苏教版七年级数学复习题

合集下载

(完整版)苏教版七年级下册期末数学重点初中题目(比较难)及解析

(完整版)苏教版七年级下册期末数学重点初中题目(比较难)及解析

(完整版)苏教版七年级下册期末数学重点初中题目(比较难)及解析一、选择题1.下列运算正确的是()A.(3x2)2=6x4B.(x3)2=x9C.3x2﹣x=2x D.x2•x3=x5答案:D解析:D【分析】根据整式的乘法以及乘方等运算,对选项逐个判断即可.【详解】解:A.(3x2)2=9x4,故本选项不合题意;B.(x3)2=x6,故本选项不合题意;C.3x2与﹣x不是同类项,所以不能合并,故本选项不合题意;D.x2•x3=x5,故本选项符合题意;故选:D.【点睛】此题主要考查了整式的乘法和乘方等运算,熟练掌握整式的性质及相关运算是解题的关键.2.如图,∠1和∠2是同位角的是()A.B.C.D.答案:A解析:A【分析】根据同位角的定义,逐一判断选项,即可.【详解】解:A. ∠1和∠2是同位角,故该选项符合题意;B. ∠1和∠2不是同位角,故该选项不符合题意;C. ∠1和∠2不是同位角,故该选项不符合题意;D. ∠1和∠2不是同位角,故该选项不符合题意,故选 A.【点睛】本题主要考查同位角的定义,掌握“两条直角被第三条直线所截,在两条直线的同侧,在第三条直线的同旁的两个角,叫做同位角”,是解题的关键.3.已知方程组135x y ax y a+=-⎧⎨-=+⎩的解x为正数,y为非负数,给出下列结论:①-1<a≤1;②当a =-53时,x =y ;③当a =-2时,方程组的解也是方程x +y =5+a 的解.其中正确的是( )A .①②B .②③C .①③D .①②③ 答案:B解析:B【解析】解:解方程组得:x =3+a ,y =-2-2a .∵x 为正数,y 为非负数,∴3+a >0,-2-2a ≥0,解得:-3<a ≤-1,故①错误;当a =53-时,x =54333-=,y =542233-+⨯=,∴x =y ,故②正确; 当a =-2时,x =3+(-2)=1,y =-2+4=2,x +y =3=5+(-2)=3,故③正确.故选B .点睛:本题考查了二元一次方程组的解,方程组的解即为能使方程组中两方程成立的未知数的值.4.若多项式29216x mx -+是一个完全平方式,则m 的值为( )A .24±B .12±C .24D .12答案:B解析:B【分析】利用完全平方公式的结构特征判断即可.【详解】解:∵29216x mx -+是一个完全平方式∴()2229216324x mx x mx -+=-+ ∴()22292163492416x mx x x x -+=±=±+ ∴224m =±∴12m =±故选B .【点睛】本题主要考查完全平方公式,熟练掌握公式是解题的关键.5.若关于x 的不等式0521x m x -<⎧⎨-≤⎩的整数解有且只有4个,则m 的取值范围是( ) A .56m ≤≤ B .56m << C .56m ≤< D .56m <≤ 答案:D解析:D【分析】分别求出不等式组中不等式的解集,利用取解集的方法表示出不等式的解集,根据解集中整数解有4个,即可得到m 的取值范围.【详解】解:0521x m x -<⎧⎨-≤⎩解得2x m x <⎧⎨≥⎩,即2x m ≤<, 根据题意不等式组有且只有4个整数解,即x 的取值为2,3,4,5;从而m 的取值范围为56m <≤,故选:D .【点睛】此题考查了一元一次不等式组的整数解,表示出不等式的解集,根据题意找出整数解是解本题的关键.6.给出下列四个命题,①多边形的外角和小于内角和;②如果a >b ,那么(a +b )(a -b )>0;③两直线平行,同位角相等;④如果a ,b 是实数,那么0()1a b +=,其中真命题的个数为( )A .1B .2C .3D .4答案:A解析:A【分析】根据多边形的内角和、不等式的性质、平行线的性质和零指数幂判断即可.【详解】解:①多边形的外角和不一定小于内角和,四边形的内角和等于外角和,原命题是假命题;②如果0>a >b ,那么(a +b )(a -b )<0,原命题是假命题;③两直线平行,同位角相等,是真命题;④如果a ,b 是实数,且a +b ≠0,那么(a +b )0=1,原命题是假命题.故选:A .【点睛】本题考查了命题与定理的知识,解题的关键是了解多边形的内角和、不等式的性质、平行线的性质和零指数幂,难度较小.7.填在下面各小正方形中的四个数之间都有相同的规律,根据这种规律,m 的值应是( )A .224B .168C .212D .132答案:C解析:C【分析】先根据第一行两个数之间的规律求出阴影小正方形中的数,再根据四个数之间的规律即可得.【详解】观察第一行小正方形中的两个数可知,第二个数减去第一个数的差为4,则阴影小正方形中的数为12416+=,由题意可知,各小正方形中的四个数满足如下等式:8240=⨯-,22462=⨯-,44684=⨯-,则141612212m =⨯-=,故选:C .【点睛】本题考查了整式的数字类规律探索,依据题意,正确发现规律是解题关键.8.如图,AD 是△ABC 的中线,DE 是△ADC 的高线,AB=3,AC=5,DE=2,点D 到AB 的距离是( )A .2B .53C .65D .103答案:D解析:D【详解】分析:作DF ⊥AB 于点F ,先由AD 是△ABC 的中线可得S △ABD =S △ACD ,然后根据面积法即可求出DF 的长,详解:作DF ⊥AB 于点F ,∵AD 是△ABC 的中线,∴S △ABD =S △ACD ,∴1122AB DF AC DE ⋅=⋅, ∴3DF =5×2,∴DF =103. 故选D.作点睛:本题考查了三角形中线的性质和面积法求线段的长,由中线的性质得出S △ABD =S △ACD是解答本题的关键.二、填空题9.计算:2a3•3a2=______.解析:6a5【解析】【分析】根据单项式与单项式相乘,把他们的系数分别相乘,相同字母的幂分别相加,其余字母连同他的指数不变,作为积的因式,计算即可.【详解】解:2a3•3a2=6a5.故答案为:6a5.【点睛】本题考查了单项式与单项式相乘,熟练掌握运算法则是解题的关键.10.命题“三角形的三个内角中至少有两个锐角”是_____(填“真命题”或“假命题”).解析:真命题【分析】根据三角形内角和为180°进行判断即可.【详解】∵三角形内角和为180°,∴三角形的三个内角中至少有两个锐角,是真命题;故答案为真命题.【点睛】本题考查命题与定理.判断事物的语句叫命题;正确的命题称为真命题,错误的命题称为假命题;经过推理论证的真命题称为定理.11.如图,在七边形ABCDEFG中,AB、ED的延长线交于点O,若∠1、∠2、∠3、∠4的外角和等于225°,则∠BOD=______°.答案:A解析:45【分析】依据七边形AOEFG的外角和为360°,即可得到∠AOE的邻补角的度数,进而得出∠BOD的度数.【详解】解:∵五边形AOEFG的外角和为360°,且∠1、∠2、∠3、∠4对应的邻补角和等于225°,∴∠AOE的邻补角为360°-225°=135°,∴∠BOD=180°-135°=45°,故答案为:45.【点睛】本题主要考查了多边形的内角与外角,掌握多边形的外角和等于360度是解题的关键. 12.若当17x =时,代数式3235685x x x -+的结果为0,那么将3235585x x x -+分解因式的结果为______解析:()()1735x x x --【解析】【分析】先根据因式分解的意义和已知设3235685x x x -+=x(x-17)(3x+a),利用多项式乘以多项式的法则进行计算,列方程组可得结论.【详解】当x =17时,代数式3x 3-56x 2+85x 的结果为0设3235685x x x -+=x(x-17)(3x+a)3235685x x x -+=x(3x 2-51x+ax-17a)∴x(3x 2-56x+85)=x(3x 2-51x+ax-17a),-51561785a a +=-⎧⎨-=⎩解得:a=-5,∴3235685x x x -+=x(x-17)(3x-5),故答案为: ()()1735x x x --.【点睛】本题主要考查了十字相乘法分解因式和提公因式,关键是理解和掌握分解因式和整式的乘法是互逆运算.13.如果关于x ,y 的二元一次方程组25232x y x y k +=⎧⎨+=-⎩的解满足4x y +>,则k 的取值范围为_______________.解析:k >3【分析】先把方程组的两个方程相加求出x +y =k +1,再解不等式即可解答.【详解】解:由方程组解得:x +y =k +1,由x +y >4,得:k +1>4,解得:k >3.则k 的取值范围为k >3;故答案为:k >3.【点睛】本题考查了二元一次方程组的解和一元一次不等式,解决本题的关键是解二元一次方程组.14.夏季荷花盛开,为了便于游客领略“人从桥上过,如在河中行”的美好意境,某景点拟在如图所示的长方形荷塘上架设小桥(图中虚线),若荷塘周长为900m ,且桥宽忽略不计,则小桥的总长为_______m .解析:450【分析】根据图形得出荷塘中小桥的总长为矩形的长与宽的和,进而得出答案.【详解】解:∵荷塘周长为900m ,∴小桥总长为:900÷2=450(m ).故答案为:450.【点睛】此题主要考查了生活中的平移现象,得出荷塘中小桥的总长为矩形的长与宽的和是解题的关键.15.三角形的三边长分别为3、8、x ,则x 的取值范围是__________.答案:【分析】根据三角形的三边关系定理得出8-3<x <3+8,求出即可.【详解】解:∵三角形的三边长分别为3,x ,8,∴8-3<x <3+8,即5<x <11,故答案为:.【点睛】本题考查了解析:511x <<【分析】根据三角形的三边关系定理得出8-3<x <3+8,求出即可.【详解】解:∵三角形的三边长分别为3,x ,8,∴8-3<x <3+8,即5<x <11,故答案为:511x <<.【点睛】本题考查了三角形的三边关系定理,能熟记三角形的三边关系定理的内容是解此题的关键,注意:三角形的两边之和大于第三边,三角形的两边之差小于第三边.16.如图,在ABC 中,点D 是BC 边上中点,点E 是DC 边上中点.若2ADE S =△,则ABC S =____________.答案:8【分析】三角形的中线平分三角形的面积,先得出△AEC 的面积,再得出△ABD 的面积,最后得出△ABC 的面积【详解】∵点E 是DC 的中点∴,∴∵点D 是AC 的中点∴,∴故答案为:8【点睛解析:8【分析】三角形的中线平分三角形的面积,先得出△AEC 的面积,再得出△ABD 的面积,最后得出△ABC 的面积【详解】∵点E 是DC 的中点∴2AEC ADE SS ==,∴4ADC S = ∵点D 是AC 的中点 ∴4ABD ADC S S ==,∴8ABCS = 故答案为:8【点睛】本题考查三角形中线与面积的关系,三角形的中线将三角形分为2个同高等底的小三角形,故这2个小三角形的面积相等.17.计算:(1)01113()16()422-⨯-(2)322(48)42(2)ab a b ab a a b -÷+-答案:(1)1;(2)【分析】(1)通过零指数幂和负整数指数幂的运算性质可相应计算得.(2)通过整式运算性质,多项式除以单项式和单项式乘以多项式可计算得.【详解】(1) 原式.(2) 原式解析:(1)1;(2)2244b ab a -+【分析】(1)通过零指数幂和负整数指数幂的运算性质可相应计算得.(2)通过整式运算性质,多项式除以单项式和单项式乘以多项式可计算得.【详解】(1) 原式3142=⨯-+1=.(2) 原式22242b ab a ab =-+-2244b ab a =-+.【点睛】本题考查实数的运算性质及整式的运算,熟练掌握其运算法则及技巧是解题的关键. 18.因式分解(1)2(2)(2)m a m a -+- (2)()222224a b a b +- 答案:(1);(2)【分析】(1)利用提公因式法分解即可;(2)利用平方差公式以及完全平方公式分解.【详解】解:(1)===;(2)==【点睛】本题考查了因式分解,解题的关键是要解析:(1)()()12m m a --;(2)()()22a b a b +- 【分析】(1)利用提公因式法分解即可;(2)利用平方差公式以及完全平方公式分解.【详解】解:(1)2(2)(2)m a m a -+-=()()222m a m a ---=()()22m m a -- =()()12m m a --;(2)()222224a b a b +- =()()222222a b ab a b ab +++-=()()22a b a b +-【点睛】本题考查了因式分解,解题的关键是要掌握分式分解的基本方法. 19.解方程组: (1)528x y x y =+⎧⎨-=⎩; (2)3410435x y x y +=⎧⎨-=⎩. 答案:(1);(2)【分析】(1)应用代入消元法,求出方程组的解是多少即可. (2)应用加减消元法,求出方程组的解是多少即可.【详解】解:(1),①代入②,可得:,解得,把代入①,解得,原解析:(1)32x y =⎧⎨=-⎩;(2)21x y =⎧⎨=⎩ 【分析】(1)应用代入消元法,求出方程组的解是多少即可.(2)应用加减消元法,求出方程组的解是多少即可.【详解】解:(1)528x y x y =+⎧⎨-=⎩①②, ①代入②,可得:2(5)8y y +-=,解得2y =-,把2y =-代入①,解得3x =,∴原方程组的解是32x y =⎧⎨=-⎩. (2)3410435x y x y +=⎧⎨-=⎩①②, ①3⨯+②4⨯,可得2550x =,解得2x =,把2x =代入①,解得1y =,∴原方程组的解是21x y =⎧⎨=⎩. 【点睛】此题主要考查了解二元一次方程组的方法,要熟练掌握,注意代入消元法和加减消元法的应用.20.已知不等式组3(21)283(1)12384x x x x -<+⎧⎪⎨+-+>-⎪⎩①②. (1)求此不等式组的解集,并写出它的整数解;(2)若上述整数解满足不等式62ax x a +≤-,化简11a a +--.答案:(1)不等式组的解集为,整数解为;(2)-2【分析】(1)先解不等式组的解集,再从解集中找出整数解即可.(2)根据题意求得,进而即可把化简.【详解】解:(1)由①得:,由②得:,∴不等解析:(1)不等式组的解集为71154<<x ,整数解为2x =;(2)-2 【分析】(1)先解不等式组的解集,再从解集中找出整数解即可.(2)根据题意求得1a -,进而即可把|1||1|a a +--化简.【详解】解:(1)由①得:114x <,由②得:75x >, ∴不等式组的解集为71154<<x , ∴不等式组的整数解为2x =.(2)把2x =代入不等式62ax x a +-,得:2622a a +-,解得:1a -,∴10a +,12a --,|1||1|(1)(1)a a a a ∴+--=-+--11a a =---+2=-.【点睛】本题考查了一元一次不等式组的解法以及不等式组的整数解,也考查了绝对值的性质,是基础知识要熟练掌握,熟知“同大取大;同小取小;大小小大中间找;大大小小找不到”的原则是解答此题的关键.三、解答题21.如图,直线AB 、CD 相交于点O ,OE AB ⊥,OE 平分COF ∠.(1)若140AOF ∠=︒,求EOF ∠的度数;(2)OB 是DOF ∠的角平分线吗?为什么?答案:(1);(2)是,见解析.【分析】(1)由,得∠AOE= 90°,故可求得∠EOF ;(2)欲证OB 是∠DOF 的角平分线,即证∠DOB=∠FOB ,因为∠AOC 与∠BOD 是对顶角,得∠AOC=∠B解析:(1)50︒;(2)是,见解析.【分析】(1)由OE AB ⊥,得∠AOE = 90°,故可求得∠EOF ;(2)欲证OB 是∠DOF 的角平分线,即证∠DOB =∠FOB ,因为∠AOC 与∠BOD 是对顶角,得∠AOC =∠BOD ,故证∠AOC =∠BOF 即可得出结果.【详解】(1)∵OE AB ⊥,∴90AOE ∠=︒.又∵140AOF ∠=︒,∴1409050EOF AOF AOE ∠=∠-∠=︒-︒=︒;(2)∵OE AB ⊥,∴90AOE BOE ∠=∠=︒.∵OE 平分COF ∠,∴COE FOE ∠=∠,∴AOE COE BOE FOE ∠-∠=∠-∠,∴AOC BOF ∠=∠,∵AOC DOB ∠=∠,∴DOB BOF ∠=∠,∴OB 平分DOF ∠.【点睛】本题主要考查垂直的定义、角平分线的定义、对顶角的性质以及角的和差关系,熟练掌握垂直的定义、角平分线的定义、对顶角的性质以及角的和差关系是解决本题的关键. 22.某数码专营店销售A ,B 两种品牌智能手机,这两种手机的进价和售价如表所示:(1)该店销售记录显示,三月份销售A 、B 两种手机共34部,且销售A 种手机的利润恰好是销售B 种手机利润的2倍,求该店三月份售出A 种手机和B 种手机各多少部?(2)根据市场调研,该店四月份计划购进这两种手机共40部,要求购进B 种手机数不低于A 种手机数的35,用于购买这两种手机的资金低于140000元,请通过计算设计所有可能的进货方案.答案:(1)该店三月份售出A 种手机24部,B 种手机10部;(2)共有5种进货方案,分别是A 种手机21部,B 种手机19部;A 种手机22部,B 种手机18部;A 种手机23部,B 种手机17部;A 种手机24部,B 种解析:(1)该店三月份售出A 种手机24部,B 种手机10部;(2)共有5种进货方案,分别是A 种手机21部,B 种手机19部;A 种手机22部,B 种手机18部;A 种手机23部,B 种手机17部;A 种手机24部,B 种手机16部;A 种手机25部,B 种手机15部【分析】(1)设该店三月份售出A 种手机x 部,B 种手机y 部,由“三月份销售A 、B 两种手机共34部,且销售A 种手机的利润恰好是销售B 种手机利润的2倍”列出方程组,可求解;(2)设A 种手机a 部,B 种手机(40﹣a )部,由“购进B 种手机数不低于A 种手机数的35,用于购买这两种手机的资金低于140000元”列出不等式组,即可求解. 【详解】解:(1)设该店三月份售出A 种手机x 部,B 种手机y 部,由题意可得:()()3438003300243003700x y x y+=⎧⎨-=⨯-⎩, 解得:2410x y =⎧⎨=⎩, 答:该店三月份售出A 种手机24部,B 种手机10部;(2)设A 种手机a 部,B 种手机(40﹣a )部, 由题意可得340533003700(40)140000a a a a ⎧-⎪⎨⎪+-<⎩, 解得:20<a≤25,∵a 为整数,∴a =21,22,23,24,25,∴共有5种进货方案,分别是A 种手机21部,B 种手机19部;A 种手机22部,B 种手机18部;A 种手机23部,B 种手机17部;A 种手机24部,B 种手机16部;A 种手机25部,B 种手机15部.【点睛】本题考查了一元一次不等式组解实际问题的运用,二元一次方程组解实际问题的运用,找准等量关系,正确列出二元一次方程组是解题的关键.23.已知关于x ,y 的方程组260250x y x y mx +-=⎧⎨-++=⎩ (1)请直接写出方程x +2y -6=0的所有正整数解;(2)若方程组的解满足x +y =0,求m 的值;(3)无论实数m 取何值时,方程x -2y +mx +5=0总有一个固定的解,求出这个解.(4)若方程组的解中x 恰为整数,m 也为整数,求m 的值.答案:(1), (2)m=(3)(4)【分析】(1)先对方程变形为x=6-2y ,然后可带入数值求解;(2)把已知的x+y=0和方程x+2y-6=0组合成方程组,求解方程组的解,然后代入方程x-2y+解析:(1)22x y =⎧⎨=⎩, 41x y =⎧⎨=⎩(2)m=136-(3)02.5x y =⎧⎨=⎩(4)1-3m =-或 【分析】(1)先对方程变形为x=6-2y ,然后可带入数值求解;(2)把已知的x+y=0和方程x+2y-6=0组合成方程组,求解方程组的解,然后代入方程x-2y+mx+5=0即可求m 的值;(3)方程整理后,根据无论m 如何变化,二元一次方程组总有一个固定的解,列出方程组,解方程组即可;(4)先把m 当做已知求出x 、y 的值,然后再根据整数解进行判断即可.【详解】(1)22x y =⎧⎨=⎩ 41x y =⎧⎨=⎩ (2)0260x y x y +=⎧⎨+-=⎩ 解得66x y =-⎧⎨=⎩ 把66x y =-⎧⎨=⎩代入250x y mx -++=,解得m=136- (3)02.5x y =⎧⎨=⎩ (4)260250x y x y mx +-=⎧⎨-++=⎩①② ①+②得:()2+1m x =解得12x m=+, ∵x 恰为整数,m 也为整数,∴2+m=1或2+m=-1,解得1-3m =-或24.(生活常识)射到平面镜上的光线(入射光线)和变向后的光线(反射光线)与平面镜所夹的角相等.如图 1,MN 是平面镜,若入射光线 AO 与水平镜面夹角为∠1,反射光线 OB 与水平镜面夹角为∠2,则∠1=∠2 .(现象解释)如图 2,有两块平面镜 OM ,ON ,且 OM ⊥ON ,入射光线 AB 经过两次反射,得到反射光线 CD .求证 AB ∥CD .(尝试探究)如图 3,有两块平面镜 OM ,ON ,且∠MON =55︒ ,入射光线 AB 经过两次反射,得到反射光线CD,光线AB 与CD 相交于点E,求∠BEC 的大小.(深入思考)如图 4,有两块平面镜OM,ON,且∠MON =α ,入射光线AB 经过两次反射,得到反射光线CD,光线AB 与CD 所在的直线相交于点E,∠BED=β , α 与β 之间满足的等量关系是 .(直接写出结果)答案:【现象解释】见解析;【尝试探究】BEC 70;【深入思考】2.【分析】[现象解释]根据平面镜反射光线的规律得∠1=∠2,∠3=∠4,再利用∠2+∠3=90°得出∠1+∠2+∠解析:【现象解释】见解析;【尝试探究】∠BEC = 70︒;【深入思考】β= 2α.【分析】[现象解释]根据平面镜反射光线的规律得∠1=∠2,∠3=∠4,再利用∠2+∠3=90°得出∠1+∠2+∠3+∠4=180°,即可得出∠DCB+∠ABC=180°,即可证得AB∥CD;[尝试探究]根据三角形内角和定理求得∠2+∠3=125°,根据平面镜反射光线的规律得∠1=∠2,∠3=∠4,再利用平角的定义得出∠1+∠2+∠EBC+∠3+∠4+∠BCE=360°,即可得出∠EBC+BCE=360°-250°=110°,根据三角形内角和定理即可得出∠BEC=180°-110°=70°;[深入思考]利用平角的定义得出∠ABC=180°-2∠2,∠BCD=180°-2∠3,利用外角的性质∠BED=∠ABC-∠BCD=(180°-2∠2)-(180°-2∠3)=2(∠3-∠2)=β,而∠BOC=∠3-∠2=α,即可证得β=2α.【详解】[现象解释]如图2,∵OM⊥ON,∴∠CON=90°,∴∠2+∠3=90°∵∠1=∠2,∠3=∠4,∴∠1+∠2+∠3+∠4=180°,∴∠DCB+∠ABC=180°,∴AB∥CD;【尝试探究】如图3,在△OBC中,∵∠COB=55°,∴∠2+∠3=125°,∵∠1=∠2,∠3=∠4,∴∠1+∠2+∠3+∠4=250°,∵∠1+∠2+∠EBC+∠3+∠4+∠BCE=360°,∴∠EBC+BCE=360°-250°=110°,∴∠BEC=180°-110°=70°;【深入思考】如图4,β=2α,理由如下:∵∠1=∠2,∠3=∠4,∴∠ABC=180°-2∠2,∠BCD=180°-2∠3,∴∠BED=∠ABC-∠BCD=(180°-2∠2)-(180°-2∠3)=2(∠3-∠2)=β,∵∠BOC=∠3-∠2=α,∴β=2α.【点睛】本题考查了平行线的判定,三角形外角的性质以及三角形内角和定理,熟练掌握三角形的性质是解题的关键.25.如图,直线MN∥GH,直线l1分别交直线MN、GH于A、B两点,直线l2分别交直线MN、GH于C、D两点,且直线l1、l2交于点E,点P是直线l2上不同于C、D、E点的动点.(1)如图①,当点P在线段CE上时,请直写出∠NAP、∠HBP、∠APB之间的数量关系:;(2)如图②,当点P在线段DE上时,(1)中的∠NAP、∠HBP、∠APB之间的数量关系还成立吗?如果成立,请说明成立的理由;如果不成立,请写出这三个角之间的数量关系,并说明理由.(3)如果点P在直线l2上且在C、D两点外侧运动时,其他条件不变,请直接写出∠NAP、∠HBP、∠APB之间的数量关系.答案:(1)∠APB=∠NAP+∠HBP;(2)见解析;(3)∠HBP=∠NAP+∠APB【分析】(1)过P点作PQ∥GH,根据平行线的性质即可求解;(2)过P点作PQ∥GH,根据平行线的性质即可求解析:(1)∠APB=∠NAP+∠HBP;(2)见解析;(3)∠HBP=∠NAP+∠APB【分析】(1)过P点作PQ∥GH,根据平行线的性质即可求解;(2)过P点作PQ∥GH,根据平行线的性质即可求解;(3)根据平行线的性质和三角形外角的性质即可求解.【详解】解:(1)如图①,过P点作PQ∥GH,∵MN∥GH,∴MN∥PQ∥GH,∴∠APQ=∠NAP,∠BPQ=∠HBP,∵∠APB=∠APQ+∠BPQ,∴∠APB=∠NAP+∠HBP,故答案为:∠APB=∠NAP+∠HBP;(2)如图②,过P点作PQ∥GH,∵MN∥GH,∴MN∥PQ∥GH,∴∠APQ+∠NAP=180°,∠BPQ+∠HBP=180°,∵∠APB=∠APQ+∠BPQ,∴∠APB=(180°﹣∠NAP)+(180°﹣∠HBP)=360°﹣(∠NAP+∠HBP);(3)如备用图,∵MN∥GH,∴∠PEN=∠HBP,∵∠PEN=∠NAP+∠APB,∴∠HBP=∠NAP+∠APB.故答案为:∠HBP=∠NAP+∠APB.【点睛】此题考查了平行公理的推论:平行于同一条直线的两直线平行,以及平行线的性质:两直线平行,同位角相等;两直线平行,内错角相等;两直线平行,同旁内角互补,熟记定理是解题的关键.。

苏教版数学七年级上试卷

苏教版数学七年级上试卷

一、选择题(每题3分,共30分)1. 下列各数中,有理数是()A. √9B. √-1C. πD. 0.1010010001…2. 已知a=2,b=-3,那么a²+b²的值是()A. 5B. 7C. 13D. 13. 下列各组数中,互为相反数的是()A. 3和-3B. 0和-0C. 1和-1D. 2和-24. 如果|a|=5,那么a的值可能是()A. -5B. 5C. -5或5D. 05. 下列各数中,正数是()A. -3B. 0C. -5D. 46. 已知x²=9,那么x的值是()A. 3B. -3C. 3或-3D. 07. 下列各数中,绝对值最小的是()A. -1B. 0C. 1D. -38. 已知a、b是方程x²-2ax+a²=0的两根,那么a+b的值是()A. 0B. 1C. 2D. 39. 如果一个数x满足x²=4,那么x的取值范围是()A. x=2B. x=±2C. x>2D. x<210. 下列函数中,自变量x的取值范围是()A. y=√(x+1)B. y=x²C. y=1/xD. y=|x|二、填空题(每题3分,共30分)11. 3的平方根是________,-3的平方根是________。

12. 如果|a|=5,那么a²的值是________。

13. 下列各数中,绝对值最大的是________。

14. 如果x²=16,那么x的值是________。

15. 下列函数中,自变量x的取值范围是________。

16. 如果一个数x满足x²=1,那么x的取值范围是________。

17. 下列各数中,有理数是________。

18. 下列各数中,正数是________。

19. 下列各数中,负数是________。

20. 下列各数中,非负有理数是________。

三、解答题(共40分)21. (10分)计算下列各式的值:(1)-5 + 3 - 2(2)-2 × 4 + 5 × (-3)(3)√9 - √1622. (10分)解下列方程:(1)2x - 3 = 7(2)x² - 5x + 6 = 023. (10分)判断下列命题的真假,并说明理由:(1)如果|a|=5,那么a=5。

七年级数学苏教版月考试卷

七年级数学苏教版月考试卷

一、选择题(每题3分,共30分)1. 下列各数中,正数是()A. -2B. 0C. 1.5D. -0.52. 下列图形中,是轴对称图形的是()A. 正方形B. 等腰三角形C. 长方形D. 梯形3. 若a=3,b=-2,则a+b的值为()A. 1B. -1C. 5D. -54. 下列方程中,正确的是()A. 2x+1=5B. 3x-2=0C. 4x=8D. 5x+3=05. 一个等腰三角形的底边长为8cm,腰长为6cm,则该三角形的面积是()A. 12cm²B. 16cm²C. 24cm²D. 32cm²6. 下列函数中,自变量x的取值范围是全体实数的是()A. y=x²B. y=x³C. y=x+1D. y=√x7. 下列分数中,最小的是()A. 1/2B. 2/3C. 3/4D. 4/58. 一个长方形的长是6cm,宽是4cm,那么它的对角线长是()A. 5cmB. 8cmC. 10cmD. 12cm9. 若a、b是方程2x²-5x+3=0的两个实数根,则a+b的值为()A. 1B. 2C. 3D. 510. 下列命题中,正确的是()A. 等腰三角形的底角相等B. 平行四边形的对边相等C. 直角三角形的两条直角边相等D. 等边三角形的三个角都是直角二、填空题(每题3分,共30分)11. 0.3的倒数是__________。

12. 2/5与1/3的和是__________。

13. 若a=5,b=2,则a²+b²的值为__________。

14. 一个圆的半径是r,则其周长是__________。

15. 若x=2,则x²-3x+2的值为__________。

16. 一个等腰直角三角形的斜边长为10cm,则其直角边长是__________。

17. 下列函数中,函数y=kx+b(k≠0)的图像是一条直线的是__________。

七年级苏教版数学复习要点考点专题一:有理数有关概念专题测试(教师用,附答案分析)

七年级苏教版数学复习要点考点专题一:有理数有关概念专题测试(教师用,附答案分析)

七年级苏教版数学复习要点考点专题一:有理数有关概念专题测试姓名:___________班级:___________一、选择题(共8小题,每题5分,共计40分)1.一袋面粉的质量标识为“1000.25±千克”,则下列面粉质量中合格的是( )A .100.30千克B .99.51千克C .99.80千克D .100.70千克【解答】解:“1000.25±千克”的意义为一袋面粉的质量在1000.2599.75-=千克与1000.25100.25+=千克之间均为合格的,故选:C .2.下列各数是无理数的是( )A .2-B .23C .0.010010001D .π【解答】解:A 、2-是有理数,不合题意;B 、23是有理数,不合题意; C 、0.010010001是有理数,不合题意;D 、π是无理数,符合题意;故选:D .3.无论x 取什么值,下列代数式中值一定是正数的是( )A .2(21)x +B .|21|x +C .221x +D .221x -【解答】解:2(21)0x +;|21|0x +;2211x +;2211x --;故选:C .4.如果||a a =,则( )A .a 是正数B .a 是负数C .a 是零D .a 是正数或零【解答】解:根据绝对值的意义,若一个数的绝对值等于它本身,则这个数是非负数,即a 是正数或零. 故选:D .5.若(3)a +的值与4互为相反数,则a 的值为( )A .7-B .72-C .5-D .12【解答】解:(3)a +的值与4互为相反数,340a ∴++=,解得:7a =-.故选:A .6.数轴上,点A 、B 分别表示1-、7,则线段AB 的中点C 表示的数是( )A .2B .3C .4D .5【解答】解:线段AB 的中点C 表示的数为:1732-+=,故选:B . 7.已知,a ,b 是不为0的有理数,且||a a =-,||b b =,||||a b >,那么用数轴上的点来表示a ,b 时,正确的是( )A .B .C .D .【解答】解:||a a =-,||b b =,0a ∴,0b ,||||a b >,∴表示数a 的点到原点的距离比b 到原点的距离大,故选:C .8.数轴上标出若干个点,每相邻两点相距一个单位长度,点A 、B ,C ,D 分别表示整数a ,b ,c ,d ,且6a b c d +++=,则点D 表示的数为( )A .2-B .0C .3D .5【解答】解:设点D 表示的数为x ,则点C 表示的数为3x -,点B 表示的数为4x -,点A 表示的数为7x -, 由题意得,(3)(4)(7)6x x x x +-+-+-=,解得,5x =,故选:D .二、填空题(共6小题,每小题5分,共计30分)9.比较大小:(8)-+ |9|--; 23- 34-(填“>”、“ <”、或“=”符号). 【解答】解:①(8)8-+=-,|9|9-=-,89->-,(8)|9|∴-+>-; ②228||3312-==,339||4412-==,891212<,2334∴->-.故答案为:>;>. 10.绝对值不等于3的非负整数有 .【解答】解:根据绝对值的意义,绝对值不等于3的非负整数有0,1,2,以及大于4正整数. 故答案为:0,1,2,以及大于4正整数.11.如图,把半径为1的圆形纸片放在数轴上,圆形纸片上的A 点对应2,将圆形纸片沿着数轴无滑动的逆时针滚动一周,点A 到达点A '的位置,则点A '表示的数是 .【解答】解:半径为1个单位长度的圆形纸片从2沿数轴向左滚动一周,OA ∴'之间的距离为圆的周长2π=,A '点在2的左边,A ∴'点对应的数是22π-.故答案是:22π-.12.若||4a -=,则a = ;若x x -=,则x = .【解答】解:因为||4a -=,则4a =±;因为x x -=,则0x =;故答案为:4±;0.13.实数a ,b ,c 在数轴上的对应点的位置如图所示,化简||||||b c c a b -+--的结果是 .【解答】解:根据题意得:0a b c <<<,0b c ∴-<,0c a ->,则原式2c b c a b c a =-+-+=-. 故答案为:2c a -.14.在数轴上,点A 表示的数是4x +,点B 表示的数是22x -,且A ,B 两点的距离为8,则x = . 【解答】解:由题意得:|4(22)|8x x +--=|23|8x ∴+=238x ∴+=-或238x +=103x ∴=-或2x =故答案为:103-或2. 三、解答题(共3小题,每小题10分,共计30分)15.把下列各数填入相应的括号内.0.1515515551⋯,0,20||3--,0.4,2π-,24-, 5.6-. 正数集合:{ };无理数集合:{ };负分数集合:{ }.【解答】解:正数集合:{0.1515515551⋯,0.4,;无理数集合:{0.1515515551⋯,}2π-; 负分数集合:20{||3--, 5.6}-. 故答案为:0.1515515551⋯,0.4,0.1515515551⋯,2π-;20||3--, 5.6-. 16.足球比赛中,根据场上攻守形势,守门员会在门前来回跑动,如果乙球门线为基准,向前跑记作正数,返回则记作负数,一段时间内,某守门员的跑动情况记录如下(单位:):10m +,2-,5+,12+,6-,9-,4+,14-.(假定开始计时时,守门员正好在球门线上) (1)守门员最后是否回到球门线上?(2)守门员离开球门线的最远距离达多少米?(3)如果守门员离开球门线的距离超过10m (不包括10)m ,则对方球员挑射极可能造成破门.问:在这一时间段内,对方球员有几次挑射破门的机会?简述理由.【解答】解:(1)根据题意得:102512694140-++--+-=,则守门员最后能回到球门线上;(2)10251225-++=,则守门员离开球门线的最远距离达25米;(3)根据题意得:10,8,13,25,19,10,14,0,则对方球员有4次挑射破门的机会.17.阅读理解:若A、B、C为数轴上三点,若点C到A的距离是点C到B的距离2倍,我们就称点C是【A,B】的好点.例如,如图1,点A表示的数为1-,点B表示的数为2.表示1的点C到点A的距离是2,到点B的距离是1,那么点C是【A,B】的好点;又如,表示0的点D到点A的距离是1,到点B的距离是2,那么点D就不是【A,B】的好点,但点D是【B,A】的好点.知识运用:如图2,M、N为数轴上两点,点M所表示的数为2-,点N所表示的数为4.①在点M和点N中间,数所表示的点是【M,N】的好点;②在数轴上,数和数所表示的点都是【N,M】的好点.【解答】解:①设所求数为x,由题意得--=-,解得2(2)2(4)x xx=;故答案为:2;②设所求的数是y,由题意得,2(2)4--=-,解得:0y=或8+=-或2(2)4y yy y-,故数0和数8-所表示的点都是【N,M】的好点.故答案为:0,8-.。

苏教版数学初一试题及答案

苏教版数学初一试题及答案

苏教版数学初一试题及答案一、选择题(每题2分,共10分)1. 下列哪个数是正整数?A. -3B. 0C. 1D. -1答案:C2. 如果一个数的绝对值是5,那么这个数可能是:A. 5B. -5C. 5或-5D. 无法确定答案:C3. 根据乘法分配律,下列哪个等式是正确的?A. a(b+c) = ab + bcB. a(b-c) = ab - acC. a(b+c) = ab + acD. a(b-c) = ab + bc答案:A4. 一个数的平方根是它本身,这个数可能是:A. 1B. 0C. -1D. 4答案:B5. 若a > 0,b < 0,且|a| > |b|,则a + b的值:A. 一定大于0B. 一定小于0C. 可能大于0也可能小于0D. 无法确定答案:A二、填空题(每题2分,共10分)6. 一个数的相反数是-8,这个数是______。

答案:87. 如果一个数的平方是36,那么这个数是______。

答案:±68. 一个数的立方是-27,这个数是______。

答案:-39. 一个数的绝对值是5,这个数可能是______或______。

答案:5或-510. 一个数的倒数是1/2,这个数是______。

答案:2三、计算题(每题5分,共20分)11. 计算下列各题:(1) (-3) × (-2) = ______;答案:6(2) (-4)² = ______;答案:16(3) √25 = ______;答案:5(4) 2³ - 3 × 2 = ______;答案:5四、解答题(每题15分,共30分)12. 某班有40名学生,其中男生比女生多5人。

求男生和女生各有多少人?答案:设女生人数为x,则男生人数为x+5。

根据题意,x + (x+5) = 40,解得x=17.5,但人数不能为小数,所以题目有误。

13. 某工厂生产一批零件,合格率为95%,已知不合格的零件有20个,求这批零件共有多少个?答案:设这批零件共有x个,不合格率为5%,即0.05x=20,解得x=400。

初中七年级数学试卷苏教版

初中七年级数学试卷苏教版

1. 下列数中,负数是()A. -5B. 0C. 5D. 32. 下列各数中,有理数是()A. √2B. πC. 0.101001D. √93. 已知a=3,b=-2,则a-b的值是()A. 5B. -5C. 1D. -14. 如果a、b是方程2x-3=0的两个根,则a+b的值是()A. 3B. -3C. 0D. 65. 下列各式中,绝对值最小的是()A. |2|B. |-2|C. |0|D. |1|6. 下列各式中,正确的是()A. 3x=0,则x=0B. 3x=0,则x≠0C. 3x=0,则x=±0D. 3x=0,则x=0或x=±07. 如果a+b=0,那么a和b互为()A. 相等B. 相反数C. 相邻整数D. 倍数8. 下列各数中,无理数是()A. √4B. √9C. √16D. √259. 下列各式中,正确的是()A. (-2)^2=4B. (-2)^2=1C. (-2)^3=-4D. (-2)^3=810. 下列各数中,是偶数的是()A. 2B. 3C. 4D. 511. 2的平方根是_________,3的立方根是_________。

12. 下列各数中,负整数是_________,正有理数是_________。

13. 如果a=5,b=-3,那么a-b的值是_________。

14. 下列各式中,绝对值最大的是_________。

15. 如果x是方程2x+3=0的解,那么x的值是_________。

16. 下列各数中,有理数是_________,无理数是_________。

17. 下列各式中,正确的是_________。

18. 如果a+b=0,那么a和b互为_________。

19. 下列各数中,偶数是_________,奇数是_________。

20. 下列各式中,正确的是_________。

三、解答题(共60分)21. (10分)计算下列各式的值:(1)(-3)^2 + (-2)^3(2)√16 - √25(3)2x^2 - 3x + 1,其中x=422. (15分)解下列方程:(1)2x - 5 = 0(2)3(x+2) - 4 = 2x + 623. (15分)已知一元二次方程x^2 - 5x + 6 = 0,求该方程的两个根,并判断它们的符号。

苏教版数学七年级下册期中复习阶梯训练 二元一次方程组

苏教版数学七年级下册期中复习阶梯训练 二元一次方程组

苏教版数学七年级下册期中复习阶梯训练 二元一次方程组(优生加练)一、单选题1.若关于x 、y 的方程组 的解为整数,则满足条件的所有a 的值的和为( ){x +y =2ax +2y =8A .6B .9C .12D .162.自行车的轮胎安装在前轮上行驶3000千米后报废,安装在后轮上,只能行驶2000千米,为了行驶尽可能多的路程,采取在自行车行驶一定路程后,用前后轮调换使用的方法,那么安装在自行车上的这对轮胎最多可行驶多少千米?( )A .2300千米B .2400千米C .2500千米D .2600千米3.利用两块完全一样的长方体木块测量一张桌子的高度,首先按图①所示的方式放置,再交换两木块的位置,按图②所示的方式放置.量的数据如图,则桌子的高度等于( )A .B .C .D .80cm 75cm 70cm 65cm4.小明在拼图时,发现8个一样大小的长方形,恰好可以拼成一个大的长方形如图1;小红看见了,说:“我也来试一试.”结果小红七拼八凑,拼成了如图2那样的正方形,中间还留下了一个洞,恰好是面积为 的小正方形,则每个小长方形的面积为( ) 9cm 2A .135cm 2B .108cm 2C .68cm 2D .60cm 25.我国古代数学家张丘建在《张丘建算经)里,提出了“百钱买百鸡”这个有名的数学问题.用100个钱买100只鸡,公鸡每只五个钱,母鸡每只三个钱,小鸡每个钱三只.问公鸡,小鸡各买了多少只?在这个问题中,小鸡的只数不可能是( )A .87B .84C .81D .786.已知 和 的方程组 的解是,则 和 的方程组 x y {a 1x +b 1y =c 1a 2x +b 2y =c 2{x =3y =4x y的解是 {3a 1x +4b 1y =5c 13a 2x +4b 2y =5c 2()A .B .C .D .{x =3y =4{x =4y =3{x =1y =1{x =5y =57.如图,在一个大长方形中放入六个形状、大小相同的小长方形,所标尺寸如图所示,则图中阴影部分的面积是( )A .16B .44C .96D .1408.小江去商店购买签字笔和笔记本(签字笔的单价相同,笔记本的单价相同).若购买20支签字笔和15本笔记本,则他身上的钱会不足25元;若购买19支签字笔和13本笔记本,则他身上的钱会剩下15元.若小江购买17支签字笔和9本笔记本,则( )A .他身上的钱会不足95元B .他身上的钱会剩下95元C .他身上的钱会不足105元D .他身上的钱会剩下105元9.利用两块相同的长方体木块测量一张桌子的高度.首先按图①方式放置,再交换两木块的位置,按图②方式放置.测量的数据如图,则桌子的高度是( )A .84cmB .85cmC .86cmD .87cm10.对于代数式ax 2﹣2bx﹣c ,当x 取﹣1时,代数式的值为2,当x 取0时,代数式的值为1,当x 取3时,代数式的值为2,则当x 取2时,代数式的值是( )A .1B .3C .4D .5二、填空题11.已知关于 , 的二元一次方程组 的解为 那么关于 、 的二元一x y {ax +by =5bx +ay =6{x =4y =6m n 次方程组 的解为 .{a(m +n)+b(m−n)=5b(m +n)+a(m−n)=612.若关于,的二元一次方程组与有相同的解,则这个x y {ax +by =m cx +dy =n {(a +1)x +(b +2)y =m +2(c +3)x +(d +4)y =n +5解是 .13.若方程组 的解是 ,则方程组 的解是,x = {a 1x +y =c 1a 2x +y =c 2{x =2y =3{a 1x +y =a 1−c 1a 2x +y =a 2−c 2,y = .14.为迎接建国70周年,某商店购进,,三种纪念品共若干件,且,,三种纪念品的数量A B C A B C 之比为8:7:9,一段时间后,根据销售情况,补充三种纪念品后,库存总数量比第一次多200件,且,,三种纪念品的比例为9:10:10,又一段时间后,根据销售情况,再次补充三种纪念品,A B C 库存总数景比第二次多170 件,且,,三种纪念品的比例为7: 6: 6,已知第一次三种纪念A B C 品总数盘不超过1000件,则第一次购进种纪念品 件.A 15.春节即将来临时,某商人抓住商机购进甲、乙、丙三种糖果,已知销售甲糖果的利润率为10%,乙糖果的利润率为20%,丙糖果的利润率为30%,当售出的甲、乙、丙糖果重量之比为 时,商人得到的总利润率为22%;当售出的甲、乙、丙糖果重量之比为 时,商1: 3: 13: 2: 1人得到的总利率为20%.那么当售出的甲、乙、丙糖果重量之比为 时,这个商人得到的总5: 1: 1利润率为 .16.课外活动中,80名学生自由组合分成12组,各组人数分别有5人、7人和8人三种情况,设5人一组的有x 组,7人一组的有y 组,8人一组的有z 组,有下列结论:① ;② ;③ ;④5人一组的最多有5组.{x +y +z =125x +7y +8z =80x =12z +2y =−32z +10其中正确的有 .(把正确结论的序号都填上)三、解答题17.某工厂的一条流水线匀速生产出产品,在有一些产品积压的情况下,经过试验,若安排9人包装,则5小时可以包装完所有产品;若安排6人包装,则需要10小时才能包装完所有产品.假设每个人的包装速度一样,现要在2小时内完成产品包装的任务,问至少需要安排多少人?18.甲、乙两人共同解方程组 .解题时由于甲看错了方程①中的a ,得到方程组{ax +5y =15①4x−by =−2②的解为 ;乙看错了方程②中的b ,得到方程组的 ,试计算a 2019+( b)2020的值. {x =−3y =−1{x =5y =4−11019.已知关于x 、y 的方程组 ,甲由于看错了方程①中的a ,得到方程组的解为{ax +y =5①4x−by =7② ;乙由于看错了方程②中的b ,得到方程组的解为.求原方程组的正确解. {x =3y =5{x =−1y =720.李老师让全班同学们解关于x 、y 的方程组 (其中a 和b 代表确定的数),甲、{2x +ay =1①bx−y =7②乙两人解错了,甲看错了方程①中的a ,解得 ,乙看错了②中的b ,解得 ,请{x =1y =−4{x =−1y =1你求出这个方程组的符合题意解.21.4月9日上午8时,2017 徐州国际马拉松赛鸣枪开跑,一名 岁的男子带着他的两个孩子一同参加了比赛,下面是两个孩子与记者的对话:根据对话内容,请你用方程的知识帮记者求出哥哥和妹妹的年龄.22.解关于x 、y 的方程组 时,甲符合题意地解得方程组的解为 ,乙因为把{ax +by =93x−cy =−2{x =2y =4c 抄错了,在计算无误的情况下解得方程组的解为 ,求a 、b 、c 的值. {x =4y =−1四、综合题23.已知关于x ,y 的方程组的解是 {a 1x +b 1y =c 1a 2x +b 2y =c 2{x =4y =−6(1)若把x 换成m ,y 换成n ,得到的关于m ,n 的方程组为 ,则这个方程组{a 1m +b 1n =c 1a 2m +b 2n =c 2的解是 .{m =_______n =_______(2)若把x 换成2x ,y 换成3y ,得到方程组,则 ,所以这个{2a 1x +3b 1y =c 12a 2x +3b 2y =c 2{2x =_______3y =_______方程组的解是 .(3)根据以上的方法解方程组 {2a 1x−b 1y =5c 12a 2x−b 2y =5c 224.规定:形如关于x ,y 的方程x+ky=b 与kx+y=b 的两个方程互为共轭二元一次方程,其中k≠1.由这两个方程组成的方程组 叫做共轭方程组.{x +ky =bkx +y =b (1)方程3x+y=5的共轭二元一次方程是 ;(2)若关于x ,y 的方程组 为共轭方程组,则a=  ,b= .{x +(1−a)y =b +2(2a−2)x +y =4−b (3)若方程x+ky=b 中x ,y 的值满足下列表格: x-10y 02则这个方程的共轭二元一次方程是  .25.数轴上有两个动点M ,N ,如果点M 始终在点N 的左侧,我们称作点M 是点N 的“追赶点”.如图,数轴上有2个点A ,B ,它们表示的数分别为-3,1,已知点M 是点N 的“追赶点”,且M ,N 表示的数分别为m ,n .(1)由题意得:点A 是点B 的“追赶点”,AB=1-(-3)=4(AB 表示线段AB 的长,以下相同);类似的,MN= .(2)在A ,M ,N 三点中,若其中一个点是另外两个点所构成线段的中点,请用含m 的代数式来表示n .(3)若AM=BN ,MN= AM ,求m 和n 值.43答案解析部分1.【答案】C2.【答案】B3.【答案】B4.【答案】A5.【答案】A6.【答案】D7.【答案】B8.【答案】B9.【答案】B10.【答案】A11.【答案】{m =5n =−112.【答案】{x =1y =1213.【答案】-1;-314.【答案】32015.【答案】18%16.【答案】①②③④17.【答案】解:设原有产品m ,每个人的包装速度为x ,每小时流水线生产的产品为y. 则 ,解得: {5×9x =m +5y 10×6x =m +10y {y =3x m =30x若需要n 人刚好完成,则2nx=m+y ,n =m +2y 2x =30x +6x 2x =18∴至少需要18人18.【答案】解:将 代入方程组中的4x−by =−2得:−12+b =−2,即b =10;{x =−3y =−1将代入方程组中的ax +5y =15得:5a +20=15,即a =−1;{x =5y =4当a =−1,b =10时,a 2019+( b)2020=-1+1=0.−11019.【答案】解:由题意可得:把代入②得: {x =3y =512−5b =7解得: ,b =1把 代入①得: {x =−1y =7−a +7=5解得: a =2∴原方程组为,{2x +y =54x−y =7解这个方程组得:.{x =2y =120.【答案】解:由题意可知,把代入方程②中,得b+4=7,解得b=3;{x =1y =−4把 代入方程①中,得-2+a=1,解得a=3;{x =−1y =1把 代入方程组,可得 ,{a =3b =3{2x +3y =113x−y =72解得: ,{x =2y =−1∴原方程组的解应为.{x =2y =−121.【答案】解:设今年妹妹的年龄为x 岁,哥哥的年龄为y 岁,根据题意得:{x +y =163(x +2)+(y +2)=34+2解得:.{x =6y =10答:今年妹妹6岁,哥哥1022.【答案】解:把 代入方程 ,得:x =2,y =43x−cy =−2 ,6−4c =−2解得: .c =2把 分别代入方程 ,得:{x =2y =4,,,{x =4y =−1ax +by =9,{2a+4b =94a−b =9解得.∴{a =52b =1所以, .a =52,b =1,c =2故答案为: .a =52,b =1,c =223.【答案】(1){m =4n =−6(2); {2x =43y =−6{x =2y =−2(3)解:将方程组 ,变形为 {2a 1x−b 1y =5c 12a 2x−b 2y =5c 2{25a 1x−15b 1y =c 125a 2x−25b 2y =c 2∴ ,解得 ,{25x =4−15y =−6{x =10y =30∴方程组的解为 {2a 1x−b 1y =5c 12a 2x−b 2y =5c 2{x =10y =3024.【答案】(1)x+3y=5(2)1;1(3) x+y=-1−1225.【答案】(1)n﹣m(2)解:分三种情况讨论:①M 是A 、N的中点,∴n+(-3)=2m ,∴n=2m+3;②A 是M 、N 点中点时,m+n=-3×2,∴n=﹣6﹣m;③N 是M 、A 的中点时,-3+m=2n ,∴n ;=−3+m2(3)解:∵AM=BN ,∴|m+3|=|n﹣1|.∵MN AM ,=43∴n﹣m |m+3|,=43∴ 或 或 或,{m +3=n−13n−3m =4m +12{m +3=n−13n−3m =−4m−12{m +3=−n−13n−3m =4m +12{m +3=−n−13n−3m =−4m−12∴ 或 或 或 .{m =0n =4{m =−6n =−2{m =−95n =−15{m =3n =−5∵n >m ,∴ 或 或 .{m =0n =4{m =−6n =−2{m =−95n =−15。

苏教版初中初一数学试卷

苏教版初中初一数学试卷

一、选择题(每题3分,共30分)1. 下列各数中,负数是()。

A. -3B. 3C. 0D. -5.22. 如果a=2,那么-2a等于()。

A. -4B. 4C. 0D. 23. 在数轴上,-2和2两点之间的距离是()。

A. 4B. 2C. 0D. 14. 下列各数中,无理数是()。

A. πB. √4C. 0.5D. 35. 一个长方形的长是5厘米,宽是3厘米,它的周长是()。

A. 8厘米B. 10厘米C. 15厘米D. 18厘米6. 如果一个数的相反数是它本身,那么这个数是()。

A. 0B. 1C. -1D. 27. 下列各式中,正确的是()。

A. 2×3=6B. 2×(-3)=-6C. 2×3=-6D. 2×(-3)=68. 如果a=-3,那么|-a|的值是()。

A. 3B. -3C. 6D. 09. 下列各数中,质数是()。

A. 4B. 6C. 8D. 710. 一个圆的半径是r,那么它的直径是()。

A. 2rB. rC. 4rD. r/2二、填空题(每题3分,共30分)1. 有理数a和b,如果a+b=0,那么a和b互为()。

2. 一个数的绝对值是5,那么这个数可能是()或()。

3. 如果|a|=5,那么a的相反数是()。

4. 在数轴上,-3和3两点之间的距离是()。

5. 一个数的倒数是-1/3,那么这个数是()。

6. 下列各数中,有理数是()。

7. 下列各数中,无理数是()。

8. 一个长方形的长是8厘米,宽是4厘米,它的面积是()。

9. 一个圆的半径是3厘米,那么它的周长是()。

10. 下列各式中,正确的是()。

三、解答题(每题10分,共40分)1. 计算下列各式的值:(1)-3 + 5 - 2(2)2×(-3) + 4×2 - 12. 用数轴表示下列各数:(1)-2(2)53. 求下列各数的相反数:(1)3(2)-54. 判断下列各数是否为有理数,并说明理由:(1)√2(2)0.333...四、应用题(每题10分,共20分)1. 一辆汽车从甲地出发,以每小时60公里的速度行驶,3小时后到达乙地。

苏教版七年级数学下册 期中复习《选择题》专练(含答案)

苏教版七年级数学下册 期中复习《选择题》专练(含答案)

七年级数学期中复习《选择题》专练一.选择题(共30小题)1.过五边形的一个顶点的对角线共有()条.A.1 B.2 C.3 D.42.小晶有两根长度为5cm、8cm的木条,她想钉一个三角形的木框,现在有长度分别为2cm、3cm、8cm、15cm的木条供她选择,那她第三根应选择()A.2cm B.3cm C.8cm D.15cm3.下列从左到右的变形,属于因式分解的是()A.(a+4)(a﹣4)=a2﹣16 B.a2﹣2a﹣1=a(a﹣2)﹣1C.8m2n3=2m2•4n2D.m2﹣2m+1=(m﹣1)24.如图,下列条件中:(1)∠B+∠BAD=180°;(2)∠1=∠2;(3)∠3=∠4;(4)∠B =∠5;能判定AB∥CD的条件个数有()A.1个B.2个C.3个D.4个5.如图,点E在BC的延长线上,下列条件中能判断AB∥CD的是()A.∠3=∠4 B.∠D=∠DCE C.∠B=∠D D.∠1=∠26.如图,AB∥CD.一副三角尺按如图所示放置,∠AEG=20度,则∠HFD为()A.25°B.35°C.55°D.45°7.如图,直线AB∥CD,点E在CD上,点O、点F在AB上,∠EOF的角平分线OG交CD于点G,过点F作FH⊥OE于点H,已知∠OGD=148°,则∠OFH的度数为()A.26°B.32°C.36°D.42°8.下列说法,其中错误的有()①相等的两个角是对顶角②若∠1+∠2=180°,则∠1与∠2互为邻补角③同位角相等④垂线段最短⑤同一平面内,两条直线的位置关系有:相交、平行和垂直⑥过直线外一点,有且只有一条直线与这条直线平行A.1个B.2个C.3个D.4个9.以下四种沿AB折叠的方法中,由相应条件不一定能判定纸带两条边线a,b互相平行的是()A.展开后测得∠1=∠2B.展开后测得∠1=∠2且∠3=∠4C.测得∠1=∠2D.测得∠1=∠210.要求画△ABC的边AB上的高,下列画法中,正确的是()A.B.C.D.11.如图,∠ABC=∠ACB,AD,BD,CD分别平分△ABC的外角∠EAC、内角∠ABC、外角∠ACF.以下结论:①AD∥BC;②∠ACB=2∠ADB;③DB平分∠ADC;④∠ADC=90°﹣∠ABD;⑤∠BDC∠BAC.其中正确的结论有()A.1个B.2个C.3个D.4个12.下列条件:①∠A﹣∠B=∠C;②∠A:∠B:∠C=2:3:5;③∠A∠B∠C;④∠A=∠B=2∠C;⑤∠A=∠B∠C,其中能确定△ABC为直角三角形的条件有()A.2个B.3个C.4个D.5个13.如图,在△ACB中,∠ACB=90°,∠A=24°,D是AB上一点.将△ABC沿CD折叠,使B点落在AC边上的B′处,则∠ADB′的度数为()A.42°B.40°C.30°D.24°14.若2x=3,4y=5,则2x+2y的值为()A.15 B.﹣2 C.D.15.如果a=(﹣2019)0,b=(﹣0.1)﹣1,c=()﹣2,那么a、b、c三数的大小为()A.a>b>c B.c>a>b C.a>c>b D.c>b>a16.人体中红细胞的直径约为0.0000077m,用科学记数法表示该数据为()A.0.77×10﹣6B.0.77×10﹣7C.7.7×10﹣6D.7.7×10﹣717.如果等式(2x﹣3)x+3=1,则等式成立的x的值的个数为()A.1 B.2 C.3 D.418.下列运算正确的是()A.3x3•5x2=15x6 B.(﹣3x)2•4x3=﹣12x5C.4y•(﹣2xy2)=﹣8xy3 D.(﹣2a)3•(﹣3a)2=﹣54a519.长方形的长是1.6×103cm,宽是5×102cm,则它的面积是()A.8×104cm2B.8×106cm2C.8×105cm2D.8×107cm2 20.计算(﹣4m2)•(3m+2)的结果是()A.﹣12m3+8m2B.12m3﹣8m2C.﹣12m3﹣8m2D.12m3+8m2 21.等式(x﹣2)0=1成立的条件是()A.x≠﹣2 B.x≠2 C.x≤﹣2 D.x≥﹣222.如图,正方形卡片A类,B类和长方形卡片C类若干张,如果要拼一个长为(a+2b),宽为(2a+b)的大长方形,则需要C类卡片张数为()A.2 B.3 C.4 D.523.如图,用代数式表示阴影部分面积为()A.ac+(b﹣c)c B.(a﹣c)(b﹣c)C.ac+bc D.a+b+2c(a﹣c)+(b﹣c)24.若4a2+12ab+m是关于a,b的完全平方式,则m等于()A.3b2B.9b2C.36b2D.9b425.下列乘法中,能应用平方差公式的是()A.(﹣x+y)(x﹣y)B.(a2+x)(a﹣x)C.(a2﹣1)(﹣a2﹣1)D.(﹣a2﹣b2)(a2+b2)26.杨辉三角形,又称贾宪三角形帕斯卡三角形,是二项式系数在三角形中的一种几何排列,在我国南宋数学家杨辉所著的《详解九章算术》(1261年)一书中用如图的三角形解释二项和的乘方规律观察下列各式及其展开式:请你猜想(a+b)10展开式的第三项的系数是()A.36 B.45 C.55 D.6627.数形结合是初中数学重要的思想方法,下图就是用几何图形描述了一个重要的数学公式,这个公式是()A.a2﹣b2=(a+b)(a﹣b)B.(a﹣b)2=a2﹣2ab+b2C.a(a﹣b)=a2﹣ab D.(a﹣b)2=a2﹣b228.从边长为a的大正方形纸板挖去一个边长为b的小正方形纸板后,将其裁成四个相同的等腰梯形(如图甲),然后拼成一个平行四边形(如图乙),那么通过计算两个图形阴影部分的面积,可以验证成立的公式为()A.(a﹣b)2=a2﹣b2B.(a+b)2=a2+2ab+b2C.(a﹣b)2=a2﹣2ab+b2D.(a+b)(a﹣b)=a2﹣b229.已知x﹣y=3,y﹣z=2,x+z=4,则代数式x2﹣z2的值是()A.9 B.18 C.20 D.2430.已知:a=﹣226x+2017,b=﹣226x+2018,c=﹣226x+2019,请你巧妙的求出代数式a2+b2+c2﹣ab﹣bc﹣ca的值()A.3 B.2 C.1 D.0答案与解析一.选择题(共30小题)1.(2019秋•江岸区期中)过五边形的一个顶点的对角线共有()条.A.1 B.2 C.3 D.4【分析】直接利用多边形的性质画出对角线,即可求解.【解析】如图所示:过五边形的一个顶点可作2条对角线.故选:B.2.(2019春•铜山区期中)小晶有两根长度为5cm、8cm的木条,她想钉一个三角形的木框,现在有长度分别为2cm、3cm、8cm、15cm的木条供她选择,那她第三根应选择()A.2cm B.3cm C.8cm D.15cm【分析】设第三根木条的长度为xcm,再由三角形的三边关系即可得出结论.【解析】设第三根木条的长度为xcm,则8﹣5<x<8+5,即3<x<13.故选:C.3.(2019春•高邮市期中)下列从左到右的变形,属于因式分解的是()A.(a+4)(a﹣4)=a2﹣16 B.a2﹣2a﹣1=a(a﹣2)﹣1C.8m2n3=2m2•4n2D.m2﹣2m+1=(m﹣1)2【分析】根据因式分解的意义(把一个多项式化成几个整式的积的形式,这个过程叫因式分解)逐个判断即可.【解析】A、是整式乘法,不是因式分解,故本选项不符合题意;B、不是因式分解,故本选项不符合题意;C、不是因式分解,故本选项不符合题意;D、是因式分解,故本选项符合题意;故选:D.4.(2019春•徐州期中)如图,下列条件中:(1)∠B+∠BAD=180°;(2)∠1=∠2;(3)∠3=∠4;(4)∠B=∠5;能判定AB∥CD的条件个数有()A.1个B.2个C.3个D.4个【分析】根据平行线的判定定理,(3)(4)能判定AB∥CD.【解析】(1)∠B+∠BCD=180°,能判定AD∥BC,则不能判定AB∥CD;(2)∠1=∠2,能判定AD∥BC,所不能判定AB∥CD;(3)∠3=∠4,内错角相等,两直线平行,则能判定AB∥CD;(4)∠B=∠5,同位角相等,两直线平行,则能判定AB∥CD.满足条件的有(3),(4).故选:B.5.(2019春•秦淮区校级期中)如图,点E在BC的延长线上,下列条件中能判断AB∥CD 的是()A.∠3=∠4 B.∠D=∠DCE C.∠B=∠D D.∠1=∠2【分析】根据平行线的判定定理对四个选项进行逐一分析即可.【解析】A、由∠3=∠4可以判定AD∥BC,不能判断AB∥CD,故本选项错误;B、由∠D=∠DCE可以判定AD∥BC,不能判断AB∥CD,故本选项错误;C、由∠B=∠D不能判断AB∥CD,故本选项错误;D、由∠1=∠2可以判定AB∥CD,依据是“内错角相等,两直线平行”,故本选项正确;故选:D.6.(2019春•如皋市期中)如图,AB∥CD.一副三角尺按如图所示放置,∠AEG=20度,则∠HFD为()A.25°B.35°C.55°D.45°【分析】过点G作AB平行线交EF于P,根据平行线的性质求出∠EGP,求出∠PGF,根据平行线的性质、平角的概念计算即可.【解析】过点G作AB平行线交EF于P,由题意易知,AB∥GP∥CD,∴∠EGP=∠AEG=20°,∴∠PGF=70°,∴∠GFC=∠PGF=70°,∴∠HFD=180°﹣∠GFC﹣∠GFP﹣∠EFH=35°.故选:B.7.(2019春•相城区期中)如图,直线AB∥CD,点E在CD上,点O、点F在AB上,∠EOF的角平分线OG交CD于点G,过点F作FH⊥OE于点H,已知∠OGD=148°,则∠OFH的度数为()A.26°B.32°C.36°D.42°【分析】依据平行线的性质即可得到∠GOB的度数,再根据角平分线即可得出∠HOF的度数,依据三角形内角和定理即可得到∠OFH的度数.【解析】∵AB∥CD,∠OGD=148°,∴∠GOF=32°,又∵GO平分∠EOF,∴∠HOF=2∠GOB=64°,∵FH⊥OE于点H,∴∠OFH=90°﹣64°=26°,故选:A.8.(2019春•海安县期中)下列说法,其中错误的有()①相等的两个角是对顶角②若∠1+∠2=180°,则∠1与∠2互为邻补角③同位角相等④垂线段最短⑤同一平面内,两条直线的位置关系有:相交、平行和垂直⑥过直线外一点,有且只有一条直线与这条直线平行A.1个B.2个C.3个D.4个【分析】根据对顶角,同位角,邻补角定义,垂线的性质,平行公理逐个判断即可.【解析】相等的两个角不一定是对顶角,如图:∠1=∠2,但不是对顶角;故①错误;若∠1+∠2=180°,则∠1与∠2不一定是邻补角,如图:∠A+∠B=180°,但∠A和∠B不是邻补角,故②错误;同位角不一定相等,如图:∠1和∠2是同位角,但是∠1和∠2不相等,故③错误;垂线段最短,故④正确;同一平面内,两条直线的位置关系有:相交和平行,故⑤错误;过直线外一点,有且只有一条直线与这条直线平行,故⑥正确;即错误的有4个,故选:D.9.(2019春•吴江区期中)以下四种沿AB折叠的方法中,由相应条件不一定能判定纸带两条边线a,b互相平行的是()A.展开后测得∠1=∠2B.展开后测得∠1=∠2且∠3=∠4C.测得∠1=∠2D.测得∠1=∠2【分析】根据平行线的判定定理,进行分析,即可解答.【解析】A、∠1=∠2,根据内错角相等,两直线平行进行判定,故正确;B、∵∠1=∠2且∠3=∠4,由图可知∠1+∠2=180°,∠3+∠4=180°,∴∠1=∠2=∠3=∠4=90°,∴a∥b(内错角相等,两直线平行),故正确;C、测得∠1=∠2,∵∠1与∠2即不是内错角也不是同位角,∴不一定能判定两直线平行,故错误;D、∠1=∠2,根据同位角相等,两直线平行进行判定,故正确.故选:C.10.(2019春•大丰区期中)要求画△ABC的边AB上的高,下列画法中,正确的是()A.B.C.D.【分析】作哪一条边上的高,即从所对的顶点向这条边或者条边的延长线作垂线即可.【解析】过点C作AB边的垂线,正确的是C.故选:C.11.(2019春•徐州期中)如图,∠ABC=∠ACB,AD,BD,CD分别平分△ABC的外角∠EAC、内角∠ABC、外角∠ACF.以下结论:①AD∥BC;②∠ACB=2∠ADB;③DB平分∠ADC;④∠ADC=90°﹣∠ABD;⑤∠BDC∠BAC.其中正确的结论有()A.1个B.2个C.3个D.4个【分析】根据角平分线定义得出∠ABC=2∠ABD=2∠DBC,∠EAC=2∠EAD,∠ACF =2∠DCF,根据三角形的内角和定理得出∠BAC+∠ABC+∠ACB=180°,根据三角形外角性质得出∠ACF=∠ABC+∠BAC,∠EAC=∠ABC+∠ACB,根据已知结论逐步推理,即可判断各项.【解析】∵AD平分∠EAC,∴∠EAC=2∠EAD,∵∠EAC=∠ABC+∠ACB,∠ABC=∠ACB,∴∠EAD=∠ABC,∴AD∥BC,∴①正确;∵AD∥BC,∴∠ADB=∠DBC,∵BD平分∠ABC,∠ABC=∠ACB,∴∠ABC=∠ACB=2∠DBC,∴∠ACB=2∠ADB,∴②正确;∵BD平分∠ABC,∴∠ABD=∠DBC,∵∠ADB=∠DBC,∠ADC=90°∠ABC,∴∠ADB不等于∠CDB,∴③错误;∵AD平分∠EAC,CD平分∠ACF,∴∠DAC∠EAC,∠DCA∠ACF,∵∠EAC=∠ACB+∠ACB,∠ACF=∠ABC+∠BAC,∠ABC+∠ACB+∠BAC=180°,∴∠ADC=180°﹣(∠DAC+∠ACD)=180°(∠EAC+∠ACF)=180°(∠ABC+∠ACB+∠ABC+∠BAC)=180°(180°+∠ABC)=90°∠ABC,∴④正确;∠BDC=∠DCF﹣∠DBF∠ACF∠ABC∠BAC,∴⑤正确,故选:D.12.(2019春•常州期中)下列条件:①∠A﹣∠B=∠C;②∠A:∠B:∠C=2:3:5;③∠A∠B∠C;④∠A=∠B=2∠C;⑤∠A=∠B∠C,其中能确定△ABC为直角三角形的条件有()A.2个B.3个C.4个D.5个【分析】根据三角形内角和定理、直角三角形的定义解答.【解析】①∵∠A﹣∠B=∠C,∴∠A=∠B+∠C,∴∠A=90°,即△ABC为直角三角形;②设∠A、∠B、∠C分别为2x、3x、5x,由三角形内角和定理得,2x+3x+5x=180°,解得,x=18°,∠C=5x=90°,即△ABC为直角三角形;③∠A∠B∠C,则∠C=3∠A,∠B=2∠A,由三角形内角和定理得,∠A+2∠A+3∠A=180°,解得,∠A=30°,∴∠C=3∠A=90°,即△ABC为直角三角形;④∠A=∠B=2∠C,由三角形内角和定理得,2∠C+2∠C+∠C=180°,解得,∠C=36°,∠A=∠B=2∠C=72°,即△ABC不是直角三角形;⑤∠A=∠B∠C,由三角形内角和定理得,∠C∠C+∠C=180°,解得,∠C=90°,即△ABC是直角三角形;故选:C.13.(2019春•江阴市期中)如图,在△ACB中,∠ACB=90°,∠A=24°,D是AB上一点.将△ABC沿CD折叠,使B点落在AC边上的B′处,则∠ADB′的度数为()A.42°B.40°C.30°D.24°【分析】先根据三角形内角和定理求出∠B的度数,再由图形翻折变换的性质得出∠CB′D的度数,再由三角形外角的性质即可得出结论.【解析】∵在Rt△ACB中,∠ACB=90°,∠A=24°,∴∠B=90°﹣24°=66°,∵△CDB′由△CDB折叠而成,∴∠CB′D=∠B=66°,∵∠CB′D是△AB′D的外角,∴∠ADB′=∠CB′D﹣∠A=66°﹣24°=42°.故选:A.14.(2019秋•崇川区校级期中)若2x=3,4y=5,则2x+2y的值为()A.15 B.﹣2 C.D.【分析】根据幂的乘方与同底数幂的乘法法则解答即可.【解析】∵2x=3,4y=22y=5,∴2x+2y=2x•22y=3×5=15.故选:A.15.(2019春•天宁区校级期中)如果a=(﹣2019)0,b=(﹣0.1)﹣1,c=()﹣2,那么a、b、c三数的大小为()A.a>b>c B.c>a>b C.a>c>b D.c>b>a【分析】将三个数化简后即可求出答案.【解析】a=1,b=()﹣1=﹣10,c=()2,∴a>c>b,故选:C.16.(2019春•玄武区期中)人体中红细胞的直径约为0.0000077m,用科学记数法表示该数据为()A.0.77×10﹣6B.0.77×10﹣7C.7.7×10﹣6D.7.7×10﹣7【分析】绝对值小于1的正数也可以利用科学记数法表示,一般形式为a×10﹣n,与较大数的科学记数法不同的是其所使用的是负指数幂,指数由原数左边起第一个不为零的数字前面的0的个数所决定.【解析】0.0000077=7.7×10﹣6.故选:C.17.(2019春•秦淮区期中)如果等式(2x﹣3)x+3=1,则等式成立的x的值的个数为()A.1 B.2 C.3 D.4【分析】由于任何非0数的0次幂等于1和1的任何指数为1,所以分两种情况讨论.【解析】当x+3=0时,x=﹣3;当2x﹣3=1时,x=2.∴x的值为2,﹣3,当x=1时,等式(2x﹣3)x+3=1,故选:C.18.(2019春•淮安期中)下列运算正确的是()A.3x3•5x2=15x6 B.(﹣3x)2•4x3=﹣12x5C.4y•(﹣2xy2)=﹣8xy3 D.(﹣2a)3•(﹣3a)2=﹣54a5【分析】根据单项式乘单项式,幂的乘方和积的乘方分别求出每个式子的值,再判断即可.【解析】A、结果是15x5,故本选项错误;B、结果是36x5,故本选项错误;C、结果是﹣8xy3 ,故本选项正确;D、结果是﹣72a5,故本选项错误;故选:C.19.(2019春•东台市期中)长方形的长是1.6×103cm,宽是5×102cm,则它的面积是()A.8×104cm2B.8×106cm2C.8×105cm2D.8×107cm2【分析】根据长方形的长是1.6×103cm,宽是5×102cm,根据面积=长×宽列式,然后利用单项式的乘法法则和同底数幂的乘法的性质计算.【解析】(1.6×103)×(5×102)=(1.6×5)×(103×102)=8×105(cm2).故选:C.20.(2019秋•崇川区校级期中)计算(﹣4m2)•(3m+2)的结果是()A.﹣12m3+8m2B.12m3﹣8m2C.﹣12m3﹣8m2D.12m3+8m2【分析】直接利用单项式乘以多项式运算法则求出即可.【解析】(﹣4m2)•(3m+2)=﹣12m3﹣8m2.故选:C.21.(2020春•亭湖区校级期中)等式(x﹣2)0=1成立的条件是()A.x≠﹣2 B.x≠2 C.x≤﹣2 D.x≥﹣2【分析】根据零指数幂的概念列出不等式,解不等式即可.【解析】由题意得,x﹣2≠0,解得,x≠2,故选:B.22.(2019春•沭阳县期中)如图,正方形卡片A类,B类和长方形卡片C类若干张,如果要拼一个长为(a+2b),宽为(2a+b)的大长方形,则需要C类卡片张数为()A.2 B.3 C.4 D.5【分析】多项式与多项式相乘,先用一个多项式的每一项乘另外一个多项式的每一项,再把所得的积相加.【解析】大长方形面积=(a+2b)•(2a+b)=2a2+5ab+2b2所以大长方形是由2个A类正方形、5个C类长方形、2个B类正方形组成,故选:D.23.(2018秋•崇川区校级期中)如图,用代数式表示阴影部分面积为()A.ac+(b﹣c)c B.(a﹣c)(b﹣c)C.ac+bc D.a+b+2c(a﹣c)+(b﹣c)【分析】先表示出阴影部分的面积,再根据整式的运算法则进行化简,最后判断即可.【解析】阴影部分的面积是ac+bc﹣c2,A、ac+(b﹣c)c=ac+bc﹣c2,故本选项符合题意;B、(a﹣c)(b﹣c)是空白部分的面积,不是阴影部分的面积,故本选项不符合题意;C、ac+bc不是阴影部分的面积,故班选项不符合题意;D、a+b+2c(a﹣c)+b﹣c=a+2b﹣2c2﹣c不能阴影部分的面积,故本选项不符合题意;故选:A.24.(2019秋•崇川区校级期中)若4a2+12ab+m是关于a,b的完全平方式,则m等于()A.3b2B.9b2C.36b2D.9b4【分析】利用完全平方公式的结构特征判断即可求出m的值.【解析】∵4a2+12ab+m是关于a,b的完全平方式,∴m=9b2,故选:B.25.(2019秋•海安市期中)下列乘法中,能应用平方差公式的是()A.(﹣x+y)(x﹣y)B.(a2+x)(a﹣x)C.(a2﹣1)(﹣a2﹣1)D.(﹣a2﹣b2)(a2+b2)【分析】利用平方差公式的结构特征判断即可.【解析】能用平方差公式计算的是(a2﹣1)(﹣a2﹣1)=﹣(a2﹣1)(a2+1),相同项是a2,相反项是1.故选:C.26.(2019秋•江都区期中)杨辉三角形,又称贾宪三角形帕斯卡三角形,是二项式系数在三角形中的一种几何排列,在我国南宋数学家杨辉所著的《详解九章算术》(1261年)一书中用如图的三角形解释二项和的乘方规律观察下列各式及其展开式:请你猜想(a+b)10展开式的第三项的系数是()A.36 B.45 C.55 D.66【分析】从第3行开始依次确定第三个数,即是完全平方公式中的第三项的系数,找到规律即可.【解析】依据规律可得到:(a+n)10的展开式的系数是杨辉三角第11行的数,第3行第三个数为1,第4行第三个数为3=1+2,第5行第三个数为6=1+2+3,…第11行第三个数为:1+2+3+ (9)故选:B.27.(2019秋•崇川区校级期中)数形结合是初中数学重要的思想方法,下图就是用几何图形描述了一个重要的数学公式,这个公式是()A.a2﹣b2=(a+b)(a﹣b)B.(a﹣b)2=a2﹣2ab+b2C.a(a﹣b)=a2﹣ab D.(a﹣b)2=a2﹣b2【分析】分别表示出图1和图2中的阴影面积,二者相等,比较各选项,即可得答案.【解析】图1中阴影部分面积等于大正方形的面积a2,减去小正方形的面积b2,即a2﹣b2;图2中阴影部分为长等于(a+b),宽等于(a﹣b)的长方形,其面积等于(a+b)(a﹣b),二者面积相等,则有a2﹣b2=(a+b)(a﹣b).比较各选项,可知只有A符合题意.故选:A.28.(2019秋•岳麓区校级期中)从边长为a的大正方形纸板挖去一个边长为b的小正方形纸板后,将其裁成四个相同的等腰梯形(如图甲),然后拼成一个平行四边形(如图乙),那么通过计算两个图形阴影部分的面积,可以验证成立的公式为()A.(a﹣b)2=a2﹣b2B.(a+b)2=a2+2ab+b2C.(a﹣b)2=a2﹣2ab+b2D.(a+b)(a﹣b)=a2﹣b2【分析】分别表示出图甲和图乙中阴影部分的面积,二者相等,从而可得答案.【解析】图甲中阴影部分的面积为:a2﹣b2,图乙中阴影部分的面积为:(a+b)(a﹣b)∵甲乙两图中阴影部分的面积相等∴a2﹣b2=(a+b)(a﹣b)∴可以验证成立的公式为(a+b)(a﹣b)=a2﹣b2故选:D.29.(2019春•金坛区期中)已知x﹣y=3,y﹣z=2,x+z=4,则代数式x2﹣z2的值是()A.9 B.18 C.20 D.24【分析】直接利用平方差公式将原式变形得出答案.【解析】∵x﹣y=3,y﹣z=2,x+z=4,∴x﹣y+y﹣z=5,∴x﹣z=5,∴x2﹣z2=(x﹣z)(x+z)=20.故选:C.30.(2019春•东台市期中)已知:a=﹣226x+2017,b=﹣226x+2018,c=﹣226x+2019,请你巧妙的求出代数式a2+b2+c2﹣ab﹣bc﹣ca的值()A.3 B.2 C.1 D.0【分析】根据a=﹣226x+2017,b=﹣226x+2018,c=﹣226x+2019,可以求得a﹣b、b ﹣c、a﹣c的值,然后将所求式子变形再因式分解即可解答本题.【解析】∵a=﹣226x+2017,b=﹣226x+2018,c=﹣226x+2019,∴a﹣b=﹣1,b﹣c=﹣1,a﹣c=﹣2,∴a2+b2+c2﹣ab﹣bc﹣ca=3,故选:A.21。

苏教版七年级数学下册 复习《幂的运算》

苏教版七年级数学下册 复习《幂的运算》

下学期七年级数学复习《幂的运算》一.选择题(共10小题)1.下列运算正确的是()A.x3+x3=2x6B.(﹣x5)4=x20C.x m•x n=x mn D.x8÷x2=x42.计算3n•(﹣9)•3n+2的结果是()A.﹣32n﹣2B.﹣3n+4C.﹣32n+4D.﹣3n+63.若(a m b n)3=a9b15,则m、n的值分别为()A.9;5 B.3;5 C.5;3 D.6;124.计算(a3)2•a2的结果是()A.a7B.a8C.a10 D.a115.下列运算中,正确的是()A.x2+x4=x6B.(﹣x3)2=x6 C.2a+3b=5ab D.x6÷x3=x2(x≠0)6.若x,y均为正整数,且2x+1•4y=128,则x+y的值为()A.3 B.5 C.4或5 D.3或4或57.若10y=5,则102﹣2y等于()A.75 B.4 C.﹣5或5 D.8.计算(﹣a x﹣1)4结果是()A.a4x﹣1B.﹣a4x﹣4C.a4x﹣4D.﹣a4x﹣19.已知:2m=1,2n=3,则2m+2n=()A.9 B.8 C.7 D.610.我们知道:1纳米=米.一个纳米粒子的直径是35纳米,它等于()米(请用科学记数法表示).A.3.5×10﹣9B.3.5×10﹣10C.35×10﹣9D.3.5×10﹣8二.填空题(共8小题)11.若(m﹣3)m=1成立,则m的值为.12.已知x a=3,x b=5,则x2a﹣b=.13.若a2n=5,b2n=16,则(ab)n=.14.计算:(2ab2)3=.15.若0.000204用科学记数法可以记为2.04×10n,则n=.16.当3m+2n=4时,则8m•4n=.17.已知实数a,b满足a+b=2,a﹣b=5,则(a+b)3•(a﹣b)3的值是.18.一批志愿者组成了一个“爱心团队”,专门到全国各地巡回演出,以募集爱心基金.第一个月他们就募集到资金1万元.随着影响的扩大,第n(n≥2)个月他们募集到的资金都将会比上个月增加20%,则当该月所募集到的资金首次完成突破10万元时,相应的n的值为.(参考数据:1.25≈2.5,1.26≈3.0,1.27≈3.6)三.解答题(共8小题)19.(1)已知a x=5,a x+y=25,求a x+a y的值;(2)已知10α=5,10β=6,求102α+2β的值.20.阅读材料:(1)1的任何次幂都为1;(2)﹣1的奇数次幂为﹣1;(3)﹣1的偶数次幂为1;(4)任何不等于零的数的零次幂为1.请问当x为何值时,代数式(2x+3)x+2016的值为1.21.若m、n满足|m﹣3|+(n+2016)2=0,求m﹣1+n0的值.22.已知:2x+3y﹣4=0,求4x•8y的值.23.(1)若x n=2,y n=3,求(x2y)2n的值.(2)若3a=6,9b=2,求32a﹣4b+1的值.24.已知a m=2,a n=4,a k=32(a≠0).(1)求a3m+2n﹣k的值;(2)求k﹣3m﹣n的值.25.为了求1+2+22+23+…+22012的值,可令s=1+2+22+23+…+22012,则2s=2+22+23+24…+22013,因此2s﹣s=22013﹣1,所以1+2+22+23+…+22012=22013﹣1.仿照以上推理,计算1+5+52+53+…+52013的值.26.已知a是大于1的实数,且有a3+a﹣3=p,a3﹣a﹣3=q成立.(1)若p+q=4,求p﹣q的值;(2)当q2=22n+﹣2(n≥1,且n是整数)时,比较p与(a3+)的大小,并说明理由.参考答案与试题解析一.选择题(共10小题)1.下列运算正确的是()A.x3+x3=2x6B.(﹣x5)4=x20C.x m•x n=x mn D.x8÷x2=x4【分析】根据合并同类项,积的乘方,同底数幂的乘法、除法,即可解答.【解答】解:A.x3+x3=2x3,故错误;B.正确;C.x m•x n=x m+n,故错误;D.x8÷x2=x6,故错误;故选:B.【点评】本题考查了合并同类项,积的乘方,同底数幂的乘法、除法,解决本题的关键是熟记合并同类项,积的乘方,同底数幂的乘法、除法的法则.2.计算3n•(﹣9)•3n+2的结果是()A.﹣32n﹣2B.﹣3n+4C.﹣32n+4D.﹣3n+6【分析】根据同底数幂的乘法法则,可得答案.【解答】解:原式=﹣3n•32•3n+2=﹣32n+4,故选:C.【点评】本题考查了同底数幂的乘法,注意运算符号,再化成同底数幂的乘法,同底数幂的乘法底数不变指数相加.3.若(a m b n)3=a9b15,则m、n的值分别为()A.9;5 B.3;5 C.5;3 D.6;12【分析】根据积的乘方法则展开得出a3m b3n=a9b15,推出3m=9,3n=15,求出m、n即可.【解答】解:∵(a m b n)3=a9b15,∴a3m b3n=a9b15,∴3m=9,3n=15,∴m=3,n=5,故选B.【点评】本题考查了积的乘方的运用,关键是检查学生能否正确运用法则进行计算,题目比较好,但是一道比较容易出错的题目.4.计算(a3)2•a2的结果是()A.a7B.a8C.a10D.a11【分析】根据同底数幂的乘法的性质,幂的乘方的性质,即可解答.【解答】解:(a3)2•a2=a6•a2=a8,故选:B.【点评】本题考查同底数幂的乘法,幂的乘方,理清指数的变化是解题的关键.5.下列运算中,正确的是()A.x2+x4=x6B.(﹣x3)2=x6 C.2a+3b=5ab D.x6÷x3=x2(x≠0)【分析】根据同底数幂的除法,底数不变指数相减;合并同类项,系数相加字母和字母的指数不变;同底数幂的乘法,底数不变指数相加;幂的乘方,底数不变指数相乘,对各选项计算后利用排除法求解.【解答】解:A、应为x2•x4=x6,故错误;B、(﹣x3)2=x6,正确;C、2a与3b不是同类项,不能合并,故错误;D、x6÷x3=x3,故错误.故选:B.【点评】本题考查同底数幂的除法,合并同类项,同底数幂的乘法,幂的乘方很容易混淆,一定要记准法则才能做题.6.若x,y均为正整数,且2x+1•4y=128,则x+y的值为()A.3 B.5 C.4或5 D.3或4或5【分析】先把2x+1•4y化为2x+1+2y,128化为27,得出x+1+2y=7,即x+2y=6因为x,y均为正整数,求出x,y,再求了出x+y.,【解答】解:∵2x+1•4y=2x+1+2y,27=128,∴x+1+2y=7,即x+2y=6∵x,y均为正整数,∴或∴x+y=5或4,故选:C.【点评】本题主要考查了幂的乘方,同底数幂的乘法,解题的关键是化为相同底数的幂求解.7.若10y=5,则102﹣2y等于()A.75 B.4 C.﹣5或5 D.【分析】根据同底数幂的除法,幂的乘方,即可解答.【解答】解:102﹣2y=102÷102y=102÷(10y)2=100÷52=4,故选:B.【点评】本题考查了同底数幂的除法,幂的乘方,解决本题的关键是同底数幂的除法,幂的乘方的公式的逆运用.8.计算(﹣a x﹣1)4结果是()A.a4x﹣1B.﹣a4x﹣4C.a4x﹣4D.﹣a4x﹣1【分析】根据幂的乘方,底数不变,指数相乘,即可解答.【解答】解:(﹣a x﹣1)4=a(x﹣1)×4=a4x﹣4,故选:C.【点评】本题考查了幂的乘方,解决本题的关键是熟记法则.9.已知:2m=1,2n=3,则2m+2n=()A.9 B.8 C.7 D.6【分析】根据同底数幂的乘法、积的乘方,即可解答.【解答】解:2m+2n=2m•22n=2m•(2n)2=1×32=9.故选:A.【点评】此题主要考查了同底幂的乘法,以及幂的乘方,关键是掌握同底数幂的乘法法则:同底数幂相乘,底数不变,指数相加.10.我们知道:1纳米=米.一个纳米粒子的直径是35纳米,它等于()米(请用科学记数法表示).A.3.5×10﹣9B.3.5×10﹣10C.35×10﹣9D.3.5×10﹣8【分析】绝对值小于1的正数也可以利用科学记数法表示,一般形式为a×10﹣n,与较大数的科学记数法不同的是其所使用的是负指数幂,指数由原数左边起第一个不为零的数字前面的0的个数所决定.【解答】解:∵1纳米=米.∴35纳米=35×米=3.5×10﹣8米.故选:D.【点评】本题考查用科学记数法表示较小的数,一般形式为a×10﹣n,其中1≤|a|<10,n为由原数左边起第一个不为零的数字前面的0的个数所决定.二.填空题(共8小题)11.若(m﹣3)m=1成立,则m的值为2,4,0.【分析】根据乘方的意义,可得答案.【解答】解:当m=2时,(m﹣3)m=(﹣1)2=1;当m=4时,(m﹣3)m=13=1;当m=0时,(m﹣3)m=(﹣3)0=1,故答案为:2,4,0.【点评】本题考查了零指数幂,利用了零指数幂,负数的偶数次幂,1的任何次幂.12.已知x a=3,x b=5,则x2a﹣b=.【分析】根据同底数幂的除法,即可解答.【解答】解:x2a﹣b=.故答案为:.【点评】本题考查了同底数幂的除法,解决本题的关键是熟记同底数幂的除法公式.13.若a2n=5,b2n=16,则(ab)n=.【分析】根据幂的乘方与积的乘方,即可解答.【解答】解:∵a2n=5,b2n=16,∴(a n)2=5,(b n)2=16,∴,∴,故答案为:.【点评】本题考查了幂的乘方与积的乘方,解决本题的关键是注意公式的逆运用.14.计算:(2ab2)3=8a3b6.【分析】根据积的乘方,即可解答.【解答】解:(2ab2)3=8a3b6,故答案为:8a3b6.【点评】本题考查了积的乘方,解决本题的关键是熟记积的乘方公式.15.若0.000204用科学记数法可以记为2.04×10n,则n=﹣4.【分析】绝对值小于1的正数也可以利用科学记数法表示,一般形式为a×10﹣n,与较大数的科学记数法不同的是其所使用的是负指数幂,指数由原数左边起第一个不为零的数字前面的0的个数所决定.【解答】解:0.000204=2.04×10﹣4=2.04×10n,∴n=﹣4,故答案为:﹣4.【点评】本题考查用科学记数法表示较小的数,一般形式为a×10﹣n,其中1≤|a|<10,n为由原数左边起第一个不为零的数字前面的0的个数所决定.16.当3m+2n=4时,则8m•4n=16.【分析】根据幂的乘方与积的乘方,即可解答.【解答】解:8m•4n=(23)m•(22)n=23m•22n=23m+2n∵3m+2n=4,∴原式=24=16.故答案为:16.【点评】本题考查了幂的乘方与积的乘方,解决本题的关键是熟记公式.17.已知实数a,b满足a+b=2,a﹣b=5,则(a+b)3•(a﹣b)3的值是1000.【分析】所求式子利用积的乘方逆运算法则变形,将已知等式代入计算即可求出值.【解答】解:∵a+b=2,a﹣b=5,∴原式=[(a+b)(a﹣b)]3=103=1000.故答案为:1000【点评】此题考查了幂的乘方与积的乘方,熟练掌握运算法则是解本题的关键.18.一批志愿者组成了一个“爱心团队”,专门到全国各地巡回演出,以募集爱心基金.第一个月他们就募集到资金1万元.随着影响的扩大,第n(n≥2)个月他们募集到的资金都将会比上个月增加20%,则当该月所募集到的资金首次完成突破10万元时,相应的n的值为14.(参考数据:1.25≈2.5,1.26≈3.0,1.27≈3.6)【分析】由题意得第一个月募集到资金1万元,则第二个月募集到资金1(1+20%)万元,第三个月募集到资金1(1+20%)2万元,…,第n个月募集到资金1(1+20%)n﹣1万元,根据1.26×1.27=10.8>10,可得n﹣1=6+7,解得n=14.【解答】解:第一个月募集到资金1万元,则第二个月募集到资金1(1+20%)万元,第三个月募集到资金1(1+20%)2万元,…,第n个月募集到资金1(1+20%)n﹣1万元,由题意得:1(1+20%)n﹣1>10,1.2 n﹣1>10,∵1.26×1.27=10.8>10,∴n﹣1=6+7=13,n=14,故答案为:14.【点评】此题主要考查了增长率问题,以及同底数幂的乘法,关键是根据题意列出第n个月募集到资金,再根据同底数幂的乘法法则:同底数幂相乘,底数不变,指数相加计算即可.三.解答题(共8小题)19.(1)已知a x=5,a x+y=25,求a x+a y的值;(2)已知10α=5,10β=6,求102α+2β的值.【分析】(1)先根据同底数幂乘法运算的逆运算得出a x+y=a x•a y=25,根据a x=5可得a y=5,代入即可求解;(2)将原式利用同底数幂乘法运算的逆运算进行变形为(10α)2•(10β)2,即可求解.【解答】解:(1)∵a x+y=a x•a y=25,a x=5,∴a y=5,∴a x+a y=5+5=10;(2)102α+2β=(10α)2•(10β)2=52×62=900.【点评】本题主要考查的是正数指数幂的你运算,掌握整数指数幂的运算公式是解题的关键.20.阅读材料:(1)1的任何次幂都为1;(2)﹣1的奇数次幂为﹣1;(3)﹣1的偶数次幂为1;(4)任何不等于零的数的零次幂为1.请问当x为何值时,代数式(2x+3)x+2016的值为1.【分析】分为2x+3=1,2x+3=﹣1,x+2016=0三种情况求解即可.【解答】解:①当2x+3=1时,解得:x=﹣1,此时x+2016=2015,则(2x+3)x+2016=12015=1,所以x=﹣1.②当2x+3=﹣1时,解得:x=﹣2,此时x+2016=2014,则(2x+3)x+2016=(﹣1)2014=1,所以x=﹣2.③当x+2016=0时,x=﹣2016,此时2x+3=﹣4029,则(2x+3)x+2016=(﹣4029)0=1,所以x=﹣2016.综上所述,当x=﹣1,或x=﹣2,或x=﹣2016时,代数式(2x+3)x+2016的值为1.【点评】本题主要考查的是零指数幂的性质、有理数的乘方,分类讨论是解题的关键.21.若m、n满足|m﹣3|+(n+2016)2=0,求m﹣1+n0的值.【分析】首先根据|m﹣3|+(n+2016)2=0,可得|m﹣3|=0,n+2016=0,据此分别求出m、n的值各是多少;然后把求出的m、n的值代入m﹣1+n0,求出算式的值是多少即可.【解答】解:∵|m﹣3|+(n+2016)2=0,∴|m﹣3|=0,n+2016=0,解得m=3,n=﹣2016,∴m﹣1+n0=3﹣1+(﹣2016)0=+1=1答:m﹣1+n0的值是1.【点评】(1)此题主要考查了负整数指数幂的运算,要熟练掌握,解答此题的关键是要明确:①a﹣p=(a≠0,p为正整数);②计算负整数指数幂时,一定要根据负整数指数幂的意义计算;③当底数是分数时,只要把分子、分母颠倒,负指数就可变为正指数.(2)此题还考查了零指数幂的运算,要熟练掌握,解答此题的关键是要明确:①a0=1(a≠0);②00≠1.(3)此题还考查了绝对值的含义和应用,要熟练掌握,解答此题的关键是要明确:①当a是正有理数时,a的绝对值是它本身a;②当a是负有理数时,a的绝对值是它的相反数﹣a;③当a是零时,a的绝对值是零.(4)此题还考查了偶次方的非负性质的应用,要熟练掌握.22.已知:2x+3y﹣4=0,求4x•8y的值.【分析】首先根据2x+3y﹣4=0,求出2x+3y的值是多少;然后根据4x•8y=22x•23y=22x+3y,求出4x•8y的值是多少即可.【解答】解:∵2x+3y﹣4=0,∴2x+3y=4,∴4x•8y=22x•23y=22x+3y=24=16,∴4x•8y的值是16.【点评】(1)此题主要考查了幂的乘方和积的乘方,要熟练掌握,解答此题的关键是要明确:①(a m)n=a mn(m,n是正整数);②(ab)n=a n b n(n是正整数).(2)此题还考查了同底数幂的乘法法则:同底数幂相乘,底数不变,指数相加,要熟练掌握,解答此题的关键是要明确:①底数必须相同;②按照运算性质,只有相乘时才是底数不变,指数相加.23.(1)若x n=2,y n=3,求(x2y)2n的值.(2)若3a=6,9b=2,求32a﹣4b+1的值.【分析】(1)根据积的乘方和幂的乘方法则的逆运算,即可解答;(2)根据同底数幂乘法、除法公式的逆运用,即可解答.【解答】解:(1)(x2y)2n=x4n y2n=(x n)4(y n)2=24×32=16×9=144;(2)32a﹣4b+1=(3a)2÷(32b)2×3=36÷4×3=27.【点评】本题考查的是幂的乘方和积的乘方、同底数幂的乘除法,掌握它们的运算法则及其逆运算是解题的关键.24.已知a m=2,a n=4,a k=32(a≠0).(1)求a3m+2n﹣k的值;(2)求k﹣3m﹣n的值.【分析】(1)首先求出a3m=23,a2n=42=24,a k=32=25,然后根据同底数幂的乘法、除法法则计算即可;(2)首先求出a k﹣3m﹣n的值是1;然后根据a0=1,求出k﹣3m﹣n的值是多少即可.【解答】解:(1)∵a3m=23,a2n=42=24,a k=32=25,∴a3m+2n﹣k=a3m•a2n÷a k=23•24÷25=23+4﹣5=22=4;(2)∵a k﹣3m﹣n=25÷23÷22=20=1=a0,∴k﹣3m﹣n=0,即k﹣3m﹣n的值是0.【点评】(1)此题主要考查了同底数幂的乘法法则:同底数幂相乘,底数不变,指数相加,要熟练掌握.(2)此题还考查了同底数幂的除法法则:同底数幂相除,底数不变,指数相减,要熟练掌握.(3)此题还考查了幂的乘方和积的乘方,要熟练掌握,解答此题的关键是要明确:①(a m)n=a mn(m,n是正整数);②(ab)n=a n b n(n是正整数).25.为了求1+2+22+23+…+22012的值,可令s=1+2+22+23+…+22012,则2s=2+22+23+24…+22013,因此2s﹣s=22013﹣1,所以1+2+22+23+…+22012=22013﹣1.仿照以上推理,计算1+5+52+53+…+52013的值.【分析】仔细阅读题目中示例,找出其中规律,求解本题.【解答】解:根据题中的规律,设S=1+5+52+53+ (52013)则5S=5+52+53+…+52013+52014,所以5S﹣S=4S=52014﹣1,所以S=.【点评】主要考查了学生的分析、总结、归纳能力,规律型的习题一般是从所给的数据和运算方法进行分析,从特殊值的规律上总结出一般性的规律.26.已知a是大于1的实数,且有a3+a﹣3=p,a3﹣a﹣3=q成立.(1)若p+q=4,求p﹣q的值;(2)当q2=22n+﹣2(n≥1,且n是整数)时,比较p与(a3+)的大小,并说明理由.【分析】(1)根据已知条件可得a3=2,代入可求p﹣q的值;(2)根据作差法得到p﹣(a3+)=2﹣n﹣,分三种情况:当n=1时;当n=2时;当n≥3时进行讨论即可求解.【解答】解:(1)∵a3+a﹣3=p①,a3﹣a﹣3=q②,∴①+②得,2a3=p+q=4,∴a3=2;①﹣②得,p﹣q=2a﹣3==1.(2)∵q2=22n+﹣2(n≥1,且n是整数),∴q2=(2n﹣2﹣n)2,∴q=2n﹣2﹣n,又由(1)中①+②得2a3=p+q,a3=(p+q),①﹣②得2a﹣3=p﹣q,a﹣3=(p﹣q),∴p2﹣q2=4,p2=q2+4=(2n+2﹣n)2,∴p=2n+2﹣n,∴a3+a﹣3=2n+2﹣n③,a3﹣a﹣3=2n﹣2﹣n④,∴③+④得2a3=2×2n,∴a3=2n,∴p﹣(a3+)=2n+2﹣n﹣2n﹣=2﹣n﹣,当n=1时,p>a3+;当n=2时,p=a3+;当n≥3时,p<a3+.【点评】考查了负整数指数幂:a﹣p=(a≠0,p为正整数),关键是加减消元法和作差法的熟练掌握.。

苏教版初中数学七上试卷

苏教版初中数学七上试卷

一、选择题(每题3分,共30分)1. 下列数中,属于有理数的是()A. √3B. πC. -2D. √-12. 已知数轴上点A表示的数是-3,点B表示的数是2,那么点A和点B之间的距离是()A. 1B. 5C. 3D. 43. 下列各式中,正确的是()A. (-3)² = -9B. (-3)³ = -27C. (-3)⁴ = 81D. (-3)⁵ = 2434. 下列函数中,是反比例函数的是()A. y = 2x + 3B. y = 3/xC. y = x²D. y = √x5. 在直角坐标系中,点P(2,-3)关于x轴的对称点是()A.(2,3)B.(-2,-3)C.(-2,3)D.(2,-3)6. 下列各式中,正确的是()A. 2/3 < 4/5B. 2/3 > 4/5C. 2/3 = 4/5D. 2/3 ≠ 4/57. 已知一个等腰三角形的底边长为8cm,腰长为10cm,那么这个三角形的周长是()A. 26cmB. 24cmC. 28cmD. 30cm8. 在平面直角坐标系中,点A(-1,2)和点B(3,-4)之间的距离是()A. 5B. 7C. 9D. 119. 下列图形中,是轴对称图形的是()A. 正方形B. 长方形C. 平行四边形D. 梯形10. 下列数中,属于无理数的是()A. √9B. √16C. √25D. √-4二、填空题(每题3分,共30分)1. 已知a = -2,b = 3,那么a + b的值是______。

2. 如果一个数的平方是4,那么这个数是______。

3. 在数轴上,点A表示的数是-5,那么点A到原点的距离是______。

4. 已知一个等边三角形的边长是6cm,那么这个三角形的周长是______。

5. 在平面直角坐标系中,点P(-2,3)关于y轴的对称点是______。

6. 下列各式中,正确的是______。

7. 已知一个圆的半径是5cm,那么这个圆的直径是______。

(完整版)苏教版七年级上册数学期末复习题型训练及试卷含答案最新版

(完整版)苏教版七年级上册数学期末复习题型训练及试卷含答案最新版

(完整版)苏教版七年级上册数学期末复习题型训练及试卷含答案最新版(word 版可编辑修改)编辑整理:尊敬的读者朋友们:这里是精品文档编辑中心,本文档内容是由我和我的同事精心编辑整理后发布的,发布之前我们对文中内容进行仔细校对,但是难免会有疏漏的地方,但是任然希望((完整版)苏教版七年级上册数学期末复习题型训练及试卷含答案最新版(word版可编辑修改))的内容能够给您的工作和学习带来便利。

同时也真诚的希望收到您的建议和反馈,这将是我们进步的源泉,前进的动力。

本文可编辑可修改,如果觉得对您有帮助请收藏以便随时查阅,最后祝您生活愉快业绩进步,以下为(完整版)苏教版七年级上册数学期末复习题型训练及试卷含答案最新版(word版可编辑修改)的全部内容。

+名学生,其中男生人数占.我国是一个严重缺水的国家,大家应倍加珍惜水资源,节约用水。

据测试,拧不紧的水龙毫升。

小明同学在洗手后B20x30将某种电器打折销售,如果按标价的六折出售52元,问:,最多能打几折?38元 84元(1)一个暖瓶与一个水杯分别是多少元?(2)甲、乙两家商场同时出售同样的暖瓶和水杯,为了迎接新年,两家商场都在搞促销活动,甲商场规定:这两种商品都打九折;乙商场规定:买一个暖瓶赠送一个水杯。

若某单位想要买4个暖瓶和15个水杯,请问选择哪家商场购买更合算,并说明理由。

14。

我国某部边防军小分队成一列在野外行军,通讯员在队伍中,数了一下他前后的人数,发现前面人数是后面的两倍,他往前超了6位战士,发现前面的人数和后面的人数一样。

(1)这列队伍一共有多少名战士?(2)这列队伍要过一座320米的大桥,为安全起见,相邻两个战士保持相同的一定间距,行军速度为5米/秒,从第一位战士刚上桥到全体通过大桥用了100秒时间,请问相邻两个战士间距离为多少米(不考虑战士身材的大小)?15.2011年扬州某学校组织七年级(1)班学生于清明节上午七时乘客车沿淮江高速公路前往距离扬州140千米的淮安楚州“爱国主义教育基地"周恩来纪念馆参观学习,车速是每小时60千米。

苏教版七年级上册数学第一章有理数复习测试题及答案

苏教版七年级上册数学第一章有理数复习测试题及答案

一、选择题(每题3分,共30分)1、1999年国家财政收入达到11377亿元,用四舍五入法保留两个有效数字的近似值为()亿元(A)(B) (C)(D)2、大于–3。

5,小于2.5的整数共有()个。

(A)6 (B)5 (C)4 (D)33、已知数在数轴上对应的点在原点两侧,并且到原点的位置相等;数是互为倒数,那么的值等于( )(A)2 (B)–2 (C)1 (D)–14、如果两个有理数的积是正数,和也是正数,那么这两个有理数()(A)同号,且均为负数(B)异号,且正数的绝对值比负数的绝对值大(C)同号,且均为正数(D)异号,且负数的绝对值比正数的绝对值大5、在下列说法中,正确的个数是()⑴任何一个有理数都可以用数轴上的一个点来表示⑵数轴上的每一个点都表示一个有理数⑶任何有理数的绝对值都不可能是负数⑷每个有理数都有相反数A、1B、2C、3D、46、如果一个数的相反数比它本身大,那么这个数为()A、正数B、负数C、整数D、不等于零的有理数7、下列说法正确的是()A、几个有理数相乘,当因数有奇数个时,积为负;B、几个有理数相乘,当正因数有奇数个时,积为负;C、几个有理数相乘,当负因数有奇数个时,积为负;D、几个有理数相乘,当积为负数时,负因数有奇数个;8、在有理数中,绝对值等于它本身的数有( )A。

1个B。

2个 C. 3个 D.无穷多个9、下列计算正确的是( )A.-22=-4 B。

-(-2)2=4 C。

(-3)2=6 D.(-1)3=110、如果a〈0,那么a和它的相反数的差的绝对值等于( )A.aB.0C.—a D。

—2a二、填空题:(每题2分,共42分)1、。

2、小明与小刚规定了一种新运算*:若a、b是有理数,则a*b = .小明计算出2*5=-4,请你帮小刚计算2*(—5)=.3、若,则= ;4、大于-2而小于3的整数分别是_________________、5、(-3。

2)3中底数是______,乘方的结果符号为______。

  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

b
a
七年级数学第一学期复习题
(时间:90分钟;满分:120分)
一、选择题(本大题有10小题,每小题3分,共30分。

) 1、12
--的相反数是( )
A 、2
B 、-2
C 、1
2- D 、12
2、我国国民生产总值达到11.69万亿..元,人民生活总体达到小康水平。

其中11.69万亿..元用科学记数法表示应为( )
A .1.169×1013
B .1.169×1014
C .11.69×1013
D .0.1169×1014 3、实数a 、b 在数轴上的位置如图所示,则化简a b a -+的结果为( )
A 、b a +2
B 、b -
C 、b a --2
D 、 b
4、一家商店将某种服装按成本提高40%标价,又以8折优惠卖出,结果每件服装仍可获利15
元,则这种服装每件的成本价是( )
A 、120元;
B 、125元;
C 、135元;
D 、140元. 5、如果单项式-22m x y +与n x y 的和仍然是一个单项式,则m 、n 的值是( )
A 、m = 2,n = 2;
B 、m =-2,n = 2;
C 、m = -1,n = 2;
D 、m = 2 ,n =-1。

6、x=1是方程3x —m+1=0的解,则m 的值是( )
A .-4
B .4
C .2
D .-2 7、下列图形中,线段PQ 的长表示点P 到直线MN 的距离是( )
8、如下图所示的立方体,如果把它展开,可以是下列图形中的( )
9、如果a,b 互为相反数,x,y 互为倒数,则()174
2
a b xy ++的值是( )
A .2 B. 3 C. 3.5 D. 4
10、点C 在线段AB 上,下列条件中不能确定....点C 是线段AB 中点的是( ) A .AC =BC
B .A
C + BC= AB C .AB =2AC
D .BC =2
1AB
二、 填空题(本大题有8小题,每小题3分,共24分)
11、一个多项式加上22x x -+-得到12-x ,则这个多项式是 . 12、一个角的补角是它的余角的3倍,则这个角是 。

13、如果关于x 的方程2x +1=3和方程03
2=--
x
k 的解相同,那么k 的值为________ . 14、将一张长方形纸片按如图所示的方式折叠,BC 、BD 为折线,则∠
CBD 为 度。

15、点A 、B 、C 在直线l 上,AB = 4cm ,BC = 6cm ,点E 是AB 中点,
点F 是BC 的中点,EF= 。

16、若x x 22+的值是6,则5632-+x x 的值是 。

17、某校女生占全体学生人数的52%,比男生多80人。

若设这个学校的学生数为x ,那么可出列方程 .
18、用小立方块积木塔出一个主视图和俯视图如图所示的几何体,它最少需要 块小正方体积木,最多需要 块小正方体积木。

主视图 俯视图
三、解答题(本大题有4题,19-20题每题
6分,第21题8分,22题10分,共30分) 19 、 计算:22138(3)2()42()4
2
3
-÷⨯-++÷-
解:
20、 解方程
2151
136
x x +--= 解:
21、 先化简,再求值:
)3123()31(22
122n m n m m ----,其中1,31
-==n m
解:
22、(1)(4分)左下图是有几个大小完全一样的小正方体搭成的几何体的俯视图,小正方形中的数字表示在该位置小正方体的个数,请你画出该几何体的主视图和左视图.
(2) (6分)如图,点P 是AOB ∠的边OB 上的一点
①过点P 画OB 的垂线,交OA 于点C
②过点P 画OA 的垂线,垂足为H
③线段PH 的长度是点P 到 的距离, 是点C 到直线OB 的距离。

因为 所以线段PC 、PH 、OC 这三条线段大小关系是 (用“<”号连接)
(23--25题每题8分,共24分)
23、“五一”长假日,弟弟和妈妈从家里出发一同去外婆家,他们走了1小时后,哥哥发现带给外婆的礼品忘在家里,便立刻带上礼品以每小时6千米的速度去追,如果弟弟和妈妈每小时行2千米,他们从家里到外婆家需要1小时45分钟,问哥哥能在弟弟和妈妈到外婆家之前追
1
2
123主视图 左视图
上他们吗?
24.如图,正方形的边长为x ,用代数式表示图中阴影部分的面积,并计算当4=x 时,阴影部分的面积.(π取3.14)
25.如图所示,OM 是∠AOC 的平分线,ON 是∠BOC 的平分线, (1)如果∠AOC=28°,∠MON=35°,求出∠AOB 的度数; (2)如果∠MON=n °,求出∠AOB 的度数;
(3)如果∠MON 的大小改变, ∠AOB 的大小是否随之改变?它们之间有怎样的大小关系?请写出来.
M N
O
A
C
B (X)
26、充满信心,成功在望(共12分)
请根据图中提供的信息,回答下列问题 :
(1)一个暖瓶与一个水杯分别是多少元?
(2)甲、乙两家商场同时出售同样的暖瓶和水杯,为了迎接新年,两家商场都在搞促销活动,甲商场规定:这两种商品都打九折;乙商场规定:买一个暖瓶赠送一个水杯。

若某单位想要买4个暖瓶和15个水杯,请问选择哪家商场购买更合算,并说明理由.
38元 84元
2010-2011学年度第一学期期末考试
七年级数学参考答案
11、2x 2-x+1 12、45o 13、7 14、90o 15、5cm 或1cm 16、13 17、52%x-48%x=80 18、7;9
三、解答题
19、解: 22138(3)2()42()4
2
3
-÷⨯-++÷-
433
9()44()928
=⨯⨯-++⨯- …………………………(3分)
3
642322=-+-
=--
7
2
=- ……………………………………………(6分) 20、解:
2151
136
x x +--= 去分母,得 2(21)(51)6x x +--=, …………………(2分) 去括号,得 42516x x +-+=, ……………………(4分) 移项及合并,得 3x -=,
系数化为1,得 3x =-. …………………………(6分)
21、解:原式=221
23122323
m m n m n -+-+ ……3分 =23m n -+ ……5分 当1,13
m n ==-时, 原式=213(1)3
-⨯+-
=0 ……8分 22、(1)图略(2)①图略②图略
③OA ;CP ;直线外一点与直线上各点连接的所有线段中,垂线段最短,简称“垂
线段最短”;PH<PC<OC
23、解:设哥哥追上弟弟需要x 小时,由题意得: x x 226+= ……4分
解这个方程得:
2
1=x ……6分
所以,弟弟行走了2
11+小时小于1小时45分,未到外婆家,哥哥能够追上。

……8分 24、解:阴影部分的面积为:
2222()2
4
x x x x π
π-⨯=- ……4分
当4x =时,阴影部分的面积为:22
3.14444
-
⨯= 3.44 ……8分 25、(1)70° …………2分 (2)2n ° …………5分
(3)∠AOB 随∠MON 大小的改变而改变, ∠AOB=2∠MON. ……8分 26、(1)解:设一个暖瓶x 元,则一个水杯为(38-x)元, 根据题意得:
2x +3(38-x )=84 ……2分 解得 x=30 38-30=8 ……4分 答:一个暖瓶30元,一个水杯8元 ……5分 (2)若到甲商场购买,则所需的钱数为:
(4×30+15×8)×90%=216(元) ……8分
若到乙商场购买,则所需的钱数为:
4×30+(15-4)×8=208(元) ……11分
因为 208<216 所以,到乙家商场购买更合算 ……12分。

相关文档
最新文档