液力耦合器 安装图 Model (1)

合集下载

液力耦合器

液力耦合器

液力耦合器液力耦合器液力耦合器fluid coupling以液体为工作介质的一种非刚性联轴器﹐又称液力联轴器。

液力耦合器(见图液力耦合器简图)的泵轮和涡轮组成一个可使液体循环流动的密闭工作腔﹐泵轮装在输入轴上﹐涡轮装在输出轴上。

动力机(内燃机﹑电动机等)带动输入轴旋转时﹐液体被离心式泵轮甩出。

这种高速液体进入涡轮后即推动涡轮旋转﹐将从泵轮获得的能量传递给输出轴。

最后液体返回泵轮﹐形成周而复始的流动。

液力耦合器靠液体与泵轮﹑涡轮的叶片相互作用产生动量矩的变化来传递扭矩。

它的输出扭矩等于输入扭矩减去摩擦力矩﹐所以它的输出扭矩恒小于输入扭矩。

液力耦合器输入轴与输出轴间靠液体联系﹐工作构件间不存在刚性联接。

液力耦合器的特点是﹕能消除冲击和振动﹔输出转速低于输入转速﹐两轴的转速差随载荷的增大而增加﹔过载保护性能和起动性能好﹐载荷过大而停转时输入轴仍可转动﹐不致造成动力机的损坏﹔当载荷减小时﹐输出轴转速增加直到接近于输入轴的转速﹐使传递扭矩趋于零。

液力耦合器的传动效率等于输出轴转速与输入轴转速之比。

一般液力耦合器正常工况的转速比在0.95以上时可获得较高的效率。

液力耦合器的特性因工作腔与泵轮﹑涡轮的形状不同而有差异。

它一般靠壳体自然散热﹐不需要外部冷却的供油系统。

如将液力耦合器的油放空﹐耦合器就处于脱开状态﹐能起离合器的作用。

变频器调速与液力耦合器调速的优缺点比较(一)[摘要]在风机,水泵类负载进行调速节能,先期应用的液力耦合器较多,高压变频器技术成熟后,也越来越多地得到了应用。

对于这两种调速节能的装置进行其优缺点的比较,提高对调速节能领域的了解。

[关键词]调速变频器液力耦合器一、引言风机、水泵是量大面广的普通机械,其耗电量占发电总量的30%左右,而高压电机拖动的大中型风机水泵的耗电量约占风机水泵耗电总量的50%。

目前大中型风机水泵基本上采用档板或阀门来调节风量或流量,以满足负荷变化的要求,其浪费电能相当严重,如若采用改变电机转速来实现调节风量或流量,无疑对节约能源,提高设备工作效率意义非常重大。

给水泵液力耦合器构造介绍 ppt课件

给水泵液力耦合器构造介绍  ppt课件

ppt课件
14
液力耦合器的特点
1、能消除冲击和振动; 2、输出转速低於输入转速,两轴的转速差随载荷的增大而
增加; 3、过载保护性能和起动性能好,载荷过大而停转时输入轴
仍可转动,不致造成动力机的损坏;当载荷减小时,输出 轴转速增加直到接近於输入轴的转速,使传递扭矩趋於零。 4、液力耦合器的传动效率等於输出轴转速与输入轴转速之 比。一般液力耦合器正常工况的转速比在0.95以上时可获 得较高的效率。 5、液力耦合器的特性因工作腔与泵轮、涡轮的形状不同而 有差异。它一般靠壳体自然散热,不需要外部冷却的供油 系统。如将液力耦合器的油放空,耦合器就处於脱开状态, 能起离合器的作用
ppt课件
15
电动给水泵液力偶合器工作 油温偏高原因分析及处理
(湛江发电厂,广东 湛江,524099) 摘要:液 力偶合器是 300MW 发电机组电动给水泵配 套的主要设备,在运行中液力偶合器出现 了工作油温偏高的问题, 影响发电厂安全 可靠运行。根据液力偶合器结构特点及其 运行特性进行分析,找出引起工作油温偏 高的原因,采取有效 措施,解决了工作油 温偏高的问题,提高了电动给水泵组运行 的可靠性。 关键词:给水泵;液力偶合器; 油温偏高;分析;处理
ppt课件
19
电动给水泵液力偶合器工作 油温偏高原因分析及处理
• 液力偶合器示意图 工作油在泵轮里获得能量,而在涡轮里 释放能量, 通 过改变工作油量的大小来改变传递扭矩的 大小, 从而改变 涡轮的转速,以适应负荷的需要。在泵 轮转速固定的情况 下,工作油量愈多,传递的动扭矩 M 也愈大,反过来说, 如果动扭矩 M (M=gn2D5,式中 为 偶合器扭矩系数;为油的密度[kg/m3];n 为泵轮转速 [r/min];D 为偶合器有效直径[m];g 为重力加速度[m/s2]) 不变,那么,工作油量愈多,涡轮的转速 n′也愈大(因泵轮 的转速是固定的),从而可以通过改变工作油的油量来调 节涡轮的转速,以适 应给水泵需要的转速,如图 2 所示。 1.2 工作油温偏高原因分析 工作油流经偶合器, 与高速转 动的泵轮及涡轮中的叶

液力耦合器安装

液力耦合器安装

液力偶合器在使用前必须向油箱内注油(在试车程序中注油)。

推荐选用6#、8#液力传动油或N32、N46汽轮机油(透平油),绝对不能使用混合油。

打开位于液力偶合器上的加油口或空气滤清器盖,用清洁的加油器具将油注入,使油位达到油标的“最高油位”。

调节勺管至最低转速位置,启动液力偶合器运转(输出轴联轴器脱开),使油充满管路及冷却器;停机待高位油箱(如果有)油全部回到液偶中后再注油至油标“最高油位”。

必须注意,注油不能超过“最高油位”,也不能低于“最高油位”以下20mm。

油位高于“最高油位”可能在运行时会使旋转件与油摩擦产生过热;油位偏低则可能在运行时低于“最低油位”,有可能使吸油管吸不上油造成供油不足。

7. 现场试车程序及运行要求1)电机、液偶、齿轮箱(如果有)、工作机按前述方法正确找正完毕,手盘车各机正常,全部油系统加油至“油位上限”,各联轴器处于脱开状态。

2)开启电机润滑泵(如果有),观察油位及油泵运行情况,正常后停机。

3)联接电机—液偶联轴器(液偶输出端联轴器脱开),开液偶电动辅助泵(如果有),液偶具备试车条件时,开车试液偶。

在液偶勺管0%(注意运行稳定后补加油至“上位线”),50%, 100%位置下分别运行1~2小时,进/出口油温应保持在40~60℃左右(通过冷却器水阀开度调节)。

正常后勺管回低位,停机。

4)联接液偶—增(减)速齿轮箱(如果有),在液偶及齿轮箱具备开车条件且液偶勺管位于低位时开车,再逐步调勺管至100%,观察齿轮箱运转情况,跑合5小时以上。

正常后,勺管回低位,停机。

5)联接增(减)速齿轮箱(如果有)—工作机,在各机具备条件且液偶勺管位于低位时开车,再逐步调液偶勺管升速,直至投入实际工业运行状态。

6)新机运行500小时必须换新油,同时清洗油泵吸口滤网及精密滤清器(如果有),这是保证机组长期连续安全运行的必要条件。

无论试车还是工业运行开机前液偶勺管都应回“低限”位置(10%左右),以确保空(轻)载启动电机/平稳启动负载,保护设备、提高系统运行寿命。

液力耦合器工作原理经典讲解

液力耦合器工作原理经典讲解

六. 设备的维护
1.注油 工作油牌号推 荐 选 用6 # 、8# 液 力 传 动 油 46# 汽 轮 机 油 。不 准 使 用混 合 油 或 其 它 牌 号 油 。 2. 注油顺序
(a)打 开 位 于 偶 合 器 箱 盖 上 的 加 油 口 ( 空 气 滤 清 器 ) 盖 , 用 专用 加 油 器 具 将 油 注 入 ,使 油 位 达 到 油 标 的 “ 最 高 油 位 ”。
二.驱动机与工作机之间为什么选择液力耦合器连接
1.柔性传动自动适应功能:液力偶合器以液体为工作介 质,输入与输出之间无任何机械连接,所以传动柔和平稳、自动适应性强 2.减缓冲击和隔离扭震的功能:因为偶合器无任何机械 连接,将动力机与工作机隔离开,避免了震动的相互干扰,液体介质本身 具有减冲缓震的功能 3.使动力机轻载启动功能(即“软启动”) 4.过载保护功能 7.无机调速功能 8.改善传动的品质,性能可靠,轴向尺寸短,整机重量轻,振动值低,便于
使用维护。
三.技术参数
型号解读
液力 耦合
YOTGC
调速型
固定箱体
出口调节
工作腔有效直径
四、液偶的组成及结构
一定要记住关键部分就是泵轮和涡轮, 我们叫它旋转组件
液偶的所有部件都是围绕着旋转组件来 展开的
五、工作原理
原理:感觉就是想搅咖啡一样,泵 轮搅动起来,产生涡流了,泵轮 也就随着涡轮转动起来,多少会 有一些能量的损失哦!
(b)调 节 偶 合 器 勺 管 至 最 低 转 速 位 置 , 启 动 液 力 偶 合 器 运 转 ,使 油 充 满 冷 却 器 及 管 路 ,停 机 后 再 注 油 至 油标 “ 最 高 油 位 ”。
4.检查油质油位
(1)定 期 检 查 油 箱 油 位 并及时补充加油 ; (2)新 机 首 次 运 转 500 小 时 后 应 将 吸 油 管滤油器拆下清洗; (3)结合工作 机 停 机 进 行 检 修 , 定 期 清 洗供油泵和滤油器; (4)定 期 检 查 油 质 ,及时更换合格工作油 ;

液力耦合器

液力耦合器

液力耦合器
二、液力耦合器的工作过程
3.循环圆与导流环 为了减少液体动能损失,在耦合器中安装了导流环。导流环是分别装于泵轮、涡轮叶片上的管状圆 环,位于循环圆的中间位置。工作液体在循环圆内流动时,靠近循环圆中心的液体由于压力相近而 形成湍流运动。这部分液体阻碍叶片的运动,增加能量消耗。在叶片上去掉中间部分,并安装导流 环,可使液体在泵轮与涡轮内不断循环流动,并减少叶片的搅油损失,降低能量损耗。
液力耦合器
二、液力耦合器的工作过程
1.汽车起步阶段的液体运动 ◎汽车在起步或遇到极大的阻力时,涡轮处于静止或低转速状态。涡轮与汽车的传动系统连接,当 汽车阻力大于涡轮叶片上的作用力时,被甩到泵轮外缘的液体冲击涡轮叶片,液体的圆周速度被降 至零,释放热量。 ◎在压力差作用下,液体被迫沿着涡轮壳向低压的涡轮内缘流动,返回泵轮内缘后再次受离心力作 用被甩到外缘。涡轮速度的降低加速了液体的循环圆运动速度,液体不断从泵轮冲入涡轮,又经涡 轮返回泵轮。这时的液体运动并不对外做功,发动机的机械能转换为液体高速涡流运动的功能,进 而转换为热能而被吸收。液体的质点不断穿梭于泵轮与涡轮的叶片之间,形成首尾相接的环形螺旋 线。
液力耦合器
二、液力耦合器的工作过程
液力耦合器的两个工作轮没有刚性连接,动力传递完全依靠内部液体的运 动。当发动机驱动泵轮转动时,泵轮上的叶片推动液体同方向转动,将发 动机的机械能转变为液体的动能;运动的液体冲击在相对位置的涡轮叶片 上,使涡轮随之转动,将液体的动能转变为机械能对变速器输出。 发动机驱动泵轮旋转时,耦合器内的液体被叶片搅动,一起旋转,液体开 始绕耦合器旋转轴线做圆周运动,同时在离心力作用下,液体从泵轮叶片 的内缘向外缘流动,在外缘形成高压区,在内缘形成低压区。泵轮内部产 生的压力差迫使涡轮内的液体向低压区流动,形成首尾相接的循环圆运动。 其压力差取决于工作轮的半径和转速。液体的圆周运动与循环圆运动所合 成的运动构成对涡轮叶片的冲击,推动涡轮转动时,液体的动能转换为涡 轮的机械能。

液力耦合器说明书

液力耦合器说明书

液力偶合器安装手册液力偶合器在装配和运行之前,应仔细阅读本手册内的所有安全及操作说明!注意:偶合器的同心度调整非常重要,请严格按照本手册内要求进行校正!液力偶合器: … KRW … 系列液力偶合器的结构(KRGW-标准型,CKRGW-带延迟充液腔,CCKRGW-带双倍延迟充液腔)1. 内轮2. 外轮3. 外壳4. 轴5. 易熔塞6. 报警销7. 垫片8. 固定螺栓9. 半弹性联轴器10. 延时充液腔图 1液力偶合器的安装电机轴“b”垫片螺杆固定螺栓垫片“a”图 2图 31表 1规格轴径 Ø固定螺栓(mm)('S') 19M6 x85L7-824M8 x80L 28M10 x 75L 38M12 x 60L 28M10 x 110L938M12 x100L 42M16 x 80L 48M16x 80L 28M10 x120L1138M12 x100L 42M16 x 80L 48M16 x 80L 38M12 x100L1242M16 x 80L48M16x 80L42M16 x 95L1348M16 x 95L55M20 x 95L60M20 x 75L规格轴径 Ø固定螺栓(mm)('S')48M16 x 125L1555M20 x 125L60M20 x 95L65M20 x 95L60M20 x 125L65M20 x 125L17-1975M20 x 125L80M20 x 95L85M20 x 95L75M20 x 150L2180M20 x 120L90M24 x 120L80M20 x 120L2490M24 x 120L100M24 x 120L27120M24 x 120L29135M24 x 120L图 421)参考图 1 中的结构及部件名称2)对 KRGW 型偶合器,移除半联轴器(图 1,第 9项-联轴器).3)检查电机或减速机轴端的螺纹孔并清洁表面4)通过使用直径为 S 的螺杆(图 3)和扳手将偶合器安装固定于电机轴上 ("a"扳手防止轴旋转,转动"b"扳手将偶合器安装在电机轴上)。

液力耦合器

液力耦合器

液力耦合器耦合器的介绍液力耦合器又称液力联轴器,是一种用来将动力源(通常是发动机或电机)与工作机连接起来传递旋转动力的机械装置。

曾应用于汽车中的自动变速器,在海事和重工业中也有着广泛的应用。

液力耦合器以液体为工作介质的一种非刚性联轴器,又称液力联轴器。

液力耦合器(见图)的泵轮和涡轮组成一个可使液体循环流动的密闭工作腔,泵轮装在输入轴上,涡轮装在输出轴上。

动力机(内燃机、电动机等)带动输入轴旋转时,液体被离心式泵轮甩出。

这种高速液体进入涡轮后即推动涡轮旋转,将从泵轮获得的能量传递给输出轴。

最后液体返回泵轮,形成周而复始的流动。

液力耦合器靠液体与泵轮、涡轮的叶片相互作用产生动量矩的变化来传递扭矩。

它的输出扭矩等于输入扭矩减去摩擦力矩,所以它的输出扭矩恒小于输入扭矩。

液力耦合器输入轴与输出轴间靠液体联系,工作构件间不存在刚性联接。

液力耦合器的特点是:能消除冲击和振动;输出转速低于输入转速,两轴的转速差随载荷的增大而增加;过载保护性能和起动性能好,载荷过大而停转时输入轴仍可转动,不致造成动力机的损坏;当载荷减小时,输出轴转速增加直到接近于输入轴的转速。

液力耦合器的传动效率等于输出轴转速乘以输出扭矩(输出功率)与输入轴转速乘以输入扭矩(输入功率)之比。

一般液力耦合器正常工况的转速比在0.95以上时可获得较高的效率。

液力耦合器的特性因工作腔与泵其内充有工作油液。

泵轮通常在内燃机或电机驱动下旋转,带动工作油液做比较复杂的向心力运动。

高速流动的油液在科里奥利力的作用下冲击涡轮叶片,将动能传给涡轮,使涡轮与泵轮同方向旋转。

油液从涡轮的叶片边缘又流回到泵轮,行成循环回路,其流动路线如同一个首尾相连的环形螺旋线。

耦合器的分类根据用途的不同,液力耦合器分为限矩型液力耦合器和调速型液力耦合器。

其中限矩型液力耦合器主要用于对电机减速机的启动保护及运行中的冲击保护,位置补偿及能量缓冲;调速型液力耦合器主要用于调整输入输出转速比,其它的功能和限矩型液力耦合器基本一样。

联轴器及液力耦合器图册

联轴器及液力耦合器图册

联轴器的种类:•刚性联轴器(无补偿能力)•挠性联轴器(有补偿能力):o无弹性元件o有弹性元件1.无弹性元件的挠性联轴器这类联轴器因具有挠性,故可补偿两轴的相对位移。

但因无弹性元件,故不能缓冲减振。

常用的有以下几种:凸缘联轴器(1)这是普通凸缘联轴器,采用铰制孔用螺拴联接,并靠铰制孔(对应铰制孔螺栓) 螺拴来对中,依靠螺拴的抗剪切能力传递扭矩。

凸缘联轴器(2)这是采用普通螺拴联接的凸缘联轴器,依靠两半联轴器结合面上摩擦力传递扭矩。

凸缘联轴器(3)这也是采用铰制孔用螺栓联接的凸缘联轴器,但半联轴器外缘有防护边, 这种结构主要保证联轴器运行时的安全性。

十字滑块联轴器十字滑块联轴器属于挠性联轴器;由两个端面上开有凹型槽的半联轴器和两面带有凸牙的中间盘组成。

凸牙可在凹槽中滑动,可以补偿安装及运转时两轴间的相对位移。

一般运用于转速n小于250r/min,轴的刚度较大,无剧烈冲击处。

滑块联轴器滑块联轴器是由两个带凹槽的半联轴器和一个方形滑块组成,滑块材料通常为夹布铰木制成。

由于中间滑块的质量较小,具有弹性,可应用于较高的转速。

结构简单、紧凑、适用于小功率、高转速而无剧烈冲击处。

万向联轴器十字轴式万向联轴器,由两个叉形接头、一个中间联接件和轴组成。

属于一个可动的联接,且允许两轴间有较大的夹角(夹角α可达35°-45°)。

结构紧凑、维护方便,广泛应用于汽车、多头钻床等机器的传动系统。

齿式联轴器齿形联轴器由两个带有内齿及凸缘的外套和两个带有外齿的内套筒组成。

依靠内外齿相啮合传递扭矩。

齿轮的齿廓曲线为渐开线,啮合角为20°。

这类联轴器能传递很大的转矩,并允许有较大的偏移量,安装精度要求不高,常用于重型机械中。

2. 有弹性元件的挠性联轴器这类联轴器因装有弹性元件,不仅可以补偿两轴间的相对位移,而且具有缓冲减振的能力。

弹性元件所能储蓄的能量越多,则联轴器的缓冲能力愈强;弹性元件的弹性滞后性能与弹性变形时零件间的摩擦功愈大、则联轴器的减振能力愈好。

汽车液力耦合器与变矩器的作用、结构、工作原理

汽车液力耦合器与变矩器的作用、结构、工作原理

认识液力变矩器
泵轮 导轮 涡轮 锁止离合器
1、液力变矩器组成:
由泵轮、导轮、涡轮、壳体组成。 (里面还设有一单向离合器)
泵轮是主动件、涡轮是从动件。 与偶合器相比,变矩器在结构上多了个导轮。
锁止离合器(单离合器)作用是只允许导轮单向旋转,不允许其逆转。
2、泵轮、涡轮结构
各工作轮用铝合金精密制造,或用 钢板冲压焊接而成,叶轮内部有许多径 向叶片,叶片有一定的曲率;
液力耦合器传动原理图
液力偶合器涡流、环流的产生
二、液力变矩器
液力变矩器与液力耦合器同样安装在 发动机和变速器之间,装在发动机的飞轮 上,其作用和结构也与液力耦合器相似。
变矩器的作用:
1、起飞轮的作用。2、缓冲发动机与 传动系之间的冲击。3、起传递转矩、变矩、 增矩,变速及离合的作用。4、驱动AT液压 系统的油泵。
它们的内腔共同构成圆形或椭圆形 的环状空腔,其轴线断面一般为圆形, 此环状空腔称为循环圆,该剖面是位于 通过包含泵轮、涡轮轴所作的截面,也 称轴截面。
液力变矩器的分解图
1)泵轮:
泵轮与变矩器壳体连成一体,其内部径向装有许多扭曲的叶 片,叶片内缘则装有让变速器油液平滑流过的导环。变矩器壳体 与曲轴后端的飞轮相连接。
根据工作腔数量的不同,液力耦合器分为单工作腔液 力耦合器、双工作腔液力耦合器和多工作腔液力耦合器。 根据叶片的不同,液力耦合器分为径向叶片液力耦合器、 倾斜叶片液力耦合器和回转叶片液力耦合器。
液力耦合器
3、液力耦合器的工作原理
液力耦合器是以液体为工作介质的一种非刚性联轴器。液力 耦合器(见图)的泵轮和涡轮组成一个可使液体循环流动的密闭工作 腔,泵轮装在输入轴上,涡轮装在输出轴上。两轮为沿径向排列着 许多叶片的半圆环,它们相向耦合布置,互不接触,中间有3mm到 4mm的间隙,并形成一个圆环状的工作轮。驱动轮称为泵轮,被驱 动轮称为涡轮,泵轮和涡轮都称为工作轮。泵轮和涡轮装合后,形 成环形空腔,其内充有工作油液。泵轮通常在内燃机或电机驱动下 旋转,叶片带动油液,在离心力作用下,这些油液被甩向泵轮叶片 边缘,由于泵轮和涡轮的半径相等,故当泵轮的转速大于涡轮转速 时,泵轮叶片外缘的液压大于涡轮叶片外缘的液压,由于压差液体 冲击涡轮叶片,当足以克服外阻力时,使涡轮开始转动,即是将动 能传给涡轮,使涡轮与泵轮同方向旋转。油液动能下降后从涡轮的 叶片边缘又流回到泵轮,形成循环回路,其流动路线如同一个首尾 相连的环形螺旋线。液力耦合器靠液体与泵轮、涡轮的叶片相互作 用产生动量矩的变化来传递扭矩。在忽略不计叶轮旋转时的风损及 其他机械损失时,它的输出(涡轮)扭矩等于输入(泵轮)扭矩。

液力耦合器安装

液力耦合器安装

液力耦合器安装联轴器径向打表与端面打表均需使两半联轴器同步转动。

找正精度对于液偶及主机安全、平稳、长寿命运行十分重要。

在确定各机的轴向位置时,必须考虑电机和工作机启动时产生的轴向窜量。

液力偶合器本身不会向外输出轴向力,也不允许外来轴向力冲击,因此联轴节间应留有足够的间隙,以防因电机及工作机轴向窜动造成冲击或受力使设备损坏;各机轴线中心高在安装时要留有线胀余量,应按下法计算确定。

液力偶合器在使用前必须向油箱内注油(在试车程序中注油)。

推荐选用6#、8#液力传动油或N32、N46汽轮机油(透平油),绝对不能使用混合油。

打开位于液力偶合器上的加油口或空气滤清器盖,用清洁的加油器具将油注入,使油位达到油标的“最高油位”。

调节勺管至最低转速位置,启动液力偶合器运转(输出轴联轴器脱开),使油充满管路及冷却器;停机待高位油箱(如果有)油全部回到液偶中后再注油至油标“最高油位”。

必须注意,注油不能超过“最咼油位",也不能低于“最咼油位”以下20mm。

油位咼于“最咼油位”可能在运行时会使旋转件与油摩擦产生过热;油位偏低则可能在运行时低于“最低油位”,有可能使吸油管吸不上油造成供油不足。

7.现场试车程序及运行要求1)电机、液偶、齿轮箱(如果有)、工作机按前述方法正确找正完毕,手盘车各机正常,全部油系统加油至“油位上限”,各联轴器处于脱开状态。

2)开启电机润滑泵(如果有),观察油位及油泵运行情况,正常后停机。

3)联接电机一液偶联轴器(液偶输出端联轴器脱开),开液偶电动辅助泵(如果有),液偶具备试车条件时,开车试液偶。

在液偶勺管0% (注意运行稳定后补加油至“上位线”),50% 100%位置下分别运行1〜2小时,进/出口油温应保持在40〜60C左右(通过冷却器水阀开度调节)。

正常后勺管回低位,停机。

4)联接液偶一增(减)速齿轮箱(如果有),在液偶及齿轮箱具备开车条件且液偶勺管位于低位时开车,再逐步调勺管至100%观察齿轮箱运转情况,跑合5小时以上。

《液力耦合器》课件

《液力耦合器》课件

传动效率
01
指液力耦合器在正常工作时,输出的机械功率与输入的机械功
率的比值。
效率曲线
02
液力耦合器的传动效率会随着工作腔内液体介质的转速和充液
率的改变而变化。
效率损失
03
液力耦合器在工作中,由于各种原因(如摩擦、泄露等)会导
致效率损失。
液力耦合器的转动惯量
1 2
转动惯量
指液力耦合器在工作时,由于其转动部分的质量 和转动半径所产生的惯性。
液力耦合器的流量控制
流量控制是液力耦合器的重要特性之一,通过 调节工作液的循环流量,实现对输出轴转速的 控制。
流量控制主要通过调节工作液入口和出口的压 力差来实现,压力差的变化会改变工作液在泵 轮内的流动状态,从而影响循环流量。
流量控制具有响应速度快、调节范围广等优点 ,广泛应用于需要对输出轴转速进行精确控制 的场合。
较高的机械强度和耐磨性。
叶轮安装在输入轴上,通过工作 液体传递扭矩。
叶轮的形状和尺寸对液力耦合器 的性能和效率有很大影响。
液力耦合器的密封装置
密封装置用于防止工作液体从工作腔室中泄漏,通常采用机械密封或填料密封。 机械密封具有较长的使用寿命和良好的密封性能,但需要定期维护。
填料密封具有较低的成本和维护要求,但使用寿命相对较短。
液力耦合器的转矩传递
转矩传递是液力耦合器的基本功能, 通过工作液在泵轮和涡轮之间的循环 流动,将输入轴的机械能转化为输出 轴的旋转机械能。
液力耦合器的转矩传递能力与工作液 的循环流量和泵轮、涡轮之间的转速 差有关。
转矩传递过程中,工作液在泵轮内加 速,产生离心压力,推动涡轮旋转, 从而实现转矩的传递。
性和液力耦合器内部结构的限制。

液力耦合器演示课件

液力耦合器演示课件
30
给水泵液力偶合器
三、常见故障原因分析和处理措施
4、工作油温度高 原因分析和处理措施: 工作油温升高,导致易熔塞融化,出力降低,继续升 高导致停泵。常见原因有: ①给水泵故障、转子卡涩或卡死,此时耦合器的涡轮 不能转动,而耦合器泵轮仍以原速运转,电动机所提 供的功率绝大部分转化成热量进入油中,使工作油温 突然升高, 引起易熔塞熔化。 脱开给水泵与耦合器的联轴器,盘动给水泵转子,如 不能够盘动,说明芯包卡涩或者卡死,需要抽芯包解 体检查处理。
八、液力偶合器的特点:
d) 隔离振动。离合器的泵轮与涡轮之间没有机 械联系,扭矩通过液体传递,是柔性连接,若 主动轴扭矩有周期性波动时,不会传到从动轴 上,具有良好的隔振效果,对冲击负荷也能大 大减缓。 e) 过载防护。由于偶合器是柔性传动,工作时 泵轮与涡轮间有滑差,当从动轴阻力矩突然增 加时,滑差就增大,甚至制动,而原动机仍能 继续运转而不致损坏。
29
给水泵液力偶合器
三、常见故障原因分析和处理措施
3 、工作油压低 ③工作油泵至液耦管路存在严重泄漏。更换工作油泵 至液耦管路各法兰垫子,紧固各锁母接头。 ④工作油冷油器严重泄漏,导致工作油跑到水侧。工 作油冷油器进行打压查漏,消除泄漏。 ⑤油滤网堵、压差大,造成工作油量不足(在我厂此 种状况经常出现,主要因为油质差和滤网使用时间长 须更换导致)。打开油滤网进行清理。
33
给水泵液力偶合器
三、常见故障原因分析和处理措施
4、工作油温度高 ⑥冬季备用给水泵,由于油温过低,油粘度增加,液 耦瞬间启动快速带高负荷,造成局部工作油温过高跳 泵。 这种情况在北方冬季容易出现,因为循环水温较低, 导致油温过低。备用泵在事故联动情况下根据负荷需 要,液耦又不可避免的要迅速带高负荷。在这种工况 下,运行人员因根据外界环境温度适当节流冷却水量, 保证冷油器出口油温在 20℃以上,在泵运行后再根据 油温调整冷却水量。不过最好还是在油箱内加装恒温 加热装置。

耦合器工作原理带图片

耦合器工作原理带图片

耦合器工作原理带图片-标准化文件发布号:(9556-EUATWK-MWUB-WUNN-INNUL-DDQTY-KII
电动给水泵液力偶合器结构及工作原理
1、液力偶合器的结构:轴、轴密封装置、壳体、泵轮、涡轮、勺管;
2、工作原理:以液体为工作介质的一种非刚性联轴器,又称液力联轴器。

液力耦合器的泵轮和涡轮组成一个可使液体循环流动的密闭工作腔,泵轮装在输入轴上,涡轮装在输出轴上。

动力机(内燃机、电动机等)带动输入轴旋转时,液体被离心式泵轮甩出。

这种高速液体进入涡轮后即推动涡轮旋转,将从泵轮获得的能量传递给输出轴。

由勺管控制排油量来控制转速。

最后液体经工作油泵返回泵轮,形成周而复始的流动。

3、液力耦合器的特点是:
1)能消除冲击和振动;
2)输出转速低於输入转速,两轴的转速差随载荷的增大而增加;
3)过载保护性能和起动性能好,载荷过大而停转时输入轴仍可转动,不致造成动力机的损坏;当载荷减小时,输出轴转速增加直到接近於输入轴的转速,使传递扭矩趋於零。

4)液力耦合器的传动效率等於输出轴转速与输入轴转速之比。

一般液力耦合器正常工况的转速比在0.95以上时可获得较高的效率。

5)液力耦合器的特性因工作腔与泵轮、涡轮的形状不同而有差异。

它一般靠壳体自然散热,不需要外部冷却的供油系统。

如将液力耦合器的油放空,耦合器就处於脱开状态,能起离合器的作用。

液力偶合器1PPT课件

液力偶合器1PPT课件
n’)/n=1-η • 式中: i——转速比 • s——滑差率 • n’——泵轮转速 • n——涡轮转速 • η——传动效率或转速比
第14页/共58页
2.9.偶合器装易熔塞的作用:
• 易熔塞是偶合器的一种保护装置。正常情况汽轮机油的工作温度不允许超 过100℃,油温过高极易引起油质恶化。同时油温过高,偶合器工作条件 恶化,联轴器工作极不稳定,从而造成偶合器损坏及轴承损坏事故。为防 止工作油温过高而发生事故,在偶合器旋转内套上装有几个易熔塞,内装 低熔点金属。当偶合器工作腔内油温升至一定温度时,易熔塞金属被软化 后吹损,工作油从孔中排出,工作油泵输出的油通过控制阀进入工作腔, 不断带走热量,使偶合器中油温不再继续上升,起到了保护作用。
第5页/共58页
2.3.液力偶合器中工作油的动力传递:
• 并沿着涡轮径向叶片组成的径向流道流向涡轮,靠近从动轴心处,由于工 作油动量距的改变去推动涡轮旋转。在涡轮出口处又以径向相对速度与涡 轮出口圆周速度组成合速,冲入泵轮的进口径向流道,重新在泵轮中获取 能量,泵轮转向与涡轮相同,如此周而复始,构成了工作油在泵轮合涡轮 间的自然环流,从而传递了动力。
1.液力偶合器
• 液力偶合器用来对高速的工业机器进行无级调速控制,偶合器的主体部分与增 速齿轮合并在同一个箱体中,箱体的下部分作为油箱。
第1页/共58页
2.液力偶合器基础知识
第2页/共58页
2.1.液力偶合器的主要构造:
• 液力偶合器主要由泵轮、涡轮和转动外壳组成。它们形成了两个腔室,工 作腔:泵轮和涡轮之间的腔室;副油腔:涡轮与转动外壳腔室。一般泵轮 和涡轮内装有20~40片径向辐射形叶片,副油腔壁上亦装有叶片或开有 油孔、凹槽。
• 当勺管处在最小半径位置时,偶合器则处于全充油工作状态。这样 当勺管径向移动每一个位置,即可得到一个相应的不同充液度,从 而达到调节负荷的目的。
  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
相关文档
最新文档