一元一次方程的应用——行程问题
一元一次方程的应用——行程问题
一元一次方程的应用——路程问题
一、直线型相遇
1、某公路的干线上有相距108千米A.B两个车站,某日16时整,甲、乙两辆汽车分别从A、B两站同时出发,相向而行。
已知甲车速度为45千米/小时,乙车速度为36千米/小时,则两车相遇时间为()
A . 16时20分 B. 17时20分 C. 17时30分 D. 16时50分
2、甲乙两人骑自行车,同时从相距45千米的两地相向而行,经过2小时两人相遇,已知甲比乙每小时多走2.5千米,求两人每小时各走多少千米?
二、直线型追及
3、甲乙两人骑自行车和摩托车都从A地到B地,甲每小时行18千米,甲出发2小时后乙才出发,结果乙用了3小时追上甲,则乙每小时走_________________km.
4、某中学组织学生到校外参加义务植树活动。
一部分学生骑自行车先走,速度为9千米/小时;40分钟后其余学生乘汽车出发,速度为45千米/小时,结果他们同时到达目的地。
目的地距学校多少千米?
三、环形跑道型相遇与追及
5、一条环形跑道长400米,甲练习骑自行车,平均每分钟行550米,乙练习跑步,平均每分钟跑250米.两人同时同地出发。
(1)若两人背向而行,则他们经过多长时间首次相遇?
(2)若两人同向而行,则他们经过多长时间首次相遇?
四、列车型相遇与追及
6、甲列车长120米,车速为60千米/小时,乙列车长130米,车速为40千米/小时。
(1)两车同向而行,当甲列车车头追上乙列车车尾后又经过多长时间两车离开?
(2)两车相向而行,当两车相遇后又经过多长时间两车离开?。
一元一次方程的应用---顺、逆流(风)行程问题
顺水的速度=静水中的速度+水流的速度 逆水的速度=静水中的速度–水流的速度
问题:本题的等量关系是什么?
顺流行驶的路程=逆流行驶的路程
设船在静水中的平均速度为 x km/h,
( x-24) 则顺风速度为 ______ km/h,逆风速度为 ______ km/h,由 ( x+24) 题意得
2.8(x+24)=3(x-24)
解得: x=696
所以 3(x-24)=3×(696-24)=2016 答:无风时这架飞机在这一航线的平均航速为 696 km/h, 两机场之间的航程为 2016 km.
顺流(风)速度×顺流(风)时间=逆流(风)速度×逆流(风)时间
【练习题2】在风速为 24 km/h的条件下, 一架飞机顺风从A城市飞到B城市要用 5.5 h, 它逆风飞行同样的航线要用 6 h,求A、B两 设间接未知数 城市之间的航程.
反思小结:
1、通过这节课的学习,你有什么收获?
2、在解决顺、逆流(风)行程问题方面 你获得了哪些经验?这些问题中的相等关 系有什么特点?
解:设船在静水中的平均速度为 x km/h,则顺流速
度为 ______km/h ,逆流速度为 ______km/h, 由题意得 ( x+3) ( x-3)
2(x+3)=2.5(x-3)
去括号,得 2x+6=2.5x-7.5 移项,得
2x-2.5x=-7.5-6
合并同类项,得 0.5x= 13.5
系数化为1,得 x=27. 答:船在静水中的平均速度为 27 km/h.
一元一次方程应用题------行程问题
基本的数量关系: 路程=速度×时间要特别注意:(1)路程、速度、时间的对应关系(即在某段路程上所对应的速度和时间各是多少)(2)在列方程时候,时间单位和路程单位一定要与速度单位一致1、甲、乙二人相向相遇问题⑴甲走的路程+乙走的路程=总路程 ⑵二人所用的时间相等或有提前量2、甲、乙二人中,慢者所行路程或时间有提前量的同向追击问题⑴甲走的路程-乙走的路程=提前量 ⑵二人所用的时间相等或有提前量3、单人往返⑴ 各段路程和=总路程 ⑵ 各段时间和=总时间 ⑶ 匀速行驶时速度不变4、行船问题与飞机飞行问题⑴ 顺水速度=静水速度+水流速度 ⑵ 逆水速度=静水速度-水流速度5、考虑车长的过桥或通过山洞隧道问题将每辆车的车头或车尾看作一个人的行驶问题去分析,一切就一目了然。
6、时钟问题:⑴通常将时钟问题看作以整时整分为起点的同向追击问题来分析。
常用数据:① 时针的速度是0.5°/分 ② 分针的速度是6°/分 ③ 秒针的速度是6°/秒一、一般行程问题(相遇与追击问题)例题1:某人从家里骑自行车到学校。
若每小时行15千米,可比预定时间早到15分钟;若每小时行9千米,可比预定时间晚到15分钟;求从家里到学校的路程有多少千米?解:等量关系 ⑴ 速度15千米行的总路程=速度9千米行的总路程⑵ 速度15千米行的时间+15分钟=速度9千米行的时间-15分钟方法一:设预定时间为x 小/时,则列出方程是:15(x -0.25)=9(x +0.25)方法二:设从家里到学校有x 千米,则列出方程是:60159601515-=+x x例题2、一列火车匀速行驶,经过一条长300m 的隧道需要20s 的时间。
隧道的顶上有一盏灯,垂直向下发光,灯光照在火车上的时间是10s ,根据以上数据,你能否求出火车的长度?火车的长度是多少?若不能,请说明理由。
解:方法一:设这列火车的长度是x 米,根据题意,得1020300x x =+ x =300 答:这列火车长300米。
一元一次方程常见应用题型及解法
一元一次方程常见应用题:
一、行程问题:路程=速度×时间
1:相遇问题:甲路程+乙路程=总路程
2:追及问题:a、不同时同地出发:快者(追者)走的路程=慢者(前者)走的路程
b、同时不同地出发:慢者走的路程+两者距离=快者走的路程
3、水流问题:顺水行的路程=逆水行的路程
提前写出:顺水速度=静水速度+水流速度
逆水速度=静水速度-水流速度
二、工程问题:工作总量=工作效率×工作时间工作效率与单独工作的时间互为倒数
各部分工作量之和=1
三、利润率、销售问题:
商品利润=商品售价-商品进价=商品进价×商品利润率
商品利润率=商品利润/商品进价×100%
售价=进价×(1+利润率)
注:进价
售价=实际销售价格
标价=定价=原价=预计售价=原销售价
四、数字问题:
设一个两位数的十位上的数字和个位上的数字分别为a、b,则这个两位数表示为10a+b 五、按比例分配问题:
甲:乙:丙=a:b:c 全部数量=各种成分的数量之和(设一份为χ)
六、配套问题
“加工的两种物品成比例”
七、分配问题
“总量不变”
八、积分问题
比赛总场数=胜场总数+平场总数+负场总数
比赛总积分=胜场总积分+平场总积分+负场总积分九、规律问题
●3个规律数字:设中间的数为χ
●月历中的问题
月历中每一行上相邻的两数,右边的数比左边的数大1;
月历中的每一列上相邻的两数,下边的数比上边的数大7 十、方案决策问题
选择最优的方案就要把每种方案的结果算出来,进行比较。
3.2.3一元一次方程的应用(行程问题)
家
400米 80x米
学 校
180x米
追 及 地
小明先行路程 + 小明后行路程 =爸爸的路程
精讲
例题
分
家
析
学 校
例2、小明每天早 上要在7:50之前赶到距 离家1000米的学校上学, 400米 80x米 一天,小明以80米/分 追 的速度出发,5分后, 小明的爸爸发现他忘了 及 180x米 带语文书,于是,爸爸 地 立即以180米/分的速度 去追小明,并且在途中 (1)解:设爸爸要 x分钟才追上小明, 追上他。 依题意得: (1)爸爸追上小明用 180x = 80x + 5×80 了多少时间? (2)追上小明时,距 解得 x=4 离学校还有多远? 答:爸爸追上小明用了4分钟。
小王、叔叔在400米 长的环形跑道上练习跑 步,小王每秒跑4米,叔 叔每秒跑7.5米。
(1)若两人同时同地反 向出发,多长时间两人
(2)同向
小王
首次相遇?
(2)若两人同时同地同 向出发,多长时间两人 首次相遇?
相等关系:
小王路程 + 400 = 叔叔路程
精讲
例题
分
析
例4 为了适应经 济发展,铁路运输再 次提速。如果客车行 驶的平均速度增加 40km/h,提速后由合 肥到北京1110km的路 程只需行驶10h。那 么,提速前,这趟客 车平均每时行驶多少 千米?
长时间后与A车相遇?
答:设B车行了3小时后与A车相遇。
精讲
例题
分
析
例1、 A、B两车分 别停靠在相距240千米 的甲、乙两地,甲车每
线段图分析: A
甲 第一种情况: A车路程+B车路程+相距80千米=
50 x
80千米
一元一次方程的应用——行程问题
一元一次方程的应用-----行程问题
例1:小明早晨要在7:20以前赶到距家1000米的学校上学,一天,小明以80米/分的速度出发.5分钟后,小明的爸爸发现他忘了带历史作业,于是,爸爸立即以180米/分的速度去追小明,并且在途中追上了他.
(1)爸爸追上小明用了多长时间?
(2)追上小明时,距离学校还有多远?
例2:甲、乙两站间的路程为450千米,一列慢车从甲站开出,每小时行驶65千米,一列慢车从乙站开出,每小时行驶85千米.设两车同时开出,同向而行,则快车几小时后追上慢车?
例3:甲、乙两人相距280,相向而行,甲从A地每秒走8米,乙从B地每秒走6米,那么甲出发几秒与乙相遇?
例4:七年级一班列队以每小时6千米的速度去甲地.王明从队尾以每小时10千米的速度赶到队伍的排头后又以同样的速度返回排尾,一共用了7.5分钟,求队伍的长.
练习1:小兵每秒跑6米,小明每秒跑7米,小兵先跑4秒,小明几秒钟追上小兵?
练习2:甲骑摩托车,乙骑自行车同时从相距150千米的两地相向而行,经过5小时相遇,已知甲每小时行驶的路程是乙每小时行驶的路程的3倍少6千米,求乙骑自行车的
速度.
检测1:小华和小玲同时从相距700米的两地相对走来,小华每分钟走60米,小玲每分钟走80米.几分钟后两人相遇?
检测2:一个自行车队进行训练,训练时所有队员都以35千米/小时的速度前进。
突然,1号队员以45千米/小时的速度独自行进,行进10千米后掉转车头,仍以45千米/小时的速度往回骑,直到与其他队员会合,1号队员从离队开始到与队员重新会合,经过了
多长时间?。
一元一次方程应用题——行程问题
行程问题【基本关系式】(1)行程问题中的三个基本量及其关系:路程=速度×时间时间=路程÷速度速度=路程÷时间(2)基本类型①相遇问题:快行距+慢行距=原距②追及问题:快行距-慢行距=原距③航行问题:顺水(风)速度=静水(风)速度+水流(风)速度逆水(风)速度=静水(风)速度-水流(风)速度顺速–逆速 = 2水速;顺速 + 逆速 = 2船速顺水的路程 = 逆水的路程注意:抓住两码头间距离不变,水流速和船速(静水速)不变的特点考虑相等关系。
常见的还有:相背而行;环形跑道问题。
【经典例题】例1.甲、乙两站相距480公里,一列慢车从甲站开出,每小时行90公里,一列快车从乙站开出,每小时行140公里。
(1)慢车先开出1小时,快车再开。
两车相向而行。
问快车开出多少小时后两车相遇?(2)两车同时开出,相背而行多少小时后两车相距600公里?(3)两车同时开出,慢车在快车后面同向而行,多少小时后快车与慢车相距600公里?(4)两车同时开出同向而行,快车在慢车的后面,多少小时后快车追上慢车?(5)慢车开出1小时后两车同向而行,快车在慢车后面,快车开出后多少小时追上慢车?例2.某船从A地顺流而下到达B地,然后逆流返回,到达A、B两地之间的C地,一共航行了7小时,已知此船在静水中的速度为8千米/时,水流速度为2千米/时。
A、C两地之间的路程为10千米,求A、B两地之间的路程。
【专项训练】一、行程(相遇)问题A.基础训练1.小李和小刚家距离900米,两人同时从家出发相向行,小李每分走60米,小刚每分走90米,几分钟后两人相遇?2.小明和小刚家距离900米,两人同时从家出发相向行,5分钟后两人相遇,小刚每分走80米,小明每分走多少米?3.王强和赵文从相距2280米的两地出发相向而行,王强每分行60米,赵文每分行80米,王强出发3分钟后赵文出发,几分钟后两人相遇?4.两辆车从相距360千米的两地出发相向而行,甲车先出发,每小时行60千米,1小时后乙车出发,每小时行40千米,乙车出发几小时两车相遇?5.两村相距35千米,甲乙二人从两村出发,相向而行,甲每小时行5千米,乙每小时行4千米,甲先出发1小时后,乙才出发,当他们相距9千米时,乙行了多长时间?6.甲乙二人从相距45千米的两地同时出发相向而行,甲比乙每小时多行1千米,5小时后二人相遇,求两人的速度。
3.2.2一元一次方程的应用-行程问题
4.甲乙二人同时从A地到B地,甲每分钟走250 米,乙每分钟走90米。甲到达B地后立即返回 A地,在离B地3.2千米处相遇。A、B两地之间 相距多少千米?
5.一艘船从甲码头到乙码头顺流行驶,用了2小 时;从乙码头返回甲码头逆流行驶,用了2.5小时。 已知水流的速度是3千米/时,求船在静水中的平 均速度?
3.甲、乙两地相距180km,一人骑自行车从甲地 出发每时行15 km;另一人骑摩托车从乙地同 时出发,两人相向而行,已知摩托车车速是自 行车车速的3倍,问多少时间后两 人相遇?
2.甲乙两艘轮船分别从A、B两港同时出发相 向而行,甲船每小时行驶18千米,乙船每小时 行驶15 千米,经过6 小时两船在途中相遇.两 地间的水路长多少千米?
3.甲乙两人分别从相距24 千米的两地同时向东 而行,甲骑自行车每小时行13 千米,乙步行每 小时走5 千米.几小时后甲可以追上乙?
4.甲、乙两沿运动场的跑道跑步,甲每分钟跑 290 米,乙每分钟跑270 米,跑道一圈长400 米.如果两人同时从起跑线上同方向跑,那么 甲经过多长时间才能第一次追上乙?
1、甲乙两辆汽车同时从东西两地相向开出,甲车 每小时行56千米,乙车每小时行48千米。两车在 距中点32千米处相遇。东西两地相距多少千米?
2、小玲每分钟行100米,小平每分钟行80米, 两人同时从学校和少年宫相向而行,并在离中 点120米处相遇,学校到少年宫有多少米?
3.汽车从甲地开往乙地,每小时行32千米,4小 时后,剩下的路比全程的一半少8千米,如果改 用每小时56千米的速度行驶,再行几小时到乙地?
3.2.2一元一次方程的应用 ——行程问题
Байду номын сангаас
列方程解应用题的一般步骤: 1.弄清题意和题中的数量关系,用字母(如 x,y)表示问题里的未知数; 2.分析题意,找出相等关系(可借助于示意图、 表格等); 3.根据相等关系,列出需要的代数式,并列出 方程; 4.解这个方程,求出未知数的值; 5.检查所得的值是否正确和符合实际情形,并 写出答案(包括单位名称)
行程问题--一元一次方程经典应用题
行程问题--一元一次方程经典应用题行程问题一、相遇问题:路程=速度×时间甲、乙相向而行,则:甲走的路程+乙走的路程=总路程二、追及问题:甲、乙同向不同地,则:追者走的路程= 前者走的路程+两地间的距离三、环形跑道问题:1、甲、乙两人在环形跑道上同时同地同向出发:快的必须多跑一圈才能追上慢的。
2、甲、乙两人在环形跑道上同时同地反向出发:两人第一次相遇时的总路程为环形跑道一圈的长度。
四、航行问题1、飞行问题,基本等量关系:顺风速度=无风速度+风速逆风速度=无风速度-风速顺风速度-逆风速度=2×风速2、航行问题,基本等量关系:顺水速度=静水速度+水速逆水速度=静水速度-水速顺水速度-逆水速度=2×水速一、相遇问题1、甲乙两列火车同时从相距700千米的两地相向而行,甲列车每小时行85千米,乙列车每小时行90千米,几小时两列火车相遇?2、甲、乙两人同时从相距27km的A、B两地相向而行,3h后相遇,甲比乙每小时多走1km,求甲、乙两人的速度3、甲乙两城相距100千米,摩托车和自行车同时从两城出发,相向而行,2.5小时后两车相遇,自行车的速率是4、A,B两村相距2800米,小明从A村出发向B村步行5 分钟后,小军骑自行车从B村向A村出发,又经过10分钟二人相遇,小军骑自行车比小明步行每分钟多走130 米,小明每分钟步行多少米?5、甲、乙两人骑自行车,同时从相距65千米的两地相向而行,甲的速率为每小时17.5千米,乙的速率为每小时15千米,求经过几小时,甲、乙两人相距32.5千米。
6、甲、乙两车同时从相距480千米的两地相对而行,甲车每小时行45千米,途中因汽车故障甲车停了1小时,5 小时后两车相遇。
乙车每小时行多少千米?二、追及问题1、A、B两地相距20km,甲、乙两人分别从A、B两发出发,甲的速度是6km/h,乙的速度是8km/h。
(1)若两人相向而行,甲先出发半小时,乙才出发,问乙出发后几小时与甲相遇?(2)若两人同时同向出发,甲在前,乙在后,问乙多少小时可追上甲?2、一个自行车队举行锻炼,锻炼时一切队员都以35千米/时的速率前进,忽然,1号队员以45千米/时的速率单独行进,行进10千米后掉转车头,仍以45千米/时的速度往回骑,知道与其他队员会和。
一元一次方程应用--行程问题
一元一次方程应用题专题行程问题姓名:行程问题中的基本公式:s= ,v= ,t= ,(一)相遇问题一、预习:小明和小东相距100km,V小明=20km/h,V小东=30km/h,他们8:00出发,相向而行,10:00相遇。
问:1、请填下列表格2、在这个过程中有哪些等量关系?3、能画出线段图吗?二、新课1、A、B两地相距150千米。
一辆汽车以每小时50千米的速度从A地出发,另一辆汽车以每小时40千米的速度从B地出发,两车同时出发,相向而行,问经过几小时,两车相距30千米?2、甲、乙两人在相距18千米的两地同时出发,相向而行,1小时48分相遇,如果甲比乙早出发40分钟,那么在乙出发1小时30分时两人相遇,求甲、乙两人的速度。
3、甲乙两队学生从相距18千米的两地同时出发,相向而行。
一个同学骑自行车以每小时14千米的速度,在两队之间不停地往返联络。
甲队每小时行5千米,乙队每小时行4千米。
两队相遇时,骑自行车的同学共行多少千米?对应练习:1、甲、乙两辆火车相向而行,甲车的速度是乙车速度的5倍还快20km/h,两地相距298km,两车同时出发,半小时后相遇。
两车的速度各是多少?2、A、B两地相距400km,一列慢车从A出发,速度为80km/h,一列快车从B地出发,速度为120km/h. 若两车相向而行,慢车出发出发1h后,快车出发,快车结经过多少小时和慢车相遇,3、小名与小美家相距1.8千米,有一天,小名与小美同时从各自家里出发,向对方家走去,小名家的狗和小名一起出发,小狗先跑去和小美相遇,又立刻回头跑向小名,又立刻跑向小美…一直在小名与小美之间跑动。
已知小名50米/分,小美40米/分,小名家的狗150米/分,求小名与小美相遇时,小狗一共跑了多少米?(二)追击问题一、预习:甲、乙两站相距480公里,一列慢车从甲站开出,每小时行90公里,一列快车从乙站开出,每小时行140公里。
慢车先开出1小时,快车再开。
两车相向而行。
一元一次方程应用题——行程问题
1. 某人从家里骑自行车到学校。
假设每小时行15千米,可比预定的时间早到15分钟;假设每小时行9千米,可比预定的时间晚到15分钟;求从家里到学校的路程有多少千米?2.在800米跑道上有两人练中长跑,甲每分钟跑320米,乙每分钟跑280米,•两人同时同地同向起跑,t分钟后第一次相遇,t等于多少分钟.3.一列客车长200 m,一列货车长280 m,在平行的轨道上相向行驶,从两车头相遇到两车尾相离经过16秒,客车与货车的速度之比是3∶2,问两车每秒各行驶多少米?4.一架飞机飞行在两个城市之间,风速为每小时24千米,顺风飞行需要2小时40分钟,逆风飞行需要3小时,求两城市间距离?5.轮船在静水中的速度是20千米/小时,从甲港顺流到乙港需8小时,返航时行走了6小时在距甲港68千米处发生故障,求水流速度?6.甲、乙两站相距280千米,一列慢车从甲站出发,每小时行驶60千米,一列快车从乙站出发,每小时行驶80千米,问两车同时开出,相向而行,出发后多少小时相遇?7.甲、乙两列火车,长为144米和180米,甲车比乙车每秒钟多行4米,两列火车相向而行,从相遇到错开需要9秒钟,问两车的速度各是多少?8.甲、乙两人分别同时从相距300米的A、B两地相向而行,甲每分钟走15米,乙每分钟走13米,问几分钟后,两个相距20米?9.甲乙两人骑自行车,从相距42千米的两地相向而行,甲每小时走12千米,乙每小时走10千米,如甲走12分钟后乙再出发,问甲出发后几小时与乙相遇?10.小红和小军两人同时从各自的家里出发去找对方,两家的直线距离为1200米,小红每分走55米,两人最后用61小时在途中某点相遇,那么小军每分钟走多少米?11.A 、B 两地相距80米,甲从A 地出发,每秒走1米,乙从B 地出发每秒走1.5米,如甲先走15米,求乙出发后多少秒与甲相遇?12.某汽车和电动车从相距298千米的两地同时出发相对而行,汽车的速度比电动车速度的6倍还多15千米,半小时后相遇。
一元一次方程的应用(行程问题)
总路程 慢车路程 快车路程
例: 甲、乙两名同学练习百米赛跑,甲每秒跑7米,乙每
秒跑6.5米,如果让乙先跑1秒,那么甲经过几秒可以追上 乙? 甲 本题中的等量关系为: 甲跑的距离=乙跑的距离
(先跑的距离+之后的距离)
7x米 乙
6.5米
6.5x米
解:设甲经过x秒可追上乙 则由题得: 7x = 6.5(x+1)
2(x+3)=2.5(x-3)
解得:x=27 答:该船在静水中的速度为27千米/小时。
作业:课本94页,练习1,2,3;名校课堂做到44页
例一艘船从甲码头到乙码头顺流行驶,用了2小时;从乙码头返 回甲码头逆流行驶,用了2.5小时,已知水流速度是3千米/时, 求船在静水中的平均速度. 顺水航行速度=水流速度+静水航行速度. 逆水航行速度=静水航行速度-水流速度.
解:设船在静水中的平均速度为x千米/小时,则船顺水的速
度为(x+3)千米/小时,而逆水的速度为(x-3)千米/小时。 则依题意可得:
用最少的悔恨面对过去, 用最少的浪费面对现在, 用最多的梦想面对未来。
3.2 一元一次方程的应用
等积问题
行程问题 一元一次 方程应用
利率问题
销售问题
比列问题
行程问题 填空: A,B两地相距50千米, 10 如果小王每小时走5千米,则需______小时走完.
25 3 如果小李6小时走完,则他每小时走____千米.
路程,速度,时间的关系是: 路程= 速度×时间
速度= 路程÷时间
时间= 路程÷速度
例:为了适应经济发展,铁路运输再次提速,如果 客车行驶的平均速度增加40km/h,提速后由合肥 到北京1110km的路程只需行驶10h。那么提速前, 这趟客车平均每时行驶多少千米? 分析,本题中的等量关系为:
初一-数学最新-初一-一元一次方程应用——行程问题与工程问题--
一元一次方程应用——行程问题与工程问题知识典例(注意咯,下面可是黄金部分!)一、行程问题1.行程问题中的基本关系式行程问题是在匀速运动的条件下,所有研究物体运动的路程、速度和时间,及运动状态的问题的统称.行程问题中路程、速度和时间三个量之间的关系①路程=速度×时间;②速度=错误!;③时间=错误!。
例题1、一列火车从车头进隧洞到车尾出隧洞共用了10分钟,已知火车的速度是500米/分,隧洞长为4 800米,问这列火车长是多少米?变式1、在一段双轨铁道上,两列火车同时驶过,A列车车速为20米/秒,B列车车速为24米/秒,若A列车全长180米,B列车全长160米,两列车错车的时间是多长时间?2、相遇问题的解决方法相遇问题是比较重要的行程问题,其特点是相向而行.如图1就是相遇问题.图2也可看成相遇问题来解决.相遇问题中的相等关系①甲、乙的速度和×相遇时间=总路程;②甲行的路程+乙行的路程=总路程,即s甲+s乙=s总;③甲用的时间=乙用的时间.变式2—1、甲、乙两人从相距为180千米的A、B两地同时出发,甲骑自行车,乙开汽车,沿同一条路线相向匀速行驶。
已知甲的速度为15千米/小时,乙的速度为45千米/小时. (1)经过多少时间两人相遇?(2)相遇后经过多少时间乙到达A地?变式2—1、已知AB两地相距120千米,乙的速度比甲每小时快1千米,甲先从A地出发2小时后,乙从B地出发,与甲相向而行经过10小时后相遇,求甲乙的速度。
变式2—2、甲、乙两人从A,B两地同时出发,甲骑自行车,乙开汽车,沿同一条路线相向匀速行驶。
出发后经3 小时两人相遇.已知在相遇时乙比甲多行了90千米,相遇后经 1小时乙到达A地。
问甲、乙行驶的速度分别是多少?3、追及问题的特点是同向而行.追及问题有两类:①同时不同地,如下图:等量关系:乙的行程-甲的行程=行程差;速度差×追及时间=追及距离.即s乙-s甲=s差.甲用的时间=乙用的时间.②同地不同时,如下图:等量关系:甲的行程=乙的行程.即s甲=s乙.“同时不同地”中,双方行驶所用的时间相同,行驶的路程却不同(出发点不同);而“同地不同时"中,由于行驶双方出发时间有先后,故行驶过程中用的时间不同,双方出发地相同,故行驶的路程相同.例题3—1、李成在王亮的前方10米处,若李成每秒跑7米,王亮每秒跑7。
(完整版)一元一次方程应用行程问题
:一元一次方程应用之--------------行程问题专题一、【根本概念】行程类应用题根本关系:路程=速度×时间速度=路程÷时间时间=路程÷速度相遇问题:甲、乙相向而行,那么:甲走地路程+乙走地路程=总路程.追及问题:①甲、乙同向不同地,那么:追者走地路程=前者走地路程+两地间地距离.②甲、乙同向同地不同时,那么:追者走地路程=前者走地路程环形跑道问题:①甲、乙两人在环形跑道上同时同地同向出发:快地必须多跑一圈才能追上慢地.②甲、乙两人在环形跑道上同时同地反向出发:两人相遇时地总路程为环形跑道一圈地长度.飞行〔航行〕问题、根本等量关系:①顺风〔顺水〕速度=无风〔静水〕速度+风速〔水速〕②逆风〔逆水〕速度=无风〔静水〕速度-风速〔水速〕顺风〔水〕速度-逆风〔水〕速度=2×风〔水〕速车辆〔车身长度不可忽略〕过桥问题:车辆通过桥梁〔或隧道等〕,那么:车辆行驶地路程=桥梁〔隧道〕长度+车身长度超车〔会车〕问题:超车过程中,车辆行驶路程等于车身长度和,相对速度为两车速度差.会车过程中,车辆行驶路程等于车身长度和,相对速度为两车速度和.在行程问题中,按照题意画出行程图,可以使问题地分析过程更直观,更容易理解.特别是问题中运动状态复杂,涉及地量较多地时候,画行程图就成了理解题意地关键.所以画行程图是我们必须学会地一种分析手段.另外,由于行程问题中地根本量只有“路程〞、“速度〞和“时间〞三项,所以,列表分析也是解决行程问题地一种重要方法.二、【典型例题】〔一〕相遇问题相遇问题:甲、乙相向而行,那么:甲走地路程+乙走地路程=总路程.例1、甲、乙两站相距 600km,慢车每小时行40km,快车每小时行60km.⑴经过xh后,慢车行了km,快车行了 km,两车共行了km;⑵慢车从甲站开出,快车从乙站开出,相向而行,两车相遇共行了km, 如果两车同时开出,xh相遇,那么可得方程:;⑶如果两车相向而行,快车先行50km,在慢车开出yh后两车相遇,那么可得方程:;⑷如果两车相向而行,慢车先开50min,在快车开出th后两车相遇,那么可得方程:.例2、甲、乙两站地路程为450千米,一列慢车从甲站开出,每小时行驶65千米,一列快车从乙站开出,每小时行驶85千米.两车同时开出,相向而行,多少小时相遇?分析:1/3慢车的路程快车的路程甲站乙站两站相距450km例3、甲、乙两地相距376km,A车从甲地开往乙地,半小时后B车从乙地开往甲地,A车开出5h后与B车相遇,又知B车地时速是A车时速地倍,求B车地时速?例4、甲骑自行车从A地到B地,乙骑自行车从B地到A地,两人都匀速前进.两人在上午8时同时出发,到上午10时,两人还相距36千米,到中午12时,两人又相距36千米.求A、B两地间地路程.课堂练习1:电气机车和磁悬浮列车从相距298千米地两地同时出发相对而行,磁悬浮列车地速度比电气机车速度地5倍还快20千米/时,半小时后两车相遇.两车地速度各是多少?2、甲、乙两人从相距35km地两地同时出发,相向而行,甲步行每小时走4km,乙骑车小时后相遇,求乙地速度.3、甲步行,乙骑自行车,同时从相距 27km地两地相向而行,2h 相遇,乙比甲每小时多走5.5km,求甲、乙两人地速度.4、A、B两地相距153km,汽车从A地开往B地,时速为38km;摩托车从B地开往A地,时速为24km.摩托车开出小时后,汽车再出发.问汽车开出几小时后遇到摩托车?5、甲骑自行车从A地出发,以12km/h地速度驶向B地,同时,乙也骑自行车从B地出发,以14km/h 地速度驶向A地.两人相遇时,乙已超过A、B两地中点1.5km,求A、B两地地距离.〔二〕追及问题例1、甲、乙两地相距10km,A、B两人分别从甲、乙两地同时、同向出发,A在前,B在后,A地速度是每小时4km,B地速度是每小时5km,xh后A走了km,B走了km.如果这时刚好B追上A,那么可列方程:.例2、甲、乙两人都从A地出发到B地,甲先走5km后乙再出发,甲速度是4km/h,乙速度是5km/h.如果A、B两地相距xkm,那么甲先走地时间是h,乙走地时间是h, 假设两人同时到达B地,那么可列方程:.例3、甲、乙两人同时以4km/h地速度从A地前往B地,走了后,甲要回去取一份文件.他以6km/h 地速度往回走,在办公室耽误了15min后,仍以6km/h地速度追赶乙,结果两人同时到达B地.求A、B两地间地距离.分析:你能求出第二段甲乙所用时间为h吗?假设设A、B两地间地距离为xkm,可以用表示第四段甲乙所用时间.课堂练习1:跑得快地马每天走240里,跑得慢地马每天走150里.慢马先走12天,快马几天可以追上慢马?课堂练习2:一辆每小时行30km地卡车由甲地驶往乙地,1h后,一辆每小时行40km地摩托车也由甲地驶往乙地,问卡车开出几h后摩托车可追上卡车?家庭练习:1、甲、乙两人相距18km,乙出发后甲再出发,甲在后,乙在前同向而行,甲骑车每小时行8km,乙步行每小时行5km,问甲出发几h后追上乙?2、甲每小时走5km,出发2h后乙骑车追甲.⑴如乙地速度为每小时20km,问乙多少分钟追上甲?⑵如果要求乙出发14km时追上甲,问乙地速度是多少?3、从甲地到乙地走水路比走公路近20km,上午10时,一条轮船甲地从驶往乙地,下午1时一2/3辆汽车也从甲地驶向乙地,结果汽车与轮船同时到达乙地.轮船时速20km,汽车时速60km,求甲地到乙地地水路和公路地长.4、同村地甲、乙两人都去县城,甲比乙早走1h,却迟到半小时,甲每小时走4km,乙每小时走5km.问村庄到县城地距离是多少?〔三〕环形跑道问题例1、某城举行环城自行车赛,骑得最快地人在出发后 35min就遇到骑得最慢地人,骑得最慢地人地车速是骑得最快地人地车速地5,环城一周是6km,求骑得最快地人地车速.7例2、一环形公路周长是24千米,甲乙两人从公路上地同一地点同一时间出发,背向而行,3小时后他们相遇.甲每小时比乙慢千米,求甲、乙两人速度各是多少?家庭练习:1、甲、乙两人在400m环形跑道上练竞走,乙每分钟走80m,甲地速度是乙地速度地11倍,现4甲在乙前面100m,问多少分钟后两人可首次相遇?2、运动场地跑道一圈长 400m.甲练习骑自行车,平均每分骑350m;乙练习跑步,平均每分钟跑250m.两人从同一处同时反向出发 ,经过多少时间首次相遇?又经过多少时间再次相遇?〔四〕航行〔飞行〕问题例1、一艘船从甲码头到乙码头顺流行驶,用了2小时;从乙码头返回甲码头逆流行驶,用了小时.水流速度是3千米/时,求船在静水中地平均速度.例2、一架飞机在两城之间飞行,风速为24千米/时.顺风飞行需要2小时50分,逆风飞行需要3小时,求无风时飞机地航速和两城之间地航程.课堂练习1:一艘船从A港到B港顺流行驶,用了5小时;从B港返回A港逆流而行,用了小时,水流速度是3千米/小时,求船在静水中地速度.课堂练习2:有A、B、C三个码头,BC相距24km,某船从B顺水而下到达A后,立即逆水而上到达C.共用8h,水流速度为5km/h,船在静水中地速度为20km/h,求A、B之间地距离.1、客机和战斗机从相距600km地两个机场起飞,30min相遇,客机顺风飞行,战斗机逆风飞行,如果在静风中战斗机地速度是客机地3倍,风速是每小时24km,问两机地速度各是多少?2、船在静水中地速度是14km/h,水流速度是2km/h,船先顺流由一码头开出,再逆流返回,假设要船在3h30min内返回,那么船最远能开出多远?3、甲船从A地顺流下行,乙船同时从B地逆水上行,12h后相遇,此时甲船已走了全程地一半多9km,甲船在静水中地速度是每小时4km,乙船在静水地速度是每小时5km,求水流地速度.〔五〕错车问题例1.甲乙两人辞别后,沿着铁轨反向而行.此时,一列火车匀速地向甲迎面驶来,列车从甲身旁开过,用了15s;然后从乙身旁开过用了17s.两人地速度都是3.6km/h,这列火车有多长?随堂练习:1.某部队执行任务,以6km/h地速度前进,通信员在队尾接到命令后把命令传给了排头,然后立即返回队尾,通讯员来回地速度是10km/h,共用7.5min,求队伍地长度.2.在高速公路上,一辆长4米,速度为110千米/时地轿车准备超越一辆长12米,速度为100千米/时地卡车,那么轿车从开始超越到超越卡车需要花费地时间约是多少?3.某隧道长500m,现有一列火车从隧道内通过,测得火车通过隧道〔即从车头进入入口到车尾地离开出口〕共用30s,而整列火车完全在隧道内地时间为10s,求火车地速度和火车地长.4.一列火车用26s地时间通过一个长256m地隧道〔即从车头进入隧道到车尾离开隧道〕,这列火车又以同样地速度用16s地时间通过了另一个长96m地隧道,求这列火车地长度3/3。
一元一次方程的应用-行程问题
应用例子:旅行行程问题
例子 1
小张计划开车环游华东地区, 他的旅行路线包括上海、杭 州和苏州,共计1200公里。 计算他经过每个城市的距离。
例子 2
小花打算乘坐飞机从北京飞 往成都,然后再乘坐火车从 成都到重庆。计算她的整个 旅行的总时间。
例子 3
小李计划乘坐汽车从广州到 深圳,然后乘坐轮船从深圳 到香港。计算他的整个旅行 所需的总里程。
• 一元一次方程是解决行程问题的重要工具,能够帮助我们计算未知数 的值。
• 在解决行程问题时,我们需要将问题转化为数学方程,并通过解方程 求解。
一元一次方程的定义和解法
一元一次方程是指只有一个未知数的一次方程,形式为ax+b=0。解这类方程常常使用逆运算,例如加法逆运算 和乘法逆运算。
如何将行程问题转化为一元一 次方程
要将行程问题转化为一元一次方程,首先要分析问题中涉及到的变量和关系。 然后根据已知条件建立方程,并通过解方程得到未知数的值。
一元一次方程的应用-行 程问题
行程问题是数学中常见的一个应用场景,它涉及到人们在旅行和交通中的实 际问题。本节课将介绍如何将行程问题转化为一元一次方程,以及一元一次 方程的定义和解法。
行程问题的介绍
行程问题指的是计算一个人或物体在旅行过程中所花费的时间、距离或速度 等相关问题。这类问题常常涉及到两个或多个变量的关系,通过建立方程来 解决。
应用例子:乘车行程问题
1
例子 1
小明开车从A城到B城,全程200公里。他以每小时80公里的速度行驶,计算他到 达B城所需的时间。
2
例子Байду номын сангаас2
小红坐火车从C城到D城,两地相距300公里。火车平均速度为60公里/小时,计 算她到达D城所需的时间。
一元一次方程-行程问题
图像法
通过图形表示方程,通过 直线与坐标轴的交点解方 程。行程来自题的实例1问题一
小明骑自行车经过一段直路,行驶了3小时,速度为15千米/小时。求小明经过的 路程。
2
问题二
火车从A站出发,经过150千米后到达B站,再经过2小时到达C站。求火车从A站 到C站的平均速度。
3
问题三
小红跑步经过一段直路,行驶了5千米,平均速度为12千米/小时。求小红跑步的 时间。
确定未知数和已知数,将问 题中的未知数用字母表示。
步骤二
根据问题的描述,建立数学 模型,将已知条件和未知数 以等式的形式表示。
步骤三
化简和解方程,找出未知数 的值。
解一元一次方程的方法
倒代数法
通过倒推的方式,逐步消 除系数和常数,得到未知 数的值。
平衡法
利用等式两边的性质,逐 步移项和合并同类项,得 到未知数的值。
行程问题是指通过解一元一次方程来计算物体或人的行程、速度、时间等参数问题。
2 为什么重要?
行程问题的解决可以帮助我们更好地理解和预测物体或人的运动轨迹,对旅行、交通等 领域具有重要意义。
3 实例应用
行程问题在日常生活中的应用非常广泛,比如计算旅行时间、行驶距离、速度等。
如何建立一元一次方程模型
步骤一
一元一次方程-行程问题
一元一次方程是一种以未知数的一次方程表示的数学式。行程问题是一类常 见的应用问题,可以通过建立一元一次方程模型来解决。
一元一次方程的定义
一元一次方程是一个只包含一个未知数的一次方程,它可以表示为Ax + B = 0 的形式,其中A和B是已知的实数常数。
行程问题的概述
1 什么是行程问题?
解决行程问题的步骤
3.4一元一次方程的应用行程问题(环形跑道)
找等量关系的方法:
• 1、从题中的关键语句入手寻找等量关系。
• 2、利用某些基本公式寻找等量关系。
• 3、从变化的关系中寻找不变的量,进而 找到 等量关系。 • 4、此外,还可以借助图形、表格、线段 图等分析较复杂问题中的等量关系。
运动场一圈为400米,张森和丁烁一同参加学校运动 会的长跑比赛。已知丁烁然平均每分钟跑230米,张森每 分钟跑150米。 (1)若两人从同一处同时同向起跑,问经过多长时间两 人可以首次相遇?
答:经过4分钟甲、乙相遇。
变式1、 甲在后,乙在前,且两人相距100米。若两人从同时同向 出发,经过多少时间首次相遇? 变式2、 甲在前,乙在后,且两人相距100米。若两人从同时同向 出发,经过多少时间首次相遇?
变式3、 两人从同一处同向出发,若乙先跑1分钟,经过多少时间
首次相遇?
变式4、 两人从同一处同向出发,若甲先跑1分钟,经过多少时间 首次相遇?
3.4一元一次方程应用 ——行程问题(环形跑道)
例1、 运动场的跑道一圈长400m,甲练习骑自行车, 平均每分骑350m,乙练习跑步,平均每分250m.两
人从同一处同时同向出发,经过多少时间首次相遇?
分析:圆形跑道中的规律:
(第1次相遇:)快者跑的路程-慢者跑的路程=1圈的长度 (第2次相遇:)快者跑的路程-慢者跑的路程=2圈的长度 (第3次相遇:)快者跑的路程-慢者跑的路程=3圈的长度 ………. (第n次相遇:)快者跑的路程-慢者跑的路程=n圈的长度 解:设经过x分钟首次相遇,则依题意可得 350x-250x=400 解得:x=4
2 答:经过 3分钟甲、乙相遇。 2 解得:x= 3
变式1、 若两人同时反向出发,且两人相距100米。问经过多少时 间两人首次相遇? 变式2、 若两人从同一处反向出发,且乙先跑1分钟。问经过多少 时间两人首次相遇?
一元一次方程行程问题知识点
一元一次方程行程问题知识点一、知识概述《一元一次方程行程问题知识点》①基本定义:一元一次方程行程问题呢,简单说就是根据路程、速度、时间这三个家伙之间的关系列出一元一次方程来解决出行方面的数学题。
路程就是走了多远,速度就是走得有多快(像每小时走多少千米这样),时间就是走了多久。
②重要程度:在数学这门学科里,行程问题可重要了。
它是一元一次方程应用里的典型题目,既能考验我们对一元一次方程的掌握,又和生活里的出行特别贴近。
懂了这个,在很多现实场景里就能算出时间、速度或者路程啥的。
③前置知识:要学一元一次方程行程问题,得先把一元一次方程的解法搞得明明白白,像方程的移项、合并同类项这些基本操作得会。
而且对速度、路程、时间的基本概念要清楚,得知道在速度不变的情况下,路程和时间成正比这种关系。
④应用价值:生活里到处都是它的影子啊。
比如说开车出去玩,知道两地的距离和车速,就能算出路上需要多久。
或者跑步锻炼的时候,知道跑的距离和花的时间,就能算出自己跑步的速度。
这对计划出行、安排时间超有用的。
二、知识体系①知识图谱:在一元一次方程这个大板块里,行程问题是应用题的一部分。
它是联系方程理论和实际生活的重要桥梁。
②关联知识:和方程的解法、有理数的运算、数与式等知识点都有联系。
解行程问题的时候,方程相加或者相减,就用到有理数的运算;列出方程里的路程、速度或者时间表达式的时候,会用到数与式相关知识。
③重难点分析:- 掌握难度:说实话有点费脑子。
主要是要根据实际情况准确地把路程、速度、时间用代数式表示出来,这中间变化多。
像相向而行和同向而行的路程算法就不一样。
- 关键点:抓住路程、速度、时间之间的关系。
而且要分清楚是相遇问题、追及问题还是环形跑道之类的特别情况。
④考点分析:- 在考试里很重要。
一般分值占比挺大的。
- 考查方式有直接给条件列方程求解路程或者时间的,还有像给了一点提示后让先确定是相遇还是追及然后再列方程求解的那种弯弯绕绕的题目。
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
例1 两船相距400千米,甲船每小时航行60千米,乙船航行40 千米(彼此抵达对方的位置),若两船同时出发,相向而行, 问经过多少小时两船相遇?
等量关系是 什么?
已知量 ,未知量, 分别是什么?
400千米
甲船 60千米/小时 相遇
乙船 40千米/小时
• 等量关系: • 甲船所用时间=乙船所用时间 • 甲船航行的路程+乙船航行的路程=两船之间的距离
• 等量关系:相遇时,小莉的时间=小强的时间 • 小强的路长-小莉的路长=操场的总长(相遇时, 小强比小莉多跑一圈) 速度 路程 时间 (米/ (米) (分 钟) 分钟) 小强 小莉 120 80 120x 80x x 解:设x分钟后,小莉与小强第一 次遇见。 120x-80x=400 40x=400 x=10 答:10分钟后,小莉与小强第一 次遇见。
x
善于步行 100米/小时
不善于步行 60米/小时 100米 先走的路程
赶 上
小结: 快的经过的路程-慢的经过的路程=先走的路程
故事情节二 比赛开始
• 兔子的速度是160米/分钟,乌龟的速度10米/分钟, 他们在同一地点出发,乌龟先走60分钟,请问多 久以后兔子追上乌龟呢? 思考:乌龟先走的路程是多少?
环形跑道
1、背向而行,首次相遇 小强、小莉分别在400米 环形跑道上练习跑步, 小强每分钟跑100米, 小莉每分钟跑80米,两 人同时从同一点反向出 发,问几分钟后,小莉 与小强第一次相遇?
例3 小强、小莉分别在400米环形跑道上练习跑步, 小强每分钟跑100米,小莉每分钟跑80米,两人同时 从同一点反向出发,问几分钟后,小莉与小强第一 次相遇? 等量关系:
例2 有一个善于步行的人每小时走100米,一个不善于步行的 人每小时走60米。现在一个不善于步行的人先走了100米, 善于步行的人开始追他。问经过多久才能追上不善于步行的 人。 • 等量关系: 善于步行的人所用的时间=不善于步行的人后用的时间 善于步行的人的路程-不善于步行的人后走的路程=不善于步 行的人先走的路程 速度 路程 (千 (千 米/时)米) 善行 者 不善 行者 100 60 100x 60x 时间 (小 时) x 设善行者用x小时,追上不 善行者。 100x-60x=100 40x=100 x=2.5 答:经过2.5小时才能追上 不善于步行的人。
例4 小强、小莉分别在400米环形跑道上练习跑步,小强 每分钟跑120米,小莉每分钟跑80米,两人同时从同一 点同向出发,问几分钟后,小莉与小强第一次相遇?
• 等量关系: • 相遇时,小莉的时间=小强的时间 • 小强的路程-小莉的路程=操场的总长 (相遇时,小强比小莉多跑一圈)
例4、小强、小莉分别在400米环形跑道上练习跑步, 小强每分钟跑120米,小莉每分钟跑80米,两人同 时从同一点同向出发,问几分钟后,小莉与小强第 一次相遇?
一元一次方程的用 ——行程问题
大家好
龟兔赛跑的故事
路程、时间、速度 他们之间的关系是: 路程=速度×时间
速度=路程÷时间 时间=路程÷速度
• 1、 相遇问题 • 历史问题:
直线跑道
•两船相距 “两船相隔若干距离, 400千米,甲船每 第一艘船需行 5日,第 小时航行 60千米,乙船航 行二艘船需行 40千米(彼此抵达对方 7日(彼此 的位置),若两船同时出 抵达对方位置)。今 发,相向而行,问经过多 两船同时出发(相向 少小时两船相遇? 而行),问几日后相 遇?”
相遇时,小莉的时间=小强的时间 小强的路程+小莉的路程=操场的总长
例3 小强、小莉分别在400米环形跑道上练习跑步, 小强每分钟跑100米,小莉每分钟跑80米,两人同时 从同一点反向出发,问几分钟后,小莉与小强第一 次相遇?
等量关系:相遇时,小莉的时间=小强的时间 小强的路程+小莉的路程=操场的总长 速度 路程 时间 (米/ (米) (分 钟) 分钟) 小强 小莉 120 120x x x
例2 有一个善于步行的人每小时走100米,一个不善 于步行的人每小时走60米。现在一个不善于步行的人 先走了100米,善于步行的人开始追他。问经过多久 才能追上不善于步行的人。
等量关系是什么?
善Hale Waihona Puke 步行 100米/小时不善于步行 60米/小时
已知量 ,未知量,分别是什么呢?
100米
赶 上
等量关系: 善于步行的人所用的时间=不善于步行的人后用的时间 善于步行的人的路程-不善于步行的人后走的路程=不善于步行 的人先走的路程(追及的路程)
80
80x
解:设x分钟后,小莉与小 强第一次相遇 120x+80x=400 200x=400 x=2 答:2分钟后,小莉与小强 第一次相遇。
小结:快的经过的路程+慢的经过的路程=跑 道一圈的总长
环形跑道
2、同向而行,首次相遇 • 小强、小莉分别在 400米环形跑道上练 习跑步,小强每分钟 跑120米,小莉每分 钟跑80米,两人同时 从同一点同向出发, 问几分钟后,小莉与 小强第一次相遇?
60x+40x=400
100x=400 x=4 答:经过4小时两船相遇。
甲船 乙船
60 40
60x 40x
x
x
400千米
甲船 60千米/小时
乙船 40千米/小时 相遇
小结:快的经过路程+慢的经过路程=总路程
直线跑道
2、追及问题
• 历史问题 • 有一个善于步行的人每小时 公元前1世纪《九章 算术》 “今有善行者 走 100米,一个不善于步行 行一百步,不善行 的人每小时走 60米。现在一 者行六十步,今不 个不善于步行的人先走了 善行者先行一百步, 100 米,善于步行的人开始 善行者追之。问: 追他。问经过多久才能追上 几何步及之?” 不善于步行的人。
兔子 160米/分钟
乌龟 10米/分 钟
600米
赶 上
先走的距离
• 兔子的速度是160米/分钟,乌龟的速度10米/分钟, 他们在同一地点出发,乌龟先走60分钟,请问多 久以后兔子追上乌龟呢?
等量关系:兔子的路程-乌龟的路程=乌龟先走的路程 解:设x分钟后兔子追上乌龟 160x-10x=60×10 150x=600 x=4 答:4分钟后兔子追上乌龟。
两船相距400千米,甲船每小时航行60千米,乙船 航行40千米(彼此抵达对方的位置),若两船同时 出发,相向而行,问经过多少小时两船相遇?
• 等量关系: • 甲船所用时间=乙船所用时间 • 甲船航行的路程+乙船航行的路程=两船之间的距离
速度 路程 时间 (千米 (千米) (小时) /时)
解:设经过x小时两车相遇。