苏教版数学七年级下期末复习学案和检测试题与答案
苏科七年级苏科初一数学下学期期末测试题及答案(共五套) 百度文库
苏科七年级苏科初一数学下学期期末测试题及答案(共五套) 百度文库一、选择题1.计算(﹣2a 2)•3a 的结果是( )A .﹣6a 2B .﹣6a 3C .12a 3D .6a 32.如图所示图形中,把△ABC 平移后能得到△DEF 的是( )A .B .C .D .3.在餐馆里,王伯伯买了5个菜,3个馒头,老板少收2元,只收50元,李太太买了11个菜,5个馒头,老板以售价的九折优惠,只收90元,若菜每个x 元,馒头每个y 元,则下列能表示题目中的数量关系的二元一次方程组是( )A .53502115900.9x y x y +=+⎧⎨+=⨯⎩B .53502115900.9x y x y +=+⎧⎨+=÷⎩C .53502115900.9x y x y +=-⎧⎨+=⨯⎩D .53502115900.9x y x y +=+⎧⎨+=⨯⎩ 4.已知点M (2x ﹣3,3﹣x ),在第一、三象限的角平分线上,则M 点的坐标为( ) A .(﹣1,﹣1). B .(﹣1,1) C .(1,1)D .(1,﹣1) 5.若关于x 的不等式组2034x x a x-<⎧⎨+>-⎩恰好只有2个整数解,且关于x 的方程21236x a a x +++=+的解为非负整数解,则所有满足条件的整数a 的值之和是( ) A .1 B .3 C .4 D .66.计算a •a 2的结果是( )A .aB .a 2C .a 3D .a 47.下列各组数中,是二元一次方程5x ﹣y =4的一个解的是( )A .31x y =⎧⎨=⎩B .11x y =⎧⎨=⎩C .04x y =⎧⎨=⎩D .13x y =⎧⎨=⎩ 8.下列图形中,能将其中一个三角形平移得到另一个三角形的是( )A .B .C .D .9.如图,下列条件:13241804523623∠=∠∠+∠=∠=∠∠=∠∠=∠+∠①,②,③,④,⑤中能判断直线12l l 的有( )A .5个B .4个C .3个D .2个 10.若一个三角形的两边长分别为3和6,则第三边长可能是( )A .6B .3C .2D .10 11.将一副三角板如图放置,作CF //AB ,则∠EFC 的度数是( )A .90°B .100°C .105°D .110°12.如图,有以下四个条件:其中不能判定//AB CD 的是( )①180B BCD ∠+∠=︒;②12∠=∠;③34∠=∠;④5B ∠=∠;A .①B .②C .③D .④二、填空题13.最薄的金箔的厚度为0.000000091m ,用科学记数法表示为________m .14.已知:()521x x ++=,则x =______________.15.三角形的周长为10cm ,其中有两边的长相等且长为整数,则第三边长为______cm .16.已知某新型感冒病毒的直径约为0.000000823米,将0.000000823用科学记数法表示为___________17.如图,1∠、2∠、3∠、4∠是五边形ABCDE 的4个外角,若120A ∠=︒,则1234∠+∠+∠+∠=_______°.18.如图,在平面直角坐标系中,有若干个横坐标分别为整数的点,其顺序按图中()1,0→()2,0→()2,1→()1,1→1,2→()2,2…根据这个规律,则第2020个点的坐标为_________.19.若29x kx -+是完全平方式,则k =_____.20.一艘船从A 港驶向B 港的航向是北偏东25°,则该船返回时的航向应该是_______.21.某校七年级社会实践小组去商场调查商品的销售情况,了解到该商场以每件80元的价格购进某品牌衬衫500件,并以每件120元的价格销售400件.该商场准备采取促销措施,将剩下的衬衫降价销售,每件衬衫至多降价______元,销售完这批衬衫才能达到盈利45%的预期目标.22.已知(a +b )2=7,a 2+b 2=5,则ab 的值为_____.三、解答题23.先化简后求值:224(2)(2)(2)x x y x y y x --+---,其中1x =-,2y =-.24.仔细阅读下列解题过程:若2222690a ab b b ++-+=,求a b 、的值.解:2222690a ab b b ++-+=222222690()(3)003033a ab b b b a b b a b b a b ∴+++-+=∴++-=∴+=-=∴=-=,,根据以上解题过程,试探究下列问题:(1)已知2222210x xy y y -+-+=,求2x y +的值;(2)已知2254210a b ab b +--+=,求a b 、的值;(3)若248200m n mn t t =++-+=,,求2m t n -的值.25.(知识生成)通常情况下、用两种不同的方法计算同一图形的面积,可以得到一个恒等式.(1)如图 1,请你写出()()22,a b a b ab +-,之间的等量关系是(知识应用)(2)根据(1)中的结论,若74,4x y xy +==,则x y -= (知识迁移)类似地,用两种不同的方法计算同一几何体的情况,也可以得到一个恒等式.如图 2 是边长为+a b 的正方体,被如图所示的分割成 8块.(3)用不同的方法计算这个正方体的体积,就可以得到一个等式,这个等式可以是 (4)已知4a b +=,1ab =,利用上面的规律求33+a b 的值.26.解方程组(1)21325x y x y +=⎧⎨-=⎩ (2)111231233x y x y ⎧-=⎪⎪⎨⎪--=⎪⎩ 27.某公司有A 、B 两种型号的商品需运出,这两种商品的体积和质量如表所示:体积(m 3/件) 质量(吨/件) A 两种型号0.8 0.5 B 两种型号 2 1(1)已知一批商品有A 、B 两种型号,体积一共是20m 3,质量一共是10.5吨,求A 、B 两种型号商品各有几件;(2)物流公司现有可供使用的货车每辆额定载重3.5吨,容积为6m 3,其收费方式有以下两种:按车收费:每辆车运输货物到目的地收费900元;按吨收费:每吨货物运输到目的地收费300元.要将(1)中的商品一次或分批运输到目的地,该公司应如何选择运送方式,使所付运费最少,并求出该方式下的运费是多少元.28.如图:在正方形网格中有一个△ABC ,按要求进行下列作图(只能借助网格). (1)画出△ABC 中BC 边上的高线AH .(2)画出先将△ABC 向右平移6格,再向上平移3格后的△DEF .(3)画一个锐角△ABP (要求各顶点在格点上),使其面积等于△ABC 的面积的2倍.29.解方程组:(1)2531y x x y =-⎧⎨+=-⎩; (2)3000.050.530.25300x y x y +=⎧⎨+=⨯⎩. 30.利用多项式乘法法则计算:(1)()()22+-+a b a ab b = ;()()22a b a ab b -++ = .在多项式的乘法公式中,除了平方差公式,完全平方公式之外,如果把上面计算结果作为结论逆运用,则成为因式分解中的立方和与立方差公式.已知2,1a b ab -==,利用自己所学的数学知识,以及立方和与立方差公式,解决下列问题:(2)22a b += ;(直接写出答案)(3)33a b -= ;(直接写出答案)(4)66a b += ;(写出解题过程)【参考答案】***试卷处理标记,请不要删除一、选择题1.B解析:B【分析】用单项式乘单项式的法则进行计算.【详解】解:(-2a 2)·3a=(-2×3)×(a 2·a)=-6a 3 故选:B .本题考查单项式乘单项式,掌握运算法则正确计算是解题关键.2.A解析:A【分析】根据平移的概念判断即可,注意区分图形的平移和旋转.【详解】根据平移的概念,平移后的图形与原来的图形完全重合.A 是通过平移得到;B 通过旋转得到;C 通过旋转加平移得到;D 通过旋转得到. 故选A【点睛】本题主要考查图形的平移,特别要注意区分图形的旋转和平移.3.B解析:B【解析】【分析】设馒头每个x 元,包子每个y 元,分别利用买5个馒头,3个包子,老板少收2元,只要5元以及11个馒头,5个包子,老板以售价的九折优惠,只要9元,得出方程组.【详解】设馒头每个x 元,包子每个y 元,根据题意可得:53502115900.9x y x y +=+⎧⎨+=÷⎩, 故选B .【点睛】本题考查了由实际问题抽象出二元一次方程组,难度一般,关键是读懂题意设出未知数找出等量关系.4.C解析:C【分析】直接利用角平分线上点的坐标特点得出2x ﹣3=3﹣x ,进而得出答案.【详解】解:∵点M (2x ﹣3,3﹣x ),在第一、三象限的角平分线上,∴2x ﹣3=3﹣x ,解得:x =2,故2x ﹣3=1,3﹣x =1,则M 点的坐标为:(1,1).故选:C .【点睛】此题主要考查了点的坐标,正确掌握横纵坐标的关系是解题关键.解析:C【分析】先解不等式组,根据只有2个整数解得到a 的范围,再解方程,得到a 的范围,再根据a 是整数,综合得出a 的值之和.【详解】解:解不等式2034x x a x-<⎧⎨+>-⎩得: 44a -<x <2, ∵不等式组恰好只有2个整数解,∴-1≤44a -<0, ∴0≤a <4; 解方程21236x a a x +++=+得: x=52a -, ∵方程的解为非负整数, ∴52a -≥0, ∴a ≤5,又∵0≤a <4,∴a=1, 3,∴1+3=4, ∴所有满足条件的整数a 的值之和为4.故选:C .【点睛】本题考查一元一次不等式组及一元一次方程的特殊解,熟练掌握一元一次不等式组及一元一次方程的解法是解题的关键.6.C解析:C【分析】根据同底数幂的乘法法则计算即可.【详解】解:a •a 2=a 1+2=a 3.故选:C .【点睛】本题考查了幂的运算性质,准确应用同底数幂的乘法是解题的关键.解析:B【分析】把x与y的值代入方程检验即可.【详解】解:A、把31xy=⎧⎨=⎩代入得:左边=15﹣1=14,右边=4,∵左边≠右边,∴31xy=⎧⎨=⎩不是方程的解;B、把11xy=⎧⎨=⎩代入得:左边=5﹣1=4,右边=4,∵左边=右边,∴11xy=⎧⎨=⎩是方程的解;C、把4xy=⎧⎨=⎩代入得:左边=0﹣4=﹣4,右边=4,∵左边≠右边,∴4xy=⎧⎨=⎩不是方程的解;D、把13xy=⎧⎨=⎩代入得:左边=5﹣3=2,右边=4,∵左边≠右边,∴13xy=⎧⎨=⎩不是方程的解,故选:B.【点睛】本题主要考查了二元一次方程的解的知识点,准确代入求职是解题的关键.8.A解析:A【解析】【分析】利用平移的性质,结合轴对称、旋转变换和位似图形的定义判断得出即可.【详解】A、可以通过平移得到,故此选项正确;B、可以通过旋转得到,故此选项错误;C、是位似图形,故此选项错误;D、可以通过轴对称得到,故此选项错误;故选A.【点睛】本题考查了平移的性质以及轴对称、旋转变换和位似图形,正确把握定义是解题的关键.解析:B【分析】根据平行线的判定定理对各小题进行逐一判断即可.【详解】解:①∵∠1=∠3,∴l1∥l2,故本小题正确;②∵∠2+∠4=180°,∴l1∥l2,故本小题正确;③∵∠4=∠5,∴l1∥l2,故本小题正确;④∠2=∠3不能判定l1∥l2,故本小题错误;⑤∵∠6=∠2+∠3,∴l1∥l2,故本小题正确.故选B.【点睛】本题考查的是平行线的判定,熟记平行线的判定定理是解答此题的关键.10.A解析:A【分析】根据三角形三边关系即可确定第三边的范围,进而可得答案.【详解】解:设第三边为x,则3<x<9,纵观各选项,符合条件的整数只有6.故选:A.【点睛】本题考查了三角形的三边关系,属于基础题型,熟练掌握三角形的任意两边之和大于第三边,任意两边之差小于第三边是解题的关键.11.C解析:C【分析】根据等腰直角三角形求出∠BAC,根据平行线求出∠ACF,根据三角形内角和定理求出即可.【详解】解:∵△ACB是等腰直角三角形,∴∠BAC=45°,∵CF//AB,∴∠ACF=∠BAC=45°,∵∠E=30°,∴∠EFC=180°﹣∠E﹣∠ACF=105°,故选:C.【点睛】本题考查了三角形的内角和定理和平行线的性质,能求出各个角的度数是解此题的关键.解析:B【分析】根据平行线的判定定理求解,即可求得答案.【详解】解:①∵∠B+∠BCD=180°,∴AB ∥CD ;②∵∠1=∠2,∴AD ∥BC ;③∵∠3=∠4,∴AB ∥CD ;④∵∠B=∠5,∴AB ∥CD ;∴不能得到AB ∥CD 的条件是②.故选:B .【点睛】此题考查了平行线的判定.此题难度不大,注意掌握数形结合思想的应用,弄清截线与被截线.二、填空题13..【解析】【分析】绝对值小于1的负数也可以利用科学记数法表示,一般形式为 与较大数的科学记数法不同的是其所使用的是负指数幂,指数由原数左边起第一个不为零的数字前面的0的个数所决定.【详解】解析:89.110-⨯.【解析】【分析】绝对值小于1的负数也可以利用科学记数法表示,一般形式为10n a -⨯,与较大数的科学记数法不同的是其所使用的是负指数幂,指数由原数左边起第一个不为零的数字前面的0的个数所决定.【详解】0.000000091m 用科学记数法表示为89.110m -⨯.故答案为89.110-⨯.【点睛】考查科学记数法,掌握绝对值小于1的数的表示方法是解题的关键.14.-5或-1或-3【分析】根据零指数幂和1的任何次幂都等于1分情况讨论求解.【详解】解:根据0指数的意义,得:当x+2≠0时,x+5=0,解得:x=﹣5.当x+2=1时,x=﹣1,当x+2解析:-5或-1或-3【分析】根据零指数幂和1的任何次幂都等于1分情况讨论求解.【详解】解:根据0指数的意义,得:当x+2≠0时,x+5=0,解得:x=﹣5.当x+2=1时,x=﹣1,当x+2=﹣1时,x=﹣3,x+5=2,指数为偶数,符合题意.故答案为:﹣5或﹣1或﹣3.【点睛】本题考查零指数幂和有理数的乘方,掌握零指数幂和1的任何次幂都是1是本题的解题关键.15.或 2【分析】可分相等的两边的长为1cm,2cm,3cm,4cm,依此讨论,根据三角形三边关系(三角形两边之和大于第三边,两边只差小于第三边)即可求解.【详解】解:相等的两边的长为1cm,则解析:或 2【分析】可分相等的两边的长为1cm,2cm,3cm,4cm,依此讨论,根据三角形三边关系(三角形两边之和大于第三边,两边只差小于第三边)即可求解.【详解】解:相等的两边的长为1cm,则第三边为:10-1×2=8(cm),1+1<8,不符合题意;相等的两边的长为2cm,则第三边为:10-2×2=6(cm),2+2<6,不符合题意;相等的两边的长为3cm,则第三边为:10-3×2=4(cm),3+3>4,符合题意;相等的两边的长为4cm,则第三边为:10-4×2=2(cm),2+4>4,符合题意.故第三边长为4或2cm.故答案为:4或2.【点睛】此题考查了三角形三边关系(三角形两边之和大于第三边,两边只差小于第三边),等腰三角形的性质和周长计算,分类思想的运用是解题的关键.16.23×10-7【解析】【分析】绝对值小于1的正数也可以利用科学记数法表示,一般形式为a×10-n,与较大数的科学记数法不同的是其所使用的是负指数幂,指数由原数左边起第一个不为零的数字前面的0的解析:23×10-7【解析】【分析】绝对值小于1的正数也可以利用科学记数法表示,一般形式为a×10-n,与较大数的科学记数法不同的是其所使用的是负指数幂,指数由原数左边起第一个不为零的数字前面的0的个数所决定.【详解】解:0.000000823=8.23×10-7.故答案为: 8.23×10-7.【点睛】本题考查用科学记数法表示较小的数,一般形式为a×10-n,其中1≤|a|<10,n为由原数左边起第一个不为零的数字前面的0的个数所决定.17.【详解】解:由题意得,∠A的外角=180°-∠A=60°,又∵多边形的外角和为360°,∴∠1+∠2+∠3+∠4=360°-∠A的外角=300°.故答案为:300.【点睛】本题考查多边解析:300【详解】解:由题意得,∠A的外角=180°-∠A=60°,又∵多边形的外角和为360°,∴∠1+∠2+∠3+∠4=360°-∠A的外角=300°.故答案为:300.【点睛】本题考查多边形外角性质,补角定义.18.【分析】有图形可知,图中各点分别组成了正方形点阵,内个正方形点阵的整点数量依次为最右下角点横坐标的平方,且当正方形最右下角点的横坐标为奇数时,这个点可以看做按照运动方向到达x 轴,当正方形最右下角解析:()45,5【分析】有图形可知,图中各点分别组成了正方形点阵,内个正方形点阵的整点数量依次为最右下角点横坐标的平方,且当正方形最右下角点的横坐标为奇数时,这个点可以看做按照运动方向到达x 轴,当正方形最右下角点的横坐标为偶数时,这个点可以看做按照运动方向离开x 轴,按照此方法计算即可;【详解】有图形可知,图中各点分别组成了正方形点阵,内个正方形点阵的整点数量依次为最右下角点横坐标的平方,且当正方形最右下角点的横坐标为奇数时,这个点可以看做按照运动方向到达x 轴,当正方形最右下角点的横坐标为偶数时,这个点可以看做按照运动方向离开x 轴,∵245=2025,∴第2025个点在x 轴上的坐标为()45,0,则第2020个点在()45,5.故答案为()45,5.【点睛】本题主要考查了规律题型点的坐标,准确判断是解题的关键. 19.【分析】根据两数的平方和加上或减去两数积的2倍,等于两数和或差的平方,即可求出的值 .【详解】解:∵是完全平方式,即.故答案为:.【点睛】此题考查了完全平方式, 熟练掌握完全平方公式解析:6±【分析】根据两数的平方和加上或减去两数积的2倍,等于两数和或差的平方,即可求出k 的值 .【详解】解:∵29x kx -+是完全平方式,即()2293x kx x -+=± 236k ∴=±⨯=±.故答案为:6±.【点睛】此题考查了完全平方式,熟练掌握完全平方公式的结构特点是解本题的关键20.南偏西25°,【分析】根据方位角的概念,画图正确表示出方位角,即可求解.【详解】解:从图中发现船返回时航行的正确方向是南偏西,故答案为:南偏西.【点睛】解答此类题需要从运动的角度解析:南偏西25°,【分析】根据方位角的概念,画图正确表示出方位角,即可求解.【详解】解:从图中发现船返回时航行的正确方向是南偏西25︒,故答案为:南偏西25︒.【点睛】解答此类题需要从运动的角度,正确画出方位角,找准中心是做这类题的关键.21.【分析】设每件衬衫降价x元,正好达到预期目标,根据销售收入-成本=利润,即可得出关于x的一元一次方程,解之即可得出结论.【详解】解:设每件衬衫降价x元,正好达到预期目标,根据题意得:120解析:20【分析】设每件衬衫降价x 元,正好达到预期目标,根据销售收入-成本=利润,即可得出关于x 的一元一次方程,解之即可得出结论.【详解】解:设每件衬衫降价x 元,正好达到预期目标,根据题意得:120×400+(120-x )×(500-400)-80×500=80×500×45%,解得:x=20.答:每件衬衫降价10元,正好达到预期目标.【点睛】本题考查了一元一次方程的应用,找准等量关系,正确列出一元一次方程是解题的关键. 22.1【分析】利用完全平方公式得到a2+2ab+b2=7,然后把a2+b2=5代入可计算出ab 的值.【详解】解:∵(a+b )2=7,∴a2+2ab+b2=7,∵a2+b2=5,∴5+2ab解析:1【分析】利用完全平方公式得到a 2+2ab +b 2=7,然后把a 2+b 2=5代入可计算出ab 的值.【详解】解:∵(a +b )2=7,∴a 2+2ab +b 2=7,∵a 2+b 2=5,∴5+2ab =7,∴ab =1.故答案为1.【点睛】本题主要考查了完全平方差公式的运用,掌握完全平方差公式是解题的关键.三、解答题23.2243x xy y -++,19【分析】根据整式的乘法运算法则,将多项式乘积展开,再合并同类项,即可化简,再代入x ,y 即可求值.【详解】解:原式2222222=44424243x x xy y xy x y xy x xy y -+---++=-++,将1x =-,2y =-代入,则原代数式的值为:2243=x xy y -++()()()()22141232=1812=19--+⋅-⋅-+⋅--++.【点睛】本题考查整式的乘法,难度一般,是中考的常考点,熟练掌握多项式与多项式相乘的法则,即可顺利解题.24.(1)23x y +=;(2)21a b ==,;(3)21m t n -=.【分析】(1)首先把第3项22y 裂项,拆成22y y +,再用完全平方公式因式分解,利用非负数的性质求得x y 、代入求得数值;(2)首先把第2项25b 裂项,拆成224b b +,再用完全平方公式因式分解,利用非负数的性质求得a b 、代入求得数值;(3)先把4m n =+代入28200mn t t +-+=,得到关于n 和 t 的式子,再仿照(1)(2)题.【详解】解:(1)2222210x xy y y -+-+=2222210x xy y y y ∴-++-+=22()(1)0x y y ∴-+-=010x y y ∴-=-=,,11x y ∴==,,23x y ∴+=;(2)2254210a b ab b +--+=22244210a b ab b b ∴+-+-+=22(2)(1)0a b b ∴-+-=2010a b b ∴-=-=,21a b ∴==,;(3)4m n =+,2(4)8200n n t t ∴++-+=22448160n n t t ∴+++-+=22(2)(4)0n t ∴++-=2040n t ∴+=-=,24n t ∴=-=,42m n ∴=+=20(2)1m t n -∴=-=【点睛】本题考查的分组分解法、配方法和非负数的性质,对于项数较多的多项式因式分解,分组分解法是一个常用的方法. 首先要观察各项特征,寻找熟悉的式子,熟练掌握平方差公式和完全平方公式是基础.25.(1)22()4()a b ab a b +-=-.(2)3x y -= .(3)33322()33a b a b a b ab +=+++.(4)54.【分析】(1)根据两种面积的求法的结果相等,即可得到答案;(2)根据第(1)问中已知的等式,将数值分别代入,即可求得答案.(3)根据正方体的体积公式,正方体的边长的立方就是正方体的体积;2个正方体和6个长方体的体积和就是大长方体的体积,则可得到等式;(4)结合4a b +=,1ab =,根据(3)中的公式,变形进行求解即可.【详解】(1)22()4()a b ab a b +-=-.(2)4x y +=,74xy =,()()22274441679.4x y x y xy -=+-=-⨯=-= 故3x y -= . (3)33322()33a b a b a b ab +=+++ .(4)由4a b +=,1ab =,根据第(3)得到的公式可得()()()()333322333641254a b a b a b ab a b ab a b +=+-+=+-+=-=.【点睛】本题考查完全平方公式以及立方公式的几何背景,从整体和局部两种情况分析并写出面积以及体积的表达式是解题的关键. 26.(1)3214x y ⎧=⎪⎪⎨⎪=-⎪⎩;(2)14111211x y ⎧=⎪⎪⎨⎪=-⎪⎩. 【分析】(1)直接利用加减消元法解方程组,即可得到答案;(2)直接利用加减消元法解方程组,即可得到答案;【详解】解:(1)21325x y x y +=⎧⎨-=⎩①②, 由①+②,得46x =, ∴32x =, 把32x =代入①,得14y =-,∴方程组的解为:3214x y ⎧=⎪⎪⎨⎪=-⎪⎩; (2)111231233x y x y ⎧-=⎪⎪⎨⎪--=⎪⎩①②, 由①3⨯-②,得:11763x =, ∴1411x =, 把1411x =代入①,解得:1211y =-, ∴方程组的解为:14111211x y ⎧=⎪⎪⎨⎪=-⎪⎩; 【点睛】本题考查了解二元一次方程组,解题的关键是熟练掌握加减消元法解二元一次方程组.27.(1)A 种商品有5件,B 种商品有8件;(2)先按车收费用3辆车运送18m 3,再按吨收费运送1件B 型产品,运费最少为3000元【分析】(1)设A 、B 两种型号商品各有x 件和y 件,根据体积一共是20m 3,质量一共是10.5吨列出方程组再解即可;(2)分别计算出①按车收费的费用,②按吨收费的费用,③两种方式混合用的花费,进而可得答案.【详解】解:(1)设A 、B 两种型号商品各有x 件和y 件,由题意得,0.82200.510.5x y x y +=⎧⎨+=⎩, 解得:58x y =⎧⎨=⎩, 答:A 、B 两种型号商品各有5件、8件;(2)①按车收费:10.5÷3.5=3(辆),但车辆的容积为:6×3=18<20,所以3辆车不够,需要4辆车,此时运费为:4×900=3600元;②按吨收费:300×10.5=3150元,③先用3辆车运送A商品5件,B商品7件,共18m3,按车付费3×900=2700(元).剩余1件B型产品,再运送,按吨付费300×1=300(元).共需付2700+300=3000(元).∵3000<3150<3600,∴先按车收费用3辆车运送18m3,再按吨收费运送1件B型产品,运费最少为3000元.答:先按车收费用3辆车运送18m3,再按吨收费运送1件B型产品,运费最少为3000元.【点睛】本题考查二元一次方程组的应用,关键是正确理解题意,找出题中的等量关系.28.(1)见解析;(2)见解析;(3)见解析.【分析】(1)根据三角形高的定义求解可得;(2)根据平移的定义作出变换后的对应点,再顺次连接即可得;(3)计算得出格点△ABC的面积是3,得出格点△ABP的面积为6,据此画出格点△ABP 即可.【详解】解:(1)如图所示,(2)如图所示;(3)S△ABC=1323 2⨯⨯=S△ABP=2S△ABC=6画格点△ABP如图所示,(答案不唯一).【点睛】本题主要考查作图-平移变换,解题的关键是熟练掌握平移变换的定义和性质,并据此得出变换后的对应点.29.(1)21xy=⎧⎨=-⎩;(2)175125xy=⎧⎨=⎩.【分析】(1)利用代入消元法解二元一次方程组即可;(2)方程组整理后,利用加减消元法解二元一次方程组即可.【详解】解:(1)2531y x x y =-⎧⎨+=-⎩①②, 把①代入②得:x +6x ﹣15=﹣1,解得:x =2,把x =2代入①得:y =﹣1,则方程组的解为21x y =⎧⎨=-⎩; (2)方程组整理得:3005537500x y x y +=⎧⎨+=⎩①②, ①×53﹣②得:48x =8400,解得:x =175,把x =175代入①得:y =125,则方程组的解为175125x y =⎧⎨=⎩. 【点睛】此题考查的是解二元一次方程组,掌握利用代入消元法和加减消元法解二元一次方程组是解决此题的关键.30.(1)33+a b ,33a b -;(2)6;(3)14;(4)198【分析】(1)根据整式的混合运算法则展开计算即可;(2)利用完全平方公式变形,再代入求值;(3)利用立方差公式和完全平方公式变形,再代入求值;(4)利用立方差公式和完全平方公式变形,再代入求值;【详解】解:(1)()()22+-+a b a ab b=322223a a b ab a b ab b -++-+=33+a b()()22a b a ab b -++=322223a a b ab a b ab b ++---=33a b -,故答案为:33+a b ,33a b -;(2)22a b +=()22a b ab -+=2221+⨯=6;(3)33a b - =()()22a b a ab b -++=()()23a b a b ab ⎡⎤--+⎣⎦ =()22231⨯+⨯ =14;(4)66a b + =()()224224a b a a b b +-+=()()22222223a b ab a b a b ⎡⎤⎡⎤-++-⎢⎥⎣⎦⎣⎦ =()()2222163+⨯- =198【点睛】本题考查了因式分解-运用公式法,正确的理解已知条件中的公式是解题的关键.。
苏科七年级苏科初一数学下册第二学期期末测试题及答案(共五套)
苏科七年级苏科初一数学下册第二学期期末测试题及答案(共五套)一、选择题1.以下列各组线段为边,能组成三角形的是( )A .2cm 、2cm 、4cmB .2cm 、6cm 、3cmC .8cm 、6cm 、3cmD .11cm 、4cm 、6cm 2.若一个多边形的每个内角都为108°,则它的边数为( ) A .5B .8C .6D .10 3.下列代数运算正确的是( ) A .x•x 6=x 6B .(x 2)3=x 6C .(x+2)2=x 2+4D .(2x )3=2x 3 4.下列各式由左边到右边的变形,是因式分解的是( ) A .x (x +y )=x 2+xyB .2x 2+2xy =2x (x +y )C .(x +1)(x -2)=(x -2)(x +1)D .2111x x x x x ⎛⎫++=++ ⎪⎝⎭5.下列图形中,不能通过其中一个四边形平移得到的是( )A .B .C .D .6.不等式3+2x>x+1的解集在数轴上表示正确的是( )A .B .C .D .7.下列方程中,是二元一次方程的是( ) A .x 2+x =1 B .2x ﹣3y =5C .xy =3D .3x ﹣y =2z 8.足球比赛中,每场比赛都要分出胜负每队胜1场得3分,负一场扣1分,某队在8场比赛中得到12分,若设该队胜的场数为x 负的场数为y ,则可列方程组为( ) A .8312x y x y +=⎧⎨-=⎩ B .8312x y x y -=⎧⎨-=⎩ C .18312x y x y +=⎧⎨+=⎩ D .8312x y x y -=⎧⎨+=⎩9.如图,△ABC 中∠A=30°,E 是AC 边上的点,先将△ABE 沿着BE 翻折,翻折后△ABE 的AB 边交AC 于点D ,又将△BCD 沿着BD 翻折,C 点恰好落在BE 上,此时∠CDB=82°,则原三角形的∠B 的度数为( )A .75°B .72°C .78°D .82°10.如图,将△ABC 纸片沿DE 折叠,点A 的对应点为A’,若∠B=60°,∠C=80°,则∠1+∠2等于( )A .40°B .60°C .80°D .140° 11.已知a 、b 、c 是正整数,a >b ,且a 2-ab-ac+bc=11,则a-c 等于( ) A .1-B .1-或11-C .1D .1或11 12.平面直角坐标系中,点A 到x 轴的距离为1,到y 轴的距离为3,且在第二象限,则点A 的坐标为( )A .()1,3-B .()3,1-C .()1,3-D .()3,1-二、填空题13.若(2x +3)x +2020=1,则x =_____.14.计算:32(2)xy -=___________.15.已知22a b -=,则24a b ÷的值是____.16.已知满足不等式()()325416x x -+<-+的最小整数解是方程23x ax -=的解,则a 的值为________.17.如图,在平面直角坐标系中,有若干个横坐标分别为整数的点,其顺序按图中()1,0→()2,0→()2,1→()1,1→1,2→()2,2…根据这个规律,则第2020个点的坐标为_________.18.计算:22020×(12)2020=_____. 19.已知:实数m,n 满足:m+n=3,mn=2.则(1+m)(1+n)的值等于____________.20.科学家发现2019nCoV -冠状肺炎病毒颗粒平均直径约为0.00000012m ,数据0.00000012用科学记数法表示_______.21.若满足方程组33221x y m x y m +=+⎧⎨-=-⎩的x 与y 互为相反数,则m 的值为_____. 22.若2a +b =﹣3,2a ﹣b =2,则4a 2﹣b 2=_____.三、解答题23.如图,在方格纸内将△ABC 经过一次平移得到A B C ''',图中标出了点B 的对应点B '.(1)在给定的方格纸中画出平移后的A B C ''';(2)画出BC 边上的高AE ;(3)如果P 点在格点上,且满足S △PAB =S △ABC (点P 与点C 不重合),满足这样条件的P 点有 个.24.如图,大圆的半径为r ,直径AB 上方两个半圆的直径均为r ,下方两个半圆的直径分别为a ,b .(1)求直径AB 上方阴影部分的面积S 1;(2)用含a ,b 的代数式表示直径AB 下方阴影部分的面积S 2= ;(3)设a =r +c ,b =r ﹣c (c >0),那么( )(A )S 2=S 1;(B )S 2>S 1;(C )S 2<S 1;(D )S 2与S 1的大小关系不确定;(4)请对你在第(3)小题中所作的判断说明理由.25.计算:(1)022019()32020-- (2)4655x x x x ⋅+⋅26.分解因式:(1)3222x x y xy -+;(2)2296(1)(1)x x y y -+++;(3)()214(1)m m m -+-.27.如图,在网格中,每个小正方形的边长均为1个单位长度,我们将小正方形的顶点叫做格点,三角形ABC 的三个顶点均在格点上.(1)将三角形ABC先向右平移6个单位长度,再向上平移3个单位长度,得到三角形A1B1C1,画出平移后的三角形A1B1C1;(2)建立适当的平面直角坐标系,使得点A的坐标为(-4,3),并直接写出点A1的坐标;(3)求三角形ABC的面积.28.因式分解:(1)12abc﹣9a2b;(2)a2﹣25;(3)x3﹣2x2y+xy2;(4)m2(x﹣y)﹣(x﹣y).29.若规定acbd=a﹣b+c﹣3d,计算:223223xy xx---2574xy xxy-+-+的值,其中x=2,y=﹣1.30.已知a6=2b=84,且a<0,求|a﹣b|的值.【参考答案】***试卷处理标记,请不要删除一、选择题1.C解析:C【分析】根据三角形三条边的关系计算即可,三角形任意两边之和大于第三边,任意两边之差小于第三边.【详解】A. ∵2+2=4,∴ 2cm、2cm、4cm不能组成三角形,故不符合题意;B. ∵2+3<6,∴2cm、6cm、3cm不能组成三角形,故不符合题意;C. ∵3+6>8,∴8cm、6cm、3cm能组成三角形,故符合题意;D. ∵4+6<11,∴11cm 、4cm 、6cm 不能组成三角形,故不符合题意;故选C.【点睛】本题考查了三角形三条边的关系,熟练掌握三角形三条边的关系是解答本题的关键.2.A解析:A【解析】已知多边形的每一个内角都等于108°,可得多边形的每一个外角都等于180°-108°=72°,所以多边形的边数n=360°÷72°=5.故选A.3.B解析:B【分析】根据同底数幂的乘法,幂的乘方,完全平方公式,积的乘方运算判断即可.【详解】A .67=x x x ,故A 选项错误;B .()32236x x x ⨯==,故B 选项正确;C .22(2)44x x x +=++,故C 选项错误;D .3333(2)28x x x =⋅=,故D 选项错误.故选B .【点睛】本题考查整式的乘法公式,熟练掌握同底数幂的乘法,幂的乘方,完全平方公式和积的乘方是解题的关键.4.B解析:B【分析】根据因式分解的意义求解即可.【详解】A 、从左边到右边的变形不属于因式分解,故A 不符合题意;B 、把一个多项式转化成几个整式积的形式,故B 符合题意;C 、从左边到右边的变形不属于因式分解,故C 不符合题意;D 、因式分解是把一个多项式化为几个整式的积的形式,而1x是分式,故D 不符合题意. 【点睛】本题考查了因式分解的定义,能熟记因式分解的定义的内容是解此题的关键,注意:把一个多项式化成几个整式的积的形式,叫因式分解. 5.D解析:D【详解】解:A、能通过其中一个四边形平移得到,不符合题意;B、能通过其中一个四边形平移得到,不符合题意;C、能通过其中一个四边形平移得到,不符合题意;D、不能通过其中一个四边形平移得到,需要一个四边形旋转得到,符合题意.故选D.6.A解析:A【分析】先解不等式求出不等式的解集,然后根据不等式的解集在数轴上的表示方法判断即可.【详解】解:移项,得2x-x>1-3,合并同类项,得x>﹣2,不等式的解集在数轴上表示为:.故选:A.【点睛】本题考查了一元一次不等式的解法和不等式的解集在数轴上的表示,属于基础题型,熟练掌握一元一次不等式的解法是关键.7.B解析:B【分析】根据二元一次方程的定义对各选项逐一判断即可得.【详解】解:A.x2+x=1中x2的次数为2,不是二元一次方程;B.2x﹣3y=5中含有2个未知数,且含未知数项的最高次数为一次的整式方程,是二元一次方程;C.xy=3中xy的次数为2,不是二元一次方程;D.3x﹣y=2z中含有3个未知数,不是二元一次方程;故选:B.【点睛】本题主要考查了二元一次方程的定义判断,准确理解是解题的关键.8.A解析:A【分析】设这个队胜x场,负y场,根据在8场比赛中得到12分,列方程组即可.【详解】解:设这个队胜x场,负y场,根据题意,得8312x y x y +=⎧⎨-=⎩. 故选:A .【点睛】本题考查了由实际问题抽象出二元一次方程组,解答本题的关键是读懂题意,设出未知数,找出合适的等量关系,列方程组.9.C解析:C【分析】在图①的△ABC 中,根据三角形内角和定理,可求得∠B+∠C=150°;结合折叠的性质和图②③可知:∠B=3∠CBD ,即可在△CBD 中,得到另一个关于∠B 、∠C 度数的等量关系式,联立两式即可求得∠B 的度数.【详解】在△ABC 中,∠A=30°,则∠B+∠C=150°…①;根据折叠的性质知:∠B=3∠CBD ,∠BCD=∠C ;在△CBD 中,则有:∠CBD+∠BCD=180°-82°,即:13∠B+∠C=98°…②; ①-②,得:23∠B=52°, 解得∠B=78°.故选:C .【点睛】 此题主要考查的是图形的折叠变换及三角形内角和定理的应用,能够根据折叠的性质发现∠B 和∠CBD 的倍数关系是解答此题的关键.10.C解析:C【分析】根据平角定义和折叠的性质,得123602(34)∠+∠=︒-∠+∠,再利用三角形的内角和定理进行转换,得34140B C ∠+∠=∠+∠=︒从而解题.【详解】解:根据平角的定义和折叠的性质,得123602(34)∠+∠=︒-∠+∠.又34180A ∠+∠+∠=︒,180A B C ∠+∠+∠=︒,∴∠+∠=∠+∠=︒+︒=︒,B C346080140∠+∠=︒-∠+∠=︒-⨯︒=︒,∴123602(34)360214080故选:C.【点睛】此题综合运用了平角的定义、折叠的性质和三角形的内角和定理.11.D解析:D【解析】【分析】此题先把a2-ab-ac+bc因式分解,再结合a、b、c是正整数和a>b探究它们的可能值,从而求解.【详解】解:根据已知a2-ab-ac+bc=11,即a(a-b)-c(a-b)=11,(a-b)(a-c)=11,∵a>b,∴a-b>0,∴a-c>0,∵a、b、c是正整数,∴a-c=1或a-c=11故选D.【点睛】此题考查了因式分解;能够借助因式分解分析字母的取值范围是解决问题的关键.12.B解析:B【分析】根据第二象限内点的横坐标是负数,纵坐标是正数,点到x轴的距离等于纵坐标的绝对值,到y轴的距离等于横坐标的绝对值解答.【详解】解:∵P在第二象限,且点P到x轴、y轴的距离分别是1,3,∴点P的横坐标为-3,纵坐标为1,∴P点的坐标为(-3,1).故选:B.【点睛】本题考查了点的坐标,熟记点到x轴的距离等于纵坐标的绝对值,到y轴的距离等于横坐标的绝对值是解题的关键.二、填空题13.﹣2020或﹣1或﹣2【分析】直接利用当2x+3=1时,当2x+3=﹣1时,当x+2020=0时,分别得出答案.【详解】解:当2x+3=1时,解得x=﹣1,故x+2020=2019,此解析:﹣2020或﹣1或﹣2【分析】直接利用当2x+3=1时,当2x+3=﹣1时,当x+2020=0时,分别得出答案.【详解】解:当2x+3=1时,解得x=﹣1,故x+2020=2019,此时:(2x+3)x+2020=1,当2x+3=﹣1时,解得x=﹣2,故x+2020=2018,此时:(2x+3)x+2020=1,当x+2020=0时,解得x=﹣2020,此时:(2x+3)x+2020=1,综上所述,x的值为:﹣2020或﹣1或﹣2.故答案为:﹣2020或﹣1或﹣2.【点睛】此题主要考查了零指数幂的性质以及有理数的乘方,正确分类讨论是解题关键.14.【分析】根据积的乘方进行计算即可.【详解】解:,故答案为:.【点睛】此题考查积的乘方.积的乘方,先把积中的每一个乘数分别乘方,再把所得的幂相乘.4x y解析:26【分析】根据积的乘方进行计算即可.【详解】解:3226(2)4xy x y -=,故答案为:264x y .【点睛】此题考查积的乘方.积的乘方,先把积中的每一个乘数分别乘方,再把所得的幂相乘.15.【分析】先将化为同底数幂的式子,然后根据幂的除法法则进行合并,再将代入计算即可.【详解】解:==,∵,∴原式=22=4.【点睛】本题考查了幂的除法法则,掌握知识点是解题关键.解析:【分析】先将24a b ÷化为同底数幂的式子,然后根据幂的除法法则进行合并,再将22a b -=代入计算即可.【详解】解:24a b ÷=222a b ÷=()22a b -,∵22a b -=,∴原式=22=4.【点睛】本题考查了幂的除法法则,掌握知识点是解题关键.16.【分析】首先解不等式求的不等式的解集,然后确定解集中的最小整数值,代入方程求得a 的值即可;【详解】解不等式,去括号,得,移项,得,合并同类项,得,系数化为1,得,则最小的整数解为- 解析:72【分析】首先解不等式求的不等式的解集,然后确定解集中的最小整数值,代入方程求得a 的值即可;【详解】解不等式()()325416x x -+<-+,去括号,得365446-+<-+x x ,移项,得344665-<-++-x x ,合并同类项,得3x -<,系数化为1,得3x >-,则最小的整数解为-2.把2x =-代入23x ax -=中,得423a -+=, 解得:72a =. 故答案为72. 【点睛】本题主要考查了一元一次方程的解与一元一次不等式的整数解,准确计算是解题的关键.17.【分析】有图形可知,图中各点分别组成了正方形点阵,内个正方形点阵的整点数量依次为最右下角点横坐标的平方,且当正方形最右下角点的横坐标为奇数时,这个点可以看做按照运动方向到达x 轴,当正方形最右下角解析:()45,5【分析】有图形可知,图中各点分别组成了正方形点阵,内个正方形点阵的整点数量依次为最右下角点横坐标的平方,且当正方形最右下角点的横坐标为奇数时,这个点可以看做按照运动方向到达x 轴,当正方形最右下角点的横坐标为偶数时,这个点可以看做按照运动方向离开x 轴,按照此方法计算即可;【详解】有图形可知,图中各点分别组成了正方形点阵,内个正方形点阵的整点数量依次为最右下角点横坐标的平方,且当正方形最右下角点的横坐标为奇数时,这个点可以看做按照运动方向到达x 轴,当正方形最右下角点的横坐标为偶数时,这个点可以看做按照运动方向离开x 轴,∵245=2025,∴第2025个点在x 轴上的坐标为()45,0,则第2020个点在()45,5.故答案为()45,5.【点睛】本题主要考查了规律题型点的坐标,准确判断是解题的关键.18.1【分析】根据积的乘方计算法则进行计算即可.【详解】解:原式=(2×)2020=1,故答案为:1.【点睛】本题主要考查了积的乘方的逆运算,准确计算是解题的关键.解析:1【分析】根据积的乘方计算法则进行计算即可.【详解】解:原式=(2×12)2020=1,故答案为:1.【点睛】本题主要考查了积的乘方的逆运算,准确计算是解题的关键.19.6【分析】根据多项式乘以多项式的法则展开,再代入计算即可.【详解】∵m+n=3,mn=2,∴(1+m)(1+n)=1+n+m+mn=1+3+2=6.故答案为:6.【点睛】本题考查了多解析:6【分析】根据多项式乘以多项式的法则展开,再代入计算即可.【详解】∵m+n=3,mn=2,∴(1+m)(1+n)=1+n+m+mn=1+3+2=6.故答案为:6.【点睛】本题考查了多项式乘以多项式,掌握多项式乘以多项式的法则是解答本题的关键.注意不要漏项,漏字母,有同类项的合并同类项.20.【分析】科学记数法的表示形式为a×10n 的形式,其中1≤|a|<10,n 为整数.确定n 的值时,要看把原数变成a 时,小数点移动了多少位,n 的绝对值与小数点移动的位数相同.当原数绝对值>10时,n 是解析:71.210-⨯【分析】科学记数法的表示形式为a ×10n 的形式,其中1≤|a|<10,n 为整数.确定n 的值时,要看把原数变成a 时,小数点移动了多少位,n 的绝对值与小数点移动的位数相同.当原数绝对值>10时,n 是正数;当原数的绝对值<1时,n 是负数.【详解】解:根据科学记数法的定义:0.00000012=71.210-⨯故答案为:71.210-⨯.【点睛】此题考查的是科学记数法,掌握科学记数法的定义是解决此题的关键.21.【分析】把m 看做已知数表示出x 与y ,代入x+y =0计算即可求出m 的值.【详解】解:,①+②得:5x =3m+2,解得:x =,把x =代入①得:y =,由x 与y 互为相反数,得到=0,去分母解析:【分析】把m 看做已知数表示出x 与y ,代入x +y =0计算即可求出m 的值.【详解】解:33221x y m x y m +=+⎧⎨-=-⎩①②, ①+②得:5x =3m +2,解得:x =325m +, 把x =325m +代入①得:y =945m -,由x与y互为相反数,得到3294+55m m+-=0,去分母得:3m+2+9﹣4m=0,解得:m=11,故答案为:11【点睛】此题考查了二元一次方程组的解,以及解二元一次方程组,熟练掌握方程组的解法及相反数的性质是解本题的关键.22.-6【分析】根据平方差公式可以求得题目中所求式子的值.【详解】解:∵2a+b=﹣3,2a﹣b=2,∴4a2﹣b2=(2a+b)(2a﹣b)=(﹣3)×2=﹣6,故答案为:﹣6.【点睛】解析:-6【分析】根据平方差公式可以求得题目中所求式子的值.【详解】解:∵2a+b=﹣3,2a﹣b=2,∴4a2﹣b2=(2a+b)(2a﹣b)=(﹣3)×2=﹣6,故答案为:﹣6.【点睛】此题考查的是根据平方差公式求值,掌握利用平方差公式因式分解是解决此题的关键.三、解答题23.(1)见解析;(2)见解析;(3)8【分析】(1)由点B及其对应点B′的位置得出平移的方向和距离,据此作出点A、C平移后的对应点,再首尾顺次连接即可得;(2)根据三角形高线的概念作图即可;(3)由S△PAB=S△ABC知两个三角形共底、等高,据此可知点P在如图所示的直线m、n上,再结合图形可得答案.【详解】解:(1)如图所示,△A′B′C′即为所求.(2)如图所示,垂线段AE 即为所求;(3)如图所示,满足这样条件的点P 有8个,故答案为:8.【点睛】本题主要考查作图-平移变换,解题的关键是掌握平移变换的定义和性质,据此得出变换后的对应点及三角形高线的概念、共底等高的三角形面积问题.24.(1)214r π ;(2)14ab π ;(3)C ;(4)理由见解析【分析】(1)用半径为r 的半圆的面积减去直径为r 的圆的面积即可;(2)用直径为(a +b )的半圆的面积减去直径为a 的半圆的面积,再减去直径为b 的半圆的面积即可;(3)(4)将a =r +c ,b =r ﹣c ,代入S 2,然后与S 1比较即可.【详解】解:(1)S 1=222111244r r r πππ-=; (2)S 2=22211111()222424a b a b πππ+•-•-•, =18π(a +b )2﹣18πa 2﹣218b π =14ab π, 故答案为:14ab π;(3)选:C ;(4)将a =r +c ,b =r ﹣c ,代入S 2,得: S 2=14π(r +c )(r ﹣c )=14π(r 2﹣c 2), ∵c >0,∴r 2>r 2﹣c 2,即S1>S2.故选C.【点睛】此题考查了列代数式表示图形的面积,解题的关键是:结合图形分清各个半圆的半径及熟记圆的面积公式.25.(1)89;(2)102x;【分析】(1)根据零指数幂和负整数指数幂的运算法则即可计算;(2)根据同底数幂的乘法法则和合并同类项即可计算.【详解】(1)原式=1-19=89;(2)原式=x10+x10=2x10.【点睛】本题考查整式的混合运算,负整数指数幂,零指数幂,解答本题的关键是明确各法则的计算方法.26.(1)x(x-y)2;(2)(3x-y-1)2;(3)(m-1)(m+2)(m-2).【分析】(1)首先提公因式x,然后利用完全平方公式即可分解;(2)根据完全平方公式进行因式分解即可;(3)首先提公因式(m-1)然后利用平方差公式即可分解.【详解】解:(1)原式=x(x2-2xy+y2)=x(x-y)2;(2)原式=(3x)2-2×(3x)(y+1)+(y+1)2=(3x-y-1)2;(3)原式=(m-1)(m2-4)=(m-1)(m+2)(m-2).【点睛】本题考查了用提公因式法和公式法进行因式分解,将式子分解彻底是解题关键.27.(1)见解析;(2)(2,6);(3)19 2【分析】(1)利用网格特点和平移的性质画出A、B、C的对应点A1、B1、C1,从而得到△A1B1C1;(2)利用A点坐标画出直角坐标系,再写出A1坐标即可;(3)利用分割法求出坐标即可.【详解】解:(1)画出平移后的△A1B1C1如下图;;(2)如上图建立平面直角坐标系,使得点A的坐标为(-4,3),由图可知:点A1的坐标为(2,6);(3)由(2)中的图可知:A(-4,3),B(5,-1),C(0,0),∴S△ABC=11119 (45)434512222 +⨯-⨯⨯-⨯⨯=.【点睛】本题考查了作图——平移变换:确定平移后图形的基本要素有两个:平移方向、平移距离.作图时要先找到图形的关键点,分别把这几个关键点按照平移的方向和距离确定对应点后,再顺次连接对应点即可得到平移后的图形.28.(1)3ab(4c﹣3a);(2)(a+5)(a﹣5);(3)x(x﹣y)2;(4)(x﹣y)(m +1)(m﹣1)【分析】(1)由题意原式直接提取公因式即可;(2)根据题意原式利用平方差公式分解即可;(3)由题意原式提取公因式,再利用完全平方公式分解即可;(4)根据题意原式提取公因式,再利用平方差公式分解即可.【详解】解:(1)12abc﹣9a2b=3ab(4c﹣3a);(2)a2﹣25=(a+5)(a﹣5);(3)x3﹣2x2y+xy2=x(x2﹣2xy+y2)=x(x﹣y)2;(4)m2(x﹣y)﹣(x﹣y)=(x﹣y)(m2﹣1)=(x﹣y)(m+1)(m﹣1).【点睛】本题考查提公因式法与公式法的综合运用,熟练掌握因式分解的方法是解答本题的关键.29.﹣5x2﹣4xy+18,6.【分析】将原式利用题中的新定义化简得到最简结果,把x与y的值代入计算即可求值.【详解】原式=(3xy﹣2x2)﹣(﹣5xy+x2)+(﹣2x2﹣3)﹣3(﹣7+4xy)=3xy﹣2x2+5xy﹣x2﹣2x2﹣3+21﹣12xy=﹣5x2﹣4xy+18,当x=2,y=﹣1时,原式=﹣20+8+18=6.【点睛】本题考查了整式的混合运算—化简求值,熟练掌握运算法则是解题的关键.30.16【分析】根据幂的乘方运算法则确定a、b的值,再根据绝对值的定义计算即可.【详解】解:∵(±4)6=2b=84=212,a<0,∴a=﹣4,b=12,∴|a﹣b|=|﹣4﹣12|=16.【点睛】本题考查幂的乘方,难度不大,也是中考的常考知识点,熟练掌握幂的乘方运算法则是解题的关键.。
苏科七年级苏科初一数学下学期期末测试题及答案(共五套)
苏科七年级苏科初一数学下学期期末测试题及答案(共五套)一、选择题1.以下列各组线段为边,能组成三角形的是( ) A .2cm 、2cm 、4cm B .2cm 、6cm 、3cm C .8cm 、6cm 、3cmD .11cm 、4cm 、6cm2.如图,图(1)的正方形的周长与图(2)的长方形的周长相等,且长方形的长比宽多a cm ,则正方形的面积与长方形的面积的差为 ( )A .a 2B .12a 2C .13a 2 D .14a 2 3.已知∠1与∠2是同位角,则( ) A .∠1=∠2 B .∠1>∠2 C .∠1<∠2 D .以上都有可能 4.如果 x 2﹣kx ﹣ab =(x ﹣a )(x +b ),则k 应为( ) A .a ﹣bB .a +bC .b ﹣aD .﹣a ﹣b5.分别表示出下图阴影部分的面积,可以验证公式( )A .(a +b )2=a 2+2ab +b 2B .(a -b )2=a 2-2ab +b 2C .a 2-b 2=(a +b )(a -b )D .(a +2b )(a -b )=a 2+ab -2b 26.如图,∠ACB >90°,AD ⊥BC ,BE ⊥AC ,CF ⊥AB ,垂足分别为点D 、点E 、点F ,△ABC中AC 边上的高是( )A .CFB .BEC .AD D .CD 7.若8x a =,4y a =,则2x y a +的值为( )A .12B .20C .32D .256 8.将下列三条线段首尾相连,能构成三角形的是( )A .1,2,3B .2,3,6C .3,4,5D .4,5,99.已知关于,x y 的二元一次方程组725ax y x y +=⎧⎨-=⎩和432x y x by +=⎧⎨+=-⎩有相同的解,则-a b 的值是( ) A .13B .9C .9-D .13-10.某中学现有学生500人,计划一年后女生在校生增加3%,男生在校生增加4%,这样,在校学生将增加3.4%,设该校现有女生人数x 和男生y ,则列方程组为( )A .500(14%)(13%)500(1 3.4)x y x y +=⎧⎨+++=⨯+⎩B .5003%4% 3.4%x y x y +=⎧⎨+=⎩C .500(13%)(14%)500(1 3.4%)x y x y +=⎧⎨+++=⨯+⎩D .5004%3%500 3.4%x y x y +=⎧⎨+=⨯⎩11.下列各组数中,是二元一次方程5x ﹣y =4的一个解的是( )A .31x y =⎧⎨=⎩B .11x y =⎧⎨=⎩C .04x y =⎧⎨=⎩D .13x y =⎧⎨=⎩12.下列计算不正确的是( )A .527a a a =B .623a a a ÷=C .2222a a a +=D .(a 2)4=a 8二、填空题13.()a b -+(__________) =22a b -.14.直角三角形中,一个锐角等于另一个锐角的2倍,则较小的锐角是_______. 15.若x +3y -4=0,则2x •8y =_________.16.已知某种植物花粉的直径为0.00033cm ,将数据0.00033用科学记数法表示为 ________________. 17.不等式1x 2x 123>+-的非负整数解是______. 18.小明在拼图时,发现8个样大小的长方形,恰好可以拼成一个大的长方形如图(1);小红看见了,说:“我也来试试.”结果小红七拼八凑,拼成了如图(2)那样的正方形,中间还留下了一个洞,恰好是边长为5mm 的小正方形,则每个小长方形的面积为__________2mm .19.()7(y x -+________ 22)49y x =-.20.如图,在△ABC 中,已知点D ,E ,F 分别为边BC ,AD ,CE 的中点,且△ABC 的面积等于4cm 2,则阴影部分图形面积等于_____cm 221.如图,四边形ABCD 中,E 、F 、G 、H 依次是各边中点,O 是形内一点,若四边形AEOH 、四边形BFOE 、四边形CGOF 的面积分别为6、7、8,四边形DHOG 面积为( )A .6B .7C .8D .922.三角形两边长分别是3、5,第三边长为偶数,则第三边长为_______三、解答题23.先化简后求值:224(2)(2)(2)x x y x y y x --+---,其中1x =-,2y =-. 24.因式分解:(1)()()36x m n y n m ---;(2)()222936x x +-25.若x ,y 为任意有理数,比较6xy 与229x y +的大小.26.如图,在△ABC 中,∠ABC =56º,∠ACB =44º,AD 是BC 边上的高,AE 是△ABC 的角平分线,求出∠DAE 的度数.27.一个多边形的每一个内角都相等,并且每个外角都等于和它相邻的内角的一半. (1)求这个多边形是几边形;(2)求这个多边形的每一个内角的度数.28.定义:若实数x ,y 满足22x y t =+,22y x t =+,且x ≠y ,则称点M (x ,y )为“好点”.例如,点(0,-2)和 (-2,0)是“好点”.已知:在直角坐标系xOy 中,点P (m ,n ).(1)P 1(3,1)和P 2(-3,1)两点中,点________________是“好点”. (2)若点P (m ,n )是“好点”,求m +n 的值.(3)若点P 是“好点”,用含t 的代数式表示mn ,并求t 的取值范围.29.如图1是一个长为 4a ,宽为 b 的长方形,沿图中虚线用剪刀平均分成四块小长方形,然后用四块小长方形拼成的一个“回形”正方形(如图2).(1)图2中的阴影部分的面积为 ;(2)观察图2请你写出 ()2a b +,()2a b -,ab 之间的等量关系是 ; (3)根据(2)中的结论,若 6x y +=,114x y ⋅=,则 x y -= ; (4)实际上我们可以用图形的面积表示许多恒等式,下面请你设计一个几何图形来表示恒等式()()2222252a b a b a ab b ++=++.在图形上把每一部分的面积标写清楚.30.因式分解: (1)x 4﹣16; (2)2ax 2﹣4axy +2ay 2.【参考答案】***试卷处理标记,请不要删除一、选择题 1.C 解析:C 【分析】根据三角形三条边的关系计算即可,三角形任意两边之和大于第三边,任意两边之差小于第三边. 【详解】A. ∵2+2=4,∴ 2cm 、2cm 、4cm 不能组成三角形,故不符合题意;B. ∵2+3<6,∴2cm 、6cm 、3cm 不能组成三角形,故不符合题意;C. ∵3+6>8,∴8cm 、6cm 、3cm 能组成三角形,故符合题意;D. ∵4+6<11,∴11cm 、4cm 、6cm 不能组成三角形,故不符合题意; 故选C. 【点睛】本题考查了三角形三条边的关系,熟练掌握三角形三条边的关系是解答本题的关键.2.D解析:D设长方形的宽为x cm ,则长为(x +a )cm ,可得正方形的边长为22x a+;求出两个图形面积然后做差即可. 【详解】解:设长方形的宽为x cm ,则长为(x +a )cm , 则正方形的边长为()2242x a x x a⨯+++=; 正方形的面积为222244224x a x a x ax a ++++=, 长方形的面积为()2x x a x ax +=+,二者面积之差为()222244144x ax a x ax a ++-+=,故选:D . 【点睛】本题考查了整式的混合运算,设出长方形的宽,然后表示出正方形和长方形的面积表达式是解题的关键.3.D解析:D 【分析】根据同位角的定义和平行线的性质判断即可. 【详解】解:∵只有两直线平行时,同位角才可能相等,∴当没有限定“两直线平行”时,已知∠1与∠2是同位角可以得出∠1=∠2或∠1>∠2或∠1<∠2,三种情况都有可能. 故选:D . 【点睛】本题考查了同位角的定义和平行线的性质,正确理解同位角的定义是解此题的关键,“两直线平行”这个前提条件易遗漏.4.A解析:A 【分析】根据多项式与多项式相乘知(x ﹣a )(x +b )=x 2+(b ﹣a )x ﹣ab ,据此可以求得k 的值. 【详解】解:∵(x ﹣a )(x +b )=x 2+(b ﹣a )x ﹣ab , 又∵x 2﹣kx ﹣ab =(x ﹣a )(x +b ), ∴x 2﹣kx ﹣ab =x 2+(b ﹣a )x ﹣ab , ∴﹣k =b ﹣a ,故选:A . 【点睛】本题主要考查多项式与多项式相乘,熟记计算方法是解题的关键.5.C解析:C 【分析】直接利用图形面积求法得出等式,进而得出答案. 【详解】梯形面积等于:()()()()122a b a b a b a b ⨯⨯+⨯-=+-, 正方形中阴影部分面积为:a 2-b 2, 故a 2-b 2=(a +b )(a -b ). 故选:C . 【点睛】此题主要考查了平方差公式的几何背景,正确表示出图形面积是解题关键.6.B解析:B 【解析】试题分析:根据图形,BE 是△ABC 中AC 边上的高.故选B . 考点:三角形的角平分线、中线和高.7.D解析:D 【分析】根据同底数幂的乘法:同底数幂相乘,底数不变,指数相加,以及幂的乘方,底数不变,指数相乘,即可求解. 【详解】 解:∵()222=84256x y x y a a a +⋅=⋅=.故选D . 【点睛】本题考查同底数幂的乘法、幂的乘方运算法则,难度不大,熟练掌握运算法则是顺利解题的关键.8.C解析:C 【分析】构成三角形的三边应满足:任意两边之和大于第三边,任意两边之差小于第三边,只有同时满足以上的两个条件,才能构成三角形,根据该定则,就可判断选项正误. 【详解】解:A 选项:1+2=3,两边之和没有大于第三边,∴无法组成三角形; B 选项:2+3<6,两边之和没有大于第三边,∴无法组成三角形;C 选项:3+4>5,两边之和大于第三边,且满足两边之差小于第三边,∴可以组成三角形;D 选项:4+5=9,两边之和没有大于第三边,∴无法组成三角形, 故选:C . 【点睛】本题主要考察了三角形的三边关系定则:在一个三角形中,任意两边之和大于第三边,任意两边之差小于第三边,只有同时满足以上的两个条件,才能构成三角形.9.A解析:A 【分析】先解方程组425x y x y +=⎧⎨-=⎩求出该方程组的解,然后把这个解分别代入7ax y +=与32x by +=-即可求出a 、b 的值,进一步即可求出答案.【详解】解:解方程组425x y x y +=⎧⎨-=⎩,得31x y =⎧⎨=⎩,把31x y =⎧⎨=⎩代入7ax y +=,得317a +=,解得:a =2, 把31x y =⎧⎨=⎩代入32x by +=-,得92b +=-,解得:b =﹣11,∴a -b =2-(﹣11)=13. 故选:A . 【点睛】本题考查了同解方程组的知识,正确理解题意、熟练掌握解二元一次方程组的方法是解题关键.10.C解析:C 【分析】本题有两个相等关系:现有女生人数x +现有男生人数y =现有学生500;一年后女生在校生增加3%后的人数+男生在校生增加4%后的人数=现在校学生增加3.4%后的人数;据此即可列出方程组. 【详解】解:设该校现有女生人数x 和男生y ,则列方程组为()()()50013%14%5001 3.4%x y x y +=⎧⎨+++=⨯+⎩. 故选:C .【点睛】本题考查了二元一次方程组的应用,属于常考题型,正确理解题意、找准相等关系是解题关键.11.B解析:B 【分析】把x 与y 的值代入方程检验即可. 【详解】解:A 、把31x y =⎧⎨=⎩代入得:左边=15﹣1=14,右边=4,∵左边≠右边,∴31x y =⎧⎨=⎩不是方程的解; B 、把11x y =⎧⎨=⎩代入得:左边=5﹣1=4,右边=4, ∵左边=右边,∴11x y =⎧⎨=⎩是方程的解; C 、把04x y =⎧⎨=⎩代入得:左边=0﹣4=﹣4,右边=4, ∵左边≠右边,∴04x y =⎧⎨=⎩不是方程的解; D 、把13x y =⎧⎨=⎩代入得:左边=5﹣3=2,右边=4, ∵左边≠右边,∴13x y =⎧⎨=⎩不是方程的解,故选:B . 【点睛】本题主要考查了二元一次方程的解的知识点,准确代入求职是解题的关键.12.B解析:B 【分析】根据同底数幂的除法、 乘法, 合并同类项的方法, 以及幂的乘方与积的乘方的运算方法, 逐项判定即可 . 【详解】解:∵527a a a =,∴选项A 计算正确,不符合题意; ∵624a a a ÷=,∴选项B 计算不正确,符合题意; 2222a a a ,∴选项C 计算正确,不符合题意;428()a a =,∴选项D 计算正确,不符合题意;故选:B . 【点睛】此题主要考查了同底数幂的除法、 乘法, 合并同类项的方法, 以及幂的乘方与积的乘方的运算方法, 要熟练掌握 .二、填空题13.【分析】根据平方差公式即可求出答案. 【详解】 解:, 故答案为:. 【点睛】本题考查了平方差公式,解题的关键是熟练运用平方差公式,本题属于基础题型. 解析:a b --【分析】根据平方差公式即可求出答案. 【详解】解:()2222()()a b a b a b a b -+--==---, 故答案为:a b --. 【点睛】本题考查了平方差公式,解题的关键是熟练运用平方差公式,本题属于基础题型.14.30° 【解析】 【分析】设较小的锐角是,然后根据直角三角形两锐角互余列出方程求解即可. 【详解】设较小的锐角是x ,则另一个锐角是2x , 由题意得,x +2x =90°, 解得x =30°, 即此三角解析:30° 【解析】 【分析】设较小的锐角是x ,然后根据直角三角形两锐角互余列出方程求解即可.【详解】设较小的锐角是x,则另一个锐角是2x,由题意得,x+2x=90°,解得x=30°,即此三角形中最小的角是30°.故答案为:30°.【点睛】本题考查了直角三角形的性质,熟练掌握该知识点是本题解题的关键.15.16【分析】根据幂的运算公式变形,再代入x+3y=4即可求解.【详解】∵x+3y-4=0∴x+3y=4∴2x•8y=2x•(23)y=2x+3y=24=16.故答案为:16.【点睛】解析:16【分析】根据幂的运算公式变形,再代入x+3y=4即可求解.【详解】∵x+3y-4=0∴x+3y=4∴2x•8y=2x•(23)y=2x+3y=24=16.故答案为:16.【点睛】此题主要考查幂的运算,解题的关键是熟知幂的运算公式.16.【分析】绝对值小于1的正数也可以利用科学记数法表示,一般形式为a×10-n,与较大数的科学记数法不同的是其所使用的是负指数幂,指数由原数左边起第一个不为零的数字前面的0的个数所决定.【详解】解析:4⨯3.310-【分析】绝对值小于1的正数也可以利用科学记数法表示,一般形式为a×10-n,与较大数的科学记数法不同的是其所使用的是负指数幂,指数由原数左边起第一个不为零的数字前面的0的个数所决定.【详解】解:将数据0.00033用科学记数法表示为43.310-⨯,故答案为:43.310-⨯.【点睛】本题考查用科学记数法表示较小的数,一般形式为a×10-n ,其中1≤|a|<10,n 为由原数左边起第一个不为零的数字前面的0的个数所决定.17.0,1,2,3,4【解析】【分析】首先利用不等式的基本性质解不等式,再从不等式的解集中找出适合条件的非负整数即可.【详解】解:去分母得3(1+x )>2(2x-1)去括号得3+3x >4x解析:0,1,2,3,4【解析】【分析】首先利用不等式的基本性质解不等式,再从不等式的解集中找出适合条件的非负整数即可.【详解】解:去分母得3(1+x )>2(2x-1)去括号得3+3x >4x-2移项合并同类项得x <5非负整数解是0,1,2,3,4.【点睛】本题考查不等式的解法及整数解的确定.解不等式要用到不等式的性质:(1)不等式的两边加(或减)同一个数(或式子),不等号的方向不变;(2)不等式两边乘(或除以)同一个正数,不等号的方向不变;(3)不等式的两边乘(或除以)同一个负数,不等号的方向改变.18.【分析】设小长方形的长是xmm ,宽是ymm .根据图(1),知长的3倍=宽的5倍,即3x=5y ;根据图(2),知宽的2倍-长=5,即2y+x=5,建立方程组.【详解】设小长方形的长是xmm ,宽解析:2375mm【分析】设小长方形的长是xmm ,宽是ymm .根据图(1),知长的3倍=宽的5倍,即3x=5y ;根据图(2),知宽的2倍-长=5,即2y+x=5,建立方程组.【详解】设小长方形的长是xmm ,宽是ymm ,根据题意得:3525x y y x =⎧⎨-=⎩ ,解得2515x y =⎧⎨=⎩∴小长方形的面积为:22515375xy mm【点睛】此题的关键是能够分别从每个图形中获得信息,建立方程. 19.【分析】根据平方差公式进行解答.【详解】解:∵49y2-x2 =(-7y)2-x2,∴(-7x+y)(-7x-y)=49y2-x2.故答案为-7x-y.【点睛】本题考查了平方差公式,解析:7y x --【分析】根据平方差公式进行解答.【详解】解:∵49y 2-x 2 =(-7y)2-x 2,∴(-7x+y)(-7x-y)=49y 2-x 2.故答案为-7x-y.【点睛】本题考查了平方差公式,掌握平方差公式的特征是解题的关键.20.1【分析】由点为的中点,可得的面积是面积的一半;同理可得和的面积之比,利用三角形的等积变换可解答.【详解】解:如图,点是的中点,的底是,的底是,即,而高相等,,是的中点,,,,解析:1【分析】由点E 为AD 的中点,可得EBC ∆的面积是ABC ∆面积的一半;同理可得BCE ∆和EFB ∆的面积之比,利用三角形的等积变换可解答.【详解】解:如图,点F 是CE 的中点,BEF 的底是EF ,BEC ∆的底是EC ,即12EF EC =,而高相等, 12BEF BEC S S ∆∆∴=, E 是AD 的中点, 12BDE ABD S S ∆∆∴=,12CDE ACD S S ∆∆=, 12EBC ABC S S ∆∆∴=, 14BEF ABC S S ∆∆∴=,且24ABC S cm ∆=, 21BEF S cm ∆∴=,即阴影部分的面积为21cm .故答案为1.【点睛】本题主要考查了三角形面积的等积变换:若两个三角形的高(或底)相等,其中一个三角形的底(或高)是另一个三角形的几倍,那么这个三角形的面积也是另一个三角形面积的几倍.21.B【解析】连接OC ,OB ,OA ,OD ,∵E、F 、G 、H 依次是各边中点,∴△AOE 和△BOE 等底等高,所以S△OAE=S△OBE,同理可证,S△OBF=S△OCF,S△ODG=S△OCG,解析:B【解析】连接OC ,OB ,OA ,OD ,∵E 、F 、G 、H 依次是各边中点,∴△AOE 和△BOE 等底等高,所以S △OAE =S △OBE ,同理可证,S △OBF =S △OCF ,S △ODG =S △OCG ,S △ODH =S △OAH ,∴S 四边形AEOH +S 四边形CGOF =S 四边形DHOG +S 四边形BFOE ,∵S 四边形AEOH =6,S 四边形BFOE =7,S 四边形CGOF =8,∴6+8=7+S 四边形DHOG ,解得S 四边形DHOG =7.故答案为7.点睛:本题考查了三角形的面积.解决本题的关键将各个四边形划分,充分利用给出的中点这个条件,证得三角形的面积相等,进而证得结论.22.4或6【解析】【分析】根据三角形三边关系,可令第三边为x ,则5-3<x <5+3,即2<x <8,又因为第三边长为偶数,即可求得答案.【详解】由题意,令第三边为x ,则5-3<x<5+3,即2<解析:4或6【解析】【分析】根据三角形三边关系,可令第三边为x ,则5-3<x <5+3,即2<x <8,又因为第三边长为偶数,即可求得答案.【详解】由题意,令第三边为x ,则5-3<x<5+3,即2<x<8,∵第三边长为偶数,∴第三边长是4或6,故答案为:4或6.【点睛】本题考查了三角形三边关系,熟练掌握三角形的三边关系是解决此类问题的关键.三、解答题23.2243x xy y -++,19【分析】根据整式的乘法运算法则,将多项式乘积展开,再合并同类项,即可化简,再代入x ,y 即可求值.【详解】解:原式2222222=44424243x x xy y xy x y xy x xy y -+---++=-++, 将1x =-,2y =-代入,则原代数式的值为: 2243=x xy y -++()()()()22141232=1812=19--+⋅-⋅-+⋅--++.【点睛】本题考查整式的乘法,难度一般,是中考的常考点,熟练掌握多项式与多项式相乘的法则,即可顺利解题.24.(1)3()(2)m n x y -+;(2)22(3)(3)x x +-. 【分析】(1)原式变形后,提取公因式即可;(2)原式先利用平方差公式进行因式分解,再利用完全平方公式分解即可.【详解】(1)原式3()6()x m n y m n =-+-3()3()2m n x m n y =-⋅+-⋅3()(2)m n x y =-+(2)原式()2229(6)x x =+-()()229696x x x x =+++-22(3)(3)x x =+-【点睛】此题考查了提公因式与公式法的综合运用,熟练掌握因式分解的方法是解本题的关键. 25.2296x y xy +≥【分析】根据题意直接利用作差法对两个代数式进行大小比较即可.【详解】解:∵x ,y 为任意有理数,22296(3)0x y xy x y +-=-≥,∴2296x y xy +≥.【点睛】本题考查整式加减,注意掌握利用作差法对两个代数式进行大小比较以及配方法的应用是解题的关键.26.6°【解析】试题分析:先根据三角形内角和求出∠BAC 的度数,由AE 是△ABC 的角平分线,求出∠DAC的度数,由AD是BC边上的高,求出∠EAC的度数,再利用角的和差求出∠DAE的度数.解:∵在△ABC中,∠ABC=56°,∠ACB=44°∴∠BA C=180°-∠ABC-∠ACB=80°∵AE是△ABC的角平分线∴∠EAC=12∠BA C=40°∵AD是BC边上的高,∠ACB=44°∴∠DAC=90°-∠ACB=46°∴∠DAE=∠DAC-∠EAC=6°27.(1)这个多边形是六边形;(2)这个多边形的每一个内角的度数是120°.【分析】(1)先设内角为x,根据题意可得:外角为12x,根据相邻内角和外角的关系可得:,x+12x=180°,从而解得:x=120°,即外角等于60°,根据外角和等于360°可得这个多边形的边数为:360 60=6,(2)先设内角为x,根据题意可得:外角为12x,根据相邻内角和外角的关系可得:,x+12x=180°,从而解得内角:x=120°,内角和=(6﹣2)×180°=720°.【详解】(1)设内角为x,则外角为12x,由题意得,x+12x =180°,解得:x=120°, 12x=60°,这个多边形的边数为:360 60=6,答:这个多边形是六边形,(2)设内角为x,则外角为12x,由题意得: x+12x =180°,解得:x=120°,答:这个多边形的每一个内角的度数是120度.内角和=(6﹣2)×180°=720°.【点睛】本题主要考查多边形内角和外角,多边形内角和以及多边形的外角和,解决本题的关键是要熟练掌握多边形内角和外角的关系以及多边形内角和.28.(1)2P ;(2)2-;(3)3t >【分析】(1)将P 1(3,1)和P 2(-3,1)分别代入等式即可得出结果;(2)将点P (m ,n )代入等式即可得出m+n 的值;(3)根据“好点”的定义,将P 点代入即可得到关于m 和n 的等式,将两个等式结合即可得出结果.【详解】解:(1)对于1(3,1)P ,2321,7t t =⨯+=,2123,5t t =⨯+=-对于2(3,1)P -,2(3)21,7t t -=⨯+=,212(3),7t t =⨯-+=,所以2P 是“好点” (2)∵点(,)P m n 是好点,∴222,2m n t n m t =+=+, 222()m n n m -=-,∴2m n +=-(3)∵222,2m n t n m t =+=+,2222m n n t m t -=+--①,2222m n m t n t +=+++②,得()()2()0m n m n m n -++-=,即()(2)0m n m n -++=,由题知,,2m n m n ≠∴+=-,由②得2()22()2m n mn m n t +-=++,∴4242,4mn t mn t -=-+=-,∵m n ≠,∴2()0m n ->,∴2()40m n mn +->,∴44(4)0t -->,所以3t >,【点睛】本题主要考查的是新定义“好点”,正确的掌握整式的乘法解题的关键.29.(1)2()b a -;(2)22()()4a b a b ab +=-+;(3)±5;(4)详见解析 【分析】(1)表示出阴影部分正方形的边长,然后根据正方形的面积公式列式即可;(2)根据大正方形的面积减去小正方形的面积等于四个小长方形的面积列式即可; (3)将(x -y )2变形为(x +y )2—4xy ,再代入求值即可;(4)由已知的恒等式,画出相应的图形,如图所示.【详解】解:(1)阴影部分为一个正方形,其边长为b -a ,∴其面积为:2()b a -,故答案为:2()b a -;(2)大正方形面积为:()2a b +小正方形面积为:2()b a -=2()a b -, 四周四个长方形的面积为:4ab ,∴22()()4a b a b ab +=-+,故答案为:22()()4a b a b ab +=-+;(3)由(2)知,22()()4x y x y xy +=-+, ∴22()()4x y x y xy -=+-, ∴2()4x y x y xy -=±+-=2116454±-⨯=±, 故答案为:±5;(4)符合等式()()2222252a b a b a ab b ++=++的图形如图所示,【点睛】本题考查了完全平方公式的几何背景,此类题目关键在于同一个图形的面积用两种不同的方法表示.30.(1)2(4)(2)(2)x x x ++- (2)22()a x y -【分析】(1)原式利用平方差公式分解即可;(2)原式提取公因式,再利用完全平方公式分解即可.【详解】解:(1)原式=(x 2+4)(x 2﹣4)=(x 2+4)(x +2)(x ﹣2);(2)原式=2a (x 2﹣2xy +y 2)=2a (x ﹣y )2.【点睛】此题考查了提公因式法与公式法的综合运用,熟练掌握因式分解的方法是解本题的关键.。
苏科七年级苏科初一数学下册期末测试题及答案(共五套)
苏科七年级苏科初一数学下册期末测试题及答案(共五套)一、选择题1.如图,∠1=∠2,则下列结论一定成立的是( )A .AB ∥CD B .AD ∥BC C .∠B =∠D D .∠1=∠22.下列等式由左边到右边的变形中,属于因式分解的是( ) A .(a ﹣2)(a+2)=a 2﹣4 B .8x 2y =8×x 2yC .m 2﹣1+n 2=(m+1)(m ﹣1)+n 2D .x 2+2x ﹣3=(x ﹣1)(x+3)3.下列条件中,能判定△ABC 为直角三角形的是( ). A .∠A=2∠B -3∠CB .∠A+∠B=2∠CC .∠A-∠B=30°D .∠A=12∠B=13∠C 4.如图,P 1是一块半径为1的半圆形纸板,在P 1的右上端剪去一个直径为1的半圆后得到图形P 2,然后依次剪去一个更小的半圆(其直径为前一个被剪去的半圆的半径)得到图形P 3、P 4…P n …,记纸板P n 的面积为S n ,则S n -S n +1的值为( )A .12nπ⎛⎫ ⎪⎝⎭B .14nπ⎛⎫ ⎪⎝⎭C .2112n π+⎛⎫ ⎪⎝⎭D .2112n π-⎛⎫ ⎪⎝⎭5.下列等式从左到右的变形,属于因式分解的是( )A .8x 2 y 3=2x 2⋅4 y 3B .( x +1)( x ﹣1)=x 2﹣1C .3x ﹣3y ﹣1=3( x ﹣y )﹣1D .x 2﹣8x +16=( x ﹣4)26.下列方程中,是二元一次方程的是( ) A .x ﹣y 2=1 B .2x ﹣y =1C .11y x+= D .xy ﹣1=07.x 2•x 3=( ) A .x 5 B .x 6 C .x 8 D .x 9 8.若8x a =,4y a =,则2x y a +的值为( )A .12B .20C .32D .2569.已知关于,x y 的二元一次方程组725ax y x y +=⎧⎨-=⎩和432x y x by +=⎧⎨+=-⎩有相同的解,则-a b 的值是( ) A .13 B .9 C .9- D .13-10.计算a 10÷a 2(a≠0)的结果是( ) A .5aB .5a -C .8aD .8a -11.如图,A ,B ,C ,D 中的哪幅图案可以通过图案①平移得到( )A .B .C .D .12.如图,将四边形纸片ABCD 沿MN 折叠,若∠1+∠2=130°,则∠B +∠C =( )A .115°B .130°C .135°D .150°二、填空题13.如图,根据长方形中的数据,计算阴影部分的面积为______ .14.如图,将△ABE 向右平移2cm 得到△DCF ,如果△ABE 的周长是16cm ,那么四边形ABFD 的周长是_____.15.多项式2412xy xyz +的公因式是______.16.若多项式29x mx ++是一个完全平方式,则m =______. 17.若x +3y -4=0,则2x •8y =_________.18.已知关于x 的不等式3x - m+1>0的最小整数解为2,则实数m 的取值范围是___________.19.已知关于x 的不等式组521{0x x a -≥-->无解,则a 的取值范围是________.20.二元一次方程7x+y =15的正整数解为_____. 21.233、418、810的大小关系是(用>号连接)_____.22.一副三角板按如图所示叠放在一起,其中点B 、D 重合,若固定三角形AOB ,改变三角板ACD 的位置(其中A 点位置始终不变),当∠BAD =_____时,CD ∥AB .三、解答题23.分解因式:(1)3222x x y xy -+; (2)2296(1)(1)x x y y -+++;(3)()214(1)mm m -+-.24.计算:(1)2201(2)3()3----÷- (2)22(21)(21)x x -+25.如图,CD ⊥AB ,EF ⊥AB ,垂足分别为D 、F ,∠1=∠2,若∠A =65°,∠B =45°,求∠AGD 的度数.26.已和,如图,BE 平分∠ABC ,∠1=∠2,请说明∠AED =∠C .根据提示填空.∵BE 平分∠ABC (已知) ∴∠1=∠3,( ) 又∵∠1=∠2,(已知) ∴ =∠2,( ) ∴ ∥ ,( ) ∴∠AED = .( )27.如图,每个小正方形的边长为1个单位,每个小方格的顶点叫格点. (1)画出△ABC 向右平移4个单位后得到的△A 1B 1C 1; (2)图中AC 与A 1C 1的关系是:_____. (3)画出△ABC 的AB 边上的高CD ;垂足是D ; (4)图中△ABC 的面积是_____.28.将下列各式因式分解 (1)xy 2-4xy (2)x 4-8x 2y 2+16y 429.对于一个图形,通过两种不同的方法计算它的面积,可以得到一个数学等式,例如图1,可以得到222()2a b a ab b +=++这个等式,请解答下列问题:(1)写出图2中所表示的数学等式 . (2)根据整式乘法的运算法则,通过计算验证上述等式. (3)利用(1)中得到的结论,解决下面的问题:若10a b c ++=,35ab ac bc ++=,则222a b c ++= .(4)小明同学用图3中x 张边长为a 的正方形,y 张边长为b 的正方形,z 张长宽分别为a 、b 的长方形纸片拼出一个面积为2)(4)a b a b ++(的长方形,则x y z ++= .30.同一平面内的两条直线有相交和平行两种位置关系.(1)如图a ,若//AB CD ,点P 在AB 、CD 外部,我们过点P 作AB 、CD 的平行线PE ,则有////AB CD PE ,则BPD ∠,B ,D ∠之间的数量关系为_________.将点P 移到AB 、CD 内部,如图b ,以上结论是否成立?若成立,说明理由;若不成立,则BPD ∠、B 、D ∠之间有何数量关系?请证明你的结论.(2)迎“20G ”科技节上,小兰制作了一个“飞旋镖”,在图b 中,将直线AB 绕点B 逆时针方向旋转一定角度交直线CD 于点Q ,如图c ,他很想知道BPD ∠、ABP ∠、D ∠、BQD ∠之间的数量关系,请你直接写出它们之间的数量关系:__________.(3)设BF 交AC 于点P ,AE 交DF 于点Q ,已知126APB ∠=︒,100AQF ∠=︒,直接写出B E F ∠+∠+∠的度数为_______度,A ∠比F ∠大______度.【参考答案】***试卷处理标记,请不要删除一、选择题 1.A 解析:A 【解析】 【分析】根据内错角相等,两直线平行即可得出结论. 【详解】 ∵∠1=∠2,∴AB ∥DC(内错角相等,两直线平行). 故选A . 【点睛】考查平行线的判定定理,平行线的概念,关键在于根据图形找到被截的两直线.2.D解析:D 【分析】认真审题,根据因式分解的定义,即:将多项式写成几个因式的乘积的形式,进行分析,据此即可得到本题的答案. 【详解】解:A .不是乘积的形式,错误;B .等号左边的式子不是多项式,不符合因式分解的定义,错误;C .不是乘积的形式,错误;D .x 2+2x ﹣3=(x ﹣1)(x+3),是因式分解,正确; 故选:D . 【点睛】本题主要考查了因式分解的定义,即:将多项式写成几个因式的乘积的形式,牢记定义是解题的关键,要注意认真总结.解析:D【分析】根据三角形内角和定理和各选项中的条件计算出△ABC的内角,然后根据直角三角形的判定方法进行判断.【详解】解:A、∠A+∠B+∠C=180°,而∠A=2∠B=3∠C,则∠A=108011°,所以A选项错误;B、∠A+∠B+∠C=180°,而∠A+∠B=2∠C,则∠C=60°,不能确定△ABC为直角三角形,所以B选项错误;C、∠A+∠B+∠C=180°,而∠A=∠B=30°,则∠C=150°,所以B选项错误;D、∠A+∠B+∠C=180°,而∠A=12∠B=13∠C,则∠C=90°,所以D选项正确.故选:D.【点睛】此题考查三角形内角和定理,直角三角形的定义,解题关键在于掌握三角形内角和是180°.4.C解析:C【分析】首先分析题意,找到规律,并进行推导得出答案.【详解】根据题意得,n≥2,S1=12π×12=12π,S2=12π﹣12π×(12)2,…S n=12π﹣12π×(12)2﹣12π×[(12)2]2﹣…﹣12π×[(12)n﹣1]2,S n+1=12π﹣12π×(12)2﹣12π×[(12)2]2﹣…﹣12π×[(12)n﹣1]2﹣12π×[(12)n]2,∴S n﹣S n+1=12π×(12)2n=(12)2n+1π.故选C.【点睛】考查学生通过观察、归纳、抽象出数列的规律的能力.5.D解析:D【分析】把一个多项式化成几个整式的积的形式,叫做把这个多项式因式分解.【详解】①是单项式的变形,不是因式分解;②是多项式乘以多项式的形式,不是因式分解;③左侧是多项式加减,右侧也是多项式加减,不是因式分解;④符合因式分解的定义,结果是整式的积,因此D正确;故选D.【点睛】本题考查因式分解的定义.正确理解因式分解的结果是“整式的积”的形式,是解题的关键.6.B解析:B【解析】【分析】根据二元一次方程的定义:含有两个未知数,并且含有未知数的项的次数都是1,像这样的整式方程叫做二元一次方程.据此逐一判断即可得.【详解】解:A.x-y2=1不是二元一次方程;B.2x-y=1是二元一次方程;C.1x+y=1不是二元一次方程;D.xy-1=0不是二元一次方程;故选B.【点睛】本题考查二元一次方程的定义,解题的关键是掌握含有两个未知数,并且含有未知数的项的次数都是1,像这样的整式方程叫做二元一次方程.7.A解析:A【分析】根据同底数幂乘法,底数不变指数相加,即可.【详解】x2•x3=x2+3=x5,故选A.【点睛】该题考查了同底数幂乘法,熟记同底数幂乘法法则:底数不变,指数相加.8.D解析:D根据同底数幂的乘法:同底数幂相乘,底数不变,指数相加,以及幂的乘方,底数不变,指数相乘,即可求解. 【详解】 解:∵()222=84256x y x y a a a +⋅=⋅=.故选D . 【点睛】本题考查同底数幂的乘法、幂的乘方运算法则,难度不大,熟练掌握运算法则是顺利解题的关键.9.A解析:A 【分析】 先解方程组425x y x y +=⎧⎨-=⎩求出该方程组的解,然后把这个解分别代入7ax y +=与32x by +=-即可求出a 、b 的值,进一步即可求出答案.【详解】解:解方程组425x y x y +=⎧⎨-=⎩,得31x y =⎧⎨=⎩,把31x y =⎧⎨=⎩代入7ax y +=,得317a +=,解得:a =2, 把31x y =⎧⎨=⎩代入32x by +=-,得92b +=-,解得:b =﹣11, ∴a -b =2-(﹣11)=13. 故选:A . 【点睛】本题考查了同解方程组的知识,正确理解题意、熟练掌握解二元一次方程组的方法是解题关键.10.C解析:C 【解析】 【分析】根据同底数幂的除法法则即可得. 【详解】1021028(0)a a a a a -÷==≠故选:C. 【点睛】本题考查了同底数幂的除法法则:同底数幂相除,底数不变,指数相减.11.D解析:D 【分析】根据平移的性质,不改变图形的形状和大小,经过平移,对应点所连的线段平行且相等,对应线段平行且相等. 【详解】通过图案①平移得到必须与图案①完全相同,角度也必须相同, 观察图形可知D 可以通过图案①平移得到. 故答案选:D. 【点睛】本题考查的知识点是生活中的平移现象,解题的关键是熟练的掌握生活中的平移现象.12.A解析:A 【分析】先根据∠1+∠2=130°得出∠AMN +∠DNM 的度数,再由四边形内角和定理即可得出结论. 【详解】解:∵∠1+∠2=130°,∴∠AMN +∠DNM =3601302︒︒-=115°.∵∠A +∠D +(∠AMN +∠DNM )=360°,∠A +∠D +(∠B +∠C )=360°, ∴∠B +∠C =∠AMN +∠DNM =115°. 故选:A . 【点睛】本题考查了翻折变换和多边形的内角和,熟知图形翻折不变性的性质和四边形的内角和公式是解答此题的关键.二、填空题 13.104 【解析】两个阴影图形可以平移组成一个长方形,长为,宽为8,故阴影部分的面积13×8=104,故答案为104.解析:104 【解析】两个阴影图形可以平移组成一个长方形,长为15213-=,宽为8,故阴影部分的面积13×8=104,故答案为104.14.20cm . 【分析】根据平移的性质可得DF =AE ,然后判断出四边形ABFD 的周长=△ABE 的周长+AD+EF ,然后代入数据计算即可得解. 【详解】解:∵△ABE 向右平移2cm 得到△DCF, ∴D解析:20cm . 【分析】根据平移的性质可得DF =AE ,然后判断出四边形ABFD 的周长=△ABE 的周长+AD+EF ,然后代入数据计算即可得解. 【详解】解:∵△ABE 向右平移2cm 得到△DCF , ∴DF =AE ,∴四边形ABFD 的周长=AB+BE+DF+AD+EF , =AB+BE+AE+AD+EF , =16+AD+EF , ∵平移距离为2cm , ∴AD =EF =2cm ,∴四边形ABFD 的周长=16+2+2=20cm . 故答案为20cm . 【点睛】本题考查平移的基本性质:①平移不改变图形的形状和大小;②经过平移,对应点所连的线段平行且相等,对应线段平行且相等,对应角相等.15.【分析】根据公因式的定义即可求解. 【详解】 ∵=(y+3z ), ∴多项式的公因式是, 故答案为:. 【点睛】此题主要考查公因式,解题的关键是熟知公因式的定义. 解析:4xy【分析】根据公因式的定义即可求解. 【详解】∵2412xy xyz +=4xy (y+3z ), ∴多项式2412xy xyz +的公因式是4xy ,故答案为:4xy . 【点睛】此题主要考查公因式,解题的关键是熟知公因式的定义.16.-6或6【分析】首末两项是x和3这两个数的平方,那么中间一项为加上或减去x和3积的2倍.【详解】解:∵x2+mx+9=x2+mx+32,∴mx=±2×3×x,解得m=6或-6.故答案为解析:-6或6【分析】首末两项是x和3这两个数的平方,那么中间一项为加上或减去x和3积的2倍.【详解】解:∵x2+mx+9=x2+mx+32,∴mx=±2×3×x,解得m=6或-6.故答案为-6或6.【点睛】本题考查完全平方式,两数的平方和,再加上或减去它们积的2倍,就构成了一个完全平方式.注意积的2倍的符号,避免漏解.17.16【分析】根据幂的运算公式变形,再代入x+3y=4即可求解.【详解】∵x+3y-4=0∴x+3y=4∴2x•8y=2x•(23)y=2x+3y=24=16.故答案为:16.【点睛】解析:16【分析】根据幂的运算公式变形,再代入x+3y=4即可求解.【详解】∵x+3y-4=0∴x+3y=4∴2x•8y=2x•(23)y=2x+3y=24=16.故答案为:16.【点睛】此题主要考查幂的运算,解题的关键是熟知幂的运算公式.18.【解析】【分析】先用含m 的代数式表示出不等式的解集,再根据最小整数解为2即可求出实数m 的取值范围.【详解】∵3x - m+1>0,∴3x> m -1,∴x>,∵不等式3x - m+1>解析:4<7m ≤【解析】【分析】先用含m 的代数式表示出不等式的解集,再根据最小整数解为2即可求出实数m 的取值范围.【详解】∵3x - m+1>0,∴3x> m -1,∴x>-13m , ∵不等式3x - m+1>0的最小整数解为2,∴1≤-13m <3, 解之得4<7m ≤. 故答案为:4<7m ≤.【点睛】本题考查了一元一次不等式的解法,根据最小整数解为2列出关于m 的不等式是解答本题的关键.19.a≥3【详解】解:解5-2x≥-1,得x≤3;解x -a >0,得x >a ,因为不等式组无解,所以a≥3.故答案为:a≥3.【点睛】本题考查不等式组的解集.解析:a≥3【详解】解:解5-2x≥-1,得x≤3;解x-a>0,得x>a,因为不等式组无解,所以a≥3.故答案为:a≥3.【点睛】本题考查不等式组的解集.20.或【分析】将x看做已知数求出y,即可确定出正整数解.【详解】解:方程7x+y=15,解得:y=﹣7x+15,x=1,y=8;x=2,y=1,则方程的正整数解为或.故答案为:或.【点解析:18xy=⎧⎨=⎩或21xy=⎧⎨=⎩【分析】将x看做已知数求出y,即可确定出正整数解.【详解】解:方程7x+y=15,解得:y=﹣7x+15,x=1,y=8;x=2,y=1,则方程的正整数解为18xy=⎧⎨=⎩或21xy=⎧⎨=⎩.故答案为:18xy=⎧⎨=⎩或21xy=⎧⎨=⎩.【点睛】此题考查了解二元一次方程,熟练掌握运算法则是解本题的关键.21.418>233>810【分析】直接利用幂的乘方运算法则将原式变形,进而比较得出答案.【详解】解:∵,,∴236>233>230,∴418>233>810.故答案为:418>233>81解析:418>233>810【分析】直接利用幂的乘方运算法则将原式变形,进而比较得出答案.【详解】解:∵()18182364=2=2,()10103308=2=2,∴236>233>230,∴418>233>810.故答案为:418>233>810【点睛】比较不同底数的幂的大小,当无法直接计算或计算过程比较麻烦时,可以转化为同底数幂,比较指数大小或同指数幂,比较底数大小进行.能熟练运用幂的乘方进行变形是解题关键.22.150°或30°.【分析】分两种情况,再利用平行线的性质,即可求出∠BAD 的度数【详解】解:如图所示:当CD∥AB 时,∠BAD=∠D=30°;如图所示,当AB∥CD 时,∠C=∠BAC=6解析:150°或30°.【分析】分两种情况,再利用平行线的性质,即可求出∠BAD 的度数【详解】解:如图所示:当CD ∥AB 时,∠BAD =∠D =30°;如图所示,当AB∥CD时,∠C=∠BAC=60°,∴∠BAD=60°+90°=150°;故答案为:150°或30°.【点睛】本题主要考查了平行线的判定,平行线的判掌握平行线的判定定理和全面思考并分类讨论是解答本题的关键.三、解答题23.(1)x(x-y)2;(2)(3x-y-1)2;(3)(m-1)(m+2)(m-2).【分析】(1)首先提公因式x,然后利用完全平方公式即可分解;(2)根据完全平方公式进行因式分解即可;(3)首先提公因式(m-1)然后利用平方差公式即可分解.【详解】解:(1)原式=x(x2-2xy+y2)=x(x-y)2;(2)原式=(3x)2-2×(3x)(y+1)+(y+1)2=(3x-y-1)2;(3)原式=(m-1)(m2-4)=(m-1)(m+2)(m-2).【点睛】本题考查了用提公因式法和公式法进行因式分解,将式子分解彻底是解题关键.24.(1)374-.(2)16x4−8x2+1.【分析】(1)原式利用负整数指数幂,零指数幂、平方的计算法则得到1914--÷,再计算即可得到结果;(2)原式逆用积的乘方运算法则变形,再利用平方差公式及完全平方公式化简即可得到结果.【详解】(1)2201(2)3()3----÷-= 1914--÷=374-. (2)原式=[(2x−1)(2x +1)]2=(4x 2−1)2=16x 4−8x 2+1.【点睛】本题考查零指数幂、负整数指数幂 、平方差公式及完全平方公式,熟练掌握运算法则是解本题的关键.25.70°【分析】由CD ⊥AB ,EF ⊥AB 可得出∠CDF=∠EFB=90°,利用“同位角相等,两直线平行”可得出CD ∥EF ,利用“两直线平行,同位角相等”可得出∠DCB=∠1,结合∠1=∠2可得出∠DCB=∠2,利用“内错角相等,两直线平行”可得出DG ∥BC ,利用“两直线平行,同位角相等”可得出∠ADG 的度数,在△ADG 中,利用三角形内角和定理即可求出∠AGD 的度数.【详解】解:∵CD ⊥AB ,EF ⊥AB ,∴∠CDF =∠EFB =90°,∴CD ∥EF ,∴∠DCB =∠1.∵∠1=∠2,∴∠DCB =∠2,∴DG ∥BC ,∴∠ADG =∠B =45°.又∵在△ADG 中,∠A =65°,∠ADG =45°,∴∠AGD =180°﹣∠A ﹣∠ADG =70°【点睛】本题考查了平行线的判定与性质以及三角形内角和定理,利用平行线的性质求出∠ADG 的度数是解题的关键.26.角平分线的定义,∠3,等量代换,DE ,BC ,内错角相等,两直线平行,∠C ,两直线平行,同位角相等【分析】先根据角平分线的定义,得出∠1=∠3,再根据等量代换,得出∠3=∠2,最后根据平行线的判定与性质得出结论.【详解】证明:∵BE 平分∠ABC (已知)∴∠1=∠3 ( 角平分线的定义)又∵∠1=∠2(已知)∴∠3=∠2 ( 等量代换)∴DE ∥BC ( 内错角相等,两直线平行)∴∠AED =∠C ( 两直线平行,同位角相等)【点睛】本题主要考查了平行线的判定与性质,解题时注意:内错角相等,两直线平行;两直线平行,同位角相等.27.(1)画图见解析;(2)平行且相等;(3)画图见解析;(4)8【分析】(1)根据网格结构找出点A 、B 、C 向右平移4个单位后的对应点A 1、B 1、C 1的位置,然后顺次连接即可;(2)根据平移的性质解答;(3)延长AB ,作出AB 的高CD 即可;(4)利用△ABC 所在的矩形的面积减去四周三个三角形的面积,列式计算即可得解.【详解】解:(1)如图所示,(2)根据平移的性质得出,AC 与A 1C 1的关系是:平行且相等;(3)如图所示,(4)△ABC 的面积=5×7-12×7×5-12×7×2-12×5×1=8. 28.(1)()4xy y -;(2)()()2222x y x y -+. 【分析】(1)提出公因式xy 即可得出答案; (2)先利用完全平方公式,然后再利用平方差公式分解即可.【详解】解:(1)()244xy xy xy y -=-; (2)()()()()()22222242246=2842221x y x y x y x y x y x y x y ⎡⎤-=-=-++⎣-+⎦. 【点睛】 本题主要考查因式分解,因式分解的步骤:一提,二套,三分组,四检查,分解要彻底;熟练掌握提公因式法、公式法的应用是解题的关键.29.(1) ()2222222.a b c a b c ab ac bc ++=+++++(2)证明见解析;(3) 30; (4) 15.【分析】(1)依据正方形的面积=()2a b c ++ ;正方形的面积=222a +b +c +2ab+2ac+2bc.,可得等式;(2)运用多项式乘多项式进行计算即可;(3)依据()2222a b +c a b c -2ab-2ac-2bc,+=++ 进行计算即可;(4)依据所拼图形的面积为:22xa yb zab ++ , 而()()222224284249a b a b a ab ab b a b ab ++=+++=++ ,即可得到x, y, z 的值,即可求解.【详解】解: (1) 正方形的面积=()2a b c ++ ;大正方形的面积=222a +b +c +2ab+2ac+2bc. 故答案为:()2222222.a b c a b c ab ac bc ++=+++++(2)证明: (a+b+c) (a+b+c) ,=222a ab ac ab b bc ac bc c ++++++++ ,=222222a b c ab ac bc +++++ .(3)()2222222,a b c a b c ab ac bc ++=++---=()2102ab ac bc -++ , =100235-⨯ ,=30.故答案为: 30;(4)由题可知,所拼图形的面积为:22xa yb zab ++ ,(2a+b) (a+4b)=222a 8ab ab 4b ,+++=222a 4b 9ab,++∴x=2,y=4, z=9.∴x+y+z=2+4+9=15.故答案为: 15.【点睛】本题考查了完全平方公式的几何背景,根据矩形的面积公式分整体与部分两种思路表示出面积,然后再根据同一个图形的面积相等即可解答.30.(1)∠BPD=∠B-∠D ;将点P 移到AB 、CD 内部,∠BPD=∠B-∠D 不成立,∠BPD=∠B+∠D ,证明见解析;(2)∠BPD=∠ABP+∠D+∠BQD ;(3)80,46.【分析】(1)由平行线的性质得出∠B=∠BPE ,∠D=∠DPE ,即可得出∠BPD=∠B-∠D ;将点P 移到AB 、CD 内部,延长BP 交DC 于M ,由平行线的性质得出∠B=∠BMD ,即可得出∠BPD=∠B+∠D ;(2)由平行线的性质得出∠A ′BQ=∠BQD ,同(1)得:∠BPD=∠A ′BP+∠D ,即可得出结论;(3)过点E作EN∥BF,则∠B=∠BEN,同(1)得:∠FQE=∠F+∠QEN,得出∠EQF=∠B+∠E+∠F,求出∠EQF=180°-100°=80°,即∠B+∠E+∠F=80°,由∠AMP=∠APB-∠A=126°-∠A,∠FMQ=180°-∠AQF-∠F=180°-100°-∠F=80°-∠F,∠AMP=∠FMQ,得出126°-∠A=80°-∠F,即可得出结论.【详解】解(1)∵AB∥CD∥PE,∴∠B=∠BPE,∠D=∠DPE,∵∠BPE=∠BPD+∠DPE,∴∠BPD=∠B-∠D,故答案为:∠BPD=∠B-∠D;将点P移到AB、CD内部,∠BPD=∠B-∠D不成立,∠BPD=∠B+∠D,理由如下:延长BP交DC于M,如图b所示:∵AB∥CD,∴∠B=∠BMD,∵∠BPD=∠BMD+∠D,∴∠BPD=∠B+∠D;(2)∵A′B∥CD,∴∠A′BQ=∠BQD,同(1)得:∠BPD=∠A′BP+∠D,∴∠BPD=∠ABP+∠D+∠BQD,故答案为:∠BPD=∠ABP+∠D+∠BQD;(3)过点E作EN∥BF,如图d所示:则∠B=∠BEN,同(1)得:∠FQE=∠F+∠QEN,∴∠EQF=∠B+∠E+∠F,∵∠AQF=100°,∴∠EQF=180°-100°=80°,即∠B+∠E+∠F=80°,∵∠AMP=∠APB-∠A=126°-∠A,∠FMQ=180°-∠AQF-∠F=180°-100°-∠F=80°-∠F;∵∠AMP=∠FMQ,∴126°-∠A=80°-∠F,∴∠A-∠F=46°,故答案为:80,46.【点睛】本题考查了平行线性质,三角形外角性质、三角形内角和定理等知识,熟练掌握平行线的性质是解题的关键.。
苏科七年级苏科初一数学下学期期末测试题及答案(共五套) 百度文库
苏科七年级苏科初一数学下学期期末测试题及答案(共五套) 百度文库一、选择题1.如图,∠1=∠2,则下列结论一定成立的是( )A .AB ∥CDB .AD ∥BC C .∠B =∠D D .∠1=∠22.下列分解因式正确的是( ) A .x 3﹣x=x (x 2﹣1)B .m 2+m ﹣6=(m+3)(m ﹣2)C .(a+4)(a ﹣4)=a 2﹣16D .x 2+y 2=(x+y )(x ﹣y )3.下列等式从左到右的变形,属于因式分解的是( ) A .8x 2 y 3=2x 2⋅4 y 3B .( x +1)( x ﹣1)=x 2﹣1C .3x ﹣3y ﹣1=3( x ﹣y )﹣1D .x 2﹣8x +16=( x ﹣4)24.下列方程组中,解是-51x y =⎧⎨=⎩的是( )A .64x y x y +=⎧⎨-=⎩B .6-6x y x y +=⎧⎨-=⎩C .-4-6x y x y +=⎧⎨-=⎩D .-4-4x y x y +=⎧⎨-=⎩5.将一副三角板(含30°、45°的直角三角形)摆放成如图所示,图中∠1的度数是( )A .90°B .120°C .135°D .150°6.如图,已知直线AB ∥CD ,115C ∠=︒,25A ∠=︒,则E ∠=( )A .25︒B .65︒C .90︒D .115︒ 7.计算12x a a a a ⋅⋅=,则x 等于( ) A .10B .9C .8D .48.下列运算正确的是( )A .a 2·a 3=a 6B .a 5+a 3=a 8C .(a 3)2=a 5D .a 5÷a 5=1 9.若一个三角形的两边长分别为3和6,则第三边长可能是( ) A .6 B .3 C .2 D .10 10.若多项式224a kab b ++是完全平方式,则k 的值为( ) A .4 B .2± C .4± D .8± 11.一个三角形的两边长分别是2和4,则第三边的长可能是( ) A .1B .2C .4D .712.下列方程组中,是二元一次方程组的为( )A .1512n mm n ⎧+=⎪⎪⎨⎪+=⎪⎩B .2311546a b b c -=⎧⎨-=⎩C .292x y x⎧=⎨=⎩D .00x y =⎧⎨=⎩二、填空题13.已知等腰三角形的两边长分别为4和8,则它的周长是_______. 14.已知关于x 的不等式3x - m+1>0的最小整数解为2,则实数m 的取值范围是___________.15.如图,四边形ABCD 中,E 、F 、G 、H 依次是各边中点,O 是形内一点,若四边形AEOH 、四边形BFOE 、四边形CGOF 的面积分别为6、7、8,四边形DHOG 面积为______.16.()7(y x -+________ 22)49y x =-.17.已知x 2+2kx +9是完全平方式,则常数k 的值是____________. 18.关于,x y 的方程组3x y m x my n -=⎧⎨-=⎩的解是11x y =⎧⎨=⎩,则n 的值是______.19.小马在解关于x 的一元一次方程3232a xx -=时,误将- 2x 看成了+2x ,得到的解为x =6,请你帮小马算一算,方程正确的解为x =_____.20.实数x ,y 满足方程组2728x y x y +=⎧⎨+=⎩,则x +y =_____.21.科学家发现2019nCoV -冠状肺炎病毒颗粒平均直径约为0.00000012m ,数据0.00000012用科学记数法表示_______.22.若2a x =,5b x =,那么2a b x +的值是_______ ; 23.计算:x (x ﹣2)=_____ 24.已知21x y =⎧⎨=⎩是方程2x ﹣y +k =0的解,则k 的值是_____.三、解答题25.如图,△ABC 中,AE 是△ABC 的角平分线,AD 是BC 边上的高. (1)若∠B =35°,∠C =75°,求∠DAE 的度数;(2)若∠B =m °,∠C =n °,(m <n ),则∠DAE = °(直接用m 、n 表示).26.计算:(1)()2202011 3.142π-⎛⎫-+-+ ⎪⎝⎭(2)()2462322x y x xy --(3)()()22342a b a a b --- (4)()()2323m n m n -++-27.定义:对于任何数a ,符号[]a 表示不大于a 的最大整数. (1)103⎡⎤-=⎢⎥⎣⎦(2)如果2333x -⎡⎤=-⎢⎥⎣⎦,求满足条件的所有整数x 。
苏科七年级苏科初一数学下册第二学期期末测试题及答案(共五套)
苏科七年级苏科初一数学下册第二学期期末测试题及答案(共五套)一、选择题1.已知一粒米的质量是0.00021kg ,这个数用科学记数法表示为 ( )A .4 2.110-⨯kgB .52.110-⨯kgC .42110-⨯kgD .62.110-⨯kg2.如图,从边长为(4a )cm 的正方形纸片中剪去一个边长为(1a +)cm 的正方形(0a >),剩余部分沿虚线又剪拼成一个矩形(不重叠无缝隙),则矩形的面积为( )A .22(25)a a cm +B .2(315)a cm +C .2(69)a cm +D .2(615)a cm + 3.下列计算错误的是( ) A .2a 3•3a =6a 4B .(﹣2y 3)2=4y 6C .3a 2+a =3a 3D .a 5÷a 3=a 2(a≠0) 4.下列各式中,计算结果为x 2﹣1的是( )A .()21x -B .()(1)1x x -+-C .()(1)1x x +-D .()()12x x -+ 5.将一副三角板(含30°、45°的直角三角形)摆放成如图所示,图中∠1的度数是( )A .90°B .120°C .135°D .150° 6.将下列三条线段首尾相连,能构成三角形的是( ) A .1,2,3B .2,3,6C .3,4,5D .4,5,9 7.如果多项式x 2+2x+k 是完全平方式,则常数k 的值为( )A .1B .-1C .4D .-4 8.如图,已知直线AB ∥CD ,115C ∠=︒,25A ∠=︒,则E ∠=( )A .25︒B .65︒C .90︒D .115︒ 9.若多项式224a kab b ++是完全平方式,则k 的值为( )A .4B .2±C .4±D .8±10.下列各式能用平方差公式计算的是()A .()()22a b b a +-B .()()11x x +--C .()()m n m n ---+D .()()33x y x y --+ 11.如图,已知AB ∥CD,点E 、F 分别在直线AB 、CD 上,∠EPF=90°,∠BEP=∠GEP ,则∠1与∠2的数量关系为( )A .∠1=∠2B .∠1=2∠2C .∠1=3∠2D .∠1=4∠2 12.平面直角坐标系中,点A 到x 轴的距离为1,到y 轴的距离为3,且在第二象限,则点A 的坐标为( )A .()1,3-B .()3,1-C .()1,3-D .()3,1-二、填空题13.如图,AD ⊥BC 于D ,那么图中以AD 为高的三角形有______个.14.小明在将一个多边形的内角逐个相加时,把其中一个内角多加了一次,错误地得到内角和为840°,则这个多边形的边数是___________.15.用简便方法计算:10.12﹣2×10.1×0.1+0.01=_____.16.最薄的金箔的厚度为0.000000091m ,用科学记数法表示为________m .17.分解因式:29a -=__________.18.a m =2,b m =3,则(ab )m =______.19.已知()223420x y x y -+--=,则x=__________,y=__________. 20.已知:()521x x ++=,则x =______________.21.关于,x y 的方程组3x y m x my n -=⎧⎨-=⎩的解是11x y =⎧⎨=⎩,则n 的值是______. 22.如图,已知AE 是△ABC 的边BC 上的中线,若AB=8cm,△ACE 的周长比△AEB 的周长多2cm,则AC=_____.23.分解因式:ab﹣ab2=_____.24.把一根 9m 长的钢管截成 1m 长和 2m 长两种规格均有的短钢管,且没有余料,设某种截法中 1m 长的钢管有a 根,则a 的值可能有_____种.三、解答题''',图中标出了点B的对应点25.如图,在方格纸内将△ABC经过一次平移得到A B CB'.''';(1)在给定的方格纸中画出平移后的A B C(2)画出BC边上的高AE;(3)如果P点在格点上,且满足S△PAB=S△ABC(点P与点C不重合),满足这样条件的P 点有个.26.如图,直线AC∥BD,BC平分∠ABD,DE⊥BC,垂足为点E,∠BAC=100°,求∠EDB 的度数.27.如图,△ABC中,AE是△ABC的角平分线,AD是BC边上的高.(1)若∠B=35°,∠C=75°,求∠DAE的度数;(2)若∠B=m°,∠C=n°,(m<n),则∠DAE=°(直接用m、n表示).28.如图所示,点B,E分别在AC,DF上,BD,CE均与AF相交,∠1=∠2,∠C=∠D,求证:∠A =∠F .29.好学的小红在学完三角形的角平分线后,遇到下列4个问题,请你帮她解决.如图,在ABC ∆中,点I 是ABC ∠、ACB ∠的平分线的交点,点D 是MBC ∠、NCB ∠平分线的交点,,BI DC 的延长线交于点E .(1)若50BAC ∠=︒,则BIC ∠= °;(2)若BAC x ∠=︒ (090x <<),则当ACB ∠等于多少度(用含x 的代数式表示)时,//CE AB ,并说明理由;(3)若3D E ∠=∠,求BAC ∠的度数.30.已知:直线//AB CD ,点E ,F 分别在直线AB ,CD 上,点M 为两平行线内部一点. (1)如图1,∠AEM ,∠M ,∠CFM 的数量关系为________;(直接写出答案)(2)如图2,∠MEB 和∠MFD 的角平分线交于点N ,若∠EMF 等于130°,求∠ENF 的度数;(3)如图3,点G 为直线CD 上一点,延长GM 交直线AB 于点Q ,点P 为MG 上一点,射线PF 、EH 相交于点H ,满足13PFG MFG ∠=∠,13BEH BEM ∠=∠,设∠EMF =α,求∠H 的度数(用含α的代数式表示).31.先化简,再求值:(2a +b )2﹣(2a +3b )(2a ﹣3b ),其中a =12,b =﹣2. 32.3321130y x --=,|1|24z x y -=--+,求x y z ++的平方根.33.阅读材料:求1+2+22+23+24+…+22020的值.解:设S =1+2+22+23+24+…+22020,将等式两边同时乘以2得,2S =2+22+23+24+25+ (22021)将下式减去上式,得2S ﹣S =22021﹣1,即S =22021﹣1.即1+2+22+23+24+…+22020=22021﹣1仿照此法计算:(1)1+3+32+33+ (320)(2)2310011111 (2222)+++++. 34.要说明(a +b +c )2=a 2+b 2+c 2+2ab +2ac +2bc 成立,三位同学分别提供了一种思路,请根据他们的思路写出推理过程.(1)小刚说:可以根据乘方的意义来说明等式成立;(2)小王说:可以将其转化为两数和的平方来说明等式成立;(3)小丽说:可以构造图形,通过计算面积来说明等式成立;35.已知a 6=2b =84,且a <0,求|a ﹣b|的值.36.如图,在边长为1个单位长度的小正方形网格中,ΔABC 经过平移后得到ΔA B C ''',图中标出了点B 的对应点B ',点A '、C '分别是A 、C 的对应点.(1)画出平移后的ΔA B C ''';(2)连接BB '、CC ',那么线段BB '与CC '的关系是_________;(3)四边形BCC B ''的面积为_______.【参考答案】***试卷处理标记,请不要删除一、选择题1.A解析:A【分析】科学记数法的形式是:10n a ⨯ ,其中1a ≤<10,n 为整数.所以 2.1,a =,n 取决于原数小数点的移动位数与移动方向,n 是小数点的移动位数,往左移动,n 为正整数,往右移动,n 为负整数。
苏科七年级苏科初一数学下学期期末测试题及答案(共五套)
苏科七年级苏科初一数学下学期期末测试题及答案(共五套)一、选择题1.若a =-0.32,b =-3-2,c =21()2--,d =01()3-,则它们的大小关系是( ) A .a <b <c <dB .a <d <c <bC .b <a <d <cD .c <a <d <b 2.在ABC ∆中,::1:2:3A B C ∠∠∠=,则ABC ∆一定是( ) A .锐角三角形B .直角三角形C .钝角三角形D .锐角三角形或直角三角形3.下列代数运算正确的是( ) A .x•x 6=x 6 B .(x 2)3=x 6C .(x+2)2=x 2+4D .(2x )3=2x 3 4.要使(4x ﹣a )(x+1)的积中不含有x 的一次项,则a 等于( ) A .﹣4 B .2C .3D .4 5.已知()22316x m x --+是一个完全平方式,则m 的值可能是( )A .7-B .1C .7-或1D .7或1- 6.下列计算错误的是( )A .2a 3•3a =6a 4B .(﹣2y 3)2=4y 6C .3a 2+a =3a 3D .a 5÷a 3=a 2(a≠0) 7.在餐馆里,王伯伯买了5个菜,3个馒头,老板少收2元,只收50元,李太太买了11个菜,5个馒头,老板以售价的九折优惠,只收90元,若菜每个x 元,馒头每个y 元,则下列能表示题目中的数量关系的二元一次方程组是( )A .53502115900.9x y x y +=+⎧⎨+=⨯⎩B .53502115900.9x y x y +=+⎧⎨+=÷⎩ C .53502115900.9x y x y +=-⎧⎨+=⨯⎩ D .53502115900.9x y x y +=+⎧⎨+=⨯⎩ 8.下列各式中,计算结果为x 2﹣1的是( ) A .()21x -B .()(1)1x x -+-C .()(1)1x x +-D .()()12x x -+ 9.能把一个三角形的面积分成相等的两部分的线是这个三角形的( ) A .一条高B .一条中线C .一条角平分线D .一边上的中垂线 10.计算a 10÷a 2(a≠0)的结果是( )A .5aB .5a -C .8aD .8a - 11.如图,在△ABC 中,CE ⊥AB 于 E ,DF ⊥AB 于 F ,AC ∥ED ,CE 是∠ACB 的平分线, 则图中与∠FDB 相等的角(不包含∠FDB )的个数为( )A .3B .4C .5D .612.如图,有以下四个条件:其中不能判定//AB CD 的是( )①180B BCD ∠+∠=︒;②12∠=∠;③34∠=∠;④5B ∠=∠;A .①B .②C .③D .④二、填空题13.已知2x +3y -5=0,则9x •27y 的值为______.14.若等式0(2)1x -=成立,则x 的取值范围是_________. 15.若多项式29x mx ++是一个完全平方式,则m =______.16.一个等腰三角形的两边长分别为4cm 和9cm ,则它的周长为__cm .17.如果9-mx +x 2是一个完全平方式,则m 的值为__________.18.a m =2,b m =3,则(ab )m =______.19.如图,D 、E 分别是△ABC 边AB 、BC 上的点,AD=2BD ,BE=CE ,设△ADC 的面积为S l ,△ACE 的面积为S 2,若S △ABC =12,则S 1+S 2=______.20.若(x ﹣2)x =1,则x =___.21.因式分解:=______.22.对有理数x ,y 定义运算:x*y=ax+by ,其中a ,b 是常数.例如:3*4=3a+4b ,如果2*(﹣1)=﹣4,3*2>1,则a 的取值范围是_______.23.如图,AD 、AE 分别是△ABC 的角平分线和高,∠B=60°,∠C=70°,则∠EAD=______.24.计算:x (x ﹣2)=_____三、解答题25.如图,大圆的半径为r ,直径AB 上方两个半圆的直径均为r ,下方两个半圆的直径分别为a ,b .(1)求直径AB 上方阴影部分的面积S 1;(2)用含a ,b 的代数式表示直径AB 下方阴影部分的面积S 2= ;(3)设a =r +c ,b =r ﹣c (c >0),那么( )(A )S 2=S 1;(B )S 2>S 1;(C )S 2<S 1;(D )S 2与S 1的大小关系不确定;(4)请对你在第(3)小题中所作的判断说明理由.26.计算:(1)()20202011 3.142π-⎛⎫-+-+ ⎪⎝⎭ (2)()2462322x y x xy -- (3)()()22342a b a a b --- (4)()()2323m n m n -++- 27.如图所示,点B ,E 分别在AC ,DF 上,BD ,CE 均与AF 相交,∠1=∠2,∠C =∠D ,求证:∠A =∠F .28.计算:(1)0201711(2)(1)()2--+--;(2)()()()3243652a a a +-•- 29.⑴ 如图,试用a 的代数式表示图形中阴影部分的面积;⑵ 当a =2时,计算图中阴影部分的面积.30.已和,如图,BE 平分∠ABC ,∠1=∠2,请说明∠AED =∠C .根据提示填空.∵BE 平分∠ABC (已知)∴∠1=∠3,( )又∵∠1=∠2,(已知)∴ =∠2,( )∴ ∥ ,( )∴∠AED = .( )31.先化简,再求值:(2a +b )2﹣(2a +3b )(2a ﹣3b ),其中a =12,b =﹣2. 32.解不等数组:3(2)41213x x x x --≤-⎧⎪+⎨>-⎪⎩,并在数轴上表示出它的解集. 33.3321130y x --=,|1|24z x y -=--+,求x y z ++的平方根.34.因式分解:(1)x 4﹣16;(2)2ax 2﹣4axy +2ay 2.35.已知:5x y +=,(2)(2)3x y --=-.求下列代数式的的值.(1)xy ;(2)224x xy y ++;(3)25x xy y ++.36.疫情初期,武汉物资告急,全国一心,各地纷纷运送物资到武汉。
苏科七年级苏科初一数学下学期期末测试题及答案(共五套) 百度文库
苏科七年级苏科初一数学下学期期末测试题及答案(共五套) 百度文库一、选择题1.如图所示图形中,把△ABC平移后能得到△DEF的是()A.B.C.D.2.在如图所示的四个汽车标识图案中,能用平移变换来分析其形成过程的是()A.B.C.D.3.已知,则a2-b2-2b的值为A.4 B.3 C.1 D.04.下列方程组中,解是-51xy=⎧⎨=⎩的是()A.64x yx y+=⎧⎨-=⎩B.6-6x yx y+=⎧⎨-=⎩C.-4-6x yx y+=⎧⎨-=⎩D.-4-4x yx y+=⎧⎨-=⎩5.下列图形中,∠1和∠2是同位角的是()A.B.C.D.6.下列运算正确的是()A.a2·a3=a6B.a5+a3=a8C.(a3)2=a5D.a5÷a5=17.下列各式从左到右的变形,是因式分解的是()A.a2-5=(a+2)(a-2)-1 B.(x+2)(x-2)=x2-4C.x2+8x+16=(x+4)2D.a2+4=(a+2)2-48.如图,在△ABC中,BC=6,∠A=90°,∠B=70°.把△ABC沿BC方向平移到△DEF 的位置,若CF=2,则下列结论中错误的是()A.BE=2 B.∠F=20°C.AB∥DE D.DF=69.一个多边形的每个内角都等于140°,则这个多边形的边数是()A.7 B.8 C.9 D.1010.如图,将△ABC 纸片沿DE 折叠,点A 的对应点为A’,若∠B=60°,∠C=80°,则∠1+∠2等于( )A .40°B .60°C .80°D .140° 11.248162(31)(31)(31)(31)(31)⨯+++++的计算结果的个位数字是( )A .8B .6C .2D .0 12.下列各式中,不能够用平方差公式计算的是( )A .(y +2x )(2x ﹣y )B .(﹣x ﹣3y )(x +3y )C .(2x 2﹣y 2 )(2x 2+y 2 )D .(4a +b ﹣c )(4a ﹣b ﹣c ) 二、填空题13.如图,根据长方形中的数据,计算阴影部分的面积为______ .14.如图,已知AB ∥CD ,BC ∥DE .若∠A =20°,∠C =105°,则∠AED 的度数是_____.15.等式01a =成立的条件是________.16.若关于x 、的方程()2233b a ax b y -+++=是二元一次方程,则b a =_______17.若把代数式245x x --化为()2x m k -+的形式,其中m 、k 为常数,则m k +=______.18.如图,∠1、∠2是△ABC 的外角,已知∠1+∠2=260°,求∠A 的度数是______.19.二元一次方程7x+y =15的正整数解为_____.20.学校计划购买A 和B 两种品牌的足球,已知一个A 品牌足球60元,一个B 品牌足球75元.学校准备将1500元钱全部用于购买这两种足球(两种足球都买),该学校的购买方案共有_________种.21.有两个正方形,A B ,现将B 放在A 的内部得图甲,将,A B 并列放置后构造新的正方形得图乙.若图甲和图乙中阴影部分的面积分别为1和12,则正方形,A B 的边长之和为________.22.小马在解关于x 的一元一次方程3232a x x -=时,误将- 2x 看成了+2x ,得到的解为x =6,请你帮小马算一算,方程正确的解为x =_____.23.已知:实数m,n 满足:m+n=3,mn=2.则(1+m)(1+n)的值等于____________.24.如图,//PQ MN ,A 、B 分别为直线MN 、PQ 上两点,且45BAN ∠=︒,若射线AM 绕点顺时针旋转至AN 后立即回转,射线BQ 绕点B 逆时针旋转至BP 后立即回转,两射线分别绕点A 、点B 不停地旋转,若射线AM 转动的速度是a ︒/秒,射线BQ 转动的速度是b ︒/秒,且a 、b 满足()2510a b -+-=.若射线AM 绕点A 顺时针先转动18秒,射线BQ 才开始绕点B 逆时针旋转,在射线BQ 到达BA 之前,问射线AM 再转动_______秒时,射线AM 与射线BQ 互相平行.三、解答题25.如图,△ABC 的顶点都在方格纸的格点上,将△ABC 向下平移3格,再向右平移4格.(1)请在图中画出平移后的△A′B′C′;(2)在图中画出△A′B′C′的高C′D′.26.因式分解:(1)16x 2-9y 2(2)(x 2+y 2)2-4x 2y 227.先化简,再求值(x-2)2+2(x+2)(x-4)-(x-3)(x+3);其中x=1.28.先化简,再求值:()()()()2212112,x x x x x --+---其中2230x x --=.29.实验中学要为学校科技活动小组提供实验器材,计划购买A 型、B 型两种型号的放大镜.若购买100个A 型放大镜和150个B 型放大镜需用1500元;若购买120个A 型放大镜和160个B 型放大镜需用1720元.(1)求每个A 型放大镜和每个B 型放大镜各多少元;(2)学校决定购买A 型放大镜和B 型放大镜共75个,总费用不超过570元,那么最多可以购买多少个A 型放大镜?30.⑴ 如图,试用a 的代数式表示图形中阴影部分的面积;⑵ 当a =2时,计算图中阴影部分的面积.31.先化简,再求值:(3x +2)(3x -2)-5x (x +1)-(x -1)2,其中x 2-x -10=0.32.如图,△ABC 中,AD 是高,AE 、BF 是角平分线,它们相交于点O ,∠BAC=60°,∠C=50°,求∠DAC 及∠BOA 的度数.33.计算(1)(π-3.14)0-|-3|+(12)1--(-1)2012 (2) (-2a 2)3+(a 2)3-4a .a 5(3)x (x+7)-(x-3)(x+2)(4)(a-2b-c )(a+2b-c )34.阅读理解并解答:为了求1+2+22+23+24+…+22009的值.可令S =1+2+22+23+24+…+22009则2S =2+22+23+24+…+22009+22010因此2S ﹣S =(2+22+23+24+…+22009+22010)﹣(1+22+23+24+…+22009)=22010﹣1所以S =22010﹣1即1+2+22+23+24+…+22009=22010﹣1请依照此法,求:1+5+52+53+54+…+52020的值.35.计算:(1)()()122012514--⎛⎫+-⨯-- ⎪⎝⎭; (2)52342322)(a a a a a +÷-. 36.计算:(1)()()1202001113π-⎛⎫--+- ⎪⎝⎭; (2)(x +1)(2x ﹣3).【参考答案】***试卷处理标记,请不要删除一、选择题1.A解析:A【分析】根据平移的概念判断即可,注意区分图形的平移和旋转.【详解】根据平移的概念,平移后的图形与原来的图形完全重合.A 是通过平移得到;B 通过旋转得到;C 通过旋转加平移得到;D 通过旋转得到.故选A【点睛】本题主要考查图形的平移,特别要注意区分图形的旋转和平移.2.D解析:D【分析】根据平移作图是一个基本图案按照一定的方向平移一定的距离,连续作图设计出的图案进行分析即可.【详解】解:A 、不能用平移变换来分析其形成过程,故此选项错误;B 、不能用平移变换来分析其形成过程,故此选项错误;C 、不能用平移变换来分析其形成过程,故此选项正确;D 、能用平移变换来分析其形成过程,故此选项错误;故选:D .本题考查利用平移设计图案,解题关键是掌握图形的平移只改变图形的位置,而不改变图形的形状、大小和方向.3.C解析:C【分析】先将原式化简,然后将a−b =1整体代入求解.【详解】()()2212221a b a b b a b a b ba b ba b-∴--+--+--=,====.故答案选:C .【点睛】此题考查的是整体代入思想在代数求值中的应用. 4.C解析:C【解析】试题解析:A. 的解是51x y =⎧⎨=⎩, 故A 不符合题意; B. 的解是06x y =⎧⎨=⎩,故B 不符合题意; C. 的解是51x y =-⎧⎨=⎩,故C 符合题意; D. 的解是40x y =-⎧⎨=⎩,故D 不符合题意; 故选C.点睛:解二元一次方程的方法有:代入消元法,加减消元法.5.D解析:D【分析】根据同位角:两条直线被第三条直线所截形成的角中,若两个角都在两直线的同侧,并且在第三条直线(截线)的同旁,则这样一对角叫做同位角进行分析即可.【详解】解:根据同位角定义观察图形可知A 、B 、C 选项中的均不符合同位角的定义,只有选项D 中的图形符合,故选D .本题考查同位角,关键是掌握同位角的边构成“F“形,内错角的边构成“Z“形,同旁内角的边构成“U”形.6.D解析:D【分析】通过幂的运算公式进行计算即可得到结果.【详解】A .23235a a a a +==,故A 错误;B .538a a a +≠,故B 错误; C .()23326a a a ⨯==,故C 错误; D .5501a a a ÷==,故D 正确;故选:D .【点睛】本题主要考查了整式乘除中的幂的运算性质,准确运用公式是解题的关键.7.C解析:C【分析】根据因式分解的定义逐个判断即可.【详解】A 、不是因式分解,故本选项不符合题意;B 、不是因式分解,故本选项不符合题意;C 、是因式分解,故本选项符合题意;D 、不是因式分解,故本选项不符合题意;故选:C .【点睛】本题考查了因式分解的定义,能熟记因式分解的定义是解此题的关键,把一个多项式化成几个整式的积的形式,叫因式分解.8.D解析:D【分析】根据平移的性质可得BC=EF ,然后求出BE=CF .【详解】∵△ABC 沿BC 方向平移得到△DEF ,∴BC=EF ,∴BC-EC=EF-EC ,即BE=CF ,∵CF=2cm ,∴BE=2cm .∵BC=6,∠A=90°,∠B=70°,∴∠ACB=20°,根据平移的性质可得AB ∥DE ,∴∠F=20°;故选:D .【点睛】本题考查了平移的性质,主要利用了平移对应点所连的线段平行且相等.9.D解析:D【分析】一个外角的度数是:180°-140°=40°,则多边形的边数为:360°÷40°=9;故选C .【详解】10.C解析:C【分析】根据平角定义和折叠的性质,得123602(34)∠+∠=︒-∠+∠,再利用三角形的内角和定理进行转换,得34140B C ∠+∠=∠+∠=︒从而解题.【详解】解:根据平角的定义和折叠的性质,得123602(34)∠+∠=︒-∠+∠.又34180A ∠+∠+∠=︒,180A B C ∠+∠+∠=︒,346080140B C ∴∠+∠=∠+∠=︒+︒=︒,∴123602(34)360214080∠+∠=︒-∠+∠=︒-⨯︒=︒,故选:C .【点睛】此题综合运用了平角的定义、折叠的性质和三角形的内角和定理.11.D解析:D【分析】先将2变形为()31-,再根据平方差公式求出结果,根据规律得出答案即可.【详解】解:2416(31)(31)(31)(31)(31)-+++⋯+22416(31)(31)(31)(31)=-++⋯+4416(31)(31)(31)=-+⋯+3231=-133=,239=,3327=,4381=,53243=,63729=,732187=,836561=,⋯∴3n 的个位是以指数1到4为一个周期,幂的个位数字重复出现,3248÷=,故323与43的个位数字相同即为1,∴3231-的个位数字为0,∴248162(31)(31)(31)(31)(31)⨯+++++的个位数字是0.故选:D .【点睛】本题考查了平方差公式的应用,能根据规律得出答案是解此题的关键. 12.B解析:B【分析】根据平方差公式:22()()a b a b a b +-=-进行判断.【详解】A 、原式22(2)x y =-,不符合题意;B 、原式2(3)x y =-+,符合题意;C 、原式2222(2)()x y =-,不符合题意;D 、原式22(4)a c b =--,不符合题意;故选B .【点睛】本题考查平方差公式,熟练掌握平方差公式是解题的关键. 二、填空题13.104【解析】两个阴影图形可以平移组成一个长方形,长为,宽为8,故阴影部分的面积13×8=104,故答案为104.解析:104【解析】两个阴影图形可以平移组成一个长方形,长为15213-=,宽为8,故阴影部分的面积13×8=104,故答案为104.14.95°.【分析】延长DE交AB于F,根据两直线平行,同旁内角互补求出∠B,再根据两直线平行,同位角相等求出∠AFE,然后根据三角形的一个外角等于与它不相邻的两个内角的和列式计算即可得解.【详解解析:95°.【分析】延长DE交AB于F,根据两直线平行,同旁内角互补求出∠B,再根据两直线平行,同位角相等求出∠AFE,然后根据三角形的一个外角等于与它不相邻的两个内角的和列式计算即可得解.【详解】解:如图,延长DE交AB于F,∵AB∥CD,∴∠B=180°﹣∠C=180°﹣105°=75°,∵BC∥DE,∴∠AFE=∠B=75°,在△AEF中,∠AED=∠A+∠AFE=20°+75°=95°,故答案为:95°.【点睛】本题考查了平行线的性质,三角形的外角的性质,熟练掌握平行线的性质是解题的关键.15..【分析】根据零指数幂有意义的条件作答即可.【详解】由题意得:.故答案为:.【点睛】本题考查零指数幂有意义的条件.熟练掌握非零的零次幂等于1是解题的关键.a .解析:0【分析】根据零指数幂有意义的条件作答即可.【详解】由题意得:0a ≠.故答案为:0a ≠.【点睛】本题考查零指数幂有意义的条件.熟练掌握非零的零次幂等于1是解题的关键. 16.1【解析】根据题意得:,解得:b=3或−3(舍去),a=−1,则ab=−1.故答案是:−1.解析:1【解析】 根据题意得:2121{030b a a b -=+=≠+≠, 解得:b =3或−3(舍去),a =−1,则ab =−1.故答案是:−1.17.-7【解析】【分析】利用配方法把变形为(x-2)-9,则可得到m 和k 的值,然后计算m+k 的值.【详解】x−4x−5=x−4x+4−4−5=(x−2) −9,所以m=2,k=−9,所以解析:-7【解析】【分析】利用配方法把245x x --变形为(x-2)2-9,则可得到m 和k 的值,然后计算m+k 的值.【详解】x 2−4x−5=x 2−4x+4−4−5=(x−2) 2−9,所以m=2,k=−9,所以m+k=2−9=−7.故答案为:-7【点睛】此题考查配方法的应用,解题关键在于掌握运算法则.18.80°【分析】先根据三角形外角性质得出∠A+∠ACB+∠A+∠ABC=260°,再根据三角形内角和定理得出∠A+∠ACB+∠ABC=180°,即得.【详解】解:∵∠1、∠2是△ABC的外角,解析:80°【分析】先根据三角形外角性质得出∠A+∠ACB+∠A+∠ABC=260°,再根据三角形内角和定理得出∠A+∠ACB+∠ABC=180°,即得.【详解】解:∵∠1、∠2是△ABC的外角,∠1+∠2=260°,∴∠A+∠ACB+∠A+∠ABC=260°,∵∠A+∠ACB+∠ABC=180°,∴∠A=80°,故答案为:80°.【点睛】本题考查了三角形内角和定理和三角形外角性质的应用,能根据三角形的外角性质得∠A+∠ACB+∠A+∠ABC=260°是解题关键.19.或【分析】将x看做已知数求出y,即可确定出正整数解.【详解】解:方程7x+y=15,解得:y=﹣7x+15,x=1,y=8;x=2,y=1,则方程的正整数解为或.故答案为:或.【点解析:18xy=⎧⎨=⎩或21xy=⎧⎨=⎩【分析】将x看做已知数求出y,即可确定出正整数解.【详解】解:方程7x+y=15,解得:y=﹣7x+15,x=1,y=8;x=2,y=1,则方程的正整数解为18xy=⎧⎨=⎩或21xy=⎧⎨=⎩.故答案为:18xy=⎧⎨=⎩或21xy=⎧⎨=⎩.【点睛】此题考查了解二元一次方程,熟练掌握运算法则是解本题的关键.20.4【分析】设购买x个A品牌足球,y个B品牌足球,根据总价=单价×数量,即可得出关于x,y的二元一次方程,结合x,y均为正整数,即可得出各进货方案,此题得解.【详解】解:设购买x个A品牌足球,解析:4【分析】设购买x个A品牌足球,y个B品牌足球,根据总价=单价×数量,即可得出关于x,y的二元一次方程,结合x,y均为正整数,即可得出各进货方案,此题得解.【详解】解:设购买x个A品牌足球,y个B品牌足球,依题意,得:60x+75y=1500,解得:y=20−45 x.∵x,y均为正整数,∴x是5的倍数,∴516xy=⎧⎨=⎩,1012xy=⎧⎨=⎩,158xy=⎧⎨=⎩,204xy=⎧⎨=⎩∴共有4种购买方案.故答案为:4.【点睛】本题考查了二元一次方程的应用,找准等量关系,正确列出二元一次方程是解题的关键.21.5【分析】设正方形A ,B 的边长分别为a ,b ,根据图形构建方程组即可解决问题.【详解】解:设正方形A ,B 的边长分别为a ,b .由图甲得:,由图乙得:,化简得,∴,∵a+b>0,∴a+b解析:5【分析】设正方形A ,B 的边长分别为a ,b ,根据图形构建方程组即可解决问题.【详解】解:设正方形A ,B 的边长分别为a ,b .由图甲得:2()1a b -=,由图乙得:22()()12+--=a b a b ,化简得6ab =,∴22()()412425+=-+=+=a b a b ab ,∵a +b >0,∴a +b =5,故答案为:5.【点睛】本题考查完全平方公式,正方形的面积等知识,解题的关键是学会利用参数,构建方程组解决问题,属于中考常考题型. 22.3【解析】【分析】先根据题意得出a 的值,再代入原方程求出x 的值即可.【详解】∵方程的解为x=6,∴3a+12=36,解得a=8,∴原方程可化为24-2x=6x ,解得x=3.故答案为3解析:3【解析】【分析】先根据题意得出a 的值,再代入原方程求出x 的值即可.【详解】∵方程3232a xx+=的解为x=6,∴3a+12=36,解得a=8,∴原方程可化为24-2x=6x,解得x=3.故答案为3【点睛】本题考查的是一元一次方程的解,熟知解一元一次方程的基本步骤是解答此题的关键.23.6【分析】根据多项式乘以多项式的法则展开,再代入计算即可.【详解】∵m+n=3,mn=2,∴(1+m)(1+n)=1+n+m+mn=1+3+2=6.故答案为:6.【点睛】本题考查了多解析:6【分析】根据多项式乘以多项式的法则展开,再代入计算即可.【详解】∵m+n=3,mn=2,∴(1+m)(1+n)=1+n+m+mn=1+3+2=6.故答案为:6.【点睛】本题考查了多项式乘以多项式,掌握多项式乘以多项式的法则是解答本题的关键.注意不要漏项,漏字母,有同类项的合并同类项.24.15或22.5【分析】先由题意得出a,b的值,再推出射线AM绕点A顺时针先转动18秒后,AM转动至AM的位置,∠MAM=18°×5=90°,然后分情况讨论即可.【详解】∵,∴a=5,b=1解析:15或22.5【分析】先由题意得出a,b的值,再推出射线AM绕点A顺时针先转动18秒后,AM转动至AM'的位置,∠MAM'=18°×5=90°,然后分情况讨论即可.【详解】 ∵()2510a b -+-=,∴a=5,b=1,设射线AM 再转动t 秒时,射线AM 、射线BQ 互相平行,如图,射线AM 绕点A 顺时针先转动18秒后,AM 转动至AM '的位置,∠MAM '=18°×5=90°,分两种情况:①当9<t <18时,如图,∠QBQ '=t °,∠M 'AM"=5t °,∵∠BAN=45°=∠ABQ ,∴∠ABQ '=45°-t °,∠BAM"=5t-45°,当∠ABQ '=∠BAM"时,BQ '//AM",此时,45°-t °=5t-45°,解得t=15;②当18<t <27时,如图∠QBQ '=t °,∠NAM"=5t °-90°,∵∠BAN=45°=∠ABQ ,∴∠ABQ '=45°-t °,∠BAM"=45°-(5t °-90°)=135°-5t °,当∠ABQ '=∠BAM"时,BQ '//AM",此时,45°-t °=135°-5t ,解得t=22.5;综上所述,射线AM 再转动15秒或22.5秒时,射线AM 射线BQ 互相平行.故答案为:15或22.5【点睛】本题考查了非负数的性质,平行线的判定,完全平方公式,掌握知识点是解题关键.三、解答题25.(1)图见解析;(2)图见解析.【详解】解:(1)△A′B′C′如下图;(2)高C′D′如下图.26.(1)(43)(4-3)x y x y +;(2)22()(-y)x y x +.【分析】(1)直接利用平方差公式22()()a b a b a b +-=-分解即可; (2)先利用平方差公式,再利用完全平方公式222()2a b a ab b ±=±+即可.【详解】(1)原式2243))((x y =-(43)(43)x y x y =+-;(2)原式2222)()(2x y xy =-+2222(2)(2)x y x y xy y x ++=+-22()()x y x y =+-.【点睛】本题考查了利用平方差公式和完全平方公式进行因式分解,熟记公式是解题关键. 27.2x 2-8x-3;-9.【解析】【分析】根据整式的乘法运算法则即可化简求值.【详解】解:原式=x 2-4x+4+2(x 2-2x-8)-(x 2-9)=x 2-4x+4+2x 2-4x-16-x 2+9=2x 2-8x-3当x=1时,原式=2-8-3=-9【点睛】此题主要考查整式的化简求值,解题的关键是熟知整式的运算法则.28.6【解析】试题分析:先根据乘法公式和单项式乘以多项式的法则计算化简,根据化简的结果,将2230x x --=变形后整体代入计算即可.试题解析:原式=()()222441212x x x x x -+---- 222441222x x x x x =-+-+-+223x x =-+∵2230x x --=,∴223x x -=,∴原式=3+3=6.29.(1)每个A 型放大镜和每个B 型放大镜分别为9元,4元;(2)最多可以购买54个A 型放大镜.【分析】(1)根据题意设每个A 型放大镜和每个B 型放大镜分别为x 元,y 元,列出方程组即可解决问题;(2)由题意设购买A 型放大镜a 个,列出不等式并进行分析求解即可解决问题.【详解】解:(1)设每个A 型放大镜和每个B 型放大镜分别为x 元,y 元,可得:10015015001201601720x y x y +⎧⎨+⎩==, 解得:94x y =⎧⎨=⎩. 答:每个A 型放大镜和每个B 型放大镜分别为9元,4元.(2)设购买A 型放大镜a 个,根据题意可得:94(75)570a a +⨯-≤,解得:54a ≤.答:最多可以购买54个A 型放大镜.【点睛】本题考查二元一次方程组的应用以及一元一次不等式的应用等知识,解题的关键是理解题意,列出方程组和不等式进行分析解答.30.24【分析】(1)由2个矩形面积之和表示出阴影部分面积即可;(2)将x 的值代入计算即可求出值.【详解】(1)根据题意得:阴影部分的面积=a(2a+3)+a(2a+3−a)=3a 2+6a ;(2)当a =2时,原式=3×22+2×6=24.答:图中阴影部分的面积是24.【点睛】本题考查代数式求值和列代数式,解题的关键是根据题意列代数式.31.3x 2-3x -5,25【分析】原式第一项利用平方差公式化简,第二项利用单项式乘以多项式法则计算,最后一项利用完全平方公式展开,去括号合并得到最简结果,将已知的方程变形后代入即可求值.【详解】原式=()222945521x x x x x -----+=222945521x x x x x ----+-=2335x x --,当2100x x =--,即210x x =-时,原式=()235310525x x -=⨯-=-【点睛】本题考查整式的混合运算-化简求值,涉及的知识点有:完全平方公式、平方差公式、去括号法则及合并同类项法则,熟练掌握以上公式及法则是解题的关键.32.∠DAC=40°,∠BOA=115°【解析】试题分析:在Rt △ACD 中,根据两锐角互余得出∠DAC 度数;△ABC 中由内角和定理得出∠ABC 度数,再根据AE ,BF 是角平分线可得∠BAO、∠ABO,最后在△ABO 中根据内角和定理可得答案.解:∵AD 是BC 边上的高,∴∠ADC=90°,又∵∠C=50°,∴在△ACD 中,∠DAC=90°-∠C=40°,∵∠BAC=60°,∠C=50°,∴在△ABC 中,∠ABC=180°-∠BAC-∠C=70°,又∵AE 、BF 分别是∠BAC 和∠ABC 的平分线, ∴∠BAO=12∠BAC=30°,∠ABO=12∠ABC=35°, ∴∠BOA=180°-∠BAO -∠ABO =180°-30°-35°=115°. 33.(1)-1;(2)611a -;(3)86x +;(4)222a ac c -+ -24b【分析】(1)直接利用零指数幂,绝对值,负指数幂,乘方法则运算.(2)先利用幂的运算法则,再合并同类项.(3)利用整式的乘法法则进行运算.(4)利用平方差公式进行运算.【详解】解:(1)原式=1-3+2-1=-1(2)原式=68a - +6a -64a =611a -(3)原式=27x x + -()26x x -- =27x x +26x x -++ =86x +(4)原式=()2a c - -()22b =222a ac c -+ -24b【点睛】本题主要考查了数的计算,整式的加减与乘法,解题的关键要对零指数幂,绝对值,负指数幂以及幂的运算和整式的乘法法则熟悉.34.2021514- 【分析】根据题目信息,设S =1+5+52+53+…+52020,求出5S ,然后相减计算即可得解.【详解】解:设S =1+5+52+53+ (52020)则5S =5+52+53+54 (52021)两式相减得:5S ﹣S =4S =52021﹣1, 则202151.4S -= ∴1+5+52+53+54+…+52020的值为2021514-. 【点睛】本题考查了有理数的乘方,读懂题目信息,理解求和的运算方法是解题的关键.35.(1)7;(2)55a .【分析】(1)直接利用负整数指数幂的性质、零指数幂的性质分别化简得出答案;(2)直接利用积的乘方运算法则、整式的除法运算法则计算得出答案.【详解】 解:(1)(14)﹣1+(﹣2)2×50﹣(﹣1)﹣2; =4+4×1﹣1=4+4﹣1 =7;(2)2a 5﹣a 2•a 3+(2a 4)2÷a 3=2a 5﹣a 5+4a 8÷a 3=2a 5﹣a 5+4a 5=5a 5.【点睛】此题主要考查了整式乘除和乘法运算,以及有理数乘方的运算,熟练掌握运算法则是解本题的关键.36.(1)﹣1;(2)223x x --【分析】(1)分别根据﹣1的偶次幂、负整数指数幂的运算法则和0指数幂的意义计算每一项,再合并即可;(2)根据多项式乘以多项式的法则解答即可.【详解】解:(1)()()1202001113π-⎛⎫--+- ⎪⎝⎭=131-+=﹣1; (2)(x +1)(2x ﹣3)=22232323x x x x x -+-=--.【点睛】本题考查了负整数指数幂的运算法则和0指数幂的意义以及多项式的乘法法则等知识,属于基本题型,熟练掌握上述基础知识是解题关键.。
苏科七年级苏科初一数学下册第二学期期末测试题及答案(共五套)
苏科七年级苏科初一数学下册第二学期期末测试题及答案(共五套)一、选择题1.下列等式由左边到右边的变形中,属于因式分解的是( )A .(a ﹣2)(a+2)=a 2﹣4B .8x 2y =8×x 2yC .m 2﹣1+n 2=(m+1)(m ﹣1)+n 2D .x 2+2x ﹣3=(x ﹣1)(x+3)2.若a >b ,则下列结论错误的是( )A .a −7>b −7B .a+3>b+3C .a 5>b 5D .−3a>−3b3.把多项式x 2+ax+b 分解因式,得(x+1)(x-3),则a 、b 的值分别是( )A .a=2,b=3B .a=-2,b=-3C .a=-2,b=3D .a=2,b=-3 4.下列运算正确的是( )A .()3253a b a b =B .a 6÷a 2=a 3C .5y 3•3y 2=15y 5D .a +a 2=a 35.下列从左到右的变形,是因式分解的是( ) A .()()23x 3x 9x -+=-B .()()()()y 1y 33y y 1+-=-+C .()24yz 2y z z 2y 2z zy z -+=-+D .228x 8x 22(2x 1)-+-=--6.下列各式中,不能用平方差公式计算的是( ) A .(x -y )(-x +y ) B .(-x -y )(-x +y ) C .(x -y )(-x -y )D .(x +y )(-x +y ) 7.下列图形中,不能通过其中一个四边形平移得到的是( )A .B .C .D .8.在餐馆里,王伯伯买了5个菜,3个馒头,老板少收2元,只收50元,李太太买了11个菜,5个馒头,老板以售价的九折优惠,只收90元,若菜每个x 元,馒头每个y 元,则下列能表示题目中的数量关系的二元一次方程组是( )A .53502115900.9x y x y +=+⎧⎨+=⨯⎩B .53502115900.9x y x y +=+⎧⎨+=÷⎩C .53502115900.9x y x y +=-⎧⎨+=⨯⎩D .53502115900.9x y x y +=+⎧⎨+=⨯⎩ 9.科学家发现2019﹣nCoV 冠状肺炎病毒颗粒的平均直径约为0.00000012m .数据0.00000012用科学记数法表示为( )A .1.2×107B .0.12×10﹣6C .1.2×10﹣7D .1.2×10﹣810.若多项式224a kab b ++是完全平方式,则k 的值为( )A .4B .2±C .4±D .8±11.下列等式由左边到右边的变形中,因式分解正确的是( )A .22816(4)m m m -+=-B .323346(46)x y x y x y y +=+C .()22121x x x x ++=++D .22()()a b a b a b +-=-12.已知a 、b 、c 是正整数,a >b ,且a 2-ab-ac+bc=11,则a-c 等于( ) A .1- B .1-或11- C .1D .1或11 二、填空题13.如图,图(1)的正方形的周长与图(2)的长方形的周长相等,且长方形的长比宽多acm ,则正方形的面积与长方形的面积的差为_____(用含有字母a 的代数式表示).14.等式01a =成立的条件是________.15.多项式2412xy xyz +的公因式是______.16.如果42x -与231x mx ++的乘积中不含x 2项,则m=______________.17.计算:x (x ﹣2)=_____18.1111111111112018201920182019202020182019202020182019⎛⎫⎛⎫⎛⎫⎛⎫--++----+ ⎪⎪ ⎪⎪⎝⎭⎝⎭⎝⎭⎝⎭________.19.分解因式:x 2﹣4x=__.20.如图,在△ABC 中,已知点D ,E ,F 分别为边BC ,AD ,CE 的中点,且△ABC 的面积等于4cm 2,则阴影部分图形面积等于_____cm 221.关于,x y 的方程组3x y m x my n -=⎧⎨-=⎩的解是11x y =⎧⎨=⎩,则n 的值是______. 22.实数x ,y 满足方程组2728x y x y +=⎧⎨+=⎩,则x +y =_____. 三、解答题23.先化简,再求值:(2x+2)(2﹣2x )+5x (x+1)﹣(x ﹣1)2,其中x =﹣2.24.如图,直线AC ∥BD ,BC 平分∠ABD ,DE ⊥BC ,垂足为点E ,∠BAC =100°,求∠EDB的度数.25.如图,在数轴上,点A 、B 分别表示数1、23x -+.(1)求x 的取值范围.(2)数轴上表示数2x -+的点应落在( )A .点A 的左边B .线段AB 上C .点B 的右边26.如图,∠A=65°,∠ABD=30°,∠ACB=72°,且CE 平分∠ACB ,求∠BEC 的度数.27.如图,在方格纸内将水平向右平移4个单位得到△.(1)画出△; (2)画出边上的中线和高线;(利用网格点和直尺画图) (3)的面积为 .28.利用多项式乘法法则计算:(1)()()22+-+a b a ab b = ;()()22a b a ab b -++ = .在多项式的乘法公式中,除了平方差公式,完全平方公式之外,如果把上面计算结果作为结论逆运用,则成为因式分解中的立方和与立方差公式.已知2,1a b ab -==,利用自己所学的数学知识,以及立方和与立方差公式,解决下列问题:(2)22a b += ;(直接写出答案)(3)33a b -= ;(直接写出答案)(4)66a b += ;(写出解题过程)29.已知关于x,y 的方程组260250x y x y mx +-=⎧⎨-++=⎩(1)请直接写出方程260x y +-=的所有正整数解(2)若方程组的解满足x+y=0,求m 的值(3)无论实数m 取何值,方程x -2y+mx+5=0总有一个固定的解,请直接写出这个解?30.己知关于,x y 的方程组4325x y a x y a -=-⎧⎨+=-⎩, (1)请用a 的代数式表示y ;(2)若,x y 互为相反数,求a 的值.【参考答案】***试卷处理标记,请不要删除一、选择题1.D解析:D【分析】认真审题,根据因式分解的定义,即:将多项式写成几个因式的乘积的形式,进行分析,据此即可得到本题的答案.【详解】解:A .不是乘积的形式,错误;B .等号左边的式子不是多项式,不符合因式分解的定义,错误;C .不是乘积的形式,错误;D .x 2+2x ﹣3=(x ﹣1)(x+3),是因式分解,正确;故选:D .【点睛】本题主要考查了因式分解的定义,即:将多项式写成几个因式的乘积的形式,牢记定义是解题的关键,要注意认真总结.2.D解析:D【解析】分析:根据不等式的基本性质对各选项进行逐一分析即可.详解:A.不等式两边同时减去7,不等号方向不变,故A选项正确;B.不等式两边同时加3,不等号方向不变,故B选项正确;C.不等式两边同时除以5,不等号方向不变,故C选项正确;D.不等式两边同时乘以-3,不等号方向改变,﹣3a<﹣3b,故D选项错误.故选D.点睛:本题考查的是不等式的基本性质,熟知不等式的两边同时乘以(或除以)同一个负数,不等号的方向改变是解答此题的关键.3.B解析:B【解析】分析:根据整式的乘法,先还原多项式,然后对应求出a、b即可.详解:(x+1)(x-3)=x2-3x+x-3=x2-2x-3所以a=2,b=-3,故选B.点睛:此题主要考查了整式的乘法和因式分解的关系,利用它们之间的互逆运算的关系是解题关键.4.C解析:C【分析】根据积的乘方、同底数幂的除法、单项式乘以单项式、合并同类项法则进行计算即可.【详解】解:A、(a2b)3=a6b3,故A错误;B、a6÷a2=a4,故B错误;C、5y3•3y2=15y5,故C正确;D、a和a2不是同类项,不能合并,故D错误;故选:C.【点睛】此题主要考查了单项式乘以单项式、同底数幂的除法、积的乘方、合并同类项,关键是掌握各计算法则.5.D解析:D【分析】把一个多项式化为几个整式的积的形式,这种变形叫做把这个多项式因式分解,结合选项进行判断即可.【详解】根据因式分解的定义得:从左边到右边的变形,是因式分解的是22-+-=--.其他不是因式分解:A,C右边不是积的形式,B左边不是多项8x8x22(2x1)式.故选D.【点睛】本题考查了因式分解的意义,注意因式分解后左边和右边是相等的,不能凭空想象右边的式子.6.A解析:A【分析】根据公式(a+b)(a-b)=a2-b2的左边的形式,判断能否使用.【详解】A、由于两个括号中含x、y项的符号都相反,故不能使用平方差公式,A符合题意;B、两个括号中,含x项的符号相同,含y的项的符号相反,故能使用平方差公式,B不符合题意;C、两个括号中,含x项的符号相反,y项的符号相同,故能使用平方差公式,C不符合题意;D、两个括号中,含x项的符号相反,y项的符号相同,故能使用平方差公式,D不符合题意;故选:A.【点睛】本题考查了平方差公式.注意两个括号中一项符号相同,一项符号相反才能使用平方差公式.7.D解析:D【详解】解:A、能通过其中一个四边形平移得到,不符合题意;B、能通过其中一个四边形平移得到,不符合题意;C、能通过其中一个四边形平移得到,不符合题意;D、不能通过其中一个四边形平移得到,需要一个四边形旋转得到,符合题意.故选D.8.B解析:B【解析】【分析】设馒头每个x元,包子每个y元,分别利用买5个馒头,3个包子,老板少收2元,只要5元以及11个馒头,5个包子,老板以售价的九折优惠,只要9元,得出方程组.【详解】设馒头每个x元,包子每个y元,根据题意可得:53502115900.9x y x y +=+⎧⎨+=÷⎩, 故选B .【点睛】本题考查了由实际问题抽象出二元一次方程组,难度一般,关键是读懂题意设出未知数找出等量关系.9.C解析:C【分析】用科学计数法将0.00000012表示为a×10-n 即可.【详解】解:0.00000012=1.2×10﹣7,故选:C .【点睛】本题考查用科学计数法表示较小的数,绝对值小于1的正数也可以利用科学记数法表示,一般形式为a×10﹣n ,与较大数的科学记数法不同的是其所使用的是负指数幂,指数由原数左边起第一个不为零的数字前面的0的个数所决定.10.C解析:C【分析】根据完全平方式的特征解答即可.【详解】∵224a kab b ++是一个完全平方式,∴224a kab b ++=(a ±2b )2,而(a ±2b )2=a 2±4ab+24b ,∴k=±4,故选C .【点睛】本题考查了完全平方式,根据完全平方式的特点得到k=±4是解决问题的关键.11.A解析:A【分析】根据因式分解的意义,可得答案.【详解】解:A 、属于因式分解,故本选项正确;B 、因式分解不彻底,故B 选项不符合题意;C 、没把一个多项式转化成几个整式积的形式,故C 不符合题意;D 、是整式的乘法,故D 不符合题意;【点睛】本题考查了因式分解的意义,把一个多项式转化成几个整式积的形式是因式分解.12.D解析:D【解析】【分析】此题先把a 2-ab -ac +bc 因式分解,再结合a 、b 、c 是正整数和a >b 探究它们的可能值,从而求解.【详解】解:根据已知a 2-ab -ac +bc =11,即a (a -b )-c (a -b )=11,(a -b )(a -c )=11,∵a >b ,∴a -b >0,∴a -c >0,∵a 、b 、c 是正整数,∴a -c =1或a -c =11故选D .【点睛】此题考查了因式分解;能够借助因式分解分析字母的取值范围是解决问题的关键.二、填空题13.【分析】设长方形的宽为xcm ,根据“图(1)的正方形的周长与图(2)的长方形的周长相等”求得正方形的边长,最后由长方形与正方形的面积公式计算正方形的面积与长方形的面积的差.【详解】解:设长方 解析:24a 【分析】设长方形的宽为xcm ,根据“图(1)的正方形的周长与图(2)的长方形的周长相等”求得正方形的边长,最后由长方形与正方形的面积公式计算正方形的面积与长方形的面积的差.【详解】解:设长方形的宽为xcm ,则长方形的长为(x +a )cm ,∵图(1)的正方形的周长与图(2)的长方形的周长相等,∴正方形的边长为:2()242x a x x a +++=,∴正方形的面积与长方形的面积的差为:22()2x a x x a +⎛⎫-+ ⎪⎝⎭ 222444x ax a x ax ++=-- =24a . 故答案为:24a . 【点睛】本题主要考查了列代数式,整式的混合运算,关键是读懂题意,正确列出代数式.14..【分析】根据零指数幂有意义的条件作答即可.【详解】由题意得:.故答案为:.【点睛】本题考查零指数幂有意义的条件.熟练掌握非零的零次幂等于1是解题的关键. 解析:0a ≠.【分析】根据零指数幂有意义的条件作答即可.【详解】由题意得:0a ≠.故答案为:0a ≠.【点睛】本题考查零指数幂有意义的条件.熟练掌握非零的零次幂等于1是解题的关键.15.【分析】根据公因式的定义即可求解.【详解】∵=(y+3z ),∴多项式的公因式是,故答案为:.【点睛】此题主要考查公因式,解题的关键是熟知公因式的定义.解析:4xy【分析】根据公因式的定义即可求解.【详解】∵2412xy xyz +=4xy (y+3z ),∴多项式2412xy xyz +的公因式是4xy ,故答案为:4xy .【点睛】此题主要考查公因式,解题的关键是熟知公因式的定义.16.【分析】先根据多项式的乘法法则展开,再根据题意,二次项的系数等于0列式求解即可.【详解】解:(4x-2)(3x2+mx+1)=12x3+(4m-6)x2+(4-2m )x-2,∵不含x2项, 解析:32【分析】先根据多项式的乘法法则展开,再根据题意,二次项的系数等于0列式求解即可.【详解】解:(4x-2)(3x 2+mx+1)=12x 3+(4m-6)x 2+(4-2m )x-2,∵不含x 2项,∴4m-6=0,解得m=32. 故答案为32. 【点睛】此题考查多项式与多项式的乘法,运算法则需要熟练掌握,不含某一项就让这一项的系数等于0是解题的关键.17.x2﹣2x【分析】根据单项式乘多项式法则即可求出答案.【详解】解:原式=x2﹣2x故答案为:x2﹣2x .【点睛】此题考查的是整式的运算,掌握单项式乘多项式法则是解决此题的关键. 解析:x 2﹣2x根据单项式乘多项式法则即可求出答案.【详解】解:原式=x 2﹣2x故答案为:x 2﹣2x .【点睛】此题考查的是整式的运算,掌握单项式乘多项式法则是解决此题的关键.18.【分析】设,代入原式化简即可得出结果.【详解】原式故答案为:.【点睛】本题考查了整式的混合运算,设将式子进行合理变形是解题的关键. 解析:12020【分析】 设1120182019m =+,代入原式化简即可得出结果. 【详解】 原式()111120202020m m m m ⎛⎫⎛⎫=-+--- ⎪ ⎪⎝⎭⎝⎭ 221202*********m m m m m m =-+--++ 12020= 故答案为:12020. 【点睛】 本题考查了整式的混合运算,设1120182019m =+将式子进行合理变形是解题的关键. 19.x (x ﹣4)【详解】解:x2﹣4x=x (x ﹣4).故答案为:x (x ﹣4).解析:x (x ﹣4)解:x 2﹣4x=x (x ﹣4).故答案为:x (x ﹣4).20.1【分析】由点为的中点,可得的面积是面积的一半;同理可得和的面积之比,利用三角形的等积变换可解答.【详解】解:如图,点是的中点,的底是,的底是,即,而高相等,,是的中点,,,,解析:1【分析】由点E 为AD 的中点,可得EBC ∆的面积是ABC ∆面积的一半;同理可得BCE ∆和EFB ∆的面积之比,利用三角形的等积变换可解答.【详解】解:如图,点F 是CE 的中点,BEF 的底是EF ,BEC ∆的底是EC ,即12EF EC =,而高相等, 12BEF BEC S S ∆∆∴=, E 是AD 的中点,12BDE ABD S S ∆∆∴=,12CDE ACD S S ∆∆=, 12EBC ABC S S ∆∆∴=, 14BEF ABC S S ∆∆∴=,且24ABC S cm ∆=,21BEF S cm ∆∴=,即阴影部分的面积为21cm .故答案为1.【点睛】本题主要考查了三角形面积的等积变换:若两个三角形的高(或底)相等,其中一个三角形的底(或高)是另一个三角形的几倍,那么这个三角形的面积也是另一个三角形面积的几倍.21.【分析】将,代入方程组,首先求得,进而可以求得.【详解】解:将代入方程组得: ,解得: ,故的值为-1.【点睛】本题考查二元一次方程组,难度不大,理解二元一次方程组的解的含义是顺利解解析:1-【分析】将x ,y 代入方程组,首先求得m ,进而可以求得n .【详解】解:将11x y =⎧⎨=⎩代入方程组得:31=1m m n-⎧⎨-=⎩ , 解得:21m n =⎧⎨=-⎩ , 故n 的值为-1.【点睛】本题考查二元一次方程组,难度不大,理解二元一次方程组的解的含义是顺利解题的关键.22.5【分析】方程组两方程左右两边相加即可求出所求.【详解】解:,①②得:,则,故答案为:5.【点睛】本题考查了解二元一次方程组,利用了消元的思想,消元的方法有:代入消元法与加减消元法解析:5【分析】方程组两方程左右两边相加即可求出所求.【详解】解:2728x y x y +=⎧⎨+=⎩①②, ①+②得:3315x y +=,则5x y +=,故答案为:5.【点睛】本题考查了解二元一次方程组,利用了消元的思想,消元的方法有:代入消元法与加减消元法.三、解答题23.73x +;-11【分析】根据整式的运算法则即可求出答案.【详解】解:22222511xx x x x 222445521x x x x x73x 当2x =-时,原式14311. 【点睛】本题考查整式化简求值,熟练运用运算法则是解题的关键.24.50°【分析】直接利用平行线的性质,结合角平分线的定义,得出∠CBD =12∠ABD =40°,进而得出答案.【详解】解:∵AC //BD ,∠BAC =100°,∴∠ABD =180°﹣∠BAC =180°-100°=80°,∵BC 平分∠ABD ,∴∠CBD =12∠ABD =40°,∵DE ⊥BC ,∴∠BED =90°,∴∠EDB =90°﹣∠CBD =90°-40°=50°.【点睛】此题主要考查了平行线的性质以及角平分线的定义,正确得出∠CBD 的度数是解题关键.25.(1)1x <.(2)B.【解析】分析:(1)根据点B 在点A 的右侧列出不等式即可求出;(2)利用(1)的结果可判断-x+2的位置.详解:(1)根据题意,得231x -+>.解得1x <.(2)B.点睛:本题考查了数轴的运用.关键是利用数轴,数形结合求出答案.26.131°【解析】【分析】先根据∠A=65°,∠ACB=72°得出∠ABC 的度数,再由∠ABD=30°得出∠CBD 的度数,根据CE 平分∠ACB 得出∠BCE 的度数,根据∠BEC=180°-∠BCE-∠CBD 即可得出结论【详解】在△ABC 中,∵∠A=65°,∠ACB=72°∴∠ABC=43°∵∠ABD=30°∴∠CBD=∠ABC ﹣∠ABD=13°∵CE 平分∠ACB∴∠BCE=∠ACB=36°∴在△BCE 中,∠BEC=180°﹣13°﹣36°=131°.【点睛】本题考察了三角形内角和定理,在两个三角形中,三个角之间的关系是解决此题的关键27.(1)见解析; (2) 见解析;(3) 4.【解析】【分析】(1)根据图形平移的性质画出△A′B′C′即可;(2)先取AB 的中点D ,再连接CD 即可;过点C 作CD ⊥AB 交AB 的延长线于点E ,CE 即为所求;(3)利用割补法计算△ABC 的面积.【详解】(1)如图所示:(2)如图所示;(3)S △BCD =20-5-1-10=4.28.(1)33+a b ,33a b -;(2)6;(3)14;(4)198【分析】(1)根据整式的混合运算法则展开计算即可;(2)利用完全平方公式变形,再代入求值;(3)利用立方差公式和完全平方公式变形,再代入求值;(4)利用立方差公式和完全平方公式变形,再代入求值;【详解】解:(1)()()22+-+a b a ab b=322223a a b ab a b ab b -++-+=33+a b()()22a b a ab b -++=322223a a b ab a b ab b ++---=33a b -,故答案为:33+a b ,33a b -;(2)22a b +=()22a b ab -+=2221+⨯=6;(3)33a b -=()()22a b a ab b -++=()()23a b a b ab ⎡⎤--+⎣⎦ =()22231⨯+⨯=14;(4)66a b +=()()224224a b a a b b +-+=()()22222223a b ab a b a b ⎡⎤⎡⎤-++-⎢⎥⎣⎦⎣⎦=()()2222163+⨯- =198【点睛】本题考查了因式分解-运用公式法,正确的理解已知条件中的公式是解题的关键.29.(1)24,21x x y y ==⎧⎧⎨⎨==⎩⎩(2)-136(3)02.5x y =⎧⎨=⎩【解析】分析:(1)先对方程变形为x=6-2y ,然后可带入数值求解;(2)把已知的x+y=0和方程x+2y-6=0组合成方程组,求解方程组的解,然后代入方程x-2y+mx+5=0即可求m 的值;(3)方程整理后,根据无论m 如何变化,二元一次方程组总有一个固定的解,列出方程组,解方程组即可;详解:(1)∵x+2y-6=0∴x=6-2y当y=1时,x=4,当y=2时,x=2∴24,21x x y y ==⎧⎧⎨⎨==⎩⎩ (2)根据题意,把x+y=6和x+2y-6=0构成方程组为:6260x y x y +=⎧⎨+-=⎩和 解得66x y =-⎧⎨=⎩把66x y =-⎧⎨=⎩代入x-2y+mx+5=0, 解得m=136- (3)∵无论实数m 取何值,方程x -2y+mx+5=0总有一个固定的解, ∴x=0时,m 的值与题目无关∴y=2.5∴02.5x y =⎧⎨=⎩ 点睛:此题主要考查了二元一次方程组的应用,对方程组中的方程灵活变形,构成可解方程是解题关键,有一定的难度,合理选择加减消元法和代入消元法解题是关键.30.(1)31y a =-+;(2)12a =-.【分析】(1)通过消元的方法,消去x ,即可用a 的代数式表示y ; (2)令y x =-,再将x 、x -代入方程组,即可求解.【详解】解:(1)由43x y a -=-得:43x a y =-+, 将其代入25x y a +=-得:4325a y y a -++=-, 整理得:393y a =-+,即31y a =-+.故答案为31y a =-+.(2)若x 、y 互为相反数,则y x =-再将x 、y 代入方程组:4325x x a x x a +=-⎧⎨-=-⎩, 解得12a =-. 故答案为12a =-. 【点睛】 本题考查次二元一次方程组的运用,难度一般,熟练掌握消元法是顺利解题的关键.。
苏教版数学七年级下期末复习学案和检测试题与答案
苏教版数学七年级下期末复习学案和检测试题与答案文件编码(008-TTIG-UTITD-GKBTT-PUUTI-WYTUI-8256)七下第七章期末复习教案(1)【知识梳理】一.平行线1.平行线的性质:①两直线平行,同位角相等;②两直线平行,内错角相等;③两直线平行,同旁内角互补2.平行线的判定:①同位角相等,两直线平行;②内错角相等,两直线平行;③同旁内角互补,两直线平行;二.图形的平移(1)平移的概念:在平面内,将一个图形沿某个方向移动一定的距离,这样的图形运动称为平移,平移不改变图形的形状和大小.(2).平移的基本性质:由平移的基本概念知,经过平移,图形上的每一个点都沿同一个方向移动相同的距离,平移不改变图形的形状和大小,因此平移具有下列性质:经过平移,对应点所连的线段平行(或在同一条直线上)并且相等. 4.平行线之间的距离:如果两条直线互相平行,那么其中一条直线上任意两点到另一条直线的距离相等,这个距离称为平行线之间的距离。
三.三角形1.三角形三边之间的关系:三角形的任意两边之和大于第三边;三角形的任意两边之差小于第三边。
若三角形的三边分别为a、b、c,则b<-<ca+ab2.三角形中的主要线段:三角形的高、角平分线、中线。
H FEDCBA注意:①三角形的高、角平分线、中线都是线段。
②高、角平分线、中线的应用。
3.三角形的内角和:三角形的3个内角的和等于180°;直角三角形的两个锐角互余; 三角形的一个外角等于与它不相邻的两个内角的和; 三角形的一个外角大于与它不相邻的任意一个内角。
4.多边形的内角和:n 边形的内角和等于(n-2)180°;任意多边形的外角和等于360°。
【考点例题】例1.如图,从下列三个条件中:(1)AD ∥CB (2)AB ∥已知:结论: 理由:例2:两个直角三角形重叠在一起,将其中一个三角形沿着点B 到点C的方向平移到△DEF 的位置,AB=10,DH=4,平移距离为6,求阴影部分的面积。
苏教版数学七年级下期末复习学案和检测试题与答案
HFE DC BA七下第七章期末复习教案(1)【知识梳理】一.平行线1.平行线的性质 :①两直线平行,同位角相等;②两直线平行,内错角相等;③两直线平行,同旁内角互补2.平行线的判定: ①同位角相等,两直线平行;②内错角相等,两直线平行;③同旁内角互补,两直线平行; 二.图形的平移(1)平移的概念:在平面内,将一个图形沿某个方向移动一定的距离,这样的图形运动称为平移,平移不改变图形的形状和大小. (2).平移的基本性质:由平移的基本概念知,经过平移,图形上的每一个点都沿同一个方向移动相同的距离,平移不改变图形的形状和大小,因此平移具有下列性质:经过平移,对应点所连的线段平行(或在同一条直线上)并且相等.4.平行线之间的距离:如果两条直线互相平行,那么其中一条直线上任意两点到另一条直线的距离相等,这个距离称为平行线之间的距离。
三.三角形1.三角形三边之间的关系:三角形的任意两边之和大于第三边;三角形的任意两边之差小于第三边。
若三角形的三边分别为a 、b 、c ,则 b a c b a +<<-2.三角形中的主要线段:三角形的高、角平分线、中线。
注意:①三角形的高、角平分线、中线都是线段。
②高、角平分线、中线的应用。
3.三角形的内角和:三角形的3个内角的和等于180°;直角三角形的两个锐角互余; 三角形的一个外角等于与它不相邻的两个内角的和; 三角形的一个外角大于与它不相邻的任意一个内角。
4.多边形的内角和:n 边形的内角和等于(n-2)•180°;任意多边形的外角和等于360°。
【考点例题】例1.如图,从下列三个条件中:(1)AD ∥CB (2)AB ∥CD (3)∠A=∠C 任选两个作为条件,另一个作为结论,编一道数学题,并说明理由。
已知: 结论: 理由:例2:两个直角三角形重叠在一起,将其中一个三角形沿着点B 到点C 的方向平移到△DEF 的位置,AB=10,DH=4,平移距离为6,求阴影部分的面积。
新苏科版七年级苏科初一数学下学期期末测试题及答案(共五套)
新苏科版七年级苏科初一数学下学期期末测试题及答案(共五套)一、选择题1.下列计算正确的是( )A .a 3.a 2=a 6B .a 2+a 4=2a 2C .(a 3)2=a 6D .224(3)6a a = 2.下列计算中,正确的是( ) A .235235x x x += B .236236x x x =C .322()2x x x ÷-=-D .236(2)2x x -=- 3.若一个多边形的每个内角都为108°,则它的边数为( )A .5B .8C .6D .10 4.32236x y 3x y -分解因式时,应提取的公因式是( )A .3xyB .23x yC .233x yD .223x y5.新冠病毒(2019﹣nCoV )是一种新的Sarbecovirus 亚属的β冠状病毒,它是一类具有囊膜的正链单股RNA 病毒,其遗传物质是所有RNA 病毒中最大的,也是自然界广泛存在的一大类病毒.其粒子形状并不规则,直径约60﹣220nm ,平均直径为100nm (纳米).1米=109纳米,100nm 可以表示为( )米.A .0.1×10﹣6B .10×10﹣8C .1×10﹣7D .1×1011 6.若8x a =,4y a =,则2x y a +的值为( ) A .12B .20C .32D .256 7.若正方形边长增加1,得到的新正方形面积比原正方形面积增加6,则原正方形的边长是( )A .2B .52C .3D .728.将图甲中阴影部分的小长方形变换到图乙位置,能根据图形的面积关系得到的关系式是( )A .22()()a b a b a b +-=-B .222()a b a b -=-C .2()b a b ab b -=-D .2()ab b b a b -=-9.在餐馆里,王伯伯买了5个菜,3个馒头,老板少收2元,只收50元,李太太买了11个菜,5个馒头,老板以售价的九折优惠,只收90元,若菜每个x 元,馒头每个y 元,则下列能表示题目中的数量关系的二元一次方程组是( )A .53502115900.9x y x y +=+⎧⎨+=⨯⎩B .53502115900.9x y x y +=+⎧⎨+=÷⎩C .53502115900.9x y x y +=-⎧⎨+=⨯⎩D .53502115900.9x y x y +=+⎧⎨+=⨯⎩ 10.在ABC 中,1135A B C ∠=∠=∠,则ABC 是( ) A .钝角三角形B .直角三角形C .锐角三角形D .无法确定 11.下列各式中,不能够用平方差公式计算的是( ) A .(y +2x )(2x ﹣y )B .(﹣x ﹣3y )(x +3y )C .(2x 2﹣y 2 )(2x 2+y 2 )D .(4a +b ﹣c )(4a ﹣b ﹣c ) 12.关于x 的不等式组0233(2)x m x x ->⎧⎨-≥-⎩恰有三个整数解,那么m 的取值范围为( ) A .10m -<≤ B .10m -≤<C .01m ≤<D .01m <≤ 二、填空题13.水由氢原子和氧原子组成,其中氢原子的直径约为0.000 000 000 1 m,这个数据用科学记数法表示为____.14.如图,将一副直角三角板,按如图所示叠放在一起,则图中∠COB =____.15.一个多边形的内角和与外角和之差为720︒,则这个多边形的边数为______.16.如果9-mx +x 2是一个完全平方式,则m 的值为__________.17.已知5x m =,4y m =,则2x y m +=______________.18.计算:x (x ﹣2)=_____19.计算:(12)﹣2=_____. 20.()22x y --=_____.21.计算:2m·3m=______. 22.计算:22020×(12)2020=_____. 三、解答题23.计算:(1)022019()32020-- (2)4655x x x x ⋅+⋅24.计算(1) (-a 3) 2·(-a 2)3(2) (2x -3y )2-(y+3x )(3x -y )(3) ()()()102323223π--⎛⎫+-+-+- ⎪⎝⎭ 25.如图,在方格纸内将ABC ∆水平向右平移4个单位得到'''A B C ∆.(1)补全'''A B C ∆,利用网格点和直尺画图;(2)图中AC 与''A C 的位置关系是: ;(3)画出ABC ∆中AB 边上的中线CE ;(4)平移过程中,线段AC 扫过的面积是: .26.如图,∠A=65°,∠ABD=30°,∠ACB=72°,且CE 平分∠ACB ,求∠BEC 的度数.27.若关于x,y 的二元一次方程组 38x y mx ny +=⎧⎨+=⎩与方程组14x y mx ny -=⎧⎨-=⎩有相同的解. (1)求这个相同的解;(2)求m n -的值.28.将下列各式因式分解(1)xy 2-4xy(2)x 4-8x 2y 2+16y 429.解方程组:41325x y x y +=⎧⎨-=⎩. 30.在校运动会中,篮球队和排球队共有24支,其中篮球队每队10名队员,排球队每队12名队员,共有260名队员.请问篮球队、排球队各有多少支?(利用二元一次方程组解决问题)【参考答案】***试卷处理标记,请不要删除一、选择题1.C解析:C【分析】根据同底幂的运算法则依次判断各选项.【详解】A 中,a 3.a 2=a 5,错误;B 中,不是同类项,不能合并,错误;C 中,(a 3)2=a 6,正确;D 中,224(3)9a a =,错误故选:C .【点睛】本题考查同底幂的运算,注意在加减运算中,不是同类项是不能合并的.2.C解析:C【解析】试题解析:A.不是同类项,不能合并,故错误.B.235236.x x x ⋅= 故错误.C.()3222.x xx ÷-=- 正确. D.()32628.x x -=- 故错误.故选C.点睛:同底数幂相乘,底数不变,指数相加.同底数幂相除,底数不变,指数相减. 3.A解析:A【解析】已知多边形的每一个内角都等于108°,可得多边形的每一个外角都等于180°-108°=72°,所以多边形的边数n=360°÷72°=5.故选A.4.D解析:D【解析】【分析】分别找出系数的最大公约数和相同字母的最低指数次幂,即可确定公因式.【详解】解:6x 3y 2-3x 2y 3=3x 2y 2(2x-y ),因此6x 3y 2-3x 2y 3的公因式是3x 2y 2.故选:D.【点睛】本题主要考查公因式的确定,找公因式的要点是:(1)公因式的系数是多项式各项系数的最大公约数;(2)字母取各项都含有的相同字母;(3)相同字母的指数取次数最低的. 5.C解析:C【分析】绝对值小于1的正数也可以利用科学记数法表示,一般形式为a×10﹣n ,与较大数的科学记数法不同的是其所使用的是负指数幂,指数由原数左边起第一个不为零的数字前面的0的个数所决定.【详解】解:100nm =100×10﹣9m=1×10﹣7m , 故选:C .【点睛】本题是对科学记数法知识的考查,熟练掌握负指数幂知识是解决本题的关键.6.D解析:D【分析】根据同底数幂的乘法:同底数幂相乘,底数不变,指数相加,以及幂的乘方,底数不变,指数相乘,即可求解.【详解】解:∵()222=84256x y xy a a a +⋅=⋅=.故选D .【点睛】本题考查同底数幂的乘法、幂的乘方运算法则,难度不大,熟练掌握运算法则是顺利解题的关键. 7.B解析:B【分析】设原正方形的边长为x ,则新正方形的边长为(1)x +,根据题意列出方程求解即可.【详解】解:设原正方形的边长为x ,则新正方形的边长为(1)x +,根据题意可列方程为22(1)6x x +-=,解得52x =, ∴原正方形的边长为52. 故选:B .【点睛】 此题考查了完全平方公式,找到等量关系列方程为解题关键.8.A解析:A【分析】根据长方形的面积=长⨯宽,分别表示出甲乙两个图形的面积,即可得到答案.【详解】解:()()=S a b a b +-甲,()()2222==S a a b b a b a ab ab b a b -+-=-+--乙. 所以()()a b a b +-22=a b -故选A .【点睛】本题考查平方差公式,难度不大,通过计算两个图形的面积即可顺利解题.9.B解析:B【解析】【分析】设馒头每个x 元,包子每个y 元,分别利用买5个馒头,3个包子,老板少收2元,只要5元以及11个馒头,5个包子,老板以售价的九折优惠,只要9元,得出方程组.【详解】设馒头每个x 元,包子每个y 元,根据题意可得:53502115900.9x y x y +=+⎧⎨+=÷⎩, 故选B .【点睛】本题考查了由实际问题抽象出二元一次方程组,难度一般,关键是读懂题意设出未知数找出等量关系.10.A解析:A【分析】根据三角形的内角和是180︒列方程即可;【详解】 ∵1135A B C ∠=∠=∠,∴3B A ∠=∠,5C A ∠=∠,∵180A B C ∠+∠+∠=︒,∴35180A A A ∠+∠+∠=︒,∴30A ∠=︒,∴100C ∠=︒,∴△ABC 是钝角三角形.故答案选A .【点睛】本题主要考查了三角形内角和定理的应用,在准确进行分析列式是解题的关键.11.B解析:B【分析】根据平方差公式:22()()a b a b a b +-=-进行判断.【详解】A 、原式22(2)x y =-,不符合题意;B 、原式2(3)x y =-+,符合题意;C 、原式2222(2)()x y =-,不符合题意;D 、原式22(4)a c b =--,不符合题意;故选B .【点睛】本题考查平方差公式,熟练掌握平方差公式是解题的关键. 12.C解析:C【分析】首先解不等式组求得不等式组的解集,然后根据不等式组有三个整数解,即可确定整数解,然后得到关于m 的不等式,求得m 的范围.【详解】解:0233(2)x m x x ->⎧⎨-≥-⎩①②解不等式①,得x>m.解不等式②,得x ≤3.∴不等式组得解集为m<x ≤3.∵不等式组有三个整数解,∴01m ≤<.故选C.【点睛】本题考查了不等式组的整数解,解不等式组应遵循以下原则:同大取较大,同小取较小,小大大小中间找,大大小小解不了.二、填空题13.1×10-10.【解析】【分析】根据科学记数法的定义进行求解即可.【详解】根据题意得:0.0000000001m=1×10-10(m).故答案为:1×10-10.【点睛】本题考查科学解析:1×10-10.【解析】【分析】根据科学记数法的定义进行求解即可.【详解】根据题意得:0.0000000001m=1×10-10(m).故答案为:1×10-10.【点睛】本题考查科学记数法,其形式为:a×10n(1≤a<10,n为整数).14.105°.【分析】先根据直角三角形的特殊角可知:∠ECD=45°,∠BDC=60°,再根据三角形的一个外角等于与它不相邻的两个内角的和列式计算即可得解.【详解】如图,∠ECD=45°,∠BD解析:105°.【分析】先根据直角三角形的特殊角可知:∠ECD=45°,∠BDC=60°,再根据三角形的一个外角等于与它不相邻的两个内角的和列式计算即可得解.【详解】如图,∠ECD=45°,∠BDC=60°,∴∠COB=∠ECD+∠BDC=45°+60°=105°.故答案为:105°.【点睛】此题考查三角形外角的性质,掌握三角形的一个外角等于与它不相邻的两个内角的和的性质是解题的关键.15.8【解析】【分析】根据多边形的内角和公式(n-2)•180°与外角和定理列式求解即可.【详解】设这个多边形的边数是n,则(n-2)•180°-360°=720°,解得n=8.故答案为解析:8【解析】【分析】根据多边形的内角和公式(n-2)•180°与外角和定理列式求解即可.【详解】设这个多边形的边数是n,则(n-2)•180°-360°=720°,解得n=8.故答案为8.【点睛】本题考查了多边形的内角和与外角和定理,任意多边形的外角和都是360°,与边数无关.16.±6【分析】如果9-mx+x2是一个完全平方式,则方程9-mx+x2=0对应的判别式△=0,即可得到一个关于m的方程,即可求解.【详解】解:∵9-mx+x2是一个完全平方式,∴方程9-mx解析:±6【分析】如果9-mx+x2是一个完全平方式,则方程9-mx+x2=0对应的判别式△=0,即可得到一个关于m的方程,即可求解.【详解】解:∵9-mx+x2是一个完全平方式,∴方程9-mx+x2=0对应的判别式△=0,因此得到:m2-36=0,解得:m=±6,故答案为:±6.【点睛】本题主要考查了完全平方式,正确理解一个二次三项式是完全平方式的条件是解题的关键.17.100【分析】根据同底数幂的乘法法则、幂的乘方与积的乘方法则把所求代数式进行化简,再把,代入进行计算即可.【详解】解:,故答案为100.【点睛】本题考查同底数幂的乘法法则、幂的乘方与积解析:100【分析】根据同底数幂的乘法法则、幂的乘方与积的乘方法则把所求代数式进行化简,再把5x m =,4y m =代入进行计算即可.【详解】解:2x y m +=()()2254100xy m m ⨯=⨯=,故答案为100.【点睛】本题考查同底数幂的乘法法则、幂的乘方与积的乘方法则,先根据同底数幂的乘法法则把所求代数式进行化简是解答此题的关键. 18.x2﹣2x【分析】根据单项式乘多项式法则即可求出答案.【详解】解:原式=x2﹣2x故答案为:x2﹣2x .【点睛】此题考查的是整式的运算,掌握单项式乘多项式法则是解决此题的关键. 解析:x 2﹣2x【分析】根据单项式乘多项式法则即可求出答案.【详解】解:原式=x2﹣2x故答案为:x2﹣2x.【点睛】此题考查的是整式的运算,掌握单项式乘多项式法则是解决此题的关键.19.【分析】根据负整数指数幂与正整数指数幂互为倒数,可得答案.【详解】解:()﹣2===4,故答案为:4.【点睛】本题考查负指数幂的计算,掌握即可.解析:【分析】根据负整数指数幂与正整数指数幂互为倒数,可得答案.【详解】解:(12)﹣2=2112⎛⎫⎪⎝⎭=114=4,故答案为:4.【点睛】本题考查负指数幂的计算,掌握即可.20.x2+4xy+4y2【分析】根据完全平方公式进行计算即可.完全平方公式:(a±b)2=a2±2ab+b2.【详解】解:(﹣x﹣2y)2=x2+4xy+4y2.故答案为:x2+4xy+4y2解析:x2+4xy+4y2【分析】根据完全平方公式进行计算即可.完全平方公式:(a±b)2=a2±2ab+b2.【详解】解:(﹣x﹣2y)2=x2+4xy+4y2.故答案为:x2+4xy+4y2.【点睛】本题考查了完全平方公式,两数的平方和,再加上或减去它们积的2倍,就构成了一个完全平方式.该题要求熟练掌握完全平方公式,并灵活运用.21.6m2【分析】根据单项式乘以单项式的法则解答即可.【详解】解:.故答案为:.【点睛】本题考查了单项式乘以单项式的法则,属于基础题型,熟练掌握运算法则是解题关键.解析:6m 2【分析】根据单项式乘以单项式的法则解答即可.【详解】解:2236m m m ⋅=.故答案为:26m .【点睛】本题考查了单项式乘以单项式的法则,属于基础题型,熟练掌握运算法则是解题关键. 22.1【分析】根据积的乘方计算法则进行计算即可.【详解】解:原式=(2×)2020=1,故答案为:1.【点睛】本题主要考查了积的乘方的逆运算,准确计算是解题的关键.解析:1【分析】根据积的乘方计算法则进行计算即可.【详解】解:原式=(2×12)2020=1, 故答案为:1.【点睛】本题主要考查了积的乘方的逆运算,准确计算是解题的关键. 三、解答题23.(1)89;(2)102x ; 【分析】(1)根据零指数幂和负整数指数幂的运算法则即可计算;(2)根据同底数幂的乘法法则和合并同类项即可计算.【详解】(1)原式=1-19=89; (2)原式=x 10+x 10=2x 10.【点睛】本题考查整式的混合运算,负整数指数幂,零指数幂,解答本题的关键是明确各法则的计算方法.24.(1)-12a ;(2)-522x 10y 12xy +-;(3)1034. 【分析】(1)先计算幂的乘方,然后计算同底数幂相乘,即可得到答案;(2)先计算完全平方公式和平方差公式,然后合并同类项,即可得到答案;(3)先计算负整数指数幂,零指数幂,绝对值,然后合并同类项,即可得到答案.【详解】解:(1)32236612()()()a a a a a -•-=•-=-;(2)2(23)(3)(3)x y y x x y --+- =22224129(9)x xy y x y -+--=2251210x xy y --+;(3)()()()102323223π--⎛⎫+-+-+- ⎪⎝⎭ =311824+++ =3104; 【点睛】 本题考查了负整数指数幂,零指数幂,完全平方公式,平方差公式,以及同底数幂的乘法,解题的关键是熟练掌握运算法则进行解题.25.(1)图见详解;(2)平行且相等;(3)图见详解;(4)28.【分析】(1)根据图形平移的性质画出△A B C '''即可;(2)根据平移的性质可得出AC 与A C ''的关系;(3)先取AB 的中点E ,再连接CE 即可;(4)线段AC 扫过的面积为平行四边形AA C C ''的面积,根据平行四边形的底为4,高为7,可得线段AC 扫过的面积.【详解】解:(1)如图所示,△A B C '''即为所求;(2)由平移的性质可得,AC与A C''的关系是平行且相等;故答案为:平行且相等;(3)如图所示,线段CE即为所求;(4)如图所示,连接AA',CC',则线段AC扫过的面积为平行四边形AA C C''的面积,由图可得,线段AC扫过的面积4728=⨯=.故答案为:28.【点睛】本题主要考查了利用平移变换进行作图,作图时要先找到图形的关键点,分别把这几个关键点按照平移的方向和距离确定对应点后,再顺次连接对应点即可得到平移后的图形.26.131°【解析】【分析】先根据∠A=65°,∠ACB=72°得出∠ABC的度数,再由∠ABD=30°得出∠CBD的度数,根据CE平分∠ACB得出∠BCE的度数,根据∠BEC=180°-∠BCE-∠CBD即可得出结论【详解】在△ABC中,∵∠A=65°,∠ACB=72°∴∠ABC=43°∵∠ABD=30°∴∠CBD=∠ABC﹣∠ABD=13°∵CE平分∠ACB∴∠BCE=∠ACB=36°∴在△BCE中,∠BEC=180°﹣13°﹣36°=131°.【点睛】本题考察了三角形内角和定理,在两个三角形中,三个角之间的关系是解决此题的关键27.(1)这个相同的解为21xy=⎧⎨=⎩;(2)1【分析】(1)根据两个方程组有相同解可得方程组31x y x y +=⎧⎨-=⎩,解此方程组即可得出答案; (2)将(1)求解出的x 和y 的值代入其余两个式子,解出m 和n 的值,再代入m-n 中即可得出答案.【详解】解:(1)∵关于x,y 的二元一次方程组38x y mx ny +=⎧⎨+=⎩与14x y mx ny -=⎧⎨-=⎩有相同的解, ∴31x y x y +=⎧⎨-=⎩ 解得21x y =⎧⎨=⎩ ∴这个相同的解为21x y =⎧⎨=⎩ (2)∵关于x,y 的二元一次方程组38x y mx ny +=⎧⎨+=⎩与14x y mx ny -=⎧⎨-=⎩相同的解为21x y =⎧⎨=⎩, ∴2824m n m n +=⎧⎨-=⎩ 解得32m n =⎧⎨=⎩ ∴m-n=3-2=1【点睛】本题考查的是二元一次方程组的同解问题:将两组方程组中只含有x 和y 的方程组合到一起,求解即可.28.(1)()4xy y -;(2)()()2222x y x y -+.【分析】(1)提出公因式xy 即可得出答案;(2)先利用完全平方公式,然后再利用平方差公式分解即可.【详解】解:(1)()244xy xy xy y -=-; (2)()()()()()22222242246=2842221x y x y x y x y x y x y x y ⎡⎤-=-=-++⎣-+⎦. 【点睛】 本题主要考查因式分解,因式分解的步骤:一提,二套,三分组,四检查,分解要彻底;熟练掌握提公因式法、公式法的应用是解题的关键.29.11717x y ⎧=⎪⎪⎨⎪=-⎪⎩【分析】直接利用加减消元法解方程组即可.【详解】41325x y x y +=⎧⎨-=⎩①② 由+2⨯①②得:7x=11, 解得117x =, 把117x =代入方程①得:17y =-, 故原方程组的解为:11717x y ⎧=⎪⎪⎨⎪=-⎪⎩. 【点睛】本题考查了解二元一次方程组,熟练掌握加减消元法解二元一次方程组是解本题的关键.30.篮球队14支,排球队10支【分析】根据题意可知,本题中的等量关系是“有24支队”和“260名运动员”,列方程组求解即可.【详解】设篮球队x 支,排球队y 支,由题意可得:241012260x y x y +=⎧⎨+=⎩解的:1410x y =⎧⎨=⎩答:设篮球队14支,排球队10支【点睛】解题关键是要读懂题目的意思,根据题目给出的条件,找出合适的等量关系,列出方程组,再求解.利用二元一次方程组求解的应用题一般情况下题中要给出2个等量关系,准确的找到等量关系并用方程组表示出来是解题的关键.。
(完整版)数学苏教七年级下册期末复习测试题目经典答案
(完整版)数学苏教七年级下册期末复习测试题目经典答案一、选择题1.下列计算正确的是( )A .3332a a a ⋅=B .632a a a ÷=C .()236a a =D .235a a a += 2.如图,在所标识的角中,下列说法不正确的是( )A .1∠和2∠互为补角B .1∠和4∠是同位角C .2∠和4∠是内错角D .2∠和3∠是对顶角3.对有理数a ,b 定义运算:a b ma nb =+★,其中m ,n 是常数.如果342=★,582★>,那么n 的取值范围是( )A .1n >-B .1n <-C .2n >D .2n < 4.若x y >,则下列式子错误的是( )A .11x y ->-B .33x y ->-C .11x y +>+D .33x y > 5.已知关于x 的不等式组4237x x x a ->⎧⎨-<⎩有且只有三个整数解,则a 的取值范围是( )A .-2≤a ≤-1B .-2≤a ≤-1C .-2<a ≤-1D .-2<a <-1 6.下列命题中:①长为5cm 的线段AB 沿某一方向平移10cm 后,平移后线段AB 的长为10cm ;②三角形的高在三角形内部;③六边形的内角和是外角和的两倍;④在同一平面内,平行于同一直线的两直线平行:⑤两个角的两边分别平行,则这两个角相等.假命题个数有( ) A .1个 B .2个 C .3个 D .4个7.某电子玩具底座平面是一个正方形ABCD ,甲、乙两只电子蚂蚁分别沿着底座的外围环行,已知50cm AB =,甲、乙分别从正方形ABCD 的顶点A ,C 出发,同时沿正方形的边开始移动,甲依顺时针方向环行,乙依逆时针方向环行,若乙的速度为4cm/s ,甲的速度为1cm/s ,则它们第2021次相遇在边( )上.A .AB B .BC C .CD D .DA8.如图,△ABC 中,∠A =20°,沿BE 将此三角形对折,又沿BA′再一次对折,点C 落在BE 上的C′处,此时∠C′DB =74°,则原三角形的∠C 的度数为( )A .27°B .59°C .69°D .79° 二、填空题 9.计算:()223x y xy ⋅-=__________.10.命题“对顶角相等”的逆命题是一个__________命题(填“真”或“假”).11.若一个多边形的每一个外角都为45,则该多边形为_______________________边形. 12.已知m =2n 2+a ,n =2m 2+a ,且m ≠n ,则m 2+2mn +n 2的值为_____.13.若关于x ,y 的二元一次方程组3331x y x y a+=⎧⎨+=+⎩的解满足x +y <2,则a 的取值范围为_______.14.如图,相邻两线段互相垂直,甲、乙两人同时从点A 处出发到点C 处,甲沿着“A →B →C ”的路线走,乙沿着“A →D →E →F →C →H →C 的路线走,若他们的行走速度相同,则甲、乙两人谁先到C 处?_____.15.已知a ,b ,c 为△ABC 的三边长,b ,c 满足2(2)|3|0b c -+-=,且a 为方程42a -= 的解,则△ABC 的周长为___________.16.如图,在△ABC 中,点D 、E 、F 分别是线段BC 、AD 、CE 的中点,且220ABC S cm ∆=,则BEF S ∆=_______ cm 2.17.计算:(1)1022021--(2)()2354·3x x x + 18.把下列多项式因式分解.(1)m (m ﹣2)﹣3(2﹣m );(2)n4﹣2n2+1.19.解方程组(1)23 25y xx y=-⎧⎨+=⎩;(2)345 5217x yx y+=⎧⎨-=⎩.20.解不等式组()()27311542x xx x⎧-<-⎪⎨-+≥⎪⎩①②.三、解答题21.如图,//AE FC,A C∠=∠,DA平分BDF∠.(1)AD与BC的位置关系如何?为什么?(2)BC平分DBE∠吗?为什么?22.某校为了丰富同学们的课外活动,决定给全校20个班每班配4副乒乓球拍和若干乒乓球,两家体育用品商店对同一款乒乓球拍和乒乓球推出让利活动,甲商店买一副乒乓球拍送10个乒乓球,乙商店所有商品均打九折(按标价的90%)销售,已知2副乒乓球拍和10个乒乓球110元,3副乒乓球拍和20个乒乓球170元。
(完整版)苏教七年级下册期末复习数学质量测试试卷及答案解析
(完整版)苏教七年级下册期末复习数学质量测试试卷及答案解析一、选择题1.下列计算中,正确的是( )A .(a 2)3=a 5B .3a ﹣2a =1C .(3a )2=9aD .a •a 2=a 3 2.如图,下列说法不正确的是( )A .1∠和A ∠是同旁内角B .2∠和B 是内错角C .3∠和A ∠是同位角D .4∠和C ∠是同旁内角 3.若4x =是关于x 的方程0(0,0)kx b k b +=≠>的解,则关于x 的不等式(3)20k x b -+>的解集是( )A .11x >B .11x <C .7x >D .7x < 4.下列乘法运算中不能用平方差公式计算的是( )A .(x+1)(x ﹣1)B .(x+1)(﹣x+1)C .(﹣x+1)(﹣x ﹣1)D .(x+1)(﹣x ﹣1) 5.若不等式组2123x a x b -<⎧⎨->⎩的解 为31x -<<,则(1)(1)a b +-值为( ) A .6- B .7 C .8- D .96.下列命题:①同旁内角互补;②若a b =,则a b =;③对顶角相等;④三角形的外角和360°;⑤如果一个角的两边分别垂直于另一个角的两边,那么这两个角互补:其中真命题的个数有( )个A .4个B .3个C .2个D .1个7.设一列数1a ,2a ,3a ,…,n a ,…中任意三个相邻的数之和都是20,已知2a x =,309a x =+,924a x =-,则2021a =( )A .2B .5C .7D .118.如图,边长为()3a +的正方形纸片,剪出一个边长为a 的正方形之后,剩余部分可剪拼成一个长方形(不重叠无缝隙),若拼成长方形的一边长为3,则另一边长是( )A .23a +B .3a +C .6a +D .26a +二、填空题9.计算3223x y x ⋅的结果是______.10.命题“全等三角形的对应角相等”的逆命题是_____命题.(填“真”或“假”)11.一个正多边形的内角和是外角和的2倍,其它的边数为______.12.二次三项式2248y xy x -+-在实数范围内分解因式的结果是______.13.若关于x 、y 的方程组235x y k x y k -=+⎧⎨+=-⎩的解满足2x y k +=,则k 的值为__________. 14.如图,从位置P 到直线公路MN 共有四条小道PA 、PB 、PC 、PD ,若用相同的速度行走,能最快到达公路MN 的小道是__________,理由是__________.15.若三角形有两边长分别为2和5,第三边为a ,则a 的取值范围是______. 16.ABC 中,BAC B ∠>∠,50C ∠=︒,将B 折叠,使得点B 与点A 重合,折痕PD 分别交AB 、BC 于点D 、P ,当APC △中有两个角相等时,B 的度数为______.17.计算:(1)()020201113π---++() (2)242()a a ÷18.因式分解(1)﹣3a 3+6a 2b ﹣3ab 2;(2)4a 2(x ﹣y )+9b 2(y ﹣x );(3)a 4﹣8a 2b 2+16b 4.19.(1)解方程组355223x y x y -=⎧⎨+=⎩(2)解方程组34165633x y x y +=⎧⎨-=⎩ 20.解不等式组:()3223118x x x x -⎧+≥⎪⎨⎪-->-⎩,并写出该不等式组的非负整数解. 三、解答题21.请填空,完成下面推理过程.如图,//AB CD ,//AD BC ,BE 平分ABC ∠,DF 平分ADC ∠.求证://BE DF .证明:∵//AB CD ,(已知)∴180ABC C ∠+∠=︒.又∵//AD BC ,(已知)∴180ADC C ∠+∠=︒.∴ABC ADC ∠=∠.∵BE 平分ABC ∠,DF 平分ADC ∠(已知) ∴112ABC ∠=∠,12ADC 2∠=∠. ∴12∠=∠.∵//AD BC ,(已知)∴23∠∠=.∴13∠=∠,∴//BE DF .22.某超市从蔬菜批发市场批发蔬菜进行零售,部分蔬菜批发价格与零售价格如下表: 蔬菜品种西红柿 西兰花 批发价格(元/千克)3.6 8 零售价格(元/千克)5.4 14(1)第一天,该超市批发西红柿和西兰花两种蔬菜共300千克,用了1520元钱,这两种蔬菜当天全部销售后一共赚多少元钱?(2)第二天,该超市用了1520元钱仍然批发西红柿和西兰花,要想当天全部售完后所赚的钱不少于1050元,该超市最多能批发西红柿多少千克?23.某文具店准备购进甲,乙两种钢笔,若购进甲种钢笔100支,乙种钢笔50支,需要1000元,若购进甲种钢笔50支,乙种钢笔30支,需要550元.(1)求购进甲,乙两种钢笔每支各需多少元?(2)若购进了甲种钢笔80支,乙种钢笔60支,求需要多少元?(3)若该文具店准备拿出1000元全部用来购进这两种钢笔,考虑顾客需求,要求购进甲种钢笔的数量不少于乙种钢笔数量的6倍,且不超过乙种钢笔数量的8倍,那么该文具店共有几种购进方案.24.如图所示,已知射线//,//,100CB OA AB OC C OAB ︒∠=∠=.点E 、F 在射线CB 上,且满足FOB AOB ∠=∠,OE 平分COF ∠(1)求EOB ∠的度数;(2)若平行移动AB ,那么:OBC OFC ∠∠的值是否随之发生变化?如果变化,找出变化规律.若不变,求出这个比值;(3)在平行移动AB 的过程中,是否存在某种情况,使OEC OBA ∠=∠?若存在,求出其度数.若不存在,请说明理由.25.如图1,在ABC 中,BD 平分ABC ∠,CD 平分ACB ∠.(1)若80A ∠=︒,则BDC ∠的度数为______;(2)若A α∠=,直线MN 经过点D .①如图2,若//MN AB ,求NDC MDB ∠-∠的度数(用含α的代数式表示);②如图3,若MN 绕点D 旋转,分别交线段,BC AC 于点,M N ,试问在旋转过程中NDC MDB ∠-∠的度数是否会发生改变?若不变,求出NDC MDB ∠-∠的度数(用含α的代数式表示),若改变,请说明理由:③如图4,继续旋转直线MN ,与线段AC 交于点N ,与CB 的延长线交于点M ,请直接写出NDC ∠与MDB ∠的关系(用含α的代数式表示).【参考答案】一、选择题1.D解析:D【分析】分别根据幂的乘方运算法则,合并同类项法则,积的乘方运算法则以及同底数幂的乘法法则逐一判断即可.【详解】解:A 、(a 2)3=a 6,故本选项不合题意;B 、3a -2a =a ,故本选项不合题意;C 、(3a )2=9a 2,故本选项不合题意;D 、a •a 2=a 3,故本选项符合题意;故选:D .【点睛】本题考查了同底数幂的乘法合并同类项以及幂的乘方与积的乘方,熟记幂的运算法则是解答本题的关键.2.B解析:B【分析】根据同旁内角、内错角、同位角的概念判断即可.【详解】解:如图,A.∠1和∠A是MN与AN被AM所截成的同旁内角,说法正确,故此选项不符合题意;B.∠2和∠B不是内错角,说法错误,故此选项符合题意;C.∠3和∠A是MN与AC被AM所截成的同位角,说法正确,故此选项不符合题意;D.∠4和∠C是MN与BC被AC所截成的同旁内角,说法正确,故此选项不符合题意;故选:B.【点睛】此题考查了同旁内角、内错角、同位角,熟记同旁内角、内错角、同位角的概念是解题的关键.3.B解析:B【分析】将x=4代入方程,求出b=-4k>0,求出k<0,把b=-4k代入不等式,再求出不等式的解集即可.【详解】解:∵x=4是关于x的方程kx+b=0(k≠0,b>0)的解,∴4k+b=0,即b=-4k>0,∴k<0,∵k(x-3)+2b>0,∴kx-3k-8k>0,∴kx>11k,∴x<11,故选:B.【点睛】本题考查了解一元一次不等式和一元一次方程的解,能求出b=-4k和k<0是解此题的关键.4.D解析:D【分析】根据平方差公式的特点逐个判断即可.【详解】解:选项A :(x+1)(x-1)=x 2-1,故选项A 可用平方差公式计算,不符合题意,选项B :(x+1)(-x+1)=1-x 2,故选项B 可用平方差公式计算,不符合题意,选项C :(-x+1)(-x-1)=x 2-1,故选项C 可用平方差公式计算,不符合题意,选项D :(x+1)(-x-1)=-(x+1)2,故选项D 不可用平方差公式计算,符合题意,故选:D .【点睛】此题考查平方差公式,属于基础题,关键是根据平方差公式的形式解答.5.C解析:C【分析】根据不等式的性质求出每个不等式的解集,根据找不等式组解集的规律找出不等式组的解集1322a b x ++<<,根据不等式组的解集得出323b +=-,且112a +=,求出1a =,3b =-,即可解答.【详解】 解:2123x a x b -<⎧⎨->⎩①②, 解不等式①得:12a x +<, 解不等式②得:32xb >+,∴不等式组的解集为1322a b x ++<<, 若不等式组2123x a x b -<⎧⎨->⎩解为31x -<<, 323b ∴+=-,且112a +=, 解得:1a =,3b =-,(1)(1)(11)(31)8a b ∴+-=+⨯--=-,故选:C .【点睛】本题考查了不等式的性质,解一元一次不等式(组),解一元一次方程等知识点,解此题的关键是根据不等式组解集得出关于a 和b 的方程,题目比较好,综合性比较强. 6.C解析:C【解析】【分析】根据对顶角的性质、平行线的性质、多边形的外角和定理等知识判断.【详解】①两直线平行,同旁内角互补,错误,是假命题;②若|a|=|b|,则a=±b,故错误,是假命题;③对顶角相等,正确,是真命题;④三角形的外角和为360°,正确,是真命题;⑤如果一个角的两边分别垂直于另一个角的两边,那么这两个角相等或互补,故错误,是假命题;故选:C.【点睛】本题考查的是命题的真假判断,正确的命题叫真命题,错误的命题叫做假命题.判断命题的真假关键是要熟悉课本中的性质定理.7.A解析:A【分析】由题可知,a1,a2,a3每三个循环一次,可得a30=a3,a92=a2,所以x=4-x,即可求a2=2,a3=11,再由三个数的和是20,可求a2021=a2=2.【详解】解:由题可知,a1+a2+a3=a2+a3+a4,∴a1=a4,∵a2+a3+a4=a3+a4+a5,∴a2=a5,∵a4+a5+a6=a3+a4+a5,∴a3=a6,……∴a1,a2,a3每三个循环一次,∵30÷3=10,∴a30=a3,∵92÷3=30…2,∴a92=a2,∴x=4-x,∴x=2,∴a2=2,∵2021÷3=673…2,∴a2021=a2=2,故选:A.【点睛】本题考查数字的变化规律;能够通过所给例子,找到式子的规律,利用有理数的运算解题是关键.8.A解析:A【分析】设另一边长为x ,然后根据剩余部分的面积的两种表示方法列式计算即可得解.【详解】解:设另一边长为x ,根据题意得,3x =(a +3)2-a 2,解得x =2a +3.故选:A .【点睛】此题考查了整式的混合运算以及完全平方公式应用,熟练掌握运算法则是解本题的关键.二、填空题9.56x y【分析】直接利用单项式乘以单项式运算法则求出答案.【详解】解:532=623x y x x y ,故答案为56x y .【点睛】此题主要考查了单项式乘以单项式,正确掌握运算法则是解题关键.10.假【分析】首先分清题设是:两个三角形全等,结论是:对应角相等,把题设与结论互换即可得到逆命题,然后判断正误即可.【详解】解:“全等三角形的对应角相等”的题设是:两个三角形全等,结论是:对应角相等,因而逆命题是:对应角相等的三角形全等.是一个假命题.故答案为:假.【点睛】本题考查了互逆命题的知识,两个命题中,如果第一个命题的条件是第二个命题的结论,而第一个命题的结论又是第二个命题的条件,那么这两个命题叫做互逆命题.其中一个命题称为另一个命题的逆命题.命题的真假判断,正确的命题叫真命题,错误的命题叫做假命题.判断命题的真假关键是要熟悉课本中的性质定理.11.6【分析】设这个正多边的每一个外角为x °,则每一个内角为2x °,根据内角和外角互补可得x +2x =180,解可得x 的值,再利用外角和360°÷外角度数可得边数.【详解】解:设这个正多边的每一个外角为x °,由题意得:x +2x =180,解得:x =60,360°÷60°=6.故答案为6.【点睛】此题主要考查了多边形的内角和外角,关键是计算出外角的度数,进而得到边数. 12.)(22)y x --【分析】 先提出负号()224y 8xy x --+,把括号内多项式分两组4y 2-8xy 两项一组,x 2单独一组, 把两项一组配方4y 2-8xy +4x 2-4x 2=4(y-x )2-4x 2,把-4x 2与x 2合并得-3x 2,括号内变为()()2222224y 2-443xy x x x y x x ⎡⎤⎡⎤--++=---⎣⎦⎣⎦,再因式分解即可. 【详解】22-4y 8xy x +-,()224y 8xy x =--+,()222242y xy x x x ⎡⎤=--+-+⎣⎦, ()2243y x x ⎡⎤=---⎣⎦, ()()22y x y x ⎡⎤⎡⎤=---⎣⎦⎣⎦()()2222y x y x =---.故答案为:()()2222y x y x ---【点睛】本题考查在实数范围内因式分解问题,掌握两数和与差完全平方公式与平方差公式,会灵活运用公式解决问题,特别是三项式因式分解,一般要考虑用两数和与差完全平方公式,而且先配方,在因式分解是解题关键. 13. 1.5-【分析】先把原方程组的两个方程相加,可得()223,x y k +=-再把2x y k +=代入消去x y +,再解方程求解k 即可.【详解】解:235x y k x y k -=+⎧⎨+=-⎩①② ①+②得:2223,x y k +=-即:()223,x y k +=-2x y k+=423,k k∴=-23,k∴=-解得:3.2 k=-故答案为: 1.5.-【点睛】本题考查的是二元一次方程组的解法,掌握利用加减消元法与代入法解二元一次方程组是解题的关键.14.B解析:PB垂线段最短【分析】根据垂线段最短,即可求解【详解】根据垂线段最短得,能最快到达公路MN的小道是PB,故答案为:PB,垂线段最短.【点睛】本题考查了直线外一点到直线的距离,熟练掌握直线外一点到直线的距离垂线段最短是解题关键.15.3<a<7【分析】根据三角形的三边关系,第三边的长一定大于已知的两边的差,而小于两边的和求解即可.【详解】解:根据三角形的三边关系知:5-2<a<5+2,∴3<a<7.故答案为:3<a<解析:3<a<7【分析】根据三角形的三边关系,第三边的长一定大于已知的两边的差,而小于两边的和求解即可.【详解】解:根据三角形的三边关系知:5-2<a<5+2,∴3<a<7.故答案为:3<a<7.【点睛】本题考查了三角形三边的关系,已知三角形的两边,则第三边的范围是:大于已知的两边的差,而小于两边的和.16.40°或25°或32.5°【分析】由对折可得: 设 则 再分三种情况讨论即可得到答案.【详解】解:由对折可得:设 则当时,当时,则当时,则故解析:40°或25°或32.5°【分析】由对折可得:,B PAB ∠=∠ 设,B x ∠=︒ 则,2,PAB x APC x ∠=︒∠=︒ 1302,PAC x ∠=︒-︒再分三种情况讨论即可得到答案.【详解】解:由对折可得:,B PAB ∠=∠设,B x ∠=︒ 则,2,PAB x APC x ∠=︒∠=︒50,C ∠=︒1805021302,PAC x x ∴∠=︒-︒-︒=︒-︒当APC C ∠=∠时,250,x =25,x ∴=25,B x ∴∠=︒=︒当PAC C =∠∠时,则130250,x -=40,x ∴=40,B ∴∠=︒当PAC APC ∠=∠时,则13022,x x -=32.5,x ∴=︒32.5.B ∴∠=︒故答案为:40°或25°或32.5°本题考查的是轴对称的性质,三角形的内角和定理,分类讨论的数学思想,做到清晰的分类讨论是解题的关键.17.(1);(2)a6【分析】(1)利用乘方、零指数幂、负指数幂法则计算,即可得到结果;(2)原式利用幂的乘方和同底数幂的除法法则计算,即可得到结果.【详解】解:(1)==;(2)=解析:(1)13;(2)a 6 【分析】(1)利用乘方、零指数幂、负指数幂法则计算,即可得到结果;(2)原式利用幂的乘方和同底数幂的除法法则计算,即可得到结果.【详解】解:(1)()020201113π---++() =1113-+ =13; (2)242()a a ÷=28a a ÷= a 6.【点睛】本题考查幂的乘方和同底数幂的除法,以及实数的运算,熟练掌握运算法则是解题的关键.18.(1)﹣3a (a ﹣b )2;(2)(x ﹣y )(2a+3b )(2a ﹣3b );(3)(a+2b )2(a ﹣2b )2【分析】(1)直接提取公因式﹣3a ,再利用完全平方公式分解因式得出答案; (2)直接提取解析:(1)﹣3a (a ﹣b )2;(2)(x ﹣y )(2a +3b )(2a ﹣3b );(3)(a +2b )2(a ﹣2b )2(1)直接提取公因式﹣3a ,再利用完全平方公式分解因式得出答案;(2)直接提取公因式x ﹣y ,再利用平方差公式分解因式即可;(3)直接利用完全平方公式分解因式,再利用平方差公式分解因式得出答案.【详解】解:(1)原式=﹣3a (a 2﹣2ab +b 2)=﹣3a (a ﹣b )2;(2)原式=(x ﹣y )(4a 2﹣9b 2)=(x ﹣y )(2a +3b )(2a ﹣3b );(3)原式=(a 2﹣4b 2)2=[(a +2b )(a ﹣2b )]2=(a +2b )2(a ﹣2b )2.【点睛】本题主要考查提公因式法因式分解以及公式法因式分解,积的乘方的逆运算,熟知平方差公式以及完全平方公式的结构特点是解题的关键.19.(1);(2).【分析】(1)用加减消元法解方程组;(2)用加减消元法即可求解.【详解】(1)解:,①×2得:,③+②得:,解得:,把代入①得:,所以原方程组的解为:;(2)解解析:(1)34x y =⎧⎨=⎩;(2)612x y =⎧⎪⎨=-⎪⎩. 【分析】(1)用加减消元法解方程组;(2)用加减消元法即可求解.【详解】(1)解:355223x y x y -=⎧⎨+=⎩①②, ①×2得:6210-=③x y ,③+②得:62+5+210+23x y x y -=,解得:3x =,把3x =代入①得:4y =,所以原方程组的解为:34x y =⎧⎨=⎩; (2)解:34165633x y x y +=⎧⎨-=⎩①②, ①×3+②×2得:91048+66x x +=,解得:6x =,把6x =代入①得:12y =-, 所以原方程组的解为:612x y =⎧⎪⎨=-⎪⎩. 【点睛】本题考查二元一次方程组的解法,熟练掌握加减消元法是关键.20.,0和1【分析】先分别求出两个不等式的解集,可得到不等式组的解集,即可求解【详解】解:解不等式,得:,解不等式,得:,则不等式组的解集为,所以不等式组的非负整数解为0和1.【点睛】解析:21x -<≤,0和1【分析】先分别求出两个不等式的解集,可得到不等式组的解集,即可求解【详解】 解:解不等式322x x -+≥,得:1x ≤, 解不等式()3118x x -->-,得:2x >-,则不等式组的解集为21x -<≤,所以不等式组的非负整数解为0和1.【点睛】本题主要考查了解一元一次不等式组,熟练掌握解求不等式组解集的口诀:同大取大,同小取小大小小大中间找,大大小小找不到(无解)是解题的关键.三、解答题21.两直线平行,同旁内角互补;同角的补角相等;角平分线的定义;两直线平行,内错角相等;等量代换;同位角相等,两直线平行【分析】根据平行线的性质与判定,角平分线的定义进行证明即可得到答案.【详解】解析:两直线平行,同旁内角互补;同角的补角相等;角平分线的定义;两直线平行,内错角相等;等量代换;同位角相等,两直线平行【分析】根据平行线的性质与判定,角平分线的定义进行证明即可得到答案.【详解】证明:∵//AB CD ,(已知)∴180ABC C ∠+∠=,(两直线平行,同旁内角互补)又∵//AD BC ,(已知)∴180ADC C ∠+∠=.∴ABC ADC ∠=∠,(同角的补角相等)∵BE 平分ABC ∠,DF 平分ADC ∠(已知) ∴112ABC ∠=∠,12ADC 2∠=∠,(角平分线的定义) ∴12∠=∠.∵//AD BC ,(已知)∴23∠∠=.(两直线平行,内错角相等)∴13∠=∠,(等量代换)∴//BE DF .(同位角相等,两直线平行)【点睛】本题主要考查了平行线的性质与判定,角平分线的定义,解题的关键在于能够熟练掌握相关知识进行求解.22.(1)这两种蔬菜当天全部售完后一共能赚960元钱;(2)该超市最多能批发西红柿100千克【分析】(1)设批发西红柿千克,西兰花千克,根据批发西红柿和西兰花两种蔬菜共300千克,用去了1520元钱解析:(1)这两种蔬菜当天全部售完后一共能赚960元钱;(2)该超市最多能批发西红柿100千克【分析】(1)设批发西红柿x 千克,西兰花y 千克,根据批发西红柿和西兰花两种蔬菜共300千克,用去了1520元钱,列方程组求解即可;(2)设批发西红柿z 千克,根据当天全部售完后所赚钱数不少于1050元列不等式求解即可.【详解】解:(1)设批发西红柿x 千克,西兰花y 千克.由题意得300,3.681520,x y x y +=⎧⎨+=⎩解得200,100.x y =⎧⎨=⎩ 故批发西红柿200千克,西兰花100千克,则这两种蔬菜当天全部售完一共能赚:()()200 5.4 3.6100148960⨯-+⨯-=(元). 答:这两种蔬菜当天全部售完后一共能赚960元钱.(2)设批发西红柿z 千克,由题意得()()1520 3.65.4 3.614810508z z --+-⨯≥, 解得100z ≤.答:该超市最多能批发西红柿100千克.【点睛】本题考查了二元一次方程组和一元一次不等式的应用,解答本题的关键是读懂题意,找出合适的等量关系和不等关系,列方程和不等式求解. 23.(1)甲种钢笔每支需5元,乙种钢笔每支需10元;(2)1000元;(3)6种【分析】(1)设购进甲种钢笔每支需元,购进乙种钢笔每支需元,根据“若购进甲种钢笔100支,乙种钢笔50支,需要1000解析:(1)甲种钢笔每支需5元,乙种钢笔每支需10元;(2)1000元;(3)6种【分析】(1)设购进甲种钢笔每支需x 元,购进乙种钢笔每支需y 元,根据“若购进甲种钢笔100支,乙种钢笔50支,需要1000元,若购进甲种钢笔50支,乙种钢笔30支,需要550元”,即可得出关于x ,y 的二元一次方程组,解之即可得出甲、乙两种钢笔的单价; (2)利用总价=单价⨯数量,即可求出购进甲种钢笔80支、乙种钢笔60支所需费用; (3)设购进甲种钢笔m 支,则购进乙种钢笔1(100)2m -支,根据“购进甲种钢笔的数量不少于乙种钢笔数量的6倍,且不超过乙种钢笔数量的8倍”,即可得出关于m 的一元一次不等式组,解之即可得出m 的取值范围,结合m ,1(100)2m -均为正整数,即可得出进货方案的数量.【详解】解:(1)设购进甲种钢笔每支需x 元,购进乙种钢笔每支需y 元,依题意得:1005010005030550x y x y +=⎧⎨+=⎩,解得:510x y =⎧⎨=⎩. 答:购进甲种钢笔每支需5元,购进乙种钢笔每支需10元.(2)5801060⨯+⨯400600=+1000=(元).答:需要1000元.(3)设购进甲种钢笔m 支,则购进乙种钢笔100051(100)102m m -=-支, 依题意得:16(100)218(100)2m m m m ⎧-⎪⎪⎨⎪-⎪⎩, 解得:150160m .又m ,1(100)2m -均为正整数, m ∴可以为150,152,154,156,158,160,∴该文具店共有6种购进方案.【点睛】本题考查了二元一次方程组的应用、有理数的混合运算以及一元一次不等式组的应用,解题的关键是:(1)找准等量关系,正确列出二元一次方程组;(2)根据各数量之间的关系,列式计算;(2)根据各数量之间的关系,找出关于m 的一元一次不等式组. 24.(1)40°;(2)的值不变,比值为;(3)∠OEC=∠OBA=60°.【分析】(1)根据OB 平分∠AOF ,OE 平分∠COF ,即可得出∠EOB=∠EOF+∠FOB=∠COA ,从而得出答案;(2解析:(1)40°;(2):OBC OFC ∠∠的值不变,比值为12;(3)∠OEC=∠OBA=60°. 【分析】(1)根据OB 平分∠AOF ,OE 平分∠COF ,即可得出∠EOB=∠EOF+∠FOB=12∠COA ,从而得出答案;(2)根据平行线的性质,即可得出∠OBC=∠BOA ,∠OFC=∠FOA ,再根据∠FOA=∠FOB+∠AOB=2∠AOB ,即可得出∠OBC :∠OFC 的值为1:2.(3)设∠AOB=x ,根据两直线平行,内错角相等表示出∠CBO=∠AOB=x ,再根据三角形的一个外角等于与它不相邻的两个内角的和表示出∠OEC ,然后利用三角形的内角和等于180°列式表示出∠OBA ,然后列出方程求解即可.【详解】(1)∵CB ∥OA∴∠C+∠COA=180°∵∠C=100°∴∠COA=180°-∠C=80°∵∠FOB=∠AOB,OE平分∠COF∴∠FOB+∠EOF=12(∠AOF+∠COF)=12∠COA=40°;∴∠EOB=40°;(2)∠OBC:∠OFC的值不发生变化∵CB∥OA∴∠OBC=∠BOA,∠OFC=∠FOA∵∠FOB=∠AOB∴∠FOA=2∠BOA∴∠OFC=2∠OBC∴∠OBC:∠OFC=1:2(3)当平行移动AB至∠OBA=60°时,∠OEC=∠OBA.设∠AOB=x,∵CB∥AO,∴∠CBO=∠AOB=x,∵CB∥OA,AB∥OC,∴∠OAB+∠ABC=180°,∠C+∠ABC=180°∴∠OAB=∠C=100°.∵∠OEC=∠CBO+∠EOB=x+40°,∠OBA=180°-∠OAB-∠AOB=180°-100°-x=80°-x,∴x+40°=80°-x,∴x=20°,∴∠OEC=∠OBA=80°-20°=60°.【点睛】本题主要考查了平行线、角平分线的性质以及三角形内角和定理,熟记各性质并准确识图理清图中各角度之间的关系是解题的关键.25.(1)130°;(2)①90-;②不变,90-;③∠NDC+∠MDB=90-.【分析】(1)根据已知,以及三角形内角和等于180,即可求解;(2)①根据平行线的性质可以证得∠ABD=∠BDM=解析:(1)130°;(2)①90︒-α;②不变,90︒-α;③∠NDC+∠MDB=90︒-1α2.【分析】(1)根据已知,以及三角形内角和等于180︒,即可求解;(2)①根据平行线的性质可以证得∠ABD=∠BDM=∠MBD,∠CND=∠A=α,再利用含有α的式子分别表示出∠NDC、∠MDB,进行作差,即可求解代数式;②延长BD交AC于点E,则∠NDE=∠MDB,因此∠NDC-∠MDB=∠NDC-∠NDE=∠EDC,再利用三角形内角和为180︒,即可求解;③如图可知,∠NDC+∠MDB=180︒-∠BDC,利用平角的定义,即可求解代数式.【详解】解:(1)∵∠A=80︒∴∠ABC+∠ACB=180︒-80︒=100︒又∵ BD平分∠ABC,CD平分∠ACB,∴∠DBC+∠DCB=12⨯100︒=50︒.∴∠BDC=180︒-50︒=130︒.(2)①∵MN//AB,BD平分∠ABC,CD平分∠ACB,∴∠ABD=∠BDM=∠MBD,∠CND=∠A=α,∴∠NDC=180︒-α-12∠ACB,∠MDB=12∠ABC,∴∠NDC-∠MDB=180︒-α-12∠ACB-12∠ABC=180︒-α-12(∠ACB+∠ABC)=180︒-α-12(180︒-α)=90︒-1α2.②不变;延长BD交AC于点E,如图:∴∠NDE=∠MDB,∵∠BDC=180︒-12(∠ACB+∠ABC)=180︒-12(180︒-α)=90︒+1α2,∴∠NDC-∠MDB=∠NDC-∠NDE=∠EDC=180︒-∠BDC=180︒-(90︒+1α2)=90︒-1α2,同①,说明MN在旋转过程中∠NDC-∠MDB的度数只与∠A有关系,而∠A始终不变,故:MN在旋转过程中∠NDC-∠MDB的度数不会发生改变.③如图可知,∠NDC+∠MDB=180︒-∠BDC,由②知∠BDC=90︒+1α2,∴∠NDC+∠MDB=180︒-(90︒+1α2)=90︒-1α2.故∠NDC与∠MDB的关系是∠NDC+∠MDB=90︒-1α2.【点睛】本题目考查平行线与三角形的综合,涉及知识点有平行线的性质,三角形内角和等于180°等,是中考的常考知识点,难度一般,熟练掌握以上知识点的综合运用是顺利解题的关键.。
苏教七年级下册期末复习数学测试试卷精选及答案解析
苏教七年级下册期末复习数学测试试卷精选及答案解析一、选择题1.下列运算正确的是( ) A .(3x 2)2=6x 4B .(x 3)2=x 9C .3x 2﹣x =2xD .x 2•x 3=x 52.如图,A ∠与1∠是( )A .同位角B .内错角C .同旁内角D .对顶角 3.满足不等式x +3<0的最大整数解是( ) A .﹣3 B .﹣4 C .3 D .4 4.已知a<b ,则下列关系式不成立的是( )A .4a<4bB .-4a <-4bC .a+4<b+4D .a -4<b -45.若关于x 的不等式0521x m x -<⎧⎨-≤⎩的整数解有且只有4个,则m 的取值范围是( )A .56m ≤≤B .56m <<C .56m ≤<D .56m <≤6.下列命题是真命题的是( ) A .同旁内角相等,两直线平行 B .若a b =,则a b =C .如果a b >,那么22a b >D .平行于同一直线的两直线平行7.观察下列按一定规律排列的n 个数:2,4,6,8,10,12,…,若最后三个数之和是3000,则n 等于( ) A .500B .501C .1000D .10028.如图,ABC 中,90,30,,B A E F ∠=︒∠=︒分别是边,AB AC 上的点,连接EF ,将AEF 沿着者EF 折叠,得到A EF '△,当A EF '△的三边与ABC 的三边有一组边平行时,AEF ∠的度数不可能是( )A .120︒B .105︒C .75︒D .45︒二、填空题9.计算:32223x y x ⋅的结果是________.10.命题“同旁内角互补”是一个_____命题(填“真”或“假”)11.如图,△ABC ,△DBE 均为直角三角形,且D ,A ,E ,C 都在一条直线上,已知∠C =25°,∠D =45°,则∠EBC 的度数是_____.12.若()2510x y x y +-+-+=,则22x y -=_____.13.知关于x 、y 的方程组21254x y k x y k +=-⎧⎨+=+⎩的解满足x +y =5,则k 的值为______________.14.在高3米,水平距离为4米的楼梯表面铺地毯,地毯的长度至少需要______米.15.已知a ,b ,c 为△ABC 的三边长,b ,c 满足2(2)|3|0b c -+-=,且a 为方程42a -= 的解,则△ABC 的周长为___________.16.在△ABC 中,射线AG 平分∠BAC 交BC 于点G ,点D 在BC 边上运动(不与点G 重合),过点D 作DE ∥AC 交AB 于点E ,∠EDB 的角平分线所在直线交AB 于点H ,交射线AG 于点F ,则∠B 与∠AFD 之间的数量关系是__.17.计算:(1)1201(2)32-⎛⎫-+-⨯ ⎪⎝⎭;(2)()32m 2m x x x ⋅÷;(3)()()2(x 3)x 1x 1+---- ;(4)(a+2b -3c)(a -2b+3c)18.把下列各式分解因式; (1)22369a b ab ab -+; (2)()22214a a +-.19.解方程组:(1)28324x y x y +=⎧⎨-=⎩ (2)()23432116x y x y ⎧-=⎪⎨⎪--=⎩20.下面是小颍同学解一元一次不等式的过程,请认真阅读并完成相应的任务.解不等式:221132x x +--< 解:去分母,得2(x +2)﹣6<3(2x ﹣1)……第一步 去括号,得2x +4﹣6<6x ﹣3.……第二步 移项,合并同类项,得﹣4x <﹣1.……第三步 两边同时除以﹣4,得x <14……第四步(1)上述过程中,第一步的依据是 ; (2)第 步出现错误;错误原因是 ; (3)该不等式的解集应为 ,其最小整数解为 ;(4)在上述不等式的基础上再增加一个不等式:211x +<-组成一个一元一次不等式组,则直接写出这个不等式组的解集为 .三、解答题21.如图,已知AF 分别与BD 、CE 交于点G 、H ,∠1=50°,∠2=130°. (1)求证:BD ∥CE ;(2)若∠A =∠F ,探索∠C 与∠D 的数量关系,并证明你的结论.22.如图,某工厂与A 、B 两地有公路、铁路相连.这家工厂近期从A 地购买一批原料运回工厂,制成的产品再全部运到B 地.已知公路的运价为2元/(吨⋅千米),铁路的运价为1.5元/(吨⋅千米),且这两次运输共支出公路运费48000元,铁路运费207000元.(1)求从A 地购买的原料和运到B 地的产品各多少吨?(2)如果购买这批原料的价格为每吨1千元,且这家工厂希望这批产品全部售出后获得不低于20万元的利润(利润=销售额-原料费-运输费),那么每吨产品的最低售价应定为多少元(结果取整数)?23.定义:如果一个两位数a 的十位数字为m ,个位数字为n ,且m n ≠、0m ≠、0n ≠,那么这个两位数叫做“互异数”.将一个“互异数”的十位数字与个位数字对调后得到一个新的两位数,把这个新两位数与原两位数的和与11的商记为()W a .例如:14a =,对调个位数字与十位数字得到新两位数41,新两位数与原两位数的和为411455,和与11的商为55115,所以(14)5W .根据以上定义,解答下列问题:(1)填空:①下列两位数:20,21,22中,“互异数”为________; ②计算:(36)W ________;(10)W mn ________;(m 、n 分别为一个两位数的十位数字与个位数字)(2)如果一个“互异数”b 的十位数字是x ,个位数字是y ,且()7W b ;另一个“互异数”c的十位数字是2x +,个位数字是21y -,且()13W c ,请求出“互异数”b 和c ;(3)如果一个“互异数”d 的十位数字是x ,个位数字是3x +,另一个“互异数”e 的十位数字是2x -,个位数字是3,且满足()()25W d W e ,请直接写出满足条件的所有x 的值________;(4)如果一个“互异数”f 的十位数字是4x +,个位数字是x ,且满足()W f t 的互异数有且仅有3个,则t 的取值范围________. 24.(生活常识)射到平面镜上的光线(入射光线)和变向后的光线(反射光线)与平面镜所夹的角相等.如图 1,MN 是平面镜,若入射光线 AO 与水平镜面夹角为∠1,反射光线 OB 与水平镜面夹角为∠2,则∠1=∠2 .(现象解释)如图 2,有两块平面镜 OM ,ON ,且 OM ⊥ON ,入射光线 AB 经过两次反射,得到反射光线 CD .求证 AB ∥CD . (尝试探究)如图 3,有两块平面镜 OM ,ON ,且∠MON =55︒ ,入射光线 AB 经过两次反射,得到反射光线 CD ,光线 AB 与 CD 相交于点 E ,求∠BEC 的大小.(深入思考)如图 4,有两块平面镜 OM ,ON ,且∠MON = α ,入射光线 AB 经过两次反射,得到反射光线 CD ,光线 AB 与 CD 所在的直线相交于点 E ,∠BED =β , α 与 β 之间满足的等量关系是 .(直接写出结果)25.(问题情境)苏科版义务教育教科书数学七下第42页有这样的一个问题:(1)探究1:如图1,在ABC 中,P 是ABC ∠与ACB ∠的平分线BP 和CP 的交点,通过分析发现1902BPC A ∠=︒+∠,理由如下:∵BP 和CP 分别是ABC ∠和ACB ∠的角平分线,∴12PBC ABC ∠=∠,12PCB ACB ∠=∠.∴()12PBC PCB ABC ACB ∠+∠=∠+∠. 又∵在ABC 中,180ABC ACB A ∠+∠+∠=︒, ∴()111809022PBC PCB A A ∠+∠=︒-∠=︒-∠ ∴()11180180909022BPC PBC PCB A A ︒⎛⎫∠=︒-∠+∠=︒--∠=+∠ ⎪⎝⎭︒(2)探究2:如图2中,H 是外角MBC ∠与外角NCB ∠的平分线BH 和CH 的交点,若80A ∠=︒,则BHC ∠=______.若A n =︒,则BHC ∠与A ∠有怎样的关系?请说明理由.(3)探究3:如图3中,在ABC 中,P 是ABC ∠与ACB ∠的平分线BP 和CP 的交点,过点P 作DP PC ⊥,交AC 于点D .ABC 外角ACF ∠的平分线CE 与BP 的延长线交于点E ,则根据探究1的结论,下列角中与ADP 相等的角是______; A .APC ∠ B .APB ∠ C .BPC ∠(4)探究4:如图4中,H 是外角MBC ∠与外角NCB ∠的平分线BH 和CH 的交点,在探究3条件的基础上,①试判断DP 与CE 的位置关系,并说明理由; ②在BHE 中,存在一个内角等于DPE ∠的3倍,则BAC ∠的度数为______【参考答案】一、选择题1.D解析:D【分析】根据整式的乘法以及乘方等运算,对选项逐个判断即可.【详解】解:A.(3x2)2=9x4,故本选项不合题意;B.(x3)2=x6,故本选项不合题意;C.3x2与﹣x不是同类项,所以不能合并,故本选项不合题意;D.x2•x3=x5,故本选项符合题意;故选:D.【点睛】此题主要考查了整式的乘法和乘方等运算,熟练掌握整式的性质及相关运算是解题的关键.2.A解析:A【分析】先确定基本图形中的截线与被截线,进而确定这两个角的位置关系即可.【详解】解:根据图象,∠A与∠1是两直线被第三条直线所截得到的两角,因而∠A与∠1是同位角,故选:A.【点睛】本题主要考查了同位角的定义,是需要识记的内容,比较简单.3.B解析:B【解析】【分析】先解不等式,求出不等式的解集,再找出解集中的最大整数即可.【详解】解:由不等式x +3<0,解得:x <﹣3,则不等式的最大整数解为﹣4,故选:B . 【点睛】本题考查了解不等式和不等式的解的概念,属于基础题型,正确的求解不等式是解题的关键.4.B解析:B 【分析】根据不等式的性质即可判断. 【详解】 ∵a<b ,∴-4a >-4b 故B 不成立,选B. 【点睛】此题主要考查不等式,解题的关键是熟知不等式的性质.5.D解析:D 【分析】分别求出不等式组中不等式的解集,利用取解集的方法表示出不等式的解集,根据解集中整数解有4个,即可得到m 的取值范围. 【详解】解:0521x m x -<⎧⎨-≤⎩解得2x m x <⎧⎨≥⎩,即2x m ≤<,根据题意不等式组有且只有4个整数解,即x 的取值为2,3,4,5; 从而m 的取值范围为56m <≤, 故选:D . 【点睛】此题考查了一元一次不等式组的整数解,表示出不等式的解集,根据题意找出整数解是解本题的关键.6.D解析:D 【解析】分析: 分析是否为真命题,需要分别分析各题设是否能推出结论,从而利用排除法得出答案. 详解: A. ∵ 同旁内角互补,两直线平行,故是假命题; B. ∵若a b =,则a b =±,故是假命题; C. ∵-1>-2满足a b >,但22a b < ,故是假命题; D. ∵平行于同一直线的两直线平行,故是真命题; 故选D.点睛: 此题主要考查命题的真假判断,正确的命题叫真命题,错误的命题叫做假命题.判断命题的真假关键是要熟悉课本中的性质定理.7.B解析:B【分析】根据题意列出方程求出最后一个数,除去一半即为n的值.【详解】根据题意可得第n个数为2n,则后三个数分别为2n﹣4,2n﹣2,2n,∴2n﹣4+2n﹣2+2n=3000,解得n=501.故选:B.【点睛】本题考查找规律的题型,关键在于列出方程简化步骤.8.B解析:B【分析】分三种情况讨论,利用翻折变换和平行线的性质可求∠AEF的度数,再利用排除法可求解.【详解】解:如图1,若A'E∥BC时,∴∠AEA'=∠CBA=90°,∵将△AEF沿着者EF折叠,∴∠AEF=∠A'EF=45°;如图2,设A'F与AB交于点H,若A 'F ∥BC 时, ∴∠CBA =∠FHA =90°,∴∠AFH =180°-∠AHF -∠A =180°-90°-30°=60°, ∵将△AEF 沿着者EF 折叠, ∴∠AFE =∠A 'FE =30°; ∴∠AEF =180°-∠A -∠AFE =120°; 如图3,若A 'E ∥AF 时,∴∠A 'EB =∠A =30°, ∴∠A 'EA =150°,∵将△AEF 沿着者EF 折叠, ∴∠AEF =∠A 'EF =75°; ∴∠AEF 的度数不可能是105°, 故选:B . 【点睛】本题是翻折变换,平行线的性质,利用分类讨论思想解决问题是本题的关键.二、填空题 9.526x y【分析】根据单项式乘单项式的运算法则进行计算求解. 【详解】解:32223x y x =6x 5y 2, 故答案为:6x 5y 2. 【点睛】本题考查单项式乘单项式,掌握相关运算法则准确计算是解题关键. 10.假 【分析】根据平行线的性质进行判断即可. 【详解】解:∵两直线平行,同旁内角互补 ∴命题“同旁内角互补”是一个假命题; 故答案为假. 【点睛】本题考查了平行线的性质和命题真假的判定,熟练掌握平行线的性质是解答本题的关键.11.D解析:20°. 【分析】先根据三角形的内角和定理得:∠DEB =45°,最后根据三角形外角的性质可得结论. 【详解】解:Rt △DBE 中,∵∠D =45°,∠DBE =90°, ∴∠DEB =90°-45°=45°, ∵∠C =25°,∴∠EBC =∠DEB ﹣∠C =45°-25°=20°, 故答案为:20°. 【点睛】本题考查三角形内角和和外角和定理,熟练掌握其性质是解题的关键.12.5-【分析】利用非负数的性质求出x +y 与x−y 的值,原式利用平方差公式分解后代入计算即可求出值. 【详解】∵()2510x y x y +-+-+=∴5010x y x y +-=⎧⎨-+=⎩,即:5-1x y x y +=⎧⎨-=⎩,∴原式=()()()22-=5-1=x y x y x y -=+⨯-5,故填:5-. 【点睛】此题考查了因式分解−运用公式法,熟练掌握平方差公式是解本题的关键. 13.2 【分析】把两个方程相加,得x +y =2k +1,结合x +y =5,即可求解. 【详解】解:21254x y k x y k +=-⎧⎨+=+⎩①②,①+②,得x +y =2k +1, 又∵x +y =5, ∴2k +1=5, 解得:k =2, 故答案为:2. 【点睛】本题主要考查解含参数的二元一次方程,掌握加减消元法是解题的关键. 14.7【分析】把楼梯的水平线段向下平移,竖直线段向右平移可得地毯长度为水平距离与高的和.【详解】解:把楼梯的水平线段向下平移,竖直线段向右平移可得地毯长度为水平距离与高的和. 所以地毯长度至少需3+4=7米.故答案为:7.【点睛】此题主要考查了生活中的平移及平移的性质,根据已知得出地毯的长度应等于水平距离与高的和是解题关键.15.7【分析】利用绝对值的性质以及偶次方的性质得出b ,c 的值,进而利用三角形三边关系得出a 的值,进而求出△ABC 的周长即可.【详解】解:∵,∴,∴,即,∵,∴或,∵,∴,∴△ABC解析:7【分析】利用绝对值的性质以及偶次方的性质得出b ,c 的值,进而利用三角形三边关系得出a 的值,进而求出△ABC 的周长即可.【详解】解:∵2(2)|3|0b c -+-=,∴2,3b c ==,∴3232a -<<+,即15a <<, ∵42a -=,∴6a =或2a =,∵15a <<,∴2a =,∴△ABC 的周长为2237++=,故答案为:7.本题主要考查三角形三边关系及绝对值和偶次方的性质,解题关键是熟练掌握三角形三边关系.16.∠AFD=90°﹣∠B【分析】利用角平分线的定义可得∠BAF=∠BAC,∠HDB=∠EDB,由于DE∥AC,则∠EDB=∠C,可得∠HDB=∠C;利用三角形的外角等于和它不相邻的两个内角的和可得解析:∠AFD=90°﹣12∠B【分析】利用角平分线的定义可得∠BAF=12∠BAC,∠HDB=12∠EDB,由于DE∥AC,则∠EDB=∠C,可得∠HDB=12∠C;利用三角形的外角等于和它不相邻的两个内角的和可得∠AHF=∠B+∠HDB,在△AHF中,利用三角形的内角和定理列出关系式后整理即可得出结论.【详解】解:∵AG平分∠BAC,∴∠HAF=12∠BAC.∵DH平分∠EDB,∴∠HDB=12∠EDB.∵DE∥AC,∴∠EDB=∠C.∴∠HDB=12∠C.∵∠AHF为△HDB的外角,∴∠AHF=∠B+∠HDB.在△AHF中,由三角形的内角和定理可得:∠BAF+∠AHF+∠AFD=180°.∴12∠BAC+∠B+∠HDB+∠AFD=180°.∴12∠BAC+∠B+12∠C+∠AFD=180°.∵在△ABC中,∠BAC+∠B+∠C=180°,∴12∠BAC+12∠C=90°-12∠B.∴90°-12∠B+∠B+∠AFD=180°.∴12∠B+∠AFD=90°.∴∠AFD=90°-12∠B.故答案为:∠AFD=90°-12∠B.本题主要考查了三角形的内角和定理及其推论,角平分线的定义,平行线的性质.充分利用三角形的内角和等于180°是解题的关键.17.(1)2 ;(2) ;(3) ;(4) .【分析】(1)先算乘方,再算乘法,最后算加减即可;(2)先算积的乘方,再算同底数幂的乘除法即可求解;(3)先根据完全平方公式,平方差公式计算,再合并解析:(1)2 ;(2)6m x + ;(3)2268x x ++ ;(4)2224912a b c bc --+ .【分析】(1)先算乘方,再算乘法,最后算加减即可;(2)先算积的乘方,再算同底数幂的乘除法即可求解;(3)先根据完全平方公式,平方差公式计算,再合并同类项即可求解;(4)先根据平方差公式进行计算,再根据完全平方公式求出即可.【详解】解:(1)原式=(-2)+4×1=-2+4=2;(2)原式=632m m x x x ⋅÷ =6326m m m x x +-+= ;(3)原式=()()26911x x x x ++---+⎡⎤⎣⎦=()()269+11x x x x ++-+=269+x x ++ 21x -=2268x x ++ ;(4)原式=()23a b c +-⎡⎤⎣⎦ ()23a b c --⎡⎤⎣⎦=()2223a b c --=()2224129a b bc c --+ =2224912a b c bc --+ .故答案为(1)2 ;(2)6m x + ;(3)2268x x ++ ;(4)2224912a b c bc --+ .【点睛】本题考查了整式的混合运算,涉及零指数幂、负整数指数幂、多项式乘法等,能正确根据整式的运算法则进行化简是解题的关键.18.(1);(2)【分析】(1)利用提公因式法分解因式即可;(2)利用平方差公式和完全平方公式分解因式即可.【详解】解:(1)=;==.【点睛】本题考查因式分解、平方差公式、解析:(1)3(23)ab a b -+;(2)22(1)(1)a a -+【分析】(1)利用提公因式法分解因式即可;(2)利用平方差公式和完全平方公式分解因式即可.【详解】解:(1)22369a b ab ab -+=3(23)ab a b -+;(2)()22214a a +- =22(12)(12)a a a a +++-=22(1)(1)a a -+.【点睛】本题考查因式分解、平方差公式、完全平方公式,熟记公式,掌握分解因式的方法是解答的关键,注意分解要彻底.19.(1);(2)【分析】(1)方程组利用加减消元法求出解即可;(2)方程组整理后,利用加减消元法求出解即可.【详解】解:(1),①②得:,解得:,把代入①得:,解得:,则方程组的解解析:(1)352x y =⎧⎪⎨=⎪⎩;(2)616x y =-⎧⎨=-⎩ 【分析】(1)方程组利用加减消元法求出解即可;(2)方程组整理后,利用加减消元法求出解即可.【详解】解:(1)28324x y x y +=⎧⎨-=⎩①②, ①+②得:412x =,解得:3x =,把3x =代入①得:328y +=, 解得:52y =, 则方程组的解为352x y =⎧⎪⎨=⎪⎩; (2)方程组整理得:43243214x y x y -=⎧⎨-=⎩①②, ①2⨯-②3⨯得:6x -=,解得:6x =-,把6x =-代入①得:24324y --=,解得:16y =-,则方程组的解为616x y =-⎧⎨=-⎩. 【点睛】此题考查了解二元一次方程组,利用了消元的思想,消元的方法有:代入消元法与加减消元法.20.(1)不等式的基本性质2或填为:不等式的两边都乘以(或都除以)同一个正数,不等号的方向不变;(2)四;不等式的两边都乘以(或都除以)同一个负数,不等号的方向要改变,而这里不等号的方向没有改变;(3)解析:(1)不等式的基本性质2或填为:不等式的两边都乘以(或都除以)同一个正数,不等号的方向不变;(2)四;不等式的两边都乘以(或都除以)同一个负数,不等号的方向要改变,而这里不等号的方向没有改变;(3)该不等式的解集应为x >14;x =1;(4)无解【分析】(1)根据不等式两边同时乘以6,即可得到第一步的依据是不等式的基本性质2;(2)根据不等式的性质2,不等式的两边都乘以(或都除以)同一个负数,不等号的方向要改变,可得到第四步出现错误;(3)根据不等式的性质2,纠正第四步,即可求解;(4)求出不等式211x +<-的解集,即可求解.【详解】解:(1)上述过程中,第一步的依据是不等式的基本性质2;(2)第四步出现错误;错误原因是不等式的两边都乘以(或都除以)同一个负数,不等号的方向要改变,而这里不等号的方向没有改变;(3)221132 x x+--<去分母,得2(x+2)﹣6<3(2x﹣1),去括号,得2x+4﹣6<6x﹣3 ,移项,合并同类项,得﹣4x<﹣1 ,两边同时除以﹣4,得:x>14,∴该不等式的解集应为x>14,其最小整数解为x=1;(4)211x+<-移项,合并同类项得:2x<-2 ,解得:1x<-,∴该不等式组无解.【点睛】本题主要考查了解一元一次不等式和不等式组,熟练掌握不等式的性质是解题的关键.三、解答题21.(1)见解析;(2)∠C=∠D,理由见解析.【分析】(1)根据对顶角相等可得∠DGH=∠1,再根据同旁内角互补、两直线平行即可证明;(2)先根据BD//CE可得∠C=∠ABG,再由∠A=∠F得解析:(1)见解析;(2)∠C=∠D,理由见解析.【分析】(1)根据对顶角相等可得∠DGH=∠1,再根据同旁内角互补、两直线平行即可证明;(2)先根据BD//CE可得∠C=∠ABG,再由∠A=∠F得出AC//DF可得∠D=∠ABG,最后等量代换即可解答.【详解】(1)证明:∵∠DGH=∠1=50°,∠2=130°∴∠DGH+∠2=180°∴BD//CE;(2)∠C=∠D,理由如下:∵BD//CE∴∠C=∠ABG∵∠A=∠F∴AC//DF∴∠D=∠ABG∴∠C=∠D.【点睛】本题考查的是平行线的判定与性质,灵活运用平行线的性质定理和判定定理是解答本题的关键.22.(1)从地购买的原料为600吨和运到地的产品为400吨;(2)每吨产品的最低售价应定2638元.【分析】(1)根据公路的运价为2元(吨千米),铁路的运价为1.5元(吨千米),且这两次运输共支出公解析:(1)从A地购买的原料为600吨和运到B地的产品为400吨;(2)每吨产品的最低售价应定2638元.【分析】(1)根据公路的运价为2元/(吨⋅千米),铁路的运价为1.5元/(吨⋅千米),且这两次运输共支出公路运费48000元,铁路运费207000元和图中的数据,可以列出相应的二元一次方程组,然后求解即可;(2)根据购买这批原料的价格为每吨1千元,且这家工厂希望这批产品全部售出后获得不低于20万元的利润,可以列出相应的不等式,从而可以求得每吨产品的售价的取值范围,从而可以求得每吨产品的最低售价应定为多少元.【详解】解:(1)设从A地购买的原料为a吨和运到B地的产品为b吨,由题意可得,220230480001.5150 1.5120207000a ba b⨯+⨯=⎧⎨⨯+⨯=⎩,解得600400ab=⎧⎨=⎩,答:从A地购买的原料为600吨和运到B地的产品为400吨;(2)设每吨产品的售价为x元,由题意可得,400600100048000207000200000x-⨯--,解得2637.5x,x为整数,x 的最小值是2638,答:每吨产品的最低售价应定2638元.【点睛】本题考查一元一次不等式的应用、二元一次方程组的应用,解题的关键是明确题意,找出等量关系和不等关系,列出相应的方程组和不等式.23.(1)①21;②9,m+n;(2)b=25,c=49;(3)3或4;(4)10<t≤12【分析】(1)①由“互异数”的定义可得;②根据定义计算可得;(2)由W(b)=7,W(c)=13,列出解析:(1)①21;②9,m+n;(2)b=25,c=49;(3)3或4;(4)10<t≤12【分析】(1)①由“互异数”的定义可得;②根据定义计算可得;(2)由W(b)=7,W(c)=13,列出二元一次方程组,即可求x和y;(3)根据题意W(d)+W(e)<25可列出不等式,即可求x的值;(4)根据“互异数”f的十位数字是x+4,个位数字是x,分类讨论f,根据满足W(f)<t 的互异数有且仅有3个,求出t的取值范围.【详解】解:(1)①∵如果一个两位数a的十位数字为m,个位数字为n,且m≠n、m≠0、n≠0,那么这个两位数叫做“互异数”,∴“互异数”为21,故答案为:21;②W(36)=(36+63)÷11=9,W(10m+n)=(10m+n+10n+m)÷11=m+n;故答案为:9,m+n;(2)∵W(10m+n)=(10m+n+10n+m)÷11=m+n,且W(b)=7,∴x+y=7①,∵W(c)=13,∴x+2+2y-1=13②,联立①②解得25xy=⎧⎨=⎩,故b=10×2+5=25,c=10×(2+2)+2×5-1=49;(3)∵W(d)+W(e)<25,∴x+x+3+(x-2+3)<25,解得x<7,∵x-2>0,x+3<9,∴2<x<6,∴2<x<6,且x为正整数,∴x=3,4,5,当x=5时e为33不是互异数,舍去,故答案为:3或4;(4)当x=0时,x+4=4,此时f为40不是互异数;当x=1时,x+4=5,此时f为51是互异数,W(f)=x+4+x=2x+4=6;当x=2时,x+4=6,此时f为62是互异数,W(f)=x+4+x=2x+4=8;当x=3时,x+4=7,此时f为73是互异数,W(f)=x+4+x=2x+4=10;当x=4时,x+4=8,此时f为84是互异数,W(f)=x+4+x=2x+4=12;∵满足W(f)<t的互异数有且仅有3个,∴10<t≤12,故答案为:10<t≤12.【点睛】本题以新定义为背景考查了一元一次不等式的应用和二元一次方程的应用,解题的关键是根据新定义列出方程和不等式.24.【现象解释】见解析;【尝试探究】BEC 70;【深入思考】2.【分析】[现象解释]根据平面镜反射光线的规律得∠1=∠2,∠3=∠4,再利用∠2+∠3=90°得出∠1+∠2+∠解析:【现象解释】见解析;【尝试探究】∠BEC = 70︒;【深入思考】β= 2α.【分析】[现象解释]根据平面镜反射光线的规律得∠1=∠2,∠3=∠4,再利用∠2+∠3=90°得出∠1+∠2+∠3+∠4=180°,即可得出∠DCB+∠ABC=180°,即可证得AB∥CD;[尝试探究]根据三角形内角和定理求得∠2+∠3=125°,根据平面镜反射光线的规律得∠1=∠2,∠3=∠4,再利用平角的定义得出∠1+∠2+∠EBC+∠3+∠4+∠BCE=360°,即可得出∠EBC+BCE=360°-250°=110°,根据三角形内角和定理即可得出∠BEC=180°-110°=70°;[深入思考]利用平角的定义得出∠ABC=180°-2∠2,∠BCD=180°-2∠3,利用外角的性质∠BED=∠ABC-∠BCD=(180°-2∠2)-(180°-2∠3)=2(∠3-∠2)=β,而∠BOC=∠3-∠2=α,即可证得β=2α.【详解】[现象解释]如图2,∵OM⊥ON,∴∠CON=90°,∴∠2+∠3=90°∵∠1=∠2,∠3=∠4,∴∠1+∠2+∠3+∠4=180°,∴∠DCB+∠ABC=180°,∴AB∥CD;【尝试探究】如图3,在△OBC 中,∵∠COB=55°,∴∠2+∠3=125°,∵∠1=∠2,∠3=∠4,∴∠1+∠2+∠3+∠4=250°,∵∠1+∠2+∠EBC+∠3+∠4+∠BCE=360°,∴∠EBC+BCE=360°-250°=110°,∴∠BEC=180°-110°=70°;【深入思考】如图4,β=2α,理由如下:∵∠1=∠2,∠3=∠4,∴∠ABC=180°-2∠2,∠BCD=180°-2∠3,∴∠BED=∠ABC-∠BCD=(180°-2∠2)-(180°-2∠3)=2(∠3-∠2)=β,∵∠BOC=∠3-∠2=α,∴β=2α.【点睛】本题考查了平行线的判定,三角形外角的性质以及三角形内角和定理,熟练掌握三角形的性质是解题的关键.25.(2);;理由见解析;(3)B ;(4)①,理由见解析;②45°或60°【分析】(2)由(1)中结论可得,依据角平分线的定义,即可得出和均为直角;再根据四边形内角和进行计算,即可得到的度数以及与的解析:(2)50BHC ∠=︒;1902BHC n ∠=-︒︒;理由见解析;(3)B ;(4)①//DP CE ,理由见解析;②45°或60°【分析】(2)由(1)中结论可得130P ∠=︒,依据角平分线的定义,即可得出PBH ∠和PCH ∠均为直角;再根据四边形内角和进行计算,即可得到H ∠的度数以及BHC ∠与A ∠的关系;(3)由(1)中结论可得1902APB ACB ∠=︒+∠,再根据垂线的定义以及三角形外角性质,即可得出1902ADP ACB ∠=︒+∠,进而得到APB ADP ∠=∠; (4)①根据DP PC ⊥,即可得到90DPC ∠=︒,再根据角平分线的定义,即可得到()1902PCE ACB ACF ∠=∠+∠=︒,依据180DPC PCE ∠+∠=︒,即可判定DP EC ∥; ②由①可得//DP EC ,即可得出DPE E ∠=∠,再根据在BHE 中一个内角等于DPE ∠的3倍,分三种情况讨论,即可得出BAC ∠的度数.【详解】解:(2)由(1)可得,19090401302P A ∠=︒+∠=︒+︒=︒, ∵H 是外角MBC ∠与外角NCB ∠的平分线BH 和CH 的交点,P 是ABC ∠与ACB ∠的平分线BP 和CP 的交点, ∴()11190222PBH PBC HBC ABC MBC ABC MBC ∠=∠+∠=∠+∠=∠+∠=︒, 同理可得90PCH ∠=︒,∴四边形PBHC 中,360360*********BHC P PBH PCH ∠=︒-∠-∠-∠=︒-︒-︒-︒=︒, 故答案为:50︒;若A n ∠=︒,则BHC ∠与A ∠关系为:1902BHC n ∠=-︒︒. 理由:由(1)可得,11909022P A n ∠=︒+∠=︒+︒, ∵H 是外角MBC ∠与外角NCB ∠的平分线BH 和CH 的交点,P 是ABC ∠与ACB ∠的平分线BP 和CP 的交点, ∴()11190222PBH PBC HBC ABC MBC ABC MBC ∠=∠+∠=∠+∠=∠+∠=︒, 同理可得90PCH ∠=︒,∴四边形PBHC 中,113603609090909022BHC P PBH PCH n n ⎛⎫∠=︒-∠-∠-∠=︒-︒+︒-︒-︒=︒-︒ ⎪⎝⎭. (3)由(1)可得,1902APB ACB ∠=︒+∠, ∵DP PC ⊥,PC 平分ACB ∠,∴90DPC ∠=︒,12DCP ACB ∠=∠, ∵ADP 是CDP 的外角, ∴1902ADP DPC DCP ACB ∠=∠+∠=︒+∠,∴APB ADP ∠=∠,故答案为:B ;(4)①//DP EC .理由:∵DP PC ⊥,∴90DPC ∠=︒,∵PC ,EC 分别平分ACB ∠,ACF ∠, ∴12DCP ACB ∠=∠,12DCE ACF ∠=∠, ∴()111809022PCE DCP DCE ACB ACF ∠=∠+∠=∠+∠=⨯︒=︒, ∴180DPC PCE ∠+∠=︒,∴//DP EC ;②由①可得//DP EC ,∴DPE E ∠=∠, ∵BP 平分ABC ∠,BH 平分MBC ∠, ∴()1902PBH PBC HBC ABC MBC ∠=∠+∠=∠+∠=︒, ∴90H E ∠=︒-∠,分三种情况:①若3E DPE ∠=∠,则3E E ∠=∠,解得0E ∠=︒(不合题意),②若3H DPE ∠=∠,则3H E ∠=∠,∴903E E ︒-∠=∠,解得22.5E ∠=︒,∴67.5H ∠=︒,由(2)可得,1902H A ∠=︒-∠,即167.5902A ︒=︒-∠, ∴45A ∠=︒;③若3EBH DPE ∠=∠,则3EBH E ∠=∠,∴903E ︒=∠,解得30E ∠=︒,∴60H ∠=︒,由(2)可得,1902H A ∠=︒-∠,即160902A ︒=︒-∠, ∴60A ∠=︒;综上所述,BAC ∠的度数为45︒或60︒.故答案为:45︒或60︒.【点睛】本题属于三角形综合题,主要考查的是角平分线的定义,三角形外角性质,三角形内角和定理以及平行线的判定的综合运用,熟记基本图形中的结论,准确识图并灵活运用基本结论是解题的关键.。
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
解:因为 a 81 (3 )
3124 , b 27 41 (33 ) 41 3123 ,
c 961 (32 )61 3122 ,所以 a b c ,选 A.
点评:在例 3 和例 4 中,都采取了逆用幂的乘方的方法,逆用公式常可以使问题得到巧 妙的解决,望大家引起重视. 五、乘方比较法
°,这个多
边形是
边形.
16、△ABC 中, A
1 1 B C ,则 A 2 3
, B
, C
,
17、 平移是图形的变换, 许多汉字也可以看成是字中的一部分平移得到的, 如“从、 晶、 森” 等.请你开动脑筋, 写出至少三个可以由平移变换得到的字 (与题中例字不同) _______ . 18、小明在用计算器计算一个多边形的内角和时,得出的结果为 2005°,小芳立即判断他 的结果是错误的,小明仔细地复算了一遍,果然发现自己把一个角的度数输入了两遍.你认 为正确的内角和应该是多少度?答:是 度
0
n
(a≠0,n 为正整数) ;
幂的大小比较
比较幂的大小除了要灵活运用幂的运算性质外, 还要掌握一定的技巧和方法, 以下通过 举例介绍几种常用的比较幂的大小的方法. 一、差值比较法
例 1 比较
10 2 32 与 大小 17 6 17 4
解:因为
102 32 102 32 17 2 102 (3 17)2 102 512 0 176 17 4 176 176 176
)
P 999 990 99 119 990 9 1,所以 P=Q. 解:因为 99 9 Q 9 11 999 11
点评:此法的依据是:已知 a 0 , b 0 ,若 若
a a 1 ,则 a b ;若 1 ,则 a b ; b b
a 1 ,则 a b . b
111
243<256,所以 125
< 243
111
< 256
111
,即 5
333
<3
555
<4
444
故选 D.
四、指数比较法: 例 4 若 a 81 , b 27 , c 9 ,则 a,b,c 的大小关系为( )
31 41 61
A.a>b>c
31
B.a>c>b C.a<b<c D.b>c>a
5、如图,AB∥CD,下列关于∠B、∠D、∠E 关系中,正确的是 ( A.∠B+∠D+∠E=90° B.∠B+∠D+∠E=180°
C.∠B=∠E-∠D D.∠B-∠D=∠E 0 6.如图,BE、CF 都是△ABC 的角平分线,且∠BDC=110 ,则∠A=( )
F
A D E C
(A) 50
0
(B) 40
三、底数比较法 例 3 数3 A. 3 C. 5
555
、4
444
、5
333
的大小关系是( B. 4 D. 5
444
)
555
555
<4 <4
555
444
<5 <3
333
<3 <3
<5 <4
333
333
444
555
333
555
444
解:因为 3
35111 (35 )111 243111,同理 4444 256111 , 5333 125111 ,且 125<
.
A.a<b<c
【基础演练】 1.计算 x5·x3·x2= 4. a3
B.c<b<a
C.c<a<b
D.a<c<b
.
a
2
2
a 4 等于( )
(B) 2 a
6
(A) 2 a 6.计算: (1) 1 2
2
9
(C) a a
6
8
(D)
a12
0 1 52 4
0
(C) 70
0
(D) 35
0
7、一个人从 A 点出发向北偏东 30°方向走到 B 点,再从 B 点出发向南偏东 15°方向走到 C 点,那么∠ABC 等于 A.75° B.105° C.45° D.90° 9、如图,把△ABC 纸片沿 DE 折叠,当 A 落在四边形 BCDE 内时, 则 A 与 ) 1 2 之间有始终不变的关系是 ( A. A B. 2A 1 2 1 2 C. 3A 1 2 D. 3∠A=2(∠1+∠2) 10、光线 a 照射到平面镜 CD 上,然后在平面镜 AB 和 CD 之 间来回反射,光线的反射角等于入射角.若已知∠1=35°,∠ 3=75°,则∠2= ( A.50° B.55° ) C.66° D.65° ; ( E )
例 5 已知: a 4 , b 3 ,比较 a 和 b 的大小.
4 3
解:因为 a
12
12
(a 4 )3 43 64 , b12 (b3 ) 4 34 81 ,
所以 a b ,即 a b .
12
六、倒数比较法 例 6 比较
1 1 与 75 的大小 100 2 3
②同底数幂的除法法则:同底数幂相除,底数不变,指数相减,即 a a a
m n mn
(a≠0,
m、n 为正整数,m>n) ;
③幂的乘方法则:幂的乘方,底数不变,指数相乘,即 (ab) a b (n 为正整数) ;
n n n
④积的乘方法则:积的乘方,把积中各个因式分别乘方,再把所得的幂相乘 即: (ab) =a b 底数不变,指数相乘 ⑤零指数: a 1 (a≠0) ;
2008
0
.
6. 计算 (1) ( (2) 2(a ) (2a ) (a ) a a ;
4 3 3 2 2 3 2 10
1 - 2 3) ( -3) -( ) 1+ 2 3
1.5
2009
7. 若 x=2m+1,y=3+8m,则用 x 的代数式表示 y 为 8.已知 a=355,b=444,c=533,则有 ( )
a b c a b
2.三角形中的主要线段: 三角形的高、角平分线、中线。 注意:①三角形的高、角平分线、中线都是线段。 ②高、角平分线、中线的应用。 3.三角形的内角和: 三角形的 3 个内角的和等于 180°;直角三角形的两个锐角互余; 三角形的一个外角等于与它不相邻的两个内角的和; 三角形的一个外角大于与它不相邻的任意一个内角。 4.多边形的内角和:n 边形的内角和等于(n-2) •180°;任意多边形的外角和等于 360°。 【考点例题】 例 2: 两个直角三角形重叠在一起, 将其中一个三角形沿着点 B 到点 C 的方向平移到△DEF 的位置,AB=10,DH=4,平移距离为 6,求阴影部分的面积。 A D
19、用等腰直角三角板画∠AOB 45 ,并将三角板沿 OB 方向平移到如图 17 所示的虚线 处后绕点 M 逆时针方向旋转 22 ,则三角板的斜边与射线 OA 的夹角 为______ . 20、如果一个十二边形的每个内角都是相等的,那么这个内角的度数是 22、如图,AD、AE 分别是△ABC 的角平分线和高,∠B=50°,∠C=70°, 则∠BAD= °,∠EAD= °.
1
(2) 4ab 2
2
1 a 2b 2
3
(3) (2 3)0 ( 1 ) 2 ( 1 ) 2010 (4) 2010 2 4 8.如果 a-4=-3b,求 3a× 27b 的值. 【课后巩固】 1. a3
(4) 2(a 4 )3 a 2 a10 (2a5 ) 2 a 2
所以:
10 2 32 < . 17 6 17 4
点评:此法的依据是:若 a b 0 ,则 a b ;若 a b 0 ,则 a b . 二、商值比较法 例 2 已知 P A.P>Q
119 999 Q , ,那么 P,Q 的大小关系是( 990 999
B.P=Q C.P<Q D.无法确定
B E C F
1 2
;
所以,∠A 和∠BIC 的关系是 。 ⑤已知多边形的每一个内角都等于 144°,则多边形的内角和等于 °。 例 4:如图,△ABC 中,AD 是 BC 边上的高,AE 是∠BAC 的平分线,∠B=42°, ∠DAE=18°,求∠C 的度数. D A A E
B
ED
C
B
C
例 5:如图,AE 是△ABC 的外角平分线,∠B=∠C,试说明 AE∥BC 的理由。 例 6:一个多边形,它的内角和比外角和的 4 倍多 180°,求这个多边形的边数及内角和度 数. 【课堂检测】 4、如图,若 AB∥CD,则α、β、γ之间的关系为( ) A、 360 C、 180 B、 180 D、 180 )
A H
I C 例 3:填空: ①在⊿ABC 中,三边长分别为 4、7、x,则 x 的取值范围是 ; ②已知等腰三角形的一条边等于 4, 另一条边等于 7, 那么这个三角形的周长是 ③已知 a,b,c 是一个三角形的三条边长,则化简|a+b-c|-|b-a-c|= ; ④如图,在⊿ABC 中,IB、IC 分别平分∠ABC、∠ACB, 若∠ABC=50°,∠ACB=60°,则∠BIC= °; 若∠A=70°,则∠BIC= °; 若∠A=n°, 则∠BIC= °; B
B
1 A
D 2 C
B
12、 若三角形三条边的长分别是 7cm、 10cm、 x, 则 x 的取值范围是 13、三角形三个外角的比为 2:3:4,则最大的内角是________度 14、若等腰三角形的两边的长分别是 3cm、7cm,则它的周长为 cm. 15、 若多边形的每一个外角都是其相邻内角的