2020春七年级数学下册 第九章 不等式与不等式组 9.2 一元一次不等式 9.2.1 一元一次不等
2020年-人教版七年级数学下册 学案 9.2 第4课时 一元一次不等式的应用--含答案
第9章不等式与不等式组9.2 一元一次不等式第4课时一元一次不等式的应用核心提要在列不等式解应用题的时候要注意:(1)要根据题目中的关键字(如“大于”“不大于”“至多”“不超过”等)所表示的不等关系列出________.(2)在设未知数的时候,不能出现“至多”“不超过”等字眼.典例精讲知识点:一元一次不等式的应用1.小明准备用22元钱买笔和笔记本,已知每支笔3元,每本笔记本2元,他买了3本笔记本后,其余的钱用来买笔,那么他最多可以买()A.3支笔B.4支笔C.5支笔D.6支笔2.某文具店计划购进学生用的甲、乙两种圆规80只,进货总价要求不超过384元.两种圆规的进价和售价如下表:甲种乙种进价(元) 4 5售价(元) a(6≥a>4) 7(1)问该文具店至少应购进甲种圆规多少只?(2)在全部可销售完的情况下,针对a的不同取值,应怎样的进货所获利润最大?变式训练变式1某种商品的进价为800元,出售时标价为1200元,后来由于该商品积压,商店准备打折销售,但要保证利润率不低于5%,则至多可打()A.6折B.7折C.8折D.9折变式2某蔬菜经营户从蔬菜批发市场批发蔬菜进行零价,其中西红柿与西兰花的批发价格与零售价格如表.蔬菜品种西红柿西兰花批发价(元/kg) 3.68零售价(元/kg) 5.414蔬菜当天全部售完后,一共能赚多少钱?(请列方程组求解)(2)第二天该经营户用1520元仍然批发西红柿和西兰花,要想当天全部售完后所赚钱数不少于1050元,则该经营户最多能批发多少千克的西红柿?基础巩固1.有10名菜农,每人种茄子3亩或辣椒2亩,已知茄子每亩可收入0.5万元,辣椒每亩可收入0.8万元,要使总收入不低于15.6万元,则最多只能安排________人种茄子.2.小王家鱼塘有可出售的大鱼和小鱼共800千克,大鱼每千克售价10元,小鱼每千克售价6元,若将这800千克鱼全部出售,收入可以超过6 800元,则其中售出的大鱼至少有多少千克?若设售出的大鱼为x千克,则可列式为:________________________.3.某大型超市从生产基地购进一批水果,运输及销售中估计有10%的苹果正常损耗,苹果的进价是每千克1.8元,商家要避免亏本,需把售价至少定为____元.4.为增强市民的节水意识,某市对居民用水实行“阶梯收费”:规定每户每月不超过月用水标准部分的水价为1.5元/吨,超过月用水标准量部分的水价为2.5元/吨.该市小明家5月份用水12吨,缴水费20元.请问:该市规定的每户月用水标准量是多少吨?5.某职业高中机电班共有学生42人,其中男生人数比女生人数的2倍少3人.(1)该班男生和女生各有多少人?(2)某工厂决定到该班招录30名学生,经测试,该班男、女生每天能加工的零件数分别为50个和45个,为保证他们每天加工的零件总数不少于1 460个,那么至少要招录多少名男学生?能力提升6.某小区为更好地提高业主垃圾分类的意识,管理处决定在小区内安装垃圾分类的温馨提示牌和垃圾箱,若购买3个温馨提示牌和4个垃圾箱共需580元,且每个温馨提示牌比垃圾箱便宜40元.(1)问购买1个温馨提示牌和1个垃圾箱各需多少元?(2)如果需要购买温馨提示牌和垃圾箱共100个,费用不超过8000元,问最多购买垃圾箱多少个?培优训练7.为了加强对校内外安全监控,创建荔湾平安校园,某学校计划增加15台监控摄像设备,现有甲、乙两种型号的设备,其中每台价格,有效监控半径如表所示,经调查,购买1台甲型设备比购买1台乙型设备多150元,购买2台甲型设备比购买3台乙型设备少400元.(2)若购买该批设备的资金不超过11 000元,且两种型号的设备均要至少买一台,学校有哪几种购买方案?(3)在(2)问的条件下,若要求监控半径覆盖范围不低于1 600米,为了节约资金,请你设计一种最省钱的购买方案.第4课时 一元一次不等式的应用----答案【核心提要】 不等式 【典例精讲】 1.C2.解:(1)设该文具店应购进甲种圆规x 个,则乙种圆规的个数为80-x 个, 由题意得,4x +5(80-x)≤384, 解得:x ≥16, 答:该文具店至少应购进甲种圆规16个; (2)设购进甲种圆规x 个,利润为y ,则y =x(a -4)+(7-5)(80-x)=(a -6)x +160, ∵6≥a >4,∴a -6≤0, 故x 越小,y 值越大, 当x =16时,y 值最大.答:该文具店应购进甲种圆规16个,乙种圆规64个,所获利润最大.【变式训练】1.B2.解:(1)设批发西红柿x kg ,西兰花y kg ,由题意得⎩⎪⎨⎪⎧x +y =3003.6x +8y =1 520, 解得:⎩⎪⎨⎪⎧x =200y =100 ,故批发西红柿200 kg ,西兰花100 kg ,则这两种蔬菜当天全部售完一共能赚:200×1.8+100×6=960(元),答:这两种蔬菜当天全部售完一共能赚960元;(2)设批发西红柿a kg ,由题意得,(5.4-3.6)a +(14-8)×1 520-3.6a8≥1 050,解得:a ≤100,答:该经营户最多能批发西红柿100 kg.【基础巩固】 1.42.10x +6(800-x)>6 800 3.24.解:设该市规定的每户每月标准用水量为x 吨,∵12×1.5=18<20, ∴x <12. 则1.5x +2.5(12-x)=20, 解得:x =10. 答:该市规定的每户每月标准用水量为10吨. 5.解:(1)设该班男生有x 人,女生有y 人,依题意得:⎩⎪⎨⎪⎧x +y =42,x =2y -3,解得:⎩⎪⎨⎪⎧x =27,y =15.∴该班男生有27人,女生有15人.(2)设招录的男生为m 名,则招录的女生为(30-m)名,依题意得:50m +45(30-m)≥1 460, 即5m +1 350≥1 460, 解得:m ≥22.答:工厂在该班至少要招录22名男生.【能力提升】6.(1)解:设购买1个温馨提示牌需要x 元,购买1个垃圾箱需要y 元,依题意得⎩⎪⎨⎪⎧3x +4y =580x =y -40,解得:⎩⎪⎨⎪⎧x =60y =100 答:购买1个温馨提示牌需要60元,购买1个垃圾箱需要100元. (2)解:设购买垃圾箱m 个,则购买温馨提示牌(100-m)个,依题意得60(100-m)+100m ≤8 000,解得m ≤50, 答:最多购买垃圾箱50个.【培优训练】7.解:(1)由题意得:⎩⎪⎨⎪⎧a -b =1503b -2a =400, 解得⎩⎪⎨⎪⎧a =850b =700;(2)设购买甲型设备x 台,则购买乙型设备(15-x)台,依题意得 850x +700(15-x)≤11 000, 解得x ≤313,∵两种型号的设备均要至少买一台,∴x=1,2,3,∴有3种购买方案:①甲型设备1台,乙型设备14台;②甲型设备2台,乙型设备13台;③甲型设备3台,乙型设备12台;(3)依题意得:150x+100(15-x)≥1 600,解得x≥2,∴x取值为2或3.当x=2时,购买所需资金为:850×2+700×13=10 800(元),当x=3时,购买所需资金为:850×3+700×12=10 950(元),∴最省钱的购买方案为:购买甲型设备2台,乙型设备13台.。
人教版七年级数学下册课件 第九章 不等式与不等式组 一元一次不等式 第2课时 一元一次不等式的应用
购买数量(件)
A
第一次 第二次
B
购买总费用(元)
2
1
55
1
3
65
解:(1)设 A 种商品的单价为 x 元,B 种商品的单价为 y 元,根据题 意,可得2xx++3yy= =5655, , 解得xy==1250,,
答:A 种商品的单价为 20 元,B 种商品的单价为 15 元
(2)设第三次购买商品A种a件,则购买B种商品(12-a)件,根据题意, 可得a≥2(2y=y=59940000,,
解得xy==13
500, 200,
答:每台 A 型电脑
的价格为 3 500 元,每台 B 型打印机的价格为 1 200 元
(2)设学校购买 a 台 B 型打印机,则购买 A 型电脑为(a-1)台,根据题 意,得 3 500(a-1)+1 200a≤20 000,解得 a≤5.答:该学校至多能购买 5 台 B 型打印机
9.某大型超市从生产基地购进一批水果,运输过程中质量损失10%, 假设不计超市其他费用,如果超市要想至少获得20%的利润,那么这种水 果的售价在进价的基础上应至少提高( B )
A.40% B.33.4% C.33.3% D.30%
10.马师傅计划用10天时间加工320个零件,前两天每天加工20个零件, 后改进了工作方式,结果提前一天完成了加工任务,马师傅在两天后每天 至少加工__4_0_个零件.
∵m=20a+15(12-a)=5a+180,∴当a=8时所花钱数最少,即购买 A商品8件,B商品4件
(1)求每台A型电脑和每台B型打印机的价格分别是多少元? (2)如果学校购买A型电脑和B型打印机的预算费用不超过20 000元,并 且购买B型打印机的台数要比购买A型电脑的台数多1台,那么该学校至 多能购买多少台B型打印机?
人教版七年级下册数学课件 第九章 不等式与不等式组 一元一次不等式 第1课时 一元一次不等式的解法
第九章 不等式与不等式组
9.2 一元一次不等式
第1课时 一元一次不等式的解法
1.(3 分)下列各式中,是一元一次不等式的是( B)
A.x2-2x>1
B.x3 -1>x-2 1
C.1x -2≥0 D.x+y2 <-1
2.(3 分)已知 xa-1+3<5 是关于 x 的一元一次不等式,则 a=_2__.
9.若点 P(3a-2,2b-3)在第二象限,则(C )
A.a>23 ,b>32
B.a>23 ,b<32
C.a<23 ,b>32
D.a<23 ,b<32
10.(呼和浩特中考)若不等式2x+ 3 5 -1≤2-x 的解集中 x 的每一个值, 都能使关于 x 的不等式 3(x-1)+5>5x+2(m+x)成立,则 m 的取值范围是(C )
三、解答题(共 36 分) 13.(10 分)当 x 取何值时,代数式6x-4 1 -2x 的值:(1)大于-2;(2)不大于 1-2x.
解:(1)由题意,得6x-4 1 -2x>-2,解得 x<72 (2)由题意,得6x-4 1 -2x≤1-2x,解得 x≤56
14.(10 分)已知关于 x 的方程x+3m -2x-2 1 =m 的解为负数,求 m 的取值范围. 解:解方程得 x=-m+34 ,∵方程的解为负数,∴-m+34 <0,解得 m>34
6.(12分)解下列不等式,并在数轴上表示出解集: (1)3x-1≥2(x-1); 解:去括号,得3x-1≥2x-2,移项,得3x-2x≥-2+1,合并同类项,得x≥-1. 将不等式的解集表示在数轴上如下:
x-2 (2) 5
-ቤተ መጻሕፍቲ ባይዱ+2 4
>-3.
解:去分母,得2(x-2)-5(x+4)>-30,去括号,得2x-4-5x-20>-30, 移项,得2x-5x>-30+4+20,合并同类项,得-3x>-6, 系数化为1,得x<2.将不等式的解集表示在数轴上如下:
人教版 数学 七年级 下册 第九章 不等式与不等式组 知识点
第九章不等式与不等式组一、知识结构图二、知识定义一、不等式1.不等式及其解集1)不等式:用不等号(包括:>、<、≠)表示大小关系的式子。
2)不等式的解:使不等式成立的未知数的值,叫不等式的解。
3)不等式的解集:使不等式成立的未知数的取值范围,叫不等式的解的集合,简称解集。
2.不等式的基本性质:性质 1:如果a>b,b>c,那么a>c(不等式的传递性).性质2:不等式的两边同加(减)同一个数(或式子),不等号的方向不变。
如果a>b,那么a+c>b+c(不等式的可加性).性质3:不等式的两边同乘(除以)同一个正数,不等号的方向不变。
不等式的两边同乘(除以)同一个负数,不等号的方向改变。
如果a>b,c>0,那么ac>bc;如果a>b,c<0,ac<bc.(不等式的乘法法则)性质 4:如果a>b,c>d,那么a+c>b+d.(不等式的加法法则)性质5:如果a>b>0,c>d>0,那么ac>bd.(可乘性)性质6:如果a>b>0,n∈N,n>1,那么an>bn,且.当0<n<1时也成立.(乘方法则)二、一元一次不等式1.一元一次不等式:含有一个未知数,未知数的次数是1的不等式。
2.解一元一次不等式的一般方法:可以先把其中的不等式逐条算出各自的解集,然后分别在数轴上表示出以两条不等式组成的不等式组为例,①若两个未知数的解集在数轴上表示同向左,就取在左边的未知数的解集为不等式组的解集,此乃“同小取小”②若两个未知数的解集在数轴上表示同向右,就取在右边的未知数的解集为不等式组的解集,此乃“同大取大”③若两个未知数的解集在数轴上相交,就取它们之间的值为不等式组的解集。
若x表示不等式的解集,此时一般表示为a<x<b,或a≤x≤b。
此乃“相交取中”④若两个未知数的解集在数轴上向背,那么不等式组的解集就是空集,不等式组无解。
人教版七年级数学下册 第九章 不等式与不等式组 一元一次不等式 第2课时 实际问题与一元一次不等式
5.(2021·焦作期末)一种苹果的进价是每千克1.9元,销售中估计有5%的苹果 正常损耗,商家把售价至少定为__2__元,才能避免亏本.
解:因为1.5×10=15<25,所以小明家这个月的用水量超过10立方米.设小明 家这个月的用水量至少为x立方米,根据题意有15+2(x-10)≥25,解得x≥15,答: 他家这个月的用水量至少是15立方米
11.(2021·河北)已知训练场球筐中有A,B两种品牌的乒乓球共101个,设A品 牌乒乓球有x个.
(1)淇淇说:“筐里B品牌球是A品牌球的两倍.”嘉嘉根据她的说法列出了方 程:101-x=2x.请用嘉嘉所列方程分析淇淇的说法是否正确;
(2)据工作人员透露:B品牌球比A品牌球至少多28个,试通过列不等式的方法 说明A品牌球最多有几个.
解:(1)嘉嘉所列方程为 101-x=2x,解得 x=3323 ,又∵x 为整数,∴x=3323 不合题意,∴淇淇的说法不正确 (2)设A品牌乒乓球有x个,则B品牌乒乓球有(101-x)个,依题意,得101-x- x≥28,解得x≤36.5,又∵x为整数,∴x可取的最大值为36.答:A品牌球最多有36 个
8.红旗中学组织本校师生参加红色研学实践活动,现租用11辆甲、乙两种型 号的大客车(每种型号至少一辆)送549名学生和11名教师参加此次实践活动.
甲、乙两种型号的大客车的载客量如表所示:
则最多可以租用多少辆甲种型号大客车?有几种租车方案?
解:设租用x辆甲种型号大客车,则租用(11-x)辆乙种型号大客车,依题意得: 40x+55(11-x)≥549+11,解得x≤3,∴x可以取的最大值为3.∵x为正整数,∴x= 1或2或3,∴有3种租车方案.答:最多可以租用3辆甲种型号大客车.有3种租车 方案,方案1:租用1辆甲种型号大客车,10辆乙种型号大客车;方案2:租用2辆 甲种型号大客车,9辆乙种型号大客车;方案3:租用3辆甲种型号大客车,8辆乙 种型号大客车
2023~2024学年 9.2 课时1 一元一次不等式(15页)
问题(6) 对比第(1)小题和第(2)小题的解题过程,系数 化为1时应注意些什么?
要看未知数系数的符号,若未知数的系数是正数, 则不等号的方向不变;若未知数系数是负数,则不 等号的方向要改变.
问题7 解一元一次不等式每一步变形的依据 是什么?
步骤
依据
去分母 去括号 移项 合并同类项 系数化为1
(1) 2(1 x) 3
解:去括号,得 移项,得
合并同类项,得
系数化为1,得
2
例 解下列不等式,并在数轴上表示解集:
(2) 2 x 2x 1
2
3
问题(3)
对比不等式
2 x 2x 1
2
3
与
2(1 x) 3的两边,
它们在形式上有什么不同?
问题(4)
怎样将不等式 2 x 2x 1 变形,使变形后的不等
第九章 不等式与不等式组 9.2 课时1 一元一次不等式
学习目标
1. 了解一元一次不等式的概念,掌握一元一次不等式的解法. 2. 在依据不等式的性质探究一元一次不等式解法过程中,加深 对化归思想的体会.
引入概念
问题1 观察下面的不等式,它们有哪些共同特征?
x 7 26, 3x 2x 1,
4x 3, 2 x 50
不等式的性质2 去括号法则 不等式的性质1 合并同类项法则 不等式的性质2或3
问题8 解一元一次不等式和解一元一次方程 有哪些相同和不同之处?
相同之处: 基本步骤相同:去分母,去括号,移项,合并同类项, 系数化为1. 基本思想相同:都是运用化归思想,将一元一次方程 或一元一次不等式变形为最简形式.
3
一元一次不等式的概念: 含有一个未知数,未知数次数是1的不等式,叫做一元一
初中数学 人教版七年级下册 9.2一元一次不等式 课件
⑤
两边同除以a
不等式的基本性质2,3
写不等式的解时,要把表示未知数的字母写在不等号的左边。
练习反馈
4.解下列不等式,并在数轴上表示解集.
(1) -5x ≤10 ;
x ≥ -2
(2)4x-3 < 10x+7 .
x
>
-
5 3
(3) 3x -1 > 2(2-5x) ;
5
x > 13
(4) x 32≥2x23
合并同类项,得 系数化为1,得
2x 1 x 1
2
移项,得 合并同类项,得 系数化为1,得
3x 4x 2 6, x 8,
x 8.
归纳总结 归纳解不等式的一般步骤,并指出每个步骤的根据,完成下表.
步骤
根据
①
去分母
不等式的基本性质2,3
②
去括号
去括号法则
③
移项
不等式的基本性质1
④
合并同类项
合并同类项法则
-5x >-10
x=2
系数化为1
x<2
总结归纳
解一元一次不等式与解一元一次方程的依据和步骤有什么异同点?
相同之处:
议
基本步骤相同:去分母,去括号,移项,合并同类项,
一 议
系数它化们为的1依这.据些不步相骤同中. ,要特别注意的是:
解一元一不次等方式程两的边依都乘(或除以)同一个 据是等式负的数性,质必,须解改变不等号的方向.这是 一元一次与不解等一式元的一依次方程不同的地方.
✓ (2)5x+3<5(x-y) ✓
✕ (4)x(x–1)< x2 -2x ✓
✕ (6) x2-3x-5<6
七年级下册数学第九章《不等式与不等式组》教案
9.1.1不等式及其解集学习目标知识:不等式及其解集和一元一次不等式。
方法:渗透数形结合的思想。
情感:培养学生的数感,促进合作交流意识的形成。
学习重点:不等式、不等式解与解集的意义,并把解集正确地表示在数轴上。
学习难点:正确理解不等式的解集意义。
.教具准备:多媒体课件。
教学流程一、【情境引入】1、ppt出示题目:某班同学去植树,原计划每位同学植树4棵,但由于某组的10名同学另有任务,未能参加植树,其余同学每位植树6棵,结果仍未能完成计划任务,若以该班同学的人数为x,此时的x应满足怎样的关系式?依题意得4x>6(x−10)2、你能举出生活中不相等关系的一些实例吗?3、怎样来表示这些不等关系呢?这就是我们今天探讨的问题。
(板书课题:不等式及其解集)。
二、【自主探究】学生阅读121——123页。
自读提纲:(1)什么叫做不等式及不等式的解?(2)什么叫做不等式的解集?什么叫做一元一次不等式?(3)怎样在数轴上表示不等式的解集?三、【合作探究】以上问题让学生展示,先让学困生回答,中等生补充,优等生总结;教师适当指导汇总得出:1、不等式的概念:用“<”“>”“≠”表示大小关系的式子叫做不等式。
(让学生回忆等式的概念。
)2、使不等式成立的未知数的值叫做不等式的解。
3、使不等式成立的所有的解的集合叫做不等式的解集。
4、含有一个未知数,未知数的次数是1的不等式,叫做一元一次不等式。
(让学生回忆一元一次方程的概念。
)例1、用不等式表示。
(1)a与1的和是正数。
(2)y的2倍与1的和大于3;(3)x的一半与x的2倍的和是非正数;(4)c与4的和不大于-2;2x>50的解例2、判断下列数中哪些是不等式376,73,79,80,74,75.1,90,60例3、在数轴上表示下列不等式的解集(1)x>1;(2)x≥1;(3)x<1;(4)x≤1教师分析指点:按画数轴,定界点,走方向答。
五、【当堂训练】1、课本P123页1,2,3。
一元一次不等式教学设计
一元一次不等式教学设计教学设计课题:一元一次不等式教学内容:七年级下册第九章不等式与不等式组9.2一元一次不等式第一课时一、教材分析本节内容是本章知识的联系中起着承上启下的作用,从学生熟悉的列代数式入手,既复旧知又巧妙地引入了新知。
由代数式到单项式,这是一种下位研究,有利于学生把握概念的内涵和外延的内容。
二、教学目标1.知识与技能:理解一元一次不等式的定义,掌握一元一次不等式的解法,并能够在数轴上表示不等式的解集。
2.过程与方法:通过类比一元一次方程的解法,探究一元一次不等式的解法。
3.情感态度与价值观:培养学生对数学的兴趣,提高解决问题的能力。
4.教学重点、难点:重点是解一元一次不等式的步骤,并能在数轴上表示它的解集;难点是解一元一次不等式,不等式两边同乘(或除以)同一个负数,不等号的方向要改变。
三、学情分析学生已经研究过代数式和单项式的概念,具备一定的代数基础,但对不等式的概念和解法还不熟悉。
四、教法学法与教学用具教学:探究法讲解法学法:自主探究法合作研究教学用具:数轴、黑板、白板、笔。
五、教学过程复引入】复不等式的定义和性质。
探索新知】观察不等式的共同特征,引入一元一次不等式的概念。
练】通过例题,掌握一元一次不等式的解法步骤,并在数轴上表示解集。
归纳总结】总结一元一次不等式的解法和注意事项。
拓展应用】通过实际问题,巩固一元一次不等式的应用。
课堂小结】回顾本节课的重点内容,强化学生对一元一次不等式的理解和掌握。
课后作业】完成课后作业,巩固一元一次不等式的解法和应用。
判断下列各式是否为单项式。
如果不是,请说明理由。
如果是,请指出它的系数和次数。
1) 1000 是单项式,系数为 1000,次数为 0.2) a5 是单项式,系数为 1,次数为 5.3) r2 不是单项式,因为乘法中有两个不同的变量 r 和 2.4) x+1 不是单项式,因为它包含两个不同的项 x 和 1.5) a3b 是单项式,系数为1,次数为 4.6) ba2c 是单项式,系数为1,次数为 4.7) 1122xy2 不是单项式,因为它包含两个不同的项 1122 和 xy2.8) x 不是单项式,因为它包含一个未知数 x 和一个乘法符号。
第九章不等式与不等式组课件9.2一元一次不等式
在数轴上表示:
并把它的解集在数轴上表示出来。
y 1 y3
一罐饮料净重约300克,罐上注 有“蛋白质含量≥0.6%”,其中蛋白质
的含量为多少克?
解: 设蛋白质的含量为 x 克, 由题意得: x ≥300×0.6% x ≥1.8 答:蛋白质的含量不小于1.8 克.
同乘最简 公分母12, 方向不变
合并同类项得: -7x≥-56 把系数化为1得: x≤8
-1 0 1 2 3 4 5 6 7 8
同除以-7, 方向改变
解:去分母,得:2x < 30 3 – 5(3 – x) +5x 去括号,得:2x < 30 – 15 – x 移项,得: 2x –5x < 30 –15 合并同类项,得: –3x < 15 系数化为1,得:x < > –5
亏本?
根据“去掉损耗后的售价≥进价”
列出不等式即可求解.
解:设商家把售价应该定为每千克 x 元, 由题意得:
( 1 - 5% ) x ≥ 1.9
x≥2 答:商家把售价应该至少定为
每千克2元.
小颖家每月水费都不少于15 元,自来水公司的收费标准如下: 若每户每月用水不超过5吨,则每 吨收费1.8元;若每户每月用水超 过5吨,则超出部分每吨收费2元, 小颖家每月用水量至少是多少吨?
根据实际情况,把计算的结果作出调整。 ∵ x 是正整数
∴符合条件的最小正整数 x =37
答:明年要比去年空气质量 良好的天数至少增加37,才 能使这一年空气质量良好的 天数超过全年天数的70%.
一、课前复习
1.某商品的单价是 a 元,买50件总商品 的费用不超过342元,则
人教版数学七年级下册知识重点与单元测-第九章9-2一元一次不等式的解法(能力提升)
第九章 不等式与不等式(组)9.2 一元一次不等式的解法(能力提升)【要点梳理】知识点一、一元一次不等式的概念 只含有一个未知数,未知数的次数是一次的不等式,叫做一元一次不等式,例如,2503x >是一个一元一次不等式. 要点诠释:(1)一元一次不等式满足的条件:①左右两边都是整式(单项式或多项式);②只含有一个未知数;③未知数的最高次数为1.(2) 一元一次不等式与一元一次方程既有区别又有联系:相同点:二者都是只含有一个未知数,未知数的次数都是1,“左边”和“右边”都是整式.不同点:一元一次不等式表示不等关系,由不等号“<”或“>”连接,不等号有方向;一元一次方程表示相等关系,由等号“=”连接,等号没有方向.要点二、一元一次不等式的解法1.解不等式:求不等式解的过程叫做解不等式.2.一元一次不等式的解法:与一元一次方程的解法类似,其根据是不等式的基本性质,将不等式逐步化为:a x <(或a x >)的形式,解一元一次不等式的一般步骤为:(1)去分母;(2)去括号;(3)移项;(4)化为ax b >(或ax b <)的形式(其中0a ≠);(5)两边同除以未知数的系数,得到不等式的解集.要点诠释:(1)在解一元一次不等式时,每个步骤并不一定都要用到,可根据具体问题灵活运用.(2)解不等式应注意:①去分母时,每一项都要乘同一个数,尤其不要漏乘常数项;②移项时不要忘记变号;③去括号时,若括号前面是负号,括号里的每一项都要变号;④在不等式两边都乘(或除以)同一个负数时,不等号的方向要改变.3.不等式的解集在数轴上表示:在数轴上可以直观地把不等式的解集表示出来,能形象地说明不等式有无限多个解,它对以后正确确定一元一次不等式组的解集有很大帮助.要点诠释: 在用数轴表示不等式的解集时,要确定边界和方向:(1)边界:有等号的是实心圆点,无等号的是空心圆圈;(2)方向:大向右,小向左.【典型例题】类型一、一元一次不等式的概念例1.下列式子哪些是一元一次不等式?哪些不是一元一次不等式?为什么?(1)0x > (2)1x1-> (3)2x 2> (4)3y x ->+ (5)1x -= 【思路点拨】根据一元一次不等式的定义判断.【答案与解析】解:(1)是一元一次不等式.(2)(3)(4)(5)不是一元一次不等式,因为:(2)中分母中含有字母,(3)未知量的最高次项不是1次,(4)不等式左边含有两个未知量,(5)不是不等式,是一元一次方程.【总结升华】一元一次不等式的定义主要由三部分组成:①不等式的左右两边分母不含未知数;②不等式中只含一个未知数;③未知数的最高次数是1,三个条件缺一不可.类型二、解一元一次不等式例2.解不等式:25x 03.0x 02.003.05.09.0x 4.0->+-+,并把解集在数轴上表示出来. 【思路点拨】先用分数的基本性质,将分母变为整数,再去分母,在去分母时注意分数线兼有括号的作用.【答案与解析】 解:将分母变为整数,得:25x 3x 2359x 4->+-+ 去分母,得:)5x (15)x 23(10)9x 4(6->+-+去括号,合并同类项,得:99x 11->-系数化1,得:9x <这个不等式的解集表示在数轴上,如下图:【总结升华】在不等式的两边同乘以(或除以)负数时,必须改变不等号的方向. 举一反三: 【变式】解不等式:2x ]2)14x (32[23<--- 【答案】 解:去括号,得2x 314x <--- 移项、合并同类项得:6x 43<- 系数化1,得8x ->故原不等式的解集是8x ->例3.m 为何值时,关于x 的方程:6151632x m m x ---=-的解大于1? 【思路点拨】从概念出发,解出方程(用m 表示x ),然后解不等式.【答案与解析】解: x-12m+2=6x-15m+3 5x=3m-1315m x -=由3115m -> 解得m >2【总结升华】此题亦可用x 表示m ,然后根据x 的范围运用不等式基本性质推导出m 的范围.举一反三:【变式】已知关于x 方程3x 23m x 2x -=--的解是非负数,m 是正整数,则=m .【答案】1或2例4.已知关于y ,x 的方程组⎩⎨⎧-=++=+1p y 3x 41p y 2x 3的解满足y x >,求p 的取值范围.【思路点拨】先解出方程组再解不等式.【答案与解析】解:由⎩⎨⎧-=++=+1p y 3x 41p y 2x 3,解得:⎩⎨⎧--=+=7p y 5p x ∵y x >∴7p 5p -->+解得6p ->∴p 的取值范围为6p ->【总结升华】有时根据具体问题,可以不必解出y ,x 的具体值.类型三、解含字母的一元一次不等式例5.解关于x 的不等式:(1-m)x>m-1【思路点拨】由此不等式的结构,这里只需将未知数的系数化1即可,两边同时除以(1-m ),但由不等式的基本性质我们知,若不等式两边同时除以一个负数,原不等号的方向得改变,这里1-m 的符号我们不知道,故需分类讨论.【答案与解析】解:当1- m >0即 m <1时,原不等式的解集为:x >-1;当1- m <0即m >1时,原不等式的解集为:x <-1;当1-m=0即m=1时,没有数能使得不等式成立,故原不等式无解.【总结升华】不难发现,我们可以总结概括,如下:若ax >b (a ≠0), 当0a >时,不等式的解集是bx a>; 当0a <时,不等式的解集是bx a <.举一反三: 【变式1】解关于x 的不等式m (x-2)>x-2.【答案】解: 化简,得(m-1)x >2(m-1),① 当m-1>0时,x >2;② 当m-1<0时,x <2;③ 当m-1=0时,无解.【变式2】已知x >a 的解集中最小整数为-2,则a 的取值范围是______.【答案】﹣3≤a <﹣2.类型四、逆用不等式的解集例6.如果关于x 的不等式(a+1)x >a+1的解集为x <1,那么a 的取值范围是 .【思路点拨】本题是关于x 的不等式,应先只把x 看成未知数,求得x 的解集,从而来求得a 的值.【答案】a <﹣1【解析】解:∵(a+1)x >a+1的解集为x <1,∴a+1<0,∴a <﹣1.【总结升华】解答本题的关键是根据不等号的方向改变确定a+1<0.举一反三:【变式】已知不等式3x ﹣a≤0的解集为x≤5,则a 的值为 .【答案】15.【解析】解:3x ﹣a≤0,x≤,∵不等式的解集为x≤5,∴=5,解得a=15.故答案为:15.【巩固练习】一、选择题1.已知关于x 的不等式||(1)0m m x -≥是一元一次不等式,那么m 的值是 ( ) .A .m =1B .m =±1 C .m =-1 D .不能确定 2.由m n >得到22ma na >,则a 应该满足的条件是( ).A .a >0B .a <0C .a ≠0D .a 为任意实数3.关于x 的不等式x ﹣b >0恰有两个负整数解,则b 的取值范围是( )A .﹣3<b <﹣2B .﹣3<b≤﹣2C .﹣3≤b≤﹣2D .﹣3≤b<﹣24.不等式475x a x ->+的解集是1x <-,则a 为( ).A .-2B .2C .8D .55.如果1998a+2003b=0,那么ab 是( )A .正数B .非正数C .负数D .非负数6.关于x 的不等式2a x 2≥+-的解集如图所示,则a 的值是 ( ).A .0B .2C . -2D .-4二、填空题7.若x 为非负数,则5x 231-≤- 的解集是 . 8.不等式5x ﹣3<3x+5的最大整数解是 .9.比较大小:22336a b -+________22241a b -+.10.已知-4是不等式5ax >-的解集中的一个值,则a 的范围为________.11.若关于x 的不等式30x a -≤只有六个正整数解,则a 应满足________.12.已知a x >的解集中的最小整数为2-,则a 的取值范围是 .三、解答题13.若m 、n 为有理数,解关于x 的不等式(-m 2-1)x >n .14. 适当选择a 的取值范围,使1.7<x <a 的整数解:(1)x 只有一个整数解;(2) x 一个整数解也没有.15.当310)3(2k k -<-时,求关于x 的不等式k x x k ->-4)5(的解集.16.已知关于x 的方程4x+2m+1=2x+5的解是负数.(1)求m 的取值范围;(2)在(1)的条件下,解关于x 的不等式2(x ﹣2)>mx+3.答案与解析一、选择题1. 【答案】C ;【解析】1,10m m =-≠,所以1m =-;2. 【答案】C ;【解析】由m n >得到22ma na >,不等式两边同乘以2a ,不等号方向没变,所以20,0a a >≠即;3. 【答案】D ;【解析】不等式x ﹣b >0,解得:x >b ,∵不等式的负整数解只有两个负整数解,∴﹣3≤b<﹣2故选D .4. 【答案】A ;【解析】由475x a x ->+,可得53a x +<-,它与1x <-表示同一解集,所以513a +-=-,解得2a =-; 5. 【答案】B ;【解析】1998a+2003b=0,可得,a b 均为0或,a b 异号;6. 【答案】A ;【解析】因为不等式2a x 2≥+-的解集为22a x -≤,再观察数轴上表示的解集为1x -≤,因此122a -=-,解得0a = 二、填空题7. 【答案】4x 0≤≤;【解析】x 为非负数,所以0x ≥,5x 231-≤-解得:4x ≤. 8. 【答案】3;【解析】不等式的解集是x <4,故不等式5x ﹣3<3x+5的正整数解为1,2,3,则最大整数解为3.故答案为:3.9. 【答案】>;【解析】222222(336)(241)50a b a b a b -+--+=++>,所以2222336241a b a b -+>-+.10.【答案】54a <; 【解析】将-4代入得:45a ->-,所以54a <. 11.【答案】1821a ≤<; 【解析】由已知得:3a x ≤,673a ≤<,即1821a ≤<. 12.【答案】2a 3-<≤-【解析】画出数轴分析得出正确答案.三、解答题13.【解析】解:2210,10.m m +>--<∴∴(-m 2-1)x >n ,两边同除以负数(-m 2-1)得:2211n n x m m <=---+. ∴原不等式的解集为:21n x m <-+. 14.【解析】 解:(1) 3a 2≤<;(2)2a 7.1≤<.15.【解析】 解:310)3(2k k -<- 6-1810-k k <4k <k x x k ->-4)5(-54-4kx k x k >(4)4k x ->4k x k -<. 16.【解析】解:(1)方程4x+2m+1=2x+5的解是:x=2﹣m .由题意,得:2﹣m<0,所以m>2.(2)2(x﹣2)>mx+3,2x﹣4>mx+3,2x﹣mx>3+4,(2﹣m)x>7,因为m>2,所以2﹣m<0,所以x<72m.。
七年级数学下册第9章不等式与不等式组9.2.2再探实际问题与一元一次不等式的应用(图文详解)
并,系数化为1。
解:去分母,得 去括号,得 移项,得 合并,得
2(2x+1) ≤6+9(x-1)
4x+2 ≤6+9x49x-9x ≤6-9-2
-5x ≤-5
系数化为1,得 x ≥1
七年级数学第9章不等式与不等式组 将不等式的解集在轴上表示为:
01
x
归纳:
解一元一次不等式的一般步骤: 去分母
去括号 移项 合并
当Y1 > Y2 即100+0.9(X-100) > 50+0.95(X-50) 时,X < 150
议一
故宫博议物院门票是每位10元,20人以上(含20人)的
团体票8折优惠.现有18位同学结伴去博物院,当领队小 华准备好了零钱到售票处买18张票时,李明喊住了他: “买20张吧!”小华困惑了:18人买20张不是浪费吗? 你认为呢?为什么? 此外,不足20人时,多少人买20张的团体票比普通票便宜?
在甲店累计购买100元商品后,再购买的商品按原价的 90%收费;在乙 店累计购买50元商品后,再购买的商品按 原价的95%收费,顾客怎样选择商店购物能获得最大优惠。
(3) 如果累计购物超过100元,那么在甲店花费一定少吗?
解:设累计购物X元(X>100)
在甲店购物花费:Y1 = 100+0.9(X-100) 在乙店购物花费:Y2 = 50+0.95(X-50)
购物花费小;累计购物150元时,在两店购物花费一样; 累计购物超过150元时,在甲店购物花费小.
甲、乙两商店以同样的价格出售同样的商品,并且 又各自推出不同的优惠方案:
在甲店累计购买100元商品后,再购买的商品按原价的90%收费; 在乙 店累计购买50元商品后,再购买的商品按原价的95%收费, 顾客怎样选择商店购物能获得最大优惠。
人教版七年级下册数学课件 第九章 第二节 一元一次不等式
9.2 一元一次不等式
锦囊妙计
构造不等式解文字叙述题的方法 首先要读懂题意, 抓住表示不等关系的关 键词和数量关系, 构造 不等式, 再根据不等式的 基本性质求解.
9.2 一元一次不等式
题型八 利用一元一次不等式解决实际问题
例题8 某次知识竞赛共有20道题, 每一题答 对得10分, 答错或不答 都扣5分. 小明得分要超过 90分, 他至少要答对多少道题?
9.2 一元一次不等式
题型四 根据一元一次不等式的整数解求待定字母的取值范围
例题4 若关于x的不等式k-2x> 0的正整数解为1, 2, 3, 则k的取值 范围 是 6<k≤8 .
9.2 一元一次不等式
锦囊妙计
利用整数解求待定字母取值范围的方法 (1)先表示出不等式的解集, 再根据整数解 构造出含待定字母的不等式 组, 最后确定待定 字母的取值范围. (2)因为数轴具有直观的特点, 所以可以借 助数轴来确定待定字母的取 值范围.
题型三 根据一元一次不等式的解集求待定字母的值
例题3 在实数范围内规定新运 算“△”, 其规则是a△b=2a- b.若 不等式x△k≥1的解集在数轴上的表 示如图9-2-5所示, 则k的 值是 -3 .
图9-2-5
9.2 一元一次不等式
9.2 一元一次不等式
锦囊妙计
求不等式中待定字母的解题策略 (1)已知一个不等式的解集与其他不等式的 解集的关系, 在确定其中所 含字母的取值时, 注 意字母对不等式解集的影响. (2)化简整理后, 若未知数的系数含有字母, 则需要分类讨论;若未知数 的系数不含有字母, 则不需要讨论, 直接由两不等式解集间的关系 求待 定字母的值或取值范围. (3)若x>a与x>b的解集相同, 则a=b;若 x>a的解是x>b的解, 则a≥b, 不要误认为a=b, 这里实质是x>b的解集包含x>a的解集.
七年级下册数学9.2一元一次不等式的解法
-1 0 1 2 3 4 5 6
(2)原不等式的解集为x≤-11,在数轴上表示为:
-11
0
4. a≥1的最小正整数解是m,b≤8的最大正整数 解是n,求关于x的不等式(m+n)x>18的解集. 解:因为a≥1的最小正整数解是m,所以m=1.
3
2
去分母,得 2(x-5)+1×6≤9x
去括号
去括号,得 2x-10+6≤9x 将同类项放在一起
移项,得 2x-9x≤10-6 计算结果
合并同类项,得 -7x ≤4
两边都除以-7,得
x≥ 74.
根据不等式性质3
例3 解不等式12-6x≥2(1-2x),并把它的解集在数轴 上表示出来.
解:去括号,得 12-6x ≥2-4x 首先将括号去掉 移项,得 -6x+4x ≥ 2-12 将同类项放在一起 合并同类项,得 -2x ≥-10 根据不等式基本性质3 两边都除以-2,得 x ≤ 5 原不等式的解集在数轴上表示如图所示.
因为b≤8的最大正整数解是n,所以n=8. 所以,m+n=9 把m+n=9代入不等式(m+n)x>18中, 得 9x>18, 解得x>2.
5. 当x取什么值时,代数式 13x +2的值大于或等 于0?并求出所有满足条件的正整数.
解
根
解得 x据题≤ 613.
所以,当x≤6时,代意数式 x+2的值大于或等于0.13 ,
x<3,求 m. 解:因为 x+8>4x+m,
所以 x-4x>m-8, 即-3x>m-8,
x 1 (m 8).
因为其解集3为x<3,
尚志市第四中学七年级数学下册第九章不等式与不等式组9.2一元一次不等式课时2一元一次不等式的应用教学
x≤4.5. 解得 x≤5.25. 由于记事本的数目必须是整 数 , 所以x 的最大值为5. 答 : 小明最多只应搬动5本记事本.
新课讲解
例3 小明家每月水费都不少于15元 , 自来水公司的收费标准如下 : 假设每户每 月用水不超过5立方米 , 那么每立方米收费1.8元 ; 假设每户每月用水超过5立方 米 , 那么超出部分每立方米收费2元 , 小明家每月用水量至少是多少 ?
拓展与延伸
(2)如果每辆轿车的日租金为200元 , 每辆面包车的日租金为110元 , 假设 新购买的这10辆车每日都可租出 , 要使这10辆车的日租金收入不低于1500 元 , 那么应选择以上哪种购买方案 ?
解 : 方案一的日租金为3×200+7×110=1370 ; 方案二的日租金为 : 4×200+6×110=1460 ; 方案三的日租金为 : 5×200+5×110=1550.
钟元〔不足1 min部分按1 min计〕.小琴一天在家里给同学打了一次市
内 , 所用 费没超过元.她最多打了几分钟的 ?
解:设小琴打了x分钟的 , 那么有
0.22+ (x-
解得
x ≤ 5161
由于 计时按照分钟计时 , x应是整数 , 所以x的最
大值为5.
答 : 小琴最多打了5min的 .
拓展与延伸
分析 : 此题涉及的数量关系是 : 总得分≥85. 解 : 设小明答対了 x 道题 , 那么他答错和不答
的共有 (25-x)道题.根据题意 , 得 4x-1×(25-x)≥85. 解这个不等式 , 得 x ≥ 22.
所以 , 小明至少答対了22道题.
当堂小练
3.某市打市内 的收费标准是 : 每次3 min以内〔含3 min〕元 , 以后每分
平鲁区二中七年级数学下册 第九章 不等式与不等式组9.2 一元一次不等式第1课时 解一元一次不等式教
9.2 一元一次不等式第1课时解一元一次不等式【知识与技能】1.掌握一元一次不等式的解法.2。
列一元一次不等式解决简单的实际问题。
【过程与方法】通过实际问题引出复杂的一元一次不等式,类比一元一次方程的解法解一元一次不等式。
【情感态度】通过类比的方法得到解一元一次不等式的方法,体验类比地进行研究是学习时获取新知的重要途径,从而激发兴趣,树立信心。
【教学重点】一元一次不等式的解法。
【教学难点】不等式性质3的运用,由实际问题中的不等式关系列一元一次不等式。
一、情境导入,初步认识问题 1 甲、乙两家商店以同样价格出售同样的商品,并且又各自推出不同的优惠方案:在甲店累计购买100元商品后,再购买的商品按原价的90%收费;在乙店累计购买50元商品后,再购买的商品按原价的95%收费,顾客怎样选择商店购物能获更大优惠?解:设累计购物x元.当0<x≤50时,两店_________。
当50<x≤100时,_________店优惠.当x>100时,在甲店需付款______元,在乙店需付款______元.分三种情况讨论:(1)在甲店花费小,列不等式:____________.(2)甲店、乙店花费相同,列方程:__________________。
(3)在乙店花费小,列不等式:__________________。
问题 2 回顾一元一次方程的解法,类比地得到一元一次不等式的解法,并解问题1中的不等式和方程.【教学说明】可鼓励学生独立完成上面的两个问题,然后交流战果。
二、思考探究,获取新知思考:解一元一次不等式的一般步骤是什么?【归纳结论】解一元一次不等式的一般步骤是:去分母、去括号,移项,合并同类项,系数化为1。
注意:在系数化为1时,若遇到需要运用不等式性质3,必须改变不等号的方向。
三、运用新知,深化理解1。
解下列不等式,并在数轴上表示解集。
(1)256x-≤314x+;(2)10.5x--210.75x+≥18。
2.当x取什么值时,3x+2的值不大于732x-的值.3。
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
(5)x2>2;
(6)x4+x2+x>1.
(4)2x+2≥2x;
解:(1)(3)(6)是一元一次不等式;(2)(4)(5)不是一元一次不等式.
-3-
一元一次不等式的解集
同步考点手册 P33
3.下列未知数的值中,是一元一次不等式 3-2x<7 的解的是( C )
A.x=-4
B.x当 y 为何值时,x<12? 解:由方程 2x-3-y=0 移项,得 2x=y+3,所以 x=y+2 3.令 x<12得y+2 3 <12,所以 y+3<1,解得 y<-2,所以当 y<-2 时,x<12.
-16-
13.已知 3m-2x3+2m>1 是关于 x 的一元一次不等式. (1)求 m 的值; 解:∵3m-2x3+2m>1 是关于 x 的一元一次不等式,∴3+2m=1,解得 m=-1. (2)求出不等式的解集,并把解集表示在数轴上. 解:由(1)可知,题目中的不等式是-3-2x>1,-2x>4,解得 x<-2.
第九章 不等式与不等式组 9.2 一元一次不等式 第1课时 一元一次不等式
-1-
一元一次不等式的定义
1.下列不等式是一元一次不等式的是( A )
A.2x+1>3
B.2+x2<2x
C.2x-2>3x
D.3-x=78
同步考点手册 P33
-2-
2.判断下列各式是否是一元一次不等式?
(1)-x≥5; (2) y-3x<0;(3)x+1<0;
-7-
7.解下列不等式,并把它们的解集分别表示在数轴上. (1)5x>-10; 解:两边同时除以 5,得 x>-2.这个不等式的解集在数轴上表示为:
(2)-3x+12≤0; 解:移项,得-3x≤-12,两边都除以-3,得 x≥4,这个不等式的解 集在数轴上表示为:
-8-
(3)x-2 1<4x3-5; 解:去分母,得 3(x-1)<2(4x-5),去括号,得 3x-3<8x-10,移项、 合并同类项,得 5x>7,两边都除以 5,得 x>75,不等式的解集在数轴上表
D.x=-8
-4-
4.(1)已知关于 x 的不等式3-x+13a<3-2 x的解为 x<7,求 a 的值; 解:由3-x+13a<3-2 x得:x<39+7 2a,又∵此不等式的解集为 x<7,故 39+7 2a=7,∴39+2a=49,∴a=5. (2)如果(a+1)x>a+1 的解为 x<1,求 a 的取值范围. 解:∵(a+1)x>a+1 的解集为 x<1,∴a+1<0,∴a<-1.
解集在数轴上表示如图.
14.是否存在整数 m,使关于 x 的不等式 1+m3x2>mx +m92与x-23+m<x +1 的解集相同,如果存在,求出 m 的整数值和不等式的解集;如果不存 在,请说明理由.[提示:m2-9=(m+3)(m-3)]
解:假设存在符合条件的整数 m,由x-23+m<x+1,解得 x>m-2 5. 又由 1+m3x2>mx +m92,整理得:m2+3x>mx+9,所以 mx-3x<m2-9,(m -3)x<(m+3)(m-3).由不等式的解集相同,可得当 m<3 时,x>m+3. 因与第一个不等式的解集同解,故 m+3=m-2 5,所以 m=-11,把 m=- 11 代入两个已知不等式,都解得 x>-8,因此存在符合题意的整数 m,当 m=-11 时,两个不等式的解相同,解集为 x>-8.
同步考点手册 P34
-11-
9.若 x=2 是不等式 2x-a-2<0 的一个解,则 a 可取的最小正整数为
(B) A.2
B.3
C.4
D.5
-12-
10. 求不等式 3(x+1)≥5x-9 的非负整数解. 解:∵3(x+1)≥5x-9,∴3x+3≥5x-9,∴-2x≥-12,x≤6.故不等 式 3(x+1)≥5x-9 的非负整数解为:0,1,2,3,4,5,6.
-13-
判断一元一次不等式时忽视隐含条件
11.下列不等式中,是一元一次不等式的是( C )
A.2x2-5>0
B.1x+x<5
C.-5y+8>0
D.2x+3>2(1+x)
-14-
12.已知 x,y 满足方程 2x-3-y=0,试求: (1)当 x 为何值时,y>0? 解:由方程 2x-3-y=0 移项,得 y=2x-3.令 y>0 得 2x-3>0,解得 x>32.所以当 x>32时,y>0.
-5-
一元一次不等式的解法
同步考点手册 P34
5.不等式 4-2x>0 的解集在数轴上表示为( D )
-6-
6.解不等式:x-2 2≤7-3 x. 解:去分母,得 3(x-2)≤2(7-x).去括号,得 3x-6≤14-2x.移项, 得 3x+2x≤14+6.合并同类项,得 5x≤20.两边都除以 5,得 x≤4.
示为:
-9-
(4)x+2 7-1<3x2+2. 解:去分母,得 x+7-2<3x+2,移项、合并同类项,得 2x>3,两 边都除以 2,得 x>32,不等式的解集在数轴上表示为:
-10-
一元一次不等式的特殊解
8.不等式 3x-5<3+x 的正整数解有( C )
A.1 个
B.2 个
C.3 个
D.4 个