《二项式定理》教案2
《二项式定理》教学设计
《二项式定理》教学设计
《《二项式定理》教学设计》这是优秀的教学设计文章,希望可以对您的学习工作中带来帮助!
1.知识与技能:
(1)理解二项式定理是代数乘法公式的推广.
(2)理解并掌握二项式定理,能利用计数原理证明二项式定理.
2.过程与方法:
(1)通过学生参与和探究二项式定理的形成过程,培养学生观察、分析、概括的能力,以及化归的意识与方法迁移的能力,体会从特殊到一般的思维方式.
(2)引导学生用计数原理进行再思考,分析各项以及项的个数,这也为推导的展开式提供了一种方法,使学生在后续的学习过程中有“法”可依.
3.情感、态度与价值观:
培养学生的自主探究意识、合作精神,体验二项式定理的发现和创造历程,体会数学语言的简洁和严谨.通过二项式定理的发现、推广、证明及杨辉三角历史的了解,进一步激发学生的学习兴趣,培养对科学的探究与钻研精神,渗透爱国主义教育。
4.活动体验:
通过教师提出问题并引导学生主动探究、解决问题的过程,让学生在教学活动中主动发现、大胆猜想、主动发展,达到提高学习能力与渗透情感教育的目的。
《二项式定理》教学设计这篇文章共1217字。
高中数学《二项式定理》教案
二项式定理教案
(一)教学目标
1.知识与技能:掌握二项式定理①能根据组合思想及不完全归纳,得出二项式定理和二项展开式的通项。
②能正确区分二项式系数和某一项的系数。
③能正确利用二项式定理对任意给定的一个二项式进行展开,并求出它的特定项。
2.过程与方法:通过定理的发现推导提高学生的观察,比较,分析,概括等能力。
(二)教学重点与难点
重点:二项式定理的发现,理解和初步应用。
难点:二项式定理的发现。
(三)教学方法
启发诱导,师生互动
(四)教学过程。
二项式定理教学设计教案
二项式定理教学设计教案第一章:导入1.1 教学目标让学生了解二项式定理的背景和意义。
引导学生通过实际例子发现问题,激发学习兴趣。
1.2 教学内容引入二项式定理的概念,解释其在数学中的重要性。
通过具体的例子,如完全平方公式,引导学生观察和总结一般规律。
1.3 教学活动利用多媒体展示完全平方公式的例子,引导学生观察和总结。
组织小组讨论,让学生分享自己的发现和思考。
1.4 教学评价通过小组讨论和问题解答,评估学生对二项式定理的理解程度。
第二章:二项式定理的表述2.1 教学目标让学生掌握二项式定理的表述和公式。
引导学生理解二项式定理的推导过程。
2.2 教学内容给出二项式定理的表述和公式,解释各项的系数和指数的含义。
通过示例,引导学生理解二项式定理的推导过程。
2.3 教学活动通过示例和练习,让学生熟悉二项式定理的表述和公式。
引导学生参与推导过程,加深对二项式定理的理解。
2.4 教学评价通过练习和问题解答,评估学生对二项式定理的掌握程度。
第三章:应用二项式定理3.1 教学目标让学生学会运用二项式定理解决实际问题。
引导学生运用二项式定理进行组合计数和概率计算。
3.2 教学内容解释二项式定理在组合计数和概率计算中的应用。
提供实际问题,引导学生运用二项式定理解决问题。
3.3 教学活动通过示例和练习,让学生掌握二项式定理在组合计数和概率计算中的应用。
组织小组讨论,让学生分享自己的解题方法和经验。
3.4 教学评价通过小组讨论和问题解答,评估学生对二项式定理应用的掌握程度。
第四章:拓展与深化4.1 教学目标让学生了解二项式定理的拓展和深化内容。
引导学生思考二项式定理在数学中的广泛应用和意义。
4.2 教学内容介绍二项式定理的拓展内容,如多项式定理和整数定理。
探讨二项式定理在数学中的广泛应用,如组合数学、概率论等领域。
4.3 教学活动通过示例和练习,让学生了解二项式定理的拓展内容。
组织小组讨论,让学生思考二项式定理在数学中的应用和意义。
部编《二项式定理》教学设计
部编《二项式定理》教学设计教学目标:1.理解二项式定理的概念和公式;2.掌握使用二项式定理计算二项式展开的方法;3.发展学生的逻辑思维和推理能力。
教学重点:1.二项式定理的概念和公式;2.二项式展开的方法。
教学难点:1.二项式展开的运用。
教学准备:1.教师准备教学视频、习题等教学资源;2.学生准备教科书、笔记本等学习工具。
教学过程:步骤一:导入新知识(10分钟)1.教师挂出“二项式定理”的概念和公式,并解释其意义;2.利用教学视频或课件展示一些二项式展开的例子,激发学生的学习兴趣。
步骤二:讲解二项式定理的概念和公式(15分钟)1.教师详细解释二项式定理的概念和公式,引导学生理解;2.利用一些生活中的例子,帮助学生更好地理解二项式定理的意义和应用。
步骤三:讲解二项式展开的方法(15分钟)1.教师介绍二项式展开的方法:使用二项式定理来展开;2.通过示范一些具体的二项式展开计算过程,引导学生掌握方法。
步骤四:课堂练习(20分钟)1.教师出示一些基础的二项式展开题目,让学生尝试解答;2.学生独立或分组完成练习题;3.教师批改答案并讲解,解答学生的疑问。
步骤五:综合应用(15分钟)1.教师设计一些生活中的问题,引导学生运用二项式展开的方法进行计算和推理;2.学生独立或分组完成应用题;3.教师鼓励学生分享解题思路和答案,进行讨论和总结。
步骤六:拓展练习(15分钟)1.教师提供一些较为复杂的二项式展开题目,让学生挑战自己;2.学生独立或分组完成拓展练习;3.教师批改答案并讲解,解答学生的疑问。
步骤七:课堂总结(10分钟)1.教师归纳总结今天所学的知识点,并强调重点;2.学生回答总结问题,检查自己的学习效果;3.教师可以布置一些课后习题,巩固所学内容。
教学反思:通过本堂课的教学,学生对二项式定理的概念和公式有了更深入的理解,能够熟练运用二项式定理来进行二项式展开的计算。
此外,通过拓展练习和综合应用的环节,学生的思维能力和解决问题的能力也得到了提升。
二项式定理教案
二项式定理教案一、教学目标:1. 理解二项式定理的概念和公式;2. 掌握计算二项式展开式的方法;3. 了解二项式定理在数学和实际问题中的应用。
二、教学重点:1. 二项式定理的推导和证明;2. 二项式展开式的计算。
三、教学难点:如何运用二项式定理解决实际问题。
四、教学准备:黑板、白板、彩色粉笔、教材、习题集。
五、教学过程:1. 导入引入二项式定理的概念,通过举例讲述二项式定理在数学中的应用。
引发学生的思考和兴趣。
2. 二项式定理的概念通过示意图和简单的例子,解释二项式的概念。
讲解二项式定理的公式,即:(a + b)ⁿ = C(n,0)aⁿ + C(n,1)aⁿ⁻¹b + C(n,2)aⁿ⁻²b² + ... + C(n,n)bⁿ3. 二项式定理的证明与推导使用数学归纳法对二项式定理进行证明和推导。
分析每个式子的推导过程,让学生理解二项式定理的原理和推导方法。
4. 二项式定理的计算教授二项式展开式的计算方法。
通过多个实例的讲解和练习,引导学生掌握二项式展开的步骤和技巧。
5. 二项式定理的应用介绍二项式定理在实际问题中的应用。
以实际案例为例,展示二项式定理在概率、统计学、经济学等领域的应用,并引导学生进行思考和讨论。
6. 拓展学习鼓励学生进一步学习与二项式定理相关的知识,如多项式定理、二项式系数的性质等。
七、课堂练习教师提供一些练习题,让学生进行思考和解答。
注重练习题的选取,涵盖不同难度和应用场景。
八、总结与展望对本节课所学内容进行总结,强调二项式定理的重要性和应用价值。
展望后续学习内容,如泰勒展开、高阶导数等。
九、作业布置布置一些课后作业,巩固学生对二项式定理的理解和运用能力。
十、板书设计:二项式定理(a + b)ⁿ = C(n,0)aⁿ + C(n,1)aⁿ⁻¹b + C(n,2)aⁿ⁻²b² + ... + C(n,n)bⁿ十一、教学反思:通过引导学生理解二项式定理的概念、公式和运用,以及进行实际问题的解决,可以增强学生的数学思维能力和应用能力。
高二数学《二项式定理》教案
高二数学《二项式定理》教案《高二数学《二项式定理》教案》这是优秀的教学设计文章,希望可以对您的学习工作中带来帮助!一、教学设计思想目前教学的核心是“以学生的发展为本”,注重学生的学习状态和情感体验,注重教学过程中学生主体地位的凸现和主体作用的发挥,强调尊重学生人格和个性,鼓励发现、探究与质疑,鼓励培养学生的创新精神和实践能力.二项式定理这部分内容比较枯燥,是初中乘法公式的推广,是排列组合知识的具体运用,是学习概率的重要基础.这部分知识具有较高应用价值和思维训练价值.教材中的二项式定理主要包括:定理本身,通项公式,杨辉三角,二项式系数的性质等.如何发挥学生的主体作用,使学生自己探究学习知识、建构知识网络,是本节课教学设计的核心.正因为二项式定理在初等数学中与其他内容联系较少,所以教材上教法就显得呆板,单调,怎样使二项式定理的教学生动有趣?使得在这节课上学生获得主动?我采用启发探究式教学方式,遵循“兴趣与能力的同步发展规律”和“教,学,研互相促进的规律”,在教学中追求简易,重视直观,并巧妙地在应用抽象使问题变得十分有趣,学生学得生动主动,充分发挥其课堂上的主体作用.具体为:一是从名人、问题引入课题。
采用“问题――探究”的教学模式,把整个课堂分为呈现问题、探索规律、总结规律、应用规律四个阶段.这里体现了新课程的数学应用意识的理念.让学生体会研究问题的方式方法,培养学生观察、分析、概括的能力,以及化归意识与方法迁移的能力,体会从特殊到一般的思维方式,也让学生体会数学语言的简洁和严谨。
二是从特殊到一般。
观察发现二项式定理的基本内容.遵循学生的认知规律,由特殊到一般,由感性到理性.重视学生的参与过程,问题引导,师生互动.重在培养学生观察问题,发现问题,归纳推理问题的能力,从而形成自主探究的学习习惯.三是采用小组合作、探究的方式。
在教学中,努力把表现的机会让给学生,以发挥他们的自主作用;尽量创造让学生活动的机会,以让学生在直接体验中建构自己的知识体系;尽量引导学生的发展和创造意识,以使他们能在再创造的氛围中学习.四是教师的启发与学生的探究恰当结合。
二项式定理(二)教案
二项式定理(二)教案教案标题:二项式定理(二)教案教学目标:1. 理解二项式定理的概念和公式。
2. 掌握二项式定理的应用方法,包括二项式展开和二项式系数的计算。
3. 培养学生的逻辑思维和数学推理能力。
教学准备:1. 教师准备:教师课件、二项式定理的相关练习题、黑板、粉笔等。
2. 学生准备:学生课本、笔记本、铅笔、橡皮等。
教学过程:Step 1:导入新知1. 教师通过提问和复习,回顾上节课所学的二项式定理的概念和公式。
2. 引导学生回忆二项式定理的应用场景,如多项式的展开和二项式系数的计算。
Step 2:学习新知1. 教师通过示例和解析,详细讲解二项式定理的应用方法。
2. 引导学生理解二项式定理的展开原理,如二项式系数的计算公式。
3. 教师提供多个练习题,让学生进行实际操作和计算,巩固二项式定理的应用技巧。
Step 3:拓展应用1. 教师引导学生思考和讨论,探索二项式定理在实际问题中的应用。
2. 教师提供相关实际问题,让学生运用二项式定理解决问题,并进行讨论和分享。
Step 4:归纳总结1. 教师帮助学生总结和归纳二项式定理的重要概念和应用方法。
2. 教师提供相关练习题,让学生进行自主练习和巩固。
Step 5:作业布置1. 教师布置相关作业,要求学生进行二项式定理的练习和应用题目。
2. 鼓励学生在作业中思考和解决问题,培养学生的独立思考和解决问题的能力。
Step 6:课堂小结1. 教师对本节课的重点内容进行总结和回顾。
2. 引导学生提出问题和疑惑,解答学生的疑问。
教学反思:通过本节课的教学,学生应该能够理解和掌握二项式定理的概念、公式和应用方法。
同时,通过训练和实践,学生的逻辑思维和数学推理能力也得到了培养和提升。
在教学过程中,教师应注重引导学生思考和解决问题的能力,让学生在实际操作中发现问题、解决问题,提高学生的学习主动性和自主学习能力。
(完整版)二项式定理教案.docx
(完整版)二项式定理教案.docx1.3.1二项式定理(第一课时)一、教学目标1、知识与技能(1)理解二项式定理,并能简单应用(2)能够区分二项式系数与项的系数2、过程与方法通过学生参与和探究二项式定理的形成过程,培养学生观察,分析,归纳的能力,以及转化化归的意识与知识迁移的能力,体会从特殊到一般的思维方式。
3、情感与态度价值观通过探究问题,归纳假设让学生在学习的过程中养成独立思考的好习惯,在自主学习中体验成功,在思索中感受数学的魅力,让学生在体验知识产生的过程中找到乐趣。
二、教学重点难点1、教学重点:二项式定理及二项式定理的应用2、教学难点:二项式定理中单项式的系数三、教学设计:教学过程设计意图师生活动一、新课讲授引入:展开 (a b)2、 (a b)3XK]让学生写展开式,回顾学生写展开式多项式乘法法则学生完成:(a b) 2a22ab b2利用排列、组合理知识(a b) 3a33a2 b3ab 2b3分析 (a b)2展开式分析 (a b) 2的展开式:(a b) 2(a b)(a b) a22ab b2教学过程设计意图师生活动恰有 1 个因式选b的情况有C12种,所以ab的系数是C12;2 个因式选b的情况有C22种,所以b2的系数是C22;每个因式都不选 b 的情况有C02种,所以a2的系数是C02;(a b)2C02a2C12 ab C22b2类比展开 ( a b)3(a b)3C03a3C13a2b C32ab2 C 33b3①展开式有几项?思考 3 个问题:②展开式中 a ,b 的指 1. 项数 2. 每一数和有什么特点?项 a ,b 的指数③各项的系数是什和 3.系数么?如何用排列、组合的知学生完成识解释ab2的系数?按照 a 的降幂排列类比展开 ( a b) 4(a b)4 C 04a4C14 a3b C 24a2 b2C 34ab3C44 a4归纳、类比(a b) n?二、二项式定理:(a b)n C0n a n C1n a n 1b C2n a n 2b2L C k n a n k b k LC n n b n(n N* )这个公式叫做二项式定理, 左边的多项式叫做二项式右边的多项式叫做(a b)n的二项展开式,其中各项的系数 C r n ( k 0,1,2,3,L n) 称为二项式系数,式中的 C k n a n k b k叫做二项展开式的通项,它是二项展开式的第k 1 项,记作:T k 1=C k n a n k b k从以下几方面强调:(1)项数:n 1项;(2)指数:字母a,b的指数和为n,字母a 的指数由n 递减至0,字母 b 的指数由0递增至n;(3)二项式系数:下标为n,上标由0递增至n;C n k ( 4)通项:第k1项:T k 1C n k a n k b k 让学生类比写展开式,进一步巩固展开式的特点通过前面具体的例子,让学生从项数、项、系数这三个方面来类比(a b) n?(1)项数:n 1项;(2)指数:字母a,b的指数和为 n ,字母 a的指数由 n 递减至0,字母 b 的指数由0递增至n ;( 3)系数是C n0 ,C n1 ,C n2 ,L ,C n kL ,C n n (k {0,1,2,L , n})生:板演( a b) 4的展开式师:展示通过前面几个例子,类比归纳得到 (a b)n的展开式,学生交流探究以下 3 个问题1.指数:3.系数教学过程设计意图师生活动三、典例分析例例 1、求 (214区别:) 的展开式x展开式中第 2 项的系解:1)4C 40 24 C 41 23( 1) C 41 22( 1) 2 C 432 ( 1)3数,第 2 项二项式系数(2 C 44 ( 1)4xx x xx32 24 8 116 x x 2 x 3 x 4例 2( 1)求 (12x) 5思考:的展开式中第解:(1 2x)53 项是 T 2 1 C 52 13 (2 x)240 x 3展开式中第 3 项的系的展开式的第,数,第 3 项二项式系数例 3. 求 ( x1)9 的展开式中 x 3 的系数x通过例题让学生更好解:∵ ( x 1)9的展开式的通项是的理解二项式定理xTk 1C 9r x9 k( 1) k C 9k x 9 2k,x强调:通项公式的应用∴ 92k3 ,∴ x 3 的系数 C 9384课堂检测:1. (2 a b)4 的展开式中的第 2 项 . 解: T 2 1 C 41 (2a)3 b 32a 3b ,2. (x 10的展开式的第 6 项的系数(D )进一步巩固二项式定1)C 106C 106C. C 105C 105理A. B.D.3. (1x)5 的展开式中 x 2 的系数为( C )25A.10B. 5C.D. 12四、小结学生应用二项式定理明确通项的作用五、作业:课本 37 页 A 组 2 、 3 题板书设计:1.3.1二项式定理一 .二项式定理:(a b)n C0n a n C1n a n 1b L C k n a n k b k L C n n b n( n N * )1.项数:n1项;2.指数:字母a,b的指数和为n ,a的指数由 n 递减至0,b的指数由 0 递增至n;3.二项式系数:C n0 , C1n , C n2 ,L , C n k L , C n n (k {0,1, 2,L n})4.通项:第k 1 项:T k 1C n k a n k b k二.典例三 .作业。
高三数学教案《二项式定理》优秀3篇
高三数学教案《二项式定理》优秀3篇1. 介绍本文档将介绍三篇优秀的高三数学教案,主题为《二项式定理》。
这些教案从不同的角度和方法讲解了二项式定理,帮助学生更好地理解和应用该定理,提高数学解题能力。
2. 教案一:《二项式定理初步认识》2.1 教学目标•了解二项式的定义和性质•掌握二项式展开的基本方法•能够灵活应用二项式定理解决实际问题2.2 教学内容1.二项式的定义和性质–介绍二项式的概念和表达形式–讲解二项式的性质,如二项式系数的对称性等2.二项式展开的基本方法–介绍二项式在展开时的基本方法–给出一些例题进行演示和练习3.实际问题的应用–利用二项式定理解决实际问题,如排列组合问题等–给出一些实际问题的例题和练习2.3 教学方法•讲授与演示相结合:通过讲解二项式的定义和性质,并用例题演示二项式展开的基本方法,加深学生对二项式定理的理解•提问与讨论:引导学生参与讨论,思考问题的解决方法,培养学生的分析和解决问题的能力•练习与巩固:给学生一定数量的练习题,巩固所学知识,并能够应用到实际问题中2.4 教学评价与反馈•教学评价:通过课堂上教师的观察、学生的表现及课后作业的完成情况,进行教学评价•教学反馈:及时给予学生反馈,并指导学生改正错误,提高学习效果3. 教案二:《二项式定理的证明与应用》3.1 教学目标•掌握二项式定理的证明方法•理解二项式定理的应用领域•提高数学推理和证明能力3.2 教学内容1.二项式定理的证明方法–讲解二项式定理的组合证明方法,如二项式系数的递推关系等–通过数学推理,证明二项式定理的正确性2.二项式定理的应用–介绍二项式定理在组合数学、概率论等领域的应用–给出一些应用题进行练习,提高学生的应用能力3.数学推理与证明–培养学生的数学推理和证明能力,通过解答证明题加深学生对二项式定理的理解3.3 教学方法•讲授与演示相结合:通过讲解二项式定理的证明方法,并演示具体的证明过程,加强学生对二项式定理的理解•课堂讨论:引导学生进行证明题的讨论和分析,提高学生的数学推理能力•练习与应用:给学生一些练习题,加深学生对二项式定理的应用理解3.4 教学评价与反馈•教学评价:通过课堂上的表现、学生的参与情况以及课后作业的完成情况综合评价学生的学习情况•教学反馈:及时给予学生反馈,并指导学生改进学习方法,提高学习效果4. 教案三:《二项式定理与三角恒等式》4.1 教学目标•掌握二项式定理与三角恒等式的联系和应用•理解二项式定理与三角恒等式在数学中的重要性•提高学生的综合应用能力4.2 教学内容1.二项式定理与三角恒等式的联系和应用–介绍二项式定理与三角恒等式之间的联系和应用–分析二项式展开式的三角形式及其与三角恒等式的关系2.二项式定理与三角恒等式的具体应用–给出一些具体的二项式展开题目,引导学生将其化简成三角恒等式形式–通过练习题,锻炼学生的综合应用能力4.3 教学方法•讲授与实例演示:通过讲解二项式定理与三角恒等式的联系,并给出具体的例题进行演示,加深学生对二项式定理和三角恒等式的理解•练习与应用:给学生一些练习题,锻炼学生将二项式展开式化简成三角恒等式形式的能力•问题探究与讨论:引导学生思考和探索二项式定理与三角恒等式之间的更多联系4.4 教学评价与反馈•教学评价:通过观察学生的课堂表现、参与讨论的情况以及课后作业的完成情况综合评价学生的学习情况•教学反馈:及时给予学生反馈,并指导学生改进问题解决的方法,提高学习效果5. 总结本文档介绍了三篇优秀的高三数学教案,主题为《二项式定理》。
数学《二项式定理》教案
数学《二项式定理》教案【教学目标】1.掌握二项式系数的概念及计算方法;2.掌握二项式定理的表述及应用;3.能够解决相关的数学问题。
【教学重点】1.二项式系数的概念及计算方法;2.二项式定理的表述及应用;【教学难点】1.二项式定理的应用;2.相关数学问题的解决。
【教学准备】1.教材及辅助资料;2.黑板、彩粉笔;3.练习题。
【教学过程】一、导入(5分钟)教师可以通过同学之间的口头交流或画图,展现一些二项式的问题,让学生初步认识二项式的概念。
较好的效果是让学生自己尝试计算(1+a)^2、(1+a)^3,体会“二项式”名称的由来,从而认识n次方的系数。
二、讲授(35分钟)1.二项式系数的概念及计算方法(1)二项式系数的概念介绍:二项式系数指的是一个有限集合中任意选取的一个二元子集的个数。
符号:二项式系数记为 C(n,m) 或 nCm。
公式:C(n,m) = n!/m!(n-m)!例题:求C(5,2)的值。
解题:C(5,2) = 5!/2!3! = 10。
(2)二项式系数的计算方法Pascal三角形:写出每行的系数,易发现,由一个数变成相邻下一行第一位数时有1,其它的数按照上下的数相加。
(3)二项式系数的性质①若 m>n ,则 C(n,m) = 0 。
②C(n,n) = 1 。
③关于系数的对称性:C(n,m) = C(n,n-m) 。
④二项式系数的加法公式:C(n,m) + C(n,m+1) = C(n+1,m+1) 。
2.二项式定理①二项式定理的表述若 a,b 均为实数,且 n∈N∗,则(a+b)^n = C(n,0)a^n + C(n,1)a^{n-1}b + C(n,2)a^{n-2}b^2 + …+C(n,n) b^n②二项式定理的应用例如,求 (1+2)^4 的值。
按二项式定理展开,得到:3^4 = C(4,0)1^4 + C(4,1)1^3·2 + C(4,2)1^2·2^2 + C(4,3)1·2^3 +C(4,4)2^4= 1 + 8 + 12 + 24 + 16= 61三、练习(15分钟)1.在黑板上写出以下二项式系数,让学生根据式子计算结果: C(10,3)C(20,8)C(6,2)2.将以下二项式展开成多项式:(a+b)^3(1+x)^4(1-2x)^5四、总结(5分钟)对于二项式系数和二项式定理的相关问题的求解,学生要熟练掌握。
高三数学教案《二项式定理》
高三数学教案《二项式定理》一、教学目标1.了解二项式定理的定义和公式2.掌握应用二项式定理求解数学问题的方法3.培养学生的数学思维和解决实际问题的能力二、教学内容1. 二项式定理的定义二项式定理是指:$$(a+b)^n = \\sum_{k=0}^{n} C_{n}^{k}a^{n-k}b^{k}$$其中n为非负整数,a和b为任意实数或复数,$C_{n}^{k} $表示组合数。
2. 二项式定理的公式二项式定理的公式为:$$(a+b)^n = \\sum_{k=0}^{n} C_{n}^{k}a^{n-k}b^{k}$$其中n为非负整数,a和b为任意实数或复数,$C_{n}^{k} $表示组合数,计算公式为:$$C_{n}^{k} = \\frac{n!}{k!(n-k)!}$$其中n!表示n的阶乘,计算公式为:$$n! = 1 \\times 2 \\times 3 \\times ……\\times n$$3. 应用二项式定理求解数学问题的方法1.直接将a和b代入公式计算2.通过变形将问题转化为求和式3.应用组合恒等式计算三、教学方法1. 讲授法通过讲解定义、公式和应用方法,让学生了解二项式定理的基本概念和计算方法。
2. 例题教学法通过讲解例题,帮助学生理解和掌握二项式定理的应用方法,增强解题的能力。
3. 课堂练习法通过课堂练习,帮助学生巩固所学的知识和技能,提高解题能力。
4. 讨论法通过小组讨论或全班讨论,让学生分享解题思路和经验,增加互动性和合作性。
四、教学过程1. 介绍二项式定理的定义和公式教师向学生介绍二项式定理的定义和公式,让学生了解该定理的基本概念和计算方法。
2. 讲解二项式定理的应用方法教师通过讲解例题,向学生讲解二项式定理的应用方法,帮助学生掌握如何应用二项式定理来解决数学问题。
3. 课堂练习教师在课堂上进行练习,让学生巩固所学的知识和技能,提高解题能力。
4. 学生小组讨论教师安排学生小组讨论,让学生分享解题思路和经验,增加互动性和合作性。
二项式定理教案(待修改)
《二项式定理》教学设计1.教材分析:二项式定理在本章的学习中起着乘上启下的作用.学习本小节的意义在于:①二项式定理与概率理论中的三大概率分布之一的二项分布有其内在联系;②二项式系数都是一些特殊的组合数,利用二项式定理可以得到关于组合数的一些恒等式,从而深化对组合数的认识;③本小节的学习可对初中学习的多项式的变形起到复习、深化的作用;④二项式定理是解决某些整除性、近似计算等问题的一种方法.教学重点:二项式定理的内容及应用教学难点:二项式定理的推导过程及内涵2.教学目标:(1)知识技能:理解二项式定理及其推导方法,识记二项展开式的有关特征,能对二项式定理进行简单应用.(2) 过程方法:通过教师指导下的探究活动,经历数学思维过程,熟悉理解“观察—归纳—猜想—证明”的思维方法,养成合作的意识,获得学习和成功的体验.(3) 情感、态度和价值观:通过对二项式定理内容的研究,体验特殊到一般发现规律,一般到特殊指导实践的认识事物过程.3.教学过程一、设置情境,引入课题问题:(1)今天是星期一,那么7天后的这一天是星期几呢?(星期一)(2)如果是15天后的这一天呢?(星期二)(3)如果是 8100天后的这一天呢? 二、探索研究二项式定理的内容问题:n b a )(+的展开式有什么特点?你能将它展开吗?试一试. [学生分组探究] 学生可能的探究方法1: 由b C a C b a b a 11011)(+=+=+22212202222C C C 2)(b ab a b ab a b a ++=++=+33322321330332233C C C C 33)(b ab b a a b ab b a a b a +++=+++=+44433422243144044322344464)(bC ab C b a C b a C a C b ab b a b a a b a ++++=++++=+……学生可能通过具体的例子来展开说明,如:3223333)(b ab b a a b a +++=+[来源:学§科§网] 或4322344464)(b ab b a b a a b a ++++=+ 学生归纳过程可能如下:以4)(b a +为例的展开式的分析过程:4322344464))()()(()(b ab b a b a a b a b a b a b a b a ++++=++++=+容易看到,等号右边的积的展开式的每一项,是从每个括号里任取一个字母的乘积,因而各项都是4次式,即展开式应有下面形式的各项:432234,,,,b ab b a b a a .[学生可能归纳出来:(1)每一项中字母a ,b 的指数之间的关系(2)项的个数有1+n 项]在上面4个括号中:每个都不取b 的情况有1种,即04C 种,所以4a 的系数是04C ;恰有1个取b 的情况下有14C 种,所以b a 3的系数是14C ;恰有2个取b 的情况下有24C 种,所以22b a 的系数是24C ; 恰有3个取b 的情况下有34C 种,所以3ab 的系数是34C ; 4个都取b 的情况下有44C 种,所以4b 的系数是44C ; 因此44433422243144044C C C C C )(b ab b a b a a b a ++++=+.[归纳、猜想?)(=+n b a ])N (C C C C C )(*222110∈++++++=+---n bb a b a b a a b a n n n r r n r n n n n n n n n教师根据情况进行指导和引导,尤其是各项二项式系数的确定,教师要从各项中a ,b 指数的含义如b a a 34,来引导,并要求学生说明怎么得到这些项?教师可以通过电脑演示各形式项的形成过程,将学生的思维过程展示.学生可能的探究方法2:)())()(()(b a b a b a b a b a n ++++=+ ,共n 个)(b a +,依据多项式乘法,直接写出各项.[学生成果展示,可通过具体实例:通过投影、板书或口述] 问题:希望学生得到的规律 (1) 项数:1+n 项;(2)指数:字母a ,b 的指数和为n ,字母a 的指数由n 递减至0,同时,字母b 的指数由0递增至n ;(3) 二项式系数是nnr n n n n C C C C C ,,,,,210 (4)通项:r r n r n r b a C T -+=1三、二项式定理的应用例1 求6)12(xx -的展开式(分析:为了方便,可以先化简后展开。
人教课标版高中数学选修2-3《二项式定理(第2课时)》教案-新版
1.3 二项式定理第二课时一、教学目标1.核心素养通过二项式定理的推导过程的学习,提高学生的归纳推理能力,树立由特殊到一般的数学思想增强了学生的逻辑推理能力.2.学习目标二项式展开式的项数、指数、系数特点及其应用.3.学习重点二项式展开式的项数、指数、系数特点及其应用.4.学习难点二项式定理和二项式系数性质的应用.二、教学设计(一)课前设计1.预习自测1.错误!未找到引用源。
的展开式中,常数项为错误!未找到引用源。
,则错误!未找到引用源。
()A.错误!未找到引用源。
B.错误!未找到引用源。
C.错误!未找到引用源。
D.错误!未找到引用源。
解:D2.错误!未找到引用源。
的展开式中常数项为.(用数字作答)解:-423.若错误!未找到引用源。
的二项展开式中错误!未找到引用源。
的系数为错误!未找到引用源。
,则错误!未找到引用源。
.解:2(二)课堂设计1.知识回顾1.二项式定理及其特例:(1)错误!未找到引用源。
,(2)错误!未找到引用源。
2.二项展开式的通项公式:错误!未找到引用源。
3.求常数项、有理项和系数最大的项时,要根据通项公式讨论对错误!未找到引用源。
的限制;求有理项时要注意到指数及项数的整数性2.问题探究问题探究一●活动一认知杨辉三角在n(+展开式中,当n=1,2,3,…时,各项的二项式系数是怎样的?a)b()1ba+()2ba+()3ba+()4ba+()5ba+()6ba+仔细观察,你能发现什么规律?“杨辉三角”为什么会有这些规律呢?二项式系数表(杨辉三角)错误!未找到引用源。
展开式的二项式系数,当错误!未找到引用源。
依次取错误!未找到引用源。
…时,二项式系数表,表中每行两端都是错误!未找到引用源。
,除错误!未找到引用源。
以外的每一个数都等于它肩上两个数的和●活动二函数观点认知二项式系数设函数()r n Crf=的函数图象,观察f=,这个函数的定义域是怎样的?试以n=6为例作出()r n Cr函数图像,你能说出它的哪些性质?错误!未找到引用源。
二项式定理教学设计教案
二项式定理教学设计教案一、教学目标1. 让学生理解二项式定理的定义和背景。
2. 引导学生掌握二项式定理的证明过程。
3. 培养学生运用二项式定理解决实际问题的能力。
4. 提高学生对数学公式和定理的记忆和运用。
二、教学内容1. 二项式定理的定义及公式。
2. 二项式定理的证明。
3. 二项式定理的应用。
三、教学重点与难点1. 教学重点:二项式定理的定义、公式及应用。
2. 教学难点:二项式定理的证明过程。
四、教学方法1. 采用讲授法讲解二项式定理的定义、公式及证明。
2. 通过例题演示二项式定理的应用。
3. 引导学生进行小组讨论,培养合作精神。
4. 利用多媒体辅助教学,提高学生的学习兴趣。
五、教学过程1. 导入新课:回顾一元二次方程的解法,引导学生思考如何快速求解特定类型的一元二次方程。
2. 讲解二项式定理:介绍二项式定理的定义、公式及背景,讲解公式中的各项系数和指数的含义。
3. 证明二项式定理:引导学生跟随证明过程,理解二项式定理的推导过程。
4. 应用二项式定理:通过例题展示二项式定理在实际问题中的应用,引导学生学会运用定理解决问题。
5. 课堂练习:布置相关练习题,让学生巩固所学内容。
六、教学评估1. 课堂提问:通过提问了解学生对二项式定理的理解程度。
2. 练习批改:及时批改课后练习,了解学生对知识的掌握情况。
3. 小组讨论:观察学生在小组讨论中的表现,了解合作能力和思维过程。
七、课后作业1. 复习二项式定理的定义、公式及证明过程。
2. 完成课后练习题,包括简单应用和综合应用题。
3. 收集有关二项式定理的实际应用案例,进行拓展学习。
八、教学反思1. 反思教学内容:检查教学内容是否全面、深入,是否符合学生的实际需求。
2. 反思教学方法:根据学生的反馈,调整教学方法,提高教学效果。
3. 反思教学效果:分析学生的学习情况,找出不足之处,为下一步教学提供改进方向。
九、课程拓展1. 引导学生关注二项式定理在实际生活中的应用,如概率计算、数据处理等。
二项式定理教案
二项式定理教案一、教学目标1. 了解二项式定理的概念和公式。
2. 掌握使用二项式定理计算组合数。
3. 能够应用二项式定理解决实际问题。
二、教学重点1. 理解二项式定理的概念。
2. 掌握使用二项式定理求解组合数的方法。
三、教学难点1. 灵活运用二项式定理解决实际问题。
2. 深入理解二项式定理的证明过程。
四、教学准备1. 教师准备:黑板、白板、彩色粉笔、多媒体设备。
2. 学生准备:笔记本、习题集。
五、教学过程第一步:导入(约5分钟)通过提问方式引入,复习组合数的概念和计算方法。
例如:某班有10位学生,要从中选出3位代表参加活动,共有多少种选法?第二步:二项式定理的概念(约10分钟)1. 打开多媒体设备,展示二项式定理的公式。
2. 解释二项式定理的含义:表示一个二项式的n次方的展开式中,每一项的系数就是组合数。
3. 引导学生思考二项式定理的应用场景,与之前复习的组合数有何关联。
第三步:二项式定理的计算方法(约20分钟)1. 以具体的例子引导学生理解二项式定理的计算方法。
例如:计算 (a + b)^3 和 (a - b)^4。
2. 通过展示计算步骤,引导学生掌握二项式定理的展开式计算方法。
第四步:二项式定理的应用(约25分钟)1. 给出实际问题,引导学生运用二项式定理解决问题。
例如:某公司有10个岗位需要安排员工,其中3个岗位需要安排女性,有多少种不同的安排方式?2. 鼓励学生积极思考,尝试解决实际问题。
第五步:二项式定理的证明(约15分钟)介绍二项式定理的证明过程,以培养学生对数学思维的训练和探究能力。
教师可以通过推导和演算的方式,以简单的情形为例,向学生阐述证明的思路和方法。
第六步:归纳总结(约5分钟)1. 鼓励学生自主总结二项式定理的关键点和计算步骤。
2. 提醒学生复习并掌握二项式定理的应用和证明过程。
六、作业布置1. 课后作业:完成课堂练习题。
2. 预习下节课内容:学习二项式定理的扩展应用。
七、教学反思本节课通过引入实际问题和计算方法的讲解,帮助学生理解和运用二项式定理。
《二项式定理》教学设计
《二项式定理》教学设计一、教学目标:1.理解二项式定理的概念和意义。
2.掌握二项式定理的公式和计算方法。
3.能够灵活应用二项式定理解决实际问题。
二、教学内容:1.二项式的定义;2.二项式定理的概念;3.二项式定理的公式和推导过程;4.二项式定理的应用。
三、教学过程:Step 1 引入课题教师可以通过提问的方式引入二项式定理,例如:在计算(x+y)^2时,我们是如何计算的?是否可以利用一种更有效的方法来表示和计算?Step 2 导入概念教师通过举例讲解二项式的定义和二项式定理的概念:二项式是指两个代数式之和的形式,如(a+b)、(x+y)等。
而二项式定理是一种表示和计算二项式的工具,可以用来展开(x+y)^n的式子。
Step 3 公式和推导1.教师引导学生思考并列出(x+y)^2、(x+y)^3等式子的展开式。
(x+y)^2=x^2+2xy+y^2(x+y)^3=x^3+3x^2y+3xy^2+y^32.教师引导学生发现展开式中的规律,并引入二项式定理的公式。
(x+y)^n=C(n,0)x^n*y^0+C(n,1)x^(n-1)*y^1+...+C(n,k)x^(n-k)*y^k+...+C(n,n)x^0*y^n其中,C(n,k)是组合数,表示从n个元素中选择k个元素的方案数。
Step 4 计算实例教师通过具体的例子演示二项式定理的计算方法,如计算(2a+b)^3和(3x+4y)^2等。
并强调展开式中各项的系数就是组合数C(n,k)。
Step 5 独立练习学生进行独立练习,计算给定的二项式展开式并求出各项的系数。
教师及时给予指导和辅助。
Step 6 拓展应用教师引导学生思考,如何利用二项式定理求解具体的问题。
例如,计算其中一个人生日时收到的礼物数量等。
四、教学评价:1.观察学生在课堂上的学习情况,包括学生对二项式定理的理解和运用能力。
2.课堂作业:布置相应的练习题,检查学生对二项式定理的掌握情况。
二项式定理教学设计教案
●课题二项式定理(二)●教学目标(一)教学知识点1.二项式系数的性质:对称性,增减性与最大值,各二项式系数的和.2.“赋值法”.(二)能力训练要求1.掌握二项式系数的性质,并会简单应用.2.学会用“赋值法”解决与二项式系数有关的问题.(三)德育渗透目标1.提高学生的数学素质.2.树立由一般到特殊的意识.●教学重点1.二项式系数的性质(1)对称性:与首末两端“等距离”的两个二项式系数相等.(2)增减性:∵kn C =k k n 1+-1C -k n , ∴当k <21+n 时,二项式系数逐渐增大,由对称性知后半部分是逐渐减小的. (3)最大值:当n 为偶数时,中间一项(第2n +1项)的二项式系数最大,最大值为2C n n . 当n 为奇数时,中间两项(第21+n 项和第21+n +1项)的二项式系数相等,且同时取最大值,最大值为21C -n n 或21C +n n .(4)各二项式系数和0C n +1C n +2C n +…+r n C +…+n n C =2n .2.“赋值法”在解题中的运用.●教学难点与二项展开式中系数最大项有关问题的求解.●教学方法发现法●教具准备投影片一张.内容:课本P 107图10-9.●教学过程Ⅰ.复习回顾[师生共同活动](a +b )n =0C n a n +1C n a n -1b 1+…+r n C a n-r b r +…n n C b n .T r +1=r n C a n-r b r .Ⅱ.讲授新课[师]通项公式中的r n C ,我们称其为二项式系数,(a +b )n 展开式的二项式系数,当n不难发现,它有这样的规律:每行两端都是1,而且除1以外的每一个数都等于它肩上两个数的和.[师]能用我们所学知识解释一下吗?[生]设这一数为r n 1C +,其肩上的数则为1C -r n 和r n C ,由组合数知识可知r n 1C +=1C -r n +r n C .[师]上表可称为二项式系数表,早在我国南宋数学家1261年所著的《详解九章算术》中就有所记载,又称为杨辉三角.此表将二项式系数的性质表现得淋漓尽致.(打出投影片)[师]下面结合此表,来看一下二项式系数的主要性质.同学们看出哪些性质?[生]对称性.即与首末两端“等距离”的两个二项式系数相等.[师]为什么呢?[生]因为m n C =m n n-C . [师]还有什么性质?[生]增减性与最大值.当k <21+n 时,二项式系数是逐渐增大的; 当k >21+n 时,二项式系数是逐渐减小的. 当n 是偶数时,2C n n 最大;当n 是奇数时, 21C -n n ,21C +n n 相等,且最大.[师]上述性质与我们所学二次函数性质有相似之处,因此r n C 可看成是以r 为自变量的函数f (r ),其定义域是{0,1,2,…,n }.[师]可以解释上述性质吗?[生]∵kn C =kk k n n n n ⋅-+---)!1()1()2)(1( =1C -k n ·k k n )1(+-, ∴当k k n 1+->1,即k <21+n 时,1C C -k nk n >1,即kn C >1C -k n .当k k n 1+-<1,即k >21+n 时,1C C -k nk n <1,即kn C <1C -k n . [师]还有其他性质吗?[生]∵(1+x )n =0C n +1C n x +2C n x 2+…+r n C x r +…+n n C x n ,当x =1时, 2n =0C n +1C n +2C n +…+r n C +…+n n C ,即(a +b )n 的展开式的各个二项式系数的和等于2n .[师]是否还可发现其他性质呢?[生]在(a +b )n 的展开式中,令a =1,b =-1,则可得0=0C n -1C n +2C n -3C n +…=(0C n +2C n +…)-(1C n +3C n +…),即0C n +2C n +…=1C n +3C n +….也就是说,在(a +b )n 的展开式中,奇数项的二项式系数的和等于偶数项的和.[师]下面看怎样应用这些性质.[例1]求(1+2x -3x 2)5的展开式中的x 5项的系数.[师]这是一个关于三项式的展开式的问题,而三项式的展开式对于我们来讲,并无现成的公式可用,那么请大家思考一下如何解决?能否与我们刚学的二项式定理产生联系呢?[生甲]我认为可以将(2x -3x 2)看作一项,用二项式定理展开,再考查各项中x 5项的系数,最后通过求和得到所求.[生乙]我也尝试了甲同学的方法,但感觉各项中x 5项的系数有些烦琐.[师]虽然此种解法较繁,但对于大家来说,能够熟悉二项式定理,熟悉二项式的展开式,熟悉二项式的通项的特点,所以,我还是提倡大家采用这种思路尝试下去,加深自己的体会.[生丙]我注意到括号内的(1+2x -3x 2)恰好可以分解因式为(1-x )(1+3x ),故三项式可转化为两个二项式之积,分别展开后考查得到x 5项的多种情形:x 0·x 5,x 1·x 4,x 2·x 3,x 3·x 2,x 4·x 1,x 5·x 0,然后将两个二项展开式的系数对应相乘相加即可.[师]很好,相对于解法一来讲,丙同学的解法就体现了解题方法的灵活性,即通过因式分解将三项式问题转化为二项式问题,其他同学注意体会.解法一:∵(1+2x -3x 2)5=[1+(2x -3x 2)]5=1+5(2x -3x 2)+10(2x -3x 2)2+10(2x -3x 2)3+5(2x -3x 2)4+(2x -3x 2)5=1+5x (2-3x )+10x 2(2-3x )2+10x 3(2-3x )3+5x 4(2-3x )4+x 5(2-3x )5,∴x 5项的系数为上式各项中含x 5项的系数和,即1023C ·21·(-3)2+514C ·23·(-3)1+25=92. 解法二:∵(1+2x -3x 2)5=(1-x )5·(1+3x )5=(1-5x +10x 2-10x 3+5x 4-x 5)·(1+15x +90x 2+270x 3+405x 4+243x 5),∴展开式中x 5项的系数为243-5×405+270×10-10×90+5×15-1=92.[例2]求(1+x )3+(1+x )4+…+(1+x )16的展开式中x 3项的系数.[师]请大家审读题目后,考虑如何获得含x 3项的系数.[生甲]我认为可以求出每一项中含x 3项的系数,并注意发现其变化规律,依次为33C ,34C ,35C ,…,316C ,但是,33C ,34C ,…,316C 各项之和的求解较为复杂.[师]甲同学的思路完全正确,大家可以一起考虑一下,看能否将甲同学的困惑解决呢?[生丁]可以用我们前面所学的组合数性质,将33C +34C =44C +34C =45C ,再将45C +35C =46C ,以此类推,达到求和的目的. [师]很好,乙同学求和的关键是将首项33C 变为44C ,然后多次应用组合数的性质达到化简求和的目的,此解法能使我们得到一个启示,用式子表达,即kk C +k k 1C ++k k 2C ++…+k n C =11C ++k n ,大家在以后碰到相关题目时,可以尝试使用.[师]下面大家继续思考,看能否想出其他的解决办法.[生戊]我认为,可以将原式化简后再求x 3项的系数,具体做法是:把(1+x )3+(1+x )4+…+(1+x )16看作首项为(1+x )3,公比为(1+x )(当x ≠-1时),项数为14的等比数列的前n 项和,由等比数列前n 项和公式求和可得原式=xx x 317)1()1(+-+,从上式可以看出只有(1+x )17展开式中含x 4的项与x 相除可得含x 3项,所以只需考查(1+x )17的展开式中含x 4的系数即可.[生己]戊同学在叙述过程中提到x ≠-1时,(1+x )3+(1+x )4+…+(1+x )16可以看作等比数列前n 项和,那么当x =-1时又如何解释呢?[生庚]我认为,由于此题的目的是求x 3项的系数,其中x 是任意的变量,而当x ≠-1时,求出的系数不失一般性,故不必考虑x =-1的情形.[师]大家说得很好.同学们由此题联系到我们所学的数列求和方法,将表面的14个二项式问题转化为一个二项式问题,达到了化繁为简,化不熟悉为熟悉的目的,与第一种解法有异曲同工之妙.[师]下面请大家写出完整的解答过程.解法一:由题意(1+x )3,(1+x )4,…,(1+x )16的展开式中x 3项的系数依次为33C ,34C ,…,316C ,∴所求展开式中含x 3的项的系数为33C +34C +35C +...+316C =(44C +34C )+35C + (316)=(45C +35C )+…+316C =46C +…+316C =…=416C +316C =417C .又417C =2380,∴所求展开式中含x 3的系数为2380.解法二:当x ≠-1时,(1+x )3+(1+x )4+…+(1+x )16可以看作是首项为(1+x )3,公比为(1+x ),项数为14的等比数列的前n 项和,由等比数列前n 项和的求和公式可得原式=[]1)1(1)1()1(143-+-++x x x =x x x 317)1()1(+-+.显然只有(1+x )17展开式中x 4项与分母x 相除可得x 3项,∴含x 3项的系数为417C =2380.Ⅲ.课堂练习(学生练习,老师讲评)课本P 109练习1~3.1.(1)1016C =1015C +915C =515C +915C =a +b ;(2)49C =126;(3)111C +311C +…+1111C =210=1024;(4)原式=21221=+n n . 2.证明:∵0C n +1C n +2C n +…+k n C +…+n n C =2n ,C n +2C n +…=1C n +3C n +…,∴0C n +1C n +2C n +…+k n C +…+n n C =(0C n +2C n +…)+(1C n +3C n +…)=2(0C n +2C n +…)=2n .∴0C n +2C n +…+n nC =22n=2n -1. 评述:注意灵活利用二项式系数性质.Ⅳ.课时小结通过本节学习,需掌握二项式系数的三大性质:即对称性、增减性和最大值,及二项式系数之和.Ⅴ.课后作业(一)课本P 109习题10.4 4、5.(二)预习提纲如何利用二项式定理、通项公式及二项式系数性质解决相关问题?。
高三数学教案《二项式定理》优秀3篇
高三数学教案《二项式定理》优秀3篇作为一名老师,经常要写一份优秀的教案,编写教案有利于我们科学、合理地支配课堂时间。
我们应当怎么写教案呢?这次秀丽的我为您带来了高三数学教案《二项式定理》优秀3篇,期望能够挂念到大家。
回顾小结:篇一通过同学主动探究的学习过程,使同学清楚的把握二项式定理的内容,更体会到了二项式定理形成的思考方式,为后继课程(n次独立重复试验恰好发生k次)的学习打下了基础。
而二项式定理内容本身对解释二项分布有很直接的功效,由于二项分布中全部概率和恰好是二项式。
课后记:预备这节课,我主要思考了这么几个问题:(1)这节课的教学目的“使同学把握二项式定理”重要,还是“使同学把握二项式定理的形成过程”重要?我反复斟酌,认为后者重要。
于是,我这节课花了大部分时间是来引导同学探究“为什么可以用组合数来表示二项式定理中各项的二项式系数?”(2)同学怎样才能把握二项式定理?是通过大量的练习来达到目的,还是通过同学对二项式定理的形成过程来记忆?正如前面所说“学问之道,问而得,不如求而得之深固也”。
我还是要求同学自主的去探究二项式定理。
这样也符合以老师为主导、同学为主体、师生互动的新课程教学理念。
(3)预备什么样的例题?例题的目的是为了巩固本节课所学,例题1是很直接的二项式定理内容的应用;为了更好的让同学体会到二项式定理形成过程中的思考问题的方式,并培育同学学问的迁移力量,我增加了例题,但是难免还有一些有不足之处,期望各位老师能不吝赐教。
感谢!教材分析:篇二1、学问内容:二项式定理及简洁应用2、地位及重要性二项式定理是支配在高中数学排列组合内容后的一部分内容,其形成过程是组合学问的应用,同时也是自成体系的学问块,为随后学习的概率学问及高三选修概率与统计,作学问上的铺垫。
二项开放式与多项式乘法有亲密的联系,本节学问的学习,必定从更广的视角和更高的层次来端详学校学习的关于多项式变形的学问。
运用二项式定理可以解决一些比较典型的数学问题,例如近似计算、整除问题、不等式的证明等。
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
《二项式定理》教案2
教学目标:
知识与技能:进一步掌握二项式定理和二项展开式的通项公式
过程与方法:能解决二项展开式有关的简单问题
情感、态度与价值观:教学过程中,要让学生充分体验到归纳推理不仅可以猜想到一般性的结果,而且可以启发我们发现一般性问题的解决方法。
教学重点:
二项式定理及通项公式的掌握及运用
教学难点:
二项式定理及通项公式的掌握及运用
授课类型:
新授课
教 具:
多媒体、实物投影仪
教学过程:
一、复习引入:
⑴22202122
222()2a b a ab b C a C ab C b +=++=++;
⑵33223031222333333()33a b a a b ab b C a C a b C ab C b +=+++=+++ ⑶4()()()()()a b a b a b a b a b +=++++的各项都是4次式,
即展开式应有下面形式的各项:4a ,3a b ,22a b ,3ab ,4b ,
展开式各项的系数:上面4个括号中,每个都不取b 的情况有1种,即04C 种,4a 的系数是04C ;恰有1个取b 的情况有14C 种,3a b 的系数是14C ,恰有2个取b 的情况有24C 种,22a b 的系数是24C ,恰有3个取b 的情况有34C 种,3ab 的系数是34C ,有4都取b 的情况有44C 种,4b 的系数是44C ,
∴404132223344
44444()a b C a C a b C a b C a b C b +=++++.
二、讲解新课:
二项式定理:01()()n n n r n r r n n n n n n a b C a C a b C a b C b n N -*+=+++++∈ ⑴()n
a b +的展开式的各项都是n 次式,即展开式应有下面形式的各项: n a ,n a b ,…,n r r a b -,…,n b ,
⑵展开式各项的系数:
每个都不取b 的情况有1种,即0n C 种,n a 的系数是0n C ;
恰有1个取b 的情况有1n C 种,n a b 的系数是1n C ,……,
恰有r 个取b 的情况有r n C 种,n r r a b -的系数是r n C ,……,
有n 都取b 的情况有n n C 种,n b 的系数是n
n C ,
∴01()()n n n r n r r n n n n n n a b C a C a b C a b C b n N -*+=+++++∈, 这个公式所表示的定理叫二项式定理,右边的多项式叫()n
a b +的二项展开式,⑶它有1n +项,各项的系数(0,1,
)r n C r n =叫二项式系数, ⑷r n r r n C a b -叫二项展开式的通项,用1r T +表示,即通项1r n r r r n
T C a b -+=. ⑸二项式定理中,设1,a b x ==,则1(1)1n r r n n n x C x C x x +=+++++
三、讲解范例:
例1.展开41(1)x +.
解一: 41123344441
1111(1)1()()()()C C C x x x x x +=++++234
46411x x x x =++++. 解二:4444413123444111
(1)()(1)()1x x C x C x C x x x x ⎡⎤+=+=++++⎣⎦ 23446411x x x x
=++++.
例2.展开6
.
解:66
31(21)x x =- 61524332216666631[(2)(2)(2)(2)(2)(2)1]x C x C x C x C x C x x
=-+-+-+ 32236012164192240160x x x x x x =-+-+
-+.。