圆柱圆锥复习

合集下载

圆柱与圆锥知识点整理六年级

圆柱与圆锥知识点整理六年级

圆柱与圆锥知识点整理六年级一、圆柱的相关计算公式:底面积:S底=πr²底面周长:C底=πd=2πr侧面积:S侧=2πrh表面积:S表=2S底+S侧=2πr²+2πrh体积:V柱=πr²h1.圆柱的切割:①横切:切面是圆,表面积增加2倍底面积,即S增=2πr²②竖切(过直径):切面是长方形(如果h=2R,切面为正方形),该长方形的长是圆柱的高,宽是圆柱的底面直径,表面积增加两个长方形的面积,即S增=4rh2.圆柱的特征:①底面的特征:圆柱的底面是完全相等的两个圆。

②侧面的特征:圆柱的侧面是一个曲面。

③高的特征:圆柱有无数条高。

3.圆柱的侧面展开图:①沿着高展开,展开图形是长方形,如果h=2πr,则展开图形为正方形②不沿着高展开,展开图形是平行四边形或不规则图形③无论怎么展开都得不到梯形二、圆锥的相关计算公式:底面积:S底=πr²底面周长:C底=πd=2πr体积:V锥=1/3πr²h1.圆锥的切割:①横切:切面是圆②竖切(过顶点和直径直径):切面是等腰三角形,该等腰三角形的高是圆锥的高,底是圆锥的底面直径,面积增加两个等腰三角形的面积,即S增=2rh2.圆锥的特征:①底面的特征:圆锥的底面一个圆。

②侧面的特征:圆锥的侧面是一个曲面。

③高的特征:圆锥有一条高。

3.圆柱和圆锥的关系①圆柱与圆锥等底等高,圆柱的体积是圆锥的3倍。

②圆柱与圆锥等底等体积,圆锥的高是圆柱的3倍。

③圆柱与圆锥等高等体积,圆锥的底面积(注意:是底面积而不是底面半径)是圆柱的3倍。

④圆柱与圆锥等底等高,体积相差2/3Sh专项练习题一、填空。

1. 把圆柱的侧面沿高剪开,得到一个( ),这个( )的长等于圆柱底面的( ),宽等于圆柱的( ),所以圆柱的侧面积等于( )。

2. 415平方厘米=( )平方分米 4.5立方米=( )立方分米2.4立方分米=( )升( )毫升 4070立方分米=()立方米3立方分米40立方厘米=()立方厘米325 立方米=()立方分米538 升=()升()毫升3. 将4个棱长为1分米的正方体拼成一个长方体,这个长方体的表面积是( )平方分米,体积是( )立方分米。

小升初必备:圆柱与圆锥典型及易错题型分析

小升初必备:圆柱与圆锥典型及易错题型分析

小升初必备:圆柱与圆锥典型及易错题型分析圆柱与圆锥典型及易错题型(一)关于圆锥与圆柱相互之间的关系:1.若圆锥与圆柱等底等高,则它们的体积不等(圆锥的体积是圆柱的三分之一);2.若圆锥与圆柱等底等体积,则它们的高不等(圆锥的高是圆柱的3倍);3.若圆锥与圆柱等高等体积,则它们的底不等(圆锥的底面积是圆柱的3倍)。

练:1、一个圆柱和一个圆锥等底等高,它们的体积和是24立方分米,那么圆柱的体积是_________立方分米.2、一个圆柱和一个圆锥的底面直径相等,圆锥的高是圆柱的3倍,圆锥的体积是12立方分米,圆柱的体积是()立方分米。

A12B36C4D8(二)、关于圆柱、圆锥的典型实际问题:1.实质求圆柱的侧面积:通风管(如圆柱形烟囱)压路机1、做一根长1米,底面周长是2分米的圆柱形通风管,需要铁皮多少平方分米?(管壁厚度忽略不计)2.求的滚轮转动一周所压过的路面面积就是求圆柱(滚轮)的侧面积;(所压过的路面面积=圆柱(滚轮)的侧面积×转动速度×时间)1、压路机的滚筒是个圆柱,它的宽是3米,滚筒横截面半径是1米,那么滚筒转一周可压路面多少平方米?如果压路机的滚筒每分钟转10周,那么5分钟可以行驶多少米?3.求无盖的圆柱形表面积。

1、求圆柱形水桶能装水多少升,是求它的();做一节圆柱形通风管要多少铁皮,是求它的()A.侧面积B.表面积C.体积D.容积2、一个圆柱形儿童游泳池底面半径是4米,深0.5米.在它的四周和池底抹上水泥,每平方米需要水泥10千克,一共用水泥多少千克?3、一个无盖的圆柱形铁皮水桶,高50厘米,底面直径30厘米,做这个水桶约莫需用几何铁皮? (得数保留整数)4、做一个无盖的圆柱形鱼缸,底面半径3dm,高5dm。

(1)做这个鱼缸至少要几何平方分米?(得数保留整十平方分米)(2)这个鱼缸能装几何千克水?(1升水重1千克)5、圆柱的体积求底面积或高时,要用体积除以底面积或高,圆锥的体积求底面积或高时,要先乘以3再除以底面积或高。

圆锥与圆柱体积复习

圆锥与圆柱体积复习

【典型例题】【例1】 如右图所示,圆锥形容器中装有5升水,水面高度正好是圆锥高度的一半,这个容器还能装多少升水?分析与解:本题的关键是要找出容器上半部分的体积与下半部分的关系。

设圆锥容器的底面积半径为r ,则水面半径为2r 。

容器的容积为213r h π,容器中水的体积为2211()()32224r h r h ππ=。

解:22118324r h r h ππ÷= 这表明容器可以装8份5升水,已经装了1份,还能装水5×(8-1)=35(升)。

【例2】 比较甲、乙两只容器中,哪一只容器盛的水多,多的是少的几倍?(单位:厘米)(1)容器如图1所示;(2)甲、乙两容器相同(如图2),甲容器中水的高度是锥高的13,乙容器中水的高度是圆锥高的23。

分析与解(1)要想知道甲、乙两只容器哪一只盛的水多,我们只需依据条件分别计算一下甲、乙两只容器的容积各是多少,即可做出比较。

通过计算可知,乙容器装的水多,乙容器是甲容器容积的(4000π÷2000π=) 2倍。

(2)我们先分别将两容器内水的体积进行计算。

设圆锥的底面半径为r,高为h,则甲容器及乙容器中的水面半径均为23r,甲容器中无水部分椎体高位23h,而乙容器中有水部分椎体的高为23h,分别用V 甲、V乙表示两容器中水的体积,则有:222112219=-=333381V r h r h r hπππ甲()221228==33381V r h r hππ乙()22198==8181V V r h r hππ甲乙19:():()8由此可知,甲容器中的水多,甲容器中的水是乙容器中的水的198倍。

【例3】将一个棱长是20厘米的正方体,旋成一个圆柱体,并且使圆柱体的体积最大,求此时旋去的那部分体积。

分析与解要想知道旋去的那部分体积,我们应首先认识清楚,怎样才能使旋成的圆柱体体积最大?通过分析可以发现,当我们所旋成的圆柱体的底面直径和高均为20厘米时,圆柱的体积最大.即如图3去旋.此时,我们只需计算出正方体的体积及所得到的圆柱体的体积,其差就是所旋去部分的体积。

第一单元《圆柱和圆锥》期末备考讲义—六下数学单元闯关(思维导图+知识点精讲+优选题训练)北师大版

第一单元《圆柱和圆锥》期末备考讲义—六下数学单元闯关(思维导图+知识点精讲+优选题训练)北师大版

期末备考—北师大版六年级下册数学优选题单元复习讲义第一单元《圆柱和圆锥》1、“点、线、面、体”之间的关系是:点的运动形成线;线的运动形成面;面的旋转形成体。

2、圆柱的特征:(1)圆柱的两个底面是半径相等的两个圆,侧面是曲面。

(2)两个底面间的距离叫做圆柱的高。

(3)圆柱有无数条高,且高的长度都相等。

(4)圆柱是由长方形绕长或宽旋转360度得到的立方体,所以沿高线切割后的切面是长方形。

3、圆锥的特征:(1)圆锥的底面是一个圆,和底面相对的位置有一个顶点。

(2)圆锥的侧面是一个曲面。

(3)圆锥只有一条高。

(4)圆锥是由直角三角形绕一条直角边旋转360度得到的立方体,所以沿高线切割后的切面是等腰三角形。

4、沿圆柱的高剪开,圆柱的侧面展开图是一个长方形(或正方形)(如果不是沿高剪开,有可能还会是平行四边形)。

圆柱的侧面积=底面周长×高,用字母表示为:S侧=Ch。

圆柱的侧面积公式的应用:(1)已知底面周长和高,求侧面积,可运用公式:S侧=ch;(2)已知底面直径和高,求侧面积,可运用公式:S侧=πdh;(3)已知底面半径和高,求侧面积,可运用公式:S侧=2πrh圆柱表面积的计算方法:如果用S侧表示一个圆柱的侧面积,S底表示底面积,d表示底面直径,r 表示底面半径,h表示高,那么这个圆柱的表面积为:S表=S侧+2S底或S表=πdh+πd2/2 或S表=2πrh+2πr2圆柱表面积的计算方法的特殊应用:(1)圆柱的表面积只包括侧面积和一个底面积的,例如无盖水桶等圆柱形物体。

(2)圆柱的表面积只包括侧面积的,例如烟囱、油管等圆柱形物体。

5、圆柱的体积:一个圆柱所占空间的大小。

6、圆柱体积公式的推导:复习六年级上册圆的面积公式的推导:把圆等分的份数越多,拼成的图形就越接近平行四边形或长方形。

拼成的平行四边形的底相当于圆周长的一半,高相当于圆的半径;拼成的长方形的长相当于圆周长的一半,宽相当于圆的半径。

所以圆的面积=π×半径×半径=π×半径2如同,圆的面积公式的推导,也可以沿着圆柱底面的扇形和圆柱的高把圆柱切开,把它分成若干等份,分得越细越好,再把它拼成一个近似长方体的立体图形,形状改变了,但体积没变,那么就可以发现拼成的这个长方体的底面积与圆柱的底面积是相等的,长方体的高也与圆柱的高相等,而长方体的体积=底面积×高,也就等于圆柱的体积。

(完整版)圆柱圆锥知识点总结

(完整版)圆柱圆锥知识点总结
答:做这样一个水桶,至少需用铁皮5416.5平方厘米。
例7、(考点透视)一个圆柱的侧面积展开是一个边长15.7厘米的正方形。这个圆柱的表面积是多少平方厘米?
分析与解:圆柱的侧面积展开是一个正方形,即圆柱的高和底面周长都是15.7厘米。根据圆柱的底面周长可以算出底面积。
解答:底面半径:15.7 ÷ 3.14 ÷ 2 = 2.5(厘米)
圆柱:底面周长 3.14 × 3 × 2 = 18.84(厘米)
底面积 3.14 × 3²=28.26(平方厘米)
圆锥:底面周长 3.14 × 10 = 31.4(米)
底面积 3.14 ×(10÷2)²=78.5(平方米)
点评:圆柱和圆锥的底面都是圆,在计算它们的周长和面积时只要按照圆的周长和面积计算公式进行计算。
底面积:3.14 × 2.5²=19.625(平方厘米)
侧面积:15.7 × 15.7 = 246.49(平方厘米)
表面积:19.625 × 2 + 246.49 = 285.74(平方厘米)
答:这个圆柱的表面积是285.74平方厘米。
例8、(考点透视)一个圆柱形的游泳池,底面直径是10米,高是4米。在它的四周和底部涂水泥,每千克水泥可涂5平方米,共需多少千克水泥?
表面积:0.2826 × 2 + 1.884 = 2.4492(平方米)≈ 3(平方米)
答:至少需要铁皮3平方米。
点评:这里不能用四舍五入法取近似值。因为在实际生活中使用的材料要比计算得到的结果多一些。因此这儿保留整数,十分位上虽然是4,但也要向个位进1。
例6、(辨析)一个无盖的圆柱铁皮水桶,底面直径是30厘米,高是50厘米。做这样一个水桶,至少需用铁皮6123平方厘米。
下面( )图形旋转会形成圆柱。

圆柱和圆锥(全部整合)

圆柱和圆锥(全部整合)

D
5
B4 C
13.把一个棱长是2分米的正方体削
成一个最大的圆柱体,它的侧面积 是( B )平方分米。 A.6.28 B.12.56 C.18.84 D. 25.12
2
2
2
2×3.14×2
14.把一个棱长是10厘米的正方体削
成一个最大的圆柱体,它的体积是 ( C )立方厘米。 A.3140 B.392.5 C.785 D. 314
10 8
2号题
计算图形的表面积(单位:厘米 )
6
上面圆柱的侧面积
5 下面圆柱的表面积
5 10
3号题
如图,想想办法,你能否求 它的体积?( 单位:厘米)
4
2
6
[3.14×1×1×(6+4)] ÷2=15.7( 立方厘米)
4号题 用塑料绳捆扎一个圆柱形的蛋糕
盒(如下图),打结处正好是底面圆心, 打结去20厘米绳长。
18.84
A
4
B
2
12.56
C
20
D
6
3.下雨时,给打谷场上的
圆锥形谷堆盖上塑料防 雨布,所需防雨布的最小 面积是指圆锥的( C ). A. 表面积 B.体积 C. 侧面积
4.一根圆柱形木材长2米,把截成4 个相等的圆柱体. 表面积增加了 18平方分米.截后每段圆柱体积 是( 660ddmm33 ).
P
B
A
P
Q
Q
P
C

(1)以长方形的一边 为轴旋转一周,扫过的 空间是什么形状?你可 以求出它的体积吗?
(2)以三角形的一条 直角边为轴旋转一周, 扫过的空间是什么形 状?你可以求出它的 B 体积吗?
5 4

圆柱圆锥

圆柱圆锥

圆柱和圆锥有关知识点一、圆柱和圆锥各部分的名称以及特征1、圆柱(1)认识圆柱各部分的名称:上下两个圆面叫做底面,圆柱的周围叫侧面,圆柱两个底面之间的距离叫做高。

(2)圆柱的特征:圆柱的上下底面是两个圆,它们是完全相同的;圆柱的侧面是曲面;圆柱的高有无数条,高的长度都相等。

(3)沿高剪开:圆柱的侧面展开后是长方形(当圆柱底面周长与高相等时,展开后是正方形)。

这个长方形的长就是圆柱底面的周长,宽就是圆柱的高。

2. 圆锥(1)认识圆锥各部分的名称:下面一个圆面叫做底面,它周围叫侧面,从圆锥的顶点到底面圆心的距离叫做高。

(2)圆锥的特征圆锥的底面都是一个圆。

圆锥的侧面是曲面。

一个圆锥只有一条高。

(3)圆锥的侧面沿着一条母线展开后是一个扇形,这个扇形的弧长等于圆锥的底面周长,半径等于圆锥的母线长。

(如下图所示)二、基本公式1、圆的知识圆的周长=直径×π=半径×2×πC=πd =2πr逆推公式有:直径=圆的周长÷π d = C÷π半径=圆的周长÷π÷2 r = C÷π÷2圆的面积=半径的平方×π=(直径÷2)2×π=(圆的周长÷π÷2)2×πS=πr2=(d÷2)2×π=(C÷π÷2)2×π2、( 1 )圆柱的侧面积:把圆柱侧面沿高展开,得到一个长方形(或正方形),长方形的长是圆柱的底面周长,长方形的宽是圆柱的高。

圆柱的侧面积=底面周长×高=直径×π×高=半径×2×π×高S 侧=C h=πd h=2πr h逆推公式有:圆柱的高=圆柱的侧面积÷底面周长=圆柱的侧面积÷(π×高)=圆柱的侧面积÷(半径×2×π)h=S 侧÷C圆柱的底面周长=圆柱的侧面积÷高 C =S 侧÷h(2)圆柱的表面积=圆柱的侧面积+圆柱的底面积×2 S表=S 侧+2S底(3) 圆柱的体积=底面积×高V柱=S h=πr2 h逆推公式有:圆柱的高=圆柱的体积÷底面积h=V柱÷S圆柱的底面积=圆柱的体积÷高h=V柱÷S3 ( 1 )如果圆柱的侧面展开是一个正方形,那么这个圆柱的高和底面周长相等。

小学数学六年级下册圆柱和圆锥锥(基础知识点提高)

小学数学六年级下册圆柱和圆锥锥(基础知识点提高)

小学数学六年级下册圆柱和圆锥锥(基础知识点提高)圆柱和圆锥第一部分基础部分一、圆柱和圆锥的认识1、图形的形成圆柱是以长方形的一边为轴旋转而得到的,也可以由长方形(或正方形)卷曲而得到;圆锥是以直角三角形的一直角边为轴旋转而得到的,圆锥也可以由扇形卷曲而得到。

2、高的条数:圆柱有无数条高;圆锥只有一条高3、侧面展开图圆柱:沿着高展开,展开图形是长方形,长方形的长等于圆柱底面的周长,长方形的宽等于圆柱的高,当底面周长和高相等时(h=2πR),侧面沿高展开后是一个正方形,展开图形为正方形。

圆锥:侧面展开得到一个扇形4、图形的形成:(1)圆柱:卷曲:也可以由长方形(或正方形)卷曲而得到;旋转:圆柱是以长方形的一边为轴旋转而得到的2)圆锥:卷曲:也可以由扇形卷曲而得到;旋转:以直角三角形的一条直角边为轴旋转得到【例1】:下面()图形是圆柱的展开图。

(单位:cm)易错题】一个圆柱的侧面沿高展开是一个长12.56CM,宽6.28CM的长方形,求这个圆柱的底面半径。

例2】在下图中,以直线为轴旋转,可以得出圆柱体的是()【易错题】1、把长为5cm.宽为3cm的长方形旋转成一个圆柱,则这个圆柱的表面积是多少平方厘米?2、把两条直角边分别是5cm和3cm的直角三角形旋转成一个圆锥,这个圆锥的体积是多少立方厘米?练:】一、选择1、圆柱侧面积的大小是由()决定的。

A圆柱的底面周长B底面直径和高C圆柱的高。

2、下面的材料中,()能做成圆柱。

12cm6.28cmA.1号、2号和3号B.1号、4号和5号C.1号、2号和4号2cm2cm4cm4cm1号2号3号4号5号2、解答题一个长为8m,宽为6m的长方形扭转成一个圆柱,它的侧面积是几何平方米?2、圆柱表面积的计较方法①公式:圆柱的表面积=+S表=S侧+S底×2=2πrh + 2πr2②圆柱表面积计较公式的应用应用1:圆柱的底面半径和高,求圆柱的表面积;应用2:圆柱的底面直径和高,求圆柱的表面积;运用3:已知圆柱的底面周长和高求圆柱的表面积。

圆柱与圆锥圆锥圆柱与圆锥复习

圆柱与圆锥圆锥圆柱与圆锥复习
圆柱与圆锥复习
2023-11-05
contents
目录
• 圆柱的几何性质 • 圆锥的几何性质 • 圆柱与圆锥的应用 • 圆柱与圆锥的画法与技巧 • 圆柱与圆锥的解题策略 • 圆柱与圆锥的拓展知识
01
圆柱的几何性质
圆柱的定义
圆柱
以矩形的一边所在直线为旋转轴旋转形成的旋转 体叫做圆柱。
圆柱的轴
旋转轴叫做圆柱的轴。

圆锥的顶点称为“锥顶”,旋 转轴称为“锥轴”。
圆锥的侧面展开图是一个扇形 ,扇形的弧长等于圆锥底面的 周长,扇形的半径等于圆锥的
母线长。
圆锥的底面积与侧面积
圆锥的底面积是一个圆,其半径等于圆锥底面的 半径。
圆锥的侧面积是一个扇形,其弧长等于圆锥底面 的周长,半径等于圆锥的母线长。
圆锥的全面积等于圆锥底面积与侧面积的和。

零部件设计
圆柱和圆锥形状的零部件在各 种机械设备中都有着广泛的应 用,如轴、轴承、螺栓等,因 为这些零部件需要承受一定的
载荷和传递动力。
艺术造型
圆柱和圆锥在建筑、雕塑等艺 术领域中也有着广泛的应用, 因为这些形状具有较好的视觉
效果和艺术表现力。
04
圆柱与圆锥的画法与技巧
圆柱的画法与技巧
确定高度和底面半径
圆柱的体积V=πr²h。
圆柱与圆锥的表面积与体积公式的推导
圆锥的体积公式推导
圆锥的体积由底面积、高和母 线长决定。
底面积为πr²,高为h,母线长 为l。
圆锥的体积V=(1/3)πr²h。
圆柱与圆锥的截面性质
01
02
03
圆柱的截面性质
当截面与轴线垂直时,截面为一个圆 。
当截面与轴线平行时,截面为一个长 方形。

数学圆柱与圆锥知识点总结

数学圆柱与圆锥知识点总结

数学圆柱与圆锥知识点总结一、圆柱的基本概念圆柱是空间几何体中的一种。

它是由一个矩形与一个平行于它的圆组成的几何体,其中矩形是圆的曲面生成直线。

圆柱的一个特点是它的两个底面都是相等的圆。

1. 圆柱的定义圆柱是由两个平行且相等的圆所围成的曲面,这两个圆称为圆柱的底面圆,它们的直径通常被称为圆柱的直径,两个底面之间的距离称为圆柱的高。

圆柱的侧面由两个底面的边缘和它们之间的曲面组成。

2. 圆柱的性质(1)圆柱的直径是圆柱的底面直径。

(2)圆柱的侧面积等于底面周长乘以高。

(3)圆柱的表面积等于两个底面的面积之和再加上侧面积。

(4)圆柱的体积等于底面积乘以高。

(5)圆柱的体对角线就是从一个底面中心到另一个底面中心的直线。

3. 圆柱的公式(1)圆柱的侧面积S=2πrh。

(2)圆柱的表面积S=2πr(r+h)。

(3)圆柱的体积V=πr^2h。

二、圆锥的基本概念圆锥是几何学中的一个立体图形,它的底面是一个圆,而顶点与底面上的任意一点相连的曲线称为圆锥的侧棱,圆锥的高是从顶点到底面中心的距离。

1. 圆锥的定义圆锥是由一个圆和任意一点组成的平面所围成的图形。

2. 圆锥的性质(1)圆锥的高是圆锥的侧棱和圆中心的连线的垂直距离。

(2)圆锥的表面积等于底面面积加上侧面积。

(3)圆锥的体积等于底面积乘以高再除以3。

3. 圆锥的公式(1)圆锥的侧面积S=πrl。

其中,r为圆锥底面的半径,l为圆锥的侧棱长度。

(2)圆锥的表面积S=πr(l+r)。

(3)圆锥的体积V=1/3 × πr^2h。

其中,r为圆锥底面的半径,h为圆锥的高。

三、圆柱与圆锥的应用圆柱与圆锥这两种几何图形在日常生活以及工程技术中都有着广泛的应用。

下面将介绍圆柱与圆锥在各个领域的具体应用。

1. 圆柱的应用(1)日常生活中的容器,如水杯、马克杯等,大多数的樽形容器都是圆柱形的。

(2)工业上的立式压力容器一般都是圆柱形的,因为这种形式的容器可以在相对较小的外形尺寸下获得较大的容积。

圆柱与圆锥期中专题复习 (含答案)

圆柱与圆锥期中专题复习 (含答案)

第一部分:面的旋转【重点知识】1、长方形以长或宽为轴旋转,得到圆柱。

补充:以谁为轴,谁就是高2、直角三角形以直角边为轴旋转,得到圆锥。

补充:以谁为轴,谁就是高;如长直角边为轴,则长直角边为高,短直角边为底面半径3、截面(1)圆柱的截面:圆形、长方形、正方形、平行四边形、梯形、椭圆、拱形。

(2)圆锥的截面:圆形、三角形、曲面(3)切一刀,增加2个面,切2刀,增加4个面,以此类推。

补充:圆柱切成多个小圆柱,切一刀,变为2个小圆柱,切2刀,变为3个小圆柱,以此类推。

4、展开图(1)圆柱的展开图:长方形、正方形、平行四边形①展开图为长方形:长方形的长=圆柱底面周长,长方形的宽=圆柱的高②展开图为正方形:圆柱的底面周长=圆柱的高=正方形的边长(2)圆锥的展开图:扇形【考试题精选】1、把一根圆柱体木料锯成三段,增加的底面有________个.()A.2B.3C.42、用一张长50厘米,宽20厘米的纸,以两种不同的方法围成一个圆柱,那么围成的圆柱()A.侧面积和高都相等B.高一定相等C.侧面积一定相等D.侧面积和高都不相等3、货架上正好装满了底面直径为32cm,高为60cm的油桶,这个货架的长至少________cm,高至少为________cm,宽为________cm.4、用塑料绳捆扎一个圆柱形的蛋糕盒(如图),打结处正好是底面圆心,打结用去绳长15厘米.扎这个盒子至少用去塑料绳多少厘米?5、一个底面半径是4cm的圆锥,从顶点沿着高将它切成两部分,表面积增加了48cm2。

这个圆锥的体积是多少立方厘米?6、一个圆锥的底面周长是15.7厘米,高是3厘米.从圆锥的顶点沿着高将它切成两半后,表面积之和比原圆锥的表面积增加了多少平方厘米?第二部分:圆柱的表面积【重点知识】1、公式(3个)(1)底面积公式:3.14×r×r(2)侧面积公式:3.14×r×2×h(不要改变字母和数字的顺序)(3)表面积公式:(3.14×r×r)×2+3.14×r×2×h补充:凡是有周长、直径,不管题目求什么,第一时间求出半径。

圆柱与圆锥的单元复习专项练习

圆柱与圆锥的单元复习专项练习

圆柱与圆锥的单元复习专项练习一、单选题1、一个圆锥沿底面直径纵向剖开平均分成两份,切面是( )。

A.正方形B.长方形C.等腰三角形D.等边三角形2、王大伯挖一个底面直径是3m ,深是1.2m 的圆柱体水池.求这个水池占地多少平方米?实际是求这个水池的( )A. 底面积B.容积C.表面积D.体积3、用一根小棒粘住长方形一条边,旋转一周,这个长方形转动后产生的图形是( )A.三角形B.圆形C.圆柱4、一个圆柱的侧面展开可以得到一个正方形,这个圆柱的底面直径与高的比是( )。

A.1:πB.1:1C.1:dD.d:π5、把一个圆柱形罐头盒的侧面包装纸展开,得到一个正方形,这个圆柱形罐头盒的底面半径是5厘米,高是( )厘米。

A.7.85B.15.7C.31.4D.78.56、一张长方形的纸围成一个圆柱(不能有重合部分),有两种围法,这两种围法所得的圆柱的( )相等。

A.底面积B.侧面积C.体积D.高7、用一块边长是18.84分米的正方形铁皮,配上半径( )分米的圆形底面积就能做成一个圆柱形容器。

A.6B.4.71C.38、圆柱的侧面展开不可能是( )。

A.长方形B.正方形C.平行四边形D.梯形9、一根长2米的圆柱形钢材,分成一样长的2段,表面积增加20cm 2,原来圆柱形钢材的体积是( )dm 3A.400B.200C.20D.210、圆柱的底面半径和高都扩大到原米的2倍。

它的体积扩大到原来的( )倍。

A.4B.6C.811、把一个棱长为4dm 的正方体木块削成一个最大的圆柱,体积是( )dm 3.A.50.24B. 100.48C.6412、把圆柱的底面直径扩大到原来的3倍,高缩小到原来的31,它的体积会( )。

A.扩大到原来的3倍 B.扩大到原来的9倍 C.不变 D.缩小到原来的31 13、一个圆柱和一个圆锥,体积相等,底面积也相等,已知圆柱的高是15厘米,圆锥的高是( )厘米。

A.15B.45C.5D.3014、一个长8dm ,宽6dm 、高7dm 的长方体木块,把它削成一个最大的圆柱,求这个圆柱的体积的算式是( )。

六年级下册圆柱和圆锥知识点

六年级下册圆柱和圆锥知识点

第一单元圆柱和圆锥知识点
一、圆柱的特征:
有2个底面,1个侧面,无数条高。

大小相同
圆柱的侧面展开:长方形或正方形或平行四边形。

(说出与圆柱的关系)
当圆柱的底面周长和高相等的时候,它的侧面展开图就是一个正方形。

二、圆锥的特征
有1个是圆形的底面,1个是扇形的侧面,只有1条高。

圆锥的高:从圆锥的顶点到底面圆心的距离叫做高。

三、基本公式
求圆柱表面积、圆柱、圆锥的体积的时候,先复习下圆的半径求法:已知直径求半径~~r=d÷2 已知周长求半径~~r=c÷π÷2
字母公式S底=πr2
字母公式S侧=Ch=πdh=2πrh
字母公式V圆柱=Sh=πr2h
字母公式V圆锥=1/3Sh=1/3πr2h 四、单位换算:大单位化小单位用乘法(乘进率),小单位化大单
位用除法(除以进率)
长度单位换算:相邻两个长度单位之间的进率是10
1千米=1000米 1米=10分米
1分米=10厘米 1米=100厘米
1厘米=10毫米
面积单位换算:相邻两个面积单位之间的进率是100
1平方千米=100公顷1公顷=10000平方米
1平方米=100平方分米=10000平方厘米
1平方分米=100平方厘米
1平方厘米=100平方毫米
体(容)积单位换算:相邻两个体积单位之间的进率是1000 1立方米=1000立方分米=1000000立方厘米
1立方分米=1000立方厘米
1立方分米=1升 1立方厘米=1毫升
1立方米=1000升
重量单位换算
1吨=1000千克 1千克=1000克。

圆柱圆锥所有知识点

圆柱圆锥所有知识点

圆柱圆锥所有知识点圆柱和圆锥是几何学中的两个基本形状,它们具有许多特点和性质。

下面将分别介绍圆柱和圆锥的相关知识点。

一、圆柱1. 定义:圆柱是由一个圆和与该圆平行的一个平面上的一条曲线所围成的立体图形。

2. 元素:圆柱有两个底面、一个侧面和两个底面的边缘。

底面是两个平行的圆,侧面是连接两个底面边缘的曲面。

3. 性质:- 圆柱的底面积为底面圆的面积,记为S底= πr²。

- 圆柱的侧面积为底面周长乘以高,记为S侧= 2πrh。

- 圆柱的表面积为底面积加上侧面积,记为S表= 2πr² + 2πrh。

- 圆柱的体积为底面积乘以高,记为V = S底× h = πr²h。

4. 应用:- 圆柱广泛应用于日常生活中,例如杯子、柱子、筒形容器等。

- 圆柱的性质在工程、建筑和物理学等领域中也有广泛的应用。

二、圆锥1. 定义:圆锥是由一个圆和一个连接圆上任意一点到与该圆在同一平面上的一条曲线所围成的立体图形。

2. 元素:圆锥有一个底面、一个侧面和一个顶点。

底面是一个圆,侧面是连接圆上任意一点到顶点的曲面。

3. 性质:- 圆锥的底面积为底面圆的面积,记为S底= πr²。

- 圆锥的侧面积为底面周长乘以斜高,记为S侧= πrl。

- 圆锥的表面积为底面积加上侧面积,记为S表= πr² + πrl。

- 圆锥的体积为底面积乘以高再除以3,记为V = (1/3)πr²h。

4. 应用:- 圆锥的形状常见于冰淇淋蛋筒、喇叭等物体中。

- 圆锥的性质在建筑、工程和物理学等领域中也有广泛的应用。

圆柱和圆锥是几何学中常见的形状,它们有着各自的定义、元素和性质。

圆柱和圆锥的性质在日常生活和科学研究中有广泛的应用,对于我们理解和解决实际问题具有重要意义。

通过深入了解圆柱和圆锥的知识,我们可以更好地应用它们,并在实际生活中发挥它们的作用。

第三单元《圆柱和圆锥》章节总复习-六年级下册数学同步重难点讲练 人教版(含解析)

第三单元《圆柱和圆锥》章节总复习-六年级下册数学同步重难点讲练  人教版(含解析)

六年级下册数学同步重难点讲练圆柱、圆锥总复习教学目标1,通过整理和复习,学生进一步认识圆柱、圆锥的特征,掌握圆柱表面积、体积,圆锥体积的计算方法。

2、综合运用所学知识,灵活地解决与圆柱、圆锥有关的数学问题。

教学重难点重点:归纳整理有关圆柱和圆锥的知识,形成知识体系。

难点:综合运用所学知识,灵活地解决与圆柱、圆锥有关的数学问。

知识点1:圆柱的特征(1)底面的特征:圆柱的底面是完全相的两个圆。

(2)侧面的特征:圆柱的侧面是一个曲面。

(3)高的特征:圆柱有无数条高。

7.圆柱的体积:2、圆柱的高:两个底面之间的距离叫做高。

3、圆柱的侧面展开图:当沿高展开时展开图是长方形;当底面周长和高相等时,沿高展开图是正方形;当不沿高展开时展开图是平行四边形。

【典例分析1】(2019春•平舆县月考)在下图中,以直线为轴旋转,可以得到圆柱体的是()A.B.C.D.【思路引导】根据各图形的特征,长方形绕一边所在的直线为轴旋转一周得到到一个圆柱;由此规范解答即可.【完整解答】由圆柱的特点可知:在下图中,以直线为轴旋转,可以得到圆柱体的是;故选:C .【变式训练1】(2019•大渡口区)15、用丝带捆扎一个圆柱形的蛋糕盒(如图),打结处正好是底面圆心,打结用去25厘米丝带,扎这个礼品盒至少需要( )的丝带.A .255cmB .260cmC .285cmD .460cm知识点2:圆柱的侧面积、表面积和体积1、圆柱的侧面积:圆柱的侧面积=底面的周长×高,用字母表示为:S 侧=Ch 。

2、圆往的表面积:圆柱的表面积=侧面积+2×底面积。

即s 表=s 侧+2s 底。

3、圆柱的体积:圆柱所占空间的大小,叫做这个圆柱体的体积。

V=Sh【典例分析2】(2019•怀化模拟)求下面各图形的表面积.(单位:)cm(1)(2)【思路引导】根据圆柱体的表面积=底面面积2⨯+侧面积,依据公式列式规范解答即可.【完整解答】(1)23.1432 3.143210⨯⨯+⨯⨯⨯56.52188.4=+2244.92()cm =答:表面积是2244.92cm .(2)23.14(122)2 3.14125⨯÷⨯+⨯⨯226.08188.4=+2414.48()cm =答:表面积是2414.48cm .【变式训练2】(2019•漳浦县校级自主招生)如图1是三个直立于水平面上的形状完全相同的几何体(下底面为圆面,单位:)cm .将它们拼成如图2的新几何体,则该新几何体的体积用π表示,应为( )A .364cm πB .360cm πC .356cm πD .340cm π知识点3:圆锥的特征1、圆锥:以直角三角形的一条直角边所在直线为旋转轴,其余两边旋转形成的面所围成的旋转体叫做圆锥。

圆柱和圆锥的知识点总结

圆柱和圆锥的知识点总结

圆柱和圆锥的知识点总结一、圆柱的知识点总结1.1 定义圆柱是由两个平行的圆柱底面和连接两个底面的矩形侧面组成的几何图形。

其中,底面的圆称为底圆,连接两个底面的矩形侧面称为侧面。

1.2 性质(1)圆柱的两个底面分别为底圆,它们的直径相等;(2)圆柱的侧面是一个矩形,其长和宽分别为圆的周长和平行于底面直线的高;(3)圆柱的高是连接两个底面的垂直距离;(4)圆柱的体积等于底面积乘以高,表达式为V = πr^2h;(5)圆柱的表面积等于底面积加上两个底面的面积,表达式为S = 2πr^2 + 2πrh。

1.3 公式(1)圆柱的体积计算公式为V = πr^2h;(2)圆柱的表面积计算公式为S = 2πr^2 + 2πrh。

1.4 应用圆柱广泛应用于工程、建筑、制造等领域,例如建筑中的柱子、喷水器中的水柱、饮料瓶、桶等。

二、圆锥的知识点总结2.1 定义圆锥是由一个圆锥底面和连接该底面的直母线面组成的几何图形。

其中,底面的圆称为底圆,连接底面和尖点的直线称为直母线。

2.2 性质(1)圆锥的底面为底圆;(2)圆锥的侧面是一个扇形;(3)圆锥的高是直母线的长度;(4)圆锥的体积等于底面积乘以高再除以3,表达式为V = (1/3)πr^2h;(5)圆锥的侧面积等于底面积乘以斜高的一半,表达式为S = πrl。

2.3 公式(1)圆锥的体积计算公式为V = (1/3)πr^2h;(2)圆锥的侧面积计算公式为S = πrl。

2.4 应用圆锥也广泛应用于工程、建筑、制造等领域,例如建筑中的圆锥形塔尖、火箭的锥体、喇叭等。

三、圆柱和圆锥的比较3.1 相同之处(1)都由圆面和侧面组成;(2)都有底面积和侧面积;(3)都有体积。

3.2 不同之处(1)形状不同:圆柱的底面是圆形,侧面是矩形;圆锥的底面是圆形,侧面是扇形;(2)体积计算公式不同:圆柱的体积公式为V = πr^2h,圆锥的体积公式为V =(1/3)πr^2h;(3)侧面积计算公式不同:圆柱的侧面积公式为S = 2πrh,圆锥的侧面积公式为S = πrl。

圆柱和圆锥复习题大全(136题)

圆柱和圆锥复习题大全(136题)

圆柱和圆锥复习题大全(136题)一、解决问题。

1.用铁皮做一个底面半径是20cm,高是50cm的圆柱形无盖水桶,至少需要多少平方米的铁皮 ?2.一座大厦有四根同样的圆柱,已知圆柱的底面周长是15.7dm,高10m,如果要把圆柱的侧面都包裹上彩布,至少需彩布多少平方分米 ?3.小明有一个百宝箱,上部是一个圆柱的一半,下部是一个长50cm,宽40cm,高20cm的长方体,小明这个百宝箱的表面积是多少 ?4.一个圆柱的体积是602.88m3,底面周长是50.24m,这个圆柱的高是多少米?5.一瓶2.5升的果汁,倒入底面直径为4cm ,高为5cm 的圆柱形杯子里,可以倒几杯?(得数保留整数)6、爸爸要用一块面积为282.6dm 2的铁皮,做一个底面直径为1.5dm 的通风管,所做的通风管最长是多少 ?7.自来水管的内半径是2cm ,管内水的流速是每秒20cm 。

一位同学打开水龙头洗手,走时忘了关,5分钟后被另一名同学发现才关上,请你算一算,大约浪费了多少升水 ?8.如图,想想办法,9、亮亮生日那天,爸爸为亮亮买了一个圆柱形蛋糕,已知蛋糕的底面直径是32cm ,高l2cm ,这个蛋糕的体积是多少立方分米?10、一个圆柱形侧面展开后上一个正方形,已知这个正方形的高是18.84厘米,这个圆柱形的体积是多少?11、用铁皮做一个如下图所示空心零件(单位:厘米),需用铁皮多少平方厘米?12、一个长方形,长5分米,宽3分米,以它的长为轴,旋转一周,所形成的图形的体积是多少立方分米?13、在直径0.8米的水管中,水流速度是每秒2米,那么5分钟流过的水有多少立方米?14、把一个棱长是40厘米的正方体削成一个最大的圆柱体,它的表面积和体积各是多少?15、一根2米长的圆柱形木料, 横截面的半径是10厘米, 沿横截面的直径垂直锯开, 分成相等的两块, 每块的体积和表面积各是多少?16、一个圆柱和与它等底等高的圆锥的体积之和是24平方分米。

圆柱与圆锥考点归纳总结

圆柱与圆锥考点归纳总结

圆柱与圆锥的考点的归纳总结考点一:圆柱与圆锥的特征。

1、圆柱是生活中比较常见的由3个面围成的立体图形。

2、圆柱的底面:圆柱的上下两个面叫作底面,圆柱的两个底面是大小相同的两个圆。

圆柱的侧面:圆柱周围的面(上下底面除外)叫作侧面。

圆柱的侧面是曲面。

圆柱的高:圆柱的两个底面之间的距离叫作高。

一个圆柱有无数条高。

3、圆锥的特征:圆锥是由一个底面和一个侧面围成的立体图形。

圆锥的底面是一个圆,圆锥的侧面是一个曲面。

从圆锥的顶点到底面圆心的距离是圆锥的高。

圆锥只有一条高。

4、圆锥高的测量方法:①把圆锥的底面水平放好;②把一块平板水平地放在圆锥的顶点上面;③平板和底面之间的距离就是圆锥的高。

练习:1、一个圆柱形蛋糕盒的底面直径是40cm,高是14cm,用彩绳将它捆扎(如图),打结处在上底面圆的圆心,打结部分的彩绳长30cm。

一共需要()cm彩绳。

考点二:展开图1、圆柱的侧面展开可能是长方形、正方形、平行四边形、不规则图形。

2、圆锥的侧面展开是一个扇形。

3、圆柱的侧面沿高剪开后,展开图是一个长方形(或正方形),这个长方形(或正方形)的一条边的长度等于圆柱的底面周长,另一条边的长度等于圆柱的高。

4、当底面周长和高相等时,圆柱的侧面展开时一个正方形。

练习:1、把一个圆锥的侧面展开可以得到一个()A.平行四边形 B.梯形C.长方形D.扇形2、一个圆柱的侧面展开图是一个正方形,这个圆柱的高与底面半径的比值是()A.πB.2πC.r3、沿圆柱的高将圆柱的侧面展开后是一个()A.三角形B.长方形或正方形C.圆形D.扇形4、一个圆柱形油桶的侧面展开图是一个正方形.已知这个油桶的底面半径是45厘米,那么油桶的高是厘米.5、做一个有底无盖的圆柱形水桶,高为6.28分米,将它的侧面展开,正好是正方形。

做这个水桶要用多少平方分米的铁皮?6、如图,把这个圆柱的侧面沿高剪开后,可以得到一个长是()dm,宽是()dm的长方形。

考点三:旋转将长方形的长或者宽粘在小棒上旋转可得到一个圆柱。

  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

第二讲:圆柱圆锥与分数问题一.情感交流、作业检查并对作业进行指导分析 二.新课讲授知识点一:圆柱与圆锥1、圆柱的侧面积:圆柱的侧面积=底面的周长×高,用字母表示为:S 侧=Ch 。

2、圆柱的表面积:圆柱的表面积=侧面积+2×底面积,即S 表= S 侧+2 S 底。

3、圆柱的体积:圆柱所占空间的大小,叫做这个圆柱体的体积,V=Sh 。

4、圆锥的体积:一个圆锥的体积等于与它 等底等高的圆柱的体积31的。

体积公式:V=31Sh5、圆柱与圆锥的关系:(1)与圆柱等底等高的圆锥体积是圆柱体积的三分之一。

(2)体积和高相等的圆锥与圆柱之间,圆锥的底面积是圆柱的三倍。

(3)体积和底面积相等的圆锥与圆柱之间,圆锥的高是圆柱的三倍。

例题1:圆柱圆锥综合应用1、一个圆柱和一个圆锥等底等高,圆锥的体积是圆柱体积的( ),圆柱的体积是圆锥体积的( )2、一个圆柱体和一个圆锥体的底面积和体积分别相等,已知圆柱体的高4厘米,那么圆锥体 的高是 ( )厘米。

3、一个圆柱底面周长是6.28分米,高是5分米,它的表面积是( )平方分米,体积是( ) 立方分米。

4、一个圆锥体的底面半径是3分米,高是6分米,它的体积是( )立方分米。

5、一根长2米的圆木,截成两段后,表面积增加48平方厘米,这根圆木原来的体积是( ) 立方厘米。

6、一个体积为90立方厘米的圆柱,削成一个最大的圆锥,这个圆锥的体积是( )立方厘米。

7、等底等高的一个圆柱和一个圆锥的体积和是48立方分米,圆柱的体积是( )立方分 米,圆锥的体积是( )立方分米.8、圆锥的底面半径是3厘米,体积是6.28立方厘米,这个圆锥的高是( )厘米。

9、一个棱长是4分米正方体容器装满水后,倒入一个底面积是12平方分米的圆锥体容器里 正好装满,这个圆锥体的高是( )分米。

10、求下列比。

(1)甲乙两个圆柱,底半径比是3:2,相等,它们的体积比( ) (2)甲乙两个圆柱,底面积相等,高是比是4:5,它们的体积比是( ) (3)甲乙两个圆柱,底半径比是2:3,高的比是4:5,它们的体积比是( ) (4)甲乙两个圆柱,体积比是16:25,底半径比是4:5,体积比是( ) (5)甲乙两个圆柱体积是5:6,高的比是2:3,求它们的底面积比( )。

例题2:求下面图形的体积(单位:分米)例题3:概念应用1、圆柱的体积一般比它的表面积大。

( )2、底面积相等的两个圆锥,体积也相等。

( )3、圆柱的体积等于和它等底等高的圆锥体积的3倍。

( )4、“做圆柱形通风管需要多少铁皮”是求这个圆柱的侧面积。

( )5、把圆锥的侧面展开,得到的是一个长方形。

( )6、圆柱体的体积与圆锥体的体积比是3 ∶1。

( )7、圆柱体的高扩大2倍,体积就扩大2倍。

( )8、等底等高的圆柱和圆锥,圆柱的体积比圆锥的体积大2倍. ( )9、圆柱体的侧面积等于底面积乘以高。

( )10、圆柱体的底面直径是3厘米,高是9.42厘米,它的侧面展开后是一个正方形.( ) 11、“做圆柱形通风管需要多少铁皮”是求这个圆柱的侧面积。

( )12、一个圆柱体的体积比和它等底等高的圆锥体的体积多32。

( ) 13、一个圆锥体高不变,底面半径扩大到原来的2倍,这个圆锥的体积也扩大到原来的2倍。

14、正方体和圆锥体的底面积和高都相等,这个正方体体积是圆锥体积的3倍。

( )d=8分米h=12分米d=12厘米 h=15厘米15、长方体、正方体、圆柱体和圆锥体的体积公式都可以用v=sh. ( )例题4:解决问题1、连接成一个大圆柱,长9厘米,表面积减少12.56平方分米。

原来每个圆柱的体积是多少立方厘米?2、一个直角三角形,两条直角边分别是6厘米和9厘米,沿一条直角边旋转一周后,得到一个圆锥体,求圆锥体的体积是多少?3、一个长方形的长是5厘米,宽是2厘米,以其中的一条边为轴旋转一周,可以得到一个圆柱,圆柱体积最大是多少立方厘米?4、底面直径是20厘米的圆钢,将其截成两段同样的圆钢,两段表面积的和为7536平方厘米,原来圆钢的体积是多少立方厘米?5、一个圆柱体和一个圆锥体等底等高,它们的体积相差50.24立方厘米。

如果圆锥体的底面半径是2厘米,这个圆锥体的高是多少厘米?6、学校走廊上有10根圆柱形柱子,每根柱子底面半径是4分米,高是2.5分米,要油漆这些柱子,每平方米用油漆0.3千克,共需要油漆多少千克?7、把一个棱长是40厘米的正方体削成一个最大的圆柱体,它的表面积和体积各是多少?8、在建筑工地上有一个近似于圆锥形状的沙堆,测得底面直径4米,高1.5米。

每立方米沙大约重1.7吨,这堆沙约重多少吨?(得数保留整吨数)习题巩固:1、把120升汽油倒入底面积是25平方分米的圆柱形油桶里,油面高多少分米?2、要建一个圆柱形状的水池。

底面直径4米,深1.8米。

要粉刷它的底面和侧面,粉刷面积至少是多少平方米?建成以后的水池最多可以盛水多少立方米3、学校大厅有4根圆柱形柱子,每根柱子的底面周长是25.12分米,高是5米。

如果每平方米需要油漆费0.5元,那么漆这4根柱子需要油漆费多少元?4、一个圆锥形的沙堆,底面积是18平方米,高是1.5米。

如果每立方米的沙重1.6吨,这堆沙重多少吨?5、有一个圆锥体沙堆,底面积是3.6平方米,高2米。

将这些沙铺在一个长4米,宽2米的长方体沙坑里,能铺多厚?6、节约用水是我们每个小学生的义务,学校用的自来水管内直径为0.2分米,自来水的流速,一般为每秒5分米,如果你忘记关上水龙头,一分你将浪费多少升水?知识点二:分数问题解稍复杂的 转化单位"1"(将两个单位"1"统一成一个单位"1",甲是乙的ba )分数应用题 乙是丙的c d ,则甲是丙的c db a )的策略1 抓不变量(抓不变量,以不变量来作单位“1”)1、六年级有三个班,一班人数占全年级的3310,三班人数比二班多111.如果三班调走4人,就和二班人数同样多。

五年级共有学生多少人?2、某车间计划生产一批零件,第一天生产了72,第二天比第一天多生产70个,第三天生产了300个,这时完成零件数超过了计划的101。

原计划生产零件多少个?3、小明读一本故事书,第一天读了全书的72,第二天读了余下页数的53,已知第二天比第一天多读了6页。

这本故事书有多少页?4、某校选出男教师的111和女教师12名参加合唱比赛,剩下的男教师人数是剩下的女教师人数的2倍,已知学校共有男、女教师156名。

男教师有多少名?5、两根铁丝一共长33米,第一根铁丝用去32,第二根铁丝用去12米,第二根铁丝剩下的长度是第一根剩下长度的21。

两根铁丝原来各长多少米?6、四位同学做红花,甲做的是其他三位做的总数的一半,乙做的是其他三位做的总数的31,丙做的是其他三位做的总数的41,丁正好做了26朵。

问:四位同学共做了多少朵红花?7、甲桶食油比乙桶食油多2.4千克,如果从两桶里各取出0.6千克食油后,甲桶里剩下的215等于乙桶里剩下的31。

问两桶原来各有食油多少千克?8、某水果商店运来一批梨和苹果。

已知梨重量的32与苹果共重620千克,梨重量的41与苹果重量的52相等。

求运来的梨有多少千克?三、作业布置(一)知识之窗1、沿着圆柱的高剪,侧面展开得到一个( ),它的一条边就等于圆柱的( ),另一条 边就等于圆柱的( )2、长方体、正方体、圆柱体的体积计算公式都可以写成( )。

3、3.6立方米=( )立方米( )立方分米 8050毫升=( )升( )毫升4、边长是6分米的正方形纸围成一个圆柱形纸筒(接头处不计),这个纸筒的侧面积是( )5、一个盛满水的圆锥体容器高9厘米,如果将水全部倒入与它等底等高的圆柱体容器中,则 水高( )厘米。

6、有一个圆柱形罐头盒,高是1分米,底面周长6.28分米,盒的侧面商标纸的面积最大是 ( )平方分米,这个盒至少要用( )平方分米的铁皮。

7、一个圆锥体的体积是1521立方米,高是6米,它的底面积是( )平方米。

8、把一个底面直径是2分米,高是3分米的圆柱体削成一个最大的圆锥体,削去( )立 方分米。

9、一个圆柱体和一个圆锥体的底面积和体积分别相等,已知圆柱体的高6厘米,那么圆锥体 的高是 ( )厘米。

10、等底等高的圆柱和圆锥的体积相差16立方米,这个圆柱的体积是( )立方米,圆锥 的体积是( )立方米.(二)请你当回裁判1、圆柱的体积比圆锥的体积大 ( )2、圆锥的体积等于圆柱体积的31( )3、两个圆柱的体积相等那么它们的表面积也相等。

( )4、圆柱体的高扩大2倍,体积就扩大2倍。

( )5、圆柱的底面直径是3厘米,高9.42厘米,侧面展开后是一个正方形。

( ) (三)快乐ABC1、求圆柱形木桶内盛多少升水,就是求水桶的( ) A 、侧面积 B 、表面积 C 、体积 D 、容积2、等底等高的圆柱、正方体、长方体的体积相比较( )A 、正方体体积大B 、长方体体积大C 、圆柱体体积大D 、体积一样大3、一个圆柱的侧面展开以后正好是一个正方形,那么圆柱的高等于它的底面( )。

A .半径 B.直径 C.周长 D.面积4、压路机滚筒滚动一周能压多少路面是求滚筒的( ) A 、表面积 B 、侧面积 C 、体积5、一个棱长4分米的正方体木块削成一个最大的圆柱体,体积是( )立方分米。

A 、50.24 B 、100.48 C 、64 (四)解决问题1、张师傅要把一根圆柱形木料(如右图)削成一个圆锥。

削成的圆锥的体积最大是多少立方分米?2、一个圆锥形的稻谷堆, 底周长12.56米, 高1.5米, 把这堆稻谷装进一个圆柱形粮仓, 正好装满.这个粮仓里面的底直径为2米, 高是多少米?3、工地上有一堆圆锥形三合土,底面周长37.68m,高5m,把这些三合土在宽15.7m的路面上铺4cm厚,可铺多少米?。

相关文档
最新文档