-3)×45=__4__;(2)(-4)÷(-3)×13=__49__.7.若n为正整数,则(-1)n+(-1)n+12=__0__.8.计算:(1)-0.752÷-1123+(-1)12×12-132;(2)(-3)2-(-5)2÷(-2);(3)(-6)÷65-(-3)3-1-0.25÷12×18.【解】 (1)原式=-342÷-323+(-1)12×162=-916÷-278+1×136 =916×827+136=16+136=736.(2)原式=(9-25)÷(-2)=(-16)÷(-2)=16×12=8.(3)原式=-6×56--27-1-12×18=-5+495=490.9.对于任意有理数a,b,规定一种新的运算:a*b=a2+b2-a-b+1,则(-3)*5=__33__.【解】 (-3)*5=(-3)2+52-(-3)-5+1=9+25+3-5+1=33.10.已知4个矿泉水空瓶可以换矿泉水一瓶,现有16个矿泉水空瓶,若不交钱,最多可以喝矿泉水(C)A.3瓶B.4瓶C.5瓶D.6瓶【解】 16个矿泉水瓶换4瓶矿泉水,再把喝完的4个空瓶再换一瓶水,共5瓶,故选C.11.已知2a-b=4,则2(b-2a)2-3(b-2a)+1=__45__.【解】∵2a-b=4,∴b-2a=-4.原式=2×(-4)2-3×(-4)+1=45.12.十进制的自然数可以写成2的乘方的降幂的式子,如:19(10)=16+2+1=1×24+0×23+0×22+1×21+1×20=10011(2),即十进制的数19对应二进制的'数10011.按照上述规则,十进制的数413对应二进制的数是__110011101__.【解】413(10)=256+128+16+8+4+1=1×28+1×27+0×26+0×25+1×24 +1×23+1×22+0×21+1×20=110011101(2).13.如图,一个盖着瓶盖的瓶子里面装着一些水,根据图中标明的数据,瓶子的容积是__70__cm3.(第13题)14.(1)计算:23÷-122-9×-133+(-1)16;(2)已知c,d互为相反数,a,b互为倒数,|k|=2,求(c+d)5a-7b9a+8b+5ab-k2的值.【解】 (1)原式=8×4-9×-127+1=32+13+1=3313.(2)由题意,得c+d=0,ab=1,k=±2,∴原式=0+5-4=1.15.计算:11×2×3+12×3×4+13×4×5+…+111×12×13.【解】原式=1211×2-12×3+1212×3-13×4+1213×4-14×5+…+12111×12-112×13=1211×2-12×3+12×3-13×4+13×4-14×5+…+111×12-112×13=1211×2-112×13=77312.16.阅读材料,思考后请试着完成计算:大数学家高斯在上学读书时曾经研究过这样一个问题:1+2+3+…+100=?经过研究,这个问题的一般性结论是1+2+3+…n=12n(n+1),其中n是正整数.现在我们来研究一个类似的问题:1×2+2×3+…n(n+1)=?观察下面三个特殊的等式:1×2=13(1×2×3-0×1×2);2×3=13(2×3×4-1×2×3);3×4=13(3×4×5-2×3×4).将这三个等式的两边相加,可以得到1×2+2×3+3×4=13×3×4×5=20.读完这段材料,请计算:(1)1×2+2×3+…+100×101;(2)1×2+2×3+…+2015×2016.【解】(1)1×2+2×3+…+100×101=13(1×2×3-0×1×2)+13(2×3×4-1×2×3)+…+13(100×101×102-99×100×101)=13(100×101×102-0×1×2)=343400.(2)同理于(1),原式=13(2015×2016×2017-0×1×2)=2731179360.七年级数学上册二单元有理数的混合运算测验题到这里就结束了,希望同学们的成绩能够更上一层楼。

【鲁教版】七年级数学上期末试题(附答案)(2)

【鲁教版】七年级数学上期末试题(附答案)(2)

一、选择题1.下列语句正确的有( )(1)线段AB 就是A 、B 两点间的距离; (2)画射线10AB cm =;(3)A ,B 两点之间的所有连线中,最短的是线段AB ;(4)在直线上取A ,B ,C 三点,若5AB cm =,2BC cm =,则7AC cm =. A .1个B .2个C .3个D .4个2.如图,C ,D 是线段AB 上的两点,E 是AC 的中点,F 是BD 的中点,若EF =m ,CD =n ,则AB =( )A .m ﹣nB .m +nC .2m ﹣nD .2m +n3.如图,C ,D 是线段AB 上的两点,E 是AC 的中点,F 是BD 的中点,若EF m =,CD n =,则AB =( )A .m n -B .m n +C .2m n -D .2m n +4.如图,点O 在直线AB 上,图中小于180°的角共有( )A .10个B .9个C .11个D .12个5.古代有这样一个寓言故事:驴子和骡子一同走,它们驮着不同袋数的货物,每袋货物都是一样重的.驴子抱怨负担太重,骡子说:“你抱怨干嘛?如果你给我一袋,那我所负担的就是你的两倍;如果我给你一袋,我们才恰好驮的一样多!”那么驴子原来所驮货物的袋数是( ) A .5袋 B .6袋 C .7袋 D .8袋 6.若三个连续偶数的和是24,则它们的积为( ) A .48B .240C .480D .1207.甲、乙两个工程队,甲队人,乙队人,现在从乙队抽调人到甲队,使甲队人数为乙队人数的倍.则根据题意列出的方程是( )A .B .C .D .8.某工厂一、二月份共完成生产任务吨,其中二月份比一月份的多吨,设一月份完成吨,则下列所列方程正确的是( )A .B .C .D .9.下面四个代数式中,不能表示图中阴影部分面积的是( )A .()()322x x x ++-B .25x x +C .()232x x ++D .()36x x ++10.若关于x ,y 的多项式2237654x y mxy xy -++化简后不含二次项,则m =( ) A .17 B .67 C .-67 D .011.下列四个式子,正确的是( )①33.834⎛⎫->-+ ⎪⎝⎭;②3345⎛⎫⎛⎫-->-- ⎪ ⎪⎝⎭⎝⎭;③ 2.5 2.5->-;④125523⎛⎫-->+ ⎪⎝⎭. A .③④B .①C .①②D .②③12.下列说法中正确的是( ) A .a -表示的数一定是负数 B .a -表示的数一定是正数 C .a -表示的数一定是正数或负数D .a -可以表示任何有理数二、填空题13.长方体、四面体、圆柱、圆锥、球等都是_____,简称____.包围着体的是______.面有____的面与______的面两种.14.下面的图形是某些几何体的表面展开图,写出这些几何体的名称.15.某公司销售,,A B C 三种电子产品,在去年的销售中,产品C 的销售额占总的销售额的60%,由于受新冠肺炎疫情的影响,估计今年,A B 两种产品的销售额都将比去年减少45%,公司将产品C定为今年销售的重点,要使今年的总销售额与去年持平,那么今年产品C的销售额应比去年增加__________.16.对任意四个有理数a,b,c,d,定义:a bad bcc d=-,已知24181-=xx,则x=_____.17.如图,图1是“杨辉三角”数阵;图2是(a+b)n的展开式(按b的升幂排列).若(1+x)45的展开式按x的升幂排列得:(1+x)45=a0+a1x+a2x2+…+a45x45,则a2=_____.18.由黑色和白色的正方形按一定规律组成的图形如图所示,从第二个图形开始,每个图形都比前一个图形多3个白色正方形,则第n个图形中有白色正方形__________个 (用含n 的代数式表示).19.小明写作业时,不慎将墨水滴在数轴上,根据图中数值,请你确定墨迹盖住部分的整数有______.20.等边三角形ABC(三条边都相等的三角形是等边三角形)在数轴上的位置如图所示,点A,B对应的数分别为0和1-,若ABC绕着顶点顺时针方向在数轴上翻转1次后,点C所对应的数为1,则再翻转3次后,点C所对应的数是________.三、解答题21.已知线段10cmAB=,在直线AB上取一点C,使16cmAC=,求线段AB的中点与AC的中点的距离.22.已知点C是线段AB的中点(1)如图,若点D在线段CB上,且BD=1.5厘米,AD=6.5厘米,求线段CD的长度;(2)若将(1)中的“点D 在线段CB 上”改为“点D 在线段CB 的延长线上”,其他条件不变,请画出相应的示意图,并求出此时线段CD 的长度.23.程大位是珠算发明家,他的名著《直指算法统宗》详述了传统的珠算规则,确立了算盘用书中有如下问题:一百馒头一百僧,大僧三个更无争,小僧三人分一个,大小和尚得几丁.意思是:有100个和尚分100个馒头,如果大和尚1人分3个,小和尚3人分1个,正好分完,大、小和尚各有多少人? 24.解方程: (1)3x ﹣4=2x +5; (2)253164x x--+=. 25.计算:2334[28(2)]--⨯-÷- 26.观察由“※”组成的图案和算式,解答问题(1)请猜想1+3+5+7+9+…+19= ;(2)请猜想1+3+5+7+9+…+(2n-1)+(2n+1)+(2n+3)= ; (3)请用上述计算103+105+107+…+2015+2017的值.【参考答案】***试卷处理标记,请不要删除一、选择题 1.A 解析:A 【分析】根据两点之间距离的定义可以判断A 、C ,根据射线的定义可以判断B ,据题意画图可以判断D . 【详解】∵线段AB 的长度是A 、 B 两点间的距离, ∴(1)错误; ∵射线没有长度, ∴(2)错误; ∵两点之间,线段最短∴(3)正确;∵在直线上取A,B,C三点,使得AB=5cm,BC=2cm,当C在B的右侧时,如图,AC=5+2=7cm当C在B的左侧时,如图,AC=5-2=3cm,综上可得AC=3cm或7cm,∴(4)错误;正确的只有1个,故选:A.【点睛】本题考查了线段与射线的定义,线段的和差,熟记基本定义,以及两点之间线段最短是解题的关键.2.C解析:C【分析】由已知条件可知,EC+FD=m-n,又因为E是AC的中点,F是BD的中点,则AE+FB=EC+FD,故AB=AE+FB+EF可求.【详解】解:由题意得,EC+FD=m-n∵E是AC的中点,F是BD的中点,∴AE+FB=EC+FD=EF-CD=m-n又∵AB=AE+FB+EF∴AB=m-n+m=2m-n故选:C.【点睛】利用中点性质转化线段之间的倍分关系是解题的关键,在不同的情况下灵活选用它的不同表示方法,有利于解题的简洁性.同时,灵活运用线段的和、差、倍、分转化线段之间的数量关系也是十分关键的一点.3.C解析:C【分析】由条件可知EC+DF=m-n,又因为E,F分别是AC,BD的中点,所以AE+BF=EC+DF=m-n,利用线段和差AB=AE+BF+EF求解.【详解】解:由题意得,EC+DF=EF-CD=m-n∵E是AC的中点,F是BD的中点,∴AE=EC,DF=BF,∴AE+BF=EC+DF=m-n,∵AB=AE+EF+FB,∴AB=m-n+m=2m-n故选:C【点睛】本题考查中点性质及线段和差问题,利用中点性质转化线段之间的倍分关系和灵活运用线段的和、差转化线段之间的数量关系是解答此题的关键.4.B解析:B【解析】【分析】利用公式:()21n n-来计算即可.【详解】根据公式:()21n n-来计算,其中,n指从点O发出的射线的条数.图中角共有4+3+2+1=10个,根据题意要去掉平角,所以图中小于180°的角共有10−1=9个.故选B.【点睛】此题考查角的的定义,解题关键在于掌握其定义性质.5.A解析:A【解析】【分析】要求驴子原来所托货物的袋数,要先设出未知数,通过理解题意可知本题的等量关系,即驴子减去一袋时的两倍减1(即骡子原来驮的袋数)再减1(我给你一袋,才恰好驮的一样多)=驴子原来所托货物的袋数加上1,据这个等量关系列方程求解.【详解】解:设驴子原来驮x袋,根据题意,得到方程:2(x-1)-1-1=x+1,解得:x=5, 答:驴子原来所托货物的袋数是5, 故选A.【点睛】本题主要考查列方程解决实际问题,解题关键是要读懂题目的意思,根据题目给出的条件,找出合适的等量关系列出方程,再求解.6.C【分析】设出一个偶数,表示出另外两个数,列出方程解出这三个数,再计算它们的积.【详解】解:设中间的偶数为m,则(m-2)+m+(m+2)=24,解得m=8.故三个偶数分别为6,8,10.故它们的积为:6×8×10=480.故选:C.【点睛】本题考查了一元一次方程的应用.找到三个连续偶数间的数量关系是解题的关键.7.A解析:A【解析】【分析】分析本题题意,找到等量关系:32+甲队添加人数=2×(28-乙队减少人数),列出式子即可.【详解】解:列出的方程是32+x=2×(28-x).故答案为:32+x=2×(28-x),答案选A..【点睛】列方程解应用题的关键是找出题目中的相等关系.注意本题中甲增加的人数就是乙减少的人数.8.B解析:B【解析】【分析】由题意可知:一月份完成吨,二月份完成()吨,一、二月份共完成生产任务吨,列出方程解答即可.【详解】由题意可知:.故选:B【点睛】此题考查从实际问题中抽象出一元一次方程,找出题目蕴含的数量关系是解决问题的关键.9.B【分析】依题意可得S S S =-阴影大矩形小矩形、S S S =+阴影正方形小矩形、S S S =+阴影小矩形小矩形,分别可列式,列出可得答案. 【详解】解:依图可得,阴影部分的面积可以有三种表示方式:()()322S S x x x -=++-大矩形小矩形; ()232S S x x +=++正方形小矩形;()36S S x x +=++小矩形小矩形.故选:B. 【点睛】本题考查多项式乘以多项式及整式的加减,关键是熟练掌握图形面积的求法,还有本题中利用割补法来求阴影部分的面积,这是一种在初中阶段求面积常用的方法,需要熟练掌握.10.B解析:B 【分析】将原式合并同类项,可得知二次项系数为6-7m ,令其等于0,即可解决问题. 【详解】解:∵原式=()2236754x y m xy +-+, ∵不含二次项, ∴6﹣7m =0,解得m =67. 故选:B . 【点睛】本题考查了多项式的系数,解题的关键是若不含二次项,则二次项系数6-7m=0.11.D解析:D 【分析】利用绝对值的性质去掉绝对值符号,再根据正数大于负数,两个负数比较大小,大的数反而小,可得答案. 【详解】①∵33 3.754⎛⎫-+=- ⎪⎝⎭,33.83 3.754>=,∴33.834⎛⎫-<-+⎪⎝⎭,故①错误;②∵33154420⎛⎫--==⎪⎝⎭,21335502⎛⎫--==⎪⎝⎭,1512 2020>,∴3345⎛⎫⎛⎫-->--⎪ ⎪⎝⎭⎝⎭,故②正确;③∵ 2.5 2.5-=,2.5 2.5>-,∴ 2.5 2.5->-,故③正确;④∵111523623⎛⎫--==⎪⎝⎭,217533346+==,3334 66<,∴125523⎛⎫-->+⎪⎝⎭,故④错误.综上,正确的有:②③.故选:D.【点睛】本题考查了绝对值的化简以及有理数大小比较,两个负数比较大小,绝对值大的数反而小.12.D解析:D【分析】直接根据有理数的概念逐项判断即可.【详解】解:A. a-表示的数不一定是负数,当a为负数时,-a就是正数,故该选项错误;B. a-表示的数不一定是正数,当a为正数时,-a就是负数,故该选项错误;C. a-表示的数不一定是正数或负数,当a为0时,-a也为0,故该选项错误;D. a-可以表示任何有理数,故该选项正确.故选:D.【点睛】此题主要考查有理数的概念,熟练掌握有理数的概念是解题关键.二、填空题13.几何体体面平曲【解析】【分析】几何体又称为体包围着体的是面分为平的面和曲的面两种【详解】长方体四面体圆柱圆锥球等都是几何体几何体也简称为体包围着体的是面面有平面和曲面两种故答案为:(1)几何体(2)解析:几何体 体 面 平 曲 【解析】 【分析】几何体又称为体,包围着体的是面,分为平的面和曲的面两种 【详解】长方体、四面体、圆柱、圆锥、球等都是几何体,几何体也简称为体,包围着体的是面,面有平面和曲面两种.故答案为:(1). 几何体(2). 体 (3). 面(4). 平(5). 曲 【点睛】此题考查认识立体图形,解题关键在于掌握其性质定义.14.正方体四棱锥三棱柱【解析】【分析】根据常见的几何体的展开图进行判断【详解】根据几何体的平面展开图的特征可知:①是正方体的展开图;②是四棱锥的展开图;③是三棱柱的展开图;故答案为:正方体四棱锥三棱柱;解析:正方体 四棱锥 三棱柱 【解析】 【分析】根据常见的几何体的展开图进行判断. 【详解】根据几何体的平面展开图的特征可知:①是正方体的展开图;②是四棱锥的展开图;③是三棱柱的展开图;故答案为:正方体 ,四棱锥 , 三棱柱; 【点睛】此题考查几何体的展开图,解题关键在于掌握其展开图.15.【分析】把去年的总销售金额看作整体1设今年产品C 的销售金额应比去年增加x 根据今年的销售总金额和去年的销售总金额相等列出方程再求解即可【详解】解:设今年产品的销售金额应比去年增加由题意得解得:答:今年 解析:30%【分析】把去年的总销售金额看作整体1.设今年产品C 的销售金额应比去年增加x ,根据今年的销售总金额和去年的销售总金额相等,列出方程,再求解即可. 【详解】解:设今年产品C 的销售金额应比去年增加x , 由题意得,60%(1)(160%)(145%)1x ++--=, 解得:30%x =.答:今年产品C 的销售金额应比去年增加30%. 故答案为:30%.【点睛】本题考查了一元一次方程的应用,关键在于设未知数,列方程,难点在于涉及百分数,运算易出错.此题注意把去年的总销售额看作整体1,即可分别表示出去年A和B的销售金额和C的销售金额.根据今年的销售总金额和去年的销售总金额相等即可列方程.16.3【分析】首先看清这种运算规则将转化为一元一次方程2x-(﹣4x)=18然后通过去括号移项合并同类项系数化为1解方程即可【详解】由题意得2x-(﹣4x)=186x=18解得:x=3故答案为:3【点睛解析:3【分析】首先看清这种运算规则,将24181-=xx转化为一元一次方程2x-(﹣4x) =18,然后通过去括号、移项、合并同类项、系数化为1,解方程即可.【详解】由题意得,2x-(﹣4x) =186x=18解得:x=3故答案为:3【点睛】本题主要考查解一元一次方程,关键是掌握解一元一次方程的一般步骤:去分母、去括号、移项、合并同类项、系数化为1.17.990【分析】根据图形中的规律即可求出(1+x)45的展开式中第三项的系数为前44个数的和计算得到结论【详解】解:由图2知:(a+b)1的第三项系数为0(a+b)2的第三项的系数为:1(a+b)3的解析:990【分析】根据图形中的规律即可求出(1+x)45的展开式中第三项的系数为前44个数的和,计算得到结论.【详解】解:由图2知:(a+b)1的第三项系数为0,(a+b)2的第三项的系数为:1,(a+b)3的第三项的系数为:3=1+2,(a+b)4的第三项的系数为:6=1+2+3,…∴发现(1+x)3的第三项系数为:3=1+2;(1+x)4的第三项系数为6=1+2+3;(1+x)5的第三项系数为10=1+2+3+4;不难发现(1+x)n的第三项系数为1+2+3+…+(n﹣2)+(n﹣1),∴(1+x )45=a 0+a 1x+a 2x 2+...+a 45x 45,则a 2=1+2+3+ (44)44(441)2⨯+=990; 故答案为:990.【点睛】 本题考查了完全平方式,也是数字类的规律题,首先根据图形中数字找出对应的规律,再表示展开式:对应(a+b )n 中,相同字母a 的指数是从高到低,相同字母b 的指数是从低到高.18.【分析】将每个图形中白色正方形的个数分别表示出来总结规律即可得到答案【详解】图①白色正方形:2个;图②白色正方形:5个;图③白色正方形:8个∴得到规律:第n 个图形中白色正方形的个数为:(3n-1)个 解析:()31-n【分析】将每个图形中白色正方形的个数分别表示出来,总结规律即可得到答案.【详解】图①白色正方形:2个;图②白色正方形:5个;图③白色正方形:8个,∴得到规律:第n 个图形中白色正方形的个数为:(3n-1)个,故答案为:(3n-1).【点睛】此题考查图形类规律的探究,会观察图形的变化用代数式表示出规律是解题的关键. 19.012【分析】根据题意可以确定被污染部分的取值范围继而求出答案【详解】设被污染的部分为a 由题意得:-1<a <3在数轴上这一部分的整数有:012∴被污染的部分中共有3个整数分别为:012故答案为012解析:0,1,2【分析】根据题意可以确定被污染部分的取值范围,继而求出答案.【详解】设被污染的部分为a ,由题意得:-1<a <3,在数轴上这一部分的整数有:0,1,2.∴被污染的部分中共有3个整数,分别为: 0,1,2.故答案为0,1,2.【点睛】考查了数轴,解决此题的关键是确定被污染部分的取值范围,理解整数的概念. 20.4【分析】结合数轴不难发现每3次翻转为一个循环组依次循环然后进行计算即可得解【详解】根据题意可知每3次翻转为一个循环∴再翻转3次后点C 在数轴上∴点C 对应的数是故答案为:4【点睛】本题考查了数轴及数的【分析】结合数轴不难发现,每3次翻转为一个循环组依次循环,然后进行计算即可得解.【详解】根据题意可知每3次翻转为一个循环,∴再翻转3次后,点C 在数轴上,∴点C 对应的数是1134+⨯=.故答案为:4.【点睛】本题考查了数轴及数的变化规律,根据翻转的变化规律确定出每3次翻转为一个循环组依次循环是解题的关键.三、解答题21.13cm 或3cm .【分析】结合题意画出简单的图形,再结合图形进行分类讨论:当C 在BA 延长线上时,当C 在AB 延长线上时,分别依据线段的和差关系求解.【详解】解:①如图,当C 在BA 延长线上时.因为10cm AB =,16cm AC =,D ,E 分别是AB ,AC 的中点, 所以15cm 2AD AB ==,18cm 2AE AC ==, 所以81513(cm)DE AE AD =+=+=. ②如图,当C 在AB 延长线上时.因为10cm AB =,16cm AC =,D ,E 分别是AB ,AC 的中点,所以15cm 2AD AB ==,18cm 2AE AC ==, 所以853(cm)DE AE AD =-=-=. 综上,线段AB 的中点与AC 的中点的距离为13cm 或3cm .【点睛】本题主要考查了两点间的距离,解决问题的关键是依据题意画出图形,进行分类讨论. 22.(1)CD=2.5厘米;(2)CD=4厘米.【分析】根据BD+AD=AB 可求出AB 的长,利用中点的定义可求出BC 的长,根据CD=BC-BD 求出CD 的长即可;(2)根据题意画出图形,利用线段中点的定义及线段的和差关系求出CD 的长【详解】(1)∵BD=1.5厘米,AD=6.5厘米,∴AB=BD+AD=8(厘米),∵点C 是线段AB 的中点,∴BC=12AB=4(厘米) ∴CD=BC-BD=2.5(厘米).(2)当点D 在线段CB 的延长线上时,如图所示:∵BD=1.5厘米,AD=6.5厘米,∴AB=AD-BD=5(厘米),∵点C 是线段AB 的中点,∴BC=12AB=2.5(厘米) ∴CD=BC+BD=4(厘米)【点睛】本题主要考查中点的定义及线段之间的和差关系,灵活运用线段的和、差、倍、分转化线段之间的数量关系是解题关键.23.大和尚有25人,小和尚有75人【分析】设大和尚有x 人,则小和尚有(100x -)人,根据“3×大和尚人数+小和尚人数÷3=100”,即可得出关于x 的一元一次方程,此题得解.【详解】设大和尚有x 人,则小和尚有(100x -)人,根据题意得:10031003x x -+= 解得:25x =,则10075x -=,答:大和尚有25人,小和尚有75人.【点睛】本题考查了一元一次方程的应用,找准等量关系,正确列出一元一次方程是解题的关键. 24.(1)9x = ;(2)13x =【分析】(1)通过移项,合并同类项,便可得解;(2)通过去分母,去括号,移项,合并同类项,进行解答便可.【详解】(1)3x ﹣2x =5+4,解得:x =9;(2)去分母得:2(2x ﹣5)+3(3﹣x )=12,去括号得:4x ﹣10+9﹣3x =12,移项得:4x ﹣3x =12+10﹣9,合并同类项得:x =13.【点睛】本题主要考查了解一元一次方程,熟记解一元一次方程的一般步骤是解题的关键. 25.21-.【分析】先计算有理数的乘方,再计算括号内的除法与减法,然后计算有理数的乘法,最后计算有理数的减法即可得.【详解】解:原式[]9428(8)=--⨯-÷-, []942(1)=--⨯--, 943=--⨯,912=--,21=-.【点睛】本题考查了含乘方的有理数混合运算,熟练掌握各运算法则是解题关键.26.(1)102;(2)()22n + ;(3)1015480.【分析】(1)由等式可知左边是连续奇数的和,右边是数的个数的平方,由此规律解答即可,此题中一共有10个连续奇数相加,所以结果应为102;(2)一共有(n+2)个连续奇数相加,所以结果应为n 2;(3)让从1加到2005这些连续奇数的和,减去从1加到101这些连续奇数的和即可.【详解】(1)由图片知:第1个图案所代表的算式为:1=21;第2个图案所代表的算式为:1+3=4=22;第3个图案所代表的算式为:1+3+5=9=23;…依次类推:第n 个图案所代表的算式为:1+3+5+…+(2n-1)=2n ;1+3+5+…+19的个数为:191102+=, ∴1+3+5+…+19=210;故答案为:210;(2)1+3+5+7+9+…+(2n-1)+(2n+1)+(2n+3)的个数为:23122n n ++=+,∴1+3+5+7+9+…+(2n-1)+(2n+1)+(2n+3)=()22n+,n+;故答案为:()22(3)103+105+107+…+2015+2017=(1+3+…+2015+2017)-(1+3+…+99+101)=2511009-2=1015480.【点睛】本题考查了数字的变化规律的应用;判断出有几个奇数相加是解决本题的易错点;得到从1开始连续奇数的和的规律是解决本题的关键.。

冀教版七年级数学上册全册同步训练(共57套附答案)

冀教版七年级数学上册全册同步训练(共57套附答案)

冀教版七年级数学上册全册同步训练(共57套附答案)5.1 一元一次方程一、选择题 1、下列选项中,是方程的是() A.B. C. D. 2、下列方程中是一元一次方程的是() A. B. C. D. 3、下列方程中,解是的是() A.3x-1=2x+1 B. 3x+1=2x-1 C.3x-1+2x-1=0 D.3x+1+2x+1=0 4、在方程:① ,② ,③ ,④ ,⑤ 中,根为的方程的个数是() A.5 B. 2 C.3 D.4 二、解答题 5、设某数为x,根据下列条件列出方程。

(1)某数的一半与3的积等于1. (2)某数的倍与 4的和是11.(3)某数的 2倍与它的2倍相等。

(4)某数与7的差比该数的3倍大1.(5)某数的7倍比它的平方小3. (6)某数与1的和等于这个数倒数的2倍。

(7)某数绝对值的3倍与2的倒数之差等于的相反数。

(8)某数与2的和的与1的差的3倍等于 6.6、在学校举行的“向灾区献爱心”的募捐活动中,初一1班与初一2班共捐款492元。

已知初一1班平均每人捐款5元,初一2班平均每人捐款6元且初一1班比初一2班多6人,问:两班各有学生多少人?(根据题意设未知数,不求解)7、如果12题改问“1、2班共有学生多少人?”,你能列出怎样的方程?8、如果12题改问“各班捐款多少元?”,你又能列出怎样的方程?9、在学校举行的“向灾区献爱心”的募捐活动中,初一1班平均每人捐款5元,初一2班平均每人捐款6元,结果两个班捐款数相等。

已知初一1班比初一2班多6人,问:两班各有学生多少人?共捐款多少元?(根据题意设未知数,不求解)10、若x,y互为相反数,且,求x,y的值。

11、已知方程ax=1()的解是,求b的值。

12、如果单项式是同类项,求的值。

13、若单项式14、已知是关于x的方程的解,求的值。

参考答案1―4 D B A D 5、,,,,。

,,。

6、设1班有x人,则2班有(x-6)人,于是5x+6(x-6)=492。

  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

山东省德州市
2017-2018学年七年级数学上学期第二次招生试题
(时间: 90 分钟,满分 100 分)
2018.5 一、填空题(每空1分,共20分)
1.3÷()= 18
() =()∶12=七五成=()%。

2.一件衣服200元,降低20元出售,这件衣服是打()折出售的。

3.扇形统计图是用整个圆表示(),用圆内大小不同的扇形表示各部分所占总数的()。

4、如果要表示各种数量的增减变化情况,选()统计图比较合适;如果要表示各部分与总数之间的关系,选()统计图比较合适。

5.王大伯家今年的樱桃产量比去年增加一成五,今年樱桃的产量是去年的()%。

6.一个圆柱体底面直径为8厘米,侧面积75.36平方厘米,这个圆柱体的高是()厘米。

7.一个圆柱的底面周长是18.84厘米,高是5厘米。

它的侧面积是()平方厘米,表面积是()平方厘米,体积是()立方厘米。

8.如果Y=8X (Y ,X都不为0), X和 Y成( )比例。

9.一个数的5%是24,这个数是()。

10.根据8x=3y组成一个比例x∶y=()∶()
11.北京到天津的实际距离是120千米,画在比例尺是1:1500000的地图上,应画()厘米,如果画在1:6000000的地图上,应画()厘米。

二、判断题(每题1分,共8分)
1.甲数比乙数多10%,乙数就比甲数少10%。

()
2.爸爸的月工资收入提高了10%,表示爸爸现在的月工资收入是原来的110%。

( )
3.把一个圆柱削成一个最大圆锥,这个圆锥的体积是圆柱体积的31。

( )
4.圆锥的体积一定,它的底面积和高成反比例。

( ) 5.如果A=8B ,那么A 与B 成反比例。

( ) 6.一幅地图的比例尺是1:100,表示实际距离是图上距离的100倍。

( ) 7.所有比例尺的前项都是1。

( )
8.体育馆内要建一个篮球场,在1 ∶2000和1 ∶1000两个比例尺中,选用1 ∶2000的比例尺画出的平面
图要小一些。

( ) 三、选择题(每题2分,共10分)
1.小明家10月份用电80千瓦时,比上月节约了20千瓦时,比上月节约了( )。

A. 25%
B. 20%
C. 40%
2.圆柱的底面半径扩大到原来的2倍,高不变,它的侧面积扩大到原来的( )倍。

A. 3
B. 6 C .4 D.2
3.在一个比例尺是200∶1的图纸上,量得一个零件的长是2厘米,这个零件实际长( )。

A. 4米
B. 1米
C. 0.1毫米
D. 0.4毫米 4.比例尺是( )
A. 比
B. 比值
C. 不是比,也不是比值
5.一个圆柱的底面直径是3厘米,高是9.42厘米,它的侧面沿高展开后是( )
A. 长方形
B. 正方形
C. 圆
D. 不能确定 四、计算题(共32分)
1.直接写得数(每题1分,共8分)
2.7+5.4=
3.14×15= 60÷15%=
31+65+3
2= 24÷4
1= 3.8×0.5= 0.008×100= 50000×4.71%=
2、简便计算。

(每题3分,共12分)
0.25×8×4×1.25 1111301218
18
⨯-⨯
42×102 7323
+-⨯
()24
12824
3.解方程。

(每题3分,共12分)
50%x-35%x=3.9 x-20%x=45.6
五、应用题(每题6分,共30分)
1、一块菜地,4种蔬菜的种植面积分布情况如图所示。

(1)韭菜的种植面积是160平方米,这块菜地的面积有多大?
(2)一共种了多少平方米的芹菜和青菜?
(3)如果白菜每平方米收获1 5千克,每千克卖1.5元,这块地收获的白菜可以卖多少钱?
2、小明读一本书,第一天读了全书的10%,第二天读了全书的35%,第三天读了44页,正好读完全书。

这本书一共有多少页?
3、用边长0.3米的方砖给一间教室铺地,要600块,如果改用边长0.5米的方砖来铺,需要多少块?(用比例解答)
4、在比例尺是1∶3000000的地图上,量得两地的距离是10厘米,甲、乙两车同时从两地出发相向而行,3小时后两车相遇。

已知甲、乙两车的速度比是2∶3,甲、乙两车的速度各是多少千米?
5、乐乐参加数学竞赛,共有10道题,每做对一道题可得8分,每做错一道题倒扣5分,乐乐最后得54分。

他一共做对了多少道题?
答案
一、填空题(每空1分,共19分)
1.4、24、9、75 2.九 3.总数 百分比 4.折线 扇形 5.115% 6.3 7. 94.2 150.72 141.3 8.正比例 9.480 10. 3 :8 11. 8 2 二、判断题(每题2分,共16分)
1.×2.√3.√4.√5.×6.√7.×8.√ 三、选择题(每题2分,共10分) 1.B 2.D 3.C 4.A 5.B 四、计算题(共26分) 1、8.1 47.1 400
611或16
5
96 1.9 0.8 2355 2、10 11 4284 0
3、x=26 x=57 x=4.8 x=2.5
五、应用题(1、2、4每题4分,3、5、6每题6分,共30分) 1.(1)16032%500(÷=平方米) (2)500(28%15%)215(⨯+=平方米) (3)50025%15 1.52812.5(⨯⨯⨯=元) 2.44÷(1-10%-35%)=80(页) 3.
4.10÷
÷100000÷3=100(千米/时)
甲车的速度:100×=40(千米/时)
乙车的速度:100×=60(千米/时)
5、假设全做对
(10854)(85)2(10-2=8⨯-÷+=道)(道)。

相关文档
最新文档