ZPW-2000A 无绝缘轨道电路155mV小轨道调整表

合集下载

ZPW轨道电路调整表

ZPW轨道电路调整表

ZPW轨道电路调整表
ZPW-2000A轨道电路调整表
使用说明
1本调整表适用于ZPW-2000A型无绝缘轨道电路设备
2机车信号的轨道入口电流1700Hz、2000Hz和2300Hz按500mA,2600Hz按450mA考虑。

3本调整表满足调整、分路、断轨及机车信号各种状态要求,其中:分路残压按140mV。

4传输电缆长度按10km计。

5根据最低道碴电阻,按1700、2000、2300、2600四个频率分别列表。

— 2 —
— 3 —
— 4 —
— 5 —
附表二:电缆模拟网络电缆补偿长度调整表
1.发送器载频调整表
2.发送器带载输出电平级调整表
1.接收器载频调整
2.接收器电平级调整表
附表五:不同长度的小轨道的电平级调整表
正常气候条件下,主并机接入时,测得“衰入”小轨道频率信号的电压U

,经查表
得与U
入对应的R*,并连接相应端子。

ZPW-2000A型无绝缘轨道电路

ZPW-2000A型无绝缘轨道电路

ZPW-2000A型无绝缘轨道电路摘要:ZPW - 2000A 型无绝缘轨道电路是铁路信号的一个重要的组成部分。

该系统保持UM71无绝缘轨道电路整体结构上的优势,解决调谐区内断轨的检查,且减少调谐区的分路死区长度,并在系统中发送器采用“N + 1”冗余,接收器采用成对双机并联运用,提高系统可靠性。

本文将主要讲述一下ZPW - 2000A 型无绝缘轨道电路的技术特点,相关原理及一些常见故障的现象及处理。

关键词:ZPW - 2000A;型无绝缘轨道电路;故障一、ZPW-2000A型无绝缘轨道电路系统特征1. ZPW-2000A型无绝缘轨道电路主要技术特点ZPW-2000A型无绝缘轨道电路系统,采用1700Hz-2600Hz载频段、FSK制式轨道电路传输特性、主要参数及计算机技术,满足机车信号为主体信号的自动闭塞及列车超速防护系统要求。

其主要技术特点是:充分肯定、保持UM71无绝缘轨道电路的技术特点和优势;解决调谐区断轨检查,实现轨道电路全程电气折断检查;减少调谐区分路死区;实现对调谐单元断线故障的检查;实现对拍频干扰的防护;通过系统参数优化,提高轨道电路传输长度;提高机械绝缘节轨道电路传输长度;实现与电气绝缘节轨道电路等长传输;轨道电路调整按固定轨道电路长度与允许最小道碴电阻方式进行提高一般轨道电路系统工作稳定性;采用国产信号数字电缆代替法国ZC03电缆,减小铜芯线经,减少备用芯组,加大传输距离,提高轨道电路系统技术性能价格比;采用长钢包铜引接线取代70mm2,铜引接线,利于防护和维修;发送、接收设备四种载频频率通用,减少电码化器材种类,减少运转备用数量,既有利于维护,又可降低工程造价;发送、接收设备有比较完善的检测功能,发送器可以实现“N+1”冗余,接收器可以实现双机互为冗余。

2. ZPW-2000A型无绝缘轨道电路系统构成ZPW-2000A型无绝缘轨道电路系统,采用电气绝缘节来实现相邻轨道电路区段的隔离。

ZPW-2000A型无绝缘轨道电路原理说明书

ZPW-2000A型无绝缘轨道电路原理说明书

原理说明1.系统原理ZPW-2000A型无绝缘移频轨道电路系统,与UM71无绝缘轨道电路一样采用电气绝缘节来实现相邻轨道电路区段的隔离。

电气绝缘节长度改进为29m,由空心线圈、29m长钢轨和调谐单元构成。

调谐区对于本区段频率呈现极阻抗,利于本区段信号的传输及接收;对于相邻区段频率信号呈现零阻抗,可靠地短路相邻区段信号,防止了越区传输,这样便实现了相邻区段信号的电气绝缘。

同时为了解决全程断轨检查,在调谐区内增加了小轨道电路。

ZPW-2000A型无绝缘移频轨道电路将轨道电路分为主轨道电路和调谐区小轨道电路两个部分,并将短小轨道电路视为列车运行前方主轨道电路的所属“延续段”。

主轨道电路的发送器由编码条件控制产生表示不同含义的低频调制的移频信号,该信号经电缆通道(实际电缆和模拟电缆)传给匹配变压器及调谐单元,因为钢轨是无绝缘的,该信号既向主轨道传送,也向小轨道传送。

主轨道信号经钢轨送到轨道电路受电端,然后经调谐单元、匹配变压器、电缆通道,将信号传至本区段接收器。

调谐区小轨道信号由运行前方相邻轨道电路接收器处理,并将处理结果形成小轨道电路轨道继电器执行条件通过(XG、XGH)送至本轨道电路接收器,做为轨道继电器(GJ)励磁的必要检查条件之一。

本区段接收器同时接收到主轨道移频信号及小轨道电路继电器执行条件,判决无误后驱动轨道电路继电器吸起,并由此来判断区段的空闲与占用情况。

主轨道和调谐区小轨道检查原理示意图见图2-1。

该系统“电气—电气”和“电气—机械”两种绝缘节结构电气性能相同。

2.电路工作原理及冗余设计2.1 发送器2.1.1 用途ZPW-2000A型无绝缘移频轨道电路发送器在区间适用于非电码化和电码化区段18信息无绝缘移频自动闭塞,供自动闭塞、机车信号和超速防护使用。

在车站可适用于非电码化和电码化区段站内移频电码化发送,并可作站内移频轨道电路使用。

2.1.2 原理框图及电路原理简要说明同一载频编码条件,低频编码条件源,以反码形式分别送入两套微处理器CPU中,其中CPU1产生包括低频控制信号Fc的移频信号。

ZPW-2000A型无绝缘移频自动闭塞系统说明书

ZPW-2000A型无绝缘移频自动闭塞系统说明书

ZPW-2000A型无绝缘移频自动闭塞系统工程设计说明目录第一部分系统 (4)一.概述 (4)二.ZPW-2000A型无绝缘移频自动闭塞系统特点 (5)三.ZPW-2000A型无绝缘轨道电路系统构成 (6)1 室外部分 (7)2 室内部分 (8)3 系统防雷 (9)4 系统原理框图 (11)四.ZPW-2000A无绝缘移频自动闭塞系统总技术条件 (12)1 环境条件 (12)2 发送器 (12)3 接收器 (13)4 直流电源电压范围 (13)5 轨道电路 (13)6 设备主要技术指标 (14)第二部分室内设备 (20)一.发送器 (20)1 用途 (20)2 原理框图及电原理简要说明 (21)3 发送器外线联结示意图 (31)4 发送器端子代号及用途说明 (32)5 发送器插座板底视图 (33)6 发送器“N+1”冗余系统原理接线图 (34)二.接收器 (35)1 用途 (35)2 原理框图及电原理简要说明 (35)3 接收器外线连接示意图 (45)4 接收器端子代号及用途说明 (46)5 接收器插座底板视图 (48)6 接收器双机并联运用原理接线图 (49)三.衰耗盘 (51)1 用途 (51)2 电原理图简要说明 (51)3 衰耗盘面板布置图 (52)4 衰耗盘端子用途说明 (53)四.站防雷和电缆模拟网络 (54)五.移频架 (58)1 移频架组成 (58)2 电源端子配线表 (59)3 移频架零层端子配线表 (60)4 移频报警继电器电路连接 (63)第三部分室外设备 (64)一电气绝缘节及调谐单元 (64)二空心线圈SVA (64)三匹配变压器 (65)四机械节空心线圈(SVA’) (65)五调谐区设备用钢包铜引接线 (65)六补偿电容 (66)七SPT数字电缆 (66)1 型号代号定义 (66)2 主要电气性能 (66)3 规格(按芯数表示) (66)第四部分工程设计一般问题和要求 (68)一.车站设备管辖区分界及闭塞分区编号 (68)二.载频配置原则 (68)三.站间联系电路 (69)1 轨道占用 (69)2 方向电路 (69)3 短小轨道电路执行条件及联系电路 (71)四.SPT型电缆区间电缆运用 (75)五.电气绝缘节安装 (76)1 电气绝缘节的安装 (76)2 钢轨连接线 (76)3 29m调谐区 (76)4 机械绝缘节 (76)六.补偿电容安装及轨道电路中补偿电容配置 (76)1 补偿电容的容量及数量 (76)2 等间距设置补偿电容的方法 (76)3 计算实例: (77)4 轨道电路中补偿电容配置 (78)七.轨道横向连接线及地线安装 (82)1 简单横向连接 (82)2 完全横向连接 (82)3 用于牵引电流返回的完全横向连接 (82)4 接地标准 (83)八.雷电防护与接地 (87)1 室内站防雷单元 (87)2 室外 (87)3 室外金属结构的接地 (88)a)区间箱地线作用及要求 (88)b)系统雷电防护及接地见下图 (89)九.平交道口设备设置 (89)十.站内电码化 (90)1 系统设计原则 (90)2 25Hz相敏轨道电路予叠加ZPW-2000A电码化简单原理 (90)十一.室内外配线 (91)1 移频架配线 (91)2 架间配线 (92)3 室外 (92)十二.系统冗余设计及移频架设备位置排列 (92)十三.ZPW-2000A型系统设备清单 (94)第一部分系统一. 概述ZPW-2000A型无绝缘移频自动闭塞是在法国UM71无绝缘轨道电路技术引进、国产化基础上,结合国情进行提高系统安全性、系统传输性能及系统可靠性的技术再开发。

ZPW—2000无绝缘轨道电路模拟实验方法

ZPW—2000无绝缘轨道电路模拟实验方法

ZPW—2000A无绝缘轨道电路模拟实验方法的分析洛阳电务段————丁福顺ZPW—2000A型无绝缘自动闭塞在郑州—洛阳段投入使用以来、因其设备稳定可靠、方便调整等优点深受现场维修单位的欢迎。

该制式还要在全路大力推广,因此掌握ZPW—2000A无绝缘轨道电路模拟实验方法对该设备的维修及今后的施工均具有一定的指导意义。

一、ZPW—2000A无绝缘轨道电路的设置原理ZPW—2000A无绝缘轨道电路将轨道电路分为主轨道电路和调谐区小轨道电路两部分。

小轨道电路是主轨道电路的延续段,延续段的信号由运行前方相临轨道电路的接收器处理并将处理结果以24V电压的形式送至本轨道接收器。

如:6811G接收器接收主轨道1700-2信号,还检查运行前方6825G接收器输出的24V电源条件,此时反映6811G空闲的QGJ才会吸起。

而6825G接收器24V小轨输出的条件是接收到电压幅度符合要求的1700-2的小轨信号(即6811G频率信号)。

如下图:二、ZPW—2000A无绝缘轨道电路主轨道电路模拟实验方法(以6811G为例)1、6811G区段的发送器电平暂时调为9级,功出电压38V(S1 、S2)2、6811G区段送、受端电缆模拟网络的输出端封连贯通即D1-1——D1-2;D1-3——D1-43、由于室外设备没有连接6825G的接收器无小轨24V输出,因此6811G的接收器的小轨输入端(XGJ,XGJH)需要人为提供24V条件。

4、6811G的发送电码电路检查6825信号机灯丝条件(DJF)或6825G区段的轨道条件(GJF),因此需暂时封连DJF或GJF的第一组前接点,满足以上4种条件,且主轨道接收的信号电压大于240mv,室内通道正常,则6811G区段的QGJ吸起。

衰耗盘上轨道占用表示灯由红灯变为绿灯,说明主轨道电路逻辑关系正确。

5、编码电路实验模拟不同的编码条件,在衰耗盘轨入测试孔分别测量有不同的低频信号输出。

测试数据如下三、ZPW-2000A无绝缘轨道电路室内小轨道电路室内模拟实验方法:方法一:点内试验。

ZPW轨道电路调整表

ZPW轨道电路调整表

ZPW-2000A轨道电路调整表
使用说明
1本调整表适用于ZPW-2000A型无绝缘轨道电路设备
2机车信号的轨道入口电流1700Hz、2000Hz和2300Hz按500mA,2600Hz按450mA考虑。

3本调整表满足调整、分路、断轨及机车信号各种状态要求,其中:分路残压按140mV。

4传输电缆长度按10km计。

5根据最低道碴电阻,按1700、2000、2300、2600四个频率分别列表。

— 2 —
— 3 —
— 4 —
— 5 —
附表二:电缆模拟网络电缆补偿长度调整表
1.发送器载频调整表
2.发送器带载输出电平级调整表
1.接收器载频调整
2.接收器电平级调整表
附表五:不同长度的小轨道的电平级调整表
正常气候条件下,主并机接入时,测得“衰入”小轨道频率信号的电压U

,经查表
得与U
入对应的R*,并连接相应端子。

ZPW-2000A轨道电路的调试资料

ZPW-2000A轨道电路的调试资料

ZPW-2000A轨道电路的调试介绍ZPW-2000A轨道电路在沪杭电气化铁路的应用,包括工作原理、试验调试和故障处理。

1工作原理ZPW-2000A型无绝缘移频自动闭塞室内主要设备发送器、接收器、衰耗器、电缆模拟网络盘、机柜。

室外主要有匹配变压器、调谐单元、空心线圈、机械绝缘节空心线圈、补偿电容、防雷单元等,通过载频信号(8信息和18信息)传输原理,传送机车信号和检查轨道的电气-电气绝缘节和机械-电气绝缘节。

图1:系统原理框图图1为ZPW-2000A型无绝缘轨道电路的工作原理框图,以一个区段ADG为例,正常工作时,ADG发送器向钢轨发送载频1700-1、频偏±11HZ、低频为随列车运行和轨道空闲情况而不同的移频信号。

移频信号一部分沿着ADG主轨迎着列车运行方向,向接收端传递,到接收端经匹配变压器→防雷电缆模拟网络→衰耗盘→接收器,形成主轨道检查条件。

该条件可以从衰耗盘的“轨出”塞孔中测出,该数值从钢轨中直接送来,与受电端电压一致,需要大于240mv。

同时移频信号又向列车运行前方的调谐区小轨道发送移频信号,在调谐区形成小轨道的检查条件,经下一个区段接收端的接收端经匹配变压器→防雷电缆模拟网络→衰耗盘→接收器,这一条件可以从这个区段衰耗盘“轨出2”测出。

这样ZPW-2000A无绝缘轨道电路继电器励磁条件必须有2个,一个是主轨检查条件,另一个是小轨道检查条件,前一个是本轨道衰耗盘测得,后一个是从本轨道列车运行前方所属区段衰耗盘测得。

2 ZPW-2000A轨道电路封锁开通前试验调试2.1 试验及调试流程如图所示:图2 自闭试验及调试流程图2.2 试验前的准备工作:2.2.1导通网络接口柜,组合架、区间柜内部配线。

2.2.2导通室内各架(柜)间的配线,特别注意组合架至区间柜编码条件线,防止点灯220v 电源引入区间柜烧损设备。

2.2.3处理好各种混线、接地等故障。

2.2.4检查送至机柜的24v电源极性是否正确,按机柜布置图将发送器、接收器安装在对应位置,并用钥匙锁紧。

ZPW2000A调整表

ZPW2000A调整表

接收器主轨道电路调整表
接收电平 C3至 C4至 连接端子
68a6 a9来自a3-a7 a4-a10
序号 39
接收器小轨道电平调整端子连接表
U入
R*
正向
mv Ω 连接端子
反向 连接端子
80 854
a16-a17 a18-a23
a16-a17 a18-a23
发送器输出电平端子连接表
发送 电平
底座端子连接
电压参考值
max min max 发送电平 范围V
18 1.0 50 1151 1200 93.4 97.6 12 68 0.242 0.658 0.413 1.122 0.437 1.188 1.94 2.118 128.564 140.401 0.265 0.291 3 130-142
调整依据:根据轨道电路载频频率、长度、补偿电容个数,确定发送电平、接收电平。
3
9-11 12-3
137
轨道电路调整表
载频频率
1700
道床 电容 轨道电路 序号 电阻 容量 长度m
Ω/km µf min max
电容补偿 步长m
min max
补偿 电容 个数
接收 电平
轨出1
接收端各点电压V 主轨入 受端轨面电压 送端轨面电压 min max min max
发送端各点电压V
功出电压V
功出电流A
功出电平
min

ZPW-2000A调试

ZPW-2000A调试

ZPW-2000A型無絕緣移頻自動閉塞系統試驗及調試一. 区间部分:1.开通试验前准备工作1)导通防雷柜.组合柜.移频柜內部配线。

2)导通防雷柜.组合柜.移频柜及分线盘间的配线。

3)导通室外电缆配线并根据轨道长度按下调整表调整电缆网络(先进行室内调整,可调至10KM)。

电缆模拟网络电缆补偿长度调整表4)完成电源屏测试。

5)处理好各种混线.接地等故障。

2.开通试验1)试验步骤:(1)首先,按照发送器各轨道电路的实际电平将封线在走线槽的对应位置放好,然后再将发送器输出电平级都调整为10电平,即输出端子11至5短接,12至4短接。

用万用表交流档在衰耗盘的发送功出孔测得电压31~33V。

按此方法发送与接收之间可以不串电阻。

开通时按轨道电路调整表查表调整。

发送器带载输出电平级调整表(2)将接收器主轨道接收电平按20电平调整,即R11至R5短接,R12至R6短接,R3至R7短接,电平在机柜衰耗盘上进行调整。

开通时拆模拟配线,按轨道电路调整表电平短线。

接收器电平级调整表(3)将接收器小轨道的衰耗电阻短接,即将衰耗盘的a11至a23短接,c11至c23短接。

开通时小轨输出要达到110mV左右,按U入104mV调整,即a16至a18短接,a19至a23短接,c16至c18短接c19至c23短接。

小轨道调整表注〕:R 表示理论计算值;R*表示端子连接后构成的实际阻值;“-”表示短接。

正常气候条件下,主并机接入时,测得“衰入”小轨道频率信号的电压U 人,经查表得与U 入对应的R*,并连接相应端子。

(4) 按设计看发送器载频与接收器载频是否要调整。

(5) 按照站场情况制作模拟盘以便进行联锁试验。

模拟盘的每个轨道的单元电路按照下图接线:在分线盘将送端模拟网络的输出与受端模拟网络的输入通过模拟盘进行连接。

K 为钮子开关,可模拟小轨道的空闲及占用。

R 可暂时不串。

(6) 进行完以上步骤后,即可将断路器合上。

在确认每个发送器有且只有一个低频编码后,发送器就可正常工作,从衰耗盘发送功出的塞孔可量出有32V 左右的输出。

ZPW-2000移频调整表

ZPW-2000移频调整表

ZPW-2000A型设备调整表北京铁路信号工厂2004年11月目录1.轨道电路调整表 (2)2.发送电平调整表 (15)3.主轨道接收电平调整表 (15)4.小轨道接收电平调整表 (18)5.模拟网络盘电缆补偿长度调整表 (24)1.轨道电路调整表轨道电路调整表由北京全路通信信号研究设计院提供。

10Km,12.5 Km,15 Km轨道电路调整表见表1,2,3。

例:根据工程设计选择恰当的轨道电路调整表,查阅轨道电路长度,选择发送、接收电平。

如:10 Km 1700Hz 1550m区段,查阅轨道电路调整表可知发送电平为2电平,接收电平为96电平,最低适用道床电阻为1.2Ω·km。

当电缆长度L 0≤L≤10 Km,模拟电缆补偿到10 Km,轨道电路按照10 Km轨道电路调整表调整;10 Km≤L≤12.5 Km,模拟电缆补偿到12.5 Km,轨道电路按照12.5 Km轨道电路调整表调整;12.5 Km≤L≤15Km,模拟电缆补偿到15 Km,轨道电路按照15Km轨道电路调整表调整;例:某轨道电路室外送端设备距机械室电缆长度为11 Km,受端设备距机械室电缆长度为11 .5Km,则送端模拟电缆再补偿1.5 Km,受端模拟电缆再补偿1Km,使送受端实际电缆+模拟电缆=12.5 Km,轨道电路调整表按照12.5 Km轨道电路调整表调整即可。

33 1.5 46 1751 1800 66.2 68.1 26 65 0.254 0.605 0.453 1.079 0.402 0.958 2.513 2.658 166.089 176.014 0.369 0.391 12.发送电平调整表发送器的输出电平调整应根据轨道电路调整表进行,发送电平调整表见表4。

表4 发送电平调整表3.主轨道接收电平调整表主轨道电路的调整是按照轨道电路调整表并对照主轨道接收器电平调整表在衰耗盘后的96芯插座上进行跨线实现的。

主轨道接收电平调整表见表5。

ZPW-2000A 型无绝缘移频自动闭塞系统电路原理 (1)

ZPW-2000A 型无绝缘移频自动闭塞系统电路原理 (1)

接收器原理框图(如下图)
主轨道 A/D、小轨道 A/D:模数转换器,将主机、并机输入的模拟信号转换成计算机能处理的数字信 号。 CPU1、CPU2:是微机系统,完成主机、并机载频判决、信号采样、信息判决和输出驱动等功能。 安全与门 1~4:将两路 CPU 输出的动态 信号变成驱动继电器(或执行条件)的 直流输出。 载频选择电路:根据要求, 利用外部的接点,设定主机、并机载频 信号,由 CPU 进行判决,确定接收盒的 接收频率。 接收盒根据外部所确定载频 条件,送至两 CPU,通过各自识别,并 通信、比较确认一致,视为正常,不一致 时,视为故障并报警。外部送进来的信号, 分别经过主机、并机两路模数转换器转换 成数字信号。 两套 CPU 对外部四路信号进行单独的运 算,判决处理。表明接收信号符合幅度、 载频、低频要求时,就 输出 3kHz 的方波,驱动安全与门。安全 与门收到两路方波后,就转换成直流电压 带动继电器。如果双CPU 的结果不一致, 安全与门输出不能构成,且同时报警。电 路中增加了安全与门的反馈检查,如果 CPU有动态输出,那么安全与门就应该有 直流输出,否则就认为安全与门故障,接收盒也报警。如果接收盒收到的信号电压过低,就认为是列车分路。
3、补偿电容作用
等效电路

钢轨呈现感性在1700Hz、 2600Hz 有着甚高的感抗值阻碍了信息的传输为此在钢轨上一段距离 内加装有补偿电容见上图。 由于L 与C 的补偿抵消了钢轨电感,使钢轨呈现阻性并在BB、 CC呈现较高的阻抗和较高的电压。 当电容断线故障时由于补偿作用的消失钢轨感性的作用使信号在钢轨上产生较大的衰减,从而 降低了接收端电压使系统导向安全。 其补偿原理可理解为将每补偿段钢轨 L 与电容 C 视为串联谐振,见右 图。以此在补偿段入口端(A、B)取得一个趋于电阻性负载 R。并在 出口端(C、D)取得一个较高的输出电平。 一般载频频率低,补偿电容容量大;最小道碴电阻低,补偿电容容量大;轨道电路只考虑加大 机车信号入口电流,不考虑列车分路状态时,电容容量大。

ZPW-2000A轨道电路的调试

ZPW-2000A轨道电路的调试

ZPW-2000A轨道电路的调试介绍ZPW-2000A轨道电路在沪杭电气化铁路的应用,包括工作原理、试验调试和故障处理。

1工作原理ZPW-2000A型无绝缘移频自动闭塞室内主要设备发送器、接收器、衰耗器、电缆模拟网络盘、机柜。

室外主要有匹配变压器、调谐单元、空心线圈、机械绝缘节空心线圈、补偿电容、防雷单元等,通过载频信号(8信息和18信息)传输原理,传送机车信号和检查轨道的电气-电气绝缘节和机械-电气绝缘节。

图1:系统原理框图图1为ZPW-2000A型无绝缘轨道电路的工作原理框图,以一个区段ADG为例,正常工作时,ADG发送器向钢轨发送载频1700-1、频偏±11HZ、低频为随列车运行和轨道空闲情况而不同的移频信号。

移频信号一部分沿着ADG主轨迎着列车运行方向,向接收端传递,到接收端经匹配变压器→防雷电缆模拟网络→衰耗盘→接收器,形成主轨道检查条件。

该条件可以从衰耗盘的“轨出”塞孔中测出,该数值从钢轨中直接送来,与受电端电压一致,需要大于240mv。

同时移频信号又向列车运行前方的调谐区小轨道发送移频信号,在调谐区形成小轨道的检查条件,经下一个区段接收端的接收端经匹配变压器→防雷电缆模拟网络→衰耗盘→接收器,这一条件可以从这个区段衰耗盘“轨出2”测出。

这样ZPW-2000A无绝缘轨道电路继电器励磁条件必须有2个,一个是主轨检查条件,另一个是小轨道检查条件,前一个是本轨道衰耗盘测得,后一个是从本轨道列车运行前方所属区段衰耗盘测得。

2 ZPW-2000A轨道电路封锁开通前试验调试2.1 试验及调试流程如图所示:图2 自闭试验及调试流程图2.2 试验前的准备工作:2.2.1导通网络接口柜,组合架、区间柜内部配线。

2.2.2导通室内各架(柜)间的配线,特别注意组合架至区间柜编码条件线,防止点灯220v 电源引入区间柜烧损设备。

2.2.3处理好各种混线、接地等故障。

2.2.4检查送至机柜的24v电源极性是否正确,按机柜布置图将发送器、接收器安装在对应位置,并用钥匙锁紧。

ZPW2000A轨道电路调整表

ZPW2000A轨道电路调整表

1 0.6 55 801 850 85.6 91. 9 78 0.242 0.70 0.360 1.046 0.46 1.34 1.81 1.96 127.8 139.6 0.25 0.28 3 130-
1 0.7 55 851 900 91.2 96. 9 74 0.240 0.65 0.376 1.030 0.48 1.32 1.83 2.00 127.8 139.6 0.25 0.28 3 130-
ZPW2000A 轨道电路调整表 使用说明 1 本调整表适用于 ZPW-2000A 型无绝缘轨道电 路设备 2 机车信号的轨道入口电流 1700Hz、2000Hz 和 2300Hz 按 500mA, 2600Hz 按 450mA 考虑。 3 本调整表满足调整、分路、断轨及机车信号各 种状态要求,其中:分路残压按 140mV。 4 传输电缆长度按 10km 计。 5 根据最低道碴电阻, 按 1700、2000、2300、2600 四个频率分别列表。
0.67
1.00 0.38 1.06 1.56 1.70 103.9 113.8 0.21 0.23 105-11
0.8 50 951 92.1
0.242
0.36
4
4
0
1 08
7
7 1 6 1 1 65 41 4 5
5
6
1
100 105
92. 1 6
0.69 0.41 1.20 0.44 1.27 1.92 2.07 128.5 140.3 0.26 0.29 130-14
0.8 50
88.2
0.246
3
5
10
9 17
4 9 1 3 1 4 8 62 95 4 0
2

ZPW2000A轨道电路的调整及维护研究

ZPW2000A轨道电路的调整及维护研究

ZPW2000A轨道电路的调整及维护研究题目: ZPW2000A轨道电路的调整及维护研究专业: 自动化(铁路信号) 学号: 09920723 姓名: 邬阳指导教师: 杨扬学习中心: 武汉学习中心西南交通大学网络教育学院2011年 9月 5 日1院系专业自动化(铁路信号) 年级自动化091 学号 09920723 姓名邬阳学习中心武汉学习中心指导教师杨扬题目 ZPW2000A轨道电路的调整及维护研究指导教师评语是否同意答辩过程分(满分20)指导教师 (签章) 评阅人评语评阅人 (签章)成绩答辩组组长 (签章)年月日2毕业论文任务书班级自动化091 学生姓名邬阳学号 09920723 开题日期:2011 年 08月 31 日完成日期:2011 年 9 月 30 日题目 ZPW2000A轨道电路的调整及维护研究本论文的目的、意义:一是对我的知识相能力进行一次全面的考核,更加熟悉铁路信号方面的知识。

二是对我进行科学研究基本功的训练,培养我综合运用所学知识独立地分析问题和解决问题的能力,为以后撰写专业学术论文打下良好的基础。

学生应完成的任务1.根据论文题目认真填写毕业设计任务书。

2.参考文献、阅读相关书籍、学习和课题有关知识。

3.注意内容的相关性和紧密性。

4.注意书写格式和检查工作。

5.做好与毕业设计有关的其他相关工作1、论文各部分内容及时间分配:(共 6 周)第一部分开题 ( 1周)第二部分拟定初稿 ( 4周)第三部分完成最终稿 ( 1 周)第部分 ( 周)第部分 ( 周)评阅或答辩 ( 周)2、参考文献[1]中国铁路通信信号公司. 铁道信号设计规范[M]. 北京:中国铁道出版社 [2] 北京全路通信信号研究设计院. ZPW-2000A无绝缘移频自动闭塞系统技术培训教材[M]. 北京:中国铁道出版社 [3] 赵怀东,王改素. ZPW-2000A型自动闭塞设备安装与维护[M]. 北京:中国铁道出版社,2010 [4] 董昱.区间信号与列车运行控制系统[M]. 北京:中国铁道出版社,2008 [5] 张擎. 电气集中工程设计指导[M]. 北京:中国铁道出版社,1991 [6] 高继祥.铁路信号运营基础[M]. 北京:中国铁道出版社,1998 [7] 赵志熙. 车站信号控制系统[M]. 北京: 中国铁道出版社,1993. 12 [8] 王秉文. 6502电气集中工程设计[M]. 北京:中国铁道出版社,1997 [9] 阮振铎. 铁道信号设计与施工[M]. 北京:中国铁道出版社3[10] 钟华. AutoCAD 2004标准教程[M]. 北京:中国宇航出版社 [11] 齐进宽. ZPW-2000A模拟试验电路及常见故障分析[M]. 铁道通信信号,2005 .[12]李文海(ZPW-2000A移频自动闭塞系统原理、维护和故障处理。

ZPW A轨道电路室内设备调整接线表 含 km模拟网络接线表

ZPW A轨道电路室内设备调整接线表 含 km模拟网络接线表
J2-12~J2-14 J2-6~J2-11,J2-12~J2-14
接收 电平
39 40 41 42 43 44 45 46 47 48 49 50 51
52 53
54 55 56 57 58 59
60 61
62 63
64 65
66 67
J2-16 至
J2-8 J2-8 J2-6 J2-13 J2-7 J2-9 J2-7 J2-10 J2-7 J2-10 J2-7 J2-8 J2-9
J2-14 J2-14
J2-14 J2-14 J2-14 J2-14 J2-14 J2-14 J2-14 J2-14 J2-14
J2-15 J2-14
J2-14 J2-14 J2-14
连接端子
J2-8~J2-11,J2-12~J2-14 J2-6~J2-9 , J2-8~J2-11 , J2-12~J2-14 J2-9~J2-11,J2-12~J2-14 J2-6~J2-10,J2-9~J2-11, J2-12~J2-14 J2-8~J2-11,J2-12~J2-14 J2-6~J2-10,J2-7~J2-14
1.1 发送器插座板底视图..................................... 3
1.2 载频调整................................................4
1.3 电平级调整..............................................4
第 6 页 共 16 页
2.3 接收电平级调整接线表
2.3.1 单频衰耗冗余控制器(ZPW.RS-K)主轨道接收电平级调
整表
接收 电平
1 2 3 4 5 6 7 8 9 10 11 12 13

ZPW2000a轨道电路调整及使用研究

ZPW2000a轨道电路调整及使用研究

ZPW2000a轨道电路调整及使用研究发布时间:2022-09-28T01:29:34.758Z 来源:《科技新时代》2022年5期3月作者:郭蒙蒙[导读] 当前,由于经济技术的持续发展,由此使得铁路得到了长足的进步,郭蒙蒙中国铁路北京局集团有限公司天津电务段,天津市,300140摘要:当前,由于经济技术的持续发展,由此使得铁路得到了长足的进步,尤其是使得铁路在智能化得到了更好的发展。

而在铁路信号方面,通常把数字编码无绝缘轨道电路当成是前提所在,由此发展出自动控制系统,且从轨道电路传输长度等方面展开了相应的提升,使得国产机车信号得到了较好的发展,在对铁路轨道电路的调谐区、匹配电压器、补偿电容的优选设计之中,大力推广和普及ZPW2000a无绝缘轨道电路和主体化机车信号,充分吸收了UM71的优势性能,使其成为我国先进自动的闭塞制式。

关键词:ZPW2000a轨道电路;调整使用1ZPW2000a无绝缘轨道电路的特征以ZPW2000a来看,其对应的特点为:首先,借助对UM71进行相应的改进,由此使得其所存在的特点和优势得到充分的体现,且在传输安全性等方面予以相应的强化,在采用1700Hz-2600Hz载频段、FSK制式的条件下,由此展开了相应的参数优化,这样便使得调谐区分路死区的情况大大降低,由此达成了等长传输,并使得ZPW2000a的轨道电路传输长度得以增加。

其次,在进行调整作业时,必须要结合规定好的轨道电路长度进行,且要结合所允许最小道碴电阻,这种情况下能够和标准道碴、低道碴电阻的传输长度实现高效的契合,最终使得电路系统的稳定性得以较好的增加[1]。

2ZPW2000a轨道电路构成及其工作原理2.1室外部分在电气绝缘节方面,其所对应的调谐区通常都是由调节单元等所组成,对应的功能是能够实现电气隔离的效果;而在机械绝缘节方面,通常都是由空芯线圈等所构成。

还有就是匹配变压器,在道碴电阻为0.25-1.0Ω的情况下,轨道电路能够达成和传输电缆的高效匹配。

  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
相关文档
最新文档