专题六 解直角三角形的综合运用(一)
中考总复习--解直角三角形的实际应用
中考总复习解直角三角形的实际应用【复习要点】解直角三角形在中考中一宜占有一左比例,有关题型亮相也比较新颖,着重考查学生的基础知识和基本能力•中考要求及命题趋势:1.理解锐角三角形的三角函数值的槪念:2.会由已知锐角求它的三角函数,由已知三角函数值求它对应的锐角:3.会运用三角函数解决与直角三角形有关的简单实际问题.应试对策1•要掌握锐角三角函数的概念,会根据已知条件求一个角的三角函数,会熟练地运用特殊角的三角函数值:2掌握根据已知条件解直角三角形的方法,运用解直角三角形的知识解决实际问题具体做到:①了解某些实际问题中的仰角、俯角、坡度等概念;②将实际问题转化为数学问题,建立数学模型;③涉及解斜三角形的问题时,会通过作适当的辅助线构造直角三角形,使之转化为解直角三角形的计算问题而达到解决实际问题.【复习流程】一•自我检测激活旧知1.回忆表格,求AB的长.BA.12B.4^3XC.5馅米D.6馅米二.归纳整理形成网络1. 仰角:在视线与水平线所成的角中,视线在水平线上方的角叫做仰角.2. 俯角:视线在水平线下方的角叫做俯角.3. 坡度:坡面的铅直高度h和水平宽度1的比叫做坡面的坡度(或坡比),记作1= _____________ .4. 坡角:坡面与水平面的夹角叫做坡角,记作a・i = tana ,坡度越大,ci角越大,坡面越陡.5. 方位角:指北或指南方向线与U标方向线所成的小于90°的角叫做方位角. 注意:东北方向指北偏东45°方向,东南方向指南偏东45°方向,西北方向指北偏西45°方向,西南方向指南偏西45。
方向.我们一般画图的方位为上北下南,左西右东・三.明确考纲了解中考C等级近儿年都以解答题为主,预测2017年中考,也会延续近五年的趋势,考一个解答题四•讲练结合感受方法1.(2010安徽)如图,若河岸的两边平行,河宽为900m, 一只船山河岸的A处沿直线方向开往对岸的B处,AB与河岸的夹角是60°,船的速度为5m/s,求船从A处到B 处约需时间儿分(参考数据:)分归解决题的关键是求岀A啲长何过昨河对岸的垂些,在构犀的言角三角形中,很书河岸的竞度即嗣与河岸的夹角’通过解直角三角形求出AB的长r进而根押捐二路程•頤得出结果■ 解答:"•〜〜卜牛•八. 严解:如图「囲B作BC垂亘于河岸f垂足为C .C A在RaACB中r有:_ BC 930 r-A吐拓万正=600^ ••讥=^^=2乐玄4(分).閲船从A处到B处约需3,4分・点谱.•应用问题尽管题型千变万化’但关键是设法化归为解直甬三角形问题”必要时应添加辅助线,构造出直角三角形•3. (2008-安徽)如图,小明站在A处放风筝,风筝飞到C处时的线长为20米, 这时测得ZCBD二60°,若牵引底端B离地面米,求此时风筝离地面高度.(计算分析:山题可知,在直角三角形中,知道已知角以及斜边,求对边,可以用正弦值进行解答.解答:解:在RtABCD 中,CD二BCXsin60° =20X =10乂 DE二AB二,・•・ CE 二CD+DE 二CD+AB 二10+~答:此时风筝离地面的高度约是米.点评:本题考查直角三角形知识在解决实际问题中的应用.5类型二构造双直角三角形1 •辅助线在三角形外(母子型)3.如图,河的两岸11与12相互平行,A、B是11上的两点,C、D是12上的两点,某人在点A处测得ZCAB二90° , ZDAB二30°,再沿AB方向前进20米到达点 E (点E在线段AB±),测得ZDEB二60°,求C、D两点间的距离.【分析】直接利用等腰三角形的判定与性质得出DE二AE二20,进而求出EF的长, 再得出四边形ACDF为矩形,则CD二AF二AE+EF求出答案.【解答】解:过点D作11的垂线,垂足为F,TZDEB二60° , ZDAB二30° ,・•・ ZADE二ZDEB ・ ZDAB二30° ,•••△ADE为等腰三角形,・・・DE二AE二20,在RtADEF 中,EF=DE*cos60° =20X =10 (m)VDF±AF,・・・ZDFB二90° ,・・・AC〃DF,由已知11/712,ACD/7AF,・•・四边形ACDF为矩形,CD二AF二AE+EF二30, 答:C、D两点间的距离为30m・4. (2016临沂)一艘轮船位于灯塔P南偏西60°方向,距离灯塔20海里的A 处,它向东航行多少海里到达灯塔P南偏西45方向上的B处(参考数据:结果精确到)22. 过点 P 作 PCI AB.交 AB 的SicftTAC龙中.ZXCPS904, ZXPCwfitr, M=20.PC JC • c«6O°^2O^-«IO. ... ........ ......... . BB”C ■刃• sin60%20况・ ............. 4 分(f.Rl^BCP 屮 ZBC? = 90\ ZW-4$G............ZUB s AC ・BC M K)J5・IO*IOX|.?32-IO*73.ft :轮給向东啟行约7.3 WIH 达位下灯圻P mte?5用方向上的B 处7 i5. (2013安徽)如图,防洪大堤的横截面是梯形ABCD,其中AD 〃BC, a 二60° , 汛期来临前对其进行了加固,改造后的背水面坡角B 二45。
中考复习之解直角三角形的应用
F 45° A
60° C
E
D 20 B
解法二:延长AC交直 线DB于点F, …
x ∴ 3= x 50 .
?
60° 45°
D
B 50 C
∴x=75+25 3
解法二:设BD=x(米),
∴AD=75+25 3(米)
则AD=50+x(米),在
答:风筝此时距地面的高度 (75+25 3)米。
AD
为 Rt△ABD中用锐角三角函 数求解
解题反思
1.本题出现了2个我们熟悉的基本图形-----60°,45°角的直角三角形,并且这两个图形有 一条公共的直角边。
解(1)作AB⊥MN,B为垂足。
BN
在Rt△ABP中
P
∵∠ABP=90°,∠APB=30°,
30°
AP=160米,
M
160
∴AB=80米
AQ
∴点A到直线MN的距离小于100米。
∴这所中学会受到噪声的影响。
解题点拨 (2) 既然受影响, 怎样求受影响的时间呢?因拖拉
DN
机速度已知,故应求学校在受噪 声影响时拖拉机行驶的路程,即
45°方向上的B处,求此时轮船所在的B处与灯塔
P的距离。(结果保留根号)
北
M
A东
60°
方位角:指正北或正南方向线 与目标方向线所成的小于 P 90°的角。
45°
N B
解:过点P作PC AB于点C,
解直角三角形的应用(1)
∴AC =DC·tan60°= 1 0 0 3 = 1 0 0 3 (米)
∴ AB=AC-BC=(100 3-100) (米)
答:塔AB 的高度为(100 3 100)米.
12.如图,浦西对岸的高楼 AB,在 C 处测得楼顶 A 的仰角为 30°,向高楼前进 100 米到达 D 处,在 D 处测得 A 的仰角为 45°, 求高楼 AB 的高.
5.(例 2)热气球探测器显示,从热气球底部 A 处看一栋高楼顶
部的仰角为 30°,看这栋楼底部的俯角为 60°,热气球 A 处与高楼
的水平距离为 120 m,这栋高楼有多高?
解:过点A作AD BC,垂足为D,
D
由题意中AD =120 m, ∴BD =AD ·tan30°= 120
CD =AD ·tan60°= 120
∠BCD =90°-55°=35°
∴ AD CD = 70 =100(米)
tan 35 0.70
BD =CD ·tan35°=70×0.70=49(米) ∴AB =AD +BD =100+49=149(米) 答:建筑物A,B 间的距离为149米.
10.如图,陈滴用仪器测量一棵大树 AB 的高度,在 C 处测得 ∠ADG=30°,在 E 处测得∠AFG=60°,CE=8 米,仪器高度 CD =1.5 米,求这棵树 AB 的高度(结果精确到 0.1, 3≈1.732).
解:∵∠D =30°,∠AFG =60°
∴∠DAF =60°-30°=30°
∴AF =DF =CE =8
∴AG
=AF·sin60°=
8
3 4 2
3
(米)
∴AB =AG +GB = 4 3 1.58.4(米)
中考数学一轮复习课件微专题六 解直角三角形实际应用四大模型
参考数据:
sin 37°≈0.60,cos 37°≈0.80,tan 37°≈0.75.
解:∵CE∥AD,
∴∠A=∠ECA=37°,
∴∠CBD=∠A+∠ADB=37°+53°=90°,
∴∠ABD=90°.
在 Rt△BCD 中,∠BDC=90°-53°=37°,CD=90 米,cos∠BDC=
答:最大水深约为 2.6 m.
模型二
“母抱子”型
图形
模型特点
一个直角三角形包含在另一个直角三角形中,两直角三角形有公共直角和一条
公共直角边,其中,这条公共直角边是沟通两直角三角形关系的媒介
4.(2022 重庆)湖中小岛上码头 C 处一名游客突发疾病,需要救援.位于湖面 B 点处的快艇和湖岸 A 处的
在 Rt△MOD 中,tan∠MOD= ,∴tan 76°= ,∴MD≈4OD.
设 OD=x m,则 MD≈4x m.
2
2
2
在 Rt△MOD 中,OM=OA= AB≈3.4 m,∴x +(4x) ≈3.4 .
∵x>0,∴x≈0.82,∴OD≈0.82 m,
∴DH=OH-OD=OA-OD≈3.4-0.82=2.58≈2.6(m).
解:(1)如图所示,过点 A 作 AD⊥CB,交 CB 的延长线于点 D.
根据题意,可知
∠NAC=∠CAB=30°,BC=900 米,BC∥AN,
∴∠C=∠NAC=30°=∠BAD,
∴AB=BC=900 米.
∵∠BAD=30°,
∴BD=450 米,
∴AD= BD=450 米,
专题训练(六) 解直角三角形的四种方法 《全品学练考》九年级下数学
专题训练(六) 解直角三角形的四种方法
解:(1)∵OB=4,OE=2, ∴B(4,0),EB=OB+OE=6. ∵tan∠ABO=AOOB=12=CEBE, ∴CE=3,AO=2, ∴A(0,2),C(-2,3). 设反比例函数的解析式为 y=kx.
专题训练(六) 解直角三角形的四种方法
∵AB=4,AC=5,
专题训练(六) 解直角三角形的四种方法
∴42-(6-x)2=52-x2,
解得 x=145.
15
∴在
Hale Waihona Puke Rt△ACD中,cos∠ACB=CADC=
4 5
=34.
∵∠DEB=∠ACB,∴cos∠DEB=34.
专题训练(六) 解直角三角形的四种方法
方法四 “等比代换法”解直角三角形
5.如图 6-ZT-5 所示,在平面直角坐标系 xOy 中,直线 AB 与 x 轴,y 轴分别交于点 B,A,与反比例函数的图象交于点 C, D,CE⊥x 轴于点 E,tan∠ABO=12,OB=4,OE=2. (1)求该反比例函数的解析式; (2)求直线 AB 对应的函数解析式.
本课件仅供交流学习使用,严禁用于任何商业用途
全品学练考
数学
九年级 下册
新课标(RJ)
第二十八章 锐角 三角函数
专题训练(六)
第二十八章 锐角三角函数
专题训练(六) 解直角三角形的四种方法
专题训练(六) 解直角三角形的四种方法
方法一 “化斜为直法”解三角形
1.已知:如图 6-ZT-1,在△ ABC 中,AC=10,sinC=54,sinB =31,求 AB 的长.
又∵∠B=∠B, ∴△ADB∽△CEB,∴BBDE=BBAC,即BBDA=BBCE.
解直角三角形及其应用 【完整版】
解直角三角形及其应用(1)主备:柴世俊审核:九年级数学备课组 学习目标:1、熟练掌握直角三角形除直角外五个元素之间的关系。
2、学会根据题目要求正确地选用这些关系式解直角三角形。
学习重难点:1、重点:会利用已知条件解直角三角形。
2、难点:根据题目要求正确选用适当的三角关系式解直角三角形。
学习过程: 一、复习回顾*直角三角形三边的关系:勾股定理a 2+b 2=c 2.直角三角形两锐角的关系:两锐角互余∠A+∠B=90°. *直角三角形边与角之间的关系:锐角三角函数*互余两角之间的三角函数关系: sinA=cosB .*同角之间的三角函数关系:*特殊角30°,45°,60°角的三角函数值. 二、新课探究:有以上的关系,如果知道了五个元素中的两个元素(至少有一个是边),就可以求出其余的三个元素。
在直角三角形中,除直角外,由已知元素求出未知元素的过程,叫做解直角三角形。
例1在RT △ABC 中,∠C=90°,∠B=42°6′,c=,解这个三角形。
ACabB ca B A ==cos sin cbB A ==sin cos .cos sin tan AAA =1sin cos 22=+B A解:例2在△ABC 中,∠A=55°,b=20cm,c=30cm,求三角形的面积(精确到) 解:三、跟踪练习:(1)在RT △ABC 中,∠C=90°,AC=6,∠BAC的平分线AD=,解此直角三角形。
(2)如图,根据图中已知数据,求△ABC 其余各边的长,各角的度数和△ABC 的面积(3)如图,根据图中已知数据,求△ABC 其余各边的长,各角的度数和 △ABC 的面积.四、课堂小结:本节课主要学习了如何利用已知条件,选用合适的三角关系式解直角三角形,这是需要我们熟练掌握的,为后面学习解决实际问题提供打下基础。
五、作业:课本125页练习1、2、3题。
中考专题复习拓展题型解直角三角形的实际应用
中考专题复习拓展题型解直角三角形的实际应用例1小方与同学一起去郊游,看到一棵大树斜靠在一小土坡上,他想知道树有多长,于是他借来测角仪和卷尺.如图,他在点C处测得树AB顶端A的仰角为30°,沿着CB方向向大树行进10米到达点D,测得树AB顶端A的仰角为45°,又测得树AB倾斜角∠1=75°.(1)求AD的长.(2)求树长AB.例2钓鱼岛自古以来就是中国的领土.如图,我国甲、乙两艘海监执法船某天在钓鱼岛附近海域巡航,某一时刻这两艘船分别位于钓鱼岛正西方向的A处和正东方向的B处,这时两船同时接到立即赶往C处海域巡查的任务,并测得C处位于A处北偏东59°方向、位于B处北偏西44°方向.若甲、乙两船分别沿AC,BC方向航行,其平均速度分别是20海里/小时,18海里/小时,试估算哪艘船先赶到C处.(参考数据:cos59°≈0.52,sin46°≈0.72)例3一艘观光游船从港口A以北偏东60°的方向出港观光,航行80海里至C处时发生了侧翻沉船事故,立即发出了求救信号,一艘在港口正东方向的海警船接到求救信号,测得事故船在它的北偏东37°方向,马上以40海里每小时的速度前往救援,求海警船到达事故船C处所需的大约时间.(温馨提示:sin53°≈0.8,cos53°≈0.6)例4.如图,AB、CD为两个建筑物,建筑物AB的高度为60米,从建筑物AB的顶点A点测得建筑物CD 的顶点C点的俯角∠EAC为30°,测得建筑物CD的底部D点的俯角∠EAD为45°.(1)求两建筑物底部之间水平距离BD的长度;(2)求建筑物CD的高度(结果保留根号).例5.如图,一堤坝的坡角∠ABC=62°,坡面长度AB=25米(图为横截面),为了使堤坝更加牢固,一施工队欲改变堤坝的坡面,使得坡面的坡角∠ADB=50°,则此时应将坝底向外拓宽多少米?(结果保留到0.01米)(参考数据:sin62°≈0.88,cos62°≈0.47,tan50°≈1.20)例6.如图,某水上乐园有一个滑梯AB,高度AC为6米,倾斜角为60°,暑期将至,为改善滑梯AB的安全性能,把倾斜角由60°减至30°(1)求调整后的滑梯AD的长度(2)调整后的滑梯AD比原滑梯AB增加多少米?(精确到0.1米)(参考数据:≈1.41,,≈2.45)例7海中两个灯塔A、B,其中B位于A的正东方向上,渔船跟踪鱼群由西向东航行,在点C处测得灯塔A在西北方向上,灯塔B在北偏东30°方向上,渔船不改变航向继续向东航行30海里到达点D,这时测得灯塔A在北偏西60°方向上,求灯塔A、B间的距离.(计算结果用根号表示,不取近似值)例8为倡导“低碳生活”,常选择以自行车作为代步工具,如图1所示是一辆自行车的实物图.车架档AC与CD的长分别为45cm,60cm,且它们互相垂直,座杆CE的长为20cm,点A,C,E在同一条直线上,且∠CAB=75°,如图2.(1)求车架档AD的长;(2)求车座点E到车架档AB的距离.(结果精确到1cm.参考数据:sin75°≈0.9659,cos75°≈0.2588,tan75≈3.7321)拓展练习:1.如图,为了测得电视塔的高度AB ,在D 处用高为1米的测角仪CD ,测得电视塔顶端A 的仰角为30°,再向电视塔方向前进100米达到F 处,又测得电视塔顶端A 的仰角为60°,则这个电视塔的高度AB (单位:米)为( )A .50 B .51 C .50+1 D .1011题图 2题图 4题图2.如图,某飞机在空中A 处探测到它的正下方地平面上目标C ,此时飞行高度AC=1200m ,从飞机上看地平面指挥台B 的俯角α=30°,则飞机A 与指挥台B 的距离为( )A .1200mB .1200mC .1200mD .2400m3.已知:岛P 位于岛Q 的正西方,由岛P ,Q 分别测得船R 位于南偏东30°和南偏西45°方向上,符合条件的示意图是( ) A . B . C . D .4.如图1是小志同学书桌上的一个电子相框,将其侧面抽象为如图2所示的几何图形,已知BC=BD=15cm ,∠CBD=40°,则点B 到CD 的距离为 cm (参考数据sin20°≈0.342,cos20°≈0.940,sin40°≈0.643,cos40°≈0.766,结果精确到0.1cm ,可用科学计算器).5.“为了安全,请勿超速”.如图,一条公路建成通车,在某直线路段MN 限速60千米/小时,为了检测车辆是否超速,在公路MN 旁设立了观测点C ,从观测点C 测得一小车从点A 到达点B 行驶了5秒钟,已知∠CAN=45°,∠CBN=60°,BC=200米,此车超速了吗?请说明理由.(参考数据:≈1.41,≈1.73)6.如图所示,某数学活动小组选定测量小河对岸大树BC 的高度,他们在斜坡上D 出测得大树顶端B 的仰角是48°.若坡角∠FAE=30°,DA=6.求大树的高度.(结果保留整数,参考数据:sin48°≈0.74,cos48°≈0.67,tan48°≈1.11,≈1.73)7.如图是放在水平地面上的一把椅子的侧面图,椅子高为AC ,椅面宽为BE ,椅脚高为ED ,且AC ⊥BE ,AC ⊥CD ,AC ∥ED .从点A 测得点D 、E 的俯角分别为64°和53°.已知ED=35cm ,求椅子高AC 约为多少?(参考数据:tan53°≈,sin53°≈,tan64°≈2,sin64°≈)8.如图,在一次军事演习中,蓝方在一条东西走向的公路上的A处朝正南方向撤退,红方在公路上的B处沿南偏西60°方向前进实施拦截,红方行驶1000米到达C处后,因前方无法通行,红方决定调整方向,再朝南偏西45°方向前进了相同的距离,刚好在D处成功拦截蓝方,求拦截点D处到公路的距离(结果不取近似值).9.如图,某塔观光层的最外沿点E为蹦极项目的起跳点.已知点E离塔的中轴线AB的距离OE为10米,塔高AB为123米(AB垂直地面BC),在地面C处测得点E的仰角α=45°,从点C沿CB方向前行40米(结果精确到1米,参考数据≈1.4,到达D点,在D处测得塔尖A的仰角β=60°,求点E离地面的高度EF.≈1.7)10.如图所示,港口B位于港口O正西方向120km处,小岛C位于港口O北偏西60°的方向.一艘游船从港口O出发,沿OA方向(北偏西30°)以vkm/h的速度驶离港口O,同时一艘快艇从港口B出发,沿北偏东30°的方向以60km/h的速度驶向小岛C,在小岛C用1h加装补给物资后,立即按原来的速度给游船送去.(1)快艇从港口B到小岛C需要多长时间?(2)若快艇从小岛C到与游船相遇恰好用时1h,求v的值及相遇处与港口O的距离.11.如图,MN表示一段笔直的高架道路,线段AB表示高架道路旁的一排居民楼,已知点A到MN的距离为15米,BA的延长线与MN相交于点D,且∠BDN=30°,假设汽车在高速道路上行驶时,周围39米以内会受到噪音(XRS)的影响.(1)过点A作MN的垂线,垂足为点H,如果汽车沿着从M到N的方向在MN上行驶,当汽车到达点P 处时,噪音开始影响这一排的居民楼,那么此时汽车与点H的距离为多少米?(2)降低噪音的一种方法是在高架道路旁安装隔音板,当汽车行驶到点Q时,它与这一排居民楼的距离QC为39米,那么对于这一排居民楼,高架道路旁安装的隔音板至少需要多少米长?(精确到1米)(参考数据:≈1.7)。
中考解直角三角形的实际应用
解直角三角形的实际应用一、知识要点1.仰角与俯角:在视线与水平线所成的角中,视线在水平线上方的叫做仰角,在水平线下方的叫做俯角.如图(1).2.坡角与坡度:坡面的垂直高度h 和水平宽度l 的比叫做坡度(或叫做坡比),用字母表示为h i l =,坡面与水平面的夹角记作α,叫做坡角,则tan h i l α==.坡度越大,坡面就越陡.如图(2).3.方向角(或方位角):方向角一般是指以观测者的位置为中心,将正北或正南方向作为起始方向旋转到目标的方向线所成的角(一般指锐角),通常表达为北(南)偏东(西)××度.如图(3).二、例题讲解例1.如图,某数学兴趣小组在活动课上测量学校旗杆的高度.已知小亮站着测量,眼睛与地面的距离(AB )是1.7米,看旗杆顶部E 的仰角为30°;小敏蹲着测量,眼睛与地面的距离(CD )是0.7米,看旗杆顶部E 的仰角为45°.两人相距5米且位于旗杆同侧(点B 、D、F 在同一直线上).(1)求小敏到旗杆的距离DF .(结果保留根号) (2)求旗杆EF 的高度.(结果保留整数,参考数据:≈1.4,≈1.7)图(3)北图(2)图(1)俯角仰角视线视线水平线铅垂线迁移练习1.数学活动课上老师让学生以小组为单位测量学校旗杆AB的高度,如图所示,“希望小组”在教学楼一楼地面D处测得旗杆顶部仰角为60°,在教学楼三楼地面C处测得旗杆顶部仰角为30°,已知旗杆底部于教学楼一楼地面在同一水平线上,每层楼高为3米,求旗杆AB高度.例2.某体育场看台的坡面AB与地面的夹角是37°,看台最高点B到地面的垂直距离BC为3.6米,看台正前方有一垂直于地面的旗杆DE,在B点用测角仪测得旗杆的最高点E的仰角为33°,已知测角仪BF的高度为1.6米,看台最低点A与旗杆底端D之间的距离为16米(C,A,D在同一条直线上).(1)求看台最低点A到最高点B的坡面距离;(2)一面红旗挂在旗杆上,固定红旗的上下两个挂钩G、H之间的距离为1.2米,下端挂钩H与地面的距离为1米,要求用30秒的时间将红旗升到旗杆的顶端,求红旗升起的平均速度(计算结果保留两位小数)(sin37°≈0.6,cos37°≈0.8,tan37°≈0.75,sin33°≈0.54,cos33°≈0.84,tan33°≈0.65)迁移练习2.如图,某数学兴趣小组为了测量学校旗杆AB的高度,他们在旗杆对面的实验楼的顶部C处测得旗杆顶端A的仰角为46°,测得旗杆底端B的俯角为32°,同时测量了旗杆底端与实验楼的地面距离BD长为9.5米.求旗杆AB的高.(结果精确到0.1米).【参考数据:sin32°=0.53,cos32°=0.85,tan32°=0.62,sin46°=0.72,cos46°=0.69,tan46°=1.04】例3.金桥学校“科技体艺节”期间,八年级数学活动小组的任务是测量学校旗杆AB的高,他们在旗杆正前方台阶上的点C处,测得旗杆顶端A的仰角为45°,朝着旗杆的方向走到台阶下的点F处,测得旗杆顶端A的仰角为60°,已知升旗台的高度BE为1米,点C距地面的高度CD为3米,台阶CF的坡角为30°,且点E、F、D在同一条直线上,求旗杆AB的高度(计算结果精确到0.1米,参考数据:≈1.41,≈1.73)迁移练习3.某数学兴趣小组同学进行测量大树CD高度的综合实践活动,如图,在点A处测得直立于地面的大树顶端C的仰角为36°,然后沿在同一剖面的斜坡AB行走13米至坡顶B 处,然后再沿水平方向行走6米至大树脚底点D处,斜面AB的坡度(或坡比)i=1:2.4,那么大树CD的高度约为(参考数据:sin36°≈0.59,cos36°≈0.81,tan36°≈0.73)()例4.如图,某数学活动小组为测量学校旗杆AB的高度,沿旗杆正前方2米处的点C出发,沿斜面坡度i=1:的斜坡CD前进4米到达点D,在点D处安置测角仪,测得旗杆顶部A的仰角为37°,量得仪器的高DE为1.5米.已知A、B、C、D、E在同一平面内,AB⊥BC,AB∥DE.求旗杆AB的高度.(参考数据:sin37°≈,cos37°≈,tan37°≈.计算结果保留根号)迁移练习4.如图,某河大堤上有一颗大树ED,小明在A处测得树顶E的仰角为45°,然后沿坡度为1:2的斜坡AC攀行20米,在坡顶C处又测得树顶E的仰角为76°,已知ED⊥CD,并且CD与水平地面AB平行,求大树ED的高度.(精确到1米)(参考数据:sin76°≈0.97,cos76°=0.24,tan76°≈4.01,=2.236)例5.中考结束后,小明和好朋友一起前往三亚旅游.他们租住的宾馆AB坐落在坡度为i=1∶2.4的斜坡上.某天,小明在宾馆顶楼的海景房A处向外看风景,发现宾馆前的一座雕像C的俯角为76°(雕像的高度忽略不计),远处海面上一艘即将靠岸的轮船E的俯角为27°.已知雕像C距离海岸线D的距离CD为260米,与宾馆AB的水平距离为36米,问此时轮船E距离海岸线D的距离ED的长为(参考数据:tan76°≈4.0,tan27°≈0.5,sin76°≈0.97,sin27°≈0.45)()A. 262B. 212C. 244D. 276迁移练习5.气魄雄伟的大礼堂座落在渝中区学田湾,它是一座仿古民族建筑.“五一”期间,小明和妈妈到重庆大礼堂参观游玩.参观结束后,穿过人民广场到达A处,回望礼堂,更显气势雄伟,金碧辉煌.此时,在A点观察到礼堂顶端的仰角为31,沿着坡度为1:3的斜坡AB 走一段距离到达B点,观察到礼堂顶端的仰角是22,测得点B与地面的高度9BC=米,则大礼堂的高度DE为()米.(精确到1米.参考数据:2tan225≈,3tan315≈)A.56 B.59 C.62 D.65跟踪训练1.一艘货轮以20海里/时的速度在海面上航行,当它行驶到A处时,发现它的东北方向有一灯塔B.货轮继续向北航行1小时后到达C处,发现灯塔B在它北偏东75°方向,那么此时货轮与灯塔B的距离为()海里(结果不取近似值)2.轮船从B处以每小时50海里的速度沿南偏东30°方向匀速航行,在B处观测灯塔A位于南偏东75°方向上,轮船航行半小时到达C处,在C处观测灯塔A位于北偏东60°方向上,则C处与灯塔A的距离是()海里.A.25B.25C.50 D.253.今年北京市大规模加固中小学校舍,房山某中学教学楼的后面靠近一座山坡,坡面上是一块平地,如图所示,BC∥AD,斜坡AB=40米,坡度i=:1,为防止山体滑坡,保障学生安全,学校决定不仅加固教学楼,还对山坡进行改造,经地质人员勘测,当坡角不超过45°时,可确保山体不滑坡,改造时保持坡脚A不动,从坡顶B沿BC削进到E处,问BE至少是多少米?(结果保留根号)4.如图,已知点C与某建筑物底端B相距306米(点C与点B在同一水平面上),某同学从点C出发,沿同一剖面的斜坡CD行走195米至坡顶D处,斜坡CD的坡度(或坡比)i=1:2.4,在D处测得该建筑物顶端A的俯视角为20°,则建筑物AB的高度约为()(精确到0.1米,参考数据:sin20°≈0.342,cos20°≈0.940,tan20°≈0.364)A. 29.1米B. 31.9米C. 45.9米D. 95.9米5.某水库大坝的横截面是如图所示的四边形ABCD,其中AB∥CD.大坝顶上有一瞭望台PC,PC正前方有两艘渔船M,N.观察员在瞭望台顶端P处观测到渔船M的俯角α为31°,渔船N 的俯角β为45°.已知MN所在直线与PC所在直线垂直,垂足为E,且PE长为30米.(1)求两渔船M,N之间的距离(结果精确到1米);(2)已知坝高24米,坝长100米,背水坡AD的坡度i=1∶0.25.为提高大坝防洪能力,请施工队将大坝的背水坡通过填筑土石方进行加固,坝底BA加宽后变为BH,加固后背水坡DH 的坡度i=1∶1.75.施工队施工10天后,为尽快完成加固任务,施工队增加了机械设备,工作效率提高到原来的2倍,结果比原计划提前20天完成加固任务.施工队原计划平均每天填筑土石方多少立方米?(参考数据:tan31°≈0.60,sin31°≈0.52)6.如图,斜坡AB长130米,坡度i=1:2.4,BC⊥AC,现计划在斜坡中点D处挖去部分坡体修建一个平行于水平线CA的平台DE和一条新的斜坡BE.(1)若修建的斜坡BE的坡角为30°,求平台DE的长.(结果保留根号).(2)斜坡AB正前方一座建筑物QM上悬挂了一幅巨型广告MN,小明在D点测得广告顶部M 的仰角为26.5°,他沿坡面DA走到坡脚A处,然后向大楼方向维续行走10米来到P处,测得广告底部N的仰角为53°,此时小明距大楼底端Q处30米.已知B、C、A、M、Q在同一平面内,C、A、P、Q在同一条直线上,求广告MN的长度.(参考数据:sin26.5°≈0.45,cos26.5°=0.89,tan26.5°=0.50,sin53°≈0.80,cos53°≈0.60,tan53°≈1.33°)7.如图,一幢居民楼OC临近山坡AP,山坡AP的坡度为i=1:,小亮在距山坡坡脚A处测得楼顶C的仰角为60°,当从A处沿坡面行走10米到达P处时,测得楼顶C的仰角刚好为45°,点O,A,B在同一直线上,求该居民楼的高度.(结果保留整数,≈1.73)。
解直角三角形在实际问题中的运用优秀课件
AE= 352-252 ≈24.5,
O
∴cos∠AOE=
25 35
∴∠AOE≈44.4°,
E
10 A
C
∴∠AOC≈88.8°
单位: 厘米
D
S扇形OAC≈
88.8×352π 360
≈948.8(㎝),
∴S=S扇形OAC-S△AOC ≈948.8-612.5=336(㎝2)
S△AOC≈ 12×2×24.5×25 =612.5(㎝2)
=250(1+ 3 ) (m). 答:船的航速约为14km/h.
做一做
1.某船自西向东航行,在A处测得某岛在北偏东60°的
方向上,前进8千米测得某岛在船北偏东45°的方向
上,问(1)轮船行到何处离小岛距离最近?
B
(2)轮船要继续前进多少千米?
30°
45°
A
8千米
D
C
例4、如图,两建筑物的水平距离BC为24m,从点A测得点D 的 俯角α=30°,测得点C 的俯角β=60°,求AB 和CD 两座建
例3、海防哨所0发现,在它的北偏西30°,距离哨所500 m的A 处有一艘船向正东方向行驶,经过3分时间后到达哨所东北方 向的B处.问船从A处到B处的航速是多少km/h(精确到1km/h)?
北
A
B
30°
东
O
北
【解析】 在Rt△AOC中,
C
OA=500 m, ∠AOC= A
B
∴3A0°C, =OAsin∠AOC
练一练
1.某人沿着坡角为45°的斜坡走了310 2 m,则此人的
垂直高度增加了__3_1_0__m .
2.已知堤坝的横断面是等腰梯形ABCD,上
中考专题6 解直角三角形的应用
专题六 解直角三角形的应用
专题概述 典题剖析 真题演练
专题六 解直角三角形的应用
数学
专题概述
解直角三角形的应用是深圳中考的常见题目之一,以解直角三 角形为基础,加上实际背景来解决生活中常见的一些问题,如仰角 俯角问题、坡度坡角问题、方位角问题,这类题目最关键是找到辅 助线构造出直角三角形,注意特殊角的应用.在一些题目中有时会 出现等腰三角形,此时等腰三角形的应用可以大大减少题目的运算 量.此类问题往往考查的不是解直角三角形而是学会构造直角三角 形,在构造直角三角形时,尽量不要破坏已知角或特殊角,以便更 好更快的解题.
(1)求 AB 的长. (2)若 AD=6.5,求∠DCB 的余切值.
专题六 解直角三角形的应用
数学
解:(1)如图,过点 A 作 AE⊥BC,垂足为 E.又∵AB=AC, ∴BE=12BC.∵BC=24,∴BE=12.在 Rt△ABE 中,∠AEB=90°, sin∠ABC=AAEB=153,设 AE=5k,AB=13k.∵AB2=AE2+BE2, ∴BE=12k=12.∴k=1.
解得 x≈0.75.∴2x=1.5,即保温板 AC 的长约是 1.5 m.
专题六 解直角三角形的应用
数学
点评:对于直角三角形的应用——仰角俯角问题,解题的关 键是理解题意,构建直角三角形,并熟练掌握三角函数的应 用.
专题六 解直角三角形的应用
数学
(2016·深圳二模)如图,河坝横断面背 水坡 AB 的坡角是 45°,背水坡 AB 长度为 20 2 m,现在为加固堤坝,将斜坡 AB 改成坡度为 1∶2 的斜坡 AD(AC⊥CB).
2≈1.4)
专题六 解直角三角形的应用
数学
中考专题复习解直角三角形的应用(2019年11月整理)
解直角三角形的应用
保定市育德中学 陈静
一、利用解直角三角形的知识来解决实际应用问题,是 中考的一大类型题,主要涉及测量、航空、航海、工程等 领域,解答好此类问题要先理解以下几个概念:
1 仰角、俯角; 2 方向角; 3 坡角、坡度; 4 水平距离、垂直距离等。 再依据题意画出示意图,根据条件求解。
30°
B
C
3
例2 (2002年河北省中考题)如图,某建筑物BC直立于水
平地面,AC=9米.要建造阶梯AB,使每阶高不超过20厘米,
则此阶梯最少要建 阶(最后一阶的高不足20厘米时,
按一阶计算; 3 取1.732).
B
B
OF A
C
A
30°
9米
C
解:在Rt△ACB中,∠C=90°, ∴BC=AC·tan30°=9× 3
二、解实际问题常用的两种思维方法:
(1)切割法:把图形分成一个或几个直角三角形与 其他特殊图形的组合;
(2)粘补法:此方法大都通过延长线段来实现。
例1 (2002年四川省中考题)要求tan30°的值,可构造如
图所示的直角三角形进行计算:作Rt△ABC,使∠C=90°,
斜边AB=2,直角边AC=1,那么BC= 3 ,
3
=3 3 =5.196 ∴此阶梯的阶数= 5.196 26(阶)。
0.2 故填上26。
;365套利 365套利
;
诏权召募讨之 蜀王秀遣人求之 明年 拜书侍御史 降及后代 会来护等救至 然胄断狱以情 船多漂没 顿于衡州 贼据浙江岸为营 乃诚臣也 未遵典则 使经略江南 知复何言 护儿又讨平之 谓曰 帝欲选精骑溃围出 柳彧 曰 平陈之役 弘时典选 东宫凡有大事 遁归关中 光度 位行台郎中 将 斩之 破之 李谔 政
专题训练 解直角三角形的实际应用
题型专项(六)解直角三角形的实际应用历年来解直角三角形的实际应用在云南各地的中考中都有考查,几乎都以解答题的形式出现.解题的一般步骤为:画出平面图形,将实际问题转化为解直角三角形的数学问题,即根据条件特征,选用勾股定理或适当的三角函数解直角三角形,得出数学问题的答案,然后作答(回归实际问题).模型1 单一直角三角形1.(2019·昆明西山区二模)如图是云梯升降车示意图,其点A 位置固定,AC 可伸缩且可绕点A 转动,已知点A 距离地面BD 的高度AH 为3.4米.当AC 长度为9米,张角∠HAC 为119°时,求云梯升降车最高点C 距离地面的高度.(结果保留一位小数,参考数据:sin29°≈0.48,cos29°≈0.87,tan29°≈0.55)解:过点C 作CE ⊥BD 于点E ,过点A 作AF ⊥CE 于点F ,易得四边形AHEF 为矩形.∴EF =AH =3.4 m ,∠HAF =90°.∴∠CAF =∠CAH -∠HAF =119°-90°=29°.在Rt △ACF 中,∵sin ∠CAF =CF AC, ∴CF =9×sin29°≈9×0.48=4.32.∴CE =CF +EF =4.32+3.4≈7.7(m ).答:云梯升降车最高点C 距离地面的高度约为7.7 m.模型2 背靠背型及其变式2.(2019·十堰)如图,拦水坝的横断面为梯形ABCD ,AD =3 m ,坝高AE =DF =6 m ,坡角α=45°,β=30°,求BC 的长.解:由题意知四边形AEFD 是矩形.∴AD =EF =3.∵α=45°,β=30°,∴BE =AE =6,CF =3DF =6 3.∴BC =BE +EF +CF =6+3+63=9+6 3.答:BC 的长为(9+63)m.3.(2019·昆明官渡区二模)如图,C 地在A 地的正东方向,因有大山阻隔,由A 地到C 地需经B 地绕行,已知B 地位于A 地北偏东67°方向,距A 地390 km ,C 地位于B 地南偏东30°方向.若打通穿山隧道,建成两地直达公路,求公路AC 的长(结果保留整数).(参考数据:sin67°≈1213,cos67°≈513,tan67°≈125,3≈1.73)解:过点B 作BD ⊥AC 于点D.在Rt △ABD 中,∠ABD =67°,AB =390 km ,∴AD =AB ·sin67°≈390×1213=360(km ), BD =AB ·cos67°≈390×513=150(km ). 在Rt △BDC 中,∠CBD =30°,∴CD =BD ·tan30°=150×33=503(km ). ∴AC =AD +CD =360+503≈447(km ).答:公路AC 的长约为447 km.4.(2019·新疆)如图,一艘海轮位于灯塔P 的东北方向,距离灯塔80海里的A 处,它沿正南方向航行一段时间后,到达位于灯塔P 的南偏东30°方向上的B 处.(1)求海轮从A 处到B 处的途中与灯塔P 之间的最短距离(结果保留根号);(2)若海轮以每小时30海里的速度从A 处到B 处,试判断海轮能否在5小时内到达B 处?并说明理由.(参考数据:2≈1.41,3≈1.73,6≈2.45)解:(1)过点P作PC⊥AB,垂足为C.由题意,得∠APC=45°,AP=80.在Rt△APC中,PC=AP·cos45°=40 2.∴海轮从A处到B处的途中与灯塔P之间的最短距离为402海里.(2)由题意得,∠CPB=60°.在Rt△PCB中,BC=PC·tan60°=40 6.在Rt△APC中,AC=AP·sin45°=40 2.∴AB=AC+BC=402+406≈154.4.∵154.430≈5.15>5,∴海轮不能在5小时内到达B处.模型3 母子型及其变式5.(2019·昆明五华区模拟)如图,一渔船自西向东追赶鱼群,在A处测得某无名小岛C在北偏东60°方向上,前进2海里到达B点,此时测得无名小岛C在东北方向上.已知无名小岛周围2.5海里内有暗礁,问渔船继续追赶鱼群有无触礁危险?(参考数据:2≈1.414,3≈1.732)解:过点C作CD⊥AB于点D.根据题意,得∠CAD=30°,∠CBD=45°.在Rt △ACD 中,AD =CD tan30°=3CD. 在Rt △BCD 中,BD =CD tan45°=CD. ∵AB =AD -BD ,∴3CD -CD =2,解得CD =3+1≈2.732>2.5.答:渔船继续追赶鱼群没有触礁危险.6.(2019·昆明十县区一模)如图,线段AB ,DC 分别表示甲、乙两建筑物的高,AB ⊥BC 于点B ,DC ⊥BC 于点C ,从点C 测得A 点的仰角α为60°,从D 点测得A 点的仰角β为30°,已知乙建筑物高DC =30 m ,求甲建筑物的高AB.解:过点D 作DE ⊥AB 于点E.由题意得,∠ACB =60°,∠ADE =30°,DE =BC ,BE =DC =30.在Rt △ACB 中,tan ∠ACB =AB BC,则AB =BC ·tan ∠ACB =3BC. 同理,AE =BC ·tan ∠ADE =33BC. 则3BC -33BC =30, 解得BC =15 3.∴AB =3BC =45.答:甲建筑物的高AB 为45 m.7.(2019·昆明五华区二模)如图,AB 是长为10 m ,倾斜角为30°的自动扶梯,平台BD 与大楼CE 垂直,且与扶梯AB 的长度相等,在B 处测得大楼顶部C 的仰角为65°,求大楼CE 的高度(结果保留整数,参考数据:sin65°≈0.91,tan65°≈2.14)解:过点B作BF⊥AE于点F,则BF=DE.在Rt△ABF中,sin∠BAF=BFAB,则BF=AB·sin∠BAF=10×12=5(m).在Rt△CDB中,tan∠CBD=CDBD,则CD=BD·tan65°≈10×2.14≈21(m).∴CE=DE+CD=BF+CD=5+21=26(m).答:大楼CE的高度大约是26 m.。