16.1-16.2 二次根式 教案
(完整版)新人教版八年级数学下册第16章二次根式教案
课题:16.1二次根式1 课型:新授 一、学习目标1、了解二次根式的概念,能判断一个式子是不是二次根式。
2、掌握二次根式有意义的条件。
3、掌握二次根式的基本性质:)0(0≥≥a a 和)0()(2≥=a a a二、学习重点、难点重点:二次根式有意义的条件;二次根式的性质.难点:综合运用性质)0(0≥≥a a 和)0()(2≥=a a a 。
三、学习过程(一)自学导航(课前预习)(1)已知a x =2,那么a 是x 的______;x 是a 的______, 记为_____,a 一定是____数。
(2)4的算术平方根为2,用式子表示为=__________;正数a 的算术平方根为_______,0的算术平方根为_______;式子)0(0≥≥a a 的意义是 。
(二)合作交流(小组互助) (1)16的平方根是 ;(2)一个物体从高处自由落下,落到地面的时间是t (单位:秒)与开始下落时的高度h (单位:米)满足关系式25t h =。
如果用含h 的式子表示t ,则t = ; (3)圆的面积为S ,则圆的半径是 ; (4)正方形的面积为3-b ,则边长为 。
思考:16,5h ,πs ,3-b 等式子的实际意义.说一说他们的共同特征.定义: 一般地我们把形如a (0≥a )叫做二次根式,a 叫做_____________。
1、试一试:判断下列各式,哪些是二次根式?哪些不是?为什么?3,16-,34)0(3≥a a ,12+x2、当a 为正数时a 指a 的 ,而0的算术平方根是 ,负数 ,只有非负数a 才有算术平方根。
所以,在二次根式a 中,字母a 必须满足 ,4a 才有意义。
3、根据算术平方根意义计算 :(1) 2)4( (2)(3)2)5.0( (4)2)31( 根据计算结果,你能得出结论: ,其中0≥a ,4、由公式)0()(2≥=a a a ,我们可以得到公式a =2)(a ,利用此公式可以把任意一个非负数写成一个数的平方的形式。
八年级数学下册第十六章《二次根式》教案
做二次根式,“”称为二次根号。
例题:当x 是怎样的实数时,2+x在实数范围内有意义?解:要使2+x在实数范围有意义,必须x+2≥0,∴x≥-2.∴当x≥-2时,2+x在实数范围内有意义。
当x 是怎样的实数时,2x在实数范围内有意义?3x呢?三、课堂练习及巩固练习1 指出下列哪些是二次根式?(1)5;(2)3-;(3)321;(4)21+x;(5))2(2≥-aa;(6)ba-(a<b)。
练习2 二次根式和算术平方根有什么关系?(二次根式都是非负数的算术平方根;带有根号的算术平方根是二次根式)练习3 a 取何值时,下列根式有意义?(1)1+a;(2)112-a;(3)21-a().解:(1)由a+1≥0,得a≥-1;(2)由1-2a>0,得a<1 2;(3)由21-a()≥0,得a为任何实数.师活动、学生活动、设计意图、技术应用等)一、复习导入(1)什么是二次根式,它有哪些性质?(2)二次根式52x有意义,则x 。
当a>0 时,a表示a 的算术平方根,因此a>0;当a =0 时,a表示0的算术平方根,因此a=0;这就是说,a(a≥0)是一个非负数。
二、探究新知探究:根据算术平方根的意义填空,并说出得到结论的依据。
把上述计算结论推广到一般,并用字母表示:2=a a()(a≥0)思考:你能说说依据吗?例题:计算下列各式:215.();(2)225()探究:填空把得到的结论推广到一般,并用含字母的22224213= == =()()()()________二次根式表示:2=a a (a ≥0)思考:你能说说依据吗? 计算下列各式:(1)16 ;(2)25-()回顾我们学过的式子,如5,a,a+b,-ab,这些式子有哪些共同特征?(1)含有表示数的字母; (2)用基本运算符号连接数或表示数的字母。
用基本运算符号(基本运算包括加、减、乘、除、乘方和开方)把数或表示数的字母连接起来得到的式子叫代数式。
三、课堂练习及巩固练习1 计算(1)218() ;(2) 20();(3)2748();(4)235();(5)9;(6)24-();练习2 对于性质 ,逆向思考可得: , 请根据这一结论完成填空:(1)22=();(2)23=( ) 练习3 根据性质2=a a (a ≥0),可得255-=()你认为当a <0时,2=a ___,并说明理由:练习4 性质 和 有什么区别和联系?师活动、学生活动、设计意图、技术应用等)一、创设情境,导入新课现有一块长7.5 dm、宽5 dm的木板,能否采用如图所示的方式,在这块木板上截出两个面积分别是8 dm2和18 dm2的正方形木板?能截出两块正方形木板的条件是什么?能用数学式子表示吗?818+能否进一步计算?这是一种什么运算?能,两个二次根式的加法运算。
16.1《二次根式》教案
16.1《二次根式》教案
二、核心素养目标
1.培养学生的逻辑推理能力,通过二次根式的性质探究,提升数学抽象思维。
2.培养学生的数学运算能力,熟练掌握二次根式的运算规则,并能应用于实际问题。
3.培养学生的数学建模能力,运用二次根式解决实际生活中的数学问题,如几何图形的面积计算等。
4.培养学生的直观想象能力,通过二次根式的图形表示,理解其与平面几何图形的关系。
引导学生总结本节课的学习内容,分享学习心得。
四、课后作业
1.请学生完成课后练习题,巩固二次根式的知识。
2.结合实际生活,运用二次根式解决一个实际问题。
五、教学评价
1.课堂问答,了解学生对二次根式概念和性质的理解。
2.课后作业,评估学生对二次根式运算规则的掌握程度。
3.学生分享实际问题解决方案,评价其数学建模能力。
三、教学过程
1.导入新课
利用
2.知识讲解
①二次根式的定义和性质
②二次根式的简化
③二次根式的乘除法运算规则
④最简二次根式
3.案例分析
通过具体例题,让学生掌握二次根式的运算和应用。
4.练习巩固
设计不同难度的练习题,让学生巩固所学知识。
5.总结反思
16.1《二次根式》教案
一、教学内容
16.1《二次根式》教案
1.理解二次根式的定义,掌握二次根式的性质与运算规则。
2.能够对形如√a(b±c)的二次根式进行简化。
3.掌握二次根式的乘除法运算,并熟练运用运算法则。
4.理解最简二次根式的概念,并能够将二次根式化为最简形式。
5.应用二次根式解决实际问题,如平面几何中的面积计算等。
六、教学资源
1.教材:《数学》八年级下册
八年级数学下册第16章二次根式16.1二次根式(2)教案新版新人教版
八年级数学下册第16章二次根式16.1二次根式(2)教案新版新人教版一、教材分析与处理(一)教材的地位和作用:《二次根式》是人教版义务教育课程标准实验教科书《数学》八年级下册第十六章第一节.二次根式是在学习平方根基础上将具体数字抽象化,并且基于学习二次根式定义的基础上对二次根式的性质进行进一步的探究,本节课为学习二次根式的计算等知识做好了铺垫.(二)教学目标:知识与技能目标:(a ≥0)是一个非负数,)2=a (a ≥0)和a a =2,并利用它们进行计算和化简.过程与方法目标:a ≥0)是一个非负数,用具体数据结合算术平方根的意义导出)2=a (a ≥0),运用结论解题;通过具体数据的解答,(a ≥0),并利用这个结论解决具体问题.情感与价值目标:通过本节课的学习培养学生准确计算和化简的严谨的学习精神,培养学生观察、分析、发现问题的能力,并且通过探究感受学习的乐趣和获得成果的成就感,进一步增强学生自主参与意识. .(三)教学重点与难点:1.重点:a ≥0)是一个非负数,掌握()()02≥=a a a 、a a =2,并利用它们进行计算和化简.2.难点:引导学生自主探究推导得出()()02≥=a a a 、a a =2.二、学生情况分析及对策八年级学生已经学习了算数平方根,而且基本能够理解算数平方根的意义,并且能根据算数平方根进一步扩展探究二次根式的定义及二次根式有意义的条件,但是对于二次根式的意义及运算结果探究不深,而且有些同学不能深入理解二次根式的意义,这样学习本节课就产生了一定的困难.根据学生的实际情况和特点,我采取由特殊到一般,有简到难逐一探究、突破难点的教学方法进行本节课的教学.三、教法与学法1.教法:回顾旧知探究新知,教师设计情境,提出问题,引导学生通过观察,由具体到抽象,得到二次根式的性质,培养学生由特殊到一般的思想方法,先大胆猜想,再进一步探究,最终得到结论,并借助多媒体演示教学,增强课堂实例的直观性和启发性.2.学法:通过观察、猜想、分析、自主探究,得出二次根式的性质,增强数学思维能力.3.教学手段:借助电脑多媒体课件及视频辅助教学。
新人教版第16章二次根式全章教案
新人教版第16章二次根式全章教案第十六章二次根式16.1 二次根式(1)教学内容:二次根式的概念及其运用教学目标:1、知识与技能:理解二次根式的概念,并利用a(a≥0)的意义解答具体题目.2、过程与方法:提出问题,根据问题给出概念,应用概念解决实际问题.经历观察、比较,总结二次根式概念和被开方数取值的过程,发展学生的归纳概括能力。
3、情感态度与价值观:经历观察、比较和应用等数学活动,感受数学活动充满了探索性和创造性,体验发现的快乐,并提高应用的意识。
教学重难点: 1、重点:形如a(a≥0)的式子叫做二次根式的概念;2、难点:利用“a(a≥0)”解决具体问题。
教学课时:2节教学类型:新课教学准备:彩色粉笔、小黑板教学过程:一、复习引入(1)已知x2 = a,那么a是x的______; x是a的______, 记为____, a一定是_____数。
(2)4的算术平方根为2,用式子表示为4;正数a的算术平方根为_______, 0的算术平方根为_______;式子a0(a0)的意义是。
思考:教材P2思考二、探索新知:,s,65,h5,都是一些正数的算术平方根.像这样一些正数的算术平方根的式子,我们很明显就把它称二次根式.因此,一般地,我们把形如a(a≥0)的式子叫做二次根式,“号.”称为二次根思考:(1)-1有算术平方根吗? (2)0的算术平方根是多少?(3)当a例1.下列式子,哪些是二次根式,哪些不是二次根式:114x y2、、x、x(x>0)、0、2、2、x y、(x≥0,y•≥0).;第二,被开方数是正数或0.x y 解:二次根式有:2、x(x>0)、、、2、、(x≥0,y•≥0).113 不是二次根式的有:3、x、2、x y.例2 (教材P2例1)当x是怎样的实数时,x2在实数范围内有意义?解:由x2≥0,得:x≥2。
当x≥2时,x2在实数范围内有意义.四、巩固练习:教材P3练习1、2.1补充练习:1、当x是多少时,2x3+x1在实数范围内有意义?≥0 ①解:依题意,得≠0 ② 由①得:x≥32 , 由②得:x≠-1当x≥312且x≠-1时,2x3+x1在实数范围内有意义. x2、(1)已知y=2x+x2+5,求y的值.(答案:2)(2)若a1+b1=0,求a+b的值.(答案:0)五、归纳小结:本节课要掌握:1.形如a(a≥0)的式子叫做二次根式,“”称为二次根号.使二次根式在实数范围内有意义,必须满足被开方数是非负数.六、布置作业:教材P5习题16.1第1、7题七、板书设计:八、教学反思:.要216.1 二次根式(2)教学内容:1a≥0)是一个非负数 2.2=a(a≥0).教学目标:1a≥02=a(a≥0),并利用它们进行计算和化简. 2a≥0)是一个非负数,用具2=a(a≥0);最后运用结论严谨解题.3、情感态度与价值观:通过二次根式的相关计算,进而解决一些实际问题,培养学生解决问题的能力。
《16.1 二次根式(第1课时)》教学设计
《16.1 二次根式(第1课时)》教学设计一、内容和内容解析1.内容二次根式的概念.2.内容解析本节课是在学生学习了平方根、算术平方根、立方根的概念,会用根号表示数的平方根、立方根,知道开方与乘方互为逆运算的基础上,来学习二次根式的概念. 它不仅是对前面所学知识的综合应用,也为后面学习二次根式的性质和四则运算打基础.教材先设置了三个实际问题,这些问题的结果都可以表示成二次根式的形式,它们都表示一些正数的算术平方根,由此引出二次根式的定义. 再通过例1讨论了二次根式中被开方数字母的取值范围的问题,加深学生对二次根式的定义的理解.本节课的教学重点是:了解二次根式的概念;二、目标和目标解析1.教学目标(1)体会研究二次根式是实际的需要.(2)了解二次根式的概念.2. 教学目标解析(1)学生能用二次根式表示实际问题中的数量和数量关系,体会研究二次根式的必要性.(2)学生能根据算术平方根的意义了解二次根式的概念,知道被开方数必须是非负数的理由,知道二次根式本身是一个非负数,会求二次根式中被开方数字母的取值范围.三、教学问题诊断分析对于二次根式的定义,应侧重让学生理解“的双重非负性,”即被开方数≥0是非负数,的算术平方根≥0也是非负数.教学时注意引导学生回忆在实数一章所学习的有关平方根的意义和特征,帮助学生理解这一要求,从而让学生得出二次根式成立的条件,并运用被开方数是非负数这一条件进行二次根式有意义的判断.本节课的教学难点为:理解二次根式的双重非负性.四、教学过程设计1.创设情境,提出问题问题1你能用带有根号的的式子填空吗?(1)面积为3 的正方形的边长为_______,面积为S 的正方形的边长为_______.(2)一个长方形围栏,长是宽的2 倍,面积为130m?,则它的宽为______m.(3)一个物体从高处自由落下,落到地面所用的时间t(单位:s)与开始落下的高度h(单位:m)满足关系h =5t?,如果用含有h 的式子表示t ,则t= _____.师生活动:学生独立完成上述问题,用算术平方根表示结果,教师进行适当引导和评价.【设计意图】让学生在填空过程中初步感知二次根式与实际生活的紧密联系,体会研究二次根式的必要性.问题 2 上面得到的式子,,分别表示什么意义?它们有什么共同特征?师生活动:教师引导学生说出各式的意义,概括它们的共同特征:都表示一个非负数(包括字母或式子表示的非负数)的算术平方根.【设计意图】为概括二次根式的概念作铺垫.2.抽象概括,形成概念问题3你能用一个式子表示一个非负数的算术平方根吗?师生活动:学生小组讨论,全班交流.教师由此给出二次根式的定义:一般地,我们把形如(a≥0)的式子叫做二次根式,“”称为二次根号.【设计意图】让学生体会由特殊到一般的过程,培养学生的概括能力.追问:在二次根式的概念中,为什么要强调“a≥0”?师生活动:教师引导学生讨论,知道二次根式被开方数必须是非负数的理由.【设计意图】进一步加深学生对二次根式被开方数必须是非负数的理解.3.辨析概念,应用巩固例1当时怎样的实数时,在实数范围内有意义?师生活动:引导学生从概念出发进行思考,巩固学生对二次根式的被开方数为非负数的理解.例2当是怎样的实数时,在实数范围内有意义?呢?师生活动:先让学生独立思考,再追问.【设计意图】在辨析中,加深学生对二次根式被开方数为非负数的理解.问题4你能比较与0的大小吗?师生活动:通过分和这两种情况的讨论,比较与0的大小,引导学生得出≥0的结论,强化学生对二次根式本身为非负数的理解,【设计意图】通过这一活动的设计,提高学生对所学知识的迁移能力和应用意识;培养学生分类讨论和归纳概括的能力.4.综合运用,巩固提高练习1 完成教科书第3页的练习.练习2当x 是什么实数时,下列各式有意义.(1);(2);(3);(4).【设计意图】辨析二次根式的概念,确定二次根式有意义的条件.【设计意图】设计有一定综合性的题目,考查学生的灵活运用的能力,开阔学生的视野,训练学生的思维.5.总结反思教师和学生一起回顾本节课所学主要内容,并请学生回答以下问题.(1)本节课你学到了哪一类新的式子?(2)二次根式有意义的条件是什么?二次根式的值的范围是什么?(3)二次根式与算术平方根有什么关系?师生活动:教师引导,学生小结.【设计意图】:学生共同总结,互相取长补短,再一次突出本节课的学习重点,掌握解题方法.6.布置作业:教科书习题16.1第1,3,5,7,10题.五、目标检测设计1. 下列各式中,一定是二次根式的是()A. B.C.D.【设计意图】考查对二次根式概念的了解,要特别注意被开方数为非负数.2. 当时,二次根式无意义.【设计意图】考查二次根式无意义的条件,即被开方数小于0,要注意审题.3.当时,二次根式有最小值,其最小值是.【设计意图】本题主要考查二次根式被开方数是非负数的灵活运用.4.对于,小红根据被开方数是非负数,得出的取值范围是≥.小慧认为还应考虑分母不为0的情况.你认为小慧的想法正确吗?试求出的取值范围.【设计意图】考查二次根式的被开方数为非负数和一个式子的分母不能为0,解题时需要综合考虑.。
二次根式教案(第一课时)
长是宽的2倍,面积为130 ,则它的宽为_____ .
3.一个物体从高处自由下落,落到地面所用的时间为t,(单位:s)与开始下落的高度h(单位:m) 满足关系 .如果用含有h的式子表示t, 则t=_________.
给学生充分的时间思考和讨论,让他们发现这个式子也是一种运算.
教学重点
二次根式中被开方数的取值范围.
教学难点
二次根式中被开方数的取值范围的产生过程.
教学方法
通过解决实际问题,引出二次根式的概念,再通过解题实践,总结归纳二次根式的被开方数的取值范围要大于等于零.
教学手段
多媒体课件等
课型
新课
教学环节
教学内容
教师活动
学生活动
一、创设情境,提出问题
羊村和狼堡都新建了电视塔.电视塔越高,从塔顶发射出的电磁波传播得越远,从而能收看到的电视节目的区域就越广.电视塔高h(单位:km)与电视节目信号的传播半径r(单位:km)之间存在近似关系r= ,其中,R是地球半径,R≈6400km.如果羊村和狼堡两个电视塔的高分别是 km, km,那么它们的传播半径之比是 .你能帮羊羊将这个式子化简吗?
五、课堂小结,知识梳理
(1)本节课你学习了哪些知识?
(2)利用本节课知识,你能解决什么问题?
(3)你还有什么困惑?还想继续探究什么?
在学生总结后,进行补充,帮助学生形成知识网络.
归纳、总结发言,体会、反思.
六、布置作业
必做题:教材第3页练习—1,2题. 教材第5页习题--1题.
选做题:当x是怎样的实数时,下列各式在实数范围内有意义?
巩固所学知识,分层作业的布置面向全体,有助于每一位学生的进步.
16.1二次根式教案
16.1二次根式教案篇一:16.1(1)二次根式教案16.1(1)二次根式教学目标1.知道二次根式与数的开平方运算之间的联系,体会二次根式是数、代数式及其运算的发展;2.理解a有意义的条件,理解a?a;3.会根据二次根式有意义的条件确定二次根式里被开方数中字母的取值范围.教学重点和难点理解a有意义的条件,掌握a?a.教学流程设计22教学过程设计:一、新课引入:1.上学期学习了开平方运算,正数a的平方根可表示为?练习:当a?0时,化简a2和(a)2二、学习新课:1、观察思考:aa(a?0)是一个代数式,叫做二次根式,a是被开方数.举例说明:2、2、a2?1、b2?4ac(b2?4ac?0)等都是二次根式.在实数范围内,负数3没有平方根,所以象?2,(b?0)这样的式子没有意义,二次根式有意义的条件是被开方数是非负数.二次根式的两个性质:1)a2?a(a?0);2)(a)2?a(a?0)通过填表,由学生归纳出当a为任意实数时,a2与a的关系.?a(a?0)?2即a?a??0(a?0)??a(a?0)?2、例题分析:例1:设x是实数,当x满足什么条件时,下列各式有意义?1)2x?1;2)2?x;3)1;x4)?x2例2:求下列二次根式的值:21)(3??)2)x2?2x?1,其中x??.22例3:设a、b、c分别是三角形三边的长,化简:(a?b?c)?(b?c?a)三、课堂小结:1.要使二次根式有意义,被开方数必须为非负数,同时还要特别注意当分母含有字母时分母要不等于0.2.能根据a2与a的关系求出被开方数是完全平方数的二次根式的值,在计算时可先将其整理,尤其注意符号.四、作业布置:练习册习题16.1(1)教学设计说明:1.本节课是在学生学习了数的开方后的延续,因此在教学设计中,重点放在认识二次根式和二次根式有意义所必须满足的条件上,采取启发式的教学方法,引导学生积极思考问题,从中培养学生的严谨的思维品质.2.本节课还要求学生掌握二次根式的性质,特别是掌握a2与a的关系,并能够在计算时熟练运用,这是本节课的重点也是难点,在教学设计中安排了形式多样的课堂练习,例2和例3的讲解可以在老师的引导下,师生共同分析和解答,使学生当堂能够掌握运用二次根式的性质进行解题.教学反思:掌握a2与a的关系是本堂课的重点及难点,不仅是二次根式的一个重要性质,同时也渗透了分类思想;另外,要使二次根式有意义,不仅要满足被开方数为非负数,还要注意分母不能为0篇二:16.1二次根式教学设计教案教学准备1.教学目标理解二次根式的概念,并利用(a≥0)的意义解答具体题目.提出问题,根据问题给出概念,应用概念解决实际问题.2.教学重点/难点1.重点:形如(a≥0)的式子叫做二次根式的概念;2.难点与关键:利用“(a≥0)”解决具体问题.3.教学用具4.标签一、复习引入(学生活动)请同学们独立完成下列三个课本P2的三个思考题:二、探索新知课堂小结课后习题1.教材P51,2,3,42.选用课时作业设计.篇三:16.1二次根式教学设计教案教学准备1.教学目标1、知识与技能:(1)理解二次根式的概念,(2)利用公式的意义解答具体题目.提出问题,根据问题给出概念,应用概念解决实际问题.2、过程与方法:通过自主合作学习,和教师合作精讲,掌握学习目标。
人教版数学八年级下册16.1二次根式(教案)
(一)导入新课(用时5分钟)
同学们,今天我们将要学习的是《二次根式》这一章节。在开始之前,我想先问大家一个问题:“你们在日常生活中是否遇到过需要计算非整数的平方根的情况?”(例如,计算一个边长为$\sqrt{5}$的正方形的面积)这个问题与我们将要学习的内容密切相关。通过这个问题,我希望能够引起大家的兴趣和好奇心,让我们一同探索二次根式的奥秘。
4.培养学生的数学抽象素养:让学生从具体的二次根式实例中抽象出一般规律,提升对数学概念的理解和抽象思维能力。
5.激发学生的数学探究精神:鼓励学生在二次根式学习中积极思考、探索,培养他们的创新意识和探究精神。
三、教学难点与重点
1.教学重点
-二次根式的定义:理解二次根式的概念,明确根号下仅含非负实数的表达式。
-二次根式的性质:掌握二次根式的乘除、平方等运算性质,如$\sqrt{a} \cdot \sqrt{b} = \sqrt{ab}$。
-二次根式的化简:学会通过因式分解、提取公因数等方法化简二次根式,如$\sqrt{18} = \sqrt{9 \cdot 2} = 3\sqrt{2}$。
-二次根式的乘除法:熟练运用性质进行二次根式的乘除运算,如$\frac{\sqrt{a}}{\sqrt{b}} = \sqrt{\frac{a}{b}}$($a \geq 0$,$b > 0$)。
1.培养学生的逻辑推理能力:通过二次根式的性质与运算法则的学习,使学生能够运用逻辑推理分析问题,提高解题的条理性和逻辑性。
2.提升学生的数学运算能力:让学生掌握二次根式的化简、乘除与加减运算,培养他们在数学运算中的准确性和熟练度。
3.增强学生的数学建模意识:通过解决实际问题,使学生能够运用二次根式知识构建数学模型,提高解决实际问题的能力。
人教版八年级下册16.1二次根式教案
-化简复杂二次根式:对于一些复杂的二次根式,如√(50)或√(108),学生需要找到其中的平方因子,进行分解和化简。
-合并不同底数的二次根式:例如合并√(2)和√(8),需要先将√(8)化简为2√(2),然后再与√(2)合并。
-二次根式的乘除运算中的符号问题:在二次根式的乘除运算中,符号的处理是一个难点,如√(a^2) = |a|而不是a。
1.加强学生对基本概念的掌握,通过大量练习题巩固知识;
2.注重直观教学,利用图像、实例等手段帮助学生理解难点;
3.结合生活实际,设计更多有趣的例题和练习,激发学生的学习兴趣;
4.关注个体差异,对学习有困难的学生进行个别辅导,提高他们的自信心。
希望通过不断反思和改进,能够使学生们在二次根式的学习中取得更好的成绩,为他们今后的数学学习打下坚实基础。
(二)新课讲授(用时10分钟)
1.理论介绍:首先,我们要了解二次根式的概念。二次根式是表示一个数的平方根的数学表达式,它是代数表达式中的一种特殊形式,可以简化非整数平方根的计算。
2.案例分析:接下来,我们来看一个具体的案例。通过计算一个非标准矩形(如长为2,宽为1的矩形)的对角线长度,展示二次根式在实际中的应用,以及它如何帮助我们解决问题。
3.重点难点解析:在讲授过程中,我会特别强调二次根式的化简和合并同类项这两个重点。对于难点部分,如复杂二次根式的化简,我会通过举例和步骤分解来帮助大家理解。
(三)实践活动(用时10分钟)
1.分组讨论:学生们将分成若干小组,每组讨论一个与二次根式相关的实际问题。
2.实验操作:为了加深理解,我们将进行一个简单的实验操作,如使用尺子和直角三角形模型来测量对角线长度,并计算其二次根式的值。
本章节的核心素养目标旨在帮助学生从多角度理解和运用二次根式,提高学生的数学综合素质,为今后的学习和生活打下坚实基础。
人教版八年级数学下册第十六章 二次根式(全章)教案
16.1 二次根式[学习目标]理解二次根式的概念,并利用(a≥0)的意义解答具体题目.教学重点:形如(a≥0)的式子叫做二次根式的概念教学难点:利用“(a≥0)”解决具体问题.教法:1、引导发现法: 2、讲练结合法:学法:1、类比的方法、2、阅读的方法、3、分组讨论法4、练习法[学习过程]一、板书课题(一)讲述:同学们,我们来学习 16.1 二次根式二、出示目标(一)过渡语:要达到什么教学目标呢?请看投影:(二)屏幕显示学习目标理解二次根式的概念,并利用(a≥0)的意义解答具体题目.三、指导自学(一)过渡语:怎样才能当堂达到学习目标呢?请同学们按照指导认真自学.(二)出示自学自导自学指导认真看课本P2全部内容:1.思考“思考1、2”中的问题,完成思考1中的问题,理解二次根式的概念及二次根式有无意义的条件。
2.注意例题1的格式和步骤。
3.讨论回答思考2中的问题。
.如有疑问,可请教同桌或举手问老师.5分钟后,比谁能做对与例题类似的题.四、先学(一)学生看书,教师巡视,师督促每一位学生认真、紧张的自学,鼓励学生质疑问难.(二)过渡语:同学们,看完的请举手?懂了的请举手?好,下面就比一比,看谁能正确做出检测题.(三)检测 : P.3 练习1、2题。
学生练习,教师巡视。
(收集错误进行二次备课)五、后教教师引导学生评议、订正。
归纳小结:1.形如(a≥0)的式子叫做二次根式,“”称为二次根号.2.要使二次根式在实数范围内有意义,必须满足被开方数是非负数.五、当堂训练:一、选择题1.下列各式中①;②;③;④;⑤;⑥一定是二次根式的有()个。
A . 1 个 B. 2个 C. 3个 D. 4个2. 若,则b的值为()A.0 B.0或1 C.b≤3 D.b≥33.已知一个正方形的面积是5,那么它的边长是()A .5BC D.以上皆不对二、填空题1.形如________的式子叫做二次根式. 2.面积为a的正方形的边长为________. 3.负数________平方根.三、综合提高题1.若+有意义,则=_______.2.使式子有意义的未知数x有()个.A.0 B.1 C.2 D.无数3.当x是多少时,+在实数范围内有意义?4. 已知y=++5,求的值.教学反思:16.1 二次根式(2)[学习目标]理解(a≥0)是一个非负数和()2=a(a≥0),并利用它们进行计算和化简.教学重点:(a≥0)是一个非负数;()2=a(a≥0)及其运用.教学难点:导出(a≥0)是一个非负数;•用探究()2=a(a≥0).教法:1、引导发现法: 2、讲练结合法:学法:1、类比的方法2、阅读的方法3、分组讨论法4、练习法[学习过程]一、板书课题:16.1 二次根式(2)讲述:同学们,我们来学习16.1 二次根式(2)二、出示目标(一)过渡语:要达到什么教学目标呢?请看投影:(二)屏幕显示学习目标理解(a≥0)是一个非负数和()2=a(a≥0),并利用它们进行计算和化简.三、指导自学(一)过渡语:怎样才能当堂达到学习目标呢?请同学们按照指导认真自学.(二)出示自学自导自学指导认真看课本P.3“探究”至例2结束。
(word完整版)16.1 二次根式教案(公开课)
第16章 二次根式 16.1 二次根式(1)【教学目标】1.根据算术平方根的意义了解二次根式的概念;知道被开方数必须是非负数的理由;2.能用二次根式表示实际问题中的数量和数量关系.【教学重点】从算术平方根的意义出发理解二次根式的概念.【教学过程】一.创设情境 提出问题1.电视塔越高,从塔顶发射的电磁波传得越远,从而能收看到电视节目的区域越广,电视塔高h (单位:km )与电视节目信号的传播半径 r (单位:km )之间存在近似关系 ,其中地球半径R ≈6 400 km .如果两个电视塔的高分别是h 1 km 、h 2 km你能化简这个式子吗?式子表示什么?公式中 中的表示什么意义?2.问题:(1)面积为3 的正方形的边长为_______,面积为S 的正方形的边长为_______.(1)中式子你是怎么得到?得到的两个式子有什么不同?(2)一个长方形围栏,长是宽的2 倍,面积为130m 2,则它的宽为______m . (2)中得到的式子有什么意义?(3)一个物体从高处自由落下,落到地面所用的时间 t (单位:s )与开始落下的高度h (单位:m )满足关系 h =5t 2,如果用含有h 的式子表示 t ,则.(3)中当h 的值分别为0,10,15,20,25时,得到的结果分别是什么?r =r =表示的数怎样变化?二.合作探究形成知识(1)这些式子分别表示什么意义? (2)这些式子有什么共同特征?分别表示3,S ,65, 的算术平方根这些式子的共同特征是:都表示一个非负数(包括字母或式子表示的非负数)的算术平方根. (3)根据你的理解,请写出二次根式的定义.用来表示一个非负数的算术平方根的式子,叫做二次根式.a≥0)•的式子叫做二次根式,“”称为二次根号.三.初步应用 巩固知识练习2 二次根式和算术平方根有什么关系?二次根式都是非负数的算术平方根;带有根号的算术平方根是二次根式.5h例2 当x 是怎样的实数时,在实数范围内有意义?呢?答案:(1) a 为任何实数; (2) a =1.总结:被开方数不小于零. 四.比较辨别 探索性质五.综合应用 深化提高六.课堂小结七.回顾总结反思提升我们以前学习过的整式、分式都能像数一样进行运算,你认为对于二次根式应该进一步研究哪些问题?八.作业:教科书第5页第1,3,5,6,7,10题.九.教学反思本节课是二次根式第一节课,内容较简单,学生刚开始接收新知识的状态很好,但是在授课后期,由于时间关系,学生用来思考和板书的时间较少,导致学生落实不好。
新人教第16章二次根式全章教案
( 3) 2
(3) ( 0.5 ) 2
(4) (
1 2 ) 3
根据计算结果,你能得出结论: ( a ) 2 ________ ,其中 a 0 , 4、由公式 ( a ) 2 a(a 0) ,我们可以得到公式 a = ( a ) 2 ,利用此公式可 以把任意一个非负数写成一个数的平方的形式。 如( 5 ) =5;也可以把一个非负数写成一个数的平方形式,如 5=( 5 ) .
( 0 .2 ) 2
4 ( ) 2 5
( 20 ) 2
五 、 教 学 过 程 设 计
2 观察其结果与根号内幂底数的关系,归纳得到:当 a 0时, a
3、计算:
02
当 a 0时,
a2
1、归纳总结 将上面做题过程中得到的结论综合起来,得到二次根式的又一条非常重要的 性质:
4 × 9 __ 4 9
16 × 25 __
16 25
五 、 教 学 过 程 设 计
(3) 100 × 36 =___, 100 36 =___.
100 × 36 __
100 36
1、 学生交流活动总结规律. 2、一般地,对二次根式的乘法规定为
a · b = ab . (a≥0,b≥0 反过来:
a0 a a a 0 0 a a0
2
2、化简下列各式: (1) 、 0.32 = ( a 0)
2
2 2 (2) 、 ( 0.5) (3) 、 ( 6)
(4) 、 2a
2
3、请大家思考、讨论二次根式的性质 ( a ) 2 a(a 0) 与 a a 有什么
3 , 16 , 3 4 , 5 , a (a 0) , x 2 1 3
人教版八年级数学下册 第16章 16.1 二次根式 教案
二次根式教学目标1.使学生进一步理解二次根式的意义及基本性质,并能熟练地化简含二次根式的式子;2.熟练地进行二次根式的加、减、乘、除混合运算.教学重点和难点重点:含二次根式的式子的混合运算.难点:综合运用二次根式的性质及运算法则化简和计算含二次根式的式子.教学过程设计一、复习1.请同学回忆二次根式有哪些基本性质?用式子表示出来,并说明各式成立的条件.指出:二次根式的这些基本性质都是在一定条件下才成立的,主要应用于化简二次根式.2.二次根式的乘法及除法的法则是什么?用式子表示出来.指出:二次根式的乘、除法则也是在一定条件下成立的.把两个二次根式相除,计算结果要把分母有理化.3.在二次根式的化简或计算中,还常用到以下两个二次根式的关系式:4.在含有二次根式的式子的化简及求值等问题中,常运用三个可逆的式子:二、例题例1 x取什么值时,下列各式在实数范围内有意义:分析:(1)题是两个二次根式的和,x的取值必须使两个二次根式都有意义;(3)题是两个二次根式的和,x的取值必须使两个二次根式都有意义;(4)题的分子是二次根式,分母是含x的单项式,因此x的取值必须使二次根式有意义,同时使分母的值不等于零.x≥-2且x≠0.解因为n2-9≥0,9-n2≥0,且n-3≠0,所以n2=9且n≠3,所以例3分析:第一个二次根式的被开方数的分子与分母都可以分解因式.把它们分别分解因式后,再利用二次根式的基本性质把式子化简,化简中应注意利用题中的隐含条件3-a≥0和1-a>0.解:因为1-a>0,3-a≥0,所以a<1,|a-2|=2-a.(a-1)(a-3)=[-(1-a)][-(3-a)]=(1-a)(3-a)≥0.这些性质化简含二次根式的式子时,要注意上述条件,并要阐述清楚是怎样满足这些条件的.问:上面的代数式中的两个二次根式的被开方数的式子如何化为完全平方式?分析:先把第二个式子化简,再把两个式子进行通分,然后进行计算.解注意:所以在化简过程中,例6:分析:如果把两个式子通分,或把每一个式子的分母有理化再进行计算,这两种方法的运算量都较大,根据式子的结构特点,分别把两个式子的分母看作一个整体,用换元法把式子变形,就可以使运算变为简捷.a+b=2(n+2),ab=(n+2)2-(n2-4)=4(n+2),三、课堂练习1.选择题:A.a≤2B.a≥2C.a≠2D.a<2A.x+2 B.-x-2C.-x+2D.x-2A.2x B.2a C.-2x D.-2a2.填空题:4.计算:四、小结1.本节课复习的五个基本问题是“二次根式”这一章的主要基础知识,同学们要深刻理解并牢固掌握.2.在一次根式的化简、计算及求值的过程中,应注意利用题中的使二次根式有意义的条件(或题中的隐含条件),即被开方数为非负数,以确定被开方数中的字母或式子的取值范围.3.运用二次根式的四个基本性质进行二次根式的运算时,一定要注意论述每一个性质中字母的取值范围的条件.4.通过例题的讨论,要学会综合、灵活运用二次根式的意义、基本性质和法则以及有关多项式的因式分解,解答有关含二次根式的式子的化简、计算及求值等问题.五、作业1.x是什么值时,下列各式在实数范围内有意义?2.把下列各式化成最简二次根式:。
八年级数学16.1 二次根式 教案
16.1 二次根式教案序号:1 时间:教学内容二次根式的概念及其运用教学目标理解二次根式的概念,并利用a(a≥0)的意义解答具体题目.提出问题,根据问题给出概念,应用概念解决实际问题.教学重难点关键1.重点:形如a(a≥0)的式子叫做二次根式的概念;2.难点与关键:利用“a(a≥0)”解决具体问题.教学过程一、复习引入(学生活动)请同学们独立完成下列三个课本P2的三个思考题:二、探索新知很明显3、10、46,都是一些正数的算术平方根.像这样一些正数的算术平方根的式子,我们就把它称二次根式.因此,一般地,我们把形如a(a≥0)•的式子叫做二次根式,“”称为二次根号.(学生活动)议一议:1.-1有算术平方根吗?2.0的算术平方根是多少?3.当a<0,a有意义吗?老师点评:(略)例1.下列式子,哪些是二次根式,哪些不是二次根式:2、33、1x、x(x>0)、0、42、-2、1x y+、x y+(x≥0,y•≥0).分析:二次根式应满足两个条件:第一,有二次根号“”;第二,被开方数是正数或0.解:二次根式有:2、x(x>0)、0、-2、x y+(x≥0,y≥0);不是二次根式的有:33、1x、42、1x y+.例2.当x是多少时,31x-在实数范围内有意义?分析:由二次根式的定义可知,被开方数一定要大于或等于0,所以3x-1≥0,•31x -才能有意义.解:由3x-1≥0,得:x ≥13 当x ≥13时,31x -在实数范围内有意义. 三、巩固练习教材P5练习1、2、3.四、应用拓展例3.当x 是多少时,23x ++11x +在实数范围内有意义? 分析:要使23x ++11x +在实数范围内有意义,必须同时满足23x +中的≥0和11x +中的x+1≠0. 解:依题意,得23010x x +≥⎧⎨+≠⎩ 由①得:x ≥-32由②得:x ≠-1当x ≥-32且x ≠-1时,23x ++11x +在实数范围内有意义. 例4(1)已知y=2x -+2x -+5,求x y的值.(答案:2) (2)若1a ++1b -=0,求a 2019+b 2019的值.(答案:25) 五、归纳小结(学生活动,老师点评)本节课要掌握:1.形如a (a ≥0)的式子叫做二次根式,“”称为二次根号.2.要使二次根式在实数范围内有意义,必须满足被开方数是非负数.六、布置作业1.教材P5 1,2,3,42.选用课时作业设计.第一课时作业设计一、选择题1.下列式子中,是二次根式的是( )A .-7B .37C .xD .x2.下列式子中,不是二次根式的是( )A .4B .16C .8D .1x3.已知一个正方形的面积是5,那么它的边长是( )A .5B .5C .15 D .以上皆不对二、填空题1.形如________的式子叫做二次根式.2.面积为a 的正方形的边长为________.3.负数________平方根.三、综合提高题1.某工厂要制作一批体积为1m 3的产品包装盒,其高为0.2m ,按设计需要,•底面应做成正方形,试问底面边长应是多少?2.当x 是多少时,23x x ++x 2在实数范围内有意义?3.若3x -+3x -有意义,则2x -=_______.4.使式子2(5)x --有意义的未知数x 有( )个.A .0B .1C .2D .无数5.已知a 、b 为实数,且5a -+2102a -=b+4,求a 、b 的值.第一课时作业设计答案:一、1.A 2.D 3.B二、1.a (a ≥0) 2.a 3.没有三、1.设底面边长为x ,则0.2x 2=1,解答:x=5.2.依题意得:2300x x +≥⎧⎨≠⎩,320x x ⎧≥-⎪⎨⎪≠⎩∴当x>-32且x ≠0时,23x x ++x 2在实数范围内没有意义. 3.134.B5.a=5,b=-4。
八年级数学下册16二次根式16.1二次根式(2)教案新人教版(2021-2022学年)
16.1。
1二次根式(2) 教学目标 知识与技能
1。
理解二次根式的性质。
2。
了解代数式的概念. 过程与方法
1.经历观察、比较、总结二次根式的基本性质的过程,发展学生的归
纳概括能力。
2.通过对二次根式的概念和性质的探究,提高数学探究能力和归纳表达能力.
情感态度与价值观 经历观察、比较、总结和应用等数学活,感受数学活动充满了探索性和创造性,体验发现的快乐,并提高应用的意识。
重点
二次根式的性质运用. 难点 二次根式的性质运用。
教学过程
第一步:探究新知:
求下列各数的平方根和算术平方根. 9的平方根,算术平方根0.64的平方根,算术平方根0的平方根,算术平方根39±=±39=8.064.0±=±8.064.0=0
0=3±8.0±0.8003复习回顾
第二步:巩固新知:
ﻬ
练习:课本P4练习第一、二题第三步:归纳代数式的概念:
第四步、课堂练习
ﻬ。
二次根式全章教案
16.1 二次根式〔第1课时〕教学任务分析板书设计课后反思教学过程设计教学过程设计16.1 二次根式〔第2课时〕教学任务分析板书设计课后反思16.1 二次根式〔第3课时〕教学任务分析板书设计课后反思教学过程设计16.2 二次根式的乘除第一课时教学内容a≥0,b≥0〕〔a≥0,b≥0〕及其运用.教学目标a≥0,b≥0〕a≥0,b≥0〕,并利用它们进展计算和化简a≥0,b≥0〕并运用它进展计算;•a≥0,b≥0〕并运用它进展解题和化简.教学重难点关键重点:a≥0,b≥0〕,a≥0,b≥0〕及它们的运用.〔a≥0,b≥0〕.关键:要讲清〔a<0,b<0〕=b,如=或教学过程一、复习引入〔学生活动〕请同学们完成以下各题.1.填空〔1;〔2=_______.〔3.参考上面的结果,用“>、<或=〞填空.2.利用计算器计算填空〔1〔2〔3〔4〔5教师点评〔纠正学生练习中的错误〕二、探索新知〔学生活动〕让3、4个同学上台总结规律.教师点评:〔1〕被开方数都是正数;〔2〕两个二次根式的乘除等于一个二次根式,•并且把这两个二次根式中的数相乘,作为等号另一边二次根式中的被开方数.反过来:例1.计算〔1〔2〔3〔4分析:a≥0,b≥0〕计算即可.解:〔1〔2〔3=〔4例2 化简〔1〔2〔3〔4〔5a≥0,b≥0〕直接化简即可.解:〔1×4=12〔2×9=36〔3×10=90〔4〔5三、稳固练习〔1〕计算〔学生练习,教师点评〕①②×(2) 化简:教材P11练习全部四、应用拓展例3.判断以下各式是否正确,不正确的请予以改正:〔1〔2解:〔1〕不正确.×3=6〔2〕不正确.改正:=五、归纳小结本节课应掌握:〔1〔a≥0,b≥0〕a≥0,b ≥0〕及其运用.六、布置作业1.课本P151,4,5,6.〔1〕〔2〕.2.选用课时作业设计.第一课时作业设计一、选择题1,•那么此直角三角形斜边长是〔〕.A.B.C.9cm D.27cm2.化简〕.A..311x-=〕A.x≥1 B.x≥-1 C.-1≤x≤1 D.x≥1或x≤-14.以下各等式成立的是〔〕.A..C..5二、填空题1.2.自由落体的公式为S=12gt2〔g为重力加速度,它的值为10m/s2〕,假设物体下落的高度为720m,那么下落的时间是_________.三、综合提高题1.一个底面为30cm×30cm长方体玻璃容器中装满水,•现将一局部水例入一个底面为正方形、高为10cm铁桶中,当铁桶装满水时,容器中的水面下降了20cm,铁桶的底面边长是多少厘米?2.探究过程:观察以下各式及其验证过程.〔1〕验证:==〔2〕验证:=同理可得:==通过上述探究你能猜想出:〔a>0〕,并验证你的结论.答案:一、1.B 2.C二、1.2.12s三、1.设:底面正方形铁桶的底面边长为x,那么x2×10=30×30×20,x2=30×30×2,2.验证:==16.2 二次根式的乘除第二课时教学内容a≥0,b>0〕a≥0,b>0〕及利用它们进展计算和化简.教学目标a≥0,b>0a≥0,b>0〕及利用它们进展运算.利用具体数据,通过学生练习活动,发现规律,归纳出除法规定,并用逆向思维写出逆向等式及利用它们进展计算和化简.教学重难点关键1a≥0,b>0〕a≥0,b>0〕及利用它们进展计算和化简.2.难点关键:发现规律,归纳出二次根式的除法规定.教学过程一、复习引入〔学生活动〕请同学们完成以下各题:1.写出二次根式的乘法规定及逆向等式.2.填空;〔1;〔2;〔3.〔43.利用计算器计算填空:〔1=_________,〔2=_________,〔3,〔4.每组推荐一名学生上台阐述运算结果.〔教师点评〕二、探索新知刚刚同学们都练习都很好,上台的同学也答复得十分准确,根据大家的练习和答复,我们可以得到:例1.计算:〔1〔2〔3〔4分析:上面4a≥0,b>0〕便可直接得出答案.解:〔1〔2===2〔3=〔4例2.化简:〔1〔2〔3〔4a≥0,b>0〕就可以到达化简之目的.解:〔1=〔28 3ba =〔3=〔4=三、稳固练习教材P14 练习1.四、应用拓展例3=,且x为偶数,求〔1+x的值.分析:a ≥0,b>0时才能成立. 因此得到9-x ≥0且x-6>0,即6<x ≤9,又因为x 为偶数,所以x=8.解:由题意得9060x x -≥⎧⎨->⎩,即96x x ≤⎧⎨>⎩∴6<x ≤9 ∵x 为偶数 ∴x=8∴原式=〔1+x=〔1+x=〔1+x∴当x=8时,原式的值. 五、归纳小结a ≥0,b>0a ≥0,b>0〕及其运用.六、布置作业1.教材P 15 习题21.2 2、7、8、9. 2.选用课时作业设计. 第二课时作业设计 一、选择题1的结果是〔 〕.A .27B .27CD .2.阅读以下运算过程:====果是〔 〕.A .2B .6C .13D 二、填空题1.分母有理化:(1)=________;(3)2.x=3,y=4,z=5,那么_______. 三、综合提高题11,•现用直径为的一种圆木做原料加工这种房梁,那么加工后的房染的最大截面积是多少? 2.计算〔1·〔m>0,n>0〕〔2〕〔a>0〕答案:一、1.A 2.C二、1.(1) ;(2) ;(3) ==2三、1.设:矩形房梁的宽为x 〔cm 〕,依题意,得:〕2+x 2=〔2,4x 2=9×15,x=32cm 〕,·2=1354cm 2〕.2.〔1〕原式==-22n n m m =-〔2〕原式16.2 二次根式的乘除(3)第三课时教学内容最简二次根式的概念及利用最简二次根式的概念进展二次根式的化简运算.教学目标理解最简二次根式的概念,并运用它把不是最简二次根式的化成最简二次根式.通过计算或化简的结果来提炼出最简二次根式的概念,并根据它的特点来检验最后结果是否满足最简二次根式的要求.重难点关键1.重点:最简二次根式的运用.2.难点关键:会判断这个二次根式是否是最简二次根式.教学过程一、复习引入〔学生活动〕请同学们完成以下各题〔请三位同学上台板书〕1.计算〔1〔2,〔32.现在我们来看本章引言中的问题:如果两个电视塔的高分别是h1km,h2km,•那么它们的传播半径的比是_________..二、探索新知观察上面计算题1的最后结果,可以发现这些式子中的二次根式有如下两个特点: 1.被开方数不含分母;2.被开方数中不含能开得尽方的因数或因式.我们把满足上述两个条件的二次根式,叫做最简二次根式.那么上题中的比是否是最简二次根式呢?如果不是,把它们化成最简二次根式.学生分组讨论,推荐3~4个人到黑板上板书.教师点评:不是.2==例1.(1); (2)例2.如图,在Rt△ABC中,∠C=90°,AC=,BC=6cm,求AB的长.BAC解:因为AB2=AC2+BC2所以132====6.5〔cm 〕因此AB 的长为. 三、稳固练习教材P 14 练习2、3 四、应用拓展例3.观察以下各式,通过分母有理数,把不是最简二次根式的化成最简二次根式:=,=从计算结果中找出规律,并利用这一规律计算〕〕的值.分析:由题意可知,此题所给的是一组分母有理化的式子,因此,分母有理化后就可以到达化简的目的.解:原式=……〕=〕〕 =2002-1=2001 五、归纳小结本节课应掌握:最简二次根式的概念及其运用. 六、布置作业1.教材P 15 习题21.2 3、7、10.2.选用课时作业设计.第三课时作业设计 一、选择题1〔y>0〕是二次根式,那么,化为最简二次根式是〔 〕.A 〔y>0〕B y>0〕C y>0〕D .以上都不对2.把〔a-1a-1〕移入根号内得〔 〕.A .. 3.在以下各式中,化简正确的选项是〔 〕A B ±12C 2D .4〕A.B.-C.D.二、填空题1.〔x≥0〕2._________.三、综合提高题1.a不正确,•请写出正确的解答过程:·1a〔a-12.假设x、y为实数,且y=12x+y x y-的值.答案:一、1.C 2.D二、1. 2.三、1.不正确,正确解答:因为301aa⎧->⎪⎨->⎪⎩,所以a<0,2a a-a2.∵224040xx⎧-≥⎪⎨-≥⎪⎩∴x-4=0,∴x=±2,但∵x+2≠0,∴x=2,y=14∴===16.3 二次根式的加减(1)第一课时教学内容二次根式的加减教学目标理解和掌握二次根式加减的方法.先提出问题,分析问题,在分析问题中,渗透对二次根式进展加减的方法的理解.再总结经历,用它来指导根式的计算和化简.重难点关键1.重点:二次根式化简为最简根式.2.难点关键:会判定是否是最简二次根式.教学过程一、复习引入学生活动:计算以下各式.〔1〕2x+3x;〔2〕2x2-3x2+5x2;〔3〕x+2x+3y;〔4〕3a2-2a2+a3教师点评:上面题目的结果,实际上是我们以前所学的同类项合并.同类项合并就是字母不变,系数相加减.二、探索新知学生活动:计算以下各式.〔1〕〔2〕〔3〔4〕教师点评:〔1x,不就转化为上面的问题吗?〔2+3〔2y;〔2-3+5〔3z;〔1+2+3〔4x y.=〔3-2因此,二次根式的被开方数一样是可以合并的,如但它们可以合并吗?可以的.〔板书〕所以,二次根式加减时,可以先将二次根式化成最简二次根式,•再将被开方数一样的二次根式进展合并.例1.计算〔1〔2分析:第一步,将不是最简二次根式的项化为最简二次根式;第二步,将一样的最简二次根式进展合并.解:〔1〔2+3〔2〔4+8 例2.计算〔1〕〔2〕+解:〔1〕〔12-3+6〔2〕+三、稳固练习教材P 19 练习1、2. 四、应用拓展例3.4x 2+y 2-4x-6y+10=0,求〔232-〔x 〕的值. 分析:此题首先将等式进展变形,把它配成完全平方式,得〔2x-1〕2+〔y-3〕2=0,即x=12,y=3.其次,根据二次根式的加减运算,先把各项化成最简二次根式,•再合并同类二次根式,最后代入求值. 解:∵4x 2+y 2-4x-6y+10=0 ∵4x 2-4x+1+y 2-6y+9=0 ∴〔2x-1〕2+〔y-3〕2=0∴x=12,y=3原式=23当x=12,y=3时,原式=124五、归纳小结 本节课应掌握:〔1〕不是最简二次根式的,应化成最简二次根式;〔2〕一样的最简二次根式进展合并. 六、布置作业1.教材P 21 习题21.3 1、2、3、5.2.选作课时作业设计.第一课时作业设计 一、选择题1是〔 〕.A .①和②B .②和③C .①和④D .③和④2.以下各式:①17其中错误的有〔 〕.A .3个B .2个C .1个D .0个 二、填空题1、-2是同类二次根式的有________.2.计算二次根式________. 三、综合提高题1 2.236-〔结果准确到0.01〕2.先化简,再求值.〔-〔,其中x=32,y=27.答案:一、1.C 2.A二、1.三、1.原式35451251515×≈2.原式〔=〔6+3-4-6当x=32,y=27时,原式9216.3 二次根式的加减(2)第二课时教学内容利用二次根式化简的数学思想解应用题. 教学目标运用二次根式、化简解应用题.通过复习,将二次根式化成被开方数一样的最简二次根式,进展合并后解应用题. 重难点关键讲清如何解容许用题既是本节课的重点,又是本节课的难点、关键点. 教学过程一、复习引入 上节课,我们已经讲了二次根式如何加减的问题,我们把它归为两个步骤:第一步,先将二次根式化成最简二次根式;第二步,再将被开方数一样的二次根式进展合并,下面我们讲三道例题以做稳固.二、探索新知例1.如下图的Rt △ABC 中,∠B=90°,点P 从点B 开场沿BA 边以1厘米/•秒的速度向点A 移动;同时,点Q 也从点B 开场沿BC 边以2厘米/秒的速度向点C 移动.问:几秒后△PBQ 的面积为35平方厘米?PQ 的距离是多少厘米?〔结果用最简二次根式表示〕BAC QP分析:设x 秒后△PBQ 的面积为35平方厘米,那么PB=x ,BQ=2x ,•根据三角形面积公式就可以求出x 的值.解:设x 后△PBQ 的面积为35平方厘米. 那么有PB=x ,BQ=2x依题意,得:12x ·2x=35x 2PBQ 的面积为35平方厘米.===PBQ 的面积为35平方厘米,PQ 的距离为 例2.要焊接如下图的钢架,大约需要多少米钢材〔准确到〕?分析:此框架是由AB 、BC 、BD 、AC 组成,所以要求钢架的钢材,•只需知道这四段的长度.BAC2m1m4mD解:由勾股定理,得==所需钢材长度为 AB+BC+AC+BD≈3×2.24+7≈13.7〔m 〕答:要焊接一个如下图的钢架,大约需要的钢材. 三、稳固练习 教材P19 练习3 四、应用拓展例3.假设最简根式3a 、b 的值.〔•同类二次根式就是被开方数一样的最简二次根式〕分析:同类二次根式是指几个二次根式化成最简二次根式后,被开方数一样;•事实上,根式不是最简二次根式,因此把化简成|b|3a-•b=•2,2a-b+6=4a+3b .由题意得432632a b a b a b +=-+⎧⎨-=⎩∴24632a b a b +=⎧⎨-=⎩∴a=1,b=1 五、归纳小结本节课应掌握运用最简二次根式的合并原理解决实际问题. 六、布置作业1.教材P 21 习题21.3 7.2.选用课时作业设计.作业设计 一、选择题1.直角三角形的两条直角边的长分别为5和5,那么斜边的长应为〔 〕.〔•结果用最简二次根式〕A ...以上都不对2.小明想自己钉一个长与宽分别为30cm 和20cm 的长方形的木框,•为了增加其稳定性,他沿长方形的对角线又钉上了一根木条,木条的长应为〔 〕米.〔结果同最简二次根式表示〕A ...二、填空题1.某地有一长方形鱼塘,鱼塘的长是宽的2倍,它的面积是1600m 2,•鱼塘的宽是_______m .〔结果用最简二次根式〕2.等腰直角三角形的直角边的边长为,•那么这个等腰直角三角形的周长是________.〔结果用最简二次根式〕三、综合提高题12n m 、n 的值. 2.同学们,我们以前学过完全平方公式a 2±2ab +b 2=〔a ±b 〕2,你一定熟练掌握了吧!现在,我们又学习了二次根式,那么所有的正数〔包括0〕都可以看作是一个数的平方,如3=2,5=2,你知道是谁的二次根式呢?下面我们观察:〕2=2-2·112反之,〕2 ∴〕2求:〔1〔2〔3〔4,那么m 、n 与a 、b 的关系是什么?并说明理由.答案:一、1.A 2.C二、1..三、1.依题意,得2223241012m m n ⎧-=-⎪⎨-=⎪⎩ ,2283m n ⎧=⎪⎨=⎪⎩,m n ⎧=±⎪⎨=⎪⎩所以m n ⎧=⎪⎨=⎪⎩m n ⎧=-⎪⎨=⎪⎩或m n ⎧=⎪⎨=⎪⎩或m n ⎧=-⎪⎨=⎪⎩2.〔1〔2〔3=〔4〕m n a mn b+=⎧⎨=⎩ 理由:两边平方得a ±±所以a m n b mn =+⎧⎨=⎩16.3 二次根式的加减(3)第三课时教学内容含有二次根式的单项式与单项式相乘、相除;多项式与单项式相乘、相除;多项式与多项式相乘、相除;乘法公式的应用.教学目标含有二次根式的式子进展乘除运算和含有二次根式的多项式乘法公式的应用.复习整式运算知识并将该知识运用于含有二次根式的式子的乘除、乘方等运算.重难点关键重点:二次根式的乘除、乘方等运算规律;难点关键:由整式运算知识迁移到含二次根式的运算.教学过程一、复习引入学生活动:请同学们完成以下各题:1.计算〔1〕〔2x+y〕·zx 〔2〕〔2x2y+3xy2〕÷xy2.计算〔1〕〔2x+3y〕〔2x-3y〕〔2〕〔2x+1〕2+〔2x-1〕2教师点评:这些内容是对八年级上册整式运算的再现.它主要有〔1〕•单项式×单项式;〔2〕单项式×多项式;〔3〕多项式÷单项式;〔4〕完全平方公式;〔5〕平方差公式的运用.二、探索新知如果把上面的x、y、z改写成二次根式呢?以上的运算规律是否仍成立呢?•仍成立.整式运算中的x、y、z是一种字母,它的意义十分广泛,可以代表所有一切,•当然也可以代表二次根式,所以,整式中的运算规律也适用于二次根式.例1.计算:〔1〕〔2〕〔分析:刚刚已经分析,二次根式仍然满足整式的运算规律,•所以直接可用整式的运算规律.解:〔1〕解:〔32例2.计算〔1〕〕〔〔2〕分析:刚刚已经分析,二次根式的多项式乘以多项式运算在乘法公式运算中仍然成立.解:〔1〕〕〔2+〔2〕=2- 2=10-7=3三、稳固练习课本P 20练习1、2.四、应用拓展例3.x b a -=2-x a b-,其中a 、b 是实数,且a+b ≠0,分析=1,因此对代数式的化简,可先将分母有理化,再通过解含有字母系数的一元一次方程得到x 的值,代入化简得结果即可.解:原式=〔x+1〕 =4x+2∵x b a -=2-x a b- ∴b 〔x-b 〕=2ab-a 〔x-a 〕∴bx-b 2=2ab-ax+a 2∴〔a+b 〕x=a 2+2ab+b 2∴〔a+b 〕x=〔a+b 〕2∵a+b ≠0∴x=a+b∴原式=4x+2=4〔a+b 〕+2五、归纳小结本节课应掌握二次根式的乘、除、乘方等运算.六、布置作业1.教材P 21 习题21.3 1、8、9.2.选用课时作业设计.作业设计一、选择题1. 〕.A .203.23C .2.202 〕.A .2B .3C .4D .1二、填空题1.〔-122的计算结果〔用最简根式表示〕是________.2.〔〔-〔2〕2的计算结果〔用最简二次根式表示〕是_______.3.假设,那么x 2+2x+1=________.4.a 2b-ab 2=_________.三、综合提高题12.当时,求的值.〔结果用最简二次根式表示〕课外知识1.同类二次根式:几个二次根式化成最简二次根式后,它们的被开方数一样,•这些二次根式就称为同类二次根式,就是本书中所讲的被开方数一样的二次根式. 练习:以下各组二次根式中,是同类二次根式的是〔 〕.A .C 2.互为有理化因式:•互为有理化因式是指两个二次根式的乘积可以运用平方差公式〔a+b 〕〔a-b 〕=a 2-b 2,同时它们的积是有理数,不含有二次根式:如练习________;_________._______.3.分母有理化是指把分母中的根号化去,通常在分子、•分母上同乘以一个二次根式,到达化去分母中的根号的目的.练习:把以下各式的分母有理化〔1〔2; 〔3 〔4.4.其它材料:如果n==_______.答案:一、1.A 2.D二、1...2 4.三、1=-=2=222(1)()21x x xx+++⨯+=2(1)(1)1x x xx++++= 2〔2x+1〕∵原式=2〔〕【本文档内容可以自由复制内容或自由编辑修改内容期待你的好评和关注,我们将会做得更好】。
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
16.1.1 二次根式教学内容二次根式的概念及其运用教学目标理解二次根式的概念,并利用a(a≥0)的意义解答具体题目.提出问题,根据问题给出概念,应用概念解决实际问题.教学重难点关键1.重点:形如a(a≥0)的式子叫做二次根式的概念;2.难点与关键:利用“a(a≥0)”解决具体问题.教学过程一、复习引入(学生活动)请同学们独立完成下列三个课本P2的三个思考题:二、探索新知很明显3、10、46,都是一些正数的算术平方根.像这样一些正数的算术平方根的式子,我们就把它称二次根式.因此,一般地,我们把形如a(a≥0)•的式子叫做二次根式,“”称为二次根号.(学生活动)议一议:1.-1有算术平方根吗?2.0的算术平方根是多少?3.当a<0,a有意义吗?老师点评:(略)例1.下列式子,哪些是二次根式,哪些不是二次根式:2、33、1x、x(x>0)、0、42、-2、1x y+、x y+(x≥0,y•≥0).分析:二次根式应满足两个条件:第一,有二次根号“”;第二,被开方数是正数或0.解:二次根式有:2、x(x>0)、0、-2、x y+(x≥0,y≥0);不是二次根式的有:33、1x、42、1x y+.例2.当x是多少时,31x-在实数范围内有意义?分析:由二次根式的定义可知,被开方数一定要大于或等于0,所以3x-1≥0,•31x -才能有意义.解:由3x-1≥0,得:x ≥13当x ≥13时,31x -在实数范围内有意义. 三、巩固练习教材P5练习1、2、3. 四、应用拓展例3.当x 是多少时,23x ++11x +在实数范围内有意义? 分析:要使23x ++11x +在实数范围内有意义,必须同时满足23x +中的≥0和11x +中的x+1≠0. 解:依题意,得23010x x +≥⎧⎨+≠⎩由①得:x ≥-32由②得:x ≠-1 当x ≥-32且x ≠-1时,23x ++11x +在实数范围内有意义. 例4(1)已知y=2x -+2x -+5,求xy的值.(答案:2) (2)若1a ++1b -=0,求a 2004+b 2004的值.(答案:25) 五、归纳小结(学生活动,老师点评) 本节课要掌握:1.形如a (a ≥0)的式子叫做二次根式,“”称为二次根号.2.要使二次根式在实数范围内有意义,必须满足被开方数是非负数. 六、布置作业1.教材P5 1,72.选用课时作业设计.第一课时作业设计 一、选择题1.下列式子中,是二次根式的是( )A .-7B .37C .xD .x 2.下列式子中,不是二次根式的是( )A .4B .16C .8D .1x3.已知一个正方形的面积是5,那么它的边长是( ) A .5 B .5 C .15D .以上皆不对 二、填空题1.形如________的式子叫做二次根式. 2.面积为a 的正方形的边长为________. 3.负数________平方根. 三、综合提高题1.某工厂要制作一批体积为1m 3的产品包装盒,其高为0.2m ,按设计需要,•底面应做成正方形,试问底面边长应是多少? 2.当x 是多少时,23x x++x 2在实数范围内有意义? 3.若3x -+3x -有意义,则2x -=_______.4.使式子2(5)x --有意义的未知数x 有( )个.A .0B .1C .2D .无数5.已知a 、b 为实数,且5a -+2102a -=b+4,求a 、b 的值.第一课时作业设计答案: 一、1.A 2.D 3.B二、1.a (a ≥0) 2.a 3.没有三、1.设底面边长为x ,则0.2x 2=1,解答:x=5.2.依题意得:2300x x +≥⎧⎨≠⎩,320x x ⎧≥-⎪⎨⎪≠⎩∴当x>-32且x ≠0时,23x x++x 2在实数范围内没有意义. 3.134.B5.a=5,b=-416.1.2 二次根式(2)教学内容1.a (a ≥0)是一个非负数; 2.(a )2=a (a ≥0). 教学目标理解a (a ≥0)是一个非负数和(a )2=a (a ≥0),并利用它们进行计算和化简. 通过复习二次根式的概念,用逻辑推理的方法推出a (a ≥0)是一个非负数,用具体数据结合算术平方根的意义导出(a )2=a (a ≥0);最后运用结论严谨解题. 教学重难点关键1.重点:a (a ≥0)是一个非负数;(a )2=a (a ≥0)及其运用.2.难点、关键:用分类思想的方法导出a (a ≥0)是一个非负数;•用探究的方法导出(a )2=a (a ≥0). 教学过程一、复习引入 (学生活动)口答 1.什么叫二次根式?2.当a ≥0时,a 叫什么?当a<0时,a 有意义吗? 老师点评(略). 二、探究新知议一议:(学生分组讨论,提问解答)a (a ≥0)是一个什么数呢?老师点评:根据学生讨论和上面的练习,我们可以得出a (a ≥0)是一个非负数.做一做:根据算术平方根的意义填空:(4)2=_______;(2)2=_______;(9)2=______;(3)2=_______;(13)2=______;(72)2=_______;(0)2=_______. 老师点评:4是4的算术平方根,根据算术平方根的意义,4是一个平方等于4的非负数,因此有(4)2=4.同理可得:(2)2=2,(9)2=9,(3)2=3,(13)2=13,(72)2=72,(0)2=0,所以(a )2=a (a ≥0)例1 计算 1.(32)2 2.(35)2 3.(56)2 4.(72)2分析:我们可以直接利用(a )2=a (a ≥0)的结论解题.解:(32)2 =32,(35)2 =32²(5)2=32²5=45,(56)2=56,(72)2=22(7)724=.三、巩固练习计算下列各式的值:(18)2 (23)2 (94)2 (0)2 (478)2 22(35)(53)-四、应用拓展例2 计算1.(1x +)2(x ≥0) 2.(2a )2 3.(221a a ++)2 4.(24129x x -+)2分析:(1)因为x ≥0,所以x+1>0;(2)a 2≥0;(3)a 2+2a+1=(a+1)≥0; (4)4x 2-12x+9=(2x )2-2²2x ²3+32=(2x-3)2≥0.所以上面的4题都可以运用(a )2=a (a ≥0)的重要结论解题. 解:(1)因为x ≥0,所以x+1>0 (1x +)2=x+1(2)∵a 2≥0,∴(2a )2=a 2 (3)∵a 2+2a+1=(a+1)2又∵(a+1)2≥0,∴a 2+2a+1≥0 ,∴221a a ++=a 2+2a+1(4)∵4x 2-12x+9=(2x )2-2²2x ²3+32=(2x-3)2 又∵(2x-3)2≥0∴4x 2-12x+9≥0,∴(24129x x -+)2=4x 2-12x+9 例3在实数范围内分解下列因式:(1)x 2-3 (2)x 4-4 (3) 2x 2-3分析:(略) 五、归纳小结 本节课应掌握:1.a (a ≥0)是一个非负数;2.(a )2=a (a ≥0);反之:a=(a )2(a ≥0). 六、布置作业1.教材P5 2,6,82.选用课时作业设计.第二课时作业设计 一、选择题1.下列各式中15、3a 、21b -、22a b +、220m +、144-,二次根式的个数是( ).A .4B .3C .2D .12.数a 没有算术平方根,则a 的取值范围是( ). A .a>0 B .a ≥0 C .a<0 D .a=0 二、填空题1.(-3)2=________.2.已知1x +有意义,那么是一个_______数. 三、综合提高题 1.计算(1)(9)2 (2)-(3)2 (3)(126)2 (4)(-323)2 (5) (2332)(2332)+- 2.把下列非负数写成一个数的平方的形式: (1)5 (2)3.4 (3)16(4)x (x ≥0) 3.已知1x y -++3x -=0,求x y 的值.4.在实数范围内分解下列因式: (1)x 2-2 (2)x 4-9 3x 2-5第二课时作业设计答案:一、1.B 2.C二、1.3 2.非负数三、1.(1)(9)2=9 (2)-(3)2=-3 (3)(126)2=14³6=32(4)(-323)2=9³23=6 (5)-62.(1)5=(5)2(2)3.4=( 3.4)2(3)16=(16)2(4)x=(x)2(x≥0)3.103304x y xx y-+==⎧⎧⎨⎨-==⎩⎩x y=34=814.(1)x2-2=(x+2)(x-2)(2)x4-9=(x2+3)(x2-3)=(x2+3)(x+3)(x-3)(3)略16.1.3 二次根式(3)教学内容2a=a(a≥0)教学目标理解2a=a(a≥0)并利用它进行计算和化简.通过具体数据的解答,探究2a=a(a≥0),并利用这个结论解决具体问题.教学重难点关键1.重点:2a=a(a≥0).2.难点:探究结论.3.关键:讲清a≥0时,2a=a才成立.教学过程一、复习引入老师口述并板收上两节课的重要内容;1.形如a (a ≥0)的式子叫做二次根式; 2.a (a ≥0)是一个非负数; 3.(a )2=a (a ≥0).那么,我们猜想当a ≥0时,2a =a 是否也成立呢?下面我们就来探究这个问题. 二、探究新知(学生活动)填空:22=_______;20.01=_______;21()10=______;22()3=________;20=________;23()7=_______. (老师点评):根据算术平方根的意义,我们可以得到:22=2;20.01=0.01;21()10=110;22()3=23;20=0;23()7=37.因此,一般地:2a =a (a ≥0) 例1 化简(1)9 (2)2(4)- (3)25 (4)2(3)-分析:因为(1)9=-32,(2)(-4)2=42,(3)25=52,(4)(-3)2=32,所以都可运用2a =a (a ≥0)•去化简.解:(1)9=23=3 (2)2(4)-=24=4 (3)25=25=5 (4)2(3)-=23=3三、巩固练习 教材P 7练习2. 四、应用拓展例2 填空:当a ≥0时,2a =_____;当a<0时,2a =_______,•并根据这一性质回答下列问题.(1)若2a =a ,则a 可以是什么数? (2)若2a =-a ,则a 可以是什么数? (3)2a >a ,则a 可以是什么数?分析:∵2a =a (a ≥0),∴要填第一个空格可以根据这个结论,第二空格就不行,应变形,使“( )2”中的数是正数,因为,当a ≤0时,2a =2()a -,那么-a ≥0.(1)根据结论求条件;(2)根据第二个填空的分析,逆向思想;(3)根据(1)、(2)可知2a =│a │,而│a │要大于a ,只有什么时候才能保证呢?a<0. 解:(1)因为2a =a ,所以a ≥0; (2)因为2a =-a ,所以a ≤0;(3)因为当a ≥0时2a =a ,要使2a >a ,即使a>a 所以a 不存在;当a<0时,2a =-a ,要使2a >a ,即使-a>a ,a<0综上,a<0例3当x>2,化简2(2)x --2(12)x -.分析:(略) 五、归纳小结本节课应掌握:2a =a (a ≥0)及其运用,同时理解当a<0时,2a =-a 的应用拓展.六、布置作业1.教材P 5习题16. 3、4、6.2.选作课时作业设计.第三课时作业设计 一、选择题1.2211(2)(2)33+-的值是( ). A .0 B .23 C .423D .以上都不对 2.a ≥0时,2a 、2()a -、-2a ,比较它们的结果,下面四个选项中正确的是( ). A .2a =2()a -≥-2a B .2a >2()a ->-2a C .2a <2()a -<-2a D .-2a >2a =2()a -二、填空题1.-0.0004=________.2.若20m 是一个正整数,则正整数m 的最小值是________.三、综合提高题1.先化简再求值:当a=9时,求a+212a a -+的值,甲乙两人的解答如下:甲的解答为:原式=a+2(1)a -=a+(1-a )=1;乙的解答为:原式=a+2(1)a -=a+(a-1)=2a-1=17.两种解答中,_______的解答是错误的,错误的原因是__________. 2.若│1995-a │+2000a -=a ,求a-19952的值.(提示:先由a-2000≥0,判断1995-a •的值是正数还是负数,去掉绝对值)3. 若-3≤x ≤2时,试化简│x-2│+2(3)x ++21025x x -+。