2018年秋九年级沪科版数学下册课件:专项训练一 二次函数与反比例函数(共26张PPT)
2018-2019学年度九年级数学下册 第5章 二次函数 专题训练(一)与二次函数图像有关的三种
专题训练(一) 与二次函数图像有关的三种常见题型► 题型一 根据系数的符号确定函数的图像1.如果在二次函数的表达式y =ax 2+bx +c 中,a >0,b <0,c <0,那么这个二次函数的图像可能是( )图1-ZT -12.设a ,b 是常数,且a <0<b ,二次函数y =ax 2+bx +a 2-5a -6的图像可能是( )图1-ZT -23.2018·德州如图1-ZT -3,函数y =ax 2-2x +1和y =ax -a (a 是常数,且a ≠0)在同一平面直角坐标系中的图像可能是( )图1-ZT -3► 题型二 根据某一函数的图像确定其他函数的图像4.已知二次函数y =ax 2+bx +c 的图像如图1-ZT -4所示,则反比例函数y =bx与一次函数y =cx +a 在同一平面直角坐标系中的大致图像是( )图1-ZT -4图1-ZT -55.二次函数y =ax 2+bx +c 的图像如图1-ZT -6所示,那么一次函数y =ax +b 的图像大致是( )图1-ZT-6图1-ZT-76.如果一次函数y=ax+b的图像经过第二、三、四象限,那么二次函数y=ax2+bx 的图像可能是( )图1-ZT-8►题型三根据函数图像确定系数及其代数式的符号7.如图1-ZT-9,在平面直角坐标系中,抛物线对应的函数表达式为y=-2(x+h)2+k,则下列结论正确的是( )图1-ZT-9A.h>0,k>0 B.h<0,k>0C.h<0,k<0 D.h>0,k<08.二次函数y=ax2+bx+c的图像如图1-ZT-10所示,则下列结论正确的是( )图1-ZT-10A.a<0,b<0,c>0 B.a>0,b<0,c>0C.a<0,b>0,c<0 D.a<0,b>0,c>09.2018·上海黄浦区一模已知二次函数y=ax2+bx+c的图像大致如图1-ZT-11所示,则下列关系式中成立的是( )图1-ZT-11A.a>0 B.b<0 C.c<0 D.b+2a>010.二次函数y=ax2+bx+c的图像如图1-ZT-12所示,下列结论错误的是( )图1-ZT-12A.b>2a B.abc<0C.b+c>3a D.a<b11.二次函数y=ax2+bx+c的图像的对称轴为直线x=-1,与x轴的一个交点A在点(-3,0)和(-2,0)之间,其部分图像如图1-ZT-13所示,则有下列结论:①2a-b=0;②a+b+c<0;③点M(x1,y1),N(x2,y2)在抛物线上,若x1<x2,则y1≤y2.其中正确结论的个数是( )图1-ZT-13A.0 B.1 C.2 D.312.2018·威海二次函数y=ax2+bx+c的图像如图1-ZT-14所示,下列结论错误的是( )图1-ZT-14A.abc<0 B.a+c<bC.b2+8a>4ac D.2a+b>013.已知抛物线y=ax2+bx+c如图1-ZT-15,则a________0;b________0;c ________0;a +b +c ________0;a -b +c ________0;2a -b ________0.(填“>”“<”或“=”)图1-ZT -1514.已知二次函数y =ax 2+bx +c 的图像如图1-ZT -16所示,则下列结论:①c =2;②abc >0;③当x =1时,y 取得最小值为a +b +c .其中正确的是________(把正确结论的序号都填上).图1-ZT -16 15.2017·玉林已知抛物线:y =ax 2+bx +c (a >0)经过A (-1,1),B (2,4)两点,顶点坐标为(m ,n ),有下列结论:①b <1;②c <2;③0<m <12;④n ≤1.则所有正确结论的序号是________.16.已知二次函数y =ax 2+bx +c 的图像的对称轴是直线x =1,其图像的一部分如图1-ZT -17所示.对于下列说法:①abc <0;②当-1<x <3时,y >0;③3a +c <0;④a -b +c <0.其中正确的是________(把正确说法的序号都填上).图1-ZT -1717.已知二次函数y =ax 2+bx +c 的图像如图1-ZT -18所示,直线x =32是该抛物线的对称轴.根据图中所提供的信息,请你写出有关a ,b ,c 的四条结论,并简单说明理由.图1-ZT-18详解详析1.[解析] C ∵a >0,b <0,c <0, ∴-b2a>0,∴二次函数的图像开口向上,对称轴在y 轴的右侧,与y 轴的负半轴相交. 故选C .2.[解析] D ∵a <0,∴抛物线开口向下. 又∵b >0,∴抛物线的对称轴在y 轴的右边. 故选D .3.[解析] B 抛物线y =ax 2-2x +1过点(0,1),对称轴为直线x =1a .当a >0时,选项A 与B 符合题意;此时直线y =ax -a 经过第一、三、四象限,故选项B 符合题意;当a <0时,选项D 不符合题意.4.[解析] B 根据二次函数图像与y 轴的交点可得c >0,根据抛物线开口向下可得a <0,由对称轴在y 轴右边可得a ,b 异号,故b >0,则反比例函数y =bx 的图像在第一、三象限,一次函数y =cx +a 的图像经过第一、三、四象限.故选B .[点评] 此题主要考查了二次函数图像、一次函数图像及反比例函数图像,关键是根据二次函数图像确定出系数a ,b ,c 的正负.5.[解析] A ∵二次函数y =ax 2+bx +c 的图像开口向上, ∴a >0.∵二次函数图像的对称轴在y 轴的左侧, ∴b >0,∴一次函数y =ax +b 的图像经过第一、二、三象限. 故选A .6.[解析] C ∵一次函数y =ax +b 的图像经过第二、三、四象限,∴a <0,b <0,∴二次函数y =ax 2+bx 的图像开口向下,对称轴为直线x =-b2a<0,在y 轴左边.故选C .7.[解析] B ∵抛物线y =-2(x +h)2+k 的顶点坐标为(-h ,k),由题图可知,抛物线的顶点在第一象限,∴-h >0,k >0, ∴h<0,k>0.故选B .8.[解析] D ∵抛物线的开口向下,∴a <0. ∵抛物线的对称轴在y 轴右边,∴a ,b 异号,即 b >0.∵抛物线与y 轴的交点在y 轴的正半轴, ∴c>0.故选D .9.[解析] D ∵抛物线开口向下,对称轴在直线x =1的右边,与y 轴交于正半轴,∴a <0,-b2a >1,c >0,∴b >-2a >0, ∴b +2a >0. 故选D .10.[解析] D 因为抛物线开口向下,所以a<0.因为抛物线对称轴在y 轴左侧,直线x =-1的右侧,所以-1<-b2a<0,所以2a <b <0,故A 选项正确,不符合题意;因为抛物线与y 轴交于负半轴,所以c<0.因此abc<0,故B 选项正确,不符合题意;由题意可知,a -b +c>0.又因为b >2a ,所以a -b +c +2b>4a ,即b +c>3a ,故C 选项正确,不符合题意.D 选项错误,符合题意.11.[解析] C 二次函数图像的对称轴是直线x =-1,即-b2a =-1,则b =2a ,2a -b=0,故①正确;因为函数图像的对称轴为直线x =-1,所以x =1和x =-3时的函数值相等. 因为x =-3时,函数图像上对应的点在x 轴下方,所以a +b +c <0,故②正确; y 1和y 2的大小无法判断,故③错误.故选C .12.[解析] D 由函数图像开口向下,得a <0;由函数图像与y 轴的交点在y 轴的正半轴上,得c >0;由对称轴在y 轴的右侧,得-b2a >0,所以b>0,所以abc <0,A 结论正确,不符合题意;当x =-1时,函数值为负值,即a -b +c <0,所以a +c <b ,B 结论正确,不符合题意;由图像知,顶点的纵坐标大于2,所以4ac -b24a >2.又因为a<0,所以4ac-b 2<8a ,所以b 2+8a>4ac ,故C 正确,不符合题意;因为-b 2a <1,且a<0,所以-b >2a ,即2a +b <0,故D 结论错误.故选D .13.[答案] > < < = > > [解析] ∵抛物线开口向上,∴a >0.∵抛物线的对称轴为直线x =-b2a>0,其中a >0,∴b <0.∵抛物线与y 轴的交点在x 轴下方, ∴c <0.∵点(1,0)是抛物线与x 轴的一个交点, ∴把x =1代入表达式,得a +b +c =0. 由a +b +c =0可得a +c =-b , ∴a -b +c =-b -b =-2b , 由b <0,得a -b +c >0. ∵a >0,b <0,∴2a -b >0. 14.[答案] ①[解析] 由题图可知,二次函数y =ax 2+bx +c 的图像与y 轴的交点坐标是(0,2).令x =0,则y =c =2,即c =2.故①正确;∵二次函数y =ax 2+bx +c 的图像开口向下,对称轴在y 轴右侧, ∴a <0,b >0,∴abc <0.故②错误;∵x =0与x =2所对应的y 值都是2,即点(0,2)与点(2,2)关于对称轴对称, ∴该抛物线的对称轴是直线x =1. ∵抛物线的开口向下,∴当x =1时,y 取得最大值为a +b +c. 故③错误.15.[答案] ①②④[解析] ∵抛物线过点A(-1,1),B(2,4),∴⎩⎪⎨⎪⎧a -b +c =1,4a +2b +c =4, ∴b =-a +1,c =-2a +2. ∵a >0,∴b <1,c <2, ∴结论①②正确;∵抛物线的顶点坐标为(m ,n), ∴m =-b 2a =--a +12a =12-12a ,∴m <12,∴结论③不正确;∵抛物线y =ax 2+bx +c(a >0)经过A(-1,1),顶点坐标为(m ,n), ∴n ≤1,∴结论④正确.综上所述,正确的结论为①②④. 故答案为①②④. 16.[答案] ①③④[解析] 根据图像可得a <0,b >0,c >0, 则abc <0,故①正确;当-1<x <3时,图像上有的点在x 轴的上方,有的点在x 轴的下方,故②错误; 根据图像知,该抛物线的对称轴是直线x =1,即-b2a =1,则b =-2a.那么当x =-1时,y =a -b +c =a +2a +c =3a +c <0,故③正确;当x =-1时,y =a -b +c 一定在x 轴的下方,因而a -b +c <0,故④正确. 17.解: 答案不唯一,如: ①∵抛物线开口向上,∴a >0;②∵图像与y 轴的交点在y 轴的正半轴上, ∴c >0;③∵抛物线的对称轴为直线x =-b2a>0,∴a ,b 异号,即b <0;④当x =1时,y =a +b +c <0; ⑤当x =-1时,y =a -b +c >0.结论有a >0,c >0,b <0,a +b +c <0,a -b +c >0等.。
九年级沪科版数学下册专项训练一二次函数与反比例函数ppt课件
本标准适用于已投入商业运行的火力 发电厂 纯凝式 汽轮发 电机组 和供热 汽轮发 电机组 的技术 经济指 标的统 计和评 价。燃 机机组 、余热 锅炉以 及联合 循环机 组可参 照本标 准执行 ,并增 补指标 。
本标准适用于已投入商业运行的火力 发电厂 纯凝式 汽轮发 电机组 和供热 汽轮发 电机组 的技术 经济指 标的统 计和评 价。燃 机机组 、余热 锅炉以 及联合 循环机 组可参 照本标 准执行 ,并增 补指标 。
本标准适用于已投入商业运行的火力 发电厂 纯凝式 汽轮发 电机组 和供热 汽轮发 电机组 的技术 经济指 标的统 计和评 价。燃 机机组 、余热 锅炉以 及联合 循环机 组可参 照火力 发电厂 纯凝式 汽轮发 电机组 和供热 汽轮发 电机组 的技术 经济指 标的统 计和评 价。燃 机机组 、余热 锅炉以 及联合 循环机 组可参 照本标 准执行 ,并增 补指标 。
本标准适用于已投入商业运行的火力 发电厂 纯凝式 汽轮发 电机组 和供热 汽轮发 电机组 的技术 经济指 标的统 计和评 价。燃 机机组 、余热 锅炉以 及联合 循环机 组可参 照本标 准执行 ,并增 补指标 。
本标准适用于已投入商业运行的火力 发电厂 纯凝式 汽轮发 电机组 和供热 汽轮发 电机组 的技术 经济指 标的统 计和评 价。燃 机机组 、余热 锅炉以 及联合 循环机 组可参 照本标 准执行 ,并增 补指标 。
本标准适用于已投入商业运行的火力 发电厂 纯凝式 汽轮发 电机组 和供热 汽轮发 电机组 的技术 经济指 标的统 计和评 价。燃 机机组 、余热 锅炉以 及联合 循环机 组可参 照本标 准执行 ,并增 补指标 。
本标准适用于已投入商业运行的火力 发电厂 纯凝式 汽轮发 电机组 和供热 汽轮发 电机组 的技术 经济指 标的统 计和评 价。燃 机机组 、余热 锅炉以 及联合 循环机 组可参 照本标 准执行 ,并增 补指标 。
2018年秋人教版九年级数学下册(贵州)专题课件:2.反比例函数与一次函数、二次函数的综合(共11张PPT)
反比例函数与一次函数、二次函数的综合
典例精讲
类型一:反比例函数与一次函数的综合
A.
B.
C.
D.
典例精讲
A.
B.
C.
D.
典例精讲
A.0<x<2
B.x>2
C.x>2或-2<x<0 D.x<-2或0<x<2
典例精讲
解:∵反比例函数与正比例函数的图象均关于原点对称 ∴A、B两点关于原点对称. ∵A(2,1), ∴B(-2,-1). ∵由函数图象可知,当0<x<2或x<-2时,函数y1的图象在y2的上方, ∴使y1>y2的x得取值范围是x<-2或0<x<2. 故选D.
反比例函数 y 8 的图象交于点A(m,4)则这个 x
二次函数的解析式为 ( )
A.y=x2-x-2 C.y=x2+x-2
B.y=x2-x+2 D.y=x2+x+2
典例精讲
解:将A(m,4)代入反比例函数解析式得: 4 8 , m
∴A(2,4), 将A (2,4),B(0,-2)代入二次函数解析式得:
∵AB∥x轴, ∴AE⊥y轴,
∴四边形AEOD是矩形,
∵点A在双曲线 y 4 上, x
∴S矩形AEOD=4,同理S矩形OCBE=k,
∵S矩形ABCD=S矩形OCBE-S矩形AEOD=k-4=8, ∴k=12.故选A.
典例精讲
类型二: 反比例函数和二次函数的综合问题
如图,二次函数y=x2+bx+c的图象过点B(0,-2).它与
典例精讲
如图,点A在双曲线
y4 x
上,点B在双曲线
y k 上,AB∥x轴,分别 x
最新沪科版九年级数学下册 第11讲 反比例函数
一、 知识清单梳理 知识点一:反比例函数的概念及其图象、性质
反比例函数的图象和性质
关键点拨与对应举例
例:函数 y=3xm+1,当 m=-2 时,则该 函数是反比例函数.
k (1)定义:形如 y= (k≠0)的函数称为反比例函数,k 叫做比例系数,自变量的 x
1.反比例函
数的概念
取值范围是非零的一切实数. (2)形式:反比例函数有以下三种基本形式: k ①y= ;②y=kx-1; ③xy=k.(其中 k 为常数,且 k≠0) x
例:若(a,b)在反比例函数
y
k 的图 x
象上, 则(-a, -b)在该函数图象上.(填 “在"、"不在") 例:已知反比例函数图象过点(-3, -1) ,则它的解析式是 y=3/x.
4.待定系数
法
知识点二
:反比例系数的几何意义及与一次函数的任意一点向 x 轴和 y 轴作垂线,垂线 x 与坐标轴所围成的矩形面积为|k|,以该点、 一个垂足和原点为顶点的三角形的 面积为 1/2|k|.
2.反比例函
数的图象 和性质 k<0
图 象 经 过 第 每个象限内,函数 y 的值 随 x 的增大而减小. 一、三象限 (x、y 同号) 图 象 经 过 第 每个象限内,函数 y 的值 随 x 的增大而增大. 二、四象限 (x、y 异号)
3.反比例函
数的图象 特征
(1)由两条曲线组成,叫做双曲线; (2)图象的两个分支都无限接近 x 轴和 y 轴,但都不会与 x 轴和 y 轴相交; (3)图象是中心对称图形,原点为对称中心;也是轴对称图形,2 条对称轴分 别是平面直角坐标系一、三象限和二、四象限的角平分线. 只需要知道双曲线上任意一点坐标,设函数解析式,代入求出反比例函数系数 k 即可.