反比例函数的应用专项练习30题(有答案)ok

合集下载

中考数学复习《反比例函数》专项测试卷(带答案)

中考数学复习《反比例函数》专项测试卷(带答案)

中考数学复习《反比例函数》专项测试卷(带答案)学校:___________班级:___________姓名:___________考号:___________一、单选题1.若点()1,2A x ,()2,1B x -和()3,4C x 都在反比例函数8y x=的图像上,则1x ,2x 和3x 的大小关系是( ) A.123x x x <<B.231x x x <<C.132x x x <<D.213x x x <<2.若点()26-,在反比例函数ky x=的图象上,则下列说法正确的是( ) A.该函数的图象经过点()34--,B.该函数的图象位于第一、三象限C.当0x >时,y 的值随x 值的增大而增大D.当1x >-时,4y >3.如图,在同一平面直角坐标系中函数y ax a =+与函数ay x=的图象可能是( ) A. B. C. D.4.如图,点A 是双曲线()160y x x =-<上的一点,点B 是双曲线()60y x x=-<上的一点,AB 所在直线垂直x 轴于点C ,点M 是y 轴上一点,连接MA 、MB ,则MAB △的面积为( )A.5B.6C.10D.165.如图,点A ,B 为反比例函数()0ky x x=>的图象上的两点,且满足45AOB ∠=︒,若点A 的坐标为()3,5,则点B 的坐标是( ).A.15215,2⎛⎫ ⎪ ⎪⎝⎭B.1010,2⎛ ⎝⎭C.()8,2D.()8,36.如图,已知点A 、B 分别在反比例函数y =1x (x >0),y =-4x(x >0)的图象上,且OA⊥OB ,则OBOA的值为( )A.4B.2C.14D.127.如图,在ABC 中2AC BC == 90ACB ∠=︒ AC x ∥轴 点D 是AB 的中点 点C 、D 在(k 0,x 0)ky x=≠>的图象上 则k 的值为( )A.1-B.2-C.1D.28.已知蓄电池的电压为定值(电压三星近总度阻) 使用蓄电池时 电流(单位:A )与电阻尺(单位:Ω)是反比例函数关系 它的图象如图所示 下列说法不正确的是( )A.函数解析式为60I R=B.蓄电池的电压是C.当6ΩR =时 8A I =D.当10A I ≤时 6R ≥Ω9.如图 在平面直角坐标系中直线24y x =-+与x 轴、y 轴分别交于A 、B 两点 以AB 为边在第一象限作正方形ABCD 点D 在双曲线()0ky k x=≠上.将正方形沿x 轴负方向平移a 个单位长度后 点C 恰好落在该双曲线上 则a 的值( )A.1B.2C.3D.410.如图 直线22y x =-与x 轴 y 轴分别交于点A B 与反比例函数()0ky k x=>图像交于点C .点D 为x 轴上一点(点D 在点A 右侧) 连接BD 以BA BD 为边作ABDE E 点刚好在反比例函数图像上 设(),E m n 连接EC DC 若1()2ACED S AD AD n =+四边形 则k 的值为( )A.8B.10C.12D.1611.如图 直线y kx =与双曲线3y x -=在同一坐标系中如图所示 则不等式3x-<的解集为( )A.01x <<B.1x <-C.1x <-或01x <<D.10x -<<或1x >12.智能手机已遍及生活中的各个角落 手机拍照功能也越来越强 高档智能手机还具有调焦(调整镜头和感光芯片的距离)的功能.为了验证手机摄像头的放大率(摄像头的放大率是指成像长度与实物长度的比值 也可计算为像距与物距的比值) 小明用某透镜进行了模拟成像实验 得到如图所示的像距v 随物距u 变化的关系图像 下列说法不正确的是( )A.当物距为45.0cm 时 像距为13.0cmB.当像距为15.0cm 时 透镜的放大率为2C.物距越大 像距越小D.当透镜的放大率为1时 物距和像距均为20cm13.某商家设计了一个水箱水位自动报警仪 其电路图如图1所示 其中定值电阻110ΩR =2R 是一个压敏电阻 用绝缘薄膜包好后放在一个硬质凹形绝缘盒中放入水箱底部 受力面水平 承受水压的面积S 为0.012m 压敏电阻的阻值随所受液体压力F 的变化关系如图2所示(水深h 越深 压力F 越大) 电源电压保持6V 不变 当电路中的电流为0.3A 时 报警器(电阻不计)开始报警 水的压强随深度变化的关系图象如图3所示(参考公式:UI R=1000Pa 1kPa =).则下列说法中不正确的是( )2R F pS =A.当水箱未装水()时 压强p 为0kPaB.当报警器刚好开始报警时 水箱受到的压力F 为40NC.当报警器刚好开始报警时 水箱中水的深度h 是0.8mD.若想使水深1m 时报警 应使定值电阻1R 的阻值为 二、填空题14.一个圆柱形蓄水池的底面半径为x cm 蓄水池的侧面积为40π2cm 则这个蓄水池的高h (cm )与底面半径x (cm )之间的函数关系式为_____.15.在反比例函数12my x-=的图象上的图象在二、四象限 则m 的取值范围是_______. 16.若点()11,A y -、21,4B y ⎛⎫- ⎪⎝⎭、()31,C y 都在反比例函数21x k y +=(k 为常数)的图象上 则1y 、2y 、3y 的大小关系为_____.17.如图 点(3,1)P -是反比例函数m y x =的图象上的一点 设直线y kx =与双曲my x=的两个交点分别为P 和P 当mkx x>时 写出x 的取值范围_____.18.如图 在平面直角坐标系xOy 中正方形OABC 的边OC 、OA 分别在x 轴和y 轴上 OA =10 点D 是边AB 上靠近点A 的三等分点 将⊥OAD 沿直线OD 折叠后得到⊥OA ′D 若反比例函数y kx=(k ≠0)的图象经过A ′点 则k 的值为_____. 0m h =12Ω19.如图 在平面直角坐标系中直线12y k x =+与x 轴交于点A 与y 轴交于点B 与双曲线2(0)k y x x=>交于点C 连接OC .若52,sin 5OBC S BOC =∠=△ 则12k +的值是______.20.如图 点1A 2A 3A …在反比例函数()10y x x=>的图象上 点1B 2B 3B … n B 在y 轴上 且11212323B OA B B A B B A ∠=∠=∠=直线y x =与双曲线1y x=交于点1A 111B A OA ⊥ 2221B A B A ⊥ 3323B A B A ⊥ … 则2023B 的坐标是________.三、解答题21.如图所示 一次函数y kx b =+的图象与反比例函数my x=的图象相交于两点(1),A n (2,1)B -- 与y 轴相交于点C .(1)求反比例函数和一次函数解析式; (2)直接写出:不等式mkx b x+>解集是______; (3)依据相关数据求AOB 的面积.22.如图 菱形OABC 的边OA 在y 轴正半轴上 点B 的坐标为()48,.反比例函数11k y x=的图象经过菱形对角线AC OB ,的交点D 设直线OC 的解析式为22y k x =.(1)求反比例函数的解析式; (2)求菱形OABC 的边长;(3)请结合图象直接写出不等式120k k x x-<的解集. 23.如图▱OABC 的顶点O 与坐标原点重合 边OA 在x 轴正半轴上 60AOC ∠=︒2OC = 反比例函数()0ky x x=>的图像经过顶点C 与边AB 交于点D.(1)求反比例函数的表达式.(2)尺规作图:作OCB ∠的平分线交x 轴于点E.(保留作图痕迹 不写作法) (3)在(2)的条件下 连接DE 若DE CE ⊥ 求证:AD AE =. 24.如图 已知一次函数26y x =+与反比例函数()0ky x x=>的图象交于点()1,A m 与x 轴交于点B .(1)填空:m 的值为______ 反比例函数的解析式为______; (2)直接写出当0x >时 26kx x+<的解集; (3)点P 是线段AB 上一动点(不与A 、B 点重合) 过P 作直线PM x ∥轴交反比例函数的图象于点M 连接BM .若PMB △的面积为S 求S 的取值范围.25.如图 已知抛物线2y x bx =+与x 轴交于O (4,0)A 两点 点B 的坐标为(0,3)-. (1)求抛物线的对称轴;(2)已知点P 在抛物线的对称轴上 连接OP BP .若要使OP BP +的值最小 求出点P 的坐标;(3)将抛物线在x 轴下方的部分沿x 轴翻折 其余部分保持不变 得到一个新的图象.当直线(0)y x m m =+≠与这个新图象有两个公共点时 在反比例函数y mx=的图象中y 的值随x 怎样变化?判断并说明理由.26.如图 在平面直角坐标系中正六边形ABCDEF 的对称中心P 在反比例函数()10,0ky k x x=>>的图象上 边AB 在x 轴上 点F 在y 轴上 已知23AB =.(1)判断点E 是否在该反比例函数的图象上 请说明理由;(2)求出直线EP :()20y ax b a =+≠的解析式 并根据图象直接写出当0x >时 不等式kax b x+>的解集. 27.如图① 有一块边角料ABCDE 其中AB BC DE EA 是线段 曲线CD 可以看成反比例函数图象的一部分.测量发现:90A E ∠=∠=︒ 5AE = 1AB DE == 点C 到AB AE 所在直线的距离分别为2 4.(1)小宁把A B C D E 这5个点先描到平面直角坐标系上 记点A 的坐标为()1,0-;点B 的坐标为()1,1-.请你在图②中补全平面直角坐标系并画出图形ABCDE ; (2)求直线BC 曲线CD 的函数表达式;(3)小宁想利用这块边角料截取一个矩形MNQP 其中M N 在AE 上(点M 在点N 左侧)点P 在线段BC 上 点Q 在曲线CD 上.若矩形的面积是53则=_________.参考答案1.答案:B解析:将三点坐标分别代入函数解析式8y x=得: 182x = 解得14x =; 28-1x =解得28x =-; 384x =解得; 824-<<故选:B. 2.答案:C解析:⊥点()26-,在函数ky x=的图象上 ⊥2(6)120k =⨯-=-< ⊥函数ky x=位于第二、四象限 在每个象限内 y 的值随x 的增大增大 ⊥()341212-⨯-=≠-⊥该函数的图象不经过点()34--,把=1x -代入12y x=求得12y = ⊥当10x -<<时 12y > 综上 只有选项C 说法正确 故选:C. 3.答案:A解析:当0a >时 一次函数图像经过第一、二、三象限 反比例函数图像位于一、三象限 可知A 符合题意;32x =231x x x ∴<<当0a <时 一次函数图像经过第二、三、四象限 反比例函数图像位于二、四象限 可知B C D 不符合题意.故选:A.4.答案:A解析:如图所示 作MN BA ⊥交BA 的延长线于N则12AMB S BA MN =⋅设点A 的坐标为16a a ⎛⎫- ⎪⎝⎭, <0aAB 所在直线垂直x 轴于点CB ∴点坐标为6a a ⎛⎫- ⎪⎝⎭,16610AB a a a ⎛⎫∴=---=- ⎪⎝⎭ MN a =()11101105222ABM S AB MN a a a a ⎛⎫⎛⎫∴=⋅=⨯-⨯=⨯-⨯-= ⎪ ⎪⎝⎭⎝⎭故选:A.5.答案:A解析:将OA 绕O 点顺时针旋转90︒到OC 连接AB 、CB作AM y ⊥轴于MCN x ⊥轴于N点A 的坐标为()3,53AM ∴= 5OM =45AOB ∠=︒45BOC ∠=︒∴在AOB 和COB △中OA OC AOB COBOB OB =⎧⎪∠=∠⎨⎪=⎩(SAS)AOB COB ∴△≌△AB CB ∴=90AOM AON CON AON ∠+∠=︒=∠+∠AOM CON ∴∠=∠ 在AOM 和CON 中AOM CON AMO ONCOA OC ∠=∠⎧⎪∠=∠⎨⎪=⎩ (AAS)AOM CON ∴△≌△3CN AM ∴== 5ON OM == (5,3)C ∴-点A 为反比例函数(0)k y x x=>图象上的点 3515k ∴=⨯= 15y x ∴=设B 点的坐标为15(,)m m AB CB =22221515(3)(5)(5)(3)m m m m ∴-+-=-++解得215m =(负数舍去)15215,B ⎛∴ ⎝⎭故选A.6.答案:B解析:作AC y ⊥轴于C BD y ⊥轴于D 如图点A 、B 分别在反比例函数1(0)y x x => 4(0)y x x=->的图象上 11122OAC S ∆∴=⨯= 1|4|22OBD ∆=⨯-=OA OB ⊥90AOB ∠=︒∴90AOC BOD ∴∠+∠=︒AOC DBO ∴∠=∠Rt AOC Rt OBD ∴∆∆∽ ∴212()2AOC OBD S OA S OB ∆∆== ∴12OA OB =. ∴2OB OA=. 故答案为B. 7.答案:B解析:设(0,)A b 根据题意(2,)C b - (2,2)B b -+点D 是AB 的中点(1,1)D b ∴-+点C 、D 在(k 0,x 0)k y x=≠>的图象上 2(1)k b b ∴=-=-+解得1b =22k b ∴=-=-故选:B.8.答案:C解析:设图象过蓄电池的电压是A 、B 选项正确 不符合题意;当=6ΩR 时 (A 6010)6I ==∴C 选项错误 符合题意;当10I =时 6R =由图象知:当10A I ≤时 6R ≥Ω∴D 选项正确 不符合题意;故选:C.9.答案:B解析:作CE y ⊥轴于点E 交双曲线于点G 作DF x ⊥轴于点F在24y x =-+中令0x = 解得4y =∴B 的坐标是(0,4)令0y = 解得2x =∴A 的坐标是(2,0)kI R =(5,12)60k ∴=60I R ∴=∴60V ∴4OB ∴= 2OA =90BAD ∠=︒90BAO DAF ∴∠+∠=︒直角ABO △中90BAO OBA ∠+∠=︒DAF OBA ∴∠=∠在OAB △和FDA △中DAF OBA BOA AFD AD AD ∠=∠⎧⎪∠=∠⎨⎪=⎩(AAS)OAB FDA ∴≌△△同理 OAB FDA BEC ≌≌△△△ 4AF OB EC ∴=== 2DF OA BE ===∴D 的坐标是(6,2) C 的坐标是(4,6)点D 在双曲线(0)k y k x=≠上 6212k ∴=⨯=∴函数的解析式是:12y x =把6y =代入12y x=得:2x = 422a ∴=-=故选B.10.答案:C解析:直线与x 轴 y 轴分别交于点A B(1,0)A ∴ (0,2)B -作EF x ⊥轴于F 如图所示:22y x =-四边形是平行四边形在和中E 点刚好在反比例函数图像上设C 的纵坐标为hABDE AE BD ∴=//DE AB DAE ADB ∴∠=∠AEF △DBO △EAF BDO AFE DOB AE BD ∠=∠⎧⎪∠=∠⎨⎪=⎩(AAS)AEF DBO ∴≌△△2EF OB ∴==AF OD =1DF OA ∴==(,)E m n 2m AD ∴=+2n =2(2)k mn AD ∴==+122AD k ∴=-//DE BC AED CED S S ∴=△△()11122222ACD CED ACD AED ACED S S S S S AD h AD AD h ∴=+=+=⋅+⋅=+四边形△△△△()12ACED S AD AD n =+四边形122h AD k ∴==-C 的纵坐标为代入得解得反比例函数图像经过点C 解得 20k =(舍去) 12k∴=故选:C.11.答案:D解析:有题意可知 当3y =时 33x= 解得=1x - ∴直线y kx =与双曲线3y x=在第二象限交点的坐标为1,3)- 由中心对称可得 直线y kx =与双曲线3y x=在第四象限交点的坐标为3)- ∴观察图象可得 不等式3kx x<的解集为10x <<或1x >. 故选:D.12.答案:B解析:由函数图象可知:当物距为45.0cm 时 像距为13.0cm 故选项A 说法正确;由函数图象可知:当像距为15.0cm 时 物距为300cm . 放大率为15.00.530.0= 故选项B 说法错误;由函数图象可知:物距越大 像距越小 故选项C 说法正确;由题意可知:当透镜的放大率为1时 物距和像距均为20cm 故选项D 说法正确 故选:B.13.答案:B解析:A.由图3得:当0h =时 0p = 故此项说法正确;122-22y x =-12222x -=-14x k =11(,2)42C k k ∴-(0)k y k x=>11(2)42k k k ∴-=112k =B.当报警器刚好开始报警时 260.310R =+ 解得210R =Ω 由图2可求得:2800R F =80010F∴= 解得80F N = 故此项说法错误; C.当报警器刚好开始报警时 由上得80F N = 则有800.01p =⨯ 8P p k a ∴= 由图3求得10p h = 810h = 解得:0.8h = 故此项说法正确;D.当报警器刚好开始报警时:1260.3R R =+ 1220R R ∴+=Ω 当1h =时 10110kPa p =⨯= 100000.01100F N ∴=⨯= 28008100R ==Ω 120812R ∴=-=Ω 故此项说法正确. 故选:B.14.答案:20h x = 解析:根据题意 得240x h ππ⋅= ⊥20h x=. 故答案为:20h x=. 15.答案:12m > 解析:由题意得 反比例函数12m y x -=的图象在二、四象限内 则120m -< 解得12m >. 故答案为12m >. 16.答案:213y y y << 解析:反比例函数2(1k k y x+=为常数) 210k +> ∴该函数图象在第一、三象限 在每个象限内y 随x 的增大而减小点1(1,)A y -、1(4B 2)y 、3(1,)C y 都在反比例函数2(1k k y x +=为常数)的图象上 114-<- 点A 、B 在第三象限 点C 在第一象限213y y y ∴<<故答案为:213y y y <<.17.答案:-3<x <0或x >3 解析:⊥直线y =kx 与双曲线y =m x的两个交点分别为P 和P ′ P (-3 1) ⊥P ′的坐标为(3 -1)当mx >kx 时 x 的取值范围为-3<x <0或x >3故答案为:-3<x <0或x >3. 18.答案:48解析:如图所示:过A '作EF OC ⊥于F 交AB 于E⊥90OA D '∠=︒90OA F DA E ∴∠'+∠'=︒⊥90A F AOF O ∠'+∠'=︒D AOF AE ∴'=∠'∠D A FO AE '=∠∠'A OF DA E ∴''∠△△设A '(m n )OF m ∴= A F n '=.正方形OABC 的边OC 、OA 分别在x 轴和y 轴上 OA =10点D 是边AB 上靠近点A 的三等分点∴ 103DE m = 10A E n '=-.310103m n m m ==-- 解得:m =6 n =8. ∴A '(6,8) ∴ 反比例函数中k =xy (0k ≠)=48 故答案为:48.19.答案:9解析:据题意可知(0,2)B 设(,)Cx y 52,sin OBC S BOC =∠=△1222x ∴⨯= 52xOC = 解得2,25x OC ==2225OC x y =+=即2425y +=得4y = 故(2,4)C 将(2,4)C 代入直线12y k x =+ 双曲线2(0)k y x x => 得到 121,8k k == 故12189k k +=+= 故答案为:9.20.答案:(0,22023解析:联立1y xy x =⎧⎪⎨=⎪⎩解得1x =由题意可知145AOB ∠=︒111B A OA ⊥11OA B ∴△为等腰直角三角形1122OB OA ∴==过2A 作22A H OB ⊥交y 轴于H 则容易得到21A H B H = 设21A H B H x == 则()2,2A x x +()21x x ∴+=解得121x = 221x =-(舍去)2121A H B H ∴== 1212222B B B H ==2222222OB ∴=+=同理可得323OB =则2n OB n =即(0,2n B n(20230,22023B ∴故答案为:(0,22023. 21.答案:(1)2y x = 1y x =+ (2)1x >或20x -<<(3)32解析:(1)反比例函数m y x =的图象过(2,1)--∴反比例函数的解析式为:2y x = 点(1),A n 在反比例函数图象上∴12n ⨯=∴2n =∴点A 的坐标为(1,2)将点A B 坐标代入一次函数y kx b =+中得221k b k b +=⎧⎨-+=-⎩解得11k b =⎧⎨=⎩∴一次函数的解析式为:1y x =+.(2)根据图象可知 不等式0m kx b x+>>的解集是:1x >或20x -<<. 故答案为:1x >或20x -<<; (3)过点A 作AG y ⊥轴于点G 过点B 作BH y ⊥轴于点H 如下图所示:一次函数1y x =+与y 轴相交于点C∴C 点坐标为(0,1)∴1OC =A 点坐标为(1,2)∴1AG =B 点坐标为(2,1)--∴2BH =∴11123222AOB AOC BOC S S S ⨯⨯=+=+=△△△. 22.答案:(1)18y x = (2)5 (3)463x <或63x << 解析:(1)⊥菱形OABC 的对角线交于点D⊥OD DB =⊥点B 的坐标为()48,⊥点D 的坐标为()24, 又⊥反比例函数11k y x=经过点D ⊥1248k =⨯= ⊥18y x =; (2)过点B 作BE y ⊥轴于点E设OA AB a == 则8AE a =- 4BE =在Rt ABE 中222BE AE AB += 即()22248x x +-= 解得:5x =⊥菱形OABC 的边长为5;(3)⊥点B 的坐标为()48, 5BC =⊥点C 的坐标为()43,代入22y k x =得:234k = 解得:234k =⊥234y x =令1y y = 则834x x = 解得:63x =±结合图象 不等式120k k x x -<的解集为463x <或463x <<.23.答案:(1))30y x =>(2)见解析(3)见解析解析:(1)过点C 作CF OA ⊥于点F 如解图所示.在Rt COF △中2OC = 60COF ∠=︒30sin 6023CF C ∴=⋅==︒1cos60212OF OC =⋅︒=⨯=.(1,3C ∴. 把(3C 代入反比例函数()0ky x x =>中得3k =∴反比例函数的表达式为)30y x =>.(2)如解图所示 所作射线CE 即为所求.(3)证明:在OABC 中//OC AB //CB OA .60AOC ∠=︒120OCB OAB ∴∠=∠=︒. CE 平分OCB ∠60OCE BCE OEC ∴∠=∠=∠=︒.DE CE ⊥90CED ∴∠=︒.180609030AED ∴∠=︒-︒-︒=︒.1801203030ADE ∴∠=︒-︒-︒=︒.AED ADE ∴∠=∠.AD AE ∴=.24.答案:(1)8 8y x= (2)01x << (3)S 的取值范围是2504S <≤ 解析:(1)⊥一次函数26y x =+的图象经过点()1,A m ⊥268m =+=⊥点()18A ,⊥反比例函数()0k y x x =>的图象经过点()18A , ⊥188k =⨯=⊥反比例函数的解析式为8y x=; 故答案为:8 8y x =;(2)观察图象得 26k x x+<的解集为1x <<; (3)设点P 的纵坐标为n ⊥点P 在线段AB 上 点M 在8y x =的图象上 ⊥0n << 点P 的横坐标为62n -⊥PM x ∥轴⊥点M 的坐标为8n n ⎛⎫ ⎪⎝⎭, ⊥862n MP n -=. ⊥()21186125322244PMBn S MP n n n n -⎛⎫=⨯⨯=⨯-⨯=--+ ⎪⎝⎭. ⊥08n << 且104-<⊥当03n <<时 S 随n 的增大而增大 当38n ≤<时 S 随n 的增大而减小. ⊥当3n =时 △的面积最大 最大值为254 ⊥S 的取值范围是2504S <≤. 25.答案:(1)抛物线的对称轴为直线2x =(2)点P 的坐标为32,2⎛⎫- ⎪⎝⎭ (3)y 的值随x 的增大而增大解析:(1)由题意得:2440b +=4b ∴=-∴函数关系式为:24y x x =-∴对称轴为:4222b x a -=-=-=; (2)由题意得:OP PB +的值最小 实际就是在同一直线一旁有两点 在直线上求点只要取O 点关于直线2x =对称的点 过AB 的直线与直线的交点就是点P设过AB 的直线为 由在上()4,0A 2x =3y kx =-()4,0B 3y kx =-得34k =334AB y x =-P 在直线2x =上332342y ∴=⨯-=-32,2P ⎛⎫∴- ⎪⎝⎭; (3)24y x x =-在x 轴下方的部分沿x 轴翻转当直线()0y x m m =+≠有两个不相同的解0∴∆> 2340m -⨯> 得94m <又0> 904m ∴<< 在反比例函数m y x=中 904m k <=< y 随x 的增大而减小. 26.答案:(1)点E 在该反比例函数的图象上 理由见解析(2)39y x =+ 323x <<解析:(1)六边形ABCDEF 为正六边形 23AB =23AB AF ∴== 60FAO =︒cos 603OA AF ∴=⋅︒= sin603AF =⋅︒=()0,3F ∴ )3,0A 连接PF PA六边形ABCDEF 为正六边形PE PF PA PB ∴=== 60EPF FPA APB ∠=∠=∠=︒EFP ∴△ FAP △ ABP △为等边三角形23AF PF ∴==()23,3P ∴ 把()23,3P 代入1k y x =得:23=解得:63k =043k ∴=-∴反比例函数表达式为163y x=. EFP △ FAP △为等边三角形∴点E 和点A 关于PF 对称)3,6E ∴ 把3x =代入163y x =得:13663y == ∴点E 在该反比例函数的图象上; (2)把()3,6E ()23,3P 代入()20y ax b a =+≠得: 6333a b a b ⎧=+⎪⎨=+⎪⎩ 解得:39a b ⎧=-⎪⎨=⎪⎩∴直线EP 的解析式为:39y x =+()3,6E ()23,3P由图可知 当323x <<时 k b x +>. 27.答案:(1)见解析(2)直线BC 的函数表达式3522y x =曲线的函数表达式4y x= (3)72 解析:(1)根据点A 的坐标为()1,0- 点B 的坐标为()1,1- 补全x 轴和y 轴 90A E ∠︒∠== 5AE = 1AB DE == 点C 到AB AE 所在直线的距离分别为2 4 ()1,4C ∴ ()4,1D根据AB BC DE EA 是线段 曲线CD 是反比例函数图象的一部分 画出图形ABCDE如图所示 (2)设线段BC 的解析式为y kx b =+ 把()1,1B - ()1,4C 代入得 14k b k b -+=⎧⎨+=⎩解得 3252k b ⎧=⎪⎪⎨⎪=⎪⎩3522y x ∴=+设曲线CD 的解析式为'k y x =把()1,4C 代入得 '41k = '4= 4y x ∴=; (3)设(),0M m 则35,22P m m ⎛⎫+ ⎪⎝⎭ 435,352222Q m m ⎛⎫ ⎪+ ⎪ ⎪+⎝⎭3522PM m ∴=+ 43522m m =-+354352222PM PQ m m m ⎛⎫ ⎪⎛⎫⋅=+- ⎪ ⎪⎝⎭ ⎪+⎝⎭23554223m m ∴--= 2915140m m ∴+-= 23m ∴= 或73m =-(舍去) 32572322PM ∴=⨯+=. 故答案为:72.。

反比例函数的应用题

反比例函数的应用题

反比例函数的应用题一.解答题(共30小题)1.将油箱注满k升油后,轿车可行驶的总路程S(单位:千米)与平均耗油量a(单位:升/千米)之间是反比例函数关系S=k/a (k是常数,k≠0).已知某轿车油箱注满油后,以平均耗油量为每千米耗油0.1升的速度行驶,可行驶700千米.(1)求该轿车可行驶的总路程S与平均耗油量a之间的函数解析式(关系式);(2)当平均耗油量为0.08升/千米时,该轿车可以行驶多少千米?2.如图,直线y=-x+3与x,y轴分别交于点A,B,与反比例函数的图象交于点P(2,1).(1)求该反比例函数的关系式;(2)设PC⊥y轴于点C,点A关于y轴的对称点为A′;①求△A′BC的周长和sin∠BA′C的值;②对大于1的常数m,求x轴上的点M的坐标,使得sin∠BMC= 1/m.3.为了预防流感,学校对教室进行“药熏消毒”.已知药物燃烧阶段,室内每立方米空气中的含药量y(mg)与燃烧时间x(min)成正比,燃烧后,y与x成反比(如图),现测得药物10min燃烧完,此时,教室内每立方米空气含药量为16mg.已知每立方米空气中含药量低于4mg时对人体无害,那么从消毒开始经多长时间后学生才能进教室?4.如图,点A(3,1),B(-1,n)是一次函数y1=ax+b 和反比例函数y2=k/x 图象的交点,(1)求两个函数的解析式(2)观察图象直接写出y1≥y2自变量x的取值范围.(3)在平面内求一点M,使△AOM是以OA为直角边等腰直角三角形.如果还存在其他点M,直接写出答案.5.如图,直线AB与x轴、y轴分别交于点A和点B,且OA=OB=1.点P(a、b)是双曲线y=1/2x上任意一点,过点P向x轴、y轴作垂线PM、PN,垂足是M、N,直线AB分别交PM、PN于点E、F.(1)求点E、F的坐标(用a的代数式表示点E的坐标,用b的代数式表示点F的坐标,只须写出结果,不要求写出计算过程);(2)△AOF与△BOE是否相似?若相似,请给出证明;若不相似,请说明理由.(3)当点P在双曲线y=1/2x 上移动时,∠EOF大小是否始终保持不变?若是,求∠EOF度数;若不是,请说明理由.6.如图,反比例函数y1= k/x(k<0)的图象经过点A(-√3,m),连结AO并延长交双曲线于另一点D,过A作AB⊥x轴于点B,过D作DE⊥y轴交AB延长线于点E,且△AED 的面积为4 √3(1)求m与k的值;(2)若过A点的直线y2=ax+b与x轴正半轴交于C点,且∠ACO=30°,求直线解析式;(3)当y1>y2时,请直接写出自变量x的取值范围.7.已知直线y=4-x与x轴、y轴分别相交于C、D两点,有反比例函数y=m/x (m>0,x >0)的图象与之在同一坐标系.(1)若直线y=4-x与反比例函数图象相切,求m的值(2)如图1,若两图象相交于A、B两点,其中点A的横坐标为1,利用函数图象求关于x的不等式4-x<m/x的解集;(3)在(2)的情况下,过点A向y轴作垂线AM,垂足为M,如图2,有一动点P从原点O出发沿O→B→A→M(BA段为曲线)的路线运动,点P的横坐标为a,由点p分别向x、y轴作垂线,垂足为E、F,四边形OEPF的面积为S,求S关于a的函数关系式.8.反比例函数y= k/x与一次函数y=kx+1交于点P(1/2 ,m).(1)求反比例函数和一次函数的解析式;(2)若反比例函数与直线的另一个交点是Q,反比例函数上的一点M满足:∠PQM=60°,求M的坐标.9.工匠制作某种金属工具要进行材料煅烧和锻造两个工序,即需要将材料烧到800℃,然后停止煅烧进行锻造操作,经过8min时,材料温度降为600℃.煅烧时温度y(℃)与时间x(min)成一次函数关系;锻造时,温度y(℃)与时间x(min)成反比例函数关系(如图).已知该材料初始温度是32℃.(1)分别求出材料煅烧和锻造时y与x的函数关系式,并且写出自变量x的取值范围;(2)根据工艺要求,当材料温度低于480℃时,须停止操作.那么锻造的操作时间有多长?10.某地计划用120-180天(含120与180天)的时间建设一项水利工程,工程需要运送的土石方总量为360万米3.(1)写出运输公司完成任务所需的时间y(单位:天)与平均每天的工作量x(单位:万米3)之间的函数关系式,并给出自变量x的取值范围;(2)由于工程进度的需要,实际平均每天运送土石比原计划多5000米3,工期比原计划减少了24天,原计划和实际平均每天运送土石方各是多少万米3?11.某车队要把4000吨货物运到雅安地震灾区(方案定后,每天的运量不变).(1)从运输开始,每天运输的货物吨数n(单位:吨)与运输时间t(单位:天)之间有怎样的函数关系式?(2)因地震,到灾区的道路受阻,实际每天比原计划少运20%,则推迟1天完成任务,求原计划完成任务的天数.12.如图,平面直角坐标系中,直线y=1/2 x+ 1/2与x轴交于点A,与双曲线y=k/x 在第一象限内交于点B,BC丄x轴于点C,OC=2AO.求双曲线的解析式.13.如图,矩形OABC的顶点A、C分别在x轴和y轴上,点B的坐标为(2,3).双曲线y=k/x (x>0)的图象经过BC的中点D,且与AB交于点E,连接DE.(1)求k的值及点E的坐标;(2)若点F是OC边上一点,且△FBC∽△DEB,求直线FB的解析式.14.据媒体报道,近期“禽流感H7N9”可能进入发病高峰期,某校根据《学校卫生工作条例》,为预防“禽流感H7N9”,对教室进行“薰药消毒”.已知药物在燃烧释放过程中,室内空气中每立方米含药量y(毫克)与燃烧时间x(分钟)之间的系如图所示(即图中线段OA和双曲线在A点及其右侧的部分),根据图象所示信息,解答下列问题:(1)写出从药物释放开始,y与x之间的函数关系式及自变量取值范围;(2)据测定,当空气中每立方米的含药量低于2毫克时,对人体无毒害作用,那么从消毒开始,至少在多长时间内,师生不能进入教室?15.如图,反比例函数图象在第一象限的分支上有一点C(1,3),过点C的直线y=kx+b 〔k<0〕与x轴交于点A.(1)求反比例函数的解析式;(2)当直线与反比例函数的图象在第一象限内的另一交点的横坐标为3时,求△COD的面积.16.已知四边形ABCD是菱形,在平面直角坐标系中的位置如图,边AD经过原点O,已知A(0,-3),B(4,0).(1)求点D的坐标;(2)求经过点C的反比例函数解析式.17.如图,B为双曲线y=1/x (x>0)上一点,直线AB平行于y轴交直线y=x于点A,求(OB+AB)(OB-AB)的值.18.如图,Rt△OAB在平面直角坐标系,直角顶点B在x轴的正半轴上,已知∠OBA=90°,OB=3,sin∠AOB=4/5 .反比例函数P(x>0)的图象经过点A.(1)求反比例函数的解析式;(2)若点C(m,2)是反比例函数B(x>0)图象上的点.①在x轴上是否存在点P,使得PA+PC最小?若存在,求出点P的坐标;若不存在,说明理由.②在x轴上是否存在点Q,使得QA与QC的差最大?若存在,求出点Q的坐标;若不存在,说明理由.19.南宁市某生态示范村种植基地计划用90亩~120亩的土地种植一批葡萄,原计划总产量要达到36万斤.(1)列出原计划种植亩数y(亩)与平均每亩产量x(万斤)之间的函数关系式,并写出自变量x的取值范围;(2)为了满足市场需求,现决定改良葡萄品种.改良后平均每亩产量是原计划的1.5倍,总产量比原计划增加了9万斤,种植亩数减少了20亩,原计划和改良后的平均每亩产量各是多少万斤?20.蓄电池的电压为定值,使用此电源时,电流I(A)是电阻R(Ω)的反比例函数,其图象如图所示.(1)求这个反比例函数的表达式;(2)当R=10Ω时,电流能是4A吗?为什么?21.如图,等腰梯形ABCD放置在平面直角坐标系中,已知A(-2,0)、B(6,0)、D (0,3),反比例函数的图象经过点C.(1)求点C坐标和反比例函数的解析式;(2)将等腰梯形ABCD向上平移m个单位后,使点B恰好落在双曲线上,求m的值.22.某校根据《学校卫生工作条例》,为预防“手足口病”,对教室进行“薰药消毒”.已知药物在燃烧释放过程中,室内空气中每立方米含药量y(毫克)与燃烧时间x(分钟)之间的关系如图所示(即图中线段OA和双曲线在A点及其右侧的部分),根据图象所示信息,解答下列问题:(1)写出从药物释放开始,y与x之间的函数关系式及自变量的取值范围(2)据测定,只有当空气中每立方米的含药量不低于5毫克时,对预防才有作用,且至少持续作用20分钟以上,才能完全杀死这种病毒,请问这次消毒是否彻底?23.如图,点B的坐标是(4,4),作BA⊥x轴于点A,作BC⊥y轴于点C,反比例函数y=k/x(k>0)的图象经过BC的中点E,与AB交于点F,分别连接OE、CF,OE与CF 交于点M,连接AM.(1)求反比例函数的函数解析式及点F的坐标;(2)你认为线段OE与CF有何位置关系?请说明你的理由.(3)求证:AM=AO.24.如图,梯形OABC,AB∥OC,∠B=90°,BC=2,底边OC与x轴重合,点D为BC的中点,且AD⊥OD.(1)求证:△ABD∽△DCO;(2)若双曲线y=k/x(x>0)经过点A 和点D,求k的值.25.如图,点P(4,3)是双曲线y=k1/x上一点,过点P作x轴、y轴的垂线,分别交x 轴、y轴于A、B两点,交双曲线y=k2/x (k2>0)于E、F两点.(1)k1= 12,四边形PAOB 的面积S= 12;(2)试判断AB与EF的位置关系,并说明理由.26.如图所示,制作一种产品的同时,需将原材料加热,设该材料温度为y℃,从加热开始计算的时间为x分钟.据了解,该材料在加热过程中温度y与时间x成一次函数关系,已知该材料在加热前的温度为15℃,加热5分钟使材料温度达到60℃时停止加热,停止加热后,材料温度逐渐下降,这时温度y与时问x成反比例函数关系.(1)分别求出该材料加热和停止加热过程中y与x的函数关系(要写出x的取值范围);(2)根据工艺要求,在材料温度不低于30℃的这段时间内,需要对该材料进行特殊处理,那么对该材料进行特殊处理所用的时间为多少分钟?27.如图,已知直线AB与x轴交于点C,与双曲线y=k/x交于A(3,20/3 )、B(-5,a)两点.AD⊥x轴于点D,BE∥x轴且与y轴交于点E.(1)求点B的坐标及直线AB的解析式;(2)判断四边形CBED的形状,并说明理由.28.如图,已知反比例函数y=m/x (x>0)的图象与一次函数y=-x+b的图象分别交于A(1,3)、B两点.(1)求m、b的值;(2)若点M是反比例函数图象上的一动点,直线MC⊥x 轴于C,交直线AB于点N,MD⊥y轴于D,NE⊥y轴于E,设四边形MDOC、NEOC的面积分别为S1、S2,S=S2-S1,求S的最大值.29.如图,正比例函数y=1/2x的图象与反比例函数y=k/x(k≠0)在第一象限的图象交于A点,过A点作x轴的垂线,垂足为M,已知△OAM的面积为1.(1)求反比例函数的解析式;(2)如果B为反比例函数在第一象限图象上的点(点B与点A不重合),且B 点的横坐标为1,在x轴上找一点P,使PA+PB最小.求P点坐标?30.如图,在直角坐标平面内,函数y=m/x(x>0,m是常熟)的图象经过A(1,4),B (a,b),其中a>1,过点A作x轴垂线,垂足为C,过点B作y轴垂线,垂足为D,连接AD,DC,CB(Ⅰ)求函数y=m/x 的解析式;(Ⅱ)若△ABD的面积为4,求点B的坐标.。

(完整版)反比例函数练习题集锦(含答案)

(完整版)反比例函数练习题集锦(含答案)

反比例函数练习题集锦(含答案)1、综合题1、如图,已知直线与双曲线交于两点,且点的横坐标为.(1)求的值;(2)若双曲线上一点的纵坐标为8,求的面积;(3)过原点的另一条直线交双曲线于两点(点在第一象限),若由点为顶点组成的四边形面积为,求点的坐标.2、已知一次函数与双曲线在第一象限交于A、B两点,A点横坐标为1.B点横坐标为4(1)求一次函数的解析式;(2)根据图象指出不等式的解集;(2) 点P是x轴正半轴上一个动点,过P点作x轴的垂线分别交直线和双曲线于M、N,设P点的横坐标是t(t>0),△OMN的面积为S,求S和t的函数关系式,并指出t的取值范围。

二、简答题3、.已知:如图,在平面直角坐标系中,直线AB 分别与轴交于点B、A,与反比例函数的图象分别交(1)求该反比例函数的解析式;(2)求直线AB的解析式.4、如图,已知正比例函数与反比例函数的图象交于两点.(1)求出两点的坐标;的范围;(2)根据图象求使正比例函数值大于反比例函数值的三、计算题5、为了预防流感,某学校在休息天用药熏消毒法对教室进行消毒。

已知药物释放过程中,室内每立方米空气中含药量y(毫克)与时间t(小时)成正比;药物释放完毕后,y与t 的函数关系为(为常数)。

如下图所示,据图中提供的信息,解答下列问题:(1)写出从药物释放开始,y与t之间的两个函数关系式及相应的自变量取值范围;(2)据测定,当空气中每立方米和含药量降低到0.25毫克以下时,学生方可进入教室,那么从药物释放开始,至少需要经过多少小时后,学生才能进入教室?6、如图,在直角坐标系xOy中,一次函数y=k1x+b 的图象与反比例函数的图象交于A(1,4).B(3,m)两点。

(1)求一次函数的解析式;的面积。

(2)求△AOB7、如图,一次函数y=kx+b的图象与反比例函数y=图象交于A(-2,1)、B(1,n)两点.(1) 求反比例函数和一次函数的解析式.(2)根据图象写出使一次函数的值大于反比例函数的值的x的取值范围.(1)试确定上述反比例函数和一次函数的表达式;(2)求△AOB的面积。

反比例函数考试题(含答案)

反比例函数考试题(含答案)

反比例函数考试题(含答案)1. 对于反比例函数 $y = \frac{k}{x}$,已知 $y = 3$ 时,$x = 6$,求 $k$ 的值。

解答:当 $y=3$,$x=6$ 时,代入原函数得:$$3 = \frac{k}{6}$$解出 $k=18$,因此反比例函数为 $y=\frac{18}{x}$。

2. 已知反比例函数 $y=\frac{6}{x}$ 的图像和 $y=-12$ 的水平渐近线,求该反比例函数图像的方程和垂直渐近线方程。

解答:由于已知 $y=-12$ 是反比例函数的水平渐近线,因此 $y$ 趋向于 $0$ 时,$x$ 的值趋近于无穷大或负无穷大,即垂直于 $x$ 轴。

反比例函数的图像为双曲线,因此垂直渐近线分别为 $x=0$ 和$y=0$。

同时,已知 $y=\frac{6}{x}$,可得 $x=\frac{6}{y}$。

将其化简可得反比例函数的图像方程为 $xy=6$。

因此该反比例函数的图像方程为 $xy=6$,垂直渐近线方程为$x=0$ 和 $y=0$。

3. 已知反比例函数 $y=\frac{12}{x-1}$ 的图像和点 $P(5, 2)$,求 $P$ 点在反比例函数图像上的对称点 $Q$ 的坐标。

解答:首先,求出点$P$ 关于直线$x=1$ 的对称点$P'(p,q)$ 的坐标。

由于直线 $x=1$ 为反比例函数 $y=\frac{12}{x-1}$ 的渐近线,因此$P$ 点到该直线的距离为 $0$。

点 $P$ 到直线 $x=1$ 的距离公式为:$$d(P, x=1)=\frac{|\ ax+by+c\ |}{\sqrt{a^2+b^2}}$$将反比例函数化为标准形式 $y=\frac{12}{x-1}$,可得:$$d(P, x=1)=\frac{|\ x-1\ |}{\sqrt{1+0}}=5-1=4$$因此,点 $P$ 到直线 $x=1$ 的距离为 $4$。

点 $P'$ 在直线$x=1$ 上,因此其 $x$ 坐标为 $1$,根据点 $P$ 和 $P'$ 的对称性,其 $y$ 坐标应该等于 $2-4=-2$。

完整版)反比例函数经典习题及答案

完整版)反比例函数经典习题及答案

完整版)反比例函数经典习题及答案反比例函数练题1.下列函数中,经过点(1.-1)的反比例函数解析式是()A。

y = 1/xB。

y = -1/xC。

y = 2/xD。

y = -2/x2.反比例函数y = -(k/ x)(k为常数,k ≠ 0)的图象位于()A。

第一、二象限B。

第一、三象限C。

第二、四象限D。

第三、四象限3.已知反比例函数y = (k - 2)/x的图象位于第一、第三象限,则k的取值范围是()A。

k。

2B。

k ≥ 2C。

k ≤ 2D。

k < 24.反比例函数y = k/x的图象如图所示,点M是该函数图象上一点,MN垂直于x轴,垂足是点N,如果三角形MON 的面积是2,则k的值为()A。

2B。

-2C。

4D。

-45.对于反比例函数y = 2/x,下列说法不正确的是()A。

点(-2.-1)在它的图象上B。

它的图象在第一、三象限C。

当x。

0时,y随x的增大而增大D。

当x < 0时,y随x的增大而减小6.反比例函数y = (2m - 1)x/(m^2 - 2),当x。

0时,y随x 的增大而增大,则m的值是()A。

±1B。

小于1的实数C。

-1D。

1/27.如图,P1、P2、P3是双曲线上的三点,过这三点分别作y轴的垂线,得到三个三角形P1A1O、P2A2O、P3A3O,设它们的面积分别是S1、S2、S3,则()。

A。

S1 < S2 < S3B。

S2 < S1 < S3C。

S3 < S1 < S2D。

S1 = S2 = S38.在同一直角坐标系中,函数y = -2与y = 2x的图象的交点个数为()A。

3B。

2C。

1D。

09.已知甲、乙两地相距s(km),汽车从甲地匀速行驶到乙地,则汽车行驶的时间t(h)与行驶速度v(km/h)的函数关系图象大致是()10.如图,直线y = mx与双曲线y = k/(x-2)交于A、B两点,过点A作AM⊥x轴,垂足为M,连结BM,若三角形ABM的面积为2,则k的值是()A。

反比例函数的应用

反比例函数的应用

一、解答题(共30小题)1、如图,直线与双曲线交于点A、B两点,且点A的横坐标为4,(1)求k的值;(2)若双曲线上一点C的纵坐标为1,过点C作CD垂直x轴于点D,求△AOD的面积.2、若矩形的长为x,宽为y,面积保持不变,下表给出了x与y的一些值求矩形面积.(1)请你根据表格信息写出y与x之间的函数关系式;(2)根据函数关系式完成上表.3、我们学习过反比例函数,例如,当矩形面积一定时,长a是宽b的反比例函数,其函数关系式可以写为(s为常数,s≠0).请你仿照上例另举一个在日常生活、生产或学习中具有反比例函数关系的量的实例,并写出它的函数关系式.实例:三角形的面积S一定时,三角形底边长y是高x的反比例函数;函数关系式:_________(s为常数,s≠0).4、已知经过闭合电路的电流I与电路的电阻R是反比例函数关系,请根据表格已知条件求出I与R的反比例函数关系式,并填写表格中的空格.5、有一水池装水12m2,如果从水管中1h流出xm3的水,则经过yh可以把水放完,写出y 与x的函数关系式及自变量x的取值范围.6、面积一定的梯形,其上底长是下底长的,设上底长为xcm,高为ycm,且当x=5cm,y=6cm,(1)求y与x的函数关系式;(2)求当y=4cm时,下底长多少?7、已知一个长方体的体积是100cm3,它的长是ycm,宽是10cm,高是xcm.(1)写出y与x之间的函数关系式;(2)当x=2cm时,求y的值.8、某三角形的面积为15cm2,它的一边长为xcm,且此边上高为ycm,请写出x与y之间的关系式,并求出x=5时,y的值.9、某工厂现有煤200吨,这些煤能烧的天数y与平均每天烧煤的吨数x之间的函数关系式是y=_________.10、甲、乙两地相距100km,一辆汽车从甲地开往乙地,把汽车到达乙地所用的时间t(h)表示为汽车速度v(km/h)的函数,并说明t是v的什么函数.11、某气球内充满了一定量的气体,当温度不变时,气球内气体的气压p(kPa)是气体体积V(m3)的反比例函数,其图象如图所示.(1)求这一函数的解析式;(2)当气体体积为1m3时,气压是多少?(3)当气球内的气压大于140kPa时,气球将爆炸,为了安全起见,气体的体积应不小于多少?(精确到0.01m3)12、如图,E为矩形ABCD的边CD上的一个动点,BF⊥AE于F,AB=2,BC=4,设AE=x,BF=y,求y与x之间的关系式,并写出x的取值范围.13、(2011•河池)如图,李老师设计了一个探究杠杆平衡条件的实验:在一个自制类似天平的仪器的左边固定托盘A中放置一个重物,在右边的活动托盘B(可左右移动)中放置一定质量的砝码,使得仪器左右平衡,改变活动托盘B与点O的距离x(cm),观察活动托盘B 中砝码的质量y(g)的变化情况.实验数据记录如下表:(1)把上表中(x,y)的各组对应值作为点的坐标,在坐标系中描出相应的点,用平滑曲线连接这些点;(2)观察所画的图象,猜测y与x之间的函数关系,求出函数关系式并加以验证;(3)当砝码的质量为24g时,活动托盘B与点O的距离是多少cm?(4)当活动托盘B往左移动时,应往活动托盘B中添加还是减少砝码?14、(2011•大庆)如图所示,制作一种产品的同时,需将原材料加热,设该材料温度为y℃,从加热开始计算的时间为x分钟.据了解,该材料在加热过程中温度y与时间x成一次函数关系,已知该材料在加热前的温度为l5℃,加热5分钟使材料温度达到60℃时停止加热,停止加热后,材料温度逐渐下降,这时温度y与时问x成反比例函数关系.(1)分别求出该材料加热和停止加热过程中y与x的函数关系(要写出x的取值范);(2)根据工艺要求,在材料温度不低于30℃的这段时间内,需要对该材料进行特殊处理,那么对该材料进行特殊处理所用的时间为多少分钟?15、(2011•郴州)用洗衣粉洗衣物时,漂洗的次数与衣物中洗衣粉的残留量近似地满足反比例函数关系.寄宿生小红、小敏晚饭后用同一种洗衣粉各自洗一件同样的衣服,漂洗时,小红每次用一盆水(约10升),小敏每次用半盆水(约5升),如果她们都用了5克洗衣粉,第一次漂洗后,小红的衣服中残留的洗衣粉还有1.5克,小敏的衣服中残留的洗衣粉还有2克.(1)请帮助小红、小敏求出各自衣服中洗衣粉的残留量y与漂洗次数x的函数关系式;(2)当洗衣粉的残留量降至0.5克时,便视为衣服漂洗干净,从节约用水的角度来看,你认为谁的漂洗方法值得提倡,为什么?16、(2010•湛江)病人按规定的剂量服用某种药物,测得服药后2小时,每毫升血液中的含药量达到最大值为4毫克,已知服药后,2小时前每毫升血液中的含药量y(毫克)与时间x(小时)成正比例,2小时后y与x成反比例(如图所示).根据以上信息解答下列问题.(1)求当0≤X≤2时,y与x的函数关系式;(2)求当x>2时,y与x的函数关系式;(3)若每毫升血液中的含药量不低于2毫克时治疗有效,则服药一次,治疗疾病的有效时间是多长?17、(2010•泰州)保护生态环境,建设绿色社会已经从理念变为人们的行动.某化工厂2009年1月的利润为200万元.设2009年1月为第1个月,第x个月的利润为y万元.由于排污超标,该从2009年1月底起适当限产,并投入资金进行治污改造,导致月利润明显下降,从1月到5月,y与x成反比例.到5月底,治污改造工程顺利完工,从这时起,该厂每月的利润比前一个月增加20万元(如图).(1)分别求该化工厂治污期间及改造工程顺利完工后y与x之间对应的函数关系式.(2)治污改造工程顺利完工后经过几个月,该厂利润才能达到200万元?(3)当月利润少于100万元时为该厂资金紧张期,问该厂资金紧张期共有几个月?18、(2010•嘉兴)一辆汽车匀速通过某段公路,所需时间t(h)与行驶速度v(km/h)满足函数关系:t=,其图象为如图所示的一段曲线且端点为A(40,1)和B(m,0.5).(1)求k和m的值;(2)若行驶速度不得超过60km/h,则汽车通过该路段最少需要多少时间?19、(2010•丹东)某服装厂承揽一项生产夏凉小衫1600件的任务,计划用t天完成.(1)写出每天生产夏凉小衫w(件)与生产时间t(天)(t>4)之间的函数关系式;(2)由于气温提前升高,商家与服装厂商议调整计划,决定提前4天交货,那么服装厂每天要多做多少件夏凉小衫才能完成任务?20、(2010•达州)近年来,我国煤矿安全事故频频发生,其中危害最大的是瓦斯,其主要成分是CO.在一次矿难事件的调查中发现:从零时起,井内空气中CO的浓度达到4mg/L,此后浓度呈直线型增加,在第7小时达到最高值46mg/L,发生爆炸;爆炸后,空气中的CO 浓度成反比例下降.如图所示,根据题中相关信息回答下列问题:(1)求爆炸前后空气中CO浓度y与时间x的函数关系式,并写出相应的自变量取值范围;(2)当空气中的CO浓度达到34mg/L时,井下3km的矿工接到自动报警信号,这时他们至少要以多少km/h的速度撤离才能在爆炸前逃生?(3)矿工只有在空气中的CO浓度降到4mg/L及以下时,才能回到矿井开展生产自救,求矿工至少在爆炸后多少小时才能下井?21、(2009•枣庄)为预防“手足口病”,某校对教室进行“药熏消毒”.已知药物燃烧阶段,室内每立方米空气中的含药量y(mg)与燃烧时间x(分钟)成正比例;燃烧后,y与x成反比例(如图所示).现测得药物10分钟燃烧完,此时教室内每立方米空气含药量为8 mg.根据以上信息,解答下列问题:(1)求药物燃烧时y与x的函数关系式;(2)求药物燃烧后y与x的函数关系式;(3)当每立方米空气中含药量低于1.6 mg时,对人体无毒害作用.那么从消毒开始,经多长时间学生才可以返回教室?22、(2009•衢州)水产公司有一种海产品共2 104千克,为寻求合适的销售价格,进行了8天试销,试销情况如下:观察表中数据,发现可以用反比例函数刻画这种海产品的每天销售量y(千克)与销售价格x(元/千克)之间的关系.现假定在这批海产品的销售中,每天的销售量y(千克)与销售价格x(元/千克)之间都满足这一关系.(1)写出这个反比例函数的解析式,并补全表格;(2)在试销8天后,公司决定将这种海产品的销售价格定为150元/千克,并且每天都按这个价格销售,那么余下的这些海产品预计再用多少天可以全部售出?(3)在按(2)中定价继续销售15天后,公司发现剩余的这些海产品必须在不超过2天内全部售出,此时需要重新确定一个销售价格,使后面两天都按新的价格销售,那么新确定的价格最高不超过每千克多少元才能完成销售任务?23、(2009•河池)为了预防流感,某学校在休息天用药熏消毒法对教室进行消毒.已知药物释放过程中,室内每立方米空气中的含药量y(毫克)与时间x(分钟)成正比例;药物释放完毕后,y与x成反比例,如图所示.根据图中提供的信息,解答下列问题:(1)写出从药物释放开始,y与x之间的两个函数关系式及相应的自变量取值范围;(2)据测定,当空气中每立方米的含药量降低到0.45毫克以下时,学生方可进入教室,那么从药物释放开始,至少需要经过多少小时后,学生才能进入教室?24、(2008•镇江)如图,奥运圣火抵达某市奥林匹克广场后,沿图中直角坐标系中的一段反比例函数图象传递.动点T(m,n)表示火炬位置,火炬从离北京路10米处的M点开始传递,到离北京路1000米的N点时传递活动结束.迎圣火临时指挥部设在坐标原点O(北京路与奥运路的十字路口),OATB为少先队员鲜花方阵,方阵始终保持矩形形状且面积恒为10000平方米(路线宽度均不计).(1)求图中反比例函数的关系式(不需写出自变量的取值范围);(2)当鲜花方阵的周长为500米时,确定此时火炬的位置(用坐标表示);(3)设t=m﹣n,用含t的代数式表示火炬到指挥部的距离;当火炬离指挥部最近时,确定此时火炬的位置(用坐标表示).25、(2008•太原)人的视觉机能受运动速度的影响很大,行驶中司机在驾驶室内观察前方物体时是动态的,车速增加,视野变窄.当车速为50km/h时,视野为80度.如果视野f(度)是车速v(km/h)的反比例函数,求f,v之间的关系式,并计算当车速为100km/h时视野的度数.26、(2008•苏州)如图,帆船A和帆船B在太湖湖面上训练,O为湖面上的一个定点,教练船静候于O点.训练时要求A,B两船始终关于O点对称.以O为原点,建立如图所示的坐标系,x轴,y轴的正方向分别表示正东、正北方向.设A,B两船可近似看成在双曲线y=上运动.湖面风平浪静,双帆远影优美.训练中当教练船与A,B两船恰好在直线y=x上时,三船同时发现湖面上有一遇险的C船,此时教练船测得C船在东南45°方向上,A船测得AC与AB的夹角为60°,B船也同时测得C船的位置(假设C船位置不再改变,A,B,C三船可分别用A,B,C三点表示).(1)发现C船时,A,B,C三船所在位置的坐标分别为A(_________),B(_________)和C(_________);(2)发现C船,三船立即停止训练,并分别从A,O,B三点出发船沿最短路线同时前往救援,设A,B两船的速度相等,教练船与A船的速度之比为3:4,问教练船是否最先赶到?请说明理由.27、(2008•庐阳区)小华家离学校500m,小华步行上学需xmin,那么小华步行速度y(m/min)可以表示为y=;水平地面上重500N的物体,与地面的接触面积为xm2,那么该物体对地面压强y(N/m2)可以表示为y=;…,函数关系式y=还可以表示许多不同情境中变量之间的关系,请你再列举出一例.28、(2008•淮安)某项工程需要沙石料2×106立方米,阳光公司承担了该工程运送沙石料的任务.(1)在这项任务中平均每天的工作量v(立方米/天)与完成任务所需要的时间t(天)之间具有怎样的函数关系写出这个函数关系式.(2)阳光公司计划投入A型卡车200辆,每天一共可以运送沙石料2×104立方米,则完成全部运送任务需要多少天如果工作了25天后,由于工程进度的需要,公司准备再投入A型卡车120辆.在保持每辆车每天工作量不变的前提下,问:是否能提前28天完成任务?29、(2008•杭州)为了预防流感,某学校在休息天用药熏消毒法对教室进行消毒.已知药物释放过程中,室内每立方米空气中的含药量y(毫克)与时间t(小时)成正比;药物释放完毕后,y与t的函数关系式为y=(a为常数),如图所示.据图中提供的信息,解答下列问题:(1)写出从药物释放开始,y与t之间的两个函数关系式及相应的自变量的取值范围;(2)据测定,当空气中每立方米的含药量降低到0.25毫克以下时,学生方可进入教室,那么从药物释放开始,至少需要经过多少小时后,学生才能进入教室?30、(2007•义乌市)2006义乌市经济继续保持平稳较快的增长态势,全市实现生产总值3.5206×1010元,已知全市生产总值=全市户籍人口×全市人均生产产值,设义乌市2006年户籍人口为x(人),人均生产产值为y(元).(1)求y关于x的函数关系式;(2)2006年义乌市户籍人口为706 684人,求2006年义乌市人均生产产值(单位:元,结果精确到个位):若按2006年全年美元对人民币的平均汇率计(1美元=7.96元人民币),义乌市2006年人均生产产值是否已跨越6000美元大关?。

反比例函数的应用专题练习(含答案)

反比例函数的应用专题练习(含答案)

初二数学反比例函数的应用课后练习(答题时间:60分钟)一、选择题1. 某厂现有300吨煤,这些煤能烧的天数y 与平均每天烧的吨数x 之间的函数关系是( )A . x y 300=(x >0)B . xy 300=(x≥0) C . y =300x (x≥0) D . y =300x (x >0)2. 根据物理学家波义耳1662年的研究结果:在温度不变的情况下,气球内气体的压强p (Pa )与它的体积V (m 3)的乘积是一个常数k ,即pV =k (k 为常数,k >0),下列图象能正确反映p 与V 之间函数关系的是( )3. 小华以每分钟x 字的速度书写,y 分钟写了300字,则y 与x 的函数关系为( )A . x=300yB . y=300x (0>x )C . x+y=300D . y=300x x- 二、解答题4. 王大爷家需要建一个面积为2 500米2的长方形养鸡厂.(1)养鸡厂的长y 米与宽x 米有怎样的函数关系?(2)王大爷决定把养鸡厂的长确定为250米,那么宽应是多少?(3)由于受厂地限制,养鸡厂的宽最多为20米,那么养鸡厂的长至少应为多少米?5. 一个圆台形物体的上底面积是下底面积的23,如图所示,放在桌面上,对桌面的压强是200Pa ,翻过来放,对桌面的压强是多少?6. 一定质量的二氧化碳,当它的体积V=5m 3时,它的密度ρ=1.98kg/m 3.(ρ、V 成反比例)(1)求ρ与V 的函数关系式;(2)求当V=9m 3时ρ的值.7. 某地上年度电价为0.8元,年用电量为1亿度,•本年度计划将电价调至0.55~0.75元之间.经测算,若电价调至x 元,则本年度新增用电量y (亿度)与(x-0.4)元成反比例,又当x=0.65元时,y=0.8.求y 与x 之间的函数关系式.8. 为预防“手足口病”,某校对教室进行“药熏消毒”.已知药物燃烧阶段,室内每立方米空气中的含药量y (mg )与燃烧时间x (min )成正比例;燃烧后,y 与x 成反比例(如图所示).现测得药物10分钟燃完,此时教室内每立方米空气含药量为8mg.据以上信息解答下列问题:(1)求药物燃烧时y与x的函数关系式.(2)求药物燃烧后y与x的函数关系式.(3)当每立方米空气中含药量低于1.6mg时,对人体方能无毒害作用,那么从消毒开始,经多长时间学生才可以回教室?一、选择题1. A ;xy=300,注意自变量的取值范围2. C ;解题思路:vk p =,如果不与实际相结合,图象分布在一、三象限,但事实上,自变量的取值范围应为y>0.3. B二、解答题4. (1)y=2500x(2)y=250,x=10米 (3)125,20y 2500,2500≥≤==y x xy ,长至少为125米 5. •300Pa6. (1)V=5m 3时,ρ=1.98kg/m 3 ,ρ=9.9V(2)V=9m 3 ,ρ=1.1kg/m 3 7. 设4.0y -=x k ,当 x=0.65元时,y=0.8. k=0.2,化简得y=152x - 8. 解:(1)设药物燃烧阶段函数解析式为11(0)y k x k =≠,由题意得:1810k = 145k =.∴此阶段函数解析式为45y x = (2)设药物燃烧结束后的函数解析式为22(0)k y k x=≠, 由题意得:2810k = 280k =.∴此阶段函数解析式为80y x= (3)当 1.6y <时,得80 1.6x< 0x >1.680x >50x >∴从消毒开始经过50分钟后学生才可以回教室.。

反比例函数综合应用(习题及答案)

反比例函数综合应用(习题及答案)

反比例函数综合运用(习题)1.如图,点A ,C 分别是正比例函数y =x 的图象与反比例函数4y x=的图象的交点,过A 点作AD ⊥x 轴于点D ,过C 点作CB ⊥x 轴于点B ,则四边形ABCD 的面积为________.2.如图,矩形OABC 的顶点A ,C 分别在y 轴、x 轴的正半轴上,D 为AB 的中点,反比例函数k y x=(k >0)的图象经过点D ,且与BC 交于点E ,连接OD ,OE ,DE ,若△ODE 的面积为3,则k 的值为________.3.如图,在平面直角坐标系中,O 为坐标原点,□ABCD 的边AB 在x 轴上,顶点D 在y 轴的正半轴上,点C 在第一象限,将△AOD 沿y 轴翻折,使点A 落在x 轴上的点E 处,点B恰好为OE 的中点,DE 与BC 交于点F .若k y x=(k ≠0)的图象经过点C ,且S △BEF =1,则k 的值为_____.4.如图,在平面直角坐标系xOy 中,菱形ABCD 的顶点A 与原点O 重合,顶点B 落在x 轴的正半轴上,对角线AC ,BD 交于点M ,点D ,M 恰好都在反比例函数k y x=(x >0)的图象上,则AC BD的值为()A .2B .3C .2D .55.如图,一次函数y =mx +n (m ≠0)的图象与反比例函数ky x=(k ≠0)的图象交于第二、四象限内的点A (a ,4)和点B (8,b ).过点A 作x 轴的垂线,垂足为点C ,△AOC 的面积为4.(1)分别求出a 和b 的值;(2)结合图象直接写出k mx n x+<的解集;(3)在x 轴上取点P ,使PA -PB 取得最大值时,求出点P 的坐标.【参考答案】1.82.43.244.A5.(1)a的值为-2;b的值为-1;(2)-2<x<0或x>8;(3)点P的坐标为(343,0).。

完整版)反比例函数练习题含答案

完整版)反比例函数练习题含答案

完整版)反比例函数练习题含答案测试1 反比例函数的概念一、填空题1.一般的,形如 y=k/x 的函数称为反比例函数,其中x是自变量,y是因变量。

自变量x的取值范围是x≠0.2.写出下列各题中所要求的两个相关量之间的函数关系式,并指出函数的类别。

1) 商场推出分期付款购电脑活动,每台电脑元,首付4000元,以后每月付y元,x个月全部付清,则y=(8000+)/x,是反比例函数。

2) 某种灯的使用寿命为1000小时,它的使用天数y与平均每天使用的小时数x之间的关系式为 y=1000/x,是反比例函数。

3) 设三角形的底边、对应高、面积分别为a、h、S。

当a=10时,S与h的关系式为 S=10h/2,是正比例函数;当S=18时,a与h的关系式为 h=36/a,是反比例函数。

4) 某工人承包运输粮食的总数是w吨,每天运x吨,共运了y天,则 y=w/x,是反比例函数。

3.下列各函数 y=1/(k2+1)、y=x/(x5+x12)、y=14-3x、y=2x和y=3x-1 中,是y关于x的反比例函数的有:①y=1/(k2+1)、② y=x/(x5+x12)、③ y=2x。

4.若函数 y=m/(x-1) (m是常数) 是反比例函数,则 m=1,解析式为 y=1/(x-1)。

5.近视眼镜的度数y(度)与镜片焦距x(m)成反比例,已知400度近视眼镜片的焦距为0.25m,则 y=1000/x。

二、选择题6.已知函数 y=3x/(kx+1),当x=1时,y=-3,那么这个函数的解析式是 y=3x/(3k+1)。

(解析:由 y=-3=3/(3k+1) 可得 k=-1/3,代入原式得 y=3x/(3x-1)。

)7.已知 y 与 x 成反比例,当 x=3 时,y=4,那么 y=3 时,x 的值等于 4/3.三、解答题8.已知 y 与 x 成反比例,当 x=2 时,y=3.1) 求y 与x 的函数关系式:y=k/x,代入已知条件得k=6,因此函数关系式为 y=6/x。

中考数学复习《反比例函数》专题练习-附带参考答案

中考数学复习《反比例函数》专题练习-附带参考答案

中考数学复习《反比例函数》专题练习-附带参考答案一、选择题1.下列函数关系式中,y 是x 的反比例函数的是( )A .y =x +3B .y =x 3C .y =3x 2D .y =3x 2.若反比例函数y=6x 的图像经过点(﹣2,a ),则a 的值是( )A .6B .﹣2C .﹣3D .3 3.已知反比例函数y =−1x ,下列结论不正确...的是( ) A .该函数图象经过点(−1,1)B .该函数图象位于第二、四象限C .y 的值随着x 值的增大而增大D .该函数图象关于原点成中心对称 4.反比例函数(其中),当时,y 随x 的增大而增大,那么m 的取值范围是( ) A . B .C .D . 5.在同一直角坐标系中,函数y =−kx +k 与y =k x (k ≠0)的大致图象可能为( )A .B .C .D .6.反比例函数y =6x 图象上有三个点(x 1,y 1),(x 2,y 2),(x 3,y 3)其中y 1<y 2<0<y 3,则x 1,x 2,x 3的大小关系是( )A .x 1<x 2<x 3B .x 3<x 1<x 2C .x 2<x 1<x 3D .x 3<x 2<x 1 7.如图,A 、B 是第二象限内双曲线y =k x 上的点,A 、B 两点的横坐标分别是a ,3a ,线段AB 的延长线交x轴于点C ,S △AOC =12.则k 的值为( )A .﹣6B .﹣5C .﹣4D .﹣38.如图,矩形OABC与反比例函数y1=k1x(k1是非零常数,x>0)的图象交于点M,N,与反比例函数y2=k2x(k2是非零常数,x>0)的图象交于点B,连接OM,ON.若四边形OMBN的面积为3,则k1﹣k2=()A.3 B.﹣3 C.32D.−32二、填空题9.已知点A(−3,2)在反比例函数y=kx的图象上,则k的值为.10.若点P1(﹣1,m),P2(﹣2,n)在反比例函数y=kx(k<0)的图象上,则m n.(填“>”,“<”或“=”)11.正比例函数y=k1x(k1≠0)和反比例函数y= k2x(k2≠0)的一个交点为(m,n),则另一个交点为12.如图,在平面直角坐标系中,点A是x轴上任意一点,BC∥x轴,分别交y=2x (x>0),y=kx(x<0)的图象于B,C两点,若△ABC的面积是3,则k的值为.13.如图,在平面直角坐标系中,过点M(-3,2)分别作x轴、y轴的垂线与反比例函数y=4x的图象交于A,B两点,则四边形MAOB的面积为.三、解答题14.如图,一次函数的图象与反比例函数的图象在第一象限交于点,与轴的负半轴交于点,且.(1)求一次函数与反比例函数的表达式;(2)请直接写出不等式的解集.15.1896年,挪威生理学家古德贝发现,每个人有一条腿迈出的步子比另一条腿迈出的步子长的特点,这就导致每个人在蒙上眼睛行走时,虽然主观上沿某一方向直线前进,但实际上走出的是一个大圆圈!这就是有趣的“嗐转圈”现象.经研究,某人蒙上眼睛走出的大圆圈的半径y/米是其两腿迈出的步长之差x/厘米(x>0)的反比例函数,y与x之间有如表关系:请根据表中的信息解决下列问题:(1)求出y与x之间的函数解析式;(2)若某人蒙上眼睛走出的大圆圈的半径为35米,则其两腿迈出的步长之差是多少厘米?(k>0).16.如图,设反比例函数的解析式为y=3kx(1)若反比例函数与正比例函数y=2x的图象有一个交点的纵坐标为2,求k的值;(2)若反比例函数的图象与过点M (﹣2,0)的直线l :y =kx+b 的图象交于A 、B 两点,如图,当△ABO 的面积为12时,求直线l 的解析式.17.某医药研究所研制了一种新药,在试验药效时发现:成人按规定剂量服用后,检测到从第10分钟起每分钟每毫升血液中含药量增加0.3微克,第100分钟达到最高,接着开始衰退.血液中含药量y (微克)与时间x (分钟)的函数关系如图,并发现衰退时y 与x 成反比例函数关系.(1) ; (2)分别求出当和时,y 与x 之间的函数关系式; (3)如果每毫升血液中含药量不低于12微克时是有效的,求一次服药后的有效时间是多少分钟?18.如图,一次函数 y ax b =+ 的图象与反比例函数 k y x=的图象交于第一象限C ,D 两点,坐标轴交于A 、B 两点,连结OC ,OD (O 是坐标原点).(1)利用图中条件,求反比例函数的解析式和m 的值;(2)求△DOC 的面积.(3)双曲线上是否存在一点P ,使得△POC 和△POD 全等?若存在,给出证明并求出点P 的坐标;若不存在,说明理由.参考答案1.B2.C3.C4.A5.D6.C7.A8.B9.k=-610.>11.(-m,-n).12.−413.1014.(1)解:点在反比例函数的图象上反比例函数解析式为;OA=OB,点在轴负半轴上点.把点、代入中得解得:一次函数的解析式为;(2) 15.(1)解:设y 与x 之间的函数解析式为y =k x 将(2,7)代入得7=k 2∴k =14∴y 与x 之间的函数解析式为y =14x . (2)解:当y =35时,即14x =35,解得x =0.4∴某人蒙上眼睛走出的大圆圈的半径为35米,其两腿迈出的步长之差是0.4厘米.16.(1)解:∵反比例函数与正比例函数y =2x 的图象有一个交点的纵坐标为2 把y =2代入y =2x 求得x =1∴反比例函数与正比例函数y =2x 的图象交点的坐标为(1,2)把(1,2)代入y =3k x (k >0),得到3k =2 ∴k =23;(2)解:把M (﹣2,0)代入y =kx+b ,可得b =2k∴y =kx+2k解{y =3k x y =kx +2k 得{x =−3y =−k 或{x =1y =3k∴B (﹣3,﹣k ),A (1,3k )∵△ABO 的面积为12∴12•2•3k+12•2•k =12解得k =3∴直线l 的解析式为y =3x+6.17.(1)27(2)解:当时,设y 与x 之间的函数关系式为∵经过点 ∴解得:,∴解析式为;当时,y 与x 之间的函数关系式为∵经过点∴解得:∴函数的解析式为; (3)解:令解得:令,解得:∴分钟 ∴服药后能持续175分钟.18.(1)∵点C (1,2)在反比例函数 图象上 ∴k=2∴反比例函数解析式为 2y x= ∵点B (2,m )在反比例函数 图象上 ∴m= 22=1. (2)如图,过点C 作⊥OA 于E ,过点D 作DF ⊥OA 于 Fk y x =2y x =∵C (1,2),D (2,1)∴CE=2,DF=1∵C 、D 在一次函数 的图象上∴221a b a b +=⎧⎨+=⎩解得: 13a b =-⎧⎨=⎩∴一次函数解析式为y=-x+3当y=0时,x=3∴A 点坐标为(3,0)∴OA=3∴DOC S =S △AOC -S △AOD = 1122OA CE OA DF ⋅-⋅ = 11323122⨯⨯-⨯⨯ =1.5.(3)设点P 坐标为(n , 2n )∵C (2,1),D (1,2)∴OC=OD∵△POC 和△POD 全等∴PC=PD ∴222222(1)(2)(2)(1)n n n n -+-=-+-解得: 2n =∴P (, )或P ( 2 , ) ∴双曲线上存在一点P ,使得△POC 和△POD 全等,P ( , )或P ( , ). y ax b =+222-2222。

反比例函数题型 专项练习

反比例函数题型 专项练习

反比例函数题型专项练习专题一、反比例函数的图像1.反比例函数的定义域为x≠0,因此选项A中的x≥1是错误的。

应该改为x>0.2.由于y=kx+1与y=(k≠0)的图象大致是两条直线,因此它们交于点A(2,1)的横坐标应该在x>0的范围内。

因此选项B、C、D中的x<或x≤2都是错误的。

应该改为x>2.答案:A。

3.当ab>0时,函数y=ax+b与函数y=的图象大致是两条直线,其中一条斜率为a,另一条斜率为(1/a)。

因此选项D 中的图象是错误的。

应该改为y=。

答案:C。

4.方程x+1=0的解为x=−1,不在1<x<2的范围内,因此选项A、B、C都是错误的。

应该改为选项D,k=6.答案:D。

5.正比例函数y=kx的图象是一条直线,反比例函数y=的图象是一条双曲线。

因此选项A是错误的。

应该改为选项B、C、D。

答案:B、C、D。

6.函数y=的图象是一条双曲线,当y=a时,对应的x有两个不相等的值,即x=±(1/a)。

因此选项A、B、D都是错误的。

应该改为选项C。

答案:C。

7.函数y=k1x﹣1的图象是一条双曲线,函数y=的图象是一条直线。

因此选项A是错误的。

应该改为选项B、C、D。

答案:B、C、D。

8.函数y=的图象是一条双曲线,函数y=kx﹣k(k≠0)的图象是一条直线。

因此选项A、C、D都是错误的。

应该改为选项B。

答案:B。

9.函数y=ax+b的图象是一条直线,函数y=的图象是一条双曲线。

因此选项B、C、D都是错误的。

应该改为选项A。

答案:A。

10.函数y=的图象在第一、二象限,因为x>0,y>0.因此选项B是错误的。

应该改为选项A、C、D。

答案:A、C、D。

11.当k<0时,函数y1=kx﹣k的图象是一条双曲线,因此选项A、B、D都是错误的。

应该改为选项C。

答案:C。

12.图中反比例函数与一次函数的图象相交于A、B两点,使反比例函数的值小于一次函数的值的x的取值范围为x<﹣1,或1<x<2.因此选项B、C、D都是错误的。

中考数学《反比例函数》专项练习题(附带答案)

中考数学《反比例函数》专项练习题(附带答案)

中考数学《反比例函数》专项练习题(附带答案)一、单选题1.如图,反比例函数y= 2x的图象经过矩形OABC的边AB的中点D,则矩形OABC的面积为()A.2B.4C.5D.82.小兰画了一个函数y= ax−1的图象如图,那么关于x的分式方程ax−1=2的解是()A.x=1B.x=2C.x=3D.x=43.若A(a1,b1),B(a2,b2)是反比例函数y = –√2x图象上的两点,且a1<a2,则b1与b2的大小关系是()A.b1<b2B.b1 = b2C.b1>b2D.不能确定4.某公司计划新建一个容积V(m3)一定的长方体污水处理池,池的底面积S(m2)与其深度h(m)之间的函数关系式为S=Vℎ(ℎ≠0),这个函数的图象大致是()A.B.C.D.5.若反比例函数y=k x(k为常数,且k≠0)的图象过点(3,-4),则下列各点在该图象上的是()A.(6,-8)B.(-6,8)C.(-3,4)D.(-3,-4)6.已知反比例函数y=k x(k>0)的图象与直线y=﹣x+6相交于第一象限A、B的两点.如图所示,过A、B两点分别作x、y轴的垂线,线段AC、BD相交与P,给出以下结论:①OA=OB;②四边形OCPD 是正方形;③若k=5.则△ABP的面积是8;④P点一定在直线y=x上,其中正确命题的个数是几个()A.4B.3C.2D.17.已知点P(3,2)在反比例函数y=k x(k≠0)图象上,则下列各点中在此反比例函数图象上的是()A.(−3,−2)B.(3,−2)C.(−2,3)D.(2,−3)8.下列函数:①y=−x;②y=−1x;③y=√2x;④y=120x2+240x+3(x<0)中,y随x的增大而减小的函数有()A.1个B.2个C.3个D.4个9.如图,在平面直角坐标系中,菱形OABC的顶点A在x轴的正半轴上,顶点B在函数y=k x(x >0)的图象上,若△C=60°,AB=2,则k的值为()A.√2B.√3C.1D.2 10.对于反比例函数y=﹣1x,下列说法正确的是()A.图象经过点(1,1)B.图象位于第一、三象限C.图象是中心对称图形D.当x<0时,y随x的增大而减小11.一次函数y=ax+a与反比例函数y=−ax(a≠0)在同一平面直角坐标系中的图象可能是()A.B.C.D.12.面积为2的△ABC,一边长为x,这边上的高为y,则y与x的变化规律用图象表示大致是() A.B.C.D.二、填空题13.如图,在平面直角坐标系中,菱形ABCD的顶点A与D在函数y=k x(x>0)的图象上,AC⊥x轴,垂足为C,∠BCO=30°,点B的坐标为(0,1),则k的值为.14.如图,反比例函数y=6x在第一象限的图象上有两点A,B,它们的横坐标分别是2,6,则△AOB 的面积是.15.反比例函数y=7x图象与正比例函数y=kx图象交于A(x1,y1),B(x2,y2),则x1y2+x2y1的值为.16.如图,正比例函数y1=ax(a≠0)与反比例函数y2=k x(k≠0)的图象相交于A,B两点,其中点A的坐标为(1,3).当y1<y2时,x的取值范围是.17.如图,在平面直角坐标系中,O为坐标原点,平行四边形ABCD的边AB在x轴上、顶点D在y 轴的正半轴上,点C在第二象限,将△AOD沿y轴翻折,使点A落在x轴上的点E处、点B恰好为OE的中点.DE与BC交于点F.若y=kx(k≠0)图象经过点C,且S△BEF=12,则k的值为.18.如图,一次函数y=x+k(k>0)的图象与x轴和y轴分别交于点M,N,与反比例函数y=kx的图象在第一象限内交于点B,过点B作BA△x轴,BC△y轴.垂足分别为点A,C.当矩形OABC与△OMN 的面积相等时,点B的坐标为.三、综合题19.如图,双曲线y1=k x(k为常数,且k≠0)与直线y2=﹣13x+b交于点A(﹣2,a)和B(3c,2﹣c).(1)求k,b的值;(2)求直线与x轴的交点坐标.20.如图,已知一次函数y=2x+2的图象与y轴交于点B,与反比例函数y= k1x的图象的一个交点为A(1,m).过点B作AB的垂线BD,与反比例函数y= k2x(x>0)的图象交于点D(n,﹣2).(1)求k1和k2的值;(2)若直线AB、BD分别交x轴于点C、E,试问在y轴上是否存在一个点F,使得△BDF△△ACE?若存在,求出点F的坐标;若不存在,请说明理由.21.如图,直线y=2x+1与双曲线相交于点A(m,32)与x轴交于点B.(1)求双曲线的函数表达式:(2)点P在x轴上,如果△ABP的面积为6,求点P坐标.22.在初中阶段的函数学习中,我们经历了列表、描点、连线画函数图象,观察分析函数特征,概括函数性质的过程,已知函数y=﹣2|x−2|x−1上,结合已有的学习经验,完成下列各小题.(1)请在表格中空白处填入恰当的数据:x…﹣3﹣2﹣101243322345…y (5)2834﹣40﹣1﹣43…(2)根据表中的数据,在所给的平面直角坐标系中画出函数y=﹣2|x−2|x−1的图象;(3)根据函数图象,写出该函数的一条性质:;(4)结合所画函数图象,直接写出不等式﹣2|x−2|x−1<﹣53x+5的解集为:.(保留1位小数,误差不超过0.2)23.在平面直角坐标系xOy中,点A(x1,y1),B(x2,y2)在抛物线y=−x2+2ax−a2−a+2(a 是常数)上.(1)若该二次函数图象的顶点在第二象限时,求a的取值范围;(2)若抛物线的顶点在反比例函数y=−8x(x<0)的图象上,且y1=y2,求x1+x2的值;(3)若当1<x1<x2时,都有y2<y1<1,求a的取值范围.24.如图,点A(m,m+1),B(m+3,m﹣1)是反比例函数y=k x(x>0)与一次函数y=ax+b的交点.求:(1)反比例函数与一次函数的解析式;(2)根据图象直接写出当反比例函数的函数值大于一次函数的函数值时x的取值范围.参考答案1.【答案】B2.【答案】A3.【答案】D4.【答案】C5.【答案】C6.【答案】A7.【答案】A8.【答案】A9.【答案】B10.【答案】C11.【答案】A12.【答案】B13.【答案】2√314.【答案】815.【答案】-1416.【答案】x<-1或0<x<117.【答案】-1218.【答案】(−1+√3,1+√3)19.【答案】(1)解:∵点B(3c,2﹣c)在直线y2=﹣13x+b的图象上∴−13×3c+b=2−c解得:b=2∴直线解析式为y2=﹣13x+2∵点A(﹣2,a)在直线y2=﹣13x+2的图象上∴a=−13×(−2)+2=83∴点A坐标为(-2,8 3)∵点A(-2,83)在y1=kx图象上∴83=k−2解得:k=−16 3 .(2)解:∵直线解析式为y2=﹣13x+2∴当y2=0时,x=6∴直线与x轴的交点坐标为(6,0).20.【答案】(1)解:将A(1,m)代入一次函数y=2x+2中,得:m=2+2=4,即A(1,4)将A(1,4)代入反比例解析式y= k1x得:k1=4;过A作AM△y轴,过D作DN△y轴∴△AMB=△DNB=90°∴△BAM+△ABM=90°∵AC△BD,即△ABD=90°∴△ABM+△DBN=90°∴△BAM=△DBN∴△ABM△△BDN∴AMBN=BMDN,即14=2DN∴DN=8∴D(8,﹣2)将D坐标代入y= k2x得:k2=﹣16(2)解:符合条件的F坐标为(0,﹣8),理由为:由y=2x+2,求出C坐标为(﹣1,0)∵OB=ON=2,DN=8∴OE=4可得AE=5,CE=5,AC=2 √5,BD=4 √5,△EBO=△ACE=△EAC若△BDF△△ACE,则BDAC=BFAE,即√52√5=BF5解得:BF=10则F(0,﹣8).综上所述:F点坐标为(0,﹣8)时,△BDF△△ACE.21.【答案】(1)解:把A(m,32)代入直线y=2x+1得:32=2m+1,即m=14∴A(14,32)∵点A(14,32)为直线与反比例函数y=kx的交点把A点坐标代入y=k x,得k=14× 32=38则双曲线解析式为y=38x;(2)解:对于直线y=2x+1,令y=0,得到x=−12,即B(−12,0)设P(x,0),可得PB=|x+1 2|∵△ABP面积为6∴12×|x+12|×32=6,即|x+12|=8解得:x=7.5或x=﹣8.5则P坐标为(7.5,0)或(﹣8.5,0). 22.【答案】(1)解:如下表所示:x…﹣3﹣2﹣101243322345…y (5)283346﹣4-20﹣1﹣43-32…(3)当x<1时,y随x的增大而增大(4)x<0.3或1<x<3.723.【答案】(1)解:∵y=−x2+2ax−a2−a+2=−(x−a)2−a+2第 11 页 共 11 页 ∴ 抛物线 y =−x 2+2ax −a 2−a +2 的顶点为 (a ,−a +2) ∵ 抛物线的顶点在第二象限∴{a <0−a +2>0解得 2<a <0 ;(2)解: ∵ 抛物线 y =−x 2+2ax −a 2−a +2 的顶点在反比例函数 y =−8x(x <0) 的图象上 ∴a(−a +2)=−8解得 a =4 或 a =−2∵a <0∴a =−2∴ 顶点为 (−2,4)∵y 1=y 2∴ 点 A(x 1,y 1) , B(x 2,y 2) 关于直线 x =−2 对称∴x 1+x22=−2∴x 1+x 2=−4 ;(3)解: ∵ 当 1<x 1<x 2 时,都有 y 2<y 1<1∴ 抛物线的对称轴 x =a <1 ,经过点为 (1,1)∴{a <1−1+2a −a 2−a +2=1解得 a =0 或 a =−3故 a 的取为0或-3.24.【答案】(1)解:由题意可知,m (m+1)=(m+3)(m ﹣1). 解得m=3.∴A (3,4),B (6,2); ∴k=4×3=12, ∴y =12x∵A 点坐标为(3,4),B 点坐标为(6,2), ∴{3a +b =46a +b =2 , ∴{a =−23b =6 ,∴y=﹣ 23 x+6 (2)解:根据图象得x 的取值范围:0<x <3或x >6.。

中考数学《反比例函数的实际应用》专项练习题及答案

中考数学《反比例函数的实际应用》专项练习题及答案

中考数学《反比例函数的实际应用》专项练习题及答案一、单选题1.某项工作,已知每人每天完成的工作量相同,且一个人完成需12天.若m个人共同完成需n天,选取6组数对(m,n),在坐标系中进行描点,则正确的是()A.B.C.D.2.某气球内充满了一定质量的气体,当温度不变时,气球内气体的气压p(kPa)是气体体积V(m 3)的反比例函数,其图象如图所示.当气球内的气压大于140kPa时,气球将爆炸,为了安全起见,气体体积应()A.不大于2435m3B.不小于2435m3C.不大于3524m 3D.不小于3524m 33.根据图1所示的程序,得到了y与x的函数图象,如图2.若点M是y轴正半轴上任意一点,过点M作PQ∥x轴交图象于点P,Q,连接OP,OQ.则以下结论:①x<0时,y=2x②∥OPQ的面积为定值.③x>0时,y随x的增大而增大.④MQ=2PM.⑤∥POQ可以等于90°.其中正确结论是()A.①②④B.②④⑤C.③④⑤D.②③⑤4.小明乘车从县城到怀化,行车的速度v(km/ℎ)和行车时间t(ℎ)之间函数图是()A.B.C.D.5.矩形的长为x,宽为y,面积为12,则y与x之间的函数关系用图象表示大致为()A.B.C.D.6.已知甲,乙两地相距s(单位:km),汽车从甲地匀速行驶到乙地,则汽车行驶的时间t(单位:h)关于行驶速度v(单位:kmℎ⁄)的函数图象是()A.B.C.D.7.一个面积为20的矩形,若长与宽分别为x,y,则y与x之间的关系用图象可表示为()A.B.C.D.8.教室里的饮水机接通电源就进入自动程序,开机加热时每分钟上升10∥,加热到100∥,停止加热,水温开始下降,此时水温(∥)与开机后用时(min)成反比例关系.直至水温降至30∥,饮水机关机.饮水机关机后即刻自动开机,重复上述自动程序.若在水温为30∥时,接通电源后,水温y (∥)和时间(min)的关系如图,为了在上午第一节下课时(8:45)能喝到不超过50∥的水,则接通电源的时间可以是当天上午的()A.7:20B.7:30C.7:45D.7:509.已知力F所作的功是15焦,则力F与物体在力的方向上通过的距离S的图象大致是如图中的()A.B.C.D.10.如图,点P(3a,a)是反比例函y=(k>0)与∥O的一个交点,图中阴影部分的面积为10π,则反比例函数的解析式为()A.y=3x B.y=10x C.y=12x D.y=27x11.如图,在直角坐标系中,矩形ABCD的顶点A坐标为(﹣1,0),顶点B的坐标为(0,﹣2),经过顶点C的双曲线y=kx(k>0)与线段AD交于点E,且AE:DE=2:1,则k的值为()A.4B.6C.8D.1212.阿基米德说:“给我一个支点,我就能撬动整个地球”这句话精辟地阐明了一个重要的物理学知识——杠杆原理,即“阻力×阻力臂=动力×动力臂”.若已知某一杠杆的阻力和阻力臂分别为1200N和0.5m,则这一杠杆的动力F和动力臂l之间的函数图象大致是()A.B.C.D.二、填空题13.在温度不变的条件下,一定质量的气体的压强p与它的体积V成反比例,当V=200时,p=50,则当p=25时,V=.14.如图,矩形OABC的两条边在坐标轴上,OA=1,OC=2,现将此矩形向右平移,每次平移1个单位,若第1次平移得到的矩形的边与反比例函数图象有两个交点,它们的纵坐标之差的绝对值为0.6,则第n次(n>1)平移得到的矩形的边与该反比例函数图象的两个交点的纵坐标之差的绝对值为(用含n的代数式表示)15.如图,点A在双曲线y= k x的第一象限的那一支上,AB∥y轴于点B,点C在x轴正半轴上,且OC=2AB,点E在线段AC上,且AE=3EC,点D为OB的中点,若∥ADE的面积为32,则k的值为.16.在对物体做功一定的情况下,力F(N)与此物体在力的方向上移动的距离s(m)成反比例函数关系,其图象如图所示.点P(4,3)在图象上,则当力达到10N时,物体在力的方向上移动的距离是m.17.已知蓄电池的电压为定值,使用蓄电池时,电流I(单位:A)与电阻R(单位:Ω)是反比例函数关系,它的图象如图所示.如果以此蓄电池为电源的用电器的限制不能超过12A,那么用电器的可变电阻应控制的范围是.18.若12x m﹣1y2与3xy n+1是同类项,点P(m,n)在双曲线y=a−1x上,则a的值为.三、综合题19.在平面直角坐标系中,反比例函数y= mx(x>0)的图象上有一点A(a,3),过点A作AB∥x轴于点B,将点B沿x轴正方向平移2个单位长度得到点C,过点C作y轴的平行线交反比例函数于点D,CD= 32,直线AD与x轴交于点M,与y轴交于点N.(1)用含a的式子表示点D的横坐标为:;(2)求a的值和直线AD的函数表达式;(3)请判断线段AN与MD的数量关系,并说明理由;(4)若一次函数y1=k1x+b1经过点(10,9),与双曲线y= mx(x>0)交于点P,且该一次函数y1的值随x的增大而增大,请确定P点横坐标n的取值范围(不必写出过程)20.如图,在∥ABCD中,设BC边的长为x(cm),BC边上的高线AE长为y(cm),已知∥ABCD 的面积等于24cm2.(1)求y关于x的函数表达式;(2)求当3<y<6时x的取值范围.21.如图,在平面直角坐标系xOy中,∥ABC的边AC在x轴上,边BC∥x轴,双曲线y= k x(x>0)与边BC交于点D(4,m),与边AB交于点E(2,n).(1)求n关于m的函数关系式;(2)若BD=2,tan∥BAC= 12,求k的值和点B的坐标.22.某养猪场对猪舍进行喷药消毒.在消毒的过程中,先经过5min的药物集中喷洒,再封闭猪舍10min,然后再打开窗户进行通风.已知室内每立方米空气中含药量y(mg/m3)与药物在空气中的持续时间x(min)之间的函数图象如图所示,其中在打开窗户通风前y与x分别满足两个一次函数,在通风后y与x满足反比例函数.(1)求反比例函数的关系式;(2)当猪舍内空气中含药量不低于5mg m3⁄且持续时间不少于21min,才能有效杀死病毒,问此次消毒是否有效?23.某机床加工一批机器零件,如果每小时加工30个,那么12小时可以完成.(1)设每小时加工x个零件,所需时间为y小时,写出y与x之间的函数关系式,画出图象;(2)若要在一个工作日(8小时)内完成,每小时要比原来多加工几个?24.如图1,李老师设计了一个探究杠杆平衡条件的实验:在一个自制类似天平的仪器的左边固定托盘A中放置一个重物,在右边活动托盘B(可左右移动)中放置一定质量的砝码,使得仪器左右平衡.改变活动托盘B与点O的距离x(cm),观察活动托盘B中砝码的质量y(g)的变化情况.实验数据记录如表x(cm)1015202530y(g)3020151210(1)把表中(x,y)的各组对应值作为点的坐标,在图2的坐标系中描出相应的点,用平滑曲线连接这些点;(2)观察所画的图象,猜测y与x之间的函数关系,求出函数关系式;(3)当砝码的质量为24g时,活动托盘B与点O的距离是多少?参考答案1.【答案】C 2.【答案】B 3.【答案】B 4.【答案】B 5.【答案】C 6.【答案】B 7.【答案】C 8.【答案】A 9.【答案】B 10.【答案】C 11.【答案】B 12.【答案】A 13.【答案】40014.【答案】145n(n+1)或 65n(n+1 15.【答案】8316.【答案】1.2 17.【答案】R≥3W 18.【答案】3 19.【答案】(1)a+2(2)解:∵CD∥y 轴,且CD= 32∴D (a+2, 32 )∵A 、D 都在反比例函数图象上∴{m =3am =32(a +2) ,解得 {a =2m =6 ,即a 的值为2 ∴A (2,3),D (4, 32 )设直线AD 的函数表达式为y=kx+b把A 、D 的坐标代入可得 {2k +b =34k +b =32,解得 {k =−34b =92∴直线AD 的函数表达式为y=﹣ 34 x+ 92 ;(3)解:结论:AN=MD理由:在y=﹣ 34 x+ 92 中,令y=0可得x=6,令x=0可得y= 92∴M (6,0),N (0, 92)∵A (2,3),D (4, 32)∴AN= √(2−0)2+(3−92)2 = 52 ,MD= √(6−4)2+(0−32)2= 52∴AN=MD ;(4)解:如图,当直线与x 垂直时n 的值最大,当直线与x 轴平行时n 的值最小当直线垂直x 轴时,则可知E 点横坐标为10,即此时n 的值为10当直线平行x 轴时,则F 点的纵坐标为9,由(1)可得反比例函数解析式为y= 6x,当y=9时,可解得x= 23 ,即P 点的横坐标为 23 ,即此时n 的值为 23∵一次函数y 1的值随x 的增大而增大 ∴直线在直线P 1E 和直线P 2F 之间∴n 的取值范围为 23<n <10.20.【答案】(1)解:∵BC 边的长为x (cm ),BC 边上的高线AE 长为y (cm ),已知∥ABCD 的面积等于24cm 2.∴根据平行四边形的面积计算方法得:xy =24 ∴y =24x(x >0);(2)解:当y =3时x =8,当y =6时x =4 所以当3<y <6时x 的取值范围为4<x <8.21.【答案】(1)解:∵点D (4,m ),点E (2,n )在双曲线y= k x(x >0) 上∴4m=2n ,解得n=2m ;(2)解:过点E 作EF∥BC 于点F∵由(1)可知n=2m∴DF=m∵BD=2∴BF=2﹣m∵点D(4,m),点E(2,n)∴EF=4﹣2=2∵EF∥x轴∴tan∥BAC=tan∥BEF= BFEF=2−m2=12,解得m=1∴D(4,1)∴k=4×1=4,B(4,3).22.【答案】(1)解:设反比例函数关系式为y=k x. ∵反比例函数的图象过点(15,8)∴k=120.∴y=120 x.(2)解:设正比例函数关系式为y=kx. 把x=5,y=10代入上式,得k=2 .∴y=2x.当y=5时,x=52.把y=5代入y=120x,得x=24.∴24−52=21.5>21.答:此次消毒能有效杀死该病毒.23.【答案】(1)解:由题意可得y= 30×12x=360 x即y与x的函数关系式是y= 360x,函数图象如右图所示(2)解:由题意可得3608−30=45−30=15答:每小时要比原来多加工15个24.【答案】(1)解:如图所示:(2)解:由图象猜测y与x之间的函数关系为反比例函数∴设y= kx(k≠0)把x=10,y=30代入得:k=300∴y= 300 x将其余各点代入验证均适合∴y与x的函数关系式为:y= 300 x(3)解:把y=24代入y= 300x得:x=12.5∴当砝码的质量为24g时,活动托盘B与点O的距离是12.5cm。

反比例函数及其应用(共35道)—2023年中考数学真题(全国通用)(解析版)

反比例函数及其应用(共35道)—2023年中考数学真题(全国通用)(解析版)

反比例函数及其应用(35道)一、单选题A .1B .2C .3D .4【答案】B【分析】延长BA 交y 轴于点D ,根据反比例函数k 值的几何意义得到1212ADO S =⨯=△,3OCBD S =矩形,根据四边形ABCO 的面积等于ADOOCBD S S−矩形,即可得解.【详解】解:延长BA 交y 轴于点D ,∵AB x ∥轴, ∴DA y ⊥轴,∵点A 在函数2(0)y x x =>的图象上,∴1212ADO S =⨯=△,∵BC x ⊥轴于点C ,DB y ⊥轴,点B 在函数3(0)y x x =>的图象上,∴3OCBD S =矩形,∴四边形ABCO 的面积等于312ADOOCBD S S−=−=矩形;故选B .【点睛】本题考查反比例函数与几何图形的综合应用.熟练掌握反比例函数中k 的几何意义,是解题的关键.A .321y y y <<B .132y y y <<C .312y y y <<D .231y y y <<【答案】C【分析】先根据函数解析式中的比例系数k 确定函数图象所在的象限,再根据各象限内点的坐标特点及函数的增减性解答.【详解】解:在反比例函数(0)ky k x =<中,0k <,∴此函数图象在二、四象限,420−<−<,∴点()14,A y −,2(2,)B y −在第二象限,10y ∴>,20y >,函数图象在第二象限内为增函数,420−<−<, 120y y ∴<<.30>,3(3,)C y ∴点在第四象限,30y \<,1y ∴,2y ,3y 的大小关系为312y y y <<.故选:C .【点睛】此题考查的是反比例函数图象上点的坐标特点及平面直角坐标系中各象限内点的坐标特点,比较简单.A .当3x >时,12y y <B .当1x <−时,12y y <C .当03x <<时,12y y >D .当10x −<<时,12y y <【答案】B【分析】结合一次函数与反比例函数的图象,逐项判断即可得. 【详解】解:A 、当3x >时,12y y >,则此项错误,不符合题意; B 、当1x <−时,12y y <,则此项正确,符合题意; C 、当03x <<时,12y y <,则此项错误,不符合题意; D 、当10x −<<时,12y y >,则此项错误,不符合题意;故选:B .【点睛】本题考查了一次函数与反比例函数的图象,熟练掌握函数图象法是解题关键.A .123y y y <<B .312 y y y <<C .213y y y <<D .321y y y <<【答案】C【分析】根据反比例函数的图象与性质解答即可. 【详解】解:∵30k =>,∴图象在一、三象限,且在每个象限内y 随x 的增大而减小, ∵2101−<−<<, ∴2130y y y <<<.故选:C .【点睛】本题考查了反比例函数的图象与性质,反比例函数ky x =(k 是常数,0k ≠)的图象是双曲线,当0k >,反比例函数图象的两个分支在第一、三象限,在每一象限内,y 随x 的增大而减小;当 0k <,反比例函数图象的两个分支在第二、四象限,在每一象限内,y 随x 的增大而增大.【答案】A【分析】连接四边形ABCD 的对角线AC BD 、,过D 作DE x ⊥轴,过C 作CF x ⊥轴,直线1y x =−与x 轴交于点M ,如图所示,根据函数图像交点的对称性判断四边形ABCD 是平行四边形,由平行四边形性质及平面直角坐标系中三角形面积求法,确定()11142四边形△ABC COD D S S OM DE CF ===⋅+,再求出直线1y x =−与x 轴交于点()1,0M ,通过联立1y x k y x =−⎧⎪⎨=⎪⎩求出C D 、纵坐标,代入方程求解即可得到答案. 【详解】解:连接四边形ABCD 的对角线AC BD 、,过D 作DE x ⊥轴,过C 作CF x ⊥轴,直线1y x =−与x 轴交于点M ,如图所示:根据直线1y x =+、1y x =−与双曲线()0ky k x =>交点的对称性可得四边形ABCD 是平行四边形,()11142四边形△ABC O D C D S S OM DE CF ∴===⋅+, 直线1y x =−与x 轴交于点M , ∴当0y =时,1x =,即()1,0M ,1y x =−与双曲线()0ky k x =>分别相交于点C D 、,∴联立1y x k y x =−⎧⎪⎨=⎪⎩,即1k y y =−,则20y y k +−=,由0k >,解得y =,∴1112⎤⨯⨯−=⎥⎢⎥⎝⎭⎣⎦2=,解得34k =,故选:A .【点睛】本题考查一次函数与反比例函数综合,涉及平行四边形的判定与性质,熟练掌握平面直角坐标系中三角形面积求法是解决问题的关键.A .2:3:6B .6:3:2C .1:2:3D .3:2:1【答案】A【分析】首先根据长方体的性质,得出相对面的面积相等,再根据物体的压力不变,结合反比例函数的性质进行分析,即可得出答案.【详解】解:∵长方体物体的一顶点所在A 、B 、C 三个面的面积比是3:2:1, ∴长方体物体的A 、B 、C 三面所对的与水平地面接触的面积比也为3:2:1, ∵FP S =,0F >,且F 一定,∴P 随S 的增大而减小, ∴111::::2:3:6321A B C P P P ==.故选:A .【点睛】本题考查了反比例函数的性质,解本题的关键在熟练掌握反比例函数的性质.A .B .C .D .【答案】D【分析】先根据一次函数图象确定a 、b 的符号,进而求出ab 的符号,由此可以确定反比例函数图象所在的象限,看是否一致即可.【详解】解:A 、∵一次函数图象经过第一、二、三象限, ∴00a b >>,, ∴0ab >,∴反比例函数aby x =的图象见过第一、三象限,这与图形不符合,故A 不符合题意;B 、∵一次函数图象经过第一、二、四象限, ∴00a b <>,, ∴0ab <, ∴反比例函数aby x =的图象见过第二、四象限,这与图形不符合,故B 不符合题意;C 、∵一次函数图象经过第一、三、四象限, ∴00a b ><,, ∴0ab <, ∴反比例函数aby x =的图象见过第二、四象限,这与图形不符合,故C 不符合题意;D 、∵一次函数图象经过第一、二、四象限, ∴00a b <>,, ∴0ab <, ∴反比例函数aby x =的图象见过第二、四象限,这与图形符合,故D 符合题意;故选D .【点睛】本题主要考查了一次函数与反比例函数图象和性质,熟练掌握相关性质与函数图象的关系是解决本题的关键.A .B .C .D .【答案】B 【分析】根据题意11FL F L =代入数据求得245F L =,即可求解.【详解】解:∵11FL F L =,125cm L =,19.8NF =,∴259.8245FL =⨯=, ∴245F L =,函数为反比例函数,当35cm L =时,245735F ==,即245F L =函数图象经过点()35,7. 故选:B .【点睛】本题考查了反比例函数的应用以及函数图象,根据题意求出函数关系式是解题的关键.A .3B .4C .5D .6【答案】B【分析】由正方形的性质得2BC AB ==,可设2,2k C ⎛⎫ ⎪⎝⎭,1,22k E ⎛⎫+ ⎪⎝⎭,根据21222k k ⎛⎫⨯=⨯+ ⎪⎝⎭可求出k 的值. 【详解】解:∵四边形ABCD 是正方形, ∵2,AB BC CD AD ==== ∵点E 为AD 的中点, ∴11,2AE AD ==设点C 的坐标为2,2k ⎛⎫ ⎪⎝⎭,则,222k kBO AO AB BO ==+=+, ∴1,22k E ⎛⎫+ ⎪⎝⎭, ∵点C ,E 在反比例函数ky x =的图象上,∴21222k k ⎛⎫⨯=⨯+ ⎪⎝⎭,解得,4k =, 故选:B .【点睛】本题考查了反比例函数图象上点的坐标特征:反比例函数ky x =(k 为常数,0k ≠)的图象是双曲线,图象上的点()x y ,的横纵坐标的积是定值k ,即xy k =.为半径作圆,当A 与x 轴相切、B 与y 轴相切时,连结【答案】C【分析】过点,A B 分别作,y x 轴的垂线,垂足分别为,E D ,,AE BD 交于点C ,得出B 的横坐标为1,A 的纵坐标为1,设(),1A k ,()1,B k ,则1,1AC k BC k =−=−,根据AB =【详解】解:如图所示,过点A B ,分别作y x ,轴的垂线,垂足分别为E D ,,AE BD ,交于点C ,依题意,B 的横坐标为1,A 的纵坐标为1,设(),1A k ,()1,B k∴()1,1C ,则1,1AC k BC k =−=−,又∵90ACB ∠=︒,AB =∴()()(22211k k −+−=∴13k −=(负值已舍去) 解得:4k =, 故选:C .【点睛】本题考查了切线的性质,反比例函数的性质,勾股定理,掌握以上知识是解题的关键. 统考中考真题)如图,在平面直角坐标系中,OAB 三个顶点的坐标分别为与OAB 关于直线 A .23 【答案】A【分析】过点B 作BD x ⊥轴,根据题意得出1,BD OD ==和性质得出2OB AB ==,30BOA BAO ∠∠==︒,利用各角之间的关系180OBA OBD '∠+∠=︒,确定A ',B ,D 三点共线,结合图形确定)2C,然后代入反比例函数解析式即可.【详解】解:如图所示,过点B 作BD x ⊥轴,∵(0,0),O A B ,∴1,BD OD ==∴AD OD =tan BD BOA OD ∠==,∴2OB AB ==,30BOA BAO ∠∠==︒,∴60OBD ABD ∠∠==︒,120OBA ∠=︒, ∵OA B '与OAB 关于直线OB 对称, ∴120OBA '∠=︒, ∴180OBA OBD '∠+∠=︒, ∴A ',B ,D 三点共线, ∴2A B AB '==, ∵A C BC '=, ∴1BC =, ∴2CD =,∴)2C,将其代入(0,0)ky k x x =>>得:k =故选:A .【点睛】题目主要考查等腰三角形的判定和性质,特殊角的三角函数及反比例函数的确定,理解题意,综合运用这些知识点是解题关键.A .2B .2−C .1D .1−【答案】A【分析】证明四边形ANOM 是矩形,根据反比例函数的k 值的几何意义,即可解答. 【详解】解:AM x ⊥轴于点M ,AN y ⊥轴于直N ,90MON ∠=︒,∴四边形AMON 是矩形,四边形AMON 的面积为2, 2k ∴=,反比例函数在第一、三象限,2k ∴=,故选:A .【点睛】本题考查了矩形的判定,反比例函数的k 值的几何意义,熟知在一个反比例函数图像上任取一点,过点分别作x 轴,y 轴的垂线段,与坐标轴围成的矩形面积为k是解题的关键.二、填空题【答案】63y x =−【分析】函数图象的平移规则为:上加下减,左加右减,根据平移规则可得答案. 【详解】解:将反比例函数6y x =的图象向下平移3个单位可得平移后的解析式为:63y x =−,故答案为:63y x =−.【点睛】本题考查的是函数图象的平移,解题的关键是理解并熟记函数图象的平移规则为:上加下减,左加右减.14.(2023·陕西·统考中考真题)如图,在矩形OABC 和正方形CDEF 中,点A 在y 轴正半轴上,点C ,F 均在x 轴正半轴上,点D 在边BC 上,2BC CD =,3AB =.若点B ,E 在同一个反比例函数的图象上,则这个反比例函数的表达式是 .【答案】18y x =【分析】设正方形CDEF 的边长为m ,根据2BC CD =,3AB =,得到()3,2B m ,根据矩形对边相等得到3OC =,推出()3,E m m +,根据点B ,E 在同一个反比例函数的图象上,得到()323m m m⨯=+,得到3m =,推出18y x =.【详解】解:∵四边形OABC 是矩形, ∴3OC AB ==,设正方形CDEF 的边长为m , ∴CD CF EF m ===, ∵2BC CD =, ∴2BC m =, ∴()3,2B m ,()3,E m m +, 设反比例函数的表达式为ky x =,∴()323m m m⨯=+,解得3m =或0m =(不合题意,舍去), ∴()3,6B ,∴3618=⨯=k ,∴这个反比例函数的表达式是18y x =,故答案为:18y x =.【点睛】本题主要考查了反比例函数,解决问题的关键是熟练掌握矩形性质,正方形性质,反比例函数性质,k 的几何意义.统考中考真题)如图,在平面直角坐标系中,AOC 的边两点.若AOC 的面积是 【答案】4【分析】过B ,C 两点分别作y 轴的垂线,垂足分别为D ,E ,设B 点坐标为k m m ⎛⎫ ⎪⎝⎭,,则BD m =,由点B 为AC 的中点,推出C 点坐标为22k m m ⎛⎫ ⎪⎝⎭,,求得直线BC 的解析式,得到A 点坐标,根据AOC 的面积是6,列式计算即可求解.【详解】解:过B ,C 两点分别作y 轴的垂线,垂足分别为D ,E ,∴BD CE ∥, ∴ABD ACE ∽,∴BD ABCE AC =,设B 点坐标为k m m ⎛⎫ ⎪⎝⎭,,则BD m =, ∵点B 为AC 的中点, ∴12BD AB CE AC ==, ∴22CE BD m ==,∴C 点坐标为22k m m ⎛⎫ ⎪⎝⎭,, 设直线BC 的解析式为y ax b =+, ∴22k ma b mk ma b m ⎧+=⎪⎪⎨⎪+=⎪⎩,解得2232k a m k b m ⎧=−⎪⎪⎨⎪=⎪⎩, ∴直线BC 的解析式为2322k k y x m m =−+, 当0x =时,32ky m =,∴A 点坐标为302k m ⎛⎫ ⎪⎝⎭,, 根据题意得132622k m m ⋅⋅=,解得4k =, 故答案为:4.【点睛】本题考查了反比例函数的性质、相似三角形的判定及性质、求一次函数解析式、坐标与图形,解题关键是熟练掌握反比例函数的性质及相似三角形的性质.【答案】33【分析】过点B 作BC y ⊥轴于点C ,由旋转的性质得,AO AB =,120OAB ∠=︒,在Rt ABC 中求出BC 、AC 的长,即可得出点B 的坐标,代入反比例函数解析式即可求出k 的值.【详解】解∶过点B 作BC y ⊥轴于点C ,由旋转的性质得,AO AB =,120OAB ∠=︒, ∵点A 的坐标为(0,2), ∴2AO AB ==, ∵120OAB ∠=︒,∴180********BAC OAB ∠∠=︒−=︒−︒=︒, ∴9030ABC BAC ∠∠=︒−=︒, ∴AC =12AB =1221⨯=,由勾股定理得BC ==∴213OC AO AC =+=+=,∴点B 的坐标为(3), ∵点B 恰好落在反比例函数ky x =的图象上,∴3k =故答案为∶3【点睛】本题考查了反比例函数图象上点的坐标特征,坐标与图形的变化之旋转,解答本题的关键是求出点B 的坐标.【答案】>【分析】把2x =−和=1x −分别代入反比例函数2y x =中计算y 的值,即可做出判断.【详解】解:∵点()12,A y −和点()21,B y −都在反比例函数2y x =的图象上,∴令2x =−,则1212y ==−−;令=1x −,则2221y ==−−,12−>−,12y y ∴>,故答案为:>.【点睛】本题考查了反比例函数图像上点的坐标特征,计算y 的值是解题的关键. 若OAB 的面积为【答案】196/136【分析】由k 的几何意义可得19212k =,从而可求出k 的值. 【详解】解:AOB 的面积为||192212k k ==, 所以k =196. 故答案为:196.【点睛】本题主要考查了k 的几何意义.用k 表示三角形AOB 的面积是本题的解题关键.【答案】3【分析】先把点A 坐标代入求出反比例函数解析式,再把点B 代入即可求出m 的值. 【详解】解:∵函数()0ky k x =≠的图象经过点()3,2A −和(),2B m −∴把点()3,2A −代入得326k =−⨯=−,∴反比例函数解析式为6y x −=, 把点(),2B m −代入得:62m −−=,解得:3m =, 故答案为:3.【点睛】本题考查了待定系数法求反比例函数解析式,反比例函数图象上点的坐标特征,熟知反比例函数图象上的点的坐标一定满足函数解析式是解题的关键.【答案】1.5(满足12k <<都可以)【分析】先判断出一次函数7y x b =−+的图象必定经过第二、四象限,再根据120x x ⋅>判断出反比例函数图象和一次函数图象的两个交点在同一象限,从而可以得到反比例函数的图象经过第二、四象限,即630k −<,最终选取一个满足条件的值即可. 【详解】解:70−<,∴一次函数7y x b =−+的图象必定经过第二、四象限,120x x ⋅>,∴反比例函数图象和一次函数图象的两个交点在同一象限, ∴反比例函数63ky x −=(1k >且2k ≠)的函数图象经过第一、三象限,∴630k −>,∴2k <, ∵1k >, ∴12k <<,∴满足条件的k 值可以为1.5, 故答案为:1.5(满足12k <<都可以).【点睛】本题考查一次函数和反比例函数的图形性质,解题的关键是根据120x x ⋅>判断出反比例函数图象和一次函数图象的两个交点在同一象限.的正ABC 的顶点,现将ABC 绕原点【答案】6【分析】画出变换后的图像即可(画AOB 即可),当点A 在y 轴上,点B 、C 在x 轴上时,根据ABC 为等边三角形且AO BC ⊥,可得OB OA=A 、B 分别作x 轴垂线构造相似,则BFO OEA ∽,根据相似三角形的性质得出3AOE S =△,进而根据反比例函数k 的几何意义,即可求解.【详解】当点A 在y 轴上,点B 、C 在x 轴上时,连接AO ,ABC 为等边三角形且AO BC ⊥,则30BAO ∠=︒,∴tan tan30BAO ∠=︒=OB OA=, 如图所示,过点,A B 分别作x 轴的垂线,交x 轴分别于点,E F ,AO BO ⊥,90BFO AEO AOB ∠=∠=∠=︒,∴90BOF AOE EAO ∠=︒−∠=∠, ∴BFO OEA ∽,∴213BFO AOES OB S OA ⎛⎫== ⎪⎝⎭, ∴212BFOS−==,∴3AOE S =△, ∴6k =.【点睛】本题考查了反比例函数的性质,k 的几何意义,相似三角形的性质与判定,正确作出辅助线构造相似三角形是解题关键.【答案】2/2−+【分析】过点A 作CD y ⊥轴于点D ,过点B 作BC CD ⊥于点C ,证明DAO CBA ≌,进而根据全等三角形的性质得出,DA CB AC OD ==,根据点(),2A m ,进而得出()2,2B m m +−,根据点,A B 在反比例函数(0)ky x x =>的图象上.列出方程,求得m 的值,进而即可求解.【详解】解:如图所示,过点A 作CD y ⊥轴于点D ,过点B 作BC CD ⊥于点C ,∴90C CDO ∠=∠=︒, ∵,90OA AB OAB =∠=︒, ∴90DAO CAB CBA ∠=︒−∠=∠ ∴DAO CBA ≌ ∴,DA CB AC OD == ∵点A 的坐标为()m,2.∴2AC OD ==,AD BC m == ∴()2,2B m m +−∵,A B 在反比例函数(0)ky x x =>的图象上,∴()()222m m m =+−解得:1m =或1m =(舍去)∴22k m ==故答案为:2.【点睛】本题考查了反比例函数的图象和性质,全等三角形的判定和性质,求得点B 的坐标是解题的关键.【答案】4【分析】根据题意可设点P 的坐标为()22m m ,,则()2D m m ,,把()2D m m ,代入一次函数解析式中求出m 的值进而求出点P 的坐标,再求出k 的值即可.【详解】解:∵PA x ⊥轴于点,A PB y ⊥轴于点,B PA PB =, ∴点P 的横纵坐标相同, ∴可设点P 的坐标为()22m m ,,∵D 为PB 的中点, ∴()2D m m ,,∵()2D m m ,在直线1y x =+上,∴12m m +=, ∴1m =, ∴()22P ,,∵点P 在反比例函数()0ky k x =>的图象上,∴224k =⨯=, 故答案为:4.【点睛】本题主要考查了一次函数与反比例函数综合,正确求出点P 的坐标是解题的关键.【答案】6【分析】延长CD 交x 轴于点F ,设,k D a a ⎛⎫ ⎪⎝⎭,利用相似三角形的判定与性质可求得矩形的长与宽,再由矩形的面积即可求和k 的值.【详解】解:延长CD 交x 轴于点F ,如图,由点D 在反比例函数()0k y x x =>的图象上,则设,k D a a ⎛⎫ ⎪⎝⎭,∵矩形ABCD 的边AB 平行于x 轴,AB CD ∥,AD CD ⊥, ∴CD y ⊥轴,AD OF ∥, 则kDF a OF a ==,,∵AD OF ∥, ∴CDA CFO △∽△, ∴CD AD ACCF OF OC ==, ∵2AC AO =,∴23AC OC =, ∴2223CD CF DF a ===,2233k AD OF a ==, ∵8AD CD ⋅=,即2283k a a ⨯=,∴6k =, 故答案为:6.【点睛】本题考查了相似三角形的判定与性质,反比例函数图象上点的坐标特征,其中相似三角形的判定与性质是关键.则ABP 的面积是 【答案】152【分析】把()2,3A −代入到22k y x =可求得2k 的值,再把(),2Bm −代入双曲线函数的表达式中,可求得m 的值,进而利用三角形的面积公式进行求解即可. 【详解】∵直线11y k x b =+与双曲线22k y x =(其中120k k ⋅≠)相交于()2,3A−,(),2B m −两点,∴2232k m =−⨯=−∴263k m =−=,,∴双曲线的表达式为:26y x =−,()3,2B −,∵过点B 作BP x ∥轴,交y 轴于点P , ∴3BP =, ∴1153(32)22ABPS=⨯⨯+=,故答案为152.【点睛】本题是一次函数与反比例函数的交点问题,考查了待定系数法求反比例函数,反比例函数图象上点的坐标特征,三角形的面积,数形结合是解答此题的关键. 三、解答题26.(2023·四川绵阳·统考中考真题)如图,设反比例函数的解析式为(k >0).(1)若该反比例函数与正比例函数y=2x 的图象有一个交点的纵坐标为2,求k 的值;(2)若该反比例函数与过点M (﹣2,0)的直线l :y=kx+b 的图象交于A ,B 两点,如图所示,当△ABO 的面积为时,求直线l 的解析式.【答案】(1);(2).【详解】试题分析:(1)由题意可得A(1,2),利用待定系数法即可解决问题;(2)把M(﹣2,0)代入y=kx+b,可得b=2k,可得y=kx+2k,由消去y得到,解得x=﹣3或1,推出B(﹣3,﹣k),A(1,3k),根据△ABO的面积为,可得•23k+•2k=,解方程即可解决问题;试题解析:(1)由题意A(1,2),把A(1,2)代入,得到3k=2,∴.(2)把M(﹣2,0)代入y=kx+b,可得b=2k,∴y=kx+2k,由消去y得到,解得x=﹣3或1,∴B(﹣3,﹣k),A(1,3k),∵△ABO的面积为,∴×2×3k+•2k=,解得k=,∴直线l 的解析式为.考点:反比例函数与一次函数的交点问题.(1)2m =,4a =,求函数3y 的表达式及(2)当a 、m 在满足0a m >>的条件下任意变化时,(3)试判断直线PH 与BC 边的交点是否在函数【答案】(1)函数3y 的表达式为325y x =−+,PGH △的面积为12(2)不变,理由见解析 (3)在,理由见解析【分析】(1)由2m =,4a =,可得(20)A ,,()20B −,,12y x=,22y x −=,则4AB =,当2x =,1212y ==,则()21E ,;当14y =,24x =,解得12x =,则142G ⎛⎫ ⎪⎝⎭,;当24y =,24x −=,解得12x =−,则142H ⎛⎫− ⎪⎝⎭,;待定系数法求一次函数3y 的解析式为325y x =−+,当0x =,35y =,则()05P ,,根据()11154222PGH S ⎡⎤⎛⎫=⨯−−⨯− ⎪⎢⎥⎝⎭⎣⎦△,计算求解即可;(2)求解过程同(1);(3)设直线PH 的解析式为22y k x b =+,将()01P a +,,m a H a a −⎛⎫⎪⎝⎭,,代入22y k x b =+得,2221b am a k b a a =+⎧⎪−⎨+=⎪⎩,解得221b aa k a m =+⎧⎪⎨=⎪−⎩,即1a x a a m y +−=+,当x m a =−,()11y a m a a a m ⨯+=−+=−,则直线PH 与BC 边的交点坐标为()1m a −,,当x m a =−,21m ay m a −=−=,进而可得结论.【详解】(1)解:∵2m =,4a =,∴(20)A ,,()20B −,,12y x=,22y x −=,∴4AB =, 当2x =,1212y ==,则()21E ,;当14y =,24x =,解得12x =,则142G ⎛⎫ ⎪⎝⎭,; 当24y =,24x −=,解得12x =−,则142H ⎛⎫− ⎪⎝⎭,; 设一次函数3y 的解析式为3y kx b =+,将()21E ,,142G ⎛⎫⎪⎝⎭,,代入3y kx b =+得,21142k b k b +=⎧⎪⎨+=⎪⎩,解得25k b =−⎧⎨=⎩,∴325y x =−+, 当0x =,35y =,则()05P ,,∴()1111542222PGH S ⎡⎤⎛⎫=⨯−−⨯−=⎪⎢⎥⎝⎭⎣⎦△; ∴函数3y 的表达式为325y x =−+,PGH △的面积为12;(2)解:PGH △的面积不变,理由如下:∵(0)A m ,,(0)B m a −,,1m y x =,2m ay x −=,∴AB a =,当x m =,11m y m ==,则()1E m ,;当1y a =,m a x =,解得m x a =,则m G a a ⎛⎫⎪⎝⎭,; 当2y a =,m a a x −=,解得m a x a −=,则m a H a a−⎛⎫ ⎪⎝⎭,; 设一次函数3y 的解析式为113k x b y =+,将()1E m ,,m G a a ⎛⎫ ⎪⎝⎭,,代入113k x b y =+得,11111mk b m k b a a +=⎧⎪⎨+=⎪⎩,解得111a k m b a ⎧=−⎪⎨⎪=+⎩,∴31ax a m y =−++,当0x =,31y a =+,则()01P a +,,∴()11122PGH m m a S a a a a ⎡−⎤⎛⎫=⨯−⨯+−= ⎪⎢⎥⎝⎭⎣⎦△; ∴PGH △的面积不变;(3)解:直线PH 与BC 边的交点在函数2y 的图像上,理由如下:设直线PH 的解析式为22y k x b =+,将()01P a +,,m a H a a −⎛⎫⎪⎝⎭,,代入22y k x b =+得,2221b a m a k b a a =+⎧⎪−⎨+=⎪⎩,解得221b aa k a m =+⎧⎪⎨=⎪−⎩, ∴1ax a a m y +−=+,当x m a =−,()11y am a a a m ⨯+=−+=−,∴直线PH 与BC 边的交点坐标为()1m a −,,当x m a =−,21m ay m a −=−=,∴直线PH 与BC 边的交点在函数2y 的图像上.【点睛】本题考查了正方形的性质,一次函数解析式,反比例函数解析式,交点坐标.解题的关键在于对知识的熟练掌握与灵活运用.(1)求一次函数和反比例函数的表达式; (2)求OAB 的面积;(3)过动点()0T t ,作x 轴的垂线l ,l 与一次函数y x m =−+和反比例函数ky x=的图象分别交于当M 在N 的上方时,请直接写出t 的取值范围.【答案】(1)一次函数的解析式为3y x =−+,反比例函数的解析式为2y x =(2)32(3)0t <或12t << 【分析】(1)把()1,2A 分别代入一次函数和反比例函数求出m k 、的值即可得到答案;(2)联立32y x y x =−+⎧⎪⎨=⎪⎩求出点B 的坐标,令直线AB 与x 交于点C ,由直线AB 求出点C 的坐标,最后由1122AOBAOCBOCA B SSSOC y OC y =−=⋅⋅−⋅⋅,进行计算即可得到答案;(3)直接由函数图象即可得到答案. 【详解】(1)解:把()1,2A 代入一次函数y x m =−+,得12m −+=, 解得:3m =,∴一次函数的解析式为:3y x =−+,把()1,2A 代入反比例函数ky x =,得21k =,解得:2k =,∴反比例函数的解析式为:2y x =;(2)解:联立32y x y x =−+⎧⎪⎨=⎪⎩,解得:12x y =⎧⎨=⎩或21x y =⎧⎨=⎩,()21B ∴,,令直线AB 与x 交于点C ,如图,,当0y =时,30x −+=, 解得:3x =, ()30C ∴,,11113323122222AOBAOCBOCA B SS SOC y OC y ∴=−=⋅⋅−⋅⋅=⨯⨯−⨯⨯=(3)解:由图象可得:,当M 在N 的上方时,t 的取值范围为:0t <或12x <<.【点睛】本题考查了求反比例函数的解析式、求一次函数的解析式、反比例函数与一次函数的交点问题,熟练掌握反比例函数和一次函数的图象与性质,是解题的关键.(1)当气球内的气压超过150KPa 少时气球不会爆炸(球体的体积公式(2)请你利用p 与V 的关系试解释为什么超载的车辆容易爆胎.【答案】(1)气球的半径至少为0.2m 时,气球不会爆炸; (2)由于车辆超载,轮胎体积变小,胎内气压增大导致爆胎 【分析】(1)设函数关系式为k p =,用待定系数法可得 4.8p V =,即可得当150p =时, 4.80.032150V ==,从而求出0.2r =;(2)由于车辆超载,轮胎体积变小,胎内气压增大导致爆胎. 【详解】(1)设函数关系式为kp V =, 根据图象可得:1200.04 4.8k pV ==⨯=, ∴4.8p V =,∴当150p =时,4.80.032150V ==,∴3430.0323r ⨯=,解得:0.2r =,4.80k =>,p ∴随V 的增大而减小,∴要使气球不会爆炸,0.032V ≥,此时0.2r ≥, ∴气球的半径至少为0.2m 时,气球不会爆炸;(2)由于车辆超载,轮胎体积变小,胎内气压增大导致爆胎.【点睛】本题考查反比例函数的应用,涉及立方根等知识,解题的关键是读懂题意,掌握待定系数法求出反比例函数的解析式.轴的对称点,OAC 的面积是【答案】(1)y x =(2)(2P −++或(2P −−−【分析】(1)设,k A m m ⎛⎫ ⎪⎝⎭,可得,k C m m ⎛⎫− ⎪⎝⎭,结合OAC 的面积是8.可得()182k m m m +=,从而可得答案;(2)先求解()2,4A ,()2,4C −,可得直线为28y x =+,联立828y x y x ⎧=⎪⎨⎪=+⎩,再解方程组即可.【详解】(1)解:∵点A 在反比例函数(0)ky k x =≠的图象上,∴设,k A m m ⎛⎫⎪⎝⎭,∵点C 是点A 关于y 轴的对称点,∴,k C m m ⎛⎫− ⎪⎝⎭, ∵OAC 的面积是8.∴()182k m m m +=,解得:8k =;∴反比例函数解析式为:8y x =;(2)∵点A 的横坐标为2时, ∴842A y ==,即()2,4A ,则()2,4C −,∵直线2y x b =+过点C , ∴44b −+=, ∴8b =,∴直线为28y x =+, ∴828y x y x ⎧=⎪⎨⎪=+⎩,解得:24x y ⎧=−+⎪⎨=+⎪⎩或24x y ⎧=−−⎪⎨=−⎪⎩,经检验,符合题意;∴(2P −++或(2P −−−.【点睛】本题考查的是一次函数与反比例函数的综合应用,轴对称的性质,一元二次方程的解法,熟练的利用图形面积建立方程求解是解本题的关键.(1)求反比例函数的表达式;(2)点D 在反比例函数图象上,且横坐标大于3OBDS=【答案】(1)4y x =(2)132y x =−+【分析】(1)根据四边形OABC 是边长为2的正方形求出点B 的坐标,代入ky x =求出k ;(2)设4,D a a ⎛⎫ ⎪⎝⎭,过点D 作DH x ⊥轴,根据OBD OBH BHD ODH S S S S =+−V V V V 面积列方程,求出点D 坐标,再由待定系数法求出直线BD 的函数表达式.【详解】(1)解:四边形OABC 是边长为2的正方形, ∴4OABC S xy ==正方形, ∴4k =;即反比例函数的表达式为4y x =.(2)解:设4,D a a ⎛⎫ ⎪⎝⎭,过点D 作DH x ⊥轴,点()2,2B ,4,D a a ⎛⎫ ⎪⎝⎭,(),0H a ,∴12OBH S OH AB a=⋅=V 1144(2)(2)222BHD a S DH AH a a a −=⋅=⋅⋅−=V ,122ODH S OH DH =⋅=V3OBD OBH BHD ODH S S S S =+−=V V V V∴4(2)232a a a −+−=,解得:14a =,21a =−,经检验4a =,是符合题意的根,即点()4,1D ,设直线BD 的函数解析式为y kx b =+,得∶ 2241k b k b +=⎧⎨+=⎩,解得:123k b ⎧=−⎪⎨⎪=⎩,即:直线BD 的函数解析式为132y x =−+.【点睛】本题考查了反比例函数的几何意义和待定系数法求一次函数解析式,反比例函数ky x =图象上任意一点做x 轴、y 轴的垂线,组成的长方形的面积等于k,灵活运用几何意义是解题关键.2(1)求反比例函数的解析式;(2)点C 在这个反比例函数图象上,连接【答案】(1)8y x =(2)()4,2C【分析】(1)利用正切值,求出4OB =,进而得到()2,4A ,即可求出反比例函数的解析式;(2)过点A 作AE x ⊥轴于点E ,易证四边形ABOE 是矩形,得到2OE =,4AE =,再证明AED △是等腰直角三角形,得到4DE =,进而得到()6,0D ,然后利用待定系数法求出直线AD 的解析式为6y x =−+,联立反比例函数和一次函数,即可求出点C 的坐标. 【详解】(1)解:AB y ⊥轴,90ABO ∴∠=︒,1tan 2AOB =∠,12AB OB ∴=,2AB =,4OB ∴=,()2,4A ∴,点A 在反比例函数()0ky x x =>的图象上,248k ∴=⨯=,∴反比例函数的解析式为8y x =;(2)解:如图,过点A 作AE x ⊥轴于点E ,90ABO BOE AEO ∠=∠=∠=︒,∴四边形ABOE 是矩形,2OE AB ∴==,4OB AE ==,45ADO ∠=︒,AED ∴是等腰直角三角形, 4DE AE ∴==,246OD OE DE ∴=+=+=,()6,0D ∴,设直线AD 的解析式为y kx b =+,2460k b k b +=⎧∴⎨+=⎩,解得:16k b =−⎧⎨=⎩, ∴直线AD 的解析式为6y x =−+,点A 、C 是反比例函数8y x =和一次函数6y x =−+的交点,联立86y x y x ⎧=⎪⎨⎪=−+⎩,解得:24x y =⎧⎨=⎩或42x y =⎧⎨=⎩,()2,4A , ()4,2C ∴.【点睛】本题是反比例函数综合题,考查了锐角三角函数值,矩形的判定和性质,待定系数法求函数解析式,反比例函数和一次函数交点问题等知识,求出直线AD 的解析式是解题关键.(1)求反比例函数的表达式和点E 的坐标;(2)若一次函数y x m =+与反比例函数的部分时(点M 可与点,D E 重合)【答案】(1)反比例函数解析式为y x =,()22E ,(2)30m −≤≤【分析】(1)根据矩形的性质得到BC OAAB OA ∥,⊥,再由()4,1D 是AB 的中点得到()42B ,,从而得到点E的纵坐标为2,利用待定系数法求出反比例函数解析式,进而求出点E 的坐标即可; (2)求出直线y x m =+恰好经过D 和恰好经过E 时m 的值,即可得到答案. 【详解】(1)解:∵四边形OABC 是矩形,∴BC OAAB OA ∥,⊥, ∵()4,1D 是AB 的中点, ∴()42B ,,∴点E 的纵坐标为2,∵反比例函数()0ky x x =>的图象分别与,AB BC 交于点()4,1D 和点E ,∴14k =,∴4k =,∴反比例函数解析式为4y x =,在4y x =中,当42y x ==时,2x =, ∴()22E ,;(2)解:当直线 y x m =+经过点()22E ,时,则22m +=,解得0m =; 当直线 y x m =+经过点()41D ,时,则41m +=,解得3m =−;∵一次函数y x m =+与反比例函数()0ky x x =>的图象相交于点M ,当点M 在反比例函数图象上,D E 之间的部分时(点M 可与点,D E 重合), ∴30m −≤≤.【点睛】本题主要考查了求一次函数解析式,一次函数与反比例函数综合,矩形的性质等等,灵活运用所学知识是解题的关键.【答案】(1)反比例函数的表达式为y x =−;一次函数的表达式为22y x =−+(2)142BC =【分析】(1)利用待定系数法即可求解;(2)先求得直线BC 的表达式为1y =,再分别求得B C 、的坐标,据此即可求解.【详解】(1)解:∵反比例函数()0ky x x =<的图象经过点()1,4A −,∴144k =−⨯=−, ∴反比例函数的表达式为4y x =−;∵一次函数2y x m =−+的图象经过点()1,4A −,∴()421m=−⨯−+,∴2m =,∴一次函数的表达式为22y x =−+; (2)解:∵1OD =, ∴()01D ,,∴直线BC 的表达式为1y =, ∵1y =时,14x =−,解得4x =−,则()41B −,,∵1y =时,122x =−+,解得12x =,则112C ⎛⎫ ⎪⎝⎭,,∴()114422BC =−−=.【点睛】本题考查一次函数、反比例函数图象上点的坐标特征,待定系数法是求函数解析式的基本方法.(1)求反比例函数和一次函数的表达式;(2)求AOB 的面积; (3)请根据图象直接写出不等式【答案】(1)12y x =−,32y x =−+(2)9(3)<2x −或04x <<【分析】(1)把点B 代入反比例函数()0ky k x =≠,即可得到反比例函数的解析式;把点A 代入反比例函数,即可求得点A 的坐标;把点A 、B 的坐标代入一次函数一次函数()0y ax b a =+<即可求得a 、b 的值,从而得到一次函数的解析式;(2)AOB 的面积是AOC 和BOC 的面积之和,利用面积公式求解即可;(3)利用图象,找到反比例函数图象在一次函数图象下方所对应的x 的范围,直接得出结论. 【详解】(1)∵点()4,3B −在反比例函数ky x =的图象上,∴34k −=, 解得:12k =− ∴反比例函数的表达式为12y x =−.∵(),3A m m −在反比例函数12y x =−的图象上,∴123m m =−−,解得12m =,22m =−(舍去).∴点A 的坐标为()2,6−.∵点A ,B 在一次函数y ax b =+的图象上,把点()2,6A −,()4,3B −分别代入,得2643a b a b −+=⎧⎨+=−⎩,解得323a b ⎧=−⎪⎨⎪=⎩,∴一次函数的表达式为332y x =−+; (2)∵点C 为直线AB 与y 轴的交点,∴把0x =代入函数332y x =−+,得3y = ∴点C 的坐标为()0,3 ∴3OC =,∴AOB AOC BOC SS S =+ 1122A B OC x OC x =⋅⋅+⋅⋅11323422=⨯⨯+⨯⨯9=.(3)由图象可得,不等式k ax b x <+的解集是<2x −或04x <<.【点睛】此题是反比例函数与一次函数的交点问题,考查了待定系数法求函数的解析式,三角形面积,函数与不等式的关系,求出两个函数解析式是解本题的关键.。

(完整word版)反比例函数测试题(含答案)

(完整word版)反比例函数测试题(含答案)

反比例函数测试题(含答案)(时间90分钟满分100分)班级学号姓名得分一、选择题(每小题3分,共24分)1.如果x、y之间的关系是10(0)ax y a-+=≠,那么y是x的( )A.正比例函数B.反比例函数C.一次函数D.二次函数2.函数y=-错误!的图象与x轴的交点的个数是()A.零个B.一个C.两个D.不能确定3.反比例函数y=-错误!的图象在()A.第一、三象限B.第二、四象限C.第一、二象限D.第三、四象限4.已知关于x的函数y=k(x+1)和y=-kx(k≠0)它们在同一坐标系中的大致图象是(• )5.已知反比例函数y=xk的图象经过点(m,3m),则此反比例函数的图象在()A.第一、二象限B.第一、三象限C.第二、四象限D.第三、四象限6.某气球内充满了一定质量的气体,当温度不变时,气球内气体的气压P(kPa )是气体体积V(m3 )的反比例函数,其图象如图所示.当气球内的气压大于120 kPa时,气球发将爆炸.为了安全起见,气球的体积应()A.不小于54m3B.小于54m3 C.不小于45m3 D.小于45m37.如果点P为反比例函数xy4=的图象上一点,PQ⊥x轴,垂足为Q,那么△1.660O V (m3)P (kPa)(1.6,60)第6题POQ 的面积为 ( )A .2B . 4C .6D . 8 8.已知:反比例函数xmy 21-=的图象上两点A (x 1,y 1),B (x 2, y 2)当x 1<0<x 2时,y 1<y 2,则m 的取值范围( ) A .m <0 B .m >0 C .m <21D .m >21二、填空题(每小题2分,共20分)9.有m 台完全相同的机器一起工作,需m 小时完成一项工作,当由x 台机器(x 为不大于m 的正整数)完成同一项工作时,所需的时间y 与机器台数x 的函数关系式是____。

10.已知y 与x 成反比例,且当x 32=-时,y =5,则y 与x 的函数关系式为__________。

反比例函数练习题及答案

反比例函数练习题及答案

反比例函数练习题及答案反比例函数是一种特殊的函数形式,其表达式的一部分反比于另一部分。

在数学中,反比例函数通常用来描述两个变量之间的相互关系。

本文将为你提供一些反比例函数练习题及其答案,帮助你巩固对反比例函数的理解和应用。

1. 练习题:a) 已知y与x成反比例关系,且y=5当x=2,求当x=8时,y的值。

b) 设x与y成反比例,当x=4时,y=10,求当x=6时,y的值。

c) 某条直线通过点(1,3)和(2,6),试判断该直线是否表示反比例函数。

2. 答案:a) 根据反比例函数的性质,可以得到y = k/x,其中k是常数。

将已知条件代入得到 5 = k/2,解方程得到 k = 10。

所以,当x = 8时,y =10/8 = 5/4。

b) 类似地,根据反比例函数的性质得到y = k/x,将已知条件代入得到 10 = k/4,解方程得到 k = 40。

所以,当x = 6时,y = 40/6 = 20/3。

c) 根据题意,计算斜率 k = (6-3)/(2-1) = 3。

由于斜率不是常数,所以该直线不能表示反比例函数。

通过以上练习题和答案,我们可以得到一些关于反比例函数的重要结论:- 反比例函数通常可表示为y = k/x的形式,其中k是常数。

- 当已知某一点的坐标时,可以通过代入求解得到反比例函数的具体表达式。

- 如果两个变量之间的关系不符合反比例函数的性质,那么其对应的直线也不表示反比例函数。

在实际应用中,反比例函数经常用于解决一些与比例关系有关的问题,例如速度和时间、产量和工人数量等。

希望通过这些练习题和答案,你能更好地理解和应用反比例函数的概念。

总结:本文为你提供了一些反比例函数的练习题及其答案,帮助你加深对该函数形式的理解。

通过练习题的解答过程,你可以掌握反比例函数的基本性质,以及如何应用相关概念解决实际问题。

反比例函数在数学和实际生活中都有重要的应用价值,希望这些练习题能够对你的学习有所帮助。

(完整版)反比例函数专题训练(含答案)-,推荐文档

(完整版)反比例函数专题训练(含答案)-,推荐文档
形 PROQ 的面积是多少?
4
参考答案
动脑动手
1.k1=3,k2=2,所求函数为 y 3 2x 2 . x
2. y 12 (3≤x≤5). x
3. y 20 (x 1,2,3,4,5) . x
4.(1)求 A,B 两点坐标问题转化为解方程组
y 8 , x y x 2.
(2)S△AOB=S△AOC+S△BOC,因 A,B 两点坐标已求出,面积可求.
即 12 12 3 . a2 a
强是 200Pa,翻过来放,对桌面的压强是多少?
28.设函数 y (m 2)m2 5m5 ,当 m 取何值时,它是反比例函数?它的图象位于哪些
象限内? (1)在每一个象限内,当 x 的值增大时,对应的 y 值是随着增大,还是随着减小? (2)画出函数图象.
(3)利用图象求当-3≤x≤ 1 时,函数值 y 的变化范围. 2
y=y1-y2,

y
k1 x
k2 x2
.
x 1

y
5;
x
y
1, 1.
分别代入得
5 1
k1
k1 k
2,
k
2
,
解得
k1=3;k2=2.
∴y 与 x 的函数解析式为 y 3 2x 2 . x
26.解:将 V=5 时,ρ=1.98 代入 m 得 V
m=1.98×5=9.9.
∴ρ 与 V 的函数关系式为 ρ 9.9 . V
C. y x 1 2
D. y x 2 1 2
13.函数 y m 的图象过(2,-2),那么函数的图象在( ) x
A.第一、三象限
B.第一、四象限
C.第二、三象限
  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

反比例函数的应用专项练习30题(有答案)1.如图所示,楠溪江引水工程蓄水池每小时的放水量q(万m3/h)与时间t(h)之间的函数关系图象.(1)求此蓄水池的蓄水量,并写出此图象的函数解析式;(2)当每小时放水4万m3时,需几小时放完水?2.经科学研究人的大脑中的记忆随时间的变化有一定的函数关系,其规律可以用如下图象来说明;现有一个同学在学习某知识点一天后经估计记忆中有80%没有忘记,那么请你用学过的数学知识说明:8天后该同学在不复习的前提下,大脑中尚存有多少记忆没有忘记?3.在一个可以改变体积的密闭容器内装有一定质量的二氧化碳,当改变容器的体积时,气体的密度也会随之改变,密度P是体积V的反比例函数,它的图象如图所示①求密度P(单位:kg/m3)与体积V(单位:m3)之间的函数表达式;②求当V=9m3时二氧化碳的密度P.4.某运输公司承担一项运送总量为100万立方米土石方的任务,计划安排若干辆同类型的卡车运输,每辆卡车每天的运载量为100立方米.(1)求安排卡车的数量y(辆)与完成运送任务所需的时间t(天)的函数关系式;(2)若所有的运输任务必须在90天内完成,则至少需要安排多少辆卡车运输?5.某石油公司要修建一个容积为10 000m3的圆柱形地下油库.(1)请写出油库的底面积s(m2)与其深度d(m)之间的函数关系.(2)当底面积为500m2时,施工队施工时应向下掘进多深?.6.甲加工A型零件60个所用时间和乙加工B型零件80个所用时间相同,每天甲、乙两人共加工35个零件,设甲每天加工x个.(1)直接写出乙每天加工的零件个数(用含x的代数式表示);(2)求甲、乙每天各加工多少个;(3)根据市场预测估计,加工A型零件所获得的利润为m元/件(3≤m≤5),加工B型零件所获得的利润每件比A 型少1元.求每天甲、乙加工的零件所获得的总利润P(元)与m的函数关系式,并求P的最大值、最小值.7.某车队有1辆大车和5辆小车,同时运送一批货物,大车每小时运送货物xt,大车每小时运送的货物是每辆小车每小时运送货物的3倍、设该车队运送货物800t需yh.(1)写出y与x的函数关系式:_________;(2)当x=12时,y的值是_________;(3)按(2)的工作效率运送800t货物,若要提前10h完成任务,问该车队在不增加大车的情况下,至少要增加几辆小车?8.某气球内充满了一定质量的气体,当温度不变时,气球内气体的气压P(kPa)是气体体积V(m3)的反比例函数,其图象如图所示.(1)求P与V的函数关系式;(2)当气球内气体的体积是0.96m3时,气球内气体的气压是多少?9.矩形面积为4,试写出矩形的长y与宽x之间的函数关系式,并在直角坐标系中画出它的图象.10.某新建的大楼楼体外表需贴磁砖,楼体外表总面积为4800m2.(1)设所需磁砖的块数为n(块),每块磁砖的面积为S(m2),试求n与S的函数关系式;(2)如果每块磁砖的面积均为80cm2,每箱磁砖有120块,需买磁砖多少箱?11.某工厂计划生产1.2万吨化工产品:(1)生产时间t(天)与生产速度v(吨∕天)有怎样的函数关系?(2)若工厂平均每天可生产60吨化工产品,那么该厂完成生产任务需要多长时间?(3)若工厂有12个车间,每个车间的生产速度相同,当以问题(2)中的生产速度正常生产80天后,由于受到金融危机的影响,市场需求量下降,该厂决定关闭4个车间,其余车间正常生产,那么工厂实际完成任务的时间将比原来推迟多少天?12.某小区新建成的住宅楼主体工程已经竣工,只剩下楼外体表需贴瓷砖,已知楼体外表的面积为5×103(m2).(1)写出每块瓷砖的面积S(m2)与所需的瓷砖块数m(块)之间的函数关系式;(2)为了使住宅楼的外观更漂亮,开发商决定采用灰、白和蓝三种颜色的瓷砖,每块瓷砖的面积都是80(cm2),灰、白、蓝瓷砖使用比例是1:2:2,则需要三种瓷砖各多少块?13.设△ABC中BC边的长为x(cm),BC上的高AD为y(cm),△ABC的面积为常数.已知y关于x的函数图象过点(3,2).(1)求y关于x的函数解析式和△ABC的面积;(2)求当4<x<9时y的取值范围.14.一个水池的容积是8m2,如果从进水管中每小时流进x m2,那么经过y小时就可以把水池注满.(1)求y与x的函数关系式;(2)当x=2m2时,求y的值;(3)画出函数的图象.15.某车间承包一项生产1800个零件的任务,计划用t天完成.(1)每天生产零件s(个)与生产时间t(天)有怎样的函数关系;(2)车间有工人60名,每天最多生产300个零件,预计最快可在几天内完成任务?(3)如果由于特殊原因,必须提前两天完成任务,车间需要增加多少工人才能按要求完成任务?16.某司机驾驶汽车从甲地去乙地购买货物,他以80(千米/时)的平均速度用3小时到达目的地.(1)当他按原路匀速返回时,汽车的速度v与时间t有怎样的函数关系;(2)如果该司机必须在4小时之内回到甲地,则返程时的速度不能低于多少?17.一定量的气体的压强P与它的体积V成反比例,已知当V=200时,P=50.(1)试用V表示P;(2)当P=100时,求V的值.18.近视眼镜的度数y(度)与镜片的焦距x(米)满足函数关系为y=(k为常数),若100度镜片的焦距比500度镜片的焦距多0.8米,求k的值.19.某蓄水池的排水管每小时排水8立方米,6小时可将满池的水全部排空.求:(1)蓄水池的容积是多少?(2)如果增加排水管,使每小时的排水量达到x(立方米),将满池水排空所需的时间t(小时),试写出t关于x 的函数解析式,并指出定义域.(3)如果准备在5小时内将满池水排空,那么每小时的排水量至少为多少?(4)已知排水管的最大排水量为每小时12立方米,那么最少多长时间可将满池水全部排空?20.如图所示是某一蓄水池每小时的排水量V(m3/h)与排完水池中的水所用的时间t(h)之间的函数关系图象.(1)请你根据图象提供的信息求出此蓄水池的蓄水量;(2)求出此函数的解析式;(3)若要6h排完水池中的水,那么每小时的排水量应该是多少?(4)如果每小时排水量不超过5 000m3,那么水池中的水至少要多少小时排完?21.汽车匀速行驶在相距S千米的甲、乙两地之间,下图是行驶时间t(h)与行驶速度v(km/h)函数图象的一部分.(1)行驶时间t(h)与行驶速度v(km/h)之间的函数关系是:_________.(2)若该函数图象的两个端点为A(40,1)和B(m,0.5).求这个函数的解析式和m的值;(3)若规定在该段公路上汽车的行驶速度不得超过50km/h,则汽车通过该路段最少需要多少时间?22.近视眼的度数y(度)与镜片焦距x(米)成反比例函数关系,已知200度近视眼镜镜片焦距0.5米,求眼镜度数y与镜片焦距x之间的函数关系式,并画出该函数示意图.23.某工程队接受一项开挖水渠的工程,所需天数y(天)与每天完成的工程量x(m/天)的函数关系图象如图所示.(1)共需开挖水渠多少米?(2)求y与x之间的函数表达式;(3)如果为了防汛工作的紧急需要,必须在一个月内(按30天计算)完成任务,那么每天至少要完成多少米?24.如图,是一辆小汽车沿一条高速公路匀速前进的时间y(小时)与速度x(千米/时)关系的图象,根据图象提供的信息,解答下列问题:(1)这条公路的全长是多少千米;(2)写出速度与时间之间的函数关系式;(3)汽车最大速度可以达到多少;(4)汽车最慢用几个小时可以达到?如果要在3小时内达到,汽车的速度应不少于多少?25.某汽车油箱的容积为50升,司机加满油后准备从利川到100千米处的机场接客人,在接到客人后立即原路返回,请回答下列问题.(1)油箱加满油后,汽车能够行使的总路程y(千米)与平均耗油量x(升/千米)之间有怎样的函数关系?(2)司机驾驶汽车去机场时的平均耗油量为x升/千米.返回时司机降低车速,此时每行驶1千米的平均耗油量增加了1倍,司机一直以此速度行使,返回利川时邮箱里的油还能以此速度行驶100千米,求汽车去机场的平均耗油量是多少?26.为了提高某农作物的产量,有关部门选取了7500千克新产品供某地区使用.(1)写出可播种的亩数y(亩)与每亩所需的新品种的数量x(千克)之间的函数关系式;(2)若每亩需新品种15千克,这些新品种可供多少亩土地播种?27.为了预防流感,某校对教室进行“药熏消毒”.已知药物燃烧阶段室内每立方米空气中的含药量y(mg)与燃烧时间x(min)成正比例.燃烧完毕后,y与x成反比例(如图).根据图中信息解答下列问题:(1)求药物燃烧时,y与x函数关系式及自变量的取值范围;(2)求药物燃烧后,y与x函数关系式及自变量的取值范围;(3)当每立方米空气中含药量低于1.6mg时,对人体方能无毒副作用.那么从有人开始消毒,经多长时间后学生才可以回教室.28.我们学过反比例函数,如:当矩形面积S一定时,长a是宽b的反比例函数,其函数关系式.请你仿照上例另举一个在日常生活中具有函数关系的量的实例,并写出它的函数关系式.29.汽车在高速公路上行驶,从如皋驶往上海.已知汽车到上海所需时间t(h)与行驶速度v (km/h)满足函数关系式:t=,其图象为如图所示的一段曲线,且端点为A(60,4),B(120,m).根据给出的图象,解答下列问题.(1)汽车在高速公路上行驶的速度不低于_________km/h;(2)求如皋到上海的路程;(3)若汽车上午6:40从如皋出发,中途在服务区休息10分钟,则最快上午几点到达上海?30.在一个可以改变体积的密闭容器内装有一定质量的二氧化碳,当改变容器的体积时,气体的密度也会随之变化,密度ρ是体积v的反比例函数,当它的体积v=5m3时,密度ρ=1.98kg/m3.(1)求密度ρ(单位:kg/m3)与体积v(单位:m3)之间的函数关系式;(2)当二氧化碳的密度ρ=4.5kg/m3时,求v的值.参考答案:1.(1)设y关于x的函数解析式为q=,∵函数图象经过点(12,3),∴=3,解得k=36,∴函数解析式为q=;(2)当q=4万m3时,=4,解得t=9.答:当每小时放水4m3时,需9小时放完水2.设y=k/x当x=1时,y=0.8则k=0.8(3分)所以y=x(2分)当x=8,y=0.1(3分)答:大脑中尚存有10%的记忆没有忘记.3.(1)由题意可设P=(m为常量,m≠0),把点(3,1.98)代入,1.98=,解得:m=5.94;∴P=.(2)当v=9m3时,P==0.66,∴当V=9m3时二氧化碳的密度为0.66kg/m34.(1)由题意得:yt×100=1000000,解得y=;(2)当t=90时,y=≈112.答:至少需要安排112辆卡车运输.故答案为:y=;1125.(1)由容积=底面积×深度,可得:sd=10000所以:;(2)当底面积为500m2,即S=500时,将之代入第一问的函数关系式可得:解得d=20(米)答:施工队施工时应向下掘进20米.6.(1)根据题意,每天甲、乙两人共加工35个零件,易得解得x=15经检验,x=15是原方程的解,且符合题意.35﹣15=20答:甲每天加工15个,乙每天加工20个;(3)P=15m+20(m﹣1)即P=35m﹣20∵在P=35m﹣20中,P是m的一次函数,k=35>0,P 随m的增大而增大又由已知得:3≤m≤5∴当m=5时,P最大值=155当m=3时,P最小值=85.7.(1)根据题意,小车每小时可运送吨货物,易得这个车队车每小时运送货物为x+x=x,故有y ×x=800,化简可得;(3分)(2)由(1)的解析式,当x=12时,y==25;(6分)(3)根据题意,若要提前10h完成任务,即要求y≤15,代入解析式可得≤15,解可得x≥20,而此时的工作效率为12吨/时,故至少要增加=6辆小车(8分).故答案为:(1);(2)25.8.(1)设P与V的函数关系式为P=,则=60,解得k=96,∴函数关系式为P=;(2)当气球内气体的体积是0.96m3时,P=,∴气球内气体的气压是100kPa.画图10.(1)所需磁砖的块数=楼体外表总面积÷每块磁砖的面积所以由此可得出,n与S 的函数关系式是:;(2)当s=80时,,需买磁砖的箱数=所需磁砖的块数÷每箱磁砖的块数所以由此可得出,需买磁砖的箱数是=5000(箱)答:需买磁砖的箱数5000箱11.(1)∵vt=12000,∴,即t与v 的函数关系为.(2)当v=60时,,即工厂完成生产1.2万吨化工产品需200天.(3)(12000﹣80×60)÷[]=180(天),由180+80﹣200=60(天),知工厂实际完成任务时间将比原来推迟60天.12.(1)∵每块瓷砖的面积Sm2=楼体外表的总面积÷所需的瓷砖块数m块,由此可得出S与n的函数关系式是:S=;(2)当S=80×10﹣4=8×10﹣3时,n==625000,设用灰瓷砖x块,则白瓷砖、蓝瓷砖分别为2x块、2x 块,依据题意得出:x+2x+2x=625000,解得:x=125000,∴需要灰瓷砖125000块,白瓷砖250000块、蓝瓷砖为250000块13.(1)设△ABC的面积为S,则S=xy,所以y=.所以2=,解得S=3(cm2),所以y与x 的函数解析式为,△ABC的面积为3cm2;(2)因为x>0,所以反比例函数的图象在第一象限,且y随x的增大而减小.当x=4时,y=;当x=9时,.所以y的取值范围为<y <.14.(1)∵水量×进水时间=容积,∴xy=8∴y=(2)令x=2,y===4,;(3)∵x>0,∴图象为:15.(1)∵某车间承包一项生产1800个零件的任务,计划用t天完成,∴每天生产零件s(个)与生产时间t(天)的函数关系为:s=;(2)1800÷300=6(天)故预计最快需要6天内完成任务;(3)设需要增加x人才能完成任务,则(x+60)××(6﹣2)=1800,解得x=30,答:需要增加30人才能按要求完成任务16.(1)∵s=80千米/时×3小时=240米,∴v=.(2)当t=4时,v==60,答:返回时的速度不低于60千米/小时.∵V=200时,P=50∴k=200×50=10000,∴p=;(2)当p=100时,v=10000÷100=100,故v的值是100.18.设100度镜片的焦距为x米,则500度镜片的焦距为(x﹣0.8)米.因为近视眼镜的度数y(度)与镜片的焦距x(米)满足函数关系为y=(k为常数),所以100=,500=,即k=100x,k=500(x﹣0.8),解得x=1,k=100.故k的值为10019.(1)v=8×6=48m3,答:蓄水池的容积是48m3.(2)(0≤x≤6);(3)当t=5时,,x=9.6(m3),答:每小时的排水量至少为9.6m3.(4)当x=12时,(小时)答:最少4小时可将满池水全部排空20.(1)设V=.∵点(12,4000)在此函数图象上,∴蓄水量为12×4000=48000m3;(2)∵点(12,4000)在此函数图象上,∴4000=,k=48000,∴此函数的解析式V=;(3)当t=6时,V==8000m3;∴每小时的排水量应该是8000m3;(4)∵V≤5000,∴≤5000,∴t≥9.6.∴水池中的水至少要9.6小时排完21.(1)把(40,1)代入t=,得k=40,∴行驶时间t(h)与行驶速度v(km/h)之间的函数关系是:t=,故答案为:t=.(2)由(1)得出:函数的解析式为:t=,把(m,0.5)代入t=,0.5=,解得:m=80;(3)把v=50代入t=,得t=0.8,答:汽车通过该路段最少需要0.8小时22.由题意设y=,由于点(0.5,200)适合这个函数解析式,则k=0.5×200=100,∴y=.故眼镜度数y与镜片焦距x之间的函数关系式为:y=.其图象为:23.(1)由图象,知共需开挖水渠24×50=1200(m);(3分)(2)设.∵点(24,50)在其图象上,故所求函数表达式为;(6分)(3)1200÷30=40(m).故每天至少要完成40m.24.(1)以150千米/时行驶了两小时,则路程=150×2=300千米.(2)由速度=,路程为300千米,则有y=;(3)据图象用1小时可以行驶完全程,所以汽车最大速度可以达到300千米/小时;(4)据图象,最低速度为50千米/小时,需要6时行完全程,汽车的速度应不少于每小时100千米25.(1)∵耗油量×行驶里程=50升;∴xy=50∴y=(x>0);(2)设平均耗油量为x升,根据题意得:解得:x=0.1.答:平均耗油量为0.1升/公里26.(1)∵一共有7500千克种子,∴xy=7500,即:y=;(2)当x=15时,y==500,答:若每亩需新品种15千克,这些新品种可供500亩土地播种27.(1)设药物燃烧阶段函数解析式为y=k1x(k1≠0),由题意得:8=10k1,∴k1=,∴此阶段函数解析式为y=x(0≤x<10).(2)设药物燃烧结束后函数解析式为y=(k2≠0),由题意得:8=,∴k2=80,∴此阶段函数解析式为y=(x≥10).(3)当y<1.6时,得<1.6,∵x>0,∴1.6x>80,x>50.∴从消毒开始经过50分钟学生才可返回教室28.当路程s一定时,速度v是时间t的反比例函数;函数关系式为:v=(s为常数).答案不唯一.29.(1)∵图象端点A的坐标为(60,4),∴汽车在高速公路上行驶的速度不低于60km/h;(2)将(60,4)代入t=,得k=240.答:如皋到上海的路程为240km;(3)由(2)可知,函数解析式为:t=.由图象可知,汽车在高速公路上行驶的速度不得超过120km/h.则当v=120时,t==2.答:汽车最快上午8:50到达上海.30.(1)设密度ρ与体积v 之间的函数解析式为:(k≠0),依题意得:,∴k=9.9,∴密度ρ与体积v 之间的函数解析式为:;(2)由(1)求得:,当二氧化碳的密度ρ=4.5时,,=2.2(m3).。

相关文档
最新文档