电力系统保护与分析 ELEC4617 章节3、4
电力系统继电保护教材
电力系统继电保护教材引言电力系统是现代社会不可或缺的基础设施之一。
继电保护作为电力系统的重要组成部分,对于保障电力系统的安全、可靠运行至关重要。
本教材将介绍电力系统继电保护的基本原理、常用设备和典型应用场景,旨在帮助读者理解和掌握继电保护的关键概念和技术。
第一章继电保护概述1.1 什么是继电保护继电保护是指在电力系统发生故障时,通过相应的继电器装置来检测故障信号并采取相应的保护措施,以防止故障进一步扩大导致系统崩溃或设备损坏。
1.2 继电保护的作用继电保护的主要作用是保障电力系统的设备和人员安全,防止故障扩大和事故发生。
通过快速检测和隔离故障,继电保护可以降低故障对电力系统的影响,并保证电力系统的可靠运行。
1.3 继电保护的基本原理继电保护的基本原理是基于故障电流的检测和判断。
当电力系统发生故障时,故障电流会引发继电器装置的动作,从而启动相应的保护动作。
第二章继电保护设备2.1 继电保护装置的分类继电保护装置根据其功能和作用可分为过电流保护、距离保护、差动保护、方向保护等多种类型。
本章将详细介绍不同类型的继电保护装置的工作原理和应用场景。
2.2 继电保护装置的组成部分继电保护装置一般由接口电路、判断电路和输出电路组成。
接口电路用于接收故障信号,判断电路用于根据故障信号判断故障类型和位置,输出电路用于发出保护动作指令。
本节将详细介绍继电保护装置的组成部分及其功能。
第三章继电保护应用场景3.1 高压线路继电保护高压线路是电力系统中最重要的组成部分之一,对其进行可靠的继电保护至关重要。
本节将介绍高压线路继电保护的基本原理、常用装置和应用技术。
3.2 变电站继电保护变电站是电力系统中起重要作用的节点,需要进行全面而可靠的继电保护。
本节将介绍变电站继电保护的特点、技术要求以及常见的继电保护装置。
3.3 发电机保护发电机是电力系统的核心设备之一,对其进行有效的保护至关重要。
本节将介绍发电机保护的原理、装置和常见问题。
《电力系统分析》课件
频率调整的方法与策略
频率调整的方法
电力系统频率的调整可以通过改变发电机的出力、投切负荷、投切发电机组等方法实现。
频率调整的策略
频率调整的策略包括基于频率偏差的调整、基于负荷预测的调整、基于经济性的调整等。 这些策略各有优缺点,应根据电力系统的实际情况选择合适的策略。
频率调整的自动化
为了实现快速、准确的频率调整,需要建立自动化的频率调整系统。该系统可以根据实时 监测到的频率值,自动调整发电机的出力或投切负荷,以维持频率稳定。
电力系统的组成
电源
包括发电厂、小型发电装置等,负责将各种 一次能源转换为电能。
负荷
各种用电设备,消耗电能并转换为其他形式 的能量。
电网由各种电压等级的输电线路和电线路组成 的网络,负责传输和分配电能。
电力系统的运行和管理
通过调度中心等机构对电力系统的运行进行 管理和控制。
电力系统的基本参数
电压
事故状态
发生重大事故导致电力系 统严重受损,无法满足正 常需求。
电力系统的运行状态
01
02
03
正常运行状态
电力系统在正常条件下运 行,满足负荷需求,各项 参数在规定范围内。
异常运行状态
由于某些原因导致电力系 统部分设备异常运行,但 仍能满足基本需求。
事故状态
发生重大事故导致电力系 统严重受损,无法满足正 常需求。
04
电力系统无功功率平衡与 电压调整
04
电力系统无功功率平衡与 电压调整
电力系统无功功率平衡
无功功率平衡的概念
无功功率平衡是电力系统稳定运行的重要条件,它确保了系统中 的无功电源和无功负荷之间的平衡。
无功功率不平衡的影响
无功功率不平衡会导致电压波动、系统稳定性降低、设备过热等问 题,影响电力系统的正常运行。
电力系统分析习题与复习资料
电力系统分析目录第一部分电力系统稳态分析第一章电力系统的基本概念第二章电力系统的元件参数及等值电路第三章简单电力系统的计算和分析第四章电力系统潮流的计算机算法第五章电力系统的有功功率和频率调整第六章电力系统的无功功率和电压调整第二部分电力系统暂态分析第七章电力系统故障分析的基本知识第八章同步发电机突然三相短路分析第九章电力系统三相短路的实用计算第十章对称分量法及元件的各序参数和等值电路第十一章不对称故障的分析、计算第十二章电力系统各元件的机电特性第十三章电力系统静态稳定第十四章电力系统暂态稳定第十五章研究生入学考试试题附录第一部分电力系统稳态分析电力系统稳态分析,研究的内容分为两类,一类是电力系统稳态运行状况下的分析与潮流分布计算,另一类是电力系统稳态运行状况的优化和调整。
第一章电力系统的基本概念1-1 什么叫电力系统、电力网及动力系统?电力系统为什么要采用高压输电?1-2 为什么要规定额定电压?电力线、发电机、变压器和用电设备的额定电压是如何确定的?1-3 我国电网的电压等级有哪些?1-4 标出图1-4电力系统中各元件的额定电压。
1-5 请回答如图1-5所示电力系统中的二个问题:⑴ 发电机G 、变压器1T 2T 3T 4T 、三相电动机D 、单相电灯L 等各元件的额定电压。
⑵ 当变压器1T 在+2.5%抽头处工作,2T 在主抽头处工作,3T 在-2.5%抽头处工作时,求这些变压器的实际变比。
1-6 图1-6中已标明各级电网的电压等级。
试标出图中发电机和电动机的额定电压及变压器的额定变比。
1-7 电力系统结线如图1-7所示,电网各级电压示于图中。
试求:⑴发电机G 和变压器1T 、2T 、3T 高低压侧的额定电压。
⑵设变压器1T 工作于+2.5%抽头, 2T 工作于主抽头,3T 工作于-5%抽头,求这些变压器的实际变比。
习题1-4图1-8 比较两种接地方式的优缺点,分析其适用范围。
1-9 什么叫三相系统中性点位移?它在什么情况下发生?中性点不接地系统发生单相接地时,非故障相电压为什么增加3倍?1-10 若在变压器中性点经消弧线圈接地,消弧线圈的作用是什么?1-11 什么叫分裂导线、扩径导线?为什么要用这种导线?1-12 架空线为什么要换位?规程规定,架空线长于多少公里就应进行换位?1-13 架空线的电压在35kV以上应该用悬式绝缘子,如采用X—4.5型绝缘子时,各种电压等级应使用多少片绝缘子?第二章电力系统各元件的参数及等值网络2-1 一条110kV、80km的单回输电线路,导线型号为LGJ—150,水平排列,其线间距离为4m,求此输电线路在40℃时的参数,并画出等值电路。
电力系统保护
电力系统保护随着社会的发展,电力在我们日常生活中扮演着重要角色。
然而,电力系统也存在一些安全隐患,如电流过载、短路等问题。
为了保护电力系统的安全运行,电力系统保护至关重要。
本文将详细介绍电力系统保护的原理、组成部分和工作流程。
1. 电力系统保护的原理电力系统保护的原理是通过及时检测电力系统中的异常情况,并采取相应的措施来保护电力系统的安全运行。
电力系统保护主要包括电流保护、电压保护和跳闸保护。
电流保护是通过检测电流是否超过额定值来判断电力系统中是否存在电流过载情况。
当电流超过额定值时,电力系统保护将触发相应的措施,如切断电源或降低负载电流。
这样可以避免电力系统受到损坏或故障。
电压保护是通过检测电压是否低于或超过设定值来判断电力系统中是否存在电压异常情况。
当电压低于设定值时,电力系统保护将采取措施,如切断电源或使用备用电源。
当电压超过设定值时,电力系统保护将降低电压或切断电源,以防止设备受到过压损伤。
跳闸保护是电力系统保护中最常见的一种保护方式。
当电力系统中出现故障或异常情况时,跳闸保护将自动切断电源。
跳闸保护可以有效地防止电力系统受到继续损坏或故障。
2. 电力系统保护的组成部分电力系统保护主要由保护装置、保护信号、延时装置和断路器等组成。
保护装置是电力系统保护的核心部分,它通过检测电流、电压和其他参数来判断电力系统中是否存在异常情况。
保护装置可以通过电流互感器和电压互感器等装置获取电力系统的参数,并根据预设的保护规则进行判断和控制。
保护信号是将保护装置得出的判断结果传输给延时装置和断路器等设备的信号。
保护信号可以通过导线、光纤等传输媒介进行传输。
延时装置是在检测到异常情况后,延迟一段时间后再触发跳闸保护装置。
延时的目的是为了排除临时的故障或干扰造成的误判。
断路器是主要用来切断电源的装置。
当保护装置检测到异常情况并传输给断路器时,断路器将迅速切断电源,以保护电力系统的安全运行。
3. 电力系统保护的工作流程电力系统保护的工作流程一般分为检测阶段、判断阶段、控制阶段和恢复阶段。
电力系统继电保护教材
电力系统继电保护教材1. 简介继电保护是电力系统中保护设备的一种重要方式,它通过对电力系统的监测、检测和控制来保护电力设备的安全运行。
本教材将介绍电力系统继电保护的基本概念、原理和常见的保护装置。
2. 电力系统继电保护的基本原理电力系统继电保护的基本原理是通过监测电力系统中的参数变化,如电流、电压、频率等,来判断电力设备是否处于故障状态,并采取相应的措施保护电力设备。
本章将介绍电力系统继电保护的基本工作原理和保护装置的分类。
2.1 电力系统继电保护的基本工作原理电力系统继电保护的基本工作原理是根据电力设备在正常工作状态和故障状态下的参数差异来判断设备是否处于故障状态。
通过对电流、电压、频率等参数进行监测和检测,可以及时发现电力设备的异常情况,并采取相应的保护措施,保证电力设备的安全运行。
2.2 保护装置的分类根据保护装置的功能和工作原理的不同,可以将保护装置分为不同的类型。
常见的保护装置有过电流保护装置、距离保护装置、差动保护装置、过压保护装置等。
本节将对这些保护装置的原理和应用进行介绍。
3. 电力系统继电保护的主要问题和解决方法电力系统继电保护在实际应用过程中可能会遇到一些常见的问题,如误动、误保护、误动等。
本章将介绍这些问题的原因和解决方法,以及如何进行保护装置的测试和维护。
3.1 误动的原因和解决方法误动是指保护装置在正常工作状态下误动的情况。
误动可能会导致电力系统的不稳定运行,甚至引发整个电力系统的故障。
本节将介绍误动的原因和解决方法,以及如何通过调整保护装置的参数来避免误动的发生。
3.2 误保护的原因和解决方法误保护是指保护装置在故障状态下未能正常工作的情况。
误保护可能会导致电力设备受到进一步的损害,甚至引发整个电力系统的崩溃。
本节将介绍误保护的原因和解决方法,以及如何通过调整保护装置的参数来避免误保护的发生。
3.3 保护装置的测试和维护保护装置的测试和维护是保证电力系统继电保护正常工作的关键。
电力系统继电保护故障分析与处理
电力系统继电保护故障分析与处理一、前言电力系统继电保护是电力系统安全运行的重要组成部分,其作用是在发生故障时,迅速、准确地切除故障部分,并保护设备和系统的安全稳定运行。
继电保护在实际操作中也会遇到各种故障和问题,因此对继电保护故障进行及时分析和处理是非常重要的。
二、继电保护系统常见故障1. 继电保护元件故障:继电保护元件包括各种继电器、保护装置、电流互感器、电压互感器等,这些元件故障将直接影响继电保护系统的性能和稳定性。
常见的故障包括元件损坏、接线故障、内部故障等。
2. 继电保护逻辑故障:继电保护的逻辑部分包括各种保护方案、保护参数、保护联锁等,这些逻辑故障将导致继电保护系统误动作、漏动作甚至失效。
常见的故障包括保护参数设置错误、保护逻辑不合理、保护联锁错误等。
4. 继电保护系统参数调整故障:继电保护系统参数调整是继电保护的重要工作之一,而参数调整故障将导致继电保护系统性能下降或失效。
常见的故障包括参数调整错误、参数调整不稳定、参数调整结果误差大等。
三、继电保护故障处理方法1. 故障分析:当继电保护系统发生故障时,首先需要进行故障分析,确定故障的类型和范围,并查找故障的原因和根源。
故障分析可以通过检查继电保护元件、逻辑、装置和参数进行,也可以通过检查系统运行记录、报警信息和其他相关数据进行。
2. 故障处理:根据故障分析的结果,对继电保护系统进行相应的处理。
对于继电保护元件故障,需要及时更换或修理损坏的元件;对于继电保护逻辑故障,需要对保护方案、参数、联锁进行调整或修正;对于继电保护装置故障,需要对装置进行维修或更换;对于继电保护系统参数调整故障,需要重新进行参数调整或修正。
3. 故障预防:继电保护故障的发生对电力系统安全运行将产生重大影响,因此预防继电保护故障的发生非常重要。
可以通过定期检查、维护和保养继电保护系统,加强人员培训和技能提高,做好继电保护系统的防雷、防潮、防尘等环境保护工作,采用先进的继电保护技术和设备等措施进行故障预防。
电力系统分析课件
电力系统分析的案例分析
通过案例分析,我们可以深入了解电力系统分析在实际应用中的具体作用和效果。这些案例将涵盖不同 类型的电力系统和不同的分析场景。
结论和总结
通过电力系统分析,我们可以发现潜在问题,并采取相应点和要点。
电力系统分析ppt课件
这份电力系统分析ppt课件将为您介绍电力系统的基本概念和原理,包括电力 系统的组成和拓扑结构,以及电力系统分析的目的和方法。
电力系统的基本概念和原理
了解电力系统的基本概念如电压、电流、功率以及电力传输的原理对于分析和优化电力系统至关重要。
电力系统的组成和拓扑结构
电力系统由多种组件组成,包括发电厂、变电站、输电线路和配电系统。了解电力系统的拓扑结构有助 于优化电力传输和分配。
电力系统分析的目的和方法
电力系统分析的目的是识别和解决潜在问题,并确保电力系统的稳定运行。 了解电力系统分析的常用方法和技术可以帮助我们做出准确的决策。
电力系统分析的常用工具和技术
电力系统分析常使用各种工具和技术,例如潮流计算、短路分析和负荷流动分析。这些工具和技术可以 帮助我们评估电力系统的性能和安全性。
电力系统的短路分析与保护
电力系统的短路分析与保护电力系统是现代社会不可或缺的基础设施,它为人们的生活和工业生产提供了可靠的电力供应。
然而,电力系统中常常会发生各种故障,其中最常见的就是短路故障。
短路故障不仅会给电力系统带来巨大的损失,还可能对人们的生命财产安全造成严重威胁。
因此,对电力系统的短路分析与保护显得尤为重要。
短路故障是指电力系统中两个或多个电路元件之间发生直接连接的故障。
这种故障会导致电流异常增大,电压异常下降,甚至引发火灾和爆炸等严重后果。
因此,短路故障的分析和保护是电力系统设计和运行中的重要环节。
首先,短路故障的分析是电力系统设计的基础。
通过对电力系统中各个电路元件的参数和连接关系进行分析,可以确定短路故障的潜在位置和可能的影响范围。
在设计电力系统时,必须充分考虑短路故障的可能性,并采取相应的措施来防止和减轻故障的发生和影响。
其次,短路故障的保护是电力系统运行的关键。
在电力系统中,短路故障会引起电流异常增大,如果不及时采取保护措施,可能会导致电力设备的过载、烧毁甚至爆炸。
因此,电力系统中必须设置有效的短路保护装置,及时切断故障电路,保护电力设备和系统的安全运行。
短路保护装置通常包括熔断器、断路器和差动保护等。
熔断器是一种通过熔断器芯片的熔断来切断电路的保护装置,它具有快速响应、可靠性高的特点。
断路器是一种通过机械开关来切断电路的保护装置,它可以手动或自动操作,适用于各种电力系统。
差动保护是一种通过比较电流差值来判断是否存在短路故障,并切断故障电路的保护装置,它具有高速、精确的特点。
在进行短路分析和保护设计时,还需要考虑电力系统的负荷特性、电源特性、线路参数等因素。
负荷特性是指电力系统在正常运行和故障状态下的负荷变化情况,它对短路故障的发生和保护措施的选择具有重要影响。
电源特性是指电力系统的供电来源和电源容量,它决定了短路故障时系统的电流和电压变化情况。
线路参数是指电力系统中各个电路元件的电阻、电感和电容等参数,它对短路故障的传播和保护装置的选择起着重要作用。
电力系统中的电流保护分析
电力系统中的电流保护分析在电力系统的运行中,电流保护是一种至关重要的保护手段。
它能够快速、准确地检测故障电流,并及时采取相应的措施,以保障电力系统的安全稳定运行。
电流保护的基本原理是基于电流的变化来判断电力系统是否发生故障。
当系统正常运行时,电流处于一个相对稳定的范围内。
然而,一旦发生短路等故障,电流会急剧增大。
电流保护装置通过检测电流的大小和变化率,来判断是否需要动作,从而切除故障部分,保护系统的其他部分不受影响。
电流保护主要包括过电流保护、限时电流速断保护和电流速断保护三种类型。
过电流保护是一种按照躲开最大负荷电流来整定的保护方式。
它不仅能够保护本线路的全长,还能够作为相邻下一级线路的远后备保护。
然而,过电流保护的动作时限较长,尤其是靠近电源侧的保护装置,其动作时限往往较长。
这是因为它需要保证选择性,即只有在故障发生在本线路范围内时才动作,而不能因为相邻线路的故障而误动作。
因此,过电流保护一般用于对动作时限要求不高的场合。
限时电流速断保护则是为了弥补过电流保护动作时限长的缺点而设置的。
它的动作电流按照躲开下一条线路的电流速断保护的动作电流来整定,从而在动作时限上比过电流保护缩短了一个时限阶段。
限时电流速断保护能够保护本线路的全长,同时也能作为相邻线路的后备保护。
但它的保护范围仍然有限,不能保护线路的全长。
电流速断保护是一种能够快速切除故障的保护方式。
它的动作电流按照躲开本线路末端的最大短路电流来整定,从而能够在最短的时间内动作。
电流速断保护的优点是动作迅速,但它的保护范围受到系统运行方式和短路类型的影响较大,往往只能保护线路的一部分。
在实际应用中,为了提高电流保护的性能和可靠性,通常会采用一些辅助措施。
例如,采用电流互感器来将一次侧的大电流变换为二次侧的小电流,以便保护装置进行测量和判断。
同时,还会对电流互感器进行准确的选型和校验,以确保其测量精度和性能满足要求。
此外,电流保护的整定计算也是非常关键的环节。
电气工程中的电力系统保护资料
电气工程中的电力系统保护资料随着电气工程的发展,电力系统的保护成为重要的关注点。
电力系统保护旨在保证电力系统的安全运行,防止电力系统因故障或其他异常情况而受损,从而保护电力设备和用户的安全。
为了实现电力系统保护的目标,各种资料和技术手段被广泛应用。
本文将讨论电气工程中的电力系统保护资料。
一、电力系统保护资料的种类1. 保护继电器参数手册:保护继电器是电力系统保护的核心装置,它负责检测电力系统中的故障并采取必要的保护措施。
保护继电器参数手册详细介绍了各种保护继电器的功能、特性、安装要求和参数设置等信息,为电力系统保护的设计和操作提供了重要的参考依据。
2. 电流互感器和电压互感器技术资料:电流互感器和电压互感器是用来测量电力系统中电流和电压的重要装置。
电流互感器和电压互感器技术资料中包括了它们的原理、型号选择、安装要求和使用注意事项等内容,有助于正确选择和使用互感器,并保证其准确可靠的工作。
3. 电力系统保护设备操作手册:电力系统保护设备操作手册提供了对各种保护装置的正确操作方法和故障处理流程等详细说明。
这些手册能够帮助工程师和操作人员正确操作保护设备,提高电力系统保护的水平。
4. 电力系统故障分析案例:电力系统经常会发生各种故障,对这些故障进行准确的分析并找出解决办法是电力系统保护的关键。
电力系统故障分析案例记录了各种故障的详细信息、分析方法和解决方案,为电力系统故障分析提供了宝贵的经验。
二、电力系统保护资料的应用1. 保护系统设计:电力系统保护需要根据具体情况进行系统设计。
通过研读电力系统保护资料,工程师可以了解各种保护装置的特性和应用范围,从而合理选择和配置保护装置,确保电力系统保护的准确性和可靠性。
2. 保护设备参数设置:电力系统保护设备需要根据具体系统参数进行参数设置,以便能够准确判别故障并采取相应的保护措施。
电力系统保护资料中提供了各种保护装置的参数设置方法和标准值,为工程师提供了指导。
电力系统分析要点与习题第二版 (2)
电力系统分析要点与习题第二版简介《电力系统分析要点与习题第二版》是一本介绍电力系统分析相关知识的教材。
本书从电力系统的基础知识、电力负荷和电力市场开始,逐步深入到电力系统的稳态与稳定分析、电力系统的暂态分析、功率系统的控制与保护等方面。
在每个章节中,本书给出了大量的例子和习题,以帮助读者全面掌握电力系统分析的核心知识。
电力系统的基础知识电力系统的基础知识包括电力系统的组成、电力系统的运行方式以及电力系统的负荷分布。
在这一章节中,本书详细介绍了电力系统的不同组成部分,包括发电机、变压器、开关和输电线路等。
同时,本书还介绍了电力系统的运行方式,包括传统的主动力平衡(AC)系统和现代的直流输电(HVDC)系统。
另外,本章节还详细介绍了电力系统的负荷分布,包括短时和长时的负荷曲线。
电力负荷和电力市场在本章节中,本书介绍了电力负荷和电力市场的概念,以及不同电力市场之间的区别。
本书还介绍了电力市场中不同标准的电力,包括质量、计量和价格等方面的标准。
电力系统的稳态与稳定分析电力系统的稳态与稳定分析是电力系统分析的核心内容之一。
在这一章节中,本书详细介绍了电力系统的稳态和稳定性的定义、计算方法和评价方法。
同时,本书还介绍了电力系统的稳定分析中常见的各种不稳定状态,包括短路、缺相和失稳等状态。
电力系统的暂态分析电力系统的暂态分析是电力系统分析的另一个核心内容。
在这一章节中,本书详细介绍了电力系统的暂态分析的原理、方法和计算技术。
本书还通过大量的例子说明了电力系统暂态分析的实践应用。
功率系统的控制与保护功率系统的控制与保护是电力系统分析的重要内容之一。
在这一章节中,本书介绍了功率系统控制和保护的原则、方法和技术。
本书还详细介绍了电力系统故障诊断和故障恢复的技术,以及各种电力系统保护装置的原理和应用。
习题解答本书的章节中,均配有大量的例子和习题,以帮助读者掌握电力系统分析的核心知识。
在这一章节中,本书提供了对所有习题的详细解答,以帮助读者加深对所学知识的理解。
电力系统保护与自动化教案
电力系统保护与自动化教案引言:电力系统保护与自动化是电力工程领域的重要学科,它涉及到电力系统的安全、稳定和可靠运行。
本文将介绍一份电力系统保护与自动化的教案,帮助学习者全面了解该领域的基础知识和技术应用。
一、电力系统保护的概述电力系统保护是指通过各种保护装置和控制手段,对电力系统中的设备和电路进行监测、检测和控制,以防止电力系统发生故障和事故,保障电力系统的安全运行。
本节将介绍电力系统保护的基本原理和分类。
1.1 电力系统保护的基本原理电力系统保护的基本原理是根据电力系统中的各种故障和事故特征,通过监测设备和控制手段,及时发现和隔离故障,保护电力系统的设备和电路。
电力系统保护的基本原理包括故障检测、故障隔离和故障恢复三个方面。
1.2 电力系统保护的分类电力系统保护按照保护对象的不同可以分为发电机保护、变压器保护、线路保护等。
此外,还有过电压保护、过电流保护、接地保护等各种类型的保护。
本节将分别介绍各类保护的基本原理和应用。
二、电力系统自动化的概述电力系统自动化是指通过各种自动控制装置和信息技术手段,对电力系统中的各个环节进行监测、控制和管理,实现电力系统的高效、智能和可靠运行。
本节将介绍电力系统自动化的基本概念和应用。
2.1 电力系统自动化的基本概念电力系统自动化包括自动化监测、自动化控制和自动化管理三个方面。
自动化监测主要通过各种传感器和监测装置,对电力系统中的各种参数进行实时监测和数据采集;自动化控制主要通过各种控制装置和执行器,对电力系统中的各个设备和电路进行远程控制和调节;自动化管理主要通过信息技术手段,对电力系统中的各种数据和信息进行集中管理和处理。
2.2 电力系统自动化的应用电力系统自动化的应用包括电力系统调度自动化、电力系统远动自动化、电力系统远检自动化等。
通过电力系统自动化的应用,可以提高电力系统的运行效率和可靠性,减少人为操作的错误和事故风险,实现电力系统的智能化和可持续发展。
电力系统中的电力系统保护资料
电力系统中的电力系统保护资料近年来,电力系统在社会经济发展中起到了至关重要的作用。
然而,电力系统也面临着各种各样的潜在风险和威胁,例如电气故障、电力负荷不平衡、非法操作、恶劣天气等。
为了确保电力系统的安全和可靠运行,电力系统保护资料成为了必不可少的一环。
一、电力系统保护的重要性电力系统保护是指在电力系统中,通过采取各种措施和装置,防止故障的蔓延和保护系统设备免受损坏,保证电力系统的安全和可靠运行。
它的重要性主要体现在以下几个方面:1. 人身安全保护:电力系统保护旨在防止电路故障引起的电击事故,保护人员和设备免受伤害。
2. 设备保护:电力系统中的各种设备如发电机、变压器、开关设备等需要得到有效的保护,以免因故障导致设备损坏,影响电力系统的正常运行。
3. 电力系统运行的稳定性:电力系统保护措施能够快速检测故障并及时采取对策,防止故障扩大并导致系统运行不稳定。
4. 维护电力系统的连续供电能力:电力系统保护资料可以提供关键的信息,包括系统拓扑、设备参数、故障记录等,帮助工程师快速定位和处理故障,缩短电力系统停电时间,确保用户得到连续供电。
二、电力系统保护资料的内容和形式电力系统保护资料包括但不限于以下内容和形式:1. 设备手册和技术规范:各类设备的使用手册和技术规范,包括设备的工作原理、性能参数、安装和维护要求等。
2. 操作指南和应急预案:电力系统操作指南和应急预案,包括各类操作步骤、操作要领、事故判断与处理方法等。
3. 电气图纸和电路图:电力系统的电气图纸和电路图,清晰地展示了系统的拓扑结构、设备连接关系、电气元件参数等。
4. 故障记录和分析报告:对电力系统出现的故障进行记录和分析,包括故障发生的时间、地点、原因以及处理方法。
5. 联系方式和服务支持:包括相关部门和人员的联系方式,方便在紧急情况下及时联系到相关人员获得技术支持。
三、电力系统保护资料的管理和保护为了更好地管理和保护电力系统保护资料,以下是一些建议:1. 建立完善的档案管理制度:制定详细的文件命名规则,建立档案目录和索引,确保电力系统保护资料的查找和管理便捷。
电力系统保护考研专业课资料
电力系统保护考研专业课资料电力系统保护是电力工程中至关重要的一部分,其目的是保障电力系统的安全和稳定运行。
作为电力系统专业考研的重要内容,掌握相关资料对于备考者来说具有极大的帮助。
本文将为大家介绍一些电力系统保护的考研专业课资料,希望能为大家的备考提供指导和参考。
一、教材类资料1. 《电力系统保护与自动化设备》这本教材是电力系统保护领域的经典教材之一,由中国电力出版社出版。
该书包括电力系统保护基础知识、保护装置的基本原理与参数、故障与故障分析等内容。
它系统地介绍了电力系统保护的理论与实践,对于考研专业课的学习非常有帮助。
2. 《电力系统自动化及其保护》这本教材是电力系统保护与自动化专业课的参考教材之一,由国家电网公司编写。
该书涵盖了电力系统自动化的基本知识、电力系统保护的原理和方法等内容,以及电力系统继电保护、电力系统自动化等方面的内容。
它是备考电力系统保护与自动化的考研学生的重要参考书之一。
二、论文类资料1. 《电力系统保护方案的研究与优化》这是一篇较为全面的电力系统保护方案研究论文,作者是电力工程领域的专家。
该论文涵盖了电力系统保护方案的选择、优化和改进的方法和技术。
它对于研究电力系统保护方案以及备考电力系统保护专业课的学生都具有很大的参考价值。
2. 《电力系统保护中的故障分析研究》这篇论文主要研究电力系统保护中的故障分析方法和技术。
论文作者对电力系统保护中常见的故障模式进行了详细分析,并提出了一种基于故障模式的改进方法。
该论文对于理解电力系统的故障分析原理和方法具有重要的参考价值。
三、期刊类资料1.《电力系统保护与控制技术》这是一本电力系统保护与控制技术专业期刊,该期刊发表了大量与电力系统保护相关的研究论文和实践经验等。
阅读该期刊可以了解到最新的电力系统保护技术和应用实例,对于备考电力系统保护专业课也能提供更多的实践案例和理论指导。
2.《电力系统保护与自动化设备应用技术》这本期刊主要关注电力系统保护与自动化设备在实际工程中的应用技术。
电力系统保护与分析 ELEC4617 章节5、6、7、8
Overcurrent protection and coordination5.1BasicAn overcurrent protection system has three basic components:1.Current transformers2.Relays (Electro-mechanic relaying and microprocessor based relaying)3.Circuit breakersAn example of protection system:CTStandard CT ratios50:5100:5150:5200:5250:5300:5400:5450:5500:53t clear =t relay +t breakerFault Clearing time by a protection system:An induction-disc-type electromechanical relay:XXXt relayt breakerIt is defined as the time difference between the moment fault occurs and the moment fault is cleared.t clearRelaysThree different basic types of electro-mechanic relays have been produced to provide over-current and earth fault protection,namely1)Instantaneous or definite-current relays,which operate instantaneously when the currents in them exceed set values,t clear ≈t breakerFor this relay,when the detected current is equal to or greater than I pickup ,the relay sends a trip signal to circuit breaker.After a short ‐delay mainly caused by circuit breaker interrupting time ,the circuit breaker opens the main circuit.t relayt breakert relay ≈052)Definite-time or fixed-time relays,which operate after a definite or fixed time delay,andt clear =t trip +t breakerBoth I pickup and t trip are set values and knownbeforehand.For this relay,when the detected current is equal to or greater than I pickup ,the relay sends a trip signal to circuit breaker after a delay time of t trip .Then the circuit breaker opens the main circuit after a delay of its interrupting time.t relayt breaker3.1)Inverse-time:An inverse-time relay operates when I’>I pickup .The operating time decreases when the magnitude of the current increases.3.3)Extremely-inverse-time:An extremely-inverse relay gives the steepest time-current characteristic.3.2)Very-inverse-time:A very inverse-time relay gives more inverse characteristic curve than that of the inverse-time relay.t clear =t trip +t breakert clear =t trip +t breakert clear =t trip +t breakert relay t breaker73.4)Inverse definite minimum time (IDMT)relays,which have inverse time/current characteristics.Typical IDMT time-delay over-current relay can be described mathematically by:t=relay operating time in seconds;k =DIAL,or time-dial setting (TDS);I’=Current level in secondary side of CT in amps;where I PS =tap setting or pick-up current setting or plug setting (PS)of therelay;αand βare constants for a given relay.t clear =t trip +t breakerTap setting overcurrent relayMinimum operating current (MOC)of phase overcurrent 150%-200%maximum load current.MOC of ground load current.The higher because the mechanic torque required to operate the same.Plug settings can range from 10%to 200%of the CT secondary current (5A),which could be 0.5A,1.0A,2.5A,3A,4A,5A,6A,7A,8A,etc.Taking multiplescurve represents the characteristics of all plugFor the same fault current I’,choosing greater multiples or smaller I’/I PS.Then the correspondingTypical commercial11Example 5.1A relay is selected to protect a distribution feeder .The fault current through CT primary side is 2000A and CT ratio is 200:5.PS=200%.Find the operating times for the time dial settings of 2,•if a CO-8relay is selected and the time current curve is shown in figure below;•if an IDMT relay is selected and the time current curve is represented bySolution :The current through the relay=2000/40=50A.For PS=200%,the pickup current is 200%×5=10A and the multiples of current tap setting is 50/10=5.For the CO-8:the operating time from figure is 0.75s.For the IDMT:the operating time from using equation is 8.6s5.2Instantaneous designExample 5.25.1a.The grounded.base is tabulated The system The load level is 100MVA with a rated voltage of 20kV factor of 0.95.Design an installed close Item Base MVA GEN100The rated interrupting Ignore the frequency is 3)A time-delay for less characteristic equal to of CT .Determine 4)Draw the of circuit 3)above.The selected delay time.1)Three identical from the 2)Use 90%symmetrical tap setting 50:5500:52000:5Current setting:1.01.21.52.02.53.03.54.05.06.07.08.010.012.0Figure versusThevenin equivalent impedance viewed towards source side at place where circuit breaker installed:So fault current during transient periodSolution :So the primary side fault current is 6.0768kA.The chosen CT has 3000:5.Thus The current 9.12A.2)Bolted three-phase fault current 1)Load currentTransient network:Load current 2.887kA.The pickup 150%/(3000:5)=7.22chosen as 1.01.21.52.02.53.03.54.05.06.07.08.010.012.02) The current base at load side isThe selected the relay minimum delay 1/2time dial3)The circuit5.3Radial Many radial Adjustable fault opens,closed.That interrupt a minimum number of loads during faults.Basic requirements to protect a radial system:•When a fault occurs at any section of a distribution system,the system have to operate selectively and accurately to isolate and to limit •Back-up that the area.•Coordination necessary.t 0t 1The coordination interval between difference that circuit Typical coordination time intervals from 0.2to 0.5seconds are selected Example:For bus B.t 2is When the protection bus A will beTime/current The inverse-time current,the the close-in fault (larger current)and slowly for remote fault (smaller current).Coordination Relay 51A at bus A react slower for the fault at F1than the fault at F2because the fault Time/current discrimination method Procedure of relay coordination:Step 4:Determine coordination requirement.MOC of phase load current.Step 3:Determine setting):Step 2:Choose current for Step 1:Choose respectiveExample5-3Data for the5.6.Select(TDSs)to protectfails to operate.effective forAssume threeone for eachdiscriminationFigure5.4,detected on1and2duringin Table5.4,system areWhen selectingpickup current150%.Figure 5.2 Single line diagram of a power systemFigure 5.3 Time versus current curves25Load S (MVA)Lagging p.f.L110.00.95L210.00.95Bus Maximum fault current (bolted three ‐phase) (A)Minimum fault current(L ‐G or L ‐L) (A)130002200220001500Breaker Breaker operating time (Rated interrupting time)CT ratio Relay B15 cycles 400:5CO ‐8B25 cycles200:5CO ‐8Table 5.6Breaker ,CT ,and relay dataTable 5.4 Maximum loads Table 5.5 Fault currentsFigure 5.4Circuit diagram of protection systemFirst ,select currents.Starting currents for maximum load L2areSo the current tap setting for B2relay is CTS2=7A,which A.It is higher than and closest to Under normal operation,the continuous load current flowing ThenSo select a current tap setting and closet to Second ,select At bus 2,fault current is 2000current ratio Since we want faults as rapidly as possible,setting (TDS)relay operating cycles=5*0.02=0.1s),Solution :The backup protection provided by B1for fault to operate T2+T breaker dial setting For the above at bus 1,the fault-to-pickup currents It will take 0.35s+5*0.02=0.45s to clear the For the same bus 2,the ratio of fault-to-pickup isFor minimum 1500/(200:5)=37.5A;T realy2=0.1Backup by 1500/(400:5)=18.75A;T realy1=1.0s;1.0-0.2=0.8s>0.3s 5.4Selection protectionExample 5-4The fault positive-and ignored.The figure.The has a current b)To limit its rated the reactor a)If a fault maximum Assume that The system When calculating contributionFigure 5.5(a) Single diagram of the power system under studyFigure 5.5(b) Single diagram of the power system under study with current-limiting reactors connectedSolution :(a)and (b)Select 100MVA For the given source,Then the source internal positive-sequence impedance or reactance here is Given the chosen bases,the per-unit source The per-unit Without the reactor ,the maximum fault current through the symmetrical where I f is the value resulting from bolted three-phase symmetrical the source The fault level of a source is defined as followsAlternatively,since voltage base in the source region is the same as voltage rating of the31Its value in amperes isThis is the fault current flowing through the circuit breaker without current-limiting reactor .so the fault current without current-limiting reactor is almost 70times the rated continuous current of the circuit breaker .Protection scheme for such kind of system has potential problems:1)If the circuit breakers are selected according to this calculated fault current,they are unnecessarily expensive.2)If circuit breakers with a interrupting capability of 20times the rated continuous current are selected,when such kind of fault occurs,they will be damaged themselves when attempting to clear the fault.So normally a current-limiting reactor for each feeder branch is introduced as shown in Figure 5.5(b).To limit the fault current to 20times rated continuous current of 200A,the per-unit reactance of the current-limiting reactor can be found byThe value in ohms of each current-limiting reactance isAppendix 5-1:ABB Inverse-overcurrent relay ICM 21Active parts:6.1 Directional relay Relays thatlocation and, practical example Directionalwith overcurrentA directional-sensing quantity)protected circuitFor all practical positions significantly around180side of the356.1.1Relay structure and operating principleFig. 6-1 Directional relay •Relay signals:current and voltage,fed to current coil and voltage coil respectively.•is the voltage across ideal winding or L V as shown in Fig.6-2a,producing•I r applied on coil C1produces Fig. 6-2a Four-pole induction cup relay•Fig. 6-2b Symbols and polarities6.1.2 Phasor diagram and operating areaPhasor diagram of current and voltage and relay characteristic are shown in figure below •T e is the maximum at α=90o or when I r is in phase with V r ’.•Maximum torque line (MTL)is aligned with V r ’.•T e is zero at α=0o .•Zero torque line (ZTL)is the line at α=0o and ZTL and MTL are always perpendicular to each other .•Maximum torque angle MTA or angle of maximum torque ATM (denoted by β)is the angle between polarizing or reference signal V r (normally voltage)and the maximum torque line or V r ’.Fig. 6-3•Restraint area:αis from 1800to 3600(sin αand T e are negative.)•Trip area:αis from 00to 1800(sin αand T e are positive.)•6.1.3Directional relay typesDirectional relays can be classified into different types based on their MTAs orβvalue as indicated in the figure below.The typical values thatβtakes are30o,45o,60o and0o.These angles are the values between polarizing or reference voltage and maximum torque line(MTL)or V r’.When the fault occurs,the angle of reference voltage remains relatively constant while the angle of current changes drastically,resulting in either operating or restraining operation mode.376.2DirectionalOne exampleRelaysonlytheirForandpoweroccursForandpoweroccursForandpowerfault6.2.1Construction Directional unit plus a flow.Basically,there protection illustrated in the overcurrent Supervision ControlIn addition reference whether or polarisation The directional and not to Supervision connection:Control connection:0o-MTA directional relay unit: 30 Feeding the relays:Phase-a phasor diagram:MTLPhase-b relayV cZTLFeedingsignalsOperatingrangeExample 6-1(tutorial):The single-line diagram of a three-phase power system is shown below.The per-mile positive-sequence impedances of line 1is equal to Z 1=0.294+j0.6464Ω/mile.A set of directional overcurrent protection DR1using 0o -MTA directional relay unit in 300connection together with overcurrent unit is installed close to bus A as indicated in the figure to clear fault along line 1.Three-phase relay feeding signals are as follows:Calculate angle difference between V ac and I a ,V ba and I b ,V cb and I c under normal operating condition.150%of normal operating current is used to select tap setting of overcurrent unit.Three-phase CTs and VTs are in Y-connection.43The voltage ratings of load 1and load 2are the same and equal to 34.5kV .Calculate angle difference between V ac and I a ,V ba and I b ,V cb and I c when a bolted three-phase fault occurs at bus B.Angle difference:-300-(-1.48-1500-(-121.480) 900-118.520Under normal operating conditions:Under normal relays are Nevertheless less than the Answers :Phase-a: From I Phase-b: From I Phase-c: From I Relay operating range:Phase-a source45Angle difference:-31.90-(-67.40)=35.50-151.90-(-187.40) =35.5088.10-52.610=35.50After fault occurs:When the fault occurs,both directional unit and overcurrent unit close their relay contacts.So trip signal is sent to the circuit breakers to clear fault.One can see that angle of reference voltages or polarizing signals V ac ,V ba and V cb remain almost constant before and after fault.But the angle of current I a ,I b and I c change a lot.Answers (Cont’d):V ac(F)V ac I aF I a (-1.480)(-300)(-31.90)(-67.40)Phase-a: From I a lagging V ac by 900to I a leading V ac by 900.Phase-b: From I b lagging V ba by 900to I b leading V ba by 900.Phase-c: From I c lagging V cb by 900to I c leading V cb by 900.Relay operating range:45o -MTA directional relay unit:900-450connection30o -MTA directional unit: 90o -60o connectionExamplefollowing signalsDraw the phasor diagram of phase-c relay which shows the voltages,MTL(maximum torque line)and ZTL(zero torque line)a voltage as reference phasor with its angle equal to zero degrees.each phasorphase-c currentAssume thatSolution:Appendix6-1600-MTA connection for the ground faultTypical connection for the ground fault is shown in the figure below. Assume that60o unit is used as ground relay.The characteristic of ground fault is voltage collapse at faulted phase.Therefore phase voltage cannot be used as V r.Voltage applied on the ground relay V r=-V a-V b-V c=-3V0.Current applied on the ground relay I r=I a+I b+I c=3I0A phase-a-to-ground fault is assumed in the trip direction in above figure. The characteristics of this type of fault generally are a collapse of the faulted-phase voltage(V ag)with an increase in and lag of the faulted phase current(I a),such as typically illustrated in the left phasor diagram below.In many cases the unfaulted(b and c)phase currents are small and negligible practically,so that their phase-to-ground voltages are essentially uncollapsed.The assumption here is that I b=I c=0,so that I a=3I0.This,together with V0or3V0,is a zero-sequence quantity.49Differential•Protect the•Do not respond•Relay signals:7.1BasicThe structureused to measureprovided bycurrent differenceFig. 7-1 Basic structure of a basic differential relayRelay operation:The operationillustrated byFig. 7-2 Relay operation•For normal external fault F e:I1=I2,I1’=0,relay does not trip CBs.•For internal,,Problems of basic structure:•Too sensitive:•I1’could a smallwhen consideringBasic requirements•high sensitivity•high security7.2Percentage differential relayTo overcome the disadvantages of the basic differential relay,a percentage differential relay as shown in Fig.7-3is usually used.Two restraint windings are added.Fig. 7-3 a percentage differential relay•Currents I 1’and I 2’in the restraint windings produce restraining forces to inhibit trip signal.(T er )•Current I 1’-I 2’in the operating winding produces an operating force to create trip signal.(T eo )Relay operates whenIf then Curve:So relay operates whenLetis defined as through current under normal operating condition.In practice,I R is either I 1’or I 2’.53For such percentage differential relay its operation depends on percentage k For a k =10%the relay operating where k is of the percentage differential generally expressed relay with 40%.Relay operation:•No trip for in the operating I’1in two •Trip for (b).Operation are in the I’2is opposite (a) External fault(b) Internal faultIn a real application of differential relay,different taps of two restraint coils can be chosen.This is to ensure that the minimum current will flow through the operating coil under normal operating condition.The tap of such restraint winding can be 3.0,4.0,4.5,4.8,4.9,5.0,5.1,5.2,5.5,6,6.6,7.3,8.0,9.0,and 10.0A.The nominal ratio can be N R1/N R1’=5A:5A.To convert larger current to smaller one,taps with less turns should be chosen;vice versa,to convert smaller current to larger value,taps with more turns should be chosen.For example,if tap 3.0A is chosen,then it means (1)when I R1is 3.0A,then I R1’is 3.0/(3:5)or 5.0A;(2)when I R1is 4.5A,then I R1’is 4.5/(3:5)=7.5A.By such adjustment,the operating current I op =|I R1’-I R2’|under normal operating condition can be reduced to very small value,ensuring non-operation.In some cases,only one restraint coil comes with tap change,then operating current I op =|I R1-I R2’|under normal operating condition can be reducedExample7.1to be protected4.5,4.8,4.9,two restrainingcondition.Solution:The currents20MVA/69kV=289.8AWe may selectproduce289secondaries.In order tothese currents,tap of4.8forand the relaythe secondaryvalue of 4.83/(4.8:5),=5.031A,and5=5.045AdifferentialCT ratio mismatch(1.009−10.3%.7.3GeneratorRelay connectionmust havemanufacturerthe two restraintThree CTsI a1and I a2Fig. 7-4 Relay connectionsExample7.2through adifferential1A.The systemDetermine relay operation for bolted three-phase faults F1andFig 7-5 A Y-connected generator with step-up transformer Solutions:Select new base S=100MVA.Voltage base at generator region Base currentpu impedances on the new base:j j j Positive-sequenceshown in Fig.Fig. 7-6 Sequential network Fault current(CT secondary side)For the external fault F2:Restraint current:I1’=I2’=I FG=15.55A;Operating current:I1’-I2’=I FG-I FG=0Relay does not operate because I o=I1’-I2’=0.For internal fault F1:I1’=I FG=15.55/_-900A;I2’=-I FS=-20.28/_-900AOperating current:I o=I1’-I2’=I FG-I FS=35.83/_-900A.Relay operates because|I o|=35.83A>1A.7.4Transformer7.4.1PhaseTransformersconnectionscurrents.The phaseconsidered•Currentsand externalat∆side•Current inload andwindings7.4.2Differentiala)ConnectionA∆-Y transformerFig. 7-7 A ∆-Y transformer and CT connectionsIt can be seennormal loadb)CurrentWhen CT ratiomismatch can7.The ratedSelect CT ratioThe current left-hand-side restraint winding:The rated current kV(CT primary side):Select CT ratioThe current right-hand-side restraint winding:The currentC)SelectionTo minimizemost differentialare selectedpercentagewhere S isIf the intermediateare5and9,M=100%×(4.18/7.25-5/9)/(5/9)=3.77%OrM={4.18/(5:5)-7.25/(9:5)}/{7.25/(9:5)}=(4.18-4.028)/4.028=3.77%65Example 7.3The delta-wye transformer in the figure below is rated as follows.50 MVA, V ∆=115 kV , V Y = 69 kV , N CY = 600/5Find a suitable ratio N C ∆forthe delta connected CTs on the 69kV side.Solution:First we compute With full-load line current flowing,the restraint coil in the secondary of the wye-connected which is well from which we compute N ≈346.69 kV/115 kV600/5This presents of 1750/5,not a standard rating.We may compute the differential current that will conditions If we select percentage differential relay with a 50%have a very 69 kV/115 kV600/52000/51.81A2.09A418.37AAlternatively match.Example 7.469kV delta-12.5The transformer an electromagnetic operating coil.transformer 6.6,7.3,differential 50%of the transformer ratios and select an appropriate tap setting for this Solution :First we need to calculate the maximum or rated current levels.First,the 69kV terminals under full load,we haveA 400/5CT right for this side.Then current onFor the12.5computed asA2000/5CT Then the full load relay current forThe relay isbalance thedeterminesthe4.39A compute the ratio as follows.There is no tap of10is close.the12.5kVcomputed asThis is thethe fact thatfive percent.maximum amountLTC error:Then the sensitivityand the foregoing7.5Pilot protection Pilot protection simultaneous the protected Early pilot that avoids to a communication to provide It is a type are compared Similar to protection protection in part of the This protection applied to short and higher .system and continuity.With the protection The communication •power line It is instructive lines,all of studied are communications the line to the protection information below showsThe relay currents and local relaythe circuit dashed lines.) send signals provides each need for tripping, of the line. observed fromMicrowaveFiber-Optic Pilot SystemsAppendix 7-1∆-connectedRelay connectionwindings arebe connectednormal loadI c-IFig. a1 Relay connections for a∆-connected generatorBus differentialTo protectcorrectly connectedexternal faults.A bus is afaults arethe circuitsrestraint windingssingle phaseOperation ofthree phases.Connection of differential bus protectionAppendix 7-3ABB HU andCT connections for multi-winding transformerFor a multi-winding transformer,multiple-restraint windingsrelay should be used.The CTconnections for a Y-∆-Yconnected transformer areshown in Fig.7-14.Thecorresponding CT sets areconnected in∆-Y-∆.For thistype of transformer,themaximum load current can beused to select CT ratios butcannot be used to calculate thecurrent mismatch becausetransformer may operate in thecondition of one windingopened.Different loadcombinations should beconsidered to select relay taps.Fig. 7-14 The CT connections for a Y-∆-Y transformer79Distance protection•To protect•To detect•Relay signals:8.1DistanceThe connectionThe voltageto detectisolation to a fault.Fig. 8-1 Connection of a distance relay8.2Basic electromechanical distance relays Amplitude comparison based impedance relayP P83Amplitude comparison based impedance relay (Cont’d)P PP p1X P p2X P 1P 2Under normal operation ,When fault occurs,I r increases and V r decreases.So |Z r |decreases.If the fault point is within P P ,such as P P1the corresponding Z r point P 1falls within circle,|Z r |<|Z R /k|and relay sends trip signal.If the fault point is beyond P P ,such as P P2the corresponding Z r point P 2falls out of the circle,|Z r |>|Z R /k|and no trip signal is sent out.Conventional mho relay by amplitude comparisonConventional mho relay by phase comparisonRelay reach point8.3Impedance 8.3.1Non-directional comparisonR 2will operate sides of the relay as shown in Fig.8-2:Fig. 8-2 Operation of a impedance relay8.3.2Impedance combined impedance andThe characteristic of such impedance relay with Fig.8-3.If one uses relay based on phase comparison amplitude comparison,then there is no such issue 8.4Setting Distance relays the relay impedances used to determine relay.However from the measurement Therefore,which is used the setting of the distance relay,the used:Thuswhere CTR VTR are the transformation ratios of the current transformers,respectively.878.4.1Distance relay protection zones for a radial systemNormally,three protection zones in the direction of the fault are used in order to cover a section of line and to provide back-up protection to remote sections.In the majority of cases the setting of the reach of the three main protection zones is made in accordance with the following criteria:•zone 1:this is set to cover 80percent of the length of the protected line (AP1=80%of positive-sequence impedance of line AB);•zone 2:this is set to cover all the protected line plus 50per cent of the shortest next line (AP2=100%of positive-sequence impedance of line AB plus 50%of positive-sequence impedance of line BC);•zone 3:this is set to cover all the protected line plus 100per cent of the second longest line,plus 25per cent of the shortest next line.In some cases it is set equal to 120%(AB+BC).(AP3=120%of total positive-sequence impedance of line AB plus total positive-sequence impedance of line BC);8.4.2Timer unit for distance protectionIn order to illustrate the philosophy,consider the case of the system in the figure below in which it is required to protect the lines AB and BC.For this,it is necessary to have three relays at A to set the three zones.In addition to the unit for setting the reach,each zone unit has a timer unit.The operating time for zone 1,t 1,is normally set by the manufacturer to trip instantaneously since any fault on the protected line detected by the zone 1unit should be cleared immediately without the need to wait for any other device to operate.The operating time for zone 2is usually of the order of 0.25to 0.4s.The operating time of zone 3is in the range of 0.6to 1.0s.When there are power transformers at adjacent substations the zone 2timer should have a margin of 0.2s over the tripping time of any associated transformer overcurrent protection.All three unitszone1.Forboth the zoneprotectionthe breakerand zone3discriminationtimes is shownOperating times for distance protection at AExample8-1in Fig.8-4.line per-km positive-sequence impedance is Z l1=0.05+j0.2Ω/km for each line.The CT and VT ratios are600/1A and132000/110V respectively.distance relay is installed at bus A to protect linesL2.Fig. 8-4 A typical transmission system(a)Determine zone1reach impedance setting(b)Determine(c)DetermineSolutions:VTR/CTR=132000/110)/(600:1)=1200/600=2(a)Reach impedance for Zone1at primary side covers80%of lineReach impedance for Zone1at secondary side:(b)Zone(100km).Reach impedance for Zone2at primary side: Reach impedance for Zone2at secondary side: (c)Zone3Zone3reachReach impedance8.5QuantitiesDistance relaystypes of fault:and single-phaseIn order torelays requiresB,B-C,C-A)E).A completeThe settingpositive-sequencePhase-fault unitsThe impedancescurrents asSince phase-to-phase fault does not result in zero-sequence above threethe line.Three phasethe case ofGround-orEarth-faultphase currentsbetween theearth faultand thereforeThe positive negative-sequence impedances of aSince the fault is line-to-earth,So thatThe ratio V A/I issequence impedance Z L1.One wants to havewhere95The value of residual current mI A0to be injected is calculated so that a relay that is set to the positive-sequence impedance of the line operates correctly.Therefore,applying the line and residual currents to the relay AndThe impedances measured by the earth-fault units of distance relays for the three phases areThree ground distance relays also measure the correct distance to the fault in the case of a three-phase fault.Example 8-2diagram in positive and the figure.phase-fault bus A as shown CT and VT fault at F .Solution :Bolted three-phase For this case,positive sequence current exists,and is also a current.It The phase the relay location is given byThus,the fault impedance seen by the phase-relay in this case isThe impedance seen by the ground-relays is the same since there is。
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
Instrument transformers, circuit breakers andSection1Section2Section3Section4Section 1 Instrument transformers: Current transformer Cut View ofTwo typesWound primaryaround a core.in switchgearBar primarya toroid whichsingle primarynecessary primarytransformer isBushing-type bar-primary CTHigh current bushing type CTOil-immersed bar primary CTs•There are two main types of oil-immersed bar primary CTs:1.Tankaprimary(hair-pin)Oil-immersed bar primary CTsABB Tank Type CT IMB 420-550 Bar primary CT types manufacturedby ABBDetails on oil-immersed•Bushingpower transformersno appreciable•Difference between dead tank and live-tankare grounded,while the latter ones are not.•Live-tankmounted•CT for live-tank breakers are constructed in form (consisting of insulators),isolating them from the ground.usually submerged in oil(e.g.ABB CT IMB420-550).Operating•Currentdevicevoltagesystem•The operation requirements–Measuringnormalcurrent);in order–Protectivecurrents;•The main–primarymeasuring–secondaryinstruments •Ideal CT–Themagnetizing–the primarysecondary;the primary•In an actual−the magnetizing−ampere-turnsmagnetizingCT Equivalent Circuit:Phasor diagram:13•The currentif the CTwhere rated transformation ratio:•The angulardisplacementCT selectionStandard CT and 1A in Standard CT ratios:The secondary current of a CT should be just below 5A (USA type CT)or 1A (Europe type CT)for the maximum load.CT Operating RMS value of exciting currentV o l t a g e i n r m s a t s e c o n d a r y s i d eThe exciting value of the the secondary17•The remanence (Ψr)of the closed iron core CTs (TPX)is very large as shown in the figure.Such design can cause severe saturation in the core if core size is not large enough.•The air-gap in the CT-core dramatically reduces the magnitude of the remanent flux >>time required for de-magnetisation is reduced.But it has lower magnetization reactance,thereby producing higher magnetizing current.This may result in large error .closed iron core CTair-gap CTTransient Performance (TP )CTs are included in IEC 60044-6as types TPX,TPY and TPZ.TPX is the closed iron-core CT while TPY and TPZ are CTs with air-gaps in the core.The rated output and the corresponding accuracy class:•Measuring CT specificationFor this protective CT rated at 5A of the secondary,15VA/5A=3V permissible burden is 15VA/52=0.6Ω.It will have no more than 10%to 20X5AX0.6Ω=60V or 20X3V=60V at the secondary across burden.CT accuracy •Protective CT specification•More on standard values for relaying CTs or protective CTs:Continuous VA: 2.5,5,10,15and30Accuracy classes:5%and10%Accuracy-limit factor:5,10,15,20,and30Rated secondaryFor a CT rated10%error30VA/52=1.2With the burdenside is30X5=150Aburden iswithout exceedingRating Plate•For protectionsecond(ie.the faultformat:•For protection it is necessarypresentin termsAn example23CT accuracy classification according to ANSI or IEEE standards The American National Standards Institute (ANSI)relaying accuracy classes are specified in ANSI Standard C57.13-1993.The letter designation codes are given as:Class C;Class T .Knee point definitionTypical excitation curves for a multiratio class C current transformer:Point A is the ANSI knee.Point B is the IEC knee.(Figure of ANSI=IEEE Standard C57.13-1978.)Class T CT The accuracy 4(4Ω)and shown below are the times of rated primary and secondary currents respectively.Example 3-1:Find the error%of a class T CT with 4-ohm burden when carrying 17times of the rated primary current.The corresponding I s =13from the 4ohm curve on the R.H.S.Class C CT accuracy evaluation Standard Classstandard burdensC indicatesburden atwithout exceedingFor example,4ΩburdenThe error isFor the sameV’=5Ω×5A×If CT burdennot saturated.is400V/3ΩPerformanceExample3-2The load andCT is selectedCT copperthe CT ratiorequired.*Note thatselected ratioSolution:For C100(maximum)V’maxFor the maximumV’=This causesChanging theV’maxFor the maximumV’=Performance evaluation using the excitation curveIn this method,CT performance is evaluated using the excitation curve and the equivalent circuit of CT as shown in Figs.3.1and3.2respectively.Fig.3.1Excitation curveof a multi ratio class C CTTo obtain curves:Before knee point,I e is small and negligible,especially for large turns ratio,and I’is almostan exact replica of primary current I p’.After knee point,I e increase significantly with V e,and I’is not exact replica of primary current I p’.Figs. 3.2 Equivalentcircuit of a CTEvaluationStep1:Voltagecircuit asequation:ignored and sStep2:Check saturation from the excitation curve to given CTCT is saturatedCT is not saturatedStep3:IfStep2.OtherwiseExample100:5CT ratioΩ.Solution:(a)I’=I/20=5A.V e=5×(0.082+0.5)=2.91VFrom Fig.CT is not saturated.(b)I’=I/20=8A,V e=8×(0.082+1.6)=13.46VFrom Fig.3-1,saturated.31Exercise :Consider a 13.2kV feeder that is carrying a load of 10MVA at 1.0power factor .Associated with this circuit is a 500/5CT feeding a measurement system whose total load is 10VA.The equivalent circuit of the CT referred to the secondary side is shown in the figure on the right-hand side.Calculate the voltage that would occur in the secondary circuitof the CT if the measurement system was accidentally opened.CT equivalent circuitreferred to secondary side Solution :Single-line diagramReferring the values to the secondary side of the CT givesComplete equivalent circuit with load consideredBurden:Z b =10/52=0.4Ω.When the secondary circuit is closed,the voltage across the measurement system can be calculated approximately,ignoring the shunt branch,asIf the secondary the shunt terminals of the CT isTherefore the voltage increases by almost 120times.CT Symbols:•The polarity marks–P1, P2, S1, S2 for IEC standard;–square–K,L,standard);•Accordingflowingwindingof the otherWe also use the following symbolswhere two dots or two crossesinto the primary winding via secondary winding via dot terminalare approximatelySTAR (WYE) connection provides the line currents at the secondary load.DELTA connection provides delta (difference) currents to the secondary load.Three-phase Connections:CT performance impedance voltage cross on CT connection For a three calculated Y connected Y-connection ∆-connection∆connected A’B’B C’B A’ B.Example 3-4:Select CT ratio of the multi-ratio class-C CT as shown in Fig.3.1for a protection system.The maximum load current,and the minimum and maximum fault currents are 90A,360A and 1200A,respectively.Assume that burden impedance of the CT is 0.5Ω.Check CT saturation and adjust CT ratio if necessary.Assume that three-phase CTs are in Y-connection.Solutions :Select 100:5CT ratio because maximum load current is 90A.Change the ratio to 200:5:For the maximum fault current 1200A,I’=1200/40=30A,V e =30(0.5+0.125)=18.75V .The CT is not saturated.For maximum load current 90A, I’=90/20=4.5A,V e =4.5(0.5+0.082)=2.619V . The CT is not saturated.For the maximum fault current 1200A, I’=1200/20=60A, V e =60(0.5+0.082)=34.92V . The CT is saturated.37Practice problems:1.Find the error%of a class T CT with 4-ohm burden and carrying 16times rated primary current.(21%)2.Determine the maximum voltage supplied by a multi ratio 400/5C400CT without saturation.What is the maximum current which can be supplied if selected CT ratio is 200/5and its burden is 1ohm and.(400V ,200A)3.Figure below shows the connections of the Y and ∆connected current transformers and relays.Z B and Z BG are the impedances of phase relay and ground relay respectively.Calculate the CT burdens for phase A under single phase to ground fault for Y and ∆connected CT respectively,(Z B +Z BG ,2Z B )Section 2VT SelectionSince the impedance current provided When standard volts,the of the protected example,the 1:140:1600:1Standard VT ratios39Types of VTs–Electromagnetic (inductive)voltage transformers (VTs),–Capacitor voltage transformers (CVTs),–Cascade type of inductive VT .Cut View of a Single Pole electromagnetic VT:Equivalent circuits and principle of Operation Electromagnetic VTs•Electromagnetic VT is connected across the points at which voltage measured,and are therefore much like power transformers with secondary winding operating close open-circuit.•For such equal to•The parameters error and •An inductive no-load error is and leakage thus negligible.•In practice rated flux saturation –>>consequently,impedance operating •It is extremely •VT contains Three-phase Star connectionDelta connectionThree-phaseOpen Delta connection Broken Delta connectionDesign Examples of Inductive VTs•VTs have only one iron core with attached secondary windings.•Theyinsulated44single pole double poleDesign Examples Principle of Operation of Capacitor VTs (CVT)•The cost of inductive (electromagnetic)VTs tends to increase at exponential rate with the rated voltage.•The CVT combines a capacitive potential divider with an auxiliary (intermediate)electromagnetic Voltage Transformer .•In the case of higher voltage levels (>145kV)either Capacitor VT (CVT)or cascade type of inductive VT are used.–The CVT was developed to reduce the high cost of conventional VT by compromising on the frequency and transient response.–Connecting two or more inductive VT units together forms the cascade VT .•The CVT equivalent circuit:L is chosen to cancel reactance of C or V L cancels V C.Then small and Vs’is almost in phase with V i or V p.Design Example (ABB CVT)Section 3•The circuit the circuit.•Once a •It takes trip command.•When two appears the medium •The contacts mechanism releases Timing Diagram •This voltage flow of •This current •Different cooled and •Therefore instant of Circuit breaker contact parting:The gap between insulating medium,•Oil;•Pressurized •Air .•Sulphur •Vacuum;Summary of Types of circuit 6.Direct-current The most important 1.Oil circuit 2.Air-blast 3.SF6circuit 4.Vacuum 5.Solid-state There are mainly the Miniature circuit Molded case Residual current-operated53Molded case circuit breaker(MCCB)Gas-insulated switchgear (GIS) 1.The space 5.In addition SF6has 2.It is totally saline air 3.It possesses personnel.4.It is easier in seismically IntroductionGas -insulated (SF6)gas HV switchgearGIS enclosureSectional view of a typical SF6gas-insulated,145kV circuit breaker one enclosure for the three phase.NameplateMain ratings Rated voltageIt designates should be this rating.Rated continuous The maximum continuously is determined Rated interrupting The time in to the instant breaker part cycles.Rated short-circuit asymmetrical It is the maximum rated voltage.generally calculated symmetrical sub-transient The asymmetrical interrupting determined and the circuit-breaker’s Example 3-5installed in 2)15,3)20,determining system frequency is 50Hz.1)X/R=102)X/R=153)X/R=204)X/R=305)X/R=40One can see from above results that when X/R ratio is less than multiplying ratio is less other words,Rated momentary It is defined the breaker position.It should be short-circuit three-phase Circuit breaker The breaking of a three-phase where V is line-to-line voltage current or rated Example 3-6The neutrals system data below.The system The load level is 100MVA with a lagging power factor of 1)Determine 2)Calculate 3)Calculate 4)Calculate Item Base MVA GENSolution:1)Since thevoltage ofkV.2)Since theSo the minimum circuit breaker is2.887 3)CalculateThevenin equivalent impedanceviewed towards source side atplace where circuit breakerinstalled:So the rms value of ac component of fault current which results bolted three-phase symmetrical fault at load side during sub-transient isFrom the conditionthe fault locationone.TheinterruptingTherefore,6.0768kA.4)CalculateThe ratedSection4•Simplest•If the currentrating,theconducted•For low•Easiest•Fuse worksfor opening.Notched fuse elementFuses–Specifications•VoltageA blown fusedeterminesafter the fuse•ContinuousThis is the•InterruptingThis is the largest current that the fuse can safely interrupt.•Time ResponseThe meltingovercurrentThe curve haslike an exponentialconductorcreated.Fuses–Benefits•Benefit–low cost and simplicity of operation •Limitations–current–process–additionalitself.•These limitationscircuits by•The individualExample of high current fuses:Expulsion Fuses•The expulsion fuse is a protection method for medium voltage level with lower costthan circuit breakers.•They are typically mounted at the top of the pole for11-33kV systems.•The fuse element is kept in tension with spring.•Arc extinguished by expanding gasses which blow out of end of tube.•Extinction aided by spring separating contacts.67Transient waveformsof fuses:Oil circuit Oil circuit breakers an overload the insulated separate,pressure of causes cool Air-blast circuit breakersThese circuit supersonic reservoirs at located in the SF6 circuit breakers: Vacuum circuit breakersThese circuit because there hermetically polluted.Their several circuit often used AppendixSolid-state circuit breakerSolid-state semiconductors,considerable respect to much faster that get eroded or replaced.material costs Circuit breakers to bring the be used as DC Direct-current (DC) circuit breakersGas-insulated switchgear (GIS) 1.The space 5.In addition SF6has 2.It is totally saline air 3.It possesses personnel.4.It is easier in seismically IntroductionGas -insulated (SF6)gas HV switchgearGas-insulated switchgear (cont’d)2.It is nonflammable.1.It is nontoxic.4.It has and low effectively 3.It is noncorrosive.At 3atm,the Chemical At atmospheric that of air ,In addition physical and Furthermore,and is therefore of oil or air Gas-insulated switchgear (cont’d)A (cont’d)1—busbar 2—busbar two; 10—density monitor3—disconnector;4—current transformer;5—circuit breaker;6—voltage transformer;7—maintenance grounding switch;8—high-speed grounding switch;9—gas connector;4.1Introduction Protection incoming signal Construction •electromechanical •solid state •microprocessor •non-electricIncoming signal •current•voltage•power •frequency •temperature •pressure•speed•others75Armature-type relaySolenoid relayAttraction relays effectively have no time delay widely used when instantaneous operation is required.77These relays motor .As such,relays are induction cup to the rotor motor ,the moving element is completed Induction-type sources of in which the turn.The phase difference otherwise,produced.pole faces one of the motor action.sources of sources of permanent to provide characteristics.Typical electromechanicalinduction cup or cylinder relayLet us assume in the coils sinusoidal:Typical electromechanicalinduction cup or cylinder relayUsing motor working mechanism,one can derive torque on where K is a constant.The above derived both induction relay to compute by currents The direction coil with the leading current to the one with theThe induction-type of the source characteristic relay or a Induction disc-produce under-a current source made to respond Table below common over-current the time to pickup is given for the same multiple M of pickup current.where M=I/I p multiple of pick-up current.For more details on the derivation of the formula above,see appendix 4.2Relays:All relays design.Two amplitude parator compared two signals by their phase difference than by their amplitudes.The following analysis shows that for two signals,S A and S B ,which compared in magnitude,there exist two other signals S 1and S 2compared by phase.The relationship between the signals is as follows:SoThe comparison of the amplitude Defining S 181Given that thenSois satisfied whenThe above relationships demonstrate that two signals,obtained for use with an amplitude comparator ,can be converted in order to be used by a phase-angle comparator .Symbols :Conversion of current to voltage by air-gap transformer (also called transactor or compensator):Choosing suitable values for design constantsenables a wide range of comparator characteristics to be obtained.or834.2.1Amplitude comparator characteristics Plain impedance relay Hence the input signals are The relay operates wheneverConventional mho relayThe characteristic of the conventional mho relay is shown in the figure below:HereHence the input signals areFrom one can haveor85Example k =1;Prove :Admittance locus of the conventional mho relay is a straight line.(For this reason it is referred to as a mho characteristic)LetThen one can obtain boundary equality equation:OrProof :Exercise 4-1The input signals are thusProve:the wheneverAn amplitude874.2.3Phase comparator characteristicsThe Characteristics of phase comparators are conveniently derived by taking the argument of the complex ratio S 1/S 2,i.e.whereTaking the argument of the complex ratio given byOne hasConventional mho relay89Conventional mho relay (Cont’d)For point P on KMO,SoFor point P on KNL,SoFor point P within semicircle KMO,For point P within semicircle KNO,Compared with conventional impedance relay,mho relay is directional.It can be used independently to carry out distance protection and there is no need of directional relay.But the conventional impedance relay needs.Exercise 4-2An phase comparator based reactance relay Prove:when ,relay operates and corresponding imaginary or reactance of the detectedSummary4.3 Directional relay Relays thatlocation and, practical example Directionalwith otheruse the outputfault sensors, overcurrentdesired operatingthe fault sensor’s operate.Ifdirection orcurrent is higherA directional-sensing quantity)that protected circuitfor phase-typeFor all practical positions significantly around180of the circuit934.3.1Relay structure and operating principleFig. 4-1 Input to directional relay •Relay signals:current and voltage•Two coils (C1,C2)with four poles,where coil C2is modeled by R V and L V .V r is the voltage applied to coil C2via some other circuit elements which are to form phase shifter .Itproduces •is the voltage across ideal winding or L V as shown in Fig.4-1.Flux ФVproduced by coil C2in the structure is in phase with current I V and 900lagging .•R V can be made negligible compared with reactance of L V at power frequency.•I r applied on coil C1producesFig. 4-2 Four-pole induction cup directional relay•An electromagnetic torque T e on the induction cup:’4.3.2 Phasor diagram and operating areaPhasor diagram of current and voltage and relay characteristic are shown in figure below•Фi is in phase with the current I r . •Фv’lags the voltage V’r by an angle close to 900.••T e is the maximum at α=90o or when I r is in phase with V’r .•Maximum torque line (MTL)is aligned with V’r .•T eis zero at α=0o .•Zero torque line (ZTL)is the line at α=0o and ZTL and MTL are always perpendicular to each other .•Maximum torque angle MTA or angle of maximum torque ATM (denoted by β)is the angle between polarizing or reference signal (normally voltage)Fig. 4-3•Restrain area:αis from 1800to 3600(sin αand T e are negative.)•Trip area:αis from 00to 1800(sin αand T e are positive.)4.3.3Directional Directional or βvalue are 30o ,45reference voltage When the constant while operating discussed 30o -MTA relay unit:The operating directional voltage V r and 30o .The relay unit will operate for the current from leading .Fig. 4-4 3030o -MTA relay:Feeding the Meaning of and reference MTL.9760o -MTA relay unit:The operating characteristic of 60o type relay is shown in Fig.4-5.For this directional relay,MTA=−60o which means that the angle between reference or polarizing voltage V r and MTL is 600,and maximum torque occurs when I r lags V r by 60o .The relay unit will operate for the current from 150o lagging V r to 30o leading .Figure 4-5 60o -type or 60o -MTA relay unitFeeding the relays:V r =-3V 0,I r =3I 00o -MTA relay unitThe operating characteristic 0o -MTA type relay shown in Fig.4-6.For this type directional relay,MTA=0o which means that the maximum torque occurs when actual I r and V r are in phase.Fig. 4-6 0o -MTA relay unit0o -MTA relay unit: 300connection Feeding the relays:990o -MTA relay connection)Feeding the relays:0o -MTA relay connection)Feeding the relays:This is equivalent connection 45o -MTA relay。