2018届苏教版 1.2命题及其关系、逻辑联结词、充分条件与必要条件 单元测试

合集下载

高中数学五三高考真题分章讲解1.2 命题及其关系、充分条件与必要条件

高中数学五三高考真题分章讲解1.2 命题及其关系、充分条件与必要条件

1.2命题及其关系、充分条件与必要条件挖命题【考情探究】分析解读 1.了解命题及其逆命题、否命题与逆否命题;通过对概念的理解,会分析四种命题的相互关系,会写出一个命题的其他三个命题,并判断其真假.2.理解必要条件、充分条件与充要条件的意义,会判断命题的充分、必要条件.3.本节知识常与函数、不等式及立体几何中线面的位置关系等知识相结合,备考时应加强此类型试题的训练.4.本节内容的考题在高考中分值为5分左右,属于中低档题.破考点【考点集训】考点一命题及其关系1.(2018山东济南外国语学校月考,3)原命题:“a,b为两个实数,若a+b≥2,则a,b中至少有一个不小于1”,下列说法错误的是()A.逆命题:若a,b中至少有一个不小于1,则a+b≥2,为假命题B.否命题:若a+b<2,则a,b都小于1,为假命题C.逆否命题:若a,b都小于1,则a+b<2,为真命题D.“a+b≥2”是“a,b中至少有一个不小于1”的必要不充分条件答案D2.(2018河北衡水金卷A信息卷(五),14)命题p:若x>0,则x>a;命题q:若m≤a-2,则m<sin x(x∈R)恒成立.若p的逆命题,q的逆否命题都是真命题,则实数a的取值范围是. 答案[0,1)考点二充分条件与必要条件1.(2018广东佛山教学质量检测(二),3)已知函数f(x)=3x-3-x,∀a,b∈R,则“a>b”是“f(a)>f(b)”的()A.充分不必要条件B.必要不充分条件C.充分必要条件D.既不充分也不必要条件答案C2.(2017河北张家口4月模拟,5)设x,y∈R,则“x≠1或y≠1”是“xy≠1”的()A.充分不必要条件B.必要不充分条件C.充要条件D.既不充分也不必要条件答案B3.(2018江西南昌二中4月月考,3)下列命题:①已知a,b∈R,“a>1且b>1”是“ab>1”的充分条件;②已知平面向量a,b,“|a|>1,|b|>1”是“|a+b|>1”的必要不充分条件;③已知a,b∈R,“a2+b2≥1”是“|a|+|b|≥1”的充分不必要条件;④命题p:“∃x0∈R,使≥x0+1且ln x0≤x0-1”的否定为¬p:“∀x∈R,都有e x<x+1且ln x>x-1”.其中真命题的个数是()A.0B.1C.2D.3答案C炼技法【方法集训】方法根据充分、必要条件求参数取值范围的方法1.(2018福建德化一中等三校联考,8)设p:x2-(2a+1)x+a2+a<0,q:lg(2x-1)≤1,若p是q的充分不必要条件,则实数a的取值范围是()A. B. C. D.答案A2.(2018江西新课程教学质量监测,3)已知命题p:x2+2x-3>0;命题q:>0,且¬q的一个必要不充分条件是¬p,则a的取值范围是()A.[-3,0]B.(-∞,-3]∪[0,+∞)C.(-3,0)D.(-∞,-3)∪(0,+∞)答案A3.函数f(x)=有且只有一个零点的充分不必要条件是()A.a<0B.0<a<C.<a<1D.a≤0或a>1答案A过专题【五年高考】自主命题·省(区、市)卷题组考点一命题及其关系1.(2018北京,13,5分)能说明“若f(x)>f(0)对任意的x∈(0,2]都成立,则f(x)在[0,2]上是增函数”为假命题的一个函数是.答案f(x)=sin x,x∈[0,2](答案不唯一)2.(2017北京,13,5分)能够说明“设a,b,c是任意实数.若a>b>c,则a+b>c”是假命题的一组整数a,b,c的值依次为.答案-1,-2,-3(答案不唯一)考点二充分条件与必要条件1.(2018北京,6,5分)设a,b均为单位向量,则“|a-3b|=|3a+b|”是“a ⊥b”的()A.充分而不必要条件B.必要而不充分条件C.充分必要条件D.既不充分也不必要条件答案C2.(2017浙江,6,4分)已知等差数列{a n}的公差为d,前n项和为S n,则“d>0”是“S4+S6>2S5”的()A.充分不必要条件B.必要不充分条件C.充分必要条件D.既不充分也不必要条件答案C3.(2015陕西,6,5分)“sinα=cosα”是“cos2α=0”的()A.充分不必要条件B.必要不充分条件C.充分必要条件D.既不充分也不必要条件答案A4.(2015北京,4,5分)设α,β是两个不同的平面,m是直线且m⊂α.“m∥β”是“α∥β”的()A.充分而不必要条件B.必要而不充分条件C.充分必要条件D.既不充分也不必要条件答案B5.(2015四川,8,5分)设a,b都是不等于1的正数,则“3a>3b>3”是“log a3<log b3”的()A.充要条件B.充分不必要条件C.必要不充分条件D.既不充分也不必要条件答案B教师专用题组1.(2017北京,6,5分)设m,n为非零向量,则“存在负数λ,使得m=λn”是“m·n<0”的()A.充分而不必要条件B.必要而不充分条件C.充分必要条件D.既不充分也不必要条件答案A2.(2015安徽,3,5分)设p:1<x<2,q:2x>1,则p是q成立的()A.充分不必要条件B.必要不充分条件C.充分必要条件D.既不充分也不必要条件答案A3.(2015重庆,4,5分)“x>1”是“lo(x+2)<0”的()A.充要条件B.充分而不必要条件C.必要而不充分条件D.既不充分也不必要条件答案B4.(2015湖北,5,5分)设a1,a2,…,a n∈R,n≥3.若p:a1,a2,…,a n成等比数列;q:(++…+)(++…+)=(a1a2+a2a3+…+a n-1a n)2,则()A.p是q的充分条件,但不是q的必要条件B.p是q的必要条件,但不是q的充分条件C.p是q的充分必要条件D.p既不是q的充分条件,也不是q的必要条件答案A5.(2015浙江,6,5分)设A,B是有限集,定义:d(A,B)=card(A∪B)-card(A∩B),其中card(A)表示有限集A中元素的个数.命题①:对任意有限集A,B,“A≠B”是“d(A,B)>0”的充分必要条件;命题②:对任意有限集A,B,C,d(A,C)≤d(A,B)+d(B,C).()A.命题①和命题②都成立B.命题①和命题②都不成立C.命题①成立,命题②不成立D.命题①不成立,命题②成立答案A6.(2014福建,6,5分)直线l:y=kx+1与圆O:x2+y2=1相交于A,B两点,则“k=1”是“△OAB的面积为”的()A.充分而不必要条件B.必要而不充分条件C.充分必要条件D.既不充分又不必要条件答案A7.(2014北京,5,5分,0.34)设{a n}是公比为q的等比数列.则“q>1”是“{a n}为递增数列”的()A.充分而不必要条件B.必要而不充分条件C.充分必要条件D.既不充分也不必要条件答案D【三年模拟】一、选择题(每小题5分,共50分)1.(2019届河南名校联盟“尖子生”调研考试(二),6)已知m,n∈R,则“m2+n2<16”是“mn-5m>5n-25”的()A.充分不必要条件B.必要不充分条件C.充要条件D.既不充分也不必要条件答案A2.(2019届齐鲁名校教科研协作体湖北、山东部分重点中学高三第一次联考,4)设x∈R,若“log2(x-1)<1”是“x>2m2-1”的充分不必要条件,则实数m的取值范围是()A.[-,]B.(-1,1)C.(-,)D.[-1,1]答案D3.(2019届湖北“荆、荆、襄、宜四地七校考试联盟”联考,3)下列命题中错误的是()A.“若x=y,则sin x=sin y”的逆否命题是真命题B.“∃x0∈(0,+∞),ln x0=x0-1”的否定是“∀x∈(0,+∞),ln x≠x-1”C.若p∨q为真命题,则p∧q为真命题D.∃x0>0,使“>”是“a>b>0”的必要不充分条件答案C4.(2018河南郑州一模,3)下列说法正确的是()A.“若a>1,则a2>1”的否命题是“若a>1,则a2≤1”B.“若am2<bm2,则a<b”的逆命题为真命题C.存在x0∈(0,+∞),使>成立D.“若sinα≠,则α≠”是真命题答案D5.(2017福建泉州惠南中学2月模拟,4)A,B,C三个学生参加了一次考试,其中A,B的得分均为70分,C的得分为65分,已知命题p:若及格分低于70分,则A,B,C都没有及格,在下列四个命题中,为p的逆否命题的是()A.若及格分不低于70分,则A,B,C都及格B.若A,B,C都及格,则及格分不低于70分C.若A,B,C至少有1人及格,则及格分不低于70分D.若A,B,C至少有1人及格,则及格分不高于70分答案C6.(2018山东日照3月联考,7)“m<0”是“函数f(x)=m+log2x(x≥1)存在零点”的()A.充分不必要条件B.必要不充分条件C.充要条件D.既不充分也不必要条件答案A7.(2018广东深圳高考模拟,6)对于任意实数x,(x)表示不小于x的最小整数,例如(1.1)=2,(-1.1)=-1,那么“|x-y|<1”是“(x)=(y)”()A.充分不必要条件B.必要不充分条件C.充分必要条件D.既不充分也不必要条件答案B8.(2018华大新高考联盟4月教学质量检测,6)设函数f(x)=则“m>1”是“f(f(-1))>4”的()A.充分不必要条件B.必要不充分条件C.充要条件D.既不充分也不必要条件答案A9.(2018四川峨眉山第七教育发展联盟高考适应性考试,10)已知命题p:“关于x的方程x2-4x+a=0有实根”,若非p为真命题的充分不必要条件为a>3m+1,则实数m的取值范围是()A.(1,+∞)B.[1,+∞)C.(-∞,1)D.(-∞,1]答案A10.(2017江西红色七校二模,8)在△ABC中,角A、B均为锐角,则cos A>sin B是△ABC为钝角三角形的()A.充分不必要条件B.必要不充分条件C.充要条件D.既不充分也不必要条件答案C二、填空题(共5分)11.(2019届广东化州高三模拟考试,15)下列说法中错误的是.(填序号)①“∃x0∈D,有f(x0)>0”的否定是“∀x∉D,都有f(x)≤0”;②若一个命题的逆命题为真命题,则它的否命题也一定为真命题;③已知p:<1为假命题,则实数x的取值范围是[2,3);④某校高一有学生600人,高二有学生500人,高三有学生550人,现采用分层抽样的方法从该校抽取33名学生作为样本进行某项调查,则高三被抽取的学生人数为12.答案①④三、解答题(共10分)12.(2019届辽宁沈阳东北育才学校联合考试,17)已知幂函数f(x)=(m-1)2在(0,+∞)上单调递增,函数g(x)=2x-k.(1)求m的值;(2)当x∈[-1,2]时,f(x),g(x)的值域分别为A,B,设命题p:x∈A,命题q:x∈B,若命题p是q成立的必要条件,求实数k的取值范围.解析(1)依题意得:(m-1)2=1⇒m=0或m=2,当m=2时,f(x)=x-2在(0,+∞)上单调递减,与题设矛盾,舍去,∴m=0.(2)由(1)得f(x)=x2,当x∈[-1,2]时,f(x)∈[0,4],即A=[0,4],当x∈[-1,2]时,g(x)∈,即B=,因为命题p是q成立的必要条件,所以B⊆A,则所以0≤k≤.。

专题1.2 命题及其关系、充分条件与必要条件(原卷版)

专题1.2 命题及其关系、充分条件与必要条件(原卷版)

第一篇集合与常用逻辑用语专题1.2 命题及其关系、充分条件与必要条件【考纲要求】1.理解命题的概念.2.了解“若p,则q”形式的命题及其逆命题、否命题与逆否命题,3. 会分析四种命题的相互关系.4.理解必要条件、充分条件与充要条件的含义.【命题趋势】1. 判断命题的真假.2.写出一个命题的逆命题、否命题、逆否命题等.3.常以函数、不等式等知识为载体,考查一个命题是另一个命题的什么条件.4.求一个命题的充要条件、充分不必要条件、必要不充分条件,或已知充要条件求参数的取值范围等. 【核心素养】本讲内容主要考查数学运算和逻辑推理的核心素养.【素养清单•基础知识】1.命题的概念用语言、符号或式子表达的,可以判断真假的陈述句叫做命题.其中判断为真的语句叫做真命题,判断为假的语句叫做假命题.一个命题要么是真命题,要么是假命题,不能模棱两可.2.四种命题及其相互关系3.充分条件、必要条件与充要条件(1)如果p⇒q,则p是q的充分条件;①A是B的充分不必要条件是指:A⇒B且B A;②A 的充分不必要条件是B 是指:B ⇒A 且AB ,在解题中要弄清它们的区别,以免出现错误.(2)如果q ⇒p ,则p 是q 的必要条件; (3)如果既有p ⇒q ,又有q ⇒p ,记作p ⇔q ,则p 是q 的充要条件.充要关系与集合的子集之间的关系设A ={x |p (x )},B ={x |q(x )},①若A ⊆B ,则p 是q 的充分条件,q 是p 的必要条件.②若A ØB ,则p 是q 的充分不必要条件,q 是p 的必要不充分条件.③若A =B ,则p 是q 的充要条件.【素养清单•常用结论】1.四种命题中的等价关系原命题等价于逆否命题,否命题等价于逆命题,所以在命题不易证明时,往往找等价命题进行证明.2.等价转化法判断充分条件、必要条件p 是q 的充分不必要条件,等价于非q 是 非p 的充分不必要条件.其他情况以此类推.【真题体验】1.(2019·全国Ⅱ卷文、理7)设α,β为两个平面,则α∥β的充要条件是( )A .α内有无数条直线与β平行B .α内有两条相交直线与β平行C .α,β平行于同一条直线D .α,β垂直于同一平面 2.(2019·全国Ⅲ卷文11)记不等式组6,20x y x y +⎧⎨-≥⎩…表示的平面区域为D .命题:(,),29p x y D x y ∃∈+…;命题:(,),212q x y D x y ∀∈+….下面给出了四个命题①p q ∨ ②p q ⌝∨ ③p q ∧⌝ ④p q ⌝∧⌝这四个命题中,所有真命题的编号是( )A .①③B .①②C .②③D .③④ 3.(2019·天津卷文、理3)设x R ∈,则“250x x -<”是“|1|1x -<”的( )A.充分而不必要条件B.必要而不充分条件C.充要条件D.既不充分也不必要条件4.(2019·浙江卷5)若a >0,b >0,则“a +b ≤4”是 “ab ≤4”的( )A .充分不必要条件B .必要不充分条件C .充分必要条件D .既不充分也不必要条件5.(2018·天津卷)设x∈R,则“x3>8”是“|x|>2”的()A.充分而不必要条件B.必要而不充分条件C.充要条件D.既不充分也不必要条件6.(2018·北京高考) 设a,b,c,d是非零实数,则“ad=bc”是“a,b,c,d成等比数列”的()A.充分而不必要条件B.必要而不充分条件C.充分必要条件D.既不充分也不必要条件7. (2018·北京高考) 设a,b均为单位向量,则“|a-3b|=|3a+b|”是“a⊥b”的()A.充分而不必要条件B.必要而不充分条件C.充分必要条件D.既不充分也不必要条件【考法拓展•题型解码】考法一四种命题的相互关系及其真假判断解题技巧:与四种命题有关的问题的解题策略(1)写一个命题的其他三种命题时,需注意:①对于不是“若p,则q”形式的命题,需先改写;②若命题有大前提,写其他三种命题时需保留大前提.(2)判断一个命题为真命题,要给出推理证明;判断一个命题是假命题,只需举出反例.(3)根据“原命题与逆否命题同真同假,逆命题与否命题同真同假”这一性质,当一个命题直接判断不易进行时,可转化为判断其等价命题的真假.【例1】(1)(2019·邹平双语学校月考)已知命题p:若x<-3,则x2-2x-8>0,则下列叙述正确的是() A.命题p的逆命题是“若x2-2x-8≤0,则x<-3”B.命题p的否命题是“若x≥-3,则x2-2x-8>0”C.命题p的否命题是“若x<-3,则x2-2x-8≤0”D.命题p的逆否命题是真命题(2)(2019·长治二中月考)设原命题:若a+b≥2,则a,b中至少有一个不小于1,则原命题与其逆命题的真假情况是()A.原命题真,逆命题假B.原命题假,逆命题真C.原命题与逆命题均为真命题D.原命题与逆命题均为假命题(3)已知命题“若函数f(x)=e x-mx在(0,+∞)上是增函数,则m≤1”,则下列结论正确的是()A.否命题是“若函数f(x)=e x-mx在(0,+∞)上是减函数,则m>1”,是真命题B.逆命题是“若m≤1,则函数f(x)=e x-mx在(0,+∞)上是增函数”,是假命题C.逆否命题是“若m>1,则函数f(x)=e x-mx在(0,+∞)上是减函数”,是真命题D.逆否命题是“若m>1,则函数f(x)=e x-mx在(0,+∞)上不是增函数”,是真命题考法二充分条件、必要条件的判断解题技巧:充分条件、必要条件的三种判断方法(1)定义法:根据p⇒q,q⇒p进行判断.(2)集合法:根据p,q成立的对应集合之间的包含关系进行判断.(3)等价转化法:根据一个命题与其逆否命题的等价性,把判断的命题转化为其逆否命题进行判断.这个方法特别适合以否定形式给出的问题,常用的是逆否等价法.①¬q是¬p的充分不必要条件⇔p是q的充分不必要条件;②¬q是¬p的必要不充分条件⇔p是q的必要不充分条件;③¬q是¬p的充要条件⇔p是q的充要条件.【例2】(1)(2018·北京卷)设a,b,c,d是非零实数,则“ad=bc”是“a,b,c,d成等比数列”的() A.充分不必要条件B.必要不充分条件C.充分必要条件D.既不充分也不必要条件(2)(2017·北京卷)设m,n为非零向量,则“存在负数λ,使得m=λn”是“m·n<0”的()A.充分不必要条件B.必要不充分条件C.充分必要条件D.既不充分也不必要条件考法三充分条件、必要条件的应用误区防范:充分条件、必要条件的应用的注意点充分条件、必要条件的应用,一般表现在参数问题的求解上.解题时需注意:(1)把充分条件、必要条件或充要条件转化为集合之间的关系,然后根据集合之间的关系列出关于参数的不等式(或不等式组)求解.(2)求解参数的取值范围时,一定要注意区间端点值的检验,尤其是利用两个集合之间的关系求解参数的取值范围时,不等式能否取等号决定端点值的取舍,处理不当容易出现漏解或增解的现象.【例3】 (1)已知条件p :|x -4|≤6;条件q :(x -1)2-m 2≤0(m >0).若p 是q 的充分不必要条件,则m 的取值范围是( )A .[21,+∞)B .[9,+∞)C .[19,+∞)D .(0,+∞)(2)已知条件p :|x -4|≤6;条件q :(x -1)2-m 2≤0(m >0).若¬p 是¬q 的充分不必要条件,则m 的取值范围为__________.【易错警示】易错点 逻辑关系与集合关系的转化出错【典例】 (2019·广东六校联考)“不等式x 2-x +m >0在R 上恒成立”的一个必要不充分条件是( )A .m >14B .0<m <1C .m >0D .m >1【错解】:A【错因分析】:是充分条件、必要条件、充要条件对应集合关系的转化上出现了失误.事实上,充要条件时参数取值集合是必要不充分条件时参数取值集合的真子集.【正解】【答案】C【解析】不等式x 2-x +m >0在R 上恒成立,则Δ=1-4m <0,所以m >14.所以“不等式x 2-x +m >0在R 上恒成立”的一个必要不充分条件是m >0.误区防范:注意区分以下两种不同的说法(1)A 是B 的充分不必要条件,是指A ⇒B 但B ⇒/A .(2)A 的充分不必要条件是B ,是指B ⇒A 但A ⇒/B .以上两种说法在充要条件的推理判断中经常出现且容易混淆,在解题中一定要注意问题的设问方式,弄清它们的区别,以免出现错误判断.【跟踪训练】 已知p :1x -2≥1,q :|x -a |<1,若p 是q 的充分不必要条件,则实数a 的取值范围为__________. 【递进题组】1.(2019·南昌二中月考)命题“已知a >1,若x >0,则a x >1”的否命题为( )A .已知0<a <1,若x >0,则a x >1B .已知a >1,若x ≤0,则a x >1C .已知a >1,若x ≤0,则a x ≤1D .已知0<a <1,若x ≤0,则a x ≤12.给出命题:若函数y =f (x )是幂函数,则函数y =f (x )的图象不过第四象限.在它的逆命题、否命题、逆否命题三个命题中,真命题的个数是( )A .3B .2C .1D .03.(2019·北京四中期中)设a ,b 是实数,则“a >b ”是“a 2>b 2”的( )A .充分不必要条件B .必要不充分条件C .充分必要条件D .既不充分也不必要条件4.王安石在《游褒禅山记》中写道“世之奇伟、瑰怪,非常之观,常在于险远,而人之所罕至焉,故非有志者不能至也”,请问“有志”是“到达奇伟、瑰怪,非常之观”的__________条件(填“充分不必要”“必要不充分”“充要”或“既不充分也不必要”).5.已知“(x -t )2>3(x -t )”是“x 2+3x -4<0”成立的必要不充分条件,则实数t 的取值范围为__________.【考卷送检】一、选择题1.已知命题p :正数a 的平方不等于0,命题q :若a 不是正数,则它的平方等于0,则q 是p 的( )A .逆命题B .否命题C .逆否命题D .否定2.(2018·天津卷)设x ∈R ,则“⎪⎪⎪⎪x -12<12”是“x 3<1”的( ) A .充分不必要条件B .必要不充分条件C .充要条件D .既不充分也不必要条件3.原命题为“△ABC 中,若cos A <0,则△ABC 为钝角三角形”,关于其逆命题、否命题、逆否命题真假性的判断依次如下,正确的是( )A .真、真、真B .假、假、真C .真、真、假D .真、假、假4.(2018·浙江卷)已知平面α,直线m ,n 满足m ⊄α,n ⊂α,则“m ∥n ”是“m ∥α”的( )A.充分不必要条件B.必要不充分条件C.充分必要条件D.既不充分也不必要条件5.命题“∀x∈[1,2],x2-a≤0”为真命题的一个充分不必要条件是() A.a≤4 B.a≥4C.a≤5 D.a≥56.(2019·北京东城期末)下列四个选项中错误的是()A.命题“若x≠1,则x2-3x+2≠0”的逆否命题是“若x2-3x+2=0,则x=1”B.存在x0∈R,使x20+2x0+3=0C.“若α=β,则sin α=sin β”的逆否命题为真命题D.“x>2”是“x2-3x+2>0”的充分不必要条件二、填空题7.已知命题p:若a>b>0,则log12a<log12b+1,命题p的原命题、逆命题、否命题、逆否命题中真命题的个数为________.8.能够说明“设a,b,c是任意实数,若a>b>c,则a+b>c”是假命题的一组整数a,b,c的值依次为________.9.记不等式x2+x-6<0的解集为集合A,函数y=lg(x-a)的定义域为集合B.若“x∈A”是“x∈B”的充分条件,则实数a的取值范围为________.三、解答题10.写出“若x=2,则x2-5x+6=0”的逆命题、否命题、逆否命题,并判断其真假.11.已知函数f(x)=lg(x2-2x-3)的定义域为集合A,函数g(x)=2x-a(x≤2)的值域为集合B.(1)求集合A,B;(2)已知命题p:m∈A,命题q:m∈B,若¬p是¬q的充分不必要条件,求实数a的取值范围.12.已知p:A={x|x2-2x-3≤0,x∈R},q:B={x|x2-2mx+m2-9≤0,x∈R,m∈R}.(1)若A∩B=[1,3],求实数m的值;(2)若p是¬q的充分条件,求实数m的取值范围.13.(2019·商南高中模拟)在△ABC中,设命题p:asin B=bsin C=csin A,命题q:△ABC是等边三角形,那么命题p是命题q的()A.充要条件B.必要不充分条件C.充分不必要条件D.既不充分也不必要条件。

1.2命题及其关系、充分 条件与必要条件

1.2命题及其关系、充分 条件与必要条件

解析: a>b⇒/ ac2>bc2,原因是 c 可能为 0,而若 ac2>bc2, 则可以推出 a>b, 故“a>b”是“ac2>bc2” 的必要不充分条件,故选 B.
答案:
B
第一章 集合与常用逻辑用语
栏目导引
2.(2010· 杭州二模)已知命题 p:“若 a>b>0, 1 1 则 log a<log b+1”,则命题 p 的逆命题、否命 2 2 题、逆否命题中真命题的个数为( ) A. 0 B.1 C. 2 D. 4
第一章 集合与常用逻辑用语
栏目导引
解析: (1)∵(x-2)(x-3)=0⇒/ x-2=0(可能 x-3=0), 但 x-2=0⇒(x-2)(x-3)=0, ∴p 是 q 的必要不充分条件. (2)∵四边形的对角线相等⇒/ 四边形是平行四边形, 四边 形是平行四边形⇒/ 四边形的对角线相等, ∴p 是 q 的既不充分也不必要条件. (3)∵(x-1)2+(y-2)2=0⇒x=1 且 y=2⇒(x-1)(y-2)= 0,而(x-1)(y-2)=0⇒/ (x-1)2+(y-2)2=0. ∴p 是 q 的充分不必要条件. (4)∵在△ABC 中,大边对大角,大角对大边. ∴∠A>∠B⇒BC>AC,同时,BC>AC⇒∠A>∠B, ∴p 是 q 的充要条件.
2.命题“若 a∉A,则 b∈B”的否命题是( ) A.若 a∉A,则 b∉B B.若 a∈A,则 b∉B C.若 b∈B,则 a∉A D.若 b∉B,则 a∈A
答案:
B
3.(2010· 广东卷)“x>0”是“ x2>0”成立的 ( ) A.充分非必要条件 B.必要非充分条件 C.非充分非必要条件 D.充要条件 3 2 3 2 解析: 因为当 x>0 时,一定有 x >0,但当 x 3 2 >0 时,x<0 也成立,因此,x>0 是 x >0 成立的 充分非必要条件. 答案: A

高中数学《命题及其关系-充分条件与必要条件》教案苏教版选修

高中数学《命题及其关系-充分条件与必要条件》教案苏教版选修

教案:高中数学《命题及其关系-充分条件与必要条件》教案苏教版选修一、教学目标1. 理解充分条件和必要条件的概念。

2. 学会判断充分条件和必要条件。

3. 掌握充分条件和必要条件与命题真假之间的关系。

4. 能够运用充分条件和必要条件解决实际问题。

二、教学重点与难点重点:充分条件和必要条件的概念及判断。

难点:充分条件和必要条件与命题真假之间的关系。

三、教学准备1. 教师准备PPT课件,包括充分条件和必要条件的定义、判断方法及应用实例。

2. 准备一些练习题,用于巩固所学知识。

四、教学过程1. 导入:教师通过一个生活实例引入新课,如:“如果一个人每天坚持锻炼身体,他身体健康。

”让学生思考这个实例中的条件和结论之间的关系。

2. 新课讲解:教师讲解充分条件和必要条件的定义,并通过PPT展示相关知识点。

定义:如果一个条件能推出结论,这个条件叫做结论的充分条件;如果结论能推出条件,这个条件叫做结论的必要条件。

教师讲解如何判断充分条件和必要条件,并举例说明。

3. 课堂练习:教师给出一些练习题,让学生判断给出的条件是充分条件还是必要条件,或两者都是。

五、课后作业1. 完成练习册的相关题目。

2. 举出生活中的实例,运用充分条件和必要条件进行分析。

教学反思:教师在课后对自己的教学进行反思,看是否达到了教学目标,学生是否掌握了充分条件和必要条件的概念及判断方法。

如有需要,可在下一节课进行针对性讲解。

六、教学拓展1. 教师通过PPT展示充分条件和必要条件的相关拓展知识,如充分不必要条件、必要不充分条件、既不充分也不必要条件等。

2. 教师举例解释这些概念,并让学生进行判断。

七、课堂小结1. 教师引导学生回顾本节课所学的内容,包括充分条件和必要条件的定义、判断方法及应用。

2. 学生分享自己在课堂练习中的收获和感悟。

八、课后反思1. 教师对自己的教学进行反思,看是否达到了教学目标,学生是否掌握了充分条件和必要条件的概念及判断方法。

18高考数学大一轮复习第一章集合与常用逻辑用语第二节命题及其关系、充分条件与必要条件课件文

18高考数学大一轮复习第一章集合与常用逻辑用语第二节命题及其关系、充分条件与必要条件课件文

解析:①命题“若x+y=0,则x,y互为相反数”的逆命 题为“若x,y互为相反数,则x+y=0”,显然①为真命 题;②不全等的三角形的面积也可能相等,故②为假命 题;③原命题正确,所以它的逆否命题也正确,故③为 真命题;④若ab是正整数,但a,b不一定都是正整数, 例如a=-1,b=-3,故④为假命题. 答案:①③
[由题悟法]
充要条件的3种判断方法 (1)定义法:根据p⇒q,q⇒p进行判断; (2)集合法:根据p,q成立的对象的集合之间的包含关系进 行判断; (3)等价转化法:根据一个命题与其逆否命题的等价性,把 判断的命题转化为其逆否命题进行判断.这个方法特别适合以 否定形式给出的问题,如“xy≠1”是“x≠1或y≠1”的某种条 件,即可转化为判断“x=1且y=1”是“xy=1”的某种条件.
[小题纠偏]
1.设a,b均为非零向量,则“a∥b”是“a与b的方向相 同”的________条件.
答案:必要不充分 2.“在△ABC中,若∠C=90° ,则∠A,∠B都是锐角”
的否命题为:________________.
解析:原命题的条件:在△ABC 中,∠C=90° , 结论:∠A,∠B 都是锐角.否命题是否定条件和结论.
2.(2017· 衡阳联考)设p:x2-x-20>0,q:log2(x-5)<2,则p 是q的 A.充分不必要条件 C.充要条件 B.必要不充分条件 D.既不充分也不必要条件 ( )
解析:∵x2-x-20>0,∴x>5或x<-4,∴p:x>5或x< -4.∵log2(x-5)<2,∴0<x-5<4,即5<x<9,∴q: 5<x<9,∵{x|5<x<9} {x|x>5或x<-4},∴p是q的必要不 充分条件.故选B. 答案:B

02简易逻辑--命题及其关系、充分条件与必要条件

02简易逻辑--命题及其关系、充分条件与必要条件

a b c a b c 的倾斜度为 l = max , , , min , , ,则 b c a b c a
“l = 1” 是“△ABC为等边三角形”的( 为等边三角形” B 为等边三角形

例8: 设0 < x <
π
2 A.充分不必要条件 充分不必要条件
, 则“ x sin x < 1”是“ x sin x < 1”的 B ) (
(
)(
)
重难点突破: 重难点突破:
1.反证法与逆否命题: 反证法与逆否命题: 反证法与逆否命题 例1:已知 a, b, c ∈ R, 若a + b + c < 1 已知
1 a 证明: 证明: , b, c中至少有一个小于 3 2.充要条件的证明: 充要条件的证明: 充要条件的证明
注意找出题中的条件与结论
4.常用的正面词语和它的否定词语 常用的正面词语和它的否定词语
正面词语 等于 小于 大于 是 都是 否定 不等于 不小于(大于 或等于) 不大于(小于 或等于) 不是 不都是(至少 有一个不是) 正面词语 任意的 所有的 至多有一个 至少有一个 至多有n个 否定 某个 某些 至少有两个 一个也没有 至少有n+1 个
“对任何x ∈ R, x − 2 + x − 4 > 3” 例3:命题 命题 的否定是? 的否定是?
∃x ∈ R, x − 2 + x + 4 ≤ 3例4:命题“若x 命题2 Nhomakorabea2
< 1, 则 − 1 < x < 1”的逆否命题是
D
.若 A. x ≥ 1, 则x ≥ 1或x ≤ −1 若 − 1 < x < 1, 则x 2 < 1 B.

1.2 命题及其关系、充分条件与必要条件导学案

1.2 命题及其关系、充分条件与必要条件导学案

命题及其关系、充分条件与必要条件自主梳理1.命题用语言、符号或式子表达的,可以判断真假的陈述句叫做命题,其中判断为真的语句叫做真命题,判断为假的语句叫做假命题.2.四种命题及其关系(1)四种命题一般地,用p和q分别表示原命题的条件和结论,用p和q分别表示p和q的否定,于是四种命题的形式就是原命题:若p则q(p⇒q);逆命题:若q则p(q⇒p);否命题:若非p则非q(非p⇒非q);逆否命题:若非q则非p(非q⇒非p).(2)四种命题间的关系(3)四种命题的真假性①两个命题互为逆否命题,它们有相同的真假性.②两个命题为逆命题或否命题,它们的真假性没有关系.3.充分条件与必要条件若p⇒q,则p叫做q的充分条件;若q⇒p,则p叫做q的必要条件;如果p⇔q,则p 叫做q的充要条件.自我检测1.(2010·湖南)下列命题中的假命题是()A.∃x∈R,lg x=0 B.∃x∈R,tan x=1C.∀x∈R,x3>0 D.∀x∈R,2x>02.(2010·陕西)“a>0”是“|a|>0”的()A.充分不必要条件B.必要不充分条件C.充要条件D.既不充分也不必要条件3.(2009·浙江)“x>0”是“x≠0”的()A.充分而不必要条件B.必要而不充分条件C.充分必要条件D.既不充分也不必要条件4.若命题p的否命题为r,命题r的逆命题为s,则s是p的逆命题t的()A.逆否命题B.逆命题C.否命题D.原命题5.(2011·宜昌模拟)与命题“若a∈M,则b∉M”等价的命题是()A.若a∉M,则b∉MB.若b∉M,则a∈MC.若a∉M,则b∈MD.若b∈M,则a∉M探究点一四种命题及其相互关系例1写出下列命题的逆命题、否命题、逆否命题,并判断其真假.(1)实数的平方是非负数;(2)等底等高的两个三角形是全等三角形;(3)弦的垂直平分线经过圆心,并平分弦所对的弧.变式迁移1有下列四个命题:①“若x+y=0,则x,y互为相反数”的逆命题;②“全等三角形的面积相等”的否命题;③“若q≤1,则x2+2x+q=0有实根”的逆否命题;④“不等边三角形的三个内角相等”的逆命题.其中真命题的序号为________.探究点二充要条件的判断例2给出下列命题,试分别指出p是q的什么条件.(1)p:x-2=0;q:(x-2)(x-3)=0.(2)p:两个三角形相似;q:两个三角形全等.(3)p:m<-2;q:方程x2-x-m=0无实根.(4)p:一个四边形是矩形;q:四边形的对角线相等.变式迁移2(2011·邯郸月考)下列各小题中,p是q的充要条件的是() ①p:m<-2或m>6;q:y=x2+mx+m+3有两个不同的零点;②p :f (-x )f (x )=1;q :y =f (x )是偶函数; ③p :cos α=cos β;q :tan α=tan β;④p :A ∩B =A ;q :∁U B ⊆∁U A .A .①②B .②③C .③④D .①④探究点三 充要条件的证明例3 设a ,b ,c 为△ABC 的三边,求证:方程x 2+2ax +b 2=0与x 2+2cx -b 2=0有公共根的充要条件是∠A =90°.变式迁移3 已知ab ≠0,求证:a +b =1的充要条件是a 3+b 3+ab -a 2-b 2=0.转化与化归思想的应用 例 (12分)已知两个关于x 的一元二次方程mx 2-4x +4=0和x 2-4mx +4m 2-4m -5=0,且m ∈Z .求两方程的根都是整数的充要条件.一、选择题(每小题5分,共25分)1.(2010·天津模拟)给出以下四个命题:①若ab ≤0,则a ≤0或b ≤0;②若a >b ,则am 2>bm 2;③在△ABC 中,若sin A =sin B ,则A =B ;④在一元二次方程ax 2+bx +c =0中,若b 2-4ac <0,则方程有实数根.其中原命题、逆命题、否命题、逆否命题全都是真命题的是( )A .①B .②C .③D .④2.(2010·浙江)设0<x <π2,则“x sin 2x <1”是“x sin x <1”的( ) A .充分而不必要条件B .必要而不充分条件C .充分必要条件D .既不充分也不必要条件3.(2009·北京)“α=π6+2k π(k ∈Z )”是“cos 2α=12”的( ) A .充分而不必要条件B .必要而不充分条件C .充分必要条件D .既不充分也不必要条件4.(2011·威海模拟)关于命题“若抛物线y =ax 2+bx +c 的开口向下,则{x |ax 2+bx +c <0}≠∅”的逆命题、否命题、逆否命题,下列结论成立的是( )A .都真B .都假C .否命题真D .逆否命题真5.(2011·枣庄模拟)集合A ={x ||x |≤4,x ∈R },B ={x |x <a },则“A ⊆B ”是“a >5”的( )A .充分不必要条件B .必要不充分条件C .充要条件D .既不充分也不必要条件 二、填空题(每小题4分,共12分)6.“x 1>0且x 2>0”是“x 1+x 2>0且x 1x 2>0”的________条件.7.(2011·惠州模拟)已知p :(x -1)(y -2)=0,q :(x -1)2+(y -2)2=0,则p 是q 的 ____________条件.8.已知p (x ):x 2+2x -m >0,如果p (1)是假命题,p (2)是真命题,则实数m 的取值范围为________.三、解答题(共38分)9.(12分)(2011·许昌月考)分别写出下列命题的逆命题、否命题、逆否命题,并判断它们的真假.(1)若q<1,则方程x2+2x+q=0有实根;(2)若ab=0,则a=0或b=0;(3)若x2+y2=0,则x、y全为零.10.(12分)设p:实数x满足x2-4ax+3a2<0,其中a<0;q:实数x满足x2-x-6≤0,或x2+2x-8>0,且p是q的必要不充分条件,求a的取值范围.11.(14分)已知数列{a n}的前n项和S n=p n+q(p≠0,且p≠1),求证:数列{a n}为等比数列的充要条件为q=-1.。

第二节 命题及其关系、充分条件与必要条件

第二节 命题及其关系、充分条件与必要条件

p是q的充 分条件
p⇒q
A⊆B
p是q的必要条件
q⇒p
A⊇B
p是q的充要条件
p⇒q且q⇒p A=B
p是q的充分不必要条件 p⇒q且q p A B
p是q的必要不充分条件 p q且q⇒p A B
p是q的既不充分条件 也不必要条件
p q且q p A B且A B
二、“基本技能”运用好 1.通过对四种命题及其相互关系的复习,提高学生的抽象概
答案:A
[一“点”就过] 判断命题真假的 2 种方法
直接 判断
判断一个命题为真命题,要给出严格的推理 证明;说明一个命题是假命题,只需举出一 个反例即可
根据“原命题与逆否命题同真同假,逆命题 间接 与否命题同真同假”这一性质,当一个命题 判断 直接判断不易进行时,可转化为判断其逆否
命题的真假
[提醒] (1)对于不是“若p,则q”形式的命题,需先改 写;(2)当命题有大前提时,写其他三种命题时需保留大前 提.(3)命题的否命题是条件和结论都否定,而命题的否定是条 件不变只否定结论.
答案:充分不必要 充要
三、“基本思想”很重要 1.利用等价转化思想判断命题真假及充分与必要条件. 2.利用集合思想、数形结合思想解决充分、必要条件的应用
问题.
1.命题“若α=π4,则tan α=1”的逆否命题是
()
A.若α≠π4,则tan α≠1
B.若α=π4,则tan α≠1
C.若tan α≠1,则α≠π4
答案:C
3.(2020·广东中山一中第一次统测)下列命题中为真命题的是
A.命题“若x>y,则x>|y|”的逆命题
()
B.命题“若x>1,则x2>1”的否命题

高考数学一轮总复习 第一章 1.2命题及其关系、充分条件与必要条件

高考数学一轮总复习 第一章  1.2命题及其关系、充分条件与必要条件

思维升华
(1)写一个命题的其他三种命题时,需注意: ①对于不是“若p,则q”形式的命题,需先改写; ②若命题有大前提,写其他三种命题时需保留大前提. (2)判断一个命题为真命题,要给出推理证明;判断一个命题 需举出反例即可. (3)根据“原命题与逆否命题同真同假,逆命题与否命题同真
师生共研
题型二 充分、必要条件的判定
(2)设n∈N*,则一元二次方程x2-4x+n=0有整数根的充要条 解析 由Δ=16-4n≥0,得n≤4, 又n∈N*,则n=1,2,3,4. 当n=1,2时,方程没有整数根; 当n=3时,方程有整数根1,3, 当n=4时,方程有整数根2.综上可知,n=3或4.
核心素养之逻辑推理
HEXINSUYANGZHILUOJITUILI
(2)已知条件p:x>1或x<-3,条件q:5x-6>x2,则綈p是綈q的
√A.充分不必要条件
C.充要条件
B.必要不充分条件 D.既不充分也不必要条件
解析 由5x-6>x2,得2<x<3,即q:2<x<3.
所以q⇒p,p⇏q,所以綈p⇒綈q,綈q⇏綈p,
所以綈p是綈q的充分不必要条件,故选A.
思维升华
解 由x2-8x-20≤0,得-2≤x≤10,∴P={x|-2≤x≤10} 由x∈P是x∈S的必要条件,知S⊆P.
1-m≤1+m, 则1-m≥-2, ∴0≤m≤3.

1+m≤10,
引申探究
若本例条件不变,问是否存在实数m,使x∈P是x∈S的充要条 解 若x∈P是x∈S的充要条件,则P=S,
3.充分条件、必要条件与充要条件的概念
若p⇒q,则p是q的 充分 条件,q是p的 必要 条
p是q的 充分不必要 条件

新高考数学一轮复习教师用书:第1章 2 第2讲 命题及其关系、充分条件与必要条件

新高考数学一轮复习教师用书:第1章 2 第2讲 命题及其关系、充分条件与必要条件

第2讲命题及其关系、充分条件与必要条件1.命题用语言、符号或式子表达的,可以判断真假的陈述句叫做命题.其中判断为真的语句叫做真命题,判断为假的语句叫做假命题.2.四种命题及其关系(1)四种命题间的相互关系(2)四种命题的真假关系①两个命题互为逆否命题,它们有相同的真假性;②两个命题为互逆命题或互否命题,它们的真假性没有关系.3.充分条件、必要条件与充要条件的概念若p⇒q,则p是q的充分条件,q是p的必要条件p是q的充分不必要条件p⇒q且⇒/ pp是q的必要不充分条件p⇒/q且q⇒pp是q的充要条件p⇔qp是q的既不充分也不必要条件p⇒/q且q⇒/p[疑误辨析]判断正误(正确的打“√”,错误的打“×”)(1)“x2+2x-3<0”是命题.( )(2)命题“若p,则q”的否命题是“若p,则﹁q”.( )(3)若原命题为真,则这个命题的否命题、逆命题、逆否命题中至少有一个为真.( )(4)当q是p的必要条件时,p是q的充分条件.( )(5)q不是p的必要条件时,“p ⇒/q”成立.( )答案:(1)×(2)×(3)√(4)√(5)√[教材衍化]1.(选修2-1P12A组T2改编)命题“若x2>y2,则x>y”的逆否命题是________,是________命题(填“真”或“假”)解析:根据原命题和逆否命题的条件和结论的关系得命题“若x2>y2,则x>y”的逆否命题是“若x≤y,则x2≤y2”.答案:若x≤y,则x2≤y2假2.(选修2-1P12A组T3改编)设x∈R,则“2-x≥0”是“(x-1)2≤1”的________条件.解析:2-x≥0,则x≤2,(x-1)2≤1,则-1≤x-1≤1,即0≤x≤2,据此可知,“2-x≥0”是“(x-1)2≤1”的必要不充分条件.答案:必要不充分[易错纠偏](1)命题的条件与结论不明确;(2)对充分必要条件判断错误.1.命题“若a2+b2=0,a,b∈R,则a=b=0”的逆否命题是________.答案:若a≠0或b≠0,a,b∈R,则a2+b2≠02.条件p:x>a,条件q:x≥2.(1)若p是q的充分不必要条件,则a的取值范围是________;(2)若p是q的必要不充分条件,则a的取值范围是________.解析:设A={x|x>a},B={x|x≥2},(1)因为p是q的充分不必要条件,所以A B,所以a≥2;(2)因为p是q的必要不充分条件,所以B A,所以a<2.答案:(1)a≥2(2)a<2四种命题的相互关系及真假判断(1)(2020·浙江重点中学模拟)已知命题p:“正数a的平方不等于0”,命题q:“若a不是正数,则它的平方等于0”,则q是p的( )A.逆命题B.否命题C.逆否命题D.否定(2)(2020·温州模拟)命题“若x2+y2=0,x,y∈R,则x=y=0”的逆否命题是( )A.若x≠y≠0,x,y∈R,则x2+y2=0B.若x=y≠0,x,y∈R,则x2+y2≠0C.若x≠0且y≠0,x,y∈R,则x2+y2≠0D.若x≠0或y≠0,x,y∈R,则x2+y2≠0【解析】 (1)命题p :“正数a 的平方不等于0”可写成“若a 是正数,则它的平方不等于0”,从而q 是p 的否命题,故选B.(2)将原命题的条件和结论否定,并互换位置即可.由x =y =0知x =0且y =0,其否定是x≠0或y≠0. 【答案】 (1)B (2)D(1)写一个命题的其他三种命题时需关注2点 ①对于不是“若p,则q”形式的命题,需先改写. ②若命题有大前提,写其他三种命题时需保留大前提.[提醒] 四种命题的关系具有相对性,一旦一个命题定为原命题,相应的也就有了它的“逆命题”“否命题”“逆否命题”.(2)判断命题真假的2种方法①直接判断:判断一个命题为真命题,要给出严格的推理证明;说明一个命题是假命题,只需举出一个反例即可.②间接判断:当一个命题直接判断不易进行时,可转化为判断其等价命题的真假.1.命题“若a 2>b 2,则a>b”的否命题是( ) A .若a 2>b 2,则a≤b B .若a 2≤b 2,则a≤b C .若a≤b ,则a 2>b 2D .若a≤b ,则a 2≤b 2解析:选B.根据命题的否命题若“﹁p,则﹁q”知选B. 2.下列命题中为真命题的是( ) A .命题“若x >1,则x 2>1”的否命题 B .命题“若x >y,则x >|y|”的逆命题 C .命题“若x =1,则x 2+x -2=0”的否命题 D .命题“若1x>1,则x >1”的逆否命题解析:选B.对于A,命题“若x >1,则x 2>1”的否命题为“若x≤1,则x 2≤1”,易知当x =-2时,x2=4>1,故为假命题;对于B,命题“若x >y,则x >|y|”的逆命题为“若x >|y|,则x >y”,分析可知为真命题;对于C,命题“若x =1,则x 2+x -2=0”的否命题为“若x≠1,则x 2+x -2≠0”,易知当x =-2时,x2+x -2=0,故为假命题;对于D,命题“若1x >1,则x >1”的逆否命题为“若x≤1,则1x ≤1”,易知为假命题,故选B.充分条件、必要条件的判断(高频考点)充分条件、必要条件的判断是高考命题的热点,常以选择题的形式出现,作为一个重要载体,考查的知识面很广,几乎涉及数学知识的各个方面.主要命题角度有:(1)判断指定条件与结论之间的关系; (2)与命题的真假性相交汇命题. 角度一 判断指定条件与结论之间的关系(1)(2019·高考浙江卷)设a>0,b>0,则“a+b≤4”是“ab≤4”的( ) A .充分不必要条件 B .必要不充分条件 C .充分必要条件D .既不充分也不必要条件(2)(2018·高考浙江卷)已知平面α,直线m,n 满足m ⊄α,n ⊂α,则“m∥n”是“m∥α”的( ) A .充分不必要条件 B .必要不充分条件 C .充分必要条件D .既不充分也不必要条件【解析】 (1)通解:因为a>0,b>0,所以a +b≥2ab,由a +b≤4可得2ab ≤4,解得ab≤4,所以充分性成立;当ab≤4时,取a =8,b =13,满足ab≤4,但a +b>4,所以必要性不成立,所以“a+b≤4”是“ab≤4”的充分不必要条件.故选A.优解:在同一坐标系内作出函数b =4-a,b =4a 的图象,如图,则不等式a +b≤4与ab≤4表示的平面区域分别是直线a +b =4及其左下方(第一象限中的部分)与曲线b =4a 及其左下方(第一象限中的部分),易知当a +b≤4成立时,ab ≤4成立,而当ab≤4成立时,a +b≤4不一定成立.故选A.(2)若m ⊄α,n ⊂α,m ∥n,由线面平行的判定定理知m ∥α.若m∥α,m ⊄α,n ⊂α,不一定推出m∥n ,直线m 与n 可能异面,故“m∥n”是“m∥α”的充分不必要条件.故选A.【答案】 (1)A (2)A角度二 与命题的真假性相交汇命题(2020·杭州模拟)下列有关命题的说法正确的是( ) A .“x =-1”是“x 2-5x -6=0”的必要不充分条件 B .p :A∩B=A ;q :AB,则p 是q 的充分不必要条件C .已知数列{a n },若p :对于任意的n∈N *,点P n (n,a n )都在直线y =2x +1上;q :{a n }为等差数列,则p 是q 的充要条件D .“x<0”是“ln(1+x)<0”的必要不充分条件【解析】 选项A :当x =-1时,x 2-5x -6=0,所以x =-1是x 2-5x -6=0的充分条件,故A 错. 选项B :因为A∩B=A ⇒/AB(如A =B),而A B ⇒A ∩B =A,从而p ⇒/ q,q ⇒p,所以p 是q 的必要不充分条件,故B 错. 选项C :因为P n (n,a n )在直线y =2x +1上. 所以a n =2n +1(n∈N *),则a n +1-a n =2(n +1)+1-(2n +1)=2,又由n 的任意性可知数列{a n }是公差为2的等差数列,即p ⇒q.但反之则不成立,如:令a n =n,则{a n }为等差数列,但点(n,n)不在直线y =2x +1上,从而q ⇒/ p. 从而可知p 是q 的充分不必要条件,故C 错.选项D :利用充分条件和必要条件的概念判断.因为ln(x +1)<0⇔0<x +1<1⇔-1<x<0,所以“x<0”是“ln(x +1)<0”的必要不充分条件.故D 正确.【答案】 D判断充要条件的3种常用方法(1)定义法:直接判断若p 则q 、若q 则p 的真假.(2)等价法:利用A ⇒B 与﹁B ⇒﹁A,B ⇒A 与﹁A ⇒﹁B,A ⇔B 与﹁B ⇔﹁A 的等价关系,对于条件或结论是否定式的命题,一般运用等价法.(3)利用集合间的包含关系判断:若A ⊆B,则A 是B 的充分条件或B 是A 的必要条件;若A =B,则A 是B 的充要条件.[提醒] 判断充要条件需注意3点 (1)要分清条件与结论分别是什么. (2)要从充分性、必要性两个方面进行判断. (3)直接判断比较困难时,可举出反例说明.1.(2020·杭州市富阳二中高三开学检测)若a,b 为实数,则“ 3a <3b”是“1|a|>1|b|”的( )A .充分不必要条件B .必要不充分条件C .充分必要条件D .既不充分也不必要条件解析:选D.根据题意,若“3a <3b”,则有a<b,而“1|a|>1|b|”不一定成立,如a =-3,b =1;若“1|a|>1|b|”,则有|a|<|b|,“3a <3b ”不一定成立,如a =1,b =-3,故“3a <3b”是“1|a|>1|b|”的既不充分也不必要条件.2.(2020·“超级全能生”高考浙江省联考)已知函数f(x)=sin x,x ∈[0,2π),则“f(x)≥0”是“f(x 2)≥0”的( )A .充分不必要条件B .必要不充分条件C .充分必要条件D .既不充分也不必要条件解析:选B.由f(x)≥0⇒x ∈[0,π],由f(x 2)≥0⇒x 2∈[0,π]⇒x ∈[0,π], 因为[0,π]⊆[0,π],由集合性质可知为必要不充分条件.充分条件、必要条件的应用(1)已知p :|x +1|>2,q :x >a,且﹁p 是﹁q 的充分不必要条件,则a 的取值范围是( ) A .a ≤1 B .a ≤-3 C .a ≥-1D .a ≥1(2)已知P ={x|x 2-8x -20≤0},非空集合S ={x|1-m≤x≤1+m}.若“x∈P”是“x∈S”的必要条件,则m 的取值范围为________.【解析】 (1)由|x +1|>2,解得x >1或x <-3,因为﹁p 是﹁q 的充分不必要条件,所以q 是p 的充分不必要条件, 从而可得(a,+∞)是(-∞,-3)∪(1,+∞)的真子集, 所以a≥1,故选D.(2)由x 2-8x -20≤0,得-2≤x≤10, 所以P ={x|-2≤x≤10},由x∈P 是x∈S 的必要条件,知S ⊆P. 则⎩⎪⎨⎪⎧1-m≤1+m ,1-m≥-2,1+m≤10,所以0≤m≤3. 所以当0≤m≤3时,x ∈P 是x∈S 的必要条件, 即所求m 的取值范围是[0,3]. 【答案】 (1)D (2)[0,3](变问法)本例(2)条件不变,若“x∈﹁P”是“x∈﹁S”的必要不充分条件,求实数m 的取值范围. 解:由例题知P ={x|-2≤x≤10},因为“x∈﹁P”是“x∈﹁S”的必要不充分条件, 所以P ⇒S 且S ⇒/ P.所以[-2,10][1-m,1+m].所以⎩⎪⎨⎪⎧1-m≤-2,1+m >10或⎩⎪⎨⎪⎧1-m <-2,1+m≥10.所以m≥9,即m 的取值范围是[9,+∞).利用充要条件求参数应关注2点(1)巧用转化求参数:把充分条件、必要条件或充要条件转化为集合之间的关系,然后根据集合之间的关系列出关于参数的不等式(或不等式组)求解.(2)端点取值慎取舍:在求参数范围时,要注意边界或区间端点值的检验,从而确定取舍.[提醒] 含有参数的问题,要注意分类讨论.(2020·金华一模)已知命题p:实数m满足m2+12a2<7am(a>0),命题q:实数m满足方程x2m-1+y22-m=1表示焦点在y轴上的椭圆.若p是q的充分不必要条件,则a的取值范围为________.解析:由a>0,m2-7am+12a2<0,得3a<m<4a,即命题p:3a<m<4a,a>0.由x2m-1+y22-m=1表示焦点在y轴上的椭圆,可得2-m>m-1>0,解得1<m<32,即命题q:1<m<32.因为p是q的充分不必要条件,所以⎩⎪⎨⎪⎧3a≥14a≤32,解得13≤a≤38,所以实数a的取值范围是⎣⎢⎡⎦⎥⎤13,38.答案:⎣⎢⎡⎦⎥⎤13,38[基础题组练]1.下列命题是真命题的是( )A.若1x=1y,则x=y B.若x2=1,则x=1C.若x=y,则x=y D.若x<y,则x2<y2解析:选A.由1x=1y得x=y,A正确;由x2=1得x=±1,B错误;由x=y,x,y不一定有意义,C错误;由x<y不一定能得到x2<y2,如x=-2,y=-1,D错误,故选A.2.命题“若x>1,则x>0”的逆否命题是( )A.若x≤0,则x≤1 B.若x≤0,则x>1C.若x>0,则x≤1 D.若x<0,则x<1解析:选A.依题意,命题“若x>1,则x>0”的逆否命题是“若x≤0,则x≤1”,故选A.3.设a,b 是实数,则“a+b>0”是“ab>0”的( ) A .充分不必要条件 B .必要不充分条件 C .充分必要条件D .既不充分也不必要条件解析:选D.特值法:当a =10,b =-1时,a +b >0,ab <0,故a +b >0⇒/ ab >0;当a =-2,b =-1时,ab >0,但a +b <0,所以ab >0⇒/ a +b >0.故“a+b >0”是“ab>0”的既不充分也不必要条件.4.(2020·金华市东阳二中高三调研)若“0<x<1”是“(x-a)[x -(a +2)]≤0”的充分不必要条件,则实数a 的取值范围是( )A .[-1,0]B .(-1,0)C .(-∞,0]∪[1,+∞)D .(-∞,-1]∪[0,+∞)解析:选A.由(x -a)[x -(a +2)]≤0得a≤x≤a+2,要使“0<x<1”是“(x-a)[x -(a +2)]≤0”的充分不必要条件,则⎩⎪⎨⎪⎧a +2≥1a≤0,所以-1≤a≤0.5.(2020·杭州中学高三月考)已知a,b ∈R,条件p :“a>b”,条件q :“2a >2b-1”,则p 是q 的( ) A .充分不必要条件 B .必要不充分条件 C .充分必要条件 D .既不充分也不必要条件解析:选A.由条件p :“a>b”,再根据函数y =2x是增函数,可得2a>2b,所以2a>2b-1,故条件q :“2a>2b-1”成立,故充分性成立.但由条件q :“2a>2b-1”成立,不能推出条件p :“a>b”成立,例如由20>20-1成立,不能推出0>0,故必要性不成立.故p 是q 的充分不必要条件,故选A.6.已知a,b ∈R,则使|a|+|b|>4成立的一个充分不必要条件是( ) A .|a|+|b|≥4 B .|a|≥4C .|a|≥2且|b|≥2D .b<-4解析:选D.由b<-4可得|a|+|b|>4,但由|a|+|b|>4得不到b<-4,如a =1,b =5. 7.已知直线l,m,其中只有m 在平面α内,则“l∥α”是“l∥m”的( ) A .充分不必要条件 B .必要不充分条件 C .充分必要条件D .既不充分也不必要条件解析:选B.当l∥α时,直线l 与平面α内的直线m 平行、异面都有可能,所以l∥m 不一定成立;当l∥m 时,根据直线与平面平行的判定定理知直线l∥α,即“l∥α”是“l∥m”的必要不充分条件,故选B.8.在△ABC中,角A,B,C的对边分别为a,b,c,则“sin A>sin B”是“a>b”的( ) A.充分不必要条件B.必要不充分条件C.充要条件D.既不充分也不必要条件解析:选C.设△ABC外接圆的半径为R,若sin A>sin B,则2Rsin A>2Rsin B,即a>b;若a>b,则a2R>b2R,即sin A>sin B,所以在△ABC中,“sin A>sin B”是“a>b”的充要条件,故选C.9.设向量a=(1,x-1),b=(x+1,3),则“x=2”是“a∥b”的( )A.充分不必要条件B.必要不充分条件C.充要条件D.既不充分也不必要条件解析:选A.依题意,注意到a∥b的充要条件是1×3=(x-1)(x+1),即x=±2.因此,由x=2可得a∥b,“x=2”是“a∥b”的充分条件;由a∥b不能得到x=2,“x=2”不是“a∥b”的必要条件,故“x=2”是“a∥b”的充分不必要条件,选A.10.下列选项中,p是q的必要不充分条件的是( )A.p:x=1,q:x2=xB.p:|a|>|b|,q:a2>b2C.p:x>a2+b2,q:x>2abD.p:a+c>b+d,q:a>b且c>d解析:选D.A中,x=1⇒x2=x,x2=x⇒x=0或x=1⇒/ x=1,故p是q的充分不必要条件;B中,因为|a|>|b|,根据不等式的性质可得a2>b2,反之也成立,故p是q的充要条件;C中,因为a2+b2≥2ab,由x>a2+b2,得x>2ab,反之不成立,故p是q的充分不必要条件;D中,取a=-1,b=1,c=0,d=-3,满足a+c>b +d,但是a<b,c>d,反之,由同向不等式可加性得a>b,c>d⇒a+c>b+d,故p是q的必要不充分条件.综上所述,故选D.11.对于原命题:“已知a、b、c∈R,若ac2>bc2,则a>b”,以及它的逆命题、否命题、逆否命题,真命题的个数为________.解析:原命题为真命题,故逆否命题为真;逆命题:若a>b,则ac2>bc2为假命题,故否命题为假命题,所以真命题个数为2.答案:212.函数f(x)=x2+mx+1的图象关于直线x=1对称的充要条件是________.解析:已知函数f(x)=x2-2x+1的图象关于直线x=1对称,则m=-2;反之也成立.所以函数f(x)=x2+mx+1的图象关于直线x=1对称的充要条件是m=-2.答案:m=-213已知α:x≥a,β:|x-1|<1.若α是β的必要不充分条件,则实数a的取值范围为________.解析:α:x≥a,可看作集合A={x|x≥a},因为β:|x-1|<1,所以0<x<2,所以β可看作集合B ={x|0<x<2}. 又因为α是β的必要不充分条件. 所以BA,所以a≤0.答案:(-∞,0]14.设平面α与平面β相交于直线m,直线a 在平面α内,直线b 在平面β内,且b⊥m ,则“a⊥b”是“α⊥β”的________条件(只填充分不必要、必要不充分、充分必要,既不充分也不必要).解析:因为α⊥β,b⊥m ,所以b⊥α,又直线a 在平面α内,所以a⊥b;又直线a,m 不一定相交,所以“a⊥b”是“α⊥β”的必要不充分条件.答案:必要不充分15.若命题“ax 2-2ax -3>0不成立”是真命题,则实数a 的取值范围是________.解析:由题意知ax 2-2ax -3≤0恒成立,当a =0时,-3≤0成立;当a≠0时,得⎩⎪⎨⎪⎧a<0,Δ=4a 2+12a≤0,解得-3≤a<0,故-3≤a≤0.答案:[-3,0]16.已知p :⎪⎪⎪⎪⎪⎪1-x -13≤2,q :1-m≤x≤1+m(m>0),且綈p 是綈q 的必要而不充分条件,则实数m 的取值范围为________.解析:法一:由⎪⎪⎪⎪⎪⎪1-x -13≤2,得-2≤x≤10, 所以綈p 对应的集合为{x|x>10或x<-2}, 设A ={x|x>10或x<-2}. 1-m≤x≤1+m(m>0),所以綈q 对应的集合为{x|x>m +1或x<1-m,m>0}, 设B ={x|x>m +1或x<1-m,m>0}. 因为﹁p 是﹁q 的必要而不充分条件,所以B A,所以⎩⎪⎨⎪⎧m>0,1-m≤-2,1+m≥10,且不能同时取得等号.解得m≥9,所以实数m 的取值范围为[9,+∞). 法二:因为﹁p 是﹁q 的必要而不充分条件, 所以q 是p 的必要而不充分条件. 即p 是q 的充分而不必要条件,因为q 对应的集合为{x|1-m≤x≤1+m,m>0}, 设M ={x|1-m≤x≤1+m,m>0},又由⎪⎪⎪⎪⎪⎪1-x -13≤2,得-2≤x≤10, 所以p 对应的集合为{x|-2≤x≤10},设N ={x|-2≤x≤10}.由p 是q 的充分而不必要条件知N M,所以⎩⎪⎨⎪⎧m>0,1-m≤-2,1+m≥10,且不能同时取等号,解得m≥9.所以实数m 的取值范围为[9,+∞).答案:[9,+∞)17.给出下列命题:①已知集合A ={1,a},B ={1,2,3},则“a=3”是“A ⊆B ”的充分不必要条件;②“x <0”是“ln(x +1)<0”的必要不充分条件;③“函数f(x)=cos 2ax -sin 2ax 的最小正周期为π”是“a=1”的充要条件;④“平面向量a 与b 的夹角是钝角”的充要条件是“a·b <0”.其中正确命题的序号是________.(把所有正确命题的序号都写上)解析:①因为“a=3”可以推出“A ⊆B ”,但“A ⊆B ”不能推出“a=3”,所以“a=3”是“A ⊆B ”的充分不必要条件,故①正确;②“x<0”不能推出“ln(x +1)<0”,但“ln(x +1)<0”可以推出“x<0”,所以“x<0”是“ln(x +1)<0”的必要不充分条件,故②正确;③f(x)=cos 2ax -sin 2ax =cos 2ax,若其最小正周期为π,则2π2|a|=π⇒a =±1,因此“函数f(x)=cos 2ax -sin 2ax 的最小正周期为π”是“a=1”的必要不充分条件,故③错误;④“平面向量a 与b 的夹角是钝角”可以推出“a·b<0”,但由“a·b<0”,得“平面向量a 与b 的夹角是钝角或平角”,所以“a·b<0”是“平面向量a 与b 的夹角是钝角”的必要不充分条件,故④错误.正确命题的序号是①②.答案:①②[综合题组练]1.设θ∈R ,则“⎪⎪⎪⎪⎪⎪θ-π12<π12”是“sin θ<12”的( ) A .充分而不必要条件 B .必要而不充分条件C .充要条件D .既不充分也不必要条件解析:选A.因为⎪⎪⎪⎪⎪⎪θ-π12<π12⇔-π12<θ-π12<π12⇔0<θ<π6, sin θ<12⇔θ∈⎝⎛⎭⎪⎫2k π-7π6,2k π+π6,k ∈Z,⎝ ⎛⎭⎪⎫0,π6⎝ ⎛⎭⎪⎫2k π-7π6,2k π+π6,k ∈Z, 所以“⎪⎪⎪⎪⎪⎪θ-π12<π12”是“sin θ<12”的充分而不必要条件. 2.已知集合A =⎩⎨⎧⎭⎬⎫x ⎪⎪⎪12<2x <8,x ∈R ,B ={x|-1<x<m +1,x ∈R},若x∈B 成立的一个充分不必要条件是x ∈A,则实数m 的取值范围是________.解析:因为A =⎩⎨⎧⎭⎬⎫x ⎪⎪⎪12<2x <8,x ∈R ={x|-1<x<3},x ∈B 成立的一个充分不必要条件是x∈A , 所以A B,所以m +1>3,即m>2.答案:m >23.已知函数f(x)在(-∞,+∞)上是增函数,a,b ∈R,对命题“若a +b≥0,则f(a)+f(b)≥f(-a)+f(-b)”.(1)写出否命题,判断其真假,并证明你的结论;(2)写出逆否命题,判断其真假,并证明你的结论.解:(1)否命题:已知函数f(x)在(-∞,+∞)上是增函数,a,b ∈R,若a +b<0,则f(a)+f(b)<f(-a)+f(-b).该命题是真命题,证明如下:因为a +b<0,所以a<-b,b<-a.又因为f(x)在(-∞,+∞)上是增函数.所以f(a)<f(-b),f(b)<f(-a),因此f(a)+f(b)<f(-a)+f(-b),所以否命题为真命题.(2)逆否命题:已知函数f(x)在(-∞,+∞)上是增函数,a,b ∈R,若f(a)+f(b)<f(-a)+f(-b),则a +b<0.真命题,可通过证明原命题为真来证明它.因为a +b≥0,所以a≥-b,b ≥-a,因为f(x)在(-∞,+∞)上是增函数,所以f(a)≥f(-b),f(b)≥f(-a),所以f(a)+f(b)≥f(-a)+f(-b),故原命题为真命题,所以逆否命题为真命题.4.已知两个关于x 的一元二次方程mx 2-4x +4=0和x 2-4mx +4m 2-4m -5=0,求两方程的根都是整数的充要条件.解:因为mx 2-4x +4=0是一元二次方程,所以m≠0.又另一方程为x 2-4mx +4m 2-4m -5=0,且两方程都要有实根,所以⎩⎪⎨⎪⎧Δ1=16(1-m )≥0,Δ2=16m 2-4(4m 2-4m -5)≥0,解得m∈⎣⎢⎡⎦⎥⎤-54,1. 因为两方程的根都是整数,故其根的和与积也为整数,所以⎩⎪⎨⎪⎧4m ∈Z ,4m ∈Z ,4m 2-4m -5∈Z. 所以m 为4的约数.又因为m∈错误!,所以m =-1或1.当m =-1时,第一个方程x 2+4x -4=0的根为非整数;而当m =1时,两方程的根均为整数,所以两方程的根均为整数的充要条件是m =1.5.已知p :x 2-7x +12≤0,q :(x -a)(x -a -1)≤0.(1)是否存在实数a,使﹁p 是﹁q 的充分不必要条件,若存在,求实数a 的取值范围;若不存在,请说明理由.(2)是否存在实数a,使p 是q 的充要条件,若存在,求出a 的值;若不存在,请说明理由.解:因为p :3≤x≤4,q :a≤x≤a+1.(1)因为﹁p 是﹁q 的充分不必要条件,所以﹁p ⇒﹁q,且﹁q ⇒/﹁p,所以q ⇒p,且p ⇒/ q,即q 是p 的充分不必要条件,故{x|a≤x≤a+1}{x|3≤x ≤4},所以⎩⎪⎨⎪⎧a>3,a +1≤4或⎩⎪⎨⎪⎧a ≥3,a +1<4,无解, 所以不存在实数a,使﹁p 是﹁q 的充分不必要条件.(2)若p 是q 的充要条件,则{x|a≤x≤a+1}={x|3≤x ≤4},所以⎩⎪⎨⎪⎧a =3,a +1=4, 解得a =3.故存在实数a =3,使p 是q 的充要条件.。

第2节 命题及其关系、充分条件与必要条件

第2节 命题及其关系、充分条件与必要条件

第2节命题及其关系、充分条件与必要条件考纲要求 1.理解命题的概念,了解“若p,则q”形式的命题及其逆命题、否命题与逆否命题,会分析四种命题的相互关系;2.理解充分条件、必要条件与充要条件的含义.知识梳理1.命题用语言、符号或式子表达的,可以判断真假的陈述句叫做命题,其中判断为真的语句叫做真命题,判断为假的语句叫做假命题.2.四种命题及其相互关系(1)四种命题间的相互关系(2)四种命题的真假关系①两个命题互为逆否命题,它们具有相同的真假性.②两个命题为互逆命题或互否命题时,它们的真假性没有关系.3.充分条件、必要条件与充要条件的概念若p⇒q,则p是q的充分条件,q是p的必要条件p是q的充分不必要条件p⇒q且q⇒pp是q的必要不充分条件p⇒q且q⇒pp是q的充要条件p⇔qp是q的既不充分也不必要条件p⇒q且q⇒p1.否命题与命题的否定:否命题是既否定条件,又否定结论,而命题的否定是只否定命题的结论.2.区别A是B的充分不必要条件(A⇒B且B⇒A),与A的充分不必要条件是B(B⇒A且A⇒B)两者的不同.3.充要关系与集合的子集之间的关系,设A ={x |p (x )},B ={x |q (x )}, (1)若A ⊆B ,则p 是q 的充分条件,q 是p 的必要条件.(2)若A B ,则p 是q 的充分不必要条件,q 是p 的必要不充分条件. (3)若A =B ,则p 是q 的充要条件.4.p 是q 的充分不必要条件,等价于綈q 是綈p 的充分不必要条件.诊断自测1.判断下列结论正误(在括号内打“√”或“×”) (1)“x 2+2x -3<0”是命题.( )(2)当q 是p 的必要条件时,p 是q 的充分条件.( )(3)“若p 不成立,则q 不成立”等价于“若q 成立,则p 成立”.( )(4)若原命题为真,则这个命题的否命题、逆命题、逆否命题中至少有一个为真.( ) 答案 (1)× (2)√ (3)√ (4)√解析 (1)错误.该语句不能判断真假,故该说法是错误的.2.设a ,b ∈R 且ab ≠0,则ab >1是a >1b 的( )A.充分不必要条件B.必要不充分条件C.充要条件D.既不充分也不必要条件答案 D解析 若“ab >1”,当a =-2,b =-1时,不能得到“a >1b ”,若“a >1b ”,例如当a =1,b =-1时,不能得到“ab >1”,故“ab >1”是“a >1b ”的既不充分也不必要条件.3.命题“若α=π4,则tan α=1”的逆否命题是( )A.若α≠π4,则tan α≠1B.若α=π4,则tan α≠1C.若tan α≠1,则α≠π4D.若tan α≠1,则α=π4答案 C解析 命题“若p ,则q ”的逆否命题是“若綈q ,则綈p ”,所以该命题的逆否命题是“若tan α≠1,则α≠π4”.4.(2020·长春模拟)已知命题α:如果x <3,那么x <5,命题β:如果x ≥3,那么x ≥5,则命题α是命题β的( ) A.否命题 B.逆命题 C.逆否命题 D.否定形式答案 A解析 两个命题之间只是条件、结论都作出否定,故为否命题关系. 5.(2020·天津卷)设a ∈R ,则“a >1”是“a 2>a ”的( ) A.充分不必要条件 B.必要不充分条件 C.充要条件D.既不充分也不必要条件 答案 A解析 由a 2>a ,得a 2-a >0, 解得a >1或a <0,∴“a >1”是“a 2>a ”的充分不必要条件.6.(2021·合肥七校联考)已知集合A ={x |13<3x <27,x ∈R },B ={x |-1<x <m +1,m ∈R },若x ∈B成立的一个充分不必要条件是x ∈A ,则实数m 的取值范围是________. 答案 (2,+∞)解析 A =⎩⎨⎧⎭⎬⎫x |13<3x <27,x ∈R ={x |-1<x <3}.∵x ∈B 成立的一个充分不必要条件是x ∈A , 所以A B ,所以m +1>3,即m >2.考点一 命题及其关系1.(2020·太原质检)命题“若a >b ,则a +c >b +c ”的否命题是( )A.若a +c ≤b +c ,则a ≤bB.若a ≤b ,则a +c ≤b +cC.若a +c >b +c ,则a >bD.若a >b ,则a +c ≤b +c答案 B解析 将条件和结论都进行否定,即命题“若a >b ,则a +c >b +c ”的否命题是“若a ≤b ,则a +c ≤b +c ”.2.(2021·成都七中检测)给出下列命题: ①“若xy =1,则lg x +lg y =0”的逆命题; ②“若a ·b =a ·c ,则a ⊥(b -c )”的否命题;③“若b ≤0,则方程x 2-2bx +b 2+b =0有实根”的逆否命题; ④“等边三角形的三个内角均为60°”的逆命题. 其中真命题的个数是( ) A.1 B.2 C.3 D.4答案 D解析 对于①,“若xy =1,则lg x +lg y =0”的逆命题为“若lg x +lg y =0,则xy =1”,该命题为真命题;对于②,“若a ·b =a ·c ,则a ⊥(b -c )”的否命题为“a ·b ≠a ·c ,则a 不垂直于(b -c )”,由a ·b ≠a ·c 可得a ·(b -c )≠0,据此可得a 不垂直于(b -c ),该命题为真命题;对于③,若b ≤0,则方程x 2-2bx +b 2+b =0的根的判别式Δ=(-2b )2-4(b 2+b )=-4b ≥0,方程有实根,原命题为真命题,则其逆否命题为真命题;对于④,“等边三角形的三个内角均为60°”的逆命题为“三个内角均为60°的三角形为等边三角形”,该命题为真命题.3.(2018·北京卷)能说明“若f (x )>f (0)对任意的x ∈(0,2]都成立,则f (x )在[0,2]上是增函数”为假命题的一个函数是________.答案 f (x )=sin x ,x ∈[0,2](答案不唯一 ,再如f (x )=⎩⎪⎨⎪⎧0,x =0,1x,0<x ≤2)解析 根据函数单调性的概念,只要找到一个定义域为[0,2]的不单调函数,满足在定义域内有唯一的最小值点,且f (x )min =f (0).感悟升华 1.写一个命题的其他三种命题时,需注意:(1)对于不是“若p,则q”形式的命题,需先改写;(2)若命题有大前提,写其他三种命题时需保留大前提.2.判断一个命题为真命题,要给出推理证明;判断一个命题是假命题,只需举出反例.3.根据“原命题与逆否命题同真同假,逆命题与否命题同真同假”这一性质,当一个命题直接判断不易时,可间接判断.考点二充分条件与必要条件的判定【例1】(1)(2020·浙江卷)已知空间中不过同一点的三条直线l,m,n.“l,m,n共面”是“l,m,n两两相交”的()A.充分不必要条件B.必要不充分条件C.充分必要条件D.既不充分也不必要条件(2)已知条件p:x+y≠-2,条件q:x,y不都是-1,则p是q的()A.充分不必要条件B.必要不充分条件C.充要条件D.既不充分也不必要条件答案(1)B(2)A解析(1)由m,n,l在同一平面内,可能有m,n,l两两平行,所以m,n,l可能没有公共点,所以不能推出m,n,l两两相交.由m,n,l两两相交且m,n,l不经过同一点,可设l∩m=A,l∩n=B,m∩n=C,且A∉n,所以点A和直线n确定平面α,而B,C∈n,所以B,C∈α,所以l,m⊂α,所以m,n,l在同一平面内.故选B.(2)因为p:x+y≠-2,q:x≠-1或y≠-1,所以綈p:x+y=-2,綈q:x=-1且y=-1,因为綈q⇒綈p,但綈p⇒綈q,所以綈q是綈p的充分不必要条件,即p是q的充分不必要条件.感悟升华充要条件的三种判断方法(1)定义法:根据p⇒q,q⇒p进行判断.(2)集合法:根据使p,q成立的对象的集合之间的包含关系进行判断.(3)等价转化法:根据一个命题与其逆否命题的等价性,把要判断的命题转化为其逆否命题进行判断.这个方法特别适合以否定形式给出的问题.【训练1】 (1)(2021·昆明诊断)设集合A ={x |(x +1)(x -2)≥0},B =⎩⎨⎧⎭⎬⎫x ⎪⎪⎪x -2x +1≥0.则“x ∈A ”是“x ∈B ”的( ) A.充分不必要条件 B.必要不充分条件 C.充要条件D.既不充分又不必要条件(2)(2020·北京卷)已知α,β∈R ,则“存在k ∈Z 使得α=k π+(-1)k β”是“sin α=sin β”的( )A.充分而不必要条件B.必要而不充分条件C.充分必要条件D.既不充分也不必要条件答案 (1)B (2)C解析 (1)集合A ={x |(x +1)(x -2)≥0}={x |x ≥2,或x ≤-1},B =⎩⎨⎧⎭⎬⎫x ⎪⎪⎪x -2x +1≥0={x |x ≥2,或x <-1}.∴B A ,∴“x ∈A ”是“x ∈B ”的必要不充分条件.(2)若存在k ∈Z 使得α=k π+(-1)k β,则当k =2n (n ∈Z ),α=2n π+β,有sin α=sin(2n π+β)=sin β;当k =2n +1(n ∈Z ),α=(2n +1)π-β,有sin α=sin[(2n +1)π-β]=sin β. 若sin α=sin β,则α=2k π+β或α=2k π+π-β(k ∈Z ), 即α=k π+(-1)k β(k ∈Z ).故选C. 考点三 充分、必要条件的应用【例2】 (经典母题)已知P ={x |x 2-8x -20≤0},非空集合S ={x |1-m ≤x ≤1+m }.若x ∈P 是x ∈S 的必要条件,求实数m 的取值范围. 解 由x 2-8x -20≤0,得-2≤x ≤10, ∴P ={x |-2≤x ≤10}.∵x ∈P 是x ∈S 的必要条件,则S ⊆P .∴⎩⎪⎨⎪⎧1-m ≥-2,1+m ≤10,解得m ≤3. 又∵S 为非空集合,∴1-m ≤1+m ,解得m ≥0. 综上,m 的取值范围是[0,3].【迁移1】 本例条件不变,问是否存在实数m ,使x ∈P 是x ∈S 的充要条件?并说明理由. 解 由例题知P ={x |-2≤x ≤10}.若x ∈P 是x ∈S 的充要条件,则P =S ,∴⎩⎪⎨⎪⎧1-m =-2,1+m =10, ∴⎩⎪⎨⎪⎧m =3,m =9, 这样的m 不存在.【迁移2】 设p :P ={x |x 2-8x -20≤0},q :非空集合S ={x |1-m ≤x ≤1+m },且綈p 是綈q 的必要不充分条件,求实数m 的取值范围. 解 由例题知P ={x |-2≤x ≤10}. ∵綈p 是綈q 的必要不充分条件, p 是q 的充分不必要条件. ∴p ⇒q 且q ⇒p ,即P S .∴⎩⎪⎨⎪⎧1-m ≤-2,1+m >10或⎩⎪⎨⎪⎧1-m <-2,1+m ≥10, ∴m ≥9,又因为S 为非空集合, 所以1-m ≤1+m ,解得m ≥0, 综上,实数m 的取值范围是[9,+∞).感悟升华 1.根据充分、必要条件求解参数取值范围需抓住“两”关键 (1)把充分、必要条件转化为集合之间的关系.(2)根据集合之间的关系列出关于参数的不等式(组)求解.2.解题时要注意区间端点值的检验.尤其是利用两个集合之间的关系求解参数的取值范围时,不等式是否能够取等号决定端点值的取舍,处理不当容易出现漏解或增解的现象.【训练2】 设p :ln(2x -1)≤0,q :(x -a )[x -(a +1)]≤0,若q 是p 的必要不充分条件,则实数a 的取值范围是________. 答案 ⎣⎡⎦⎤0,12 解析 p 对应的集合A ={x |y =ln(2x -1)≤0}=⎩⎨⎧⎭⎬⎫x |12<x ≤1,q 对应的集合B ={x |(x -a )[x -(a+1)]≤0}={x |a ≤x ≤a +1}.由q 是p 的必要而不充分条件,知A B .所以a ≤12且a +1≥1,因此0≤a ≤12.A 级 基础巩固一、选择题1.(2019·天津卷)设x ∈R ,则“0<x <5”是“|x -1|<1”的( ) A.充分而不必要条件 B.必要而不充分条件 C.充要条件D.既不充分也不必要条件 答案 B解析 由|x -1|<1可得0<x <2,由“0<x <5”不能推出“0<x <2”,但由“0<x <2”可以推出“0<x <5”. 故“0<x <5”是“|x -1|<1”的必要而不充分条件.2.(2021·百校联考考前冲刺)已知命题p :“任意a >0,且a ≠1,函数y =1+log a (x -1)的图象过点P ”的逆否命题为真,则P 点坐标为( ) A.(2,1) B.(1,1) C.(1,2) D.(2,2)答案 A解析 由逆否命题与原命题同真同假,可知命题p 为真命题,由对数函数性质可知,函数y =1+log a (x -1)的图象过定点(2,1),所以点P 的坐标为(2,1).3.(2019·北京卷)设函数f (x )=cos x +b sin x (b 为常数),则“b =0”是“f (x )为偶函数”的( ) A.充分而不必要条件 B.必要而不充分条件 C.充分必要条件 D.既不充分也不必要条件 答案 C解析 当b =0时,f (x )=cos x 为偶函数;若f (x )为偶函数,则f (-x )=cos(-x )+b sin(-x )=cos x -b sin x =f (x ),∴-b sin x =b sin x 对x ∈R 恒成立,∴b =0. 故“b =0”是“f (x )为偶函数”的充分必要条件. 4.设a >b ,a ,b ,c ∈R ,则下列命题为真命题的是( )A.ac 2>bc 2B.a b >1C.a -c >b -cD.a 2>b 2答案 C解析 对于A ,a >b ,若c =0,则ac 2=bc 2,故A 错误;对于B ,a >b ,若a >0,b <0,则ab <1,故B 错误;对于C ,a >b ,则a -c >b -c ,故C 正确;对于D ,a >b ,若a ,b 均小于0,则a 2<b 2,故D 错误.5.(2020·长沙检测)若l ,m 是两条不同的直线,α是一个平面,且m ⊥α,则“l ⊥m ”是“l ∥α”的( )A.充分不必要条件B.必要不充分条件C.充要条件D.既不充分也不必要条件答案 B解析 当直线l ⊂α时,“l ⊥m ” ⇒ “l ∥α”,充分性不成立.若l ∥α,由线面平行的性质,可知在平面α内一定存在一条直线n 与l 平行,又m ⊥α,所以m ⊥n ,则m ⊥l ,可知必要性成立. 所以“l ⊥m ”是“l ∥α”的必要不充分条件. 6.(2020·石家庄模拟)下列说法中正确的是( ) A.若函数f (x )为奇函数,则f (0)=0B.若数列{a n }为常数列,则{a n }既是等差数列也是等比数列C.在△ABC 中,A >B 是sin A >sin B 的充要条件D.命题“若a n +a n +12<a n ,n ∈N *,则{a n }为递减数列”的逆命题为假命题答案 C解析 A 错误,f (x )=1x 为奇函数,但f (0)无意义;B 错误,a n =0为常数列,但{a n }不是等比数列;C 正确,由于A >B ⇔a >b ⇔sin A >sin B .D 错误,若{a n }递减,则a n +1<a n ⇒a n +a n +12<a n ,n ∈N *,所以逆命题为真命题,D 不正确.7.(2021·贵阳模拟)设函数f (x )=e x 2-3x ,则使f (x )<1成立的一个充分不必要条件是( ) A.0<x <1B.0<x <4C.0<x<3D.3<x<4答案 A解析f(x)<1⇔e x2-3x<1⇔x2-3x<0,解得0<x<3.又“0<x<1”可以推出“0<x<3”,但“0<x<3”不能推出“0<x<1”.故“0<x<1”是“f(x)<1”的充分不必要条件.8.已知命题p:x2+2x-3>0;命题q:x>a,且綈q的一个充分不必要条件是綈p,则a的取值范围是()A.[1,+∞)B.(-∞,1]C.[-1,+∞)D.(-∞,-3]答案 A解析由x2+2x-3>0,得x<-3或x>1,由綈q的一个充分不必要条件是綈p,可知綈p是綈q的充分不必要条件,等价于q是p的充分不必要条件.故a≥1.二、填空题9.(2021·河南名校联考)设命题p:x>4;命题q:x2-5x+4≥0,那么p是q的________________条件(填“充分不必要”“必要不充分”“充要”“既不充分也不必要”).答案充分不必要解析由x2-5x+4≥0得x≤1或x≥4,可知{x|x>4}是{x|x≤1或x≥4}的真子集,∴p是q 的充分不必要条件.10.有下列几个命题:①“若a>b,则a2>b2”的否命题;②“若x+y=0,则x,y互为相反数”的逆命题;③“若x2<4,则-2<x<2”的逆否命题.其中真命题的序号是________.答案②③解析①原命题的否命题为“若a≤b,则a2≤b2”,错误;②原命题的逆命题为“若x,y 互为相反数,则x+y=0”,正确;③原命题的逆否命题为“若x≥2或x≤-2,则x2≥4”,正确.11.直线x-y-k=0与圆(x-1)2+y2=2有两个不同交点的充要条件是________.答案-1<k<3解析 直线x -y -k =0与圆(x -1)2+y 2=2有两个不同交点等价于|1-0-k |2<2, 解得-1<k <3.12.已知不等式|x -m |<1成立的一个充分不必要条件是13<x <12,则m 的取值范围是________. 答案 ⎣⎡⎦⎤-12,43 解析 解不等式|x -m |<1,得m -1<x <m +1.由题意可得⎝⎛⎭⎫13,12(m -1,m +1),故⎩⎨⎧m -1≤13,m +1≥12且等号不同时成立,解得-12≤m ≤43. B 级 能力提升13.(2020·武昌调研)给出下列说法:①命题“若x 2=1,则x ≠1”的否命题是“若x 2=1,则x =1”;②命题“若a >2且b >2,则a +b >4且ab >4”的逆命题为真命题;③命题“若函数f (x )=x 2-ax +1有零点,则a ≥2或a ≤-2”的逆否命题为真命题;④命题“∃x 0∈R ,x 20-x 0<0”的否定是“∀x ∈R ,x 2-x >0”. 其中正确的序号为( )A.②B.③C.①③D.②④答案 B解析 对于①,由于否命题既否定条件又否定结论,因此命题“若x 2=1,则x ≠1”的否命题是“若x 2≠1,则x =1”,所以①错误;对于②,原命题的逆命题为“若a +b >4且ab >4,则a >2且b >2”,取a =1,b =5,满足a +b >4且ab >4,但不满足a >2且b >2,所以②错误;对于③,若函数f (x )=x 2-ax +1有零点,则Δ=a 2-4≥0,解得a ≥2或a ≤-2,原命题为真命题,由于原命题与其逆否命题同真同假,所以③正确;对于④,命题“∃x 0∈R ,x 20-x 0<0”的否定是“∀x ∈R ,x 2-x ≥0”,所以④错误. 14.已知偶函数y =f (x )在[0,+∞)上单调递增,则对实数a ,b ,“a >|b |”是“f (a )>f (b )”的( )A.充分不必要条件B.必要不充分条件C.充要条件D.既不充分也不必要条件答案 A解析 因为y =f (x )是偶函数,所以f (x )=f (|x |).又y =f (x )在[0,+∞)上单调递增,若a >|b |,则f (a )>f (|b |)=f (b ),即充分性成立;若f (a )>f (b ),则等价为f (|a |)>f (|b |),即|a |>|b |,即a >|b |或a <-|b |,即必要性不成立,则“a >|b |”是“f (a )>f (b )”的充分不必要条件. 15.能说明“若a >b ,则1a <1b”为假命题的一组a ,b 的值依次为________. 答案 a =1,b =-1(答案不唯一,只需a >0,b <0)解析 若a >b ,则1a <1b 为真命题,则1a -1b =b -a ab<0,∵a >b ,∴b -a <0,则ab >0.故当a >0,b <0时,均能说明“若a >b ,则1a <1b”为假命题. 16.已知p :实数m 满足3a <m <4a (a >0),q :方程x 2m -1+y 22-m=1表示焦点在y 轴上的椭圆,若p 是q 的充分条件,则a 的取值范围是________________.答案 ⎣⎡⎦⎤13,38解析 由2-m >m -1>0,得1<m <32,即q :1<m <32. 因为p 是q 的充分条件,所以⎩⎪⎨⎪⎧3a ≥1,4a ≤32,解得13≤a ≤38.。

1.2命题及其关系、充分条件、必要条件

1.2命题及其关系、充分条件、必要条件

科 目数学 年级 高三 备课人 高三数学组 第 课时 1.2命题及其关系、充分条件、必要条件考纲定位 了解命题的逆命题、否命题与逆否命题;理解必要条件、充分条件与充要条件的意义,会分析四种命题的相互关系疑难提示 1、命题真假的判断;2、四种命题的关系的应用;3、两个命题互为逆否命题;4、充要条件的证明应分别证明充分性和必要性两个方面;【考点整合】1、命题及四种命题的相互关系(1)可以判断真假的语句叫命题,由 两部分构成.(2)命题的四种形式:原命题:若p 则q ;逆命题:若 ,则 ;否命题:若 ,则 ;逆否命题:若 ,则(3)四种命题的关系:互为 的命题互为等价命题,它们同真同假.2、充分条件与必要条件(1)若,p q q ⇒⇒p ,则称p 是q 的 ,同时q 是p 的 ;(2)若p ⇒,q q p ⇒,则称p 是q 的 ,同时q 是p 的 ;(3)若,p q q p ⇒⇒,则称p 是q 的 .【真题演练】1、(2012 湖南)命题“若4πα=,则tan 1α=”的逆否命题是( ) A.若4πα≠,则tan 1α≠ B.若4πα=,则tan 1α≠ C.若tan 1α≠,则4πα≠ D.若tan 1α≠,则4πα= 2、(2010 天津)命题“若()f x 是奇函数,则()f x -是奇函数”的否命题是( )A.若()f x 是偶函数,则()f x -是偶函数B.若()f x 不是奇函数,则()f x -不是奇函数C.若()f x -是奇函数,则()f x 是奇函数D.若()f x -不是奇函数,则()f x 不是奇函数3、(2011 重庆)“1x <-”是“210x ->”的( )A.充分不必要条件B.必要不充分条件C.充要条件D.既不充分也不必要条件4、(2011 福建)若a R ∈,则“2a =”是“(1)(2)0a a --=”的( )A.充分不必要条件B.必要不充分条件C.充要条件D.既不充分也不必要条件5、(2013 湖南)“12x <<”是“2x <”成立的A .充分不必要条件B .必要不充分条件C .充要条件D .既不充分也不必要条件【经典例题】一、命题及其相互关系例1、分别写出下列命题的逆命题、否命题、逆否命题,同时分别指出它们的真假.(1)面积相等的两个三角形是全等三角形;(2)若1q <,则方程220x x q ++=有实根.变式训练:1、若命题p 的逆命题是q ,命题p 的否命题是r ,则q 是r 的( )A.逆命题B.否命题C.逆否命题D.以上都不对2、给出命题:“已知,,,a b c d 是实数,若,a b c d a c b d ≠≠+≠+且则”,对原命题、逆命题、否命题、逆否命题而言,其中的真命题有( )A. 0个B.1个C.2个D.4个3、分别写出下列命题的逆命题、否命题、逆否命题,同时分别指出它们的真假.(1)若xy=0,则x=0或y=0;(2)已知a,b,c,d 是实数,若a=b 且c=d,则a+c=b+d.二、充分条件、必要条件的判断例2、用“充分不必要条件,必要不充分条件,充要条件或既不充分也不必要条件”填空(1)2424x x y y xy >+>⎧⎧⎨⎨>>⎩⎩是的 条件;(2)4(4)(1)001x x x x --+≥≥+是的 条件 (3)tan tan αβαβ==是的 条件;(4)312x y x y +≠≠≠“”是“或”的 条件例3、设命题:|43|1p x -≤;命题2:(21)(1)0q x a x a a -+++≤,若p 是q 的充分不必要条件,求实数a 的取值范围.变式训练:1、若向量(4,)()a y y R =∈,则“3y =”是“||5a =”的( )A.充分不必要条件B.必要不充分条件C.充要条件D.既不充分也不必要条件2、设{}n a 是等差数列,则“12a a <”是“数列{}n a 是递增数列”的( )A.充分不必要条件B.必要不充分条件C.充要条件D.既不充分也不必要条件3、(2008 湖南)“|1|2x -<成立”是“(3)0x x -<成立”的( )A.充分不必要条件B.必要不充分条件C.充要条件D.既不充分也不必要条件4、已知集合{|22},{|(2)(4)0}A x a x a B x x x =-<<+=+-≥,则A B φ=的充要条件是( )A.02a ≤≤B.22a -<<C.02a <≤D.02a <<三、充要条件的证明例4、已知函数2()||f x x x a b =+++,求证:函数()f x 是偶函数的充要条件是0a =.【作业】《胜券在握》P117页 第1、2题;【上本作业】《胜券在握》P117页 第3、4、5题.。

1.2 命题及其关系、充分条件与必要条件

1.2  命题及其关系、充分条件与必要条件

2 -a<0 且 1>0 a
,故方程有两个负根,符合题意.
综上知:当 a≤1 时,方程 ax2+2x+1=0 至少有一个负根. 必要性:若方程 ax2+2x+1=0 至少有一个负根. 当 a=0 时,方程为 2x+1=0 符合题意. 当 a≠0 时,方程 ax2+2x+1=0 应有一正一负根或两个负根.
思维启迪 首先分清条件和结论, 然后根据充要条件的
定义进行判断.

(1)在△ABC 中,∠A=∠B⇒sin A=sin B,反之,
若 sin A=sin B, 因为 A 与 B 不可能互补(因为三角形三 个内角和为 180° ),所以只有 A=B.故 p 是 q 的充要条 件. (2)易知,綈 p:x+y=8,綈 q:x=2 且 y=6,显然 綈 q⇒綈 p,但綈 p⇒綈 q,即綈 q 是綈 p 的充分不必要 条件,根据原命题和逆否命题的等价性知,p 是 q 的充 分不必要条件. (3)显然 x∈A∪B 不一定有 x∈B,但 x∈B 一定有 x∈A∪B,所以 p 是 q 的必要不充分条件. (4)条件 p:x=1 且 y=2,条件 q:x=1 或 y=2, 所以 p⇒q 但 q⇒p,故 p 是 q 的充分不必要条件.
已知推出条件成立是必要性. (2)证明分为两个环节,一是充分性;二是必要性.证 明时,不要认为它是推理过程的“双向书写”,而应该 进行由条件到结论,由结论到条件的两次证明. (3)证明时易出现必要性与充分性混淆的情形,这就要 分清哪是条件,哪是结论.
变式训练 3 求证: 方程 x2+ax+1=0 的两实根的平方 和大于 3 的必要条件是|a|> 3,这个条件是其充分条 件吗?为什么?
题型三
充要条件的证明
例 3 求证:关于 x 的方程 ax2+2x+1=0 至少有一个 负根的充要条件是 a≤1. 思维启迪

命题及其关系、充分条件与必要条件

命题及其关系、充分条件与必要条件

题组二:走进教材 1.(选修1-1P8T2改编)命题“若x,y都是偶数,则x+y也 是偶数”的逆否命题是 ( ) A.若x+y是偶数,则x与y不都是偶数 B.若x+y是偶数,则x与y都不是偶数 C.若x+y不是偶数,则x与y不都是偶数 D.若x+y不是偶数,则x与y都不是偶数
【解析】选C.若命题为“若p,则q”,命题的逆否命题 为“若非q,则非p”,所以原命题的逆否命题是“若x+y 不是偶数,则x与y不都是偶数”.
【解析】选B.根据原命题和其逆否命题的条件和结论
的关系,得命题“若x2>y2,则x>y”的逆否命题是“若
x≤y,则x2≤y2”.
3.“在△ABC中,若C=90°,则A,B都是锐角”的否命题 为________. 【解析】原命题的条件:在△ABC中,C=90°, 结论:A,B都是锐角.否命题是否定条件和结论,即“在 △ABC中,若C≠90°,则A,B不都是锐角”. 答案:在△ABC中,若C≠90°,则A,B不都是锐角
【解析】①若a>b>0,则 1 1 成立;
ab
②若a>0>b,则, 1 >0, 1 <0,所以 1 1 不成立;
a
b
ab
③若0>a>b,则 1 1 <0成立.
ab
综上,只需选取符合“a>0>b”的一组a,b,就能说明原
命题是假命题.
例如,a=1,b=-1;a=2,b=-1等. 答案:1,-1(答案不唯一)
“ad=bc”等价于“ b d ”,
ac
“a,b,c,d成等比数列”等价于“ b c d ”,
abc
所以“ad=bc”是“a,b,c,d成等比数列”的必要而不

1.2命题及其关系、充分条件与必要条件教案精编版

1.2命题及其关系、充分条件与必要条件教案精编版

§1.2命题及其关系、充分条件与必要条件2014高考会这样考 1.考查四种命题的意义及相互关系;2.考查对充分条件、必要条件、充要条件等概念的理解,主要以客观题的形式出现;3.在解答题中考查命题或充分条件与必要条件.复习备考要这样做 1.在解与命题有关的问题时,要理解命题的含义,准确地分清命题的条件与结论;2.注意条件之间关系的方向性、充分条件与必要条件方向正好相反;3.注意等价命题的应用.1.命题的概念在数学中把用语言、符号或式子表达的,可以判断真假的陈述句叫做命题.其中判断为真的语句叫真命题,判断为假的语句叫假命题.2.四种命题及相互关系3.四种命题的真假关系(1)两个命题互为逆否命题,它们有相同的真假性;(2)两个命题互为逆命题或互为否命题,它们的真假性没有关系.4.充分条件与必要条件(1)如果p⇒q,则p是q的充分条件,q是p的必要条件;(2)如果p⇒q,q⇒p,则p是q的充要条件.≠>,则p是q的充分不必要条件,p的必要不充分条件是q。

注意对定义的理解:例如:若p⇒q,q p[难点正本疑点清源]1.等价命题和等价转化(1)逆命题与否命题互为逆否命题;(2)互为逆否命题的两个命题同真假;(3)当判断原命题的真假比较困难时,可以转化为判断它的逆否命题的真假.2.集合与充要条件设集合A={x|x满足条件p},B={x|x满足条件q},则有⊂,则p是q的充分不必要条件;(1)若A⊆B,则p是q的充分条件,若A B⊂,则p是q的必要不充分条件;(2)若B⊆A,则p是q的必要条件,若B A(3)若A=B,则p是q的充要条件;(4)若A⊄B,且B ⊄A,则p是q的既不充分也不必要条件.题型一四种命题的关系及真假例1已知命题“若函数f(x)=e x-mx在(0,+∞)上是增函数,则m≤1”,则下列结论正确的是(D) A.否命题“若函数f(x)=e x-mx在(0,+∞)上是减函数,则m>1”是真命题B.逆命题“若m≤1,则函数f(x)=e x-mx在(0,+∞)上是增函数”是假命题C.逆否命题“若m>1,则函数f(x)=e x-mx在(0,+∞)上是减函数”是真命题D.逆否命题“若m>1,则函数f(x)=e x-mx在(0,+∞)上不是增函数”是真命题思维启迪:根据四种命题的定义判断一个原命题的逆命题、否命题、逆否命题的表达格式.当命题较简单时,可直接判断其真假,若命题本身复杂或不易直接判断时,可利用其等价命题——逆否命题进行真假判断.解析命题“若函数f(x)=e x-mx在(0,+∞)上是增函数,则m≤1”是真命题,所以其逆否命题“若m>1,则函数f(x)=e x-mx在(0,+∞)上不是增函数”是真命题.探究提高(1)熟悉四种命题的概念是正确书写或判断四种命题真假的关键;(2)根据“原命题与逆否命题同真同假,逆命题与否命题同真同假”这一性质,当一个命题直接判断不易进行时,可转化为判断其等价命题的真假;(3)认真仔细读题,必要时举特例.命题“若x,y都是偶数,则x+y也是偶数”的逆否命题是(C)A.若x+y是偶数,则x与y不都是偶数B.若x+y是偶数,则x与y都不是偶数C.若x+y不是偶数,则x与y不都是偶数D.若x+y不是偶数,则x与y都不是偶数解析由于“x,y都是偶数”的否定表达是“x,y不都是偶数”,“x+y是偶数”的否定表达是“x+y不是偶数”,故原命题的逆否命题为“若x+y不是偶数,则x,y不都是偶数”,故选C.题型二充要条件的判断例2已知下列各组命题,其中p是q的充分必要条件的是(D)A.p:m≤-2或m≥6;q:y=x2+mx+m+3有两个不同的零点B.p:()1()f xf x-=;q:y=f(x)是偶函数C.p:cosα=cosβ;q:tanα=tanβD.p:A∩B=A;q:A⊆U,B⊆U,∁U B⊆∁U A思维启迪:首先要分清条件和结论,然后可以从逻辑推理、等价命题或集合的角度思考问题,做出判断.解析对于A,由y=x2+mx+m+3有两个不同的零点,可得Δ=m2-4(m+3)>0,从而可得m<-2或m>6.所以p是q的必要不充分条件;对于B,由()1()f xf x-=⇒f(-x)=f(x)⇒y=f(x)是偶函数,但由y=f(x)是偶函数不能推出()1()f xf x-=,例如函数f(x)=0,所以p是q的充分不必要条件;对于C ,当cosα=cosβ=0时,不存在tanα=tanβ,反之也不成立,所以p 是q 的既不充分也不必要条件; 对于D ,由A∩B =A ,知A ⊆B ,所以∁U B ⊆∁U A ; 反之,由∁U B ⊆∁U A ,知A ⊆B ,即A∩B =A. 所以p ⇔q.综上所述,p 是q 的充分必要条件的是D.探究提高 判断p 是q 的什么条件,需要从两方面分析:一是由条件p 能否推得条件q ;二是由条件q 能否推得条件p.对于带有否定性的命题或比较难判断的命题,除借助集合思想把抽象、复杂问题形象化、直观化外,还可利用原命题和逆否命题、逆命题和否命题的等价性,转化为判断它的等价命题.给出下列命题:①“数列{a n }为等比数列”是“数列{a n a n +1}为等比数列”的充分不必要条件; ②“a≤2”是“函数f(x)=|x -a|在区间[2,+∞)上为增函数”的充要条件;③“m =3”是“直线(m +3)x +my -2=0与直线mx -6y +5=0互相垂直”的充要条件;④设a ,b ,c 分别是△ABC 三个内角A ,B ,C 所对的边,若a =1,b =3,则“A =30°”是“B =60°”的必要不充分条件.其中真.命题的序号是①②④ . 解析 对于①,当数列{a n }为等比数列时,易知数列{a n a n +1}是等比数列,但当数列{a n a n +1}为等比数列时,数列{a n }未必是等比数列,如数列1,3,2,6,4,12,8显然不是等比数列,而相应的数列3,6,12,24,48,96是等比数列,因此①正确;对于②,当a≤2时,函数f(x)=|x -a|在区间[2,+∞)上是增函数,因此②正确;对于③,当m =3时,相应的两条直线互相垂直,反之,这两条直线垂直时,不一定有m =3,也可能m =0.因此③不正确;对于④,由题意得b a =sin B sin A =3,若B =60°,则sin A =12,注意到b>a ,故A =30°,反之,当A =30°时,有sin B =32,由于b>a ,所以B =60°或B =120°,因此④正确.综上所述,真命题的序号是①②④. 题型三 利用充要条件求参数例3 已知集合M ={x|x<-3或x>5},P ={x|(x -a)·(x -8)≤0}. (1)求实数a 的取值范围,使它成为M∩P ={x|5<x≤8}的充要条件;(2)求实数a 的一个值,使它成为M∩P ={x|5<x≤8}的一个充分但不必要条件.思维启迪:解决此类问题一般是先把充分条件、必要条件或充要条件转化为集合之间的关系,再根据集合之间的关系列出关于参数的不等式求解. 解 (1)由M∩P ={x|5<x≤8},得-3≤a≤5, 因此M∩P ={x|5<x≤8}的充要条件是{a|-3≤a≤5}.(2)求实数a 的一个值,使它成为M∩P ={x|5<x≤8}的一个充分但不必要条件,就是在集合{a|-3≤a≤5}中取一个值,如取a =0,此时必有M∩P ={x|5<x≤8};反之,M∩P ={x|5<x≤8}未必有a =0,故“a =0”是“M∩P ={x|5<x≤8}”的一个充分但不必要条件.探究提高 利用充要条件求参数的值或范围,关键是合理转化条件,准确地将每个条件对应的参数的范围求出来,然后转化为集合的运算,一定要注意区间端点值的检验.已知p :x 2-4x -5≤0,q :|x -3|<a (a>0).若p 是q 的充分不必要条件,求a 的取值范围.解 设A ={x|x 2-4x -5≤0}={x|-1≤x≤5},B ={x|-a +3<x<a +3},因为p 是q 的充分不必要条件,从而有A ⊂B.故⎩⎪⎨⎪⎧-a +3<-1,a +3>5,解得a>4.等价转化思想在充要条件关系中的应用典例:(12分)已知p :⎪⎪⎪⎪1-x -13≤2,q :x 2-2x +1-m 2≤0 (m>0),且p q ⌝⌝是的必要而不充分条件,求实数m 的取值范围.审题视角 (1)先求出两命题的解集,即将命题化为最简.(2)再利用命题间的关系列出关于m 的不等式或不等式组,得出结论. 规范解答解 方法一 由q :x 2-2x +1-m 2≤0, 得1-m≤x≤1+m ,[2分] ∴q ⌝:A ={x|x>1+m 或x<1-m ,m>0}, [3分] 由p :⎪⎪⎪⎪1-x -13≤2,解得-2≤x≤10,[5分] ∴p ⌝:B ={x|x>10或x<-2}.[6分]∵p q ⌝⌝是的必要而不充分条件. ∴A ⊂B ,∴⎩⎪⎨⎪⎧m>0,1-m<-2,1+m≥10,或⎩⎪⎨⎪⎧m>0,1-m≤-2,1+m>10,即m≥9或m>9.∴m≥9.[12分]方法二 ∵⌝p 是⌝q 的必要而不充分条件,∴p 是q 的充分而不必要条件, [2分] 由q :x 2-2x +1-m 2≤0,得1-m≤x≤1+m ,∴q :Q ={x|1-m≤x≤1+m}, [4分] 由p :⎪⎪⎪⎪1-x -13≤2,解得-2≤x≤10,∴p :P ={x|-2≤x≤10}. [6分] ∵p 是q 的充分而不必要条件, ∴P ⊂Q ,∴⎩⎪⎨⎪⎧m>0,1-m<-2,1+m≥10,或⎩⎪⎨⎪⎧m>0,1-m≤-2,1+m>10,即m≥9或m>9.∴m≥9.[12分]答题模板第一步:求命题p、q对应的参数的范围.⌝、q⌝对应的参数的范围.第二步:求命题p第三步:根据已知条件构造新命题,如本题构造新命题“p且q”或“p或q”.第四步:根据新命题的真假,确定参数的范围.第五步:反思回顾.查看关键点、易错点及解题规范.温馨提醒解决此类问题的关键是准确地把每个条件所对应的参数的取值范围求解出来,然后转化为集合交、并、补的基本运算.答题时,可依答题模板的格式进行,这样可使答题思路清晰,过程完整.老师在阅卷时,便于查找得分点. 温馨提醒本例涉及参数问题,直接解决较为困难,先用等价转化思想,将复杂、生疏的问题转化为简单、熟悉的问题来解决.一般地,在涉及字母参数的取值范围的充要关系问题中,常常要利用集合的包含、相等关系来考虑,这是破解此类问题的关键.方法与技巧1.当一个命题有大前提而要写出其它三种命题时,必须保留大前提,也就是大前提不动;对于由多个并列条件组成的命题,在写其它三种命题时,应把其中一个(或几个)作为大前提.2.数学中的定义、公理、公式、定理都是命题,但命题与定理是有区别的;命题有真假之分,而定理都是真的.3.命题的充要关系的判断方法(1)定义法:直接判断若p则q,若q则p的真假.(2)等价法:利用A⇒B与B⌝⇒A⌝,B⇒A与A⌝⇒B⌝,A⇔B与綈B⇔A⌝的等价关系,对于条件或结论是否定式的命题,一般运用等价法.(3)利用集合间的包含关系判断:若A⊆B,则A是B的充分条件或B是A的必要条件;若A=B,则A 是B的充要条件.失误与防范1.判断命题的真假及写四种命题时,一定要明确命题的结构,可以先把命题改写成“若p则q”的形式.2.判断条件之间的关系要注意条件之间关系的方向,正确理解“p的一个充分而不必要条件是q”等语言.A组专项基础训练一、选择题(每小题5分,共20分)1. (2012·湖南)命题“若α=π4,则tanα=1”的逆否命题是( C )A .若α≠π4,则tanα≠1B .若α=π4,则tanα ≠1C .若tanα≠1,则α≠π4D .若tanα≠1,则α=π4解析 由原命题与其逆否命题之间的关系可知,原命题的逆否命题:若tan α≠1,则α≠π4.2. (2012·福建)已知向量a =(x -1,2),b =(2,1),则a ⊥b 的充要条件是 ( D ) A .x =-12B .x =-1C .x =5D .x =0解析 ∵a =(x -1,2),b =(2,1), ∴a ·b =2(x -1)+2×1=2x.又a ⊥b ⇔a ·b =0,∴2x =0,∴x =0.3. 已知集合M ={x|0<x<1},集合N ={x|-2<x<1},那么“a ∈N”是“a ∈M”的( B )A .充分而不必要条件B .必要而不充分条件C .充要条件D .既不充分也不必要条件 解析 因为M N ,所以a ∈M ⇒a ∈N ,反之,则不成立,故“a ∈N”是“a ∈M”的必要而不充分条件.故选B.4. 下列命题中为真命题的是( A ) A .命题“若x>y ,则x>|y|”的逆命题 B .命题“若x>1,则x 2>1”的否命题 C .命题“若x =1,则x 2+x -2=0”的否命题 D .命题“若x 2>0,则x>1”的逆否命题解析 对于A ,其逆命题:若x>|y|,则x>y ,是真命题,这是因为x>|y|=⎩⎪⎨⎪⎧y y≥0-y y<0,必有x>y ;对于B ,否命题:若x≤1,则x 2≤1,是假命题.如x =-5,x 2=25>1;对于C ,其否命题:若x≠1,则x 2+x -2≠0,因为x =-2时,x 2+x -2=0,所以是假命题;对于D ,若x 2>0,则x>0或x<0,不一定有x>1,因此原命题的逆否命题是假命题,故选A. 二、填空题(每小题5分,共15分) 5. 下列命题: ①若ac 2>bc 2,则a>b ; ②若sinα=sinβ,则α=β;③“实数a =0”是“直线x -2ay =1和直线2x -2ay =1平行”的充要条件; ④若f(x)=log 2x ,则f(|x|)是偶函数. 其中正确命题的序号是①③④.解析 对于①,ac 2>bc 2,c 2>0,∴a>b 正确;对于②,sin 30°=sin 150°则30°≠150°,所以②错误;对于③,l 1∥l 2⇔A 1B 2=A 2B 1,即-2a =-4a ⇒a =0且A 1C 2≠A 2C 1,所以③对;对于④显然对.6. 已知p(x):x 2+2x -m>0,如果p(1)是假命题,p(2)是真命题,则实数m 的取值范围为[3,8).解析 因为p(1)是假命题,所以1+2-m≤0, 解得m≥3;又因为p(2)是真命题,所以4+4-m>0, 解得m<8.故实数m 的取值范围是3≤m<8.7. (2011·陕西)设n ∈N +,一元二次方程x 2-4x +n =0有整数..根的充要条件是n =3或4 解析 ∵x 2-4x +n =0有整数根, ∴x =4±16-4n 2=2±4-n ,∴4-n 为某个整数的平方且4-n≥0,∴n =3或n =4. 当n =3时,x 2-4x +3=0,得x =1或x =3; 当n =4时,x 2-4x +4=0,得x =2. ∴n =3或n =4. 三、解答题(共22分)8. (10分)判断命题“若a≥0,则x 2+x -a =0有实根”的逆否命题的真假. 解 原命题:若a≥0,则x 2+x -a =0有实根. 逆否命题:若x 2+x -a =0无实根,则a<0. 判断如下:∵x 2+x -a =0无实根,∴Δ=1+4a<0,∴a<-14<0,∴“若x 2+x -a =0无实根,则a<0”为真命题.9. (12分)已知p :|x -3|≤2,q :(x -m +1)(x -m -1)≤0,若p q ⌝⌝是的充分而不必要条件,求实数m 的取值范围.解 由题意得p :-2≤x -3≤2,∴1≤x≤5.p q q p ⌝⌝⇒⇔⇒ ∴p ⌝:x<1或x>5.q :m -1≤x≤m +1,∴q ⌝:x<m -1或x>m +1. 又∵p q ⌝⌝是的充分而不必要条件,∴⎩⎪⎨⎪⎧m -1≥1,m +1≤5,且等号不能同时取到,∴2≤m≤4. 法二:p q q p ⌝⌝⇒⇔⇒B 组 专项能力提升一、选择题(每小题5分,共15分)1. (2012·上海)对于常数m 、n ,“mn>0”是“方程mx 2+ny 2=1的曲线是椭圆”的( B ) A .充分不必要条件 B .必要不充分条件 C .充分必要条件D .既不充分也不必要条件解析 ∵mn>0,∴⎩⎪⎨⎪⎧ m>0,n>0或⎩⎪⎨⎪⎧m<0,n<0,当m>0,n>0且m≠n 时,方程mx 2+ny 2=1的曲线是椭圆,当m<0,n<0时,方程mx 2+ny 2=1不表示任何图形,所以条件不充分;反之,当方程mx 2+ny 2=1表示的曲线是椭圆时有mn>0, 所以“mn>0”是“方程mx 2+ny 2=1的曲线是椭圆”的必要不充分条件.2. 已知p :1x -2≥1,q :|x -a|<1,若p 是q 的充分不必要条件,则实数a 的取值范围为( C )A .(-∞,3]B .[2,3]C .(2,3]D .(2,3)解析 由1x -2≥1,得2<x≤3;由|x -a|<1,得a -1<x<a +1.若p 是q 的充分不必要条件,则⎩⎪⎨⎪⎧a -1≤2a +1>3,即2<a≤3.所以实数a 的取值范围是(2,3],故选C.3. 集合A ={x||x|≤4,x ∈R },B ={x|x<a},则“A ⊆B”是“a>5”的( B )A .充分不必要条件B .必要不充分条件C .充要条件D .既不充分也不必要条件解析 A ={x|-4≤x≤4},若A ⊆B ,则a>4.a>4D/⇒a>5,但a>5⇒a>4.故“A ⊆B”是“a>5”的必要不充分条件. 二、填空题(每小题5分,共15分)4. 设有两个命题p 、q.其中p :对于任意的x ∈R ,不等式ax 2+2x +1>0恒成立;命题q :f(x)=(4a -3)x 在R 上为减函数.如果两个命题中有且只有一个是真命题,那么实数a 的取值范围是⎝⎛⎭⎫34,1∪(1,+∞) 解析 若命题P 为真,当a =0时,不等式为2x +1>0,显然不能恒成立,故a =0不适合; 当a≠0时,不等式ax 2+2x +1>0恒成立的条件是⎩⎪⎨⎪⎧a>0,Δ=22-4a<0, 解得a>1.若命题q 为真,则0<4a -3<1,解得34<a<1.由题意,可知p ,q 一真一假.①当p 真q 假时,a 的取值范围是{a|a>1}∩{a|a≤34或a≥1}={a|a>1};②当p 假q 真时,a 的取值范围是{a|a≤1}∩{a|34<a<1}={a|34<a<1};所以a 的取值范围是⎝⎛⎭⎫34,1∪(1,+∞).5. 若“x ∈[2,5]或x ∈{x|x<1或x>4}”是假命题,则x 的取值范围是__ [1,2)_. 解析 x ∉[2,5]且x ∉{x|x<1或x>4}是真命题.由⎩⎪⎨⎪⎧x<2或x>5,1≤x≤4,得1≤x<2. 点评 “A 或B”的否定是“A B ⌝⌝且.6. “m<14”是“一元二次方程x 2+x +m =0有实数解”充分不必要条件.解析 x 2+x +m =0有实数解等价于Δ=1-4m≥0,即m≤14,∵m<14⇒m≤14,反之不成立.故“m<14”是“一元二次方程x 2+x +m =0有实数解”的充分不必要条件.三、解答题7. (13分)已知全集U =R ,非空集合2031x A x x a ⎧-⎫=<⎨⎬--⎭⎩,B =⎩⎨⎧⎭⎬⎫x|x -a 2-2x -a <0.(1)当a =12时,求(∁U B)∩A ;(2)命题p :x ∈A ,命题q :x ∈B ,若q 是p 的必要条件,求实数a 的取值范围. 解 (1)当a =12时,A =⎩⎪⎨⎪⎧⎭⎪⎬⎪⎫x|x -2x -52<0=⎩⎨⎧⎭⎬⎫x|2<x<52,B =⎩⎨⎧⎭⎬⎫x|x -94x -12<0=⎩⎨⎧⎭⎬⎫x|12<x<94, ∴∁U B =⎩⎨⎧⎭⎬⎫x|x ≤12或x ≥94. ∴(∁U B)∩A =⎩⎨⎧⎭⎬⎫x|94≤x <52.(2)∵a 2+2>a ,∴B ={x|a<x<a 2+2}.①当3a +1>2,即a>13时,A ={x|2<x<3a +1}.∵p 是q 的充分条件,∴A ⊆B.∴⎩⎪⎨⎪⎧a≤23a +1≤a 2+2,即13<a≤3-52.②当3a +1=2,即a =13时,A =∅,不符合题意;③当3a +1<2,即a<13时,A ={x|3a +1<x<2},由A ⊆B 得⎩⎪⎨⎪⎧a ≤3a +1a 2+2≥2,∴-12≤a<13.综上所述,实数a 的取值范围是⎣⎡⎭⎫-12,13∪⎝ ⎛⎦⎥⎤13,3-52.。

1.2命题及其关系充分条件与必要条件

1.2命题及其关系充分条件与必要条件

解答:(1)∵x2+x+1=
,∴命题为真命题.
(2)真命题.
(3)∵α=β=0时,sin(α+β)=0,sin α+sin β=0, ∴sin(α+β)=sin α+sinβ,∴命题为真命题. (4)∵x=y=10时,3x-2y=10,∴命题为真命题. (5)∵a=0,b=1时,ax+b=1≠0,∴a=0,b=1时,ax+b=0无解, ∴命题为假命题.
是s的必要条件.
现有下列命题:
①s是q的充要条件;②p是q的充分条件,而不是必要条件;③r是q的必要条
件, 而不是充分条件;④綈p是綈s的必要条件, 而不是充分条件;⑤r是s的 充分条件,而不是必要条件. 则正确命题的序号是( A.①④⑤ ) C.②③⑤ ,则s⇔q;p D.②④⑤ q;又p s,
B.①②④
1.3
逻辑联结词全称量词与存在量词
(了解逻辑联结词“或”“且”“非”的含义/理解全称量词与存在量词的意 义/能正确地对含有一个量词的命题进行否定 )
1.命题中的“且”、“或”、“非”叫做逻辑联结词. 2.用来判断复合命题的真假的真值表
真 假 假 假
3. 全称量词与存在量词 (1) 常 见的全称量词有:“任意一个”、“一切”、“每一个”、“任给”、 “所有的”等. (2)常见的存在量词有:“存在一个”、“ 至少 有一个”、“有些”、“有一 个”、“某个”、“有的”等. (3)全称量词用符号“ ∀ ”表示;存在量词用符号“∃”表示.
) B.綈p:∀x∈R,sin x≥1 D.綈p:∀x∈R,sin x>1
解析:命题p是全称命题,全称命题的否定是特称命题. 答案:C
2.设p、q是两个命题,则复合命题“p∨q为真,p∧q为假”的充要条件是(
A.p、q中至少有一个为真 C.p、q中有且只有一个为真 答案:C B.p、q中至少有一个为假 D.p为真、q为假

高中数学《命题及其关系充分条件与必要条件》教案苏教版选修

高中数学《命题及其关系充分条件与必要条件》教案苏教版选修

高中数学《命题及其关系-充分条件与必要条件》教案苏教版选修一、教学目标:1. 理解充分条件和必要条件的概念。

2. 学会判断充分条件和必要条件。

3. 掌握充分条件和必要条件与命题之间的关系。

二、教学内容:1. 充分条件和必要条件的定义。

2. 判断充分条件和必要条件的方法。

3. 充分条件和必要条件与命题之间的关系。

三、教学重点与难点:1. 教学重点:充分条件和必要条件的概念及判断方法。

2. 教学难点:充分条件和必要条件与命题之间的关系。

四、教学方法:1. 采用案例分析法,通过具体例子引导学生理解充分条件和必要条件的概念。

2. 采用小组讨论法,让学生在小组内讨论如何判断充分条件和必要条件。

3. 采用归纳法,引导学生总结充分条件和必要条件与命题之间的关系。

五、教学过程:1. 引入新课:通过一个生活中的例子,引导学生思考什么是充分条件和必要条件。

2. 讲解充分条件和必要条件的定义:给出充分条件和必要条件的定义,让学生理解这两个概念。

3. 判断充分条件和必要条件:通过例子,讲解如何判断充分条件和必要条件。

4. 充分条件和必要条件与命题之间的关系:引导学生总结充分条件和必要条件与命题之间的关系。

5. 课堂练习:给出一些题目,让学生判断充分条件和必要条件。

6. 课堂小结:总结本节课所学内容,让学生巩固知识。

7. 作业布置:布置一些练习题,让学生巩固所学知识。

六、教学评估:1. 课堂问答:通过提问学生,了解学生对充分条件和必要条件的理解和掌握程度。

2. 课堂练习:观察学生在练习题中的表现,判断他们是否能够正确判断充分条件和必要条件。

3. 课后作业:通过批改学生的作业,了解他们对本节课知识的掌握情况。

七、教学反思:1. 反思教学方法:根据学生的反馈,调整教学方法,确保学生能够更好地理解和掌握充分条件和必要条件。

2. 反思教学内容:根据学生的掌握情况,调整教学内容,确保学生能够全面掌握充分条件和必要条件。

八、课后作业:1. 练习题:让学生通过做练习题,巩固对充分条件和必要条件的理解和判断能力。

高考数学大一轮复习第一章集合与常用逻辑用语1.2命题及其关系、充分条件与必要条件教师用书理苏教版

高考数学大一轮复习第一章集合与常用逻辑用语1.2命题及其关系、充分条件与必要条件教师用书理苏教版

第一章集合与常用逻辑用语 1.2 命题及其关系、充分条件与必要条件教师用书理苏教版1.四种命题及相互关系2.四种命题的真假关系(1)两个命题互为逆否命题,它们有相同的真假性;(2)两个命题互为逆命题或互为否命题,它们的真假性没有关系.3.充分条件与必要条件(1)如果p⇒q,则p是q的充分条件,同时q是p的必要条件;(2)如果p⇒q,且q⇏p,则p是q的充分不必要条件;(3)如果p⇒q,且q⇒p,则p是q的充要条件;(4)如果q⇒p,且p⇏q,则p是q的必要不充分条件;(5)如果p⇏q,且q⇏p,则p是q的既不充分又不必要条件.【知识拓展】从集合角度理解充分条件与必要条件若p以集合A的形式出现,q以集合B的形式出现,即A={x|p(x)},B={x|q(x)},则关于充分条件、必要条件又可以叙述为(1)若A⊆B,则p是q的充分条件;(2)若A⊇B,则p是q的必要条件;(3)若A=B,则p是q的充要条件;(4)若A B,则p是q的充分不必要条件;(5)若A B,则p是q的必要不充分条件;(6)若A B且A⊉B,则p是q的既不充分又不必要条件.【思考辨析】判断下列结论是否正确(请在括号中打“√”或“×”)(1)“x2+2x-3<0”是命题.( ×)(2)命题“若p,则q”的否命题是“若p,则綈q”.(×)(3)若一个命题是真命题,则其逆否命题也是真命题.( √)(4)当q是p的必要条件时,p是q的充分条件.( √)(5)当p是q的充要条件时,也可说成q成立当且仅当p成立.( √)(6)若p是q的充分不必要条件,则綈p是綈q的必要不充分条件.( √)1.下列命题中为真命题的是________.(填序号)①命题“若x>y,则x>|y|”的逆命题;②命题“若x>1,则x2>1”的否命题;③命题“若x=1,则x2+x-2=0”的否命题;④命题“若x2>0,则x>1”的逆否命题.答案①解析对于①,其逆命题是若x>|y|,则x>y,是真命题,这是因为x>|y|≥y,必有x>y.2.(教材改编)命题“若x2>y2,则x>y”的逆否命题是________________________.答案若x≤y,则x2≤y2解析根据原命题和其逆否命题的条件和结论的关系,得命题“若x2>y2,则x>y”的逆否命题是“若x≤y,则x2≤y2”.3.(教材改编)给出下列命题:①命题“若b2-4ac<0,则方程ax2+bx+c=0(a≠0)无实根”的否命题;②命题“如果△ABC中,AB=BC=CA,那么△ABC为等边三角形”的逆命题;③命题“若a>b>0,则3a>3b>0”的逆否命题;④命题“若m>1,则不等式mx2-2(m+1)x+(m-3)>0的解集为R”的逆命题.其中真命题的序号为________.答案①②③解析①命题“若b2-4ac<0,则方程ax2+bx+c=0(a≠0)无实根”的否命题为:“若b2-4ac≥0,则方程ax2+bx+c=0(a≠0)有实根”,根据一元二次方程根的判定知其为真命题.②命题“如果△ABC中,AB=BC=CA,那么△ABC为等边三角形”的逆命题为:“如果△ABC 为等边三角形,那么AB=BC=CA”,由等边三角形的定义可知其为真命题.③原命题“若a>b>0,则3a>3b>0”为真命题,由原命题与其逆否命题有相同的真假性可知其逆否命题为真命题.④原命题的逆命题为:“若不等式mx 2-2(m +1)x +(m -3)>0的解集为R ,则m >1”,不妨取m =2验证,当m =2时,有2x 2-6x -1>0,Δ=(-6)2-4×2×(-1)>0,其解集不为R ,故为假命题.4.(2016·北京改编)设a ,b 是向量,则“|a |=|b |”是“|a +b |=|a -b |”的______________条件. 答案 既不充分又不必要解析 若|a |=|b |成立,则以a ,b 为邻边构成的四边形为菱形,a +b ,a -b 表示该菱形的对角线,而菱形的对角线不一定相等,所以|a +b |=|a -b |不一定成立;反之,若|a +b |=|a -b |成立,则以a ,b 为邻边构成的四边形为矩形,而矩形的邻边不一定相等,所以|a |=|b |不一定成立,所以“|a |=|b |”是“|a +b |=|a -b |”的既不充分又不必要条件. 5.在下列三个结论中,正确的是________.(写出所有正确结论的序号) ①若A 是B 的必要不充分条件,则綈B 也是綈A 的必要不充分条件;②“⎩⎪⎨⎪⎧a >0,Δ=b 2-4ac ≤0”是“一元二次不等式ax 2+bx +c ≥0的解集为R ”的充要条件;③“x ≠1”是“x 2≠1”的充分不必要条件. 答案 ①②解析 易知①②正确.对于③,若x =-1,则x 2=1,充分性不成立,故③错误.题型一 命题及其关系例1 (2016·扬州模拟)下列命题: ①“若a 2<b 2,则a <b ”的否命题; ②“全等三角形面积相等”的逆命题;③“若a >1,则ax 2-2ax +a +3>0的解集为R ”的逆否命题; ④“若3x (x ≠0)为有理数,则x 为无理数”的逆否命题. 其中正确的命题是________.(填序号) 答案 ③④解析 对于①,否命题为“若a 2≥b 2,则a ≥b ”,为假命题;对于②,逆命题为“面积相等的三角形是全等三角形”,为假命题;对于③,当a >1时,Δ=-12a <0,原命题正确,从而其逆否命题正确,故③正确;对于④,原命题正确,从而其逆否命题正确,故④正确. 思维升华 (1)写一个命题的其他三种命题时,需注意: ①对于不是“若p ,则q ”形式的命题,需先改写; ②若命题有大前提,写其他三种命题时需保留大前提.(2)判断一个命题为真命题,要给出推理证明;判断一个命题是假命题,只需举出反例.(3)根据“原命题与逆否命题同真同假,逆命题与否命题同真同假”这一性质,当一个命题直接判断不易进行时,可转化为判断其等价命题的真假.(1)命题“若x>0,则x2>0”的否命题是__________.(2)(2016·徐州模拟)已知a,b,c∈R,命题“若a+b+c=3,则a2+b2+c2≥3”的否命题是______________________________.答案(1)若x≤0,则x2≤0(2)若a+b+c≠3,则a2+b2+c2<3解析(2)由于一个命题的否命题既否定题设又否定结论,因此原命题的否命题为“若a+b +c≠3,则a2+b2+c2<3”.题型二充分必要条件的判定例2 (1)(2016·江苏南京学情调研)已知直线l,m,平面α,m⊂α,则“l⊥m”是“l⊥α”的____________条件.(填“充分不必要”“必要不充分”“充要”或“既不充分又不必要”)(2)(2016·泰州模拟)给出下列三个命题:①“a>b”是“3a>3b”的充分不必要条件;②“α>β”是“cos α<cos β”的必要不充分条件;③“a=0”是“函数f(x)=x3+ax2(x∈R)为奇函数”的充要条件.其中正确命题的序号为________.答案(1)必要不充分(2)③解析(1)根据直线与平面垂直的定义:若直线与平面内的任意一条直线都垂直,则称这条直线与这个平面垂直.现在是直线与平面内给定的一条直线垂直,而不是任意一条,故由“l⊥m”推不出“l⊥α”,但是由定义知“l⊥α”可推出“l⊥m”,故填必要不充分.(2)因为函数y=3x在R上为增函数,所以“a>b”是“3a>3b”的充要条件,故①错;由余弦函数的性质可知“α>β”是“cos α<cos β”的既不充分又不必要条件,故②错;当a=0时,f(x)=x3是奇函数,当f(x)是奇函数时,由f(-1)=-f(1)得a=0,所以③正确.思维升华充分条件、必要条件的三种判定方法(1)定义法:根据p⇒q,q⇒p进行判断,适用于定义、定理判断性问题.(2)集合法:根据p,q成立的对象的集合之间的包含关系进行判断,多适用于命题中涉及字母的范围的推断问题.(3)等价转化法:根据一个命题与其逆否命题的等价性,把判断的命题转化为其逆否命题进行判断,适用于条件和结论带有否定性词语的命题.(1)函数f(x)=13x-1+a (x≠0),则“f(1)=1”是“函数f(x)为奇函数”的________条件.(用“充分不必要”“必要不充分”“充要”“既不充分又不必要”填写)(2)(2017·镇江质检)已知p :关于x 的不等式x 2+2ax -a ≤0有解,q :a >0或a <-1,则p 是q 的________条件.(用“充分不必要”“必要不充分”“充要”“既不充分又不必要”填写)答案 (1)充要 (2)必要不充分 解析 (1)f (x )=13x-1+a (x ≠0)为奇函数,则f (-x )+f (x )=0,即13-x -1+a +13x -1+a =0,所以a =12,此时f (1)=13-1+12=1,反之也成立,因此填“充要”.(2)关于x 的不等式x 2+2ax -a ≤0有解,则4a 2+4a ≥0⇒a ≤-1或a ≥0,从而q ⇒p ,反之不成立,故p 是q 的必要不充分条件. 题型三 充分必要条件的应用例3 已知P ={x |x 2-8x -20≤0},非空集合S ={x |1-m ≤x ≤1+m }.若x ∈P 是x ∈S 的必要条件,求m 的取值范围.解 由x 2-8x -20≤0,得-2≤x ≤10, ∴P ={x |-2≤x ≤10},由x ∈P 是x ∈S 的必要条件,知S ⊆P . 则⎩⎪⎨⎪⎧1-m ≤1+m ,1-m ≥-2, ∴0≤m ≤3.1+m ≤10,∴当0≤m ≤3时,x ∈P 是x ∈S 的必要条件,即所求m 的取值范围是[0,3]. 引申探究1.若本例条件不变,问是否存在实数m ,使x ∈P 是x ∈S 的充要条件. 解 若x ∈P 是x ∈S 的充要条件,则P =S ,∴⎩⎪⎨⎪⎧1-m =-2,1+m =10,方程组无解,即不存在实数m ,使x ∈P 是x ∈S 的充要条件.2.本例条件不变,若x ∈綈P 是x ∈綈S 的必要不充分条件,求实数m 的取值范围. 解 由例题知P ={x |-2≤x ≤10}, ∵綈P 是綈S 的必要不充分条件, ∴P ⇒S 且S ⇏P . ∴[-2,-m ,1+m ].∴⎩⎪⎨⎪⎧1-m ≤-2,1+m >10或⎩⎪⎨⎪⎧1-m <-2,1+m ≥10.∴m ≥9,即m 的取值范围是[9,+∞).思维升华 充分条件、必要条件的应用,一般表现在参数问题的求解上.解题时需注意: (1)把充分条件、必要条件或充要条件转化为集合之间的关系,然后根据集合之间的关系列出关于参数的不等式(或不等式组)求解. (2)要注意区间端点值的检验.(2016·盐城期中)设集合A ={x |x 2+2x -3<0},集合B ={x ||x +a |<1}.(1)若a =3,求A ∪B ;(2)设p :x ∈A ,q :x ∈B ,若p 是q 成立的必要不充分条件,求实数a 的取值范围. 解 (1)解不等式x 2+2x -3<0, 得-3<x <1,故A =(-3,1). 当a =3时,由|x +3|<1, 得-4<x <-2,故B =(-4,-2), 所以A ∪B =(-4,1).(2)因为p 是q 成立的必要不充分条件,所以集合B 是集合A 的真子集. 又集合A =(-3,1),B =(-a -1,-a +1),所以⎩⎪⎨⎪⎧-a -1≥-3,-a +1<1或⎩⎪⎨⎪⎧-a -1>-3,-a +1≤1,解得0≤a ≤2,即实数a 的取值范围是0≤a ≤2.1.等价转化思想在充要条件中的应用典例 (1)已知p ,q 是两个命题,那么“p ∧q 是真命题”是“綈p 是假命题”的__________条件.(2)已知条件p :x 2+2x -3>0;条件q :x >a ,且綈q 的一个充分不必要条件是綈p ,则a 的取值范围是________.思想方法指导 等价转化是将一些复杂的、生疏的问题转化成简单的、熟悉的问题,在解题中经常用到.本题可将题目中条件间的关系和集合间的关系相互转化.解析 (1)因为“p ∧q 是真命题”等价于“p ,q 都为真命题”,且“綈p 是假命题”等价于“p 是真命题”,所以“p ∧q 是真命题”是“綈p 是假命题”的充分不必要条件. (2)由x 2+2x -3>0,得x <-3或x >1,由綈q 的一个充分不必要条件是綈p ,可知綈p 是綈q 的充分不必要条件,等价于q 是p 的充分不必要条件. 所以{x |x >ax |x <-3或x >1},所以a ≥1.答案 (1)充分不必要 (2)[1,+∞)1.下列命题中的真命题为________.(填序号) ①若1x =1y,则x =y ;②若x 2=1,则x =1; ③若x =y ,则x =y ; ④若x <y ,则x 2<y 2. 答案 ①2.(教材改编)命题“若a >b ,则2a>2b-1”的否命题为________________. 答案 若a ≤b ,则2a≤2b-1解析 ∵“a >b ”的否定是“a ≤b ”,“2a>2b-1”的否定是“2a≤2b-1”,∴原命题的否命题是“若a ≤b ,则2a≤2b-1”.3.(2016·南京模拟)给出命题:若函数y =f (x )是幂函数,则函数y =f (x )的图象不过第四象限.在它的逆命题、否命题、逆否命题3个命题中,真命题的个数是________. 答案 1解析 原命题是真命题,故它的逆否命题是真命题;它的逆命题为“若函数y =f (x )的图象不过第四象限,则函数y =f (x )是幂函数”,显然逆命题为假命题,故原命题的否命题也为假命题.因此在它的逆命题、否命题、逆否命题3个命题中真命题只有1个. 4.(2015·重庆改编)“x >1”是“12log (x +2)<0”的____________条件.答案 充分不必要解析 由x >1⇒x +2>3⇒12log (x +2)<0,12log (x +2)<0⇒x +2>1⇒x >-1,故“x >1”是“12log (x +2)<0”的充分不必要条件.5.(2016·山东改编)已知直线a ,b 分别在两个不同的平面α,β内,则“直线a 和直线b 相交”是“平面α和平面β相交”的______________条件. 答案 充分不必要解析 若直线a 和直线b 相交,则平面α和平面β相交;若平面α和平面β相交,那么直线a 和直线b 可能平行或异面或相交.6.已知集合A ={x ∈R |12<2x<8},B ={x ∈R |-1<x <m +1},若x ∈B 成立的一个充分不必要条件是x ∈A ,则实数m 的取值范围是__________. 答案 (2,+∞)解析 A ={x ∈R |12<2x<8}={x |-1<x <3},∵x ∈B 成立的一个充分不必要条件是x ∈A , ∴A B ,∴m +1>3,即m >2.7.设U 为全集,A ,B 是集合,则“存在集合C 使得A ⊆C ,B ⊆∁U C ”是“A ∩B =∅”的________条件. 答案 充要解析 由Venn 图易知充分性成立.反之,A ∩B =∅时,由Venn 图(如图)可知,存在A =C ,同时满足A ⊆C ,B ⊆∁U C .故“存在集合C 使得A ⊆C ,B ⊆∁U C ”是“A ∩B =∅”的充要条件.*8.(2015·湖北改编)设a 1,a 2,…,a n ∈R ,n ≥3.若p :a 1,a 2,…,a n 成等比数列;q :(a 21+a 22+…+a 2n -1)(a 22+a 23+…+a 2n )=(a 1a 2+a 2a 3+…+a n -1a n )2,则下列说法正确的是________.(填序号)①p 是q 的必要条件,但不是q 的充分条件; ②p 是q 的充分条件,但不是q 的必要条件; ③p 是q 的充分必要条件;④p 既不是q 的充分条件,也不是q 的必要条件. 答案 ②解析 若p 成立,设a 1,a 2,…,a n 的公比为q ,则(a 21+a 22+…+a 2n -1)(a 22+a 23+…+a 2n )=a 21(1+q 2+…+q2n -4)·a 22(1+q 2+…+q2n -4)=a 21a 22(1+q 2+…+q2n -4)2,(a 1a 2+a 2a 3+…+a n -1a n )2=(a 1a 2)2(1+q 2+…+q2n -4)2,故q 成立,故p 是q 的充分条件.取a 1=a 2=…=a n =0,则q成立,而p 不成立,故p 不是q 的必要条件.9.(2016·无锡模拟)设a ,b ∈R ,则“a >b ”是“a |a |>b |b |”的__________条件. 答案 充要解析 设f (x )=x |x |,则f (x )=⎩⎪⎨⎪⎧x 2,x ≥0,-x 2,x <0,所以f (x )是R 上的增函数,所以“a >b ”是“a |a |>b |b |”的充要条件. 10.有三个命题:①“若x +y =0,则x ,y 互为相反数”的逆命题; ②“若a >b ,则a 2>b 2”的逆否命题;③“若x ≤-3,则x 2+x -6>0”的否命题. 其中真命题的序号为____________. 答案 ①解析 命题①为“若x ,y 互为相反数,则x +y =0”是真命题;因为命题“若a >b ,则a 2>b 2”是假命题,故命题②是假命题;命题③为“若x >-3,则x 2+x -6≤0”,因为x 2+x -6≤0⇔-3≤x ≤2,故命题③是假命题.综上知只有命题①是真命题.11.已知f (x )是定义在R 上的偶函数,且以2为周期,则“f (x )为[0,1]上的增函数”是“f (x )为[3,4]上的减函数”的________条件.(填“充分不必要”“必要不充分”“充要”“既不充分又不必要”) 答案 充要解析 ∵x ∈[0,1]时,f (x )是增函数, 又∵y =f (x )是偶函数,∴当x ∈[-1,0]时,f (x )是减函数. 当x ∈[3,4]时,x -4∈[-1,0], ∵T =2,∴f (x )=f (x -4).故x ∈[3,4]时,f (x )是减函数,充分性成立. 反之,若x ∈[3,4]时,f (x )是减函数, 此时x -4∈[-1,0], ∵T =2,∴f (x )=f (x -4), 则当x ∈[-1,0]时,f (x )是减函数. ∵y =f (x )是偶函数,∴当x ∈[0,1]时,f (x )是增函数,必要性也成立.故“f (x )为[0,1]上的增函数”是“f (x )为[3,4]上的减函数”的充要条件.12.若x <m -1或x >m +1是x 2-2x -3>0的必要不充分条件,则实数m 的取值范围是________. 答案 [0,2]解析 由已知易得{x |x 2-2x -x |x <m -1或x >m +1},又{x |x 2-2x -3>0}={x |x <-1或x >3},∴⎩⎪⎨⎪⎧-1≤m -1,m +1<3,或⎩⎪⎨⎪⎧-1<m -1,m +1≤3,∴0≤m ≤2.13.若“数列a n =n 2-2λn (n ∈N *)是递增数列”为假命题,则λ的取值范围是___________. 答案 [32,+∞)解析 若数列a n =n 2-2λn (n ∈N *)是递增数列,则有a n +1-a n >0,即2n +1>2λ对任意的n ∈N*都成立,于是可得3>2λ,即λ<32.故所求λ的取值范围是[32,+∞).*14.下列四个结论中:①“λ=0”是“λa =0”的充分不必要条件;②在△ABC 中,“AB 2+AC 2=BC 2”是“△ABC 为直角三角形”的充要条件; ③若a ,b ∈R ,则“a 2+b 2≠0”是“a ,b 全不为零”的充要条件; ④若a ,b ∈R ,则“a 2+b 2≠0”是“a ,b 不全为零”的充要条件. 正确的是________. 答案 ①④解析 由λ=0可以推出λa =0,但是由λa =0不一定推出λ=0成立,所以①正确; 由AB 2+AC 2=BC 2可以推出△ABC 是直角三角形,但是由△ABC 是直角三角形不能确定哪个角是直角,所以②不正确;由a 2+b 2≠0可以推出a ,b 不全为零, 反之,由a ,b 不全为零可以推出a 2+b 2≠0,所以“a 2+b 2≠0”是“a ,b 不全为零”的充要条件,而不是“a ,b 全不为零”的充要条件,所以③不正确,④正确.15.已知数列{a n }的前n 项和为S n =p n+q (p ≠0,且p ≠1).求证:数列{a n }为等比数列的充要条件为q =-1.证明 充分性:当q =-1时,a 1=p -1; 当n ≥2时,a n =S n -S n -1=p n -1(p -1),当n =1时也成立. ∴a n =pn -1(p -1),n ∈N *.又a n +1a n =p n p -p n -1p -=p ,∴数列{a n }为等比数列.必要性:当n =1时,a 1=S 1=p +q ; 当n ≥2时,a n =S n -S n -1=pn -1(p -1).∵p ≠0,且p ≠1,{a n }为等比数列, ∴a 2a 1=a n +1a n =p .∴p p -p +q=p ,即p -1=p +q ,∴q =-1.综上所述,q =-1是数列{a n }为等比数列的充要条件.。

高中数学《命题及其关系充分条件与必要条件》教案苏教版选修

高中数学《命题及其关系充分条件与必要条件》教案苏教版选修

高中数学《命题及其关系-充分条件与必要条件》教案苏教版选修一、教学目标:1. 让学生理解充分条件和必要条件的概念,掌握判断充分条件和必要条件的方法。

2. 培养学生运用充分条件和必要条件分析问题、解决问题的能力。

3. 帮助学生建立充分条件和必要条件之间的联系,理解它们在数学论证中的应用。

二、教学内容:1. 充分条件和必要条件的定义。

2. 判断充分条件和必要条件的方法。

3. 充分条件和必要条件与数学论证的关系。

三、教学重点与难点:重点:充分条件和必要条件的定义及判断方法。

难点:充分条件和必要条件在数学论证中的应用。

四、教学过程:1. 导入:通过生活实例引入充分条件和必要条件的概念。

2. 新课讲解:讲解充分条件和必要条件的定义,举例说明判断方法。

3. 课堂练习:让学生运用充分条件和必要条件判断给出的命题。

4. 案例分析:分析充分条件和必要条件在数学论证中的应用。

5. 总结提升:总结本节课的主要内容,强调充分条件和必要条件的重要性。

五、课后作业:1. 复习本节课的内容,理解充分条件和必要条件的概念及判断方法。

2. 完成课后练习题,巩固所学知识。

3. 思考充分条件和必要条件在实际问题中的应用,准备下一节课的分享。

六、教学策略:1. 采用问题驱动的教学方法,引导学生通过实例发现充分条件和必要条件的规律。

2. 利用逻辑推理和反证法,让学生在实践中掌握充分条件和必要条件的判断方法。

3. 设计具有针对性的练习题,及时巩固所学知识,提高学生的应用能力。

4. 组织小组讨论,鼓励学生分享自己的思路和经验,培养学生的合作意识。

七、教学准备:1. 准备相关的生活实例和数学案例,用于引导学生理解和应用充分条件和必要条件。

2. 设计课后练习题,包括基础题和拓展题,以满足不同层次学生的学习需求。

3. 准备教学PPT,用于辅助讲解和展示教学内容。

八、教学评价:1. 课堂表现评价:观察学生在课堂上的参与程度、提问回答情况,以及小组讨论的表现。

  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

第02节 命题及其关系、逻辑联结词、充分条件与必要条件班级__________ 姓名_____________ 学号___________ 得分__________一、选择题(本大题共12小题,每小题5分,在每小题给出的四个选择中,只有一个是符合题目要求的。

)1. 【2017浙江温州模拟】直线:10mx y +-=与直线:(2)10m x my -+-=,则“1m =”是“12l l ⊥”的( )A .充分不必要条件B .充要条件C .必要不充分条件D .既不充分也不必要条件 【答案】A.【解析】12l l ⊥⇔(2)00m m m m -+=⇒=或1m =,故是充分不必要条件,故选A.2.【2017陕西咸阳二模】已知命题p :“1m =-”,命题:“直线0x y -=与直线20x m y +=互相垂直”,则命题p 是命题的( ) A. 充分不必要条件 B. 必要不充分条件 C. 充要条件 D. 既不充分也不必要 【答案】A3.【2017江西4月质检】“()ln 20x +<”是“0x <”的( ) A. 充分不必要条件 B. 必要不充分条件C. 充分必要条件D. 既不充分也不必要条件 【答案】A【解析】“()ln 20x +<”可得: 021x <+<,即21x -<<-,必有0x <,充分性成立; 若“0x <”未必有21x -<<-,必要性不成立,所以“()ln 20x +<”是“0x <”的充分不必要,故选A.4.已知数列{}n a 的前项和为2n S an bn c =++,则数列{}n a 是等差数列的充要条件为( ) A .0,0a c ≠= B .0,0a c == C .0c = D .0c ≠ 【答案】C【解析】由2n S an bn c =++,可得:1a a b c =++,当2n ≥时,221112[]n n n a S S an bn c a n b n c an a b -=-=++--+-+=-+()(),数列{}n a 是等差数列的充要条件为20a a b a b c c -+=++⇒=.故选:C .5.【2017湖南郴州监测】设x R ∈,则“12x <<”是“|2|1x -<”的( )A .充分不必要条件B .必要不充分条件C .充要条件D .既不充分也不必要条件 【答案】A 【解析】试题分析:|2|113x x -<⇒<<⇒“12x <<”是“|2|1x -<”的充分不必要条件,故选A.6.【2017福建4月质检】已知集合{}{}2,1,,0A a B a ==,那么“1a =-”是“A B ⋂≠∅”的( )A. 充分而不必要条件B. 必要而不充分条件C. 充分必要条件D. 既不充分也不必要条件 【答案】C7.【2017天津红桥区二模】设p : (){|lg 1}x x y x ∈=-,: {|21}x x x -∈<,则p 是的( ) A. 充分且不必要条件 B. 必要且不充分条件 C. 充要条件 D. 既不充分也不必要条件 【答案】A【解析】:p 函数()lg 1y x =-得定义域为{}1x x , :0q x >, p 是的充分不必要条件,选A .8.【2017湖北黄冈三模】设,m n 是空间两条直线, ,αβ是空间两个平面,则下列命题中不正确的是( )A. 当n α⊥时,“n β⊥”是“//αβ”的充要条件B. 当m α⊂时,“m β⊥”是“αβ⊥”的充分不必要条件C. 当m α⊂时,“//n α”是“//m n ”的必要不充分条件D. 当m α⊂时,“n α⊥”是“m n ⊥”的充分不必要条件 【答案】C【解析】当m α⊂ 时,“//n α ” ⇒ “//m n ”或m 与异面“//m n ” ⇒ “//n α 或n α⊂ ”,所以当m α⊂ 时,“//n α ”是 “//m n ”的即不必要又不充分条件,故C 错误;当m α⊂ 时,“m β⊥ ” ⇒ “αβ⊥ ” ,“αβ⊥ ”推不出“m β⊥ ”,所以当m α⊂ 时,“m β⊥ ”是 “αβ⊥ ” ,的充分不必要条件,故B 正确;当n α⊥时 ,“n β⊥ ” ⇔ “αβ ” ,所以当n α⊥时 ,“n β⊥ ”是 “αβ ” ,成立的充要条件,故A 正确;当m α⊂ 时,“n α⊥ ” ⇒ “m n ⊥ ” ,“m n ⊥ ”推不出“n α⊥” ,当m α⊂时,“n α⊥”是“m n ⊥”的充分不必要条件,故D 正确,故选C. 9.在命题p 的四种形式(原命题、逆命题、否命题、逆否命题)中,真命题的个数记为f (p ),已知命题p :“若两条直线l 1:a 1x +b 1y +c 1=0,l 2:a 2x +b 2y +c 2=0平行,则a 1b 2-a 2b 1=0”.那么f (p )等于( )A .1B . 2C .3D .4 【答案】B10.【2017河北石家庄二模】已知向量()1,a m = , (),1b m = ,则“1m =”是“//a b ”成立的( )A. 充分不必要条件B. 必要不充分条件C. 充要条件D. 既不充分也不必要条件 【答案】A【解析】当1m =时, a b = 可以推出//a b ,当//a b 时, 211,1,1m m m m =⇒==±不能推出 1.m =所以,“1m =”是“//a b”成立的充分不必要条件.选A.11.已知m R ∈,“函数21xy m =+-有零点”是“函数log m y x =在()0,+∞上为减函数”的( )A .充分不必要条件B .必要不充分条件C .充要条件D .既不充分也不必要条件 【答案】B【解析】若函数()21xy f x m ==+-由零点,则(0)111f m m =+-=<,当0m ≤时,函数log m y x =不成立,若函数log m y x =在()0,+∞上为减函数,则01m <<,此时函数21x y m =+-有零点是成立的,所以“函数21x y m =+-有零点”是“函数log m y x =在()0,+∞上为减函数”的必要不充分条件,故选B .12.【2017浙江温州模拟】设函数()()2,,R 0f x ax bx c a b c a =++∈>且,则“02b f f a ⎛⎫⎛⎫-< ⎪ ⎪⎝⎭⎝⎭”是“()f x 与()()f f x 都恰有两个零点”的( )A .充分不必要条件B .必要不充分条件C .充分必要条件D .既不充分也不必要条件 【答案】C二、填空题(本大题共4小题,每小题5分,共20分。

把答案填在题中的横线上。

) 13.命题“若()f x 是奇函数,则()f x -是奇函数”的否命题是________. 【答案】若()f x 不是奇函数,则()f x -不是奇函数 【解析】否命题既否定题设又否定结论.14.已知条件()2:log 10p x -<,条件:q x a >,若p 是的充分不必要条件,则实数的取值范围是______. 【答案】(],0-∞【解析】条件p :log 2(1−x )<0,∴0<1−x <1,解得0<x <1. 条件q :x >a ,若p 是q 的充分不必要条件,∴a ⩽0. 则实数a 的取值范围是:(−∞,0]. 故答案为:(−∞,0].15.【2017辽宁重点中学协作体模拟】有下列命题: ①在函数cos cos 44y x x ππ⎛⎫⎛⎫=-+ ⎪ ⎪⎝⎭⎝⎭的图象中,相邻两个对称中心的距离为π;②函数31x y x +=-的图象关于点()1,1-对称;③“ 5a ≠且5b ≠-”是“0a b +≠”的必要不充分条件;④已知命题p :对任意的x R ∈,都有sin 1x ≤,则p ⌝是:存在x R ∈,使得sin 1x >;⑤在ABC 中,若3sin 4cos 6A B +=, 4sin 3cos 1B A +=,则角C 等于30︒或150︒.其中所有真命题的个数是__________.【答案】116.【2017天津红桥区二模】已知下列命题:①函数()f x =有最小值2;②“2450x x --=”的一个必要不充分条件是“5x =”;③函数()3231f x x x =-+在点()()2,2f 处的切线方程为3y =-.其中正确命题的序号是__________. 【答案】③【解析】()f x =设t t =≥ ,()1f t t t=+ 在)+∞上为增函数, ()f x 的最小值为2,①错误; ②25450x x x =⇒--= ,“2450x x --=”的一个必要不充分条件是“5x =”,错误;③函数()3231f x x x =-+在点()()2,2f 处的切线方程为3y =-,正确;正确命题的序号为③.三、解答题 (本大题共4小题,共40分.解答应写出文字说明、证明过程或演算步骤.)17.【2017山西孝义二轮】已知2:8200p x x --≤,:(1)(1)0(0)q x a x a a -+--≤>.若p是的充分不必要条件,求实数的取值范围. 【答案】[9,)+∞ 【解析】试题分析:首先求得命题p 和命题的的取值范围,然后将问题转化为命题p 的的取值的集合是命题的的取值的集合的真子集,由此求得的取值范围. 试题解析:2:8200210p x x x --≤⇔-≤≤,:(1)(1)0(0)11q x a x a a a x a -+--≤>⇔-≤≤+.∵p q ⇒,q p ∞,∴{|210}{|11}x x x a x a ⊂-≤≤-≤≤+≠.故有121100a a a -<-⎧⎪+>⎨⎪>⎩,解得9a >.又当9a =时,也满足条件,因此,所求实数的取值范围为[9,)+∞.18.已知集合A ={x |x 2-4mx +2m +6=0},B ={x |x <0},若命题“A B =∅ ”是假命题,求实数m 的取值范围. 【答案】{}1m m ≤-.19.【2017湖北襄阳四校联考】设命题:p 实数满足:03422<+-a ax x ,其中0>a .命题:q 实数满足121-⎪⎭⎫⎝⎛=m x ,其中()2,1∈m(1)若41=a ,且q p ∧为真,求实数的取值范围; (2)p ⌝是q ⌝的充分不必要条件,求实数的取值范围. 【答案】(1)⎭⎬⎫⎩⎨⎧<<4321x x ;(2)11[,]32. 【解析】试题分析::(1)先解出p q ,下的不等式,然后由p q ∧为真知p q ,都为真,由此可求得实数的取值范围;(2)由p ⌝是q ⌝的充分不必要条件便可得到1231a a ⎧=⎪⎨⎪>⎩或1231a a ⎧<⎪⎨⎪≥⎩,解该不等式组即得实数的取值范围.试题解析:(1)()03:><<a a x a p 121:<<x q ……………………………………2分41=a 时 4341:<<x p p q ∧Q 为真 p ∴真且真……………………………………………………3分⎪⎪⎩⎪⎪⎨⎧<<<<1214341x x 得4321<<x 即q p ∧为真时,实数的取值范围为⎭⎬⎫⎩⎨⎧<<4321x x…………………………5分20.设命题p:实数x 满足22430x ax a -+<,其中0a >,命题:q 实数满足2260,280.x x x x ⎧--≤⎪⎨+->⎪⎩. (1)若1,a =且p q ∧为真,求实数的取值范围; (2)若p ⌝是⌝的充分不必要条件,求实数a 的取值范围. 【答案】(1)(2,3);(2)(]1,2.【解析】(1)当1a =时,{}:13p x x <<,{}:23q x x <≤, 又p q ∧为真,所以p 真且真, 由1323x x <<⎧⎨<≤⎩,得23x <<所以实数的取值范围为(2,3)。

相关文档
最新文档